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Abstract
Due to the wide acceptance of the Word Wide Web Consortium (W3C) XPath

language specification, native indexing for XML is needed to support path expression

queries efficiently. XPath describes the different document tree relationships that may

be queried as a set of axes. Many recent proposals for XML indexing focus on

accelerating only a small subset of expressions possible using these axes. In

particular, queries by ordinal position and updates that alter document structure are

not well supported. A more general indexing solution is needed that not only offers

efficient evaluation of all of the XPath axes, but also allows for efficient document

update.

We introduce MASS, a Multiple Axis Storage Structure, to meet the performance

challenge posed by the XPath language. MASS is a storage and indexing solution for

large XML documents that eliminates the need for external secondary storage. It is

designed around the XPath language, providing efficient interfaces for evaluating all

XPath axes. The clustered organization of MASS allows several different axes to be

evaluated using the same index structure. The clustering, in conjunction with an

internal compression mechanism exploiting specific XML characteristics, keep the

size of the structure small which further aids efficiency. MASS introduces a versatile

scheme for representing document node relationships that always allows for efficient

updates. Finally, the integration of a ranked B+ tree allows MASS to efficiently

evaluate XPath axes in large documents.

We have implemented MASS in C++ and measured the performance of many

different XPath expressions and document updates. Our experimental evaluation

illustrates that MASS exhibits excellent performance characteristics for both queries

and updates and scales well to large documents, making it a practical solution for

XML storage. In conjunction with text indexing, MASS provides a complete solution

from XML indexing.
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1 Introduction

XML databases have several fundamental differences from their relational

counterparts. Relational databases [14] require an a-priori defined schema that has

been normalized and optimized to suit specific queries. The flat representation model

found in relational databases requires a database designer to manually fragment the

data they wish to model and then carefully indexed by a database administrator since

little change to the schema is anticipated. Conversely, XML has a semistructured data

model [1] where the structure is embedded in the document. The storage for the XML

document must be derived from the document's structure. If the document has no

Document Type Definition (DTD) or XML Schema, the structure of the document is

not known until the document is parsed. These differences make XML storage a

complex problem that requires a much more dynamic solution than  relational

databases can provide.

Effective storage for XML documents must consider both the dynamic nature of

XML data and the stringent requirements of XQuery [16], the World Wide Web

Consortium (WC3) proposed query language for XML. XQuery allows querying of

documents both by the structure of the data and the data values themselves using the

XPath [15] expressions. Indexing is thus required on both document structure and

textual values in order to be able to evaluate many of these queries efficiently.

Likewise, the storage must be efficient in adapting to changes in both the structure

and data content of documents. Value-based indexing is an old problem with B-Trees

and inverted indexes [22] being widely accepted as effective solutions. Structural

indexing for XML documents, which is the focus of this research, is a new and

difficult problem. A novel storage solution is required that can efficiently adapt to

XML document structural changes while providing the specific interfaces need to
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evaluate XPath expressions.

In this paper, we propose a new index structure called MASS (Multi-Axis

storage Structure), that provides efficient means of evaluating XPath expressions

involving document structure, while minimizing the cost of incremental updates. The

main contributions of MASS are:

� A versatile system for encoding document order and structure based on

lexicographical sequence keys. These keys can be used to determining all node

relationships and guarantee insertion or deletion of new nodes in constant time.

They can also be used to uniquely identify document nodes for tasks such as join

processing or determining intersections between node sets.

� A compressed inlining scheme that provides full inlined paths for all document

nodes while internally compressing path information. Individual nodes can be

accessed during query processing without having to decompress other unrelated

data. The compression is shown to reduce the size of the inlined data by up to 75%.

� A set of four key  clusterings that allow efficient query of all XPath axes. The

clusterings efficiently support different combinations of XPath axes, node tests,

and predicates.

� Integration of a ranked B-Tree [22] to speed evaluation of sibling queries. The

ranked B-Tree greatly reduced the number of key comparisons for range searches

and can evaluate document position queries and count node sets in logarithmic

time.

The remainder of this thesis is structured as follows. Section 2 provides a brief

introduction to XPath expressions, while Section 3 explains the requirements for

XPath indexing in detail. Sections 4 describe the various building blocks of MASS.

Section 5 explains query processing in MASS, while  section 6 explain updates
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operations. Sections 7 provides results from the implementation or MASS and

subsequent and performance measurement. Section 8 covers related work in XML

indexing and section 9 provides conclusions.

2 XPath Expressions

The XPath language is used for addressing nodes in a document or matching sets

of nodes by their relationships to a context node [15]. The expressions used to select

nodes are called location paths. Location paths can select nodes by node type, tree

relationships, unique ID, and value. Each location path is composed of one or more

location steps. The first location step selects selects nodes with respect to the root

node while subsequent steps select nodes with respect to the previous location step.

The example in Figure 1 depicts a representative XML document (c) and  annotated

DTD (a) for an inning of a baseball game along with an XPath expression (b) with

two location steps.

Each location step of an XPath expression consists of an axis, node test, and

possibly predicates. The axis describes the tree relationship to the context node. The

possible XPath axes are child, descendent, parent, ancestor, following-sibling,

preceding-sibling, following, preceding, attribute, namespace, self, descendent-or-

3

Figure 1: (a) DTD,  (b) XML Document, (c) XPath Expression

<?xml version="1.0"?>
<!DOCTYPE game [
<!ELEMENT game  (inning* )>
<!ELEMENT inning  (at_bat, at_bat, at_bat+ )>
<!ATTLIST inning id ID #REQUIRED >
<!ELEMENT at_bat  (ball | strike | hit | out )*>
<!ELEMENT ball  (#PCDATA )>
<!ELEMENT strike  (#PCDATA )>
<!ELEMENT hit EMPTY>
<!ATTLIST hit bases CDATA #IMPLIED>
<!ELEMENT out  (#PCDATA )>
]>

(a)

<game>
  <inning id="i1">
    <at_bat>
      <ball/>
      <strike/>
      <out/>
    </at_bat>
    <at_bat>
      <strike/>
      <hit bases="1"/>
    </at_bat>
    <at_bat>
      <ball/>
      <hit bases="2"/>
    </at_bat>
  </inning>
</game>

(b)

/game/at_bat[2]
(c)



self, and ancestor-or-self. The node test is either the type name of the nodes to select

from the axis or “*”  to select all nodes in the axis. Any additional predicates further

refine the selection at the location step.  In the previous example, the first location

step has selected the game children nodes of the root, while the second step selected

the 2nd at_bat child of each game node.

 Figure 2 gives some more examples of XPath expressions with brief

descriptions of what is queried. Note that there is a shorthand for some relationships,

For example, “//” selects the descendant axis.

There is currently no standard syntax for updating XML documents, although

there will likely be soon since the need obviously exists. Hence, we will only discuss

the insertion and deletion of nodes in this paper.

3 XML Storage Requirements

XML storage must not only provide efficient retrieval for queries, but must also

adapt to the complex structural variation of XML data. Storage costs should remain

proportional to document size, while update and query performance should be

bounded for large documents.

The efficiency of a database is largely governed by the capabilities of its indexes.

Even with very large documents, proper indexing should allow many queries to be

evaluated with little system resources. Indexing capabilities should match those of the

XPath language so that most XPath constructs can be evaluated efficiently.

Efficient XML storage should provide a replacement for the relational database

4

Expression Meaning

/game//at_bat[2]
/game/inning/at_bat[hit]/..
/game/inning[9]/*
/game/inning[9]::following::*

2nd at-bat of the game
at_bats that had a hit
Statistics for the 9th inning
After the 7th Inning Stretch

Figure 2: XPath Expressions



backends currently employed. Custom storage should be capable of evaluating many

expressions faster than relational databases by avoiding costly joins and data

fragmentation issues[10]. Likewise, document updates should be more efficient with

native storage, especially when they alter the structure of the document. 

3.1 Query Operations

To effectively support XPath expressions, indexing must be available to support

each XPath axis. Efficient lookup should be available both with and without a node

type in the node test. Additionally, since it is common for an ordinal position or an

attribute to be supplied as a predicate, these should also be indexed.

The two examples in Figure 3 demonstrates queries with different node test and

predicate combinations that have very different indexing requirements. The first

expression, which selects the at_bat children of the inning nodes, requires indexing by

node type for efficient evaluation. The 2nd expression, which selects children of inning

nodes by position, requires indexing on the order of child elements for  efficient

evaluation.

Indexing should provide useful statistics for XPath expressions. The search axes

described in XPath [14] have inherently different selectivities which largely influence

query performance. The parent and ancestor axes are relatively cheap to evaluate.

Conversely, the sibling, following, and descendant axes can contain any number of

nodes from zero to the total number of nodes in the document. It is important that the

size of these axes can be determined accurately and efficiently when formulating a

query plan. If these statistics are not accurate, then the query processor may have to

5

Figure 3: Queries with Different Indexing Requirements

/Game/Inning/at_bat
/Game/Inning/*[1]



choose more conservative query plans such as document scans.

As an example, the queries in Figure 4 have different selectivities. The first

query is not very selective for the XML document data given in Figure 1 since it

retrieves all descendants of the inning node. The second query is much more selective

since it returns at most one at_bat node for each inning node. However, without

statistics on the number of innings, the actual selectivity remains unknown to the

query processor.

XML indexing should facilitate efficient expression evaluation on deeply nested

data. Deeply nested data presents a problem analogous to multi-way joins in a

relational database. When there are many intermediate results, queries become

difficult to optimize and evaluate. A simple example is a fully qualified path as shown

in Figure 5. Iteratively processing of the four location steps in this example could be

very expensive since many nodes may be matched at each step. 

3.2 Lossless Storage

XML storage should eliminate the need for flat XML files. XML data stored in

flat files is impractical for both queries and updates. For query processing, the flat file

cannot facilitate any of the XPath axes. This is mainly due to the fact that the structure

of the XML document is not known until the tags for each element are reached. Flat

files can also be impractical for updates since operating systems generally do not

support insertion and deletion from the middle of the file. Hence, files must be
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Figure 5: Fully Qualified Path Expression

/game/inning/at_bat/hit

Figure 4: Queries with Different Selectivity

Game/Inning[@ID=”I1”]/*
Game/Inning/At-Bat[2]/Hit[1]



completely re-written after updates.

Lossless XML storage must fully represent the document ordering, structure, and

content, regardless of the size or complexity of the data. XML data consists of various

node types including element, CDATA, and processing instructions. Lossless

indexing must preserve both the node type and original node value to facilitate

document reconstruction.

3.3 Document Order

XML storage must preserve document order and structure to facilitate document

reconstruction. A flat XML file contains no explicit representation of document order

or structure. Rather node relationships are only implied by the physical ordering of

tags in the file. XML storage must implicitly or explicitly represent these

relationships.

The representation for document order should be useful for query processing.

Efficient access to nodes in document order is required for efficient document

reconstruction. Furthermore, since the result of a path expression must be in document

order [16], it is also important that document ordering can be maintained efficiently

during query processing. Indexes should provide document ordering whenever

possible to minimize the need for sorting after each location step. Additionally, it

should be efficient to compare ordering between individual elements for the case

when sorting is needed to order a result correctly.

An effective solution for document ordering should also allow for efficient

insertion and removal of individual document nodes. Document ordering must be

managed efficiently since there may be an indeterminate number of elements whose

ordinal position may be affected by an update. XML storage should also allow for

efficient insertion of elements that cause structural change, such as removing all
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nodes of a given type or adding a new type of node.

4 The MASS Indexing Structure

We propose MASS as an index structure to meet the stringent requirements for

XML indexing outlined in Section 3. MASS is a native XML indexing structure that

facilitates efficient querying of all XPath axes and allows efficient document update.

Furthermore, the lossless storage in MASS enable it to serve as primary XML storage,

eliminating the need for flat files.

MASS encapsulates five different concepts that together satisfy the requirements

for query processing, update, and lossless storage. The concepts are inlining, ordering,

compression, clustering, and persistent storage. Performance is the key consideration

for the entire design of MASS. The result is an effective and scalable solution for

XML path indexing. We will now examine the five key concepts behind MASS one

by one in detail.

4.1 Inlined Paths

 Inlining is a well known technique that reduces the cost of traversing a

document graph by storing multiple edges of the graph together in a concatenated

form. Inlined paths can also be used to determine node types for ancestor nodes

without having to access the ancestor nodes directly. The example in Figure 6

demonstrates the inlined expansion of a document graph. 

Prior work [4,7,10] has repeatedly shown that inlined paths can significantly

reduce the cost of partial and fully qualified path expressions by reducing the number
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Figure 6: Example of Inlined Data

Inlined Paths:
  /game/inning/at_Bat/ball
  /game/inning/at_bat/strike
  /game/inning/at_bat/hit

game

at_bat

ball hit at_bat



of index I/Os. Figure 7 demonstrates queries that can be evaluated efficiently by

comparing the path expression with the inlined expansions from Figure 6. The second

example is considered a partial match since the node test “*”  matches all node types.

Inlined paths alone have limited effectiveness since they can only test node

types. For example, the nodes returned from the expressions in Figure 7 may be

siblings, but this information is not present in the inlined paths. A solution is needed

that also captures the structural information from the document.

4.2 Inlined Order Keys

We first look at a simple numbering scheme. In the example in Figure 8, a pre-

order traversal is used to traverse the document graph in document order and assign a

number to each node. This simple numbering scheme is of limited use to queries since

the relationships between nodes cannot be determined without examining the entire

set of nodes. A more robust solution is clearly needed to satisfy our XPath query

requirements.

To encode document structure in MASS, we propose a scheme that complements

inlined paths with inlined order keys. For each document node a relative key is

assigned that describes the order with respect to sibling nodes. This relative key is

9

Figure 7: Querying for Inlined Paths

What were all the hits in the game?
  /game/inning/at_bat/hit

What happened in all of the at_bats?
  /game/inning/at_bat/*

Order Path

a
b
c
d
e
f

game
game/at_bat
game/at_bat/ball
game/at_bat/hit
game/at_bat
game/at_bat/hit

Figure 8: Simple Ordering Example

game

at_bat

ball hit hit

at_bat

a

b

c d

e

f



concatenated with the relative keys of all ancestor nodes to form the inlined order key.

This assumes that the ancestor nodes have already been inserted. Note that since the

parent node has the same key organization, the concatenation of all ancestor keys is

equivalent to the inlined order key of the parent node. The example in Figure 9

demonstrates inlined order keys

The inlined order key for any two nodes can be compared to determine all of the

axis relationships between the nodes. Let us review this with a few examples. If the

inlined order key for one node is a prefix of the inlined order key for another node,

then it is an ancestor of that node.  If the longest prefix of the inlined order keys for

two nodes is identical, then the nodes are siblings. If the longest prefix of the inlined

order key for one node is equal to the inlined order key of another node, then it is the

parent of that node. If the inlined order key for one node is lexicographically greater

than that of another node, then it precedes that node in document order.

The inlined order key also serves as a unique identifier for document nodes. The

relative portion of an inlined order key for a given node is unique among the siblings

of that node. Inlined order keys are also unique across all documents since the

component of the inlined order key that corresponds to the root node is unique for

each document. The uniqueness of these keys allows search for individual nodes by

exact match.

Inlined order keys are also useful for intermediate query processing. The

example in Figure 10 demonstrates evaluation of an expression containing the

10

Inlined
Order Key

Inlined
Path

 a
 a.a
 a.a.a
 a.a.b
 a.b
 a.b.a

game
game/at_bat
game/at_bat/ball
game/at_bat/hit
game/at_bat
game/at_bat/hit

Figure 9: Inlined Order Key Example

game

at_bat

ball hit hit

at_bat

a

a.a

a.a.a a.a.a

a.b

a.b.a



disjunction “stri ke or foul” using the date from Figure 9. After separately evaluating

the two sides of the disjunction, a single node set in document order must be produced

from the union of these two results. The inlined order key can be used to order the

result in document order and to determine if there are duplicates in the union that

must be removed. If both sides of the disjunction arrive in document order, then a

single merge can be used to perform both of these tasks efficiently.

The ancestor information stored with each document node can be used to

evaluate partial match expressions, establish document ordering, and check node

relationships without actually retrieving the ancestors of a node. The I/O saved by not

retrieving the ancestors can substantially improve performance of these queries. The

example in Figure 11 demonstrates this optimization.

4.3 Lexicographical Sequences

Although the inlined order key scheme described in Section 4.2 works well with

queries, it does not allow for efficient updates. This problem is illustrated in Figure

12. A new node cannot be added to the left of node “a.a.a” since a relative key with
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Figure 11: Retrieving Specific Ancestors from Inlined Path

Was At-bat was the last strike thrown in?
  /Game/Inning/At-Bat/Strike[last()]/..

Intermediate Result:
  /Game/Inning/At-Bat/Strike [B.B.C.B]

Truncate Path and order to get parent node:
  /Game/Inning/At-Bat        [B.B.C]

Figure 10: Inlined Order Key Used to Evaluate Disjunction

Which At-Bats had either a hit or a ball?
  /game/inning/at_bat/*[hit or ball]/..

(1)At-bats with hits: (in document order)
  /game/inning/at-bat      [a.a]
  /game/inning/at-bat      [a.b]

(2)At-bats with balls: (in document order)
  /game/inning/at-bat      [a.a]

Calculate Union of results (1) and (2):
  /game/inning/at_bat/foul [a.a]
  /game/inning/at_bat/foul [a.a]



value less than 'a' cannot be generated. A new node cannot be added to the right of

node “a.a.a” since a relative key that is greater than 'a' and less than 'b' cannot be

generated.

We propose generated lexicographical sequences to facilitate node insertions and

deletions in MASS. Generated lexicographical sequences are variable length byte

strings whose values are lexicographically ordered. Strings are compared character by

character unless one string is the prefix of the other, in which case the shorter string

has a smaller value.

The algorithm used to generate lexicographical sequences guarantees that lower

and higher keys can always be generated. To ensure this, we define a lower bound and

upper bound for the range of characters that are legal for use in keys. These limits are

set to the alphabetic characters 'a' and 'z' in this paper. Neither of these characters will

ever be generated by the algorithm since that would prevent the subsequent generation

of smaller or larger keys respectively. To generate a new lowest key, the existing

lowest key is supplied as the high key and the lower bound is supplied as the low key.

Likewise, to generate the new highest key, the existing highest key is supplied as the

low key and the upper bound is supplied as the high key.

 Lexicographical sequences allow new document nodes to be added or existing

document nodes to be removed from an index without the need to update other nodes.

Given two keys A and C, the generator can always create a key B such that A < B < C

12

Inlined Order Key  Inlined Path

 a
 a.a
 a.a.a
 a.a.b
 a.b
 a.b.a

game
game/at_bat
game/at_bat/ball
game/at_bat/hit
game/at_bat
game/at_bat/hit

Figure 12: Document Update Problem

game

at_bat

ball hit hit

at_bat

a

a.a

a.a.a a.a.b

a.b

a.b.a
strike strike

a.a.?a.a.?



and that can be used in place of A or B to generate subsequent keys. Keys other the

highest or lowest are generated using a divide by 2 algorithm as shown in Algorithm

1. Sample results for this algorithm are given in Table 1.

Low Input High Input Output

A
M
S
X
Y
Y

Z
Z
Z
Z
Z
YM

M
S
X
Y
YM
YH

Table 1: Cascading Lexicographical Key Generation

The worst case length of the keys increases as a function of the upper bound and

lower bound. In a database however, these limits are set to the minimum and

maximum unsigned byte values (0 and 255) to maximizes the fanout and produce

shorter keys. The worst case growth of the key size occurs when consecutive values

are generated. It is given as:

where:

N - # of insertions
K - Length of key generated
U - Upper bound value of each character
L - Lower bound value of each character

Figure 13 demonstrates that the node insertions that were not possible in Figure

13

K � N
�
log 2 U � L

Algorithm 1: Lexicographical Sequence Generator

Inputs:
S1, S2: strings S1 < S2

UpperBound, LowerBound: lowest/highest byte values
Output: S3, L3: string S3 of length L3. S1 < S2 < S3

set S3 = CommonPrefix( S1, S2 )
if( Length( S1 ) ≤ Length( S1 ) and Length( S3 ) ≤ Length( S2 ))

set MidByte ← Average ( LastByte ( S1 ), LastByte ( S2 ) )
if ( MidByte != LastByte ( S1 ) )

set LastByte ( S3 ) ← MidByte
else

set S3 ← S1

Append( S3, Average(  UpperBound, LowerBound ) )
else

set S3 ← S2
set LastChar( S3 ) ← LowerBound
Append( S3, Average(  UpperBound, LowerBound ) )



12 are possible using generated lexicographical sequences. 

4.4 Compression

MASS provides an effective compression mechanism that exploits the

redundancy found in XML documents. Most XML data contains a limited number of

node types that is determined either by constraints in the DTD or by the number of

real world entities modeled by the data. As an example, the DTD in Figure 1 limits

the document content to nine different node types (including text nodes). The limited

number of node types alone guarantees some degree of redundancy in XML data. If

the number of node types remains fixed and the document size increases, then the

amount of redundancy will increase.

To further the case for compression, the inlined paths and order keys presented in

Sections 4.1 and 4.2 guarantee that much more redundant data will be present in

MASS than in the original document. This guarantee of redundancy ensures that some

degree of compression is possible. This is the premise for our compression scheme.

The high degree of redundancy for  inlined data is illustrated in Figure 14. Note that

all strings in this example occur in more than one location.
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Inlined Order Key Inlined Path

 b
 b.b
 b.b.an
 b.b.b
 b.b.bn
 b.c
 b.c.b

game
game/at_bat
game/at_bat/strike
game/at_bat/ball
game/at_bat/strike
game/at_bat
game/at_bat/hit

Figure 13: Document Update Problem with New Nodes Added

Inlined Order Key Inlined Path

 b
 b.b
 b.b.an
 b.b.b
 b.b.bn
 b.c
 b.c.b

game
game/at_bat
game/at_bat/strike
game/at_bat/ball
game/at_bat/strike
game/at_bat
game/at_bat/hit

Figure 14: Redundant Inlined Data

game

at_bat

ball hit hit

at_bat

b

b.b

b.b.b b.b.c

b.c

b.c.b

strike

b.b.an

strike

b.b.bn



Compression in MASS is performed on a per-node basis. Nodes are compressed

as they are inserted into MASS indexes.  Individual nodes can be decompressed

whenever they are accessed by a query without decompressing other nodes not needed

by the query.

Since compression must be efficient in terms of both space and time, MASS

limits compression opportunities to nodes stored in physically adjacent index entries

on the same data page. Limiting the search for redundant data to adjacent nodes

minimizes the complexity of the compression algorithm and keeps the compression

mechanism independent of the physical node clustering. Limiting compression to

entries on the same page eliminates the need for any additional I/O to compress or

decompress nodes. 

The compression scheme in MASS facilitates compression by linking entries that

share  redundant path or order key components, effectively forming a graph of

compressed data. Before an entry is inserted, the entries it will be adjacent to are

examined to determine if they contain any redundant path or order key components.

The adjacent entry with the most redundant path components is selected as the

compression candidate. In order to keep the maximum depth of the compression

graph bounded, any link from the compression candidate to another entry must be

followed until that entry has less redundancy than the candidate entry. If another entry

is found to have more redundancy, then it becomes the compression candidate. This

process guarantees that the depth of the compression graph is bounded and is

discussed below in the context of decompression.

The example in Figure 15 demonstrates selection of a compression candidate.

The match size is the sum of the lengths of strings that are redundant between a

compression candidate and a new node.
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If a node is found that is a good candidate for compression of the new node, then

a bit vector is created to determine which components of the new node will need to be

stored and which components will be shared. This bit vector, called the compression

mask, is added to the index entry for the new node along with any non-shared

components when the new node is finally inserted. The physical offset of the

compression candidate on the data page must also be stored so that shared

components can be located for decompression.

The compression scheme used by MASS indexes requires little overhead. The

mask and compression offset are stored in a very compact format that typically adds

between two and four bytes of overhead storage per index entry. This compression

strategy greatly reduces the overhead of storing inlined node paths and order keys.

The example in Figure 16 demonstrates compression reducing storage size by more

than a factor of five.

To decompress a node, a recursive lookup is used to retrieve all path and order
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Figure 16: Physical Compression Representation
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New Node 
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b.c game/at_bat 11

Figure 15: Compression Candidate Selection



key components. The compression mask for each entry is used to determine which

components are stored explicitly in the current node entry. If any path or order key

components are instead part of another entry, then that other entry is read to determine

which components are stored there. This process repeats itself until all path and order

key components have been retrieved. Since each entry read will contain at least one

path or order key component, the worst case number of entries read is equal to the

total number of key components. However, this worst case can only occur for a very

limited number of entries since these combinations of entries will not be chosen as

long as other entries are present that produce better compression.

The compression scheme in MASS minimizes the performance penalty and

fragmentation typically associated with compressed data by implementing

compression at a granular level. Since individual entries can be decompressed, there is

no up-front cost to access index entries. Entries that are not accessed are never

decompressed. External fragmentation occurs when space cannot be used because it

too small for the required allocation.  Compression can cause external fragmentation

in database structures since the variable size of compressed units is unlikely to align

with the fixed sized database blocks. Since the size of each compressed entry in

MASS is small with respect to the page size, the amount of external fragmented space

will remain limited.

4.5 Node Clustering

Node clustering optimizes each MASS index for specific XPath axes. The

concepts described up to this point were applicable to all MASS indexes. Node

clustering defines the unique ordering for nodes in each MASS index. Each clustering

is tuned to allow efficient evaluation of a subset of the XPath axes. 

Node clustering provides nested ordering similar to the that of clustered
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multicolumn indexes found in relational databases [14]. Each node clustering defines

a sequence of keys that provides nested ordering for document nodes. Each prefix of

the key sequence of length n can be used to perform a range search that matches the

first n keys of the sequence. MASS guarantees that key sequences uniquely describe

nodes and hence nodes can be located by exact match for all clusterings.

The first MASS clustering, CL1, is demonstrated in Figure 17. This clustering

orders nodes in document order. Since the inlined order key can be used to determine

document ordering, the key sequence for CL1 is simply <inlined order key>. Note the

additional nesting that is inherited from the inlined order key.

To demonstrate the efficiency of the CL1 clustering, we consider the location

step in Figure 18, which selects all descendants of the context node. The descendant

axis is retrieved by searching for the first and last descendants, then scanning the

range between these points, which can only contain descendant nodes.

The first descendant will always be the node immediately following the context

node in document order. The first descendant is located by searching for the first node

greater than the context node. Next, the inlined order key of the first node is compared
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Figure 17: CL1 Clustering Example

Context Node: d.d.d.d /root/game/inning/at_bat

Location Step: descendant:*

Figure 18: Descendant Axis Location Step



with the inlined order key of the context node to determine if it is indeed a

descendant. If the first node is not a descendant, then there are no descendant.

Otherwise, we proceed to locating the last descendant node.

The last descendant node in the CL1 clustering is the last node in document order

having an order key prefix equal to the order key of the context node. This node can

be located by appending the  lexicographical sequence reserved upper bound key ('z')

to the inlined order key of the context node. The last descendant can be located by

searching for the first node that proceeds the generated key (d.d.d.d.z) in document

order.

The CL1 clustering also facilitates efficient query of the descendant-or-self,

following, and preceding axes when the node test is “*” (matches all node types).

Attribute nodes are excluded from the CL1 clustering since they are excludes from the

descendant, descendant-or-self, following, and preceding axes. The CL1 clustering is

the most efficient clustering for document extraction since elements can be retrieved

in document order. However, attribute nodes must be merged in since they are node

present in this clustering.

The CL2, CL3, and CL4 clusterings provide for efficient evaluation of the

remaining combinations of of the XPath axes and node tests. The steps to query there

clusterings are nearly identical to the example provided for the descendan axis.

Sample data is provided for each of these clusterings to demonstrate the node ordering

produced.

The CL2 clustering orders nodes with their siblings in document order. The key

sequence for CL2 is <parent order key, relative order key>. This clustering provides

efficient evaluation of the child, preceding-sibling, following-sibling, and attributes

axes when the node-test is “*”. 
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The CL2 cluster stores stores all nodes, including attributes. Since attributes do

not have relative order, attributes in the CL2 clustering are effectively stored in

document order. Since they are in document order, these attributes can be efficiently

merged with elements from the CL1 clustering for document extraction.

The CL3 clustering orders nodes by their node type in document order. The key

sequence for CL3 is <relative location path, order key>. This clustering is optimized

for evaluation of the descendant, preceding, and following axes when the node type is

supplied in the node test since all nodes of the same type are in adjacent index entries.

The CL4 clustering order entries by node type in sibling order. The key sequence

for CL4 is <relative location path, parent order key, relative order key> This

clustering provides efficient evaluation of the child, preceding-sibling, following-

sibling, and attributes axis when the node type is supplied in the node test since

sibling nodes of the same type are in adjacent index entries.
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Figure 20: CL3 Clustering Example
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Figure 19: CL2 Clustering Example



We now consider the influence of particular clusterings on the effectiveness of

compression. Recall that only nodes in adjacent index entries are compressed. The

outer keys of each clustering key sequence determine which nodes occur in adjacent

index entries. Consider the cluster example in Figures 17, 19, 20, and 21. Schemes

CL1 and CL2 cluster by document order and therefore always share common path and

order key prefixes. Schemes CL3 and CL4 rely on there being several instances of a

given node type to achive compress of location paths, but this is common in XML

data. The secondary document orderings of CL3 and CL4 cause adjacent nodes of the

same type to share common order key prefixes. Adjacent nodes of different types will

always share at least the first component of the inlined order so compression is always

possible to some degree.

4.6 Persistent Storage

The clusterings described in the previous section have excellent query properties

that we would like to allow for large documents. Persistent storage is needed for these

clustering that allows efficient retrieval of both individual nodes and ranges of nodes

from each cluster. Furthermore, because predicates in XPath can specify a relative

position, we also need efficient random access to nodes in each clustering.

The ranked B+ tree [22] meets all of these requirements and plays an important
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Figure 21: CL4 Clustering Example



role in both the scalability and functional abilities of MASS. The ranked B+ tree

provides efficient point and range access like that of the conventional B+ Tree. In

addition, it also provides efficient random access to any entry by relative position and

can efficiently calculate the distance between any two entries, as explained below.

 The ranked B+ tree facilitates random access by maintaining subtree item counts

in interior pages of the B+ tree. Each interior page has a counter for the total number

of items in all subtrees and a counter for each individual subtree. Figure 22 provides

an example of a ranked B+ tree that is ordered using the CL1 Clustering.

The ranked B+tree functions identically to a conventional B+tree for key lookups

and range traversals. What is unique about the ranked B+ tree is its ability to seek

backward or forward for an arbitrary number of entries or count the distance between

any two entries in logarithmic time.  This behavior is necessary to guarantee

performance of document lookups by position. Consider the query in Figure 23,

which selects the 30th at-bat of the game. 

Without random access, this query may have to scan the at_bat nodes to

determine the 30th node. However, using the ranked B+ tree, it is possible to locate the

correct data page and index entry in logarithmic time. For this example, the
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Figure 22: Ranked B+ Tree Organization

Figure 23: Query Accelerated by Ranked B+ Tree
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appropriate clustering is CL4 since we are accessing the child axis and the node test is

at_bat. The 30th node is accesses in the ranked B+ tree by searching for the first node

by exact match then advancing 29 nodes in the index.

Another benefit of the ranked B+ tree tree is the ability to calculate the distance

between two index entries in logarithmic time. Since there is a one-to -one

correspondence with index entries and nodes in an axis, MASS can determine the

number of nodes in each axis in logarithmic time. With these exact counts, a query

processor can more effectively determine the best query plan. These statistics can be

computed for all nodes in an axis, or for all nodes of a given type in an axis.

5 XPath Expression Evaluation

MASS facilitates XPath expression evaluation by providing optimized interfaces

for each of the XPath axes. To query an axis, a context node, axis name and node test

must be provided to MASS. The caller can then query the axis as desired. If the node

test selects a node type, then only nodes of that type will be returned, otherwise all

node types will be returned.

Each axis in MASS supports three query operations: Fetch, Fetch Nth, and Count.

The semantics of these operation are as follows. Fetch returns the next node from the

axis in document order. Fetch  Nth  returns the node at a specified ordinal position in

the axis if the position is within the size of the axis. Count returns the total number of

nodes in the axis.

Internally, the challenge to MASS is in mapping the requested axis and node test

to one of the four clusterings. To set up for query of an axis, the following three steps

are always performed:

1. Select the appropriate clustering using the axis and node test and open the

corresponding index. The axis and node test combinations supported by each
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clustering are described in Section 4.5.

2. Compose the search keys used to locate the first and last node in requested axis.

Refer to the example below for detail.

3. Locate the first and last nodes in the axis. Store the locations of these nodes as the

endpoints of the axis

As an example, we will now consider the location step in Figure 24, which

selects all hit node children of the context node. The first step is to select a clustering,

which is CL4 since the axis is child and the node test is not “*”. The search key for

the first child is composed by appending the node type to the absolute path of the

context node and appending the reserved lower bound key ('a') to the inlined order

key of the context node. The search key for the last child is similar, except that the

reserved upper bound key ('z') is appended to the absolute order key instead. The

resulting search keys are shown in Figure 24. The first node is located by searching

the index corresponding to the CL4 clustering for the first entry greater than the first

child key. The last node is located by searching that same index for the first entry less

than the last child key. The child relationship and node test must be checked for the

first node to determine if any children of that type exist. This is done by determining

if context node order key is the longest prefix of the order key and that the node test is

true for the first node. For this example, d.d.e is the longest prefix of d.e.e.e and the

child type is hit, so the node returned is in fact the first child of type hit. Note that

since the first and last child are the same entry, there is exactly one node in the result.
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The descendant axis is retrieved by searching for the first and last descendants,

then scanning the range between these points, which can only contain descendant

nodes. In the CL4 clustering

The first descendant will always be the node immediately following the context

node in document order. The first descendant is located by searching for the first node

greater than the context node. Next, the inlined order key of the first node is compared

with the inlined order key of the context node to determine if it is indeed a

descendant. If the first node is not a descendant, then there are no descendant.

Otherwise, we proceed to locating the last descendant node.

Query operations are very efficient in MASS. Once the endpoints of the axis are

located, no further searching is required. The Fetch operation can efficiently iterate

the index up to the endpoint without the cost of comparing index keys. The Fetch Nth,

and Count operations can re-use the endpoints of the axis for their evaluation.

6 Document Update

MASS is inherently designed to allow for efficient incremental document update.

Incremental inserts in MASS are nearly identical to the initial construction of the

indexes since XML data is loaded into MASS via an event-based SAX parser to begin

with. The only dependencies between nodes are order keys and compression and these

are both determined based on the current nodes in the indexes. In effect, every node

loaded into MASS is an incremental insert.
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Context Node: d.d.e /root/game/inning/at_bat

Location Step: child:hit

First Child Key: /root/game/inning/at_bat [d.d.e.a]

Last Child Key: /root/game/inning/at_bat [d.d.e.z]

First Child: /root/game/inning/at_bat/hit [d.d.e.e]

Last Child: /root/game/inning/at_bat/hit [d.d.e.e]

Figure 24: Child Axis Location Step Example



To insert a new node, the inlined path and inlined order key must be determined.

Nodes are always inserted after their parent node has been inserted. If the new node

has existing siblings, then the relative order key must be calculated by applying the

lexicographical sequence key generation  algorithm from Section 4.3 to the relative

order keys of the siblings. Otherwise, the relative order key can be any suitable key,

such as 'n'. The inlined order key for the new node is formed by appending the relative

order key for the new node to the inlined order key of the parent node. Likewise

inlined path for the new node is formed by appending the node type for the new node

to the inlined path of the parent node. The node can then be inserted into each of the

indexes in MASS.

Node insertions are complicated by the per-node compression scheme. Since the

size of each index entry is not known until the actual index entry is created, the entry

must be constructed outside of the page and then copied to the page only if there is

room. If the entry does not fit, then the page must be split and a new entry must be re-

created since any entries that it referenced for compression purposes may have

moved. Furthermore, when an index page splits, all nodes from the split page must be

re-inserted into the new pages.

Node deletions are also complicated by the compression scheme. Since

compressed index entries are linked together in an indeterminate order, there is no

means to physically delete entries without completely re-creating data pages. Entries

can only be logically deleted such that they do not appear in searches and do not

effect performance. Space used for these logically deleted entries can be recovered

during inserts by re-creating full pages that contain deleted items instead of splitting

them. This allows MASS to amortize costs over multiple updates. This algorithm is

shown in Figure 25.

26



7 Experimental Results

We have implemented MASS in C++ and extensively tuned the implementation

for optimal query performance. With the exception of the Xerces SAX Parser [23]

used to parse XML input files, the entire implementation was done from scratch.

7.1 MASS Architecture

Figure 26 represents the high-level architecture of MASS. At this abstraction,

MASS is a set of indexes with interfaces for loading and querying documents. The

interface for loading documents uses the Xerces C++ SAX parser [23]. The interface

for querying documents is a set of C++ classes that represent the various XPath axes.

The role of the SAX parser is to scan the XML document and create document

events as it encounters constructs such as the start of a new element. Each event must

be handled before the parser can continue scanning. The SAX parser maintains

minimal state information and thus requires little overhead, even for parsing large

documents.

The SAX Handler inserts nodes into the indexes based on document events from

the SAX parser. The SAX Handler registers callback functions with the parser to

handle each document event. The current position in the document hierarchy is

maintained by storing the inlined path and inlined order key for the last node inserted.

The SAX Handler generates order keys for new nodes as they arrive and inserts these
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Figure 25: Modified B+ Tree Insert Algorithm
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nodes into each of the indexes.

The indexes facilitate persistent storage of document nodes. There is one index

for each of the four clusterings described in Section 4.5. When loading documents,

these indexes transform the in-memory representation of nodes from the SAX

Handler to the compressed representation on disk. When querying documents, the

indexes decompress nodes into an in-memory representation suitable for queries.

The XPath Axis handlers map XPath axis requests to primitive index operations.

This allows the query engine to request nodes from a specific axis without any

knowledge of the internal representation of MASS. The axis handler maintains the

current location in the index so that nodes can be fetched sequentially without

iterative lookups.

7.2 Implementation

The child, ancestor, descendant, following, and following-sibling axes were fully

implemented and tested. The remaining axes had trivial differences such as reverse

document order (i.e. preceding vs. following) or disjunction with the context node

(i.e. descendant vs. descendant-or-self) that were deemed unnecessary for evaluation.
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Figure 26: MASS Architecture
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The implementation of MASS is compact at approximately 5,000 lines of C++

source code. The key to such a compact implementation was the extensive use of the

C++ Standard Template Library (STL) [25]. MASS implements STL iterators as the

interface to each of its collection classes. The generic iterators can then be used with

STL template algorithms. Figure 27 demonstrates the key comparison  function for

the CL3 clustering, which uses the template algorithm

lexicographical_compare_3way. This same algorithm is used in all other functions

that perform lexicographical comparisons.

7.3 Experimental Setup

Data from the XMark [24] XML generator was used for all performance testing.

Data from the XMark generator models an online auction website. The data produced

by this generator has over 40 element types and large structural variation. The data is

approximately 70% text and 30% markup. Table 2 provides additional heuristics

about the XMark data used.
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Figure 27: Source Code Using STL Iterators

// Function: static NodeHelper::CL3Compare
// Purpose:  Key comparison for the CL3 clustering
// Inputs:   Nodes to compare
// Return: true if lhs < rhs

bool NodeHelper::CL3Compare(const NodeHelper& lhs, const NodeHelper& rhs)
{
// Compare the relative path (node type)
// rpbegin() returns an iterator to that last segment of the inlined path
  int rc = lexicographical_compare_3way( lhs.rpbegin(),
                                         lhs.rpbegin() + 1,
                                         rhs.rpbegin(),
                                         rhs.rpbegin() + 1);
// If the relative path is the same, compare inlined order keys (document ordering)
// obegin() returns an iterator to the first string in the inlined order key
// oend() returns an iterator beyond the last string in the inlined order key
  if(0 == rc)
    rc = lexicographical_compare_3way( lhs.obegin(),
                                       lhs.oend(),
                                       rhs.obegin(),
                                       rhs.oend());
  return rc < 0;
}



Document Size(kb) Element Attributes Text Nodes

113 4898 357 3169

557 23952 1974 15434

1134 48211 3919 31089

5636 235051 19249 151518

11396 472684 38265 304819

Table 2: Test Data Heuristics

Tests were run for each of the document sizes given in Table 2. The page size for

MASS indexes was fixed at 8k as this was found to be the smallest page size that

could facilitate the large text nodes present in XMark data. Tests were run on a Sun

E4500 with 8 400MHz CPUs and 8GB Ram. MASS is single threaded and only

utilizes one CPU, but the large amount of memory was required since out test

configuration keeps all indexes in memory and simulates I/O operations.

7.4 Load Performance

Load time was measured for each document size. For each load, the wall time,

number of I/Os and number of key comparisons was measured. We then repeated

these experiments with compression turned off.
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The results in Figure 28 demonstrate that the loading capabilities of MASS scale

linearly with document size. These measurements include the time to load all four

MASS indexes. Using this data in conjunction with data from Table 2, we can

calculate that MASS can load 2,356 compressed nodes or 3,990 uncompressed nodes

per second respectively. Load times are consistently 70% slower with compression

turned on. 

7.5 Index Size

The index size for each of the four node clusterings in MASS was recorded for each

document size. This measurement was then repeated with compression turned off.
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Figure 28: Load Performance
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The results in Figure 29 demonstrate that compression in MASS can reduce the

size of indexes  by 60-70%. With compression off, the CL1 and CL3 clusterings are

slightly larger since these indexes do not store attributes. With compression on, the

CL1 and CL2 indexes are slightly smaller. Compression is likely better for the CL1

and CL2 clusterings because their primary ordering is based on document ordering

whereas CL3 and CL4 are primarily ordered by node type.

7.6 I/O Performance

 To measure I/O performance of query operations, we have instrumented the

buffer cache to count the number of logical I/Os. The B+Tree is MASS is designed to

keep the current leaf page in memory so that sequential fetching only creates I/O

when page boundaries are crossed. Therefore, the logical I.O actually represents

required physical I/O.

I/O performance was measured for three different operations. The Fetch

operation reads all nodes in the axis. The Count operation counts the number of nodes
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Figure 29: Index Size
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in the axis. The Fetch Nth operation fetches the node in the middle of the axis. I/O tests

were run against each of the five implemented axes at each of the five document sizes.

The number of I/Os performed for the five axes tested are shown in Figures 30-34.
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Figure 30: Following-sibling Axis I/O Performance
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Figure 31: Child Axis I/O Performance
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Figure 32: Following Axis I/O Performance
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 All axes provided similar results with the exception of the ancestor axis, which

reads node information from its inlined path and order key rather than performing
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Figure 33: Descendant Axis I/O Performance
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Figure 34: Ancestor Axis I/O Performance

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000 10000 12000

# 
Lo

gi
ca

l I
/O

Document Size (kb)

Logical I/O: Ancestor Axis

Count
Count Node Test *

Fetch
Fetch Node Test *

Fetch Nth
Fetch Nth Node Test *



I./O.  For the other axes, the number of I/Os for the Fetch operation increased with

document size since all nodes in the axis were actually decompressed and read. The

number of I/Os for the Fetch Nth and Count operations remained small because the

ranked B+ tree was able to evaluate these operations efficiently.

7.7 CPU Performance

To measure CPU related performance of query operations, instrumentation was

added to count the number of key comparisons performed by each query. The time to

complete each operation was also measured and used to calculate the fetching

throughput. 

The number of key comparisons for the five axes tested are shown in Figures

35-39. Note that the number of key comparisons is bounded as document size

increases for all of the axes. This is because MASS performs at most two B-Tree

searches to locate the end points of the axis. The actual fetching never has to compare

keys. Key comparisons are not performed for the ancestor axis since it is evaluated

using information from the inlined path and inlined order key of the context node.
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Figure 35: Child Axis Key Comparisons
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Figure 36: Following-sibling Axis Key Comparisons
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Node throughput was calculated by dividing the number of nodes fetched in the
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Figure 37: Following Axis Key Comparisons

Figure 38: Descendant Axis Key Comparisons

24

26

28

30

32

34

36

38

40

0 2000 4000 6000 8000 10000 12000

# 
K

ey
 C

om
pa

ris
on

s

Document Size (kb)

Key Comparisons: Descendants Axis

Count
Count Node Test *

Fetch
Fetch Node Test *

Fetch Nth
Fetch Nth Node Test *

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000 12000

# 
K

ey
 C

om
pa

ris
on

s

Document Size (kb)

Key Comparisons: Following Axis

Count
Count Node Test *

Fetch
Fetch Node Test *

Fetch Nth
Fetch Nth Node Test *



descendant axis by the wall time to fetch these nodes. The descendant axis was used

for this measurement because it is always the largest axis in terms of node count (the

descendants of the root node includes all non-attribute nodes in the document).

The chart in Figure 40 shows that compressed nodes can actually be retrieved

faster than uncompressed nodes with large documents, even though we have not

performed I/O in this experiment. One possible insight into this behavior is that the

larger size of the uncompressed index may be adversely effecting the CPU cache.
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Figure 39: Ancestor Axis Key Comparisons
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8 Background

Results from previous research [2] suggest that there is much room for

improvement in the design of XML storage and indexing. In its text form, an XML

document cannot be used to efficiently evaluate any of the XPath axes. The two main

approaches used thus far for XML storage are mapping document structure to

relational database schemas and storing document structure in indexes designed

specifically for semistructured data.

8.1 XML in Relational Databases

Efficient storage and query of XML data in relational databases has proven

difficult to support. The relational data model is awkward for modeling complex

nested XML constructs [4]. Problems such as differentiating attributes from sub-

elements, facilitating document references, and assembling the original document are

difficult with a relational mapping [7,10], even with additional domain information

[5,6]. Mapping XML data to relational tables is difficult since the mapping may
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Figure 40: Node Throughput
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inhibit query functionality or excessively fragment data, creating the need for

complex joins to evaluate expressions [4]. Structural changes to relational mapped

documents can result in creating, dropping, or altering tables, which is costly in any

DBMS.

To query XML that has been mapped to a relational database, queries must be re-

written to their SQL counterparts. Complex expressions that involve pattern matching

or recursion may not even be possible to write in SQL. Since SQL does not support

dynamic table names in join statements, an additional layer must be supported to

assemble SQL statements. These queries are then executed ad-hoc. SQL translation

may results in complex SQL queries that stress the capabilities of DBMS optimizers

[5]. 

8.2 Native XML Indexing

Many structures have been proposed for indexing various types of path

expressions. Earlier structures [2,3,5,13] were developed in the context of

semistructured data. More recent proposals [19, 20, 21] discuss the problem in the

context of XML. These structures create various decompositions of document graphs

to accelerate expressions involving labeled paths. In [19], a compact index called the

Index Fabric is proposed that uses a trie structure to store root to leaf paths. While this

structure can efficiently supports prefix matching expressions, support for other

expressions must be manually tuned by creating refined paths and document ordering

is not maintained. A numbering scheme to encode document ordering is proposed for

XISS [20]. This scheme pre-allocates number ranges to store the document structure

and ordering. This scheme can evaluate ancestor-descendents relationships in constant

time, but only as a filter once nodes have been selected. The system proposed in

APEX [21] optimizes frequently accessed paths by storing them in a large hash table.
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However, document ordering is not preserved and paths not found in the hash table

must be evaluated recursively by joining individual extent, which is innefficient for

long paths.

While the aforementioned proposals provide novel ways to evaluate path

expressions involving labeled paths, these expressions are representative of only part

of the XPath [14] language. These solutions do not provide adequate support for

queries that select nodes based on document ordering. The examples in Figure 41

demonstrate path expressions that cannot be evaluated efficiently aforementioned

proposals. Note that XQuery [15] requires that the result of a path expression is in

document order, so the first expression may require a large sort to evaluate for

indexes that do not maintain document order. Since the clusterings in MASS all return

nodes in document order, no further sorting is needed.

Another problem that has been largely ignored in the literature is index statistics

for path expressions. Early research from the Lore database [13] demonstrates the

need for accurate statistics in query processing. However, if we look at three recent

proposals for XML indexing [19, 20, 21], none of them provide a cost model or

meaningful statistics for a query processor. MASS is able to quickly provide the exact

size of each axis so the that query processor can aggressively optimize complex

expression queries.

The path inlining concepts in MASS are derived from dataguides [18] and from

earlier proposals for relational database mapping [4,10]. The strong data dataguide

[18] is similar in that encodes all root-to-leaf paths, but is ordered entirely based on

42

Figure 41: Queries Based in document Ordering
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node type and is therefore only useful for selecting nodes by labeled path. A strong

dataguide could be created in MASS simply by defining a clustering that is ordered by

the inlined path. Efforts to employ inlined paths in relational databases have been

hampered by the constraints of the relational storage. In a relational database, inlining

is accomplished using either multicolumn indexes or by concatenating data as strings

and storing the strings in a single varchar column. If multicolumn indexes are used,

there is a large increase in storage size from the overhead to fill non-existent edges

with nulls [4] and any word alignment enforced by the DBMS. Furthermore,

structural changes may have to alter the relational schema or use overflow storage

[10]. If varchar keys are used, there may be a large cost perform type conversion and

decompose keys.

Compression of XML data is covered extensively by the XMILL [17] Research.

While MASS follows on the concept of compressing redundant structural data, it also

applies compression to the keys that are generated to infer document ordering.

XMILL compresses entire documents and can therefore provide near-ideal

compression. Conversely, MASS implements compression of individual document

nodes and must do so as efficiently as possible.

Clustering has previously been considered for XML data, but not with regard to

the XPath language. A prior study of XML query optimization [5] noted that

clustering can be used to further optimize queries [5,7]. MASS simplifies query

optimization in this regard by creating multiple clusterings that are directly correlated

to the query language, eliminating the need for index selection.

9 Conclusion

In this paper, we propose MASS, a Multiple Axis Storage Structure. Mass

facilitates efficient evaluation of XPath expression by supporting each XPath axis
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using a limited number of clustered indexes. Mass incorporates five concepts into

each of these indexes: ordering, compression, clustering, and persistent storage.

MASS also provides lossless storage for XML documents by preserving all node

relationships and data content, eliminating the need for XLM flat files.

MASS supports all XPath Axes, both for queries involving document order and

for queries that are only selective by node type. Data is clusted in document order,

allowing efficient query by document position and eliminating the need for sorting to

order results. Query operations in MASS scale with document size and require little

system resources due the clustering organization and Ranked B+ Tree used to store

document nodes.

MASS provides for efficient document update while preserving document order

using generated lexicographical sequences. These keys allow nodes to  be

incrementally added to or deleted from a document while never requiring update of

other existing nodes. The same  keys can be used to determine all node relationships

and uniquely identify nodes for query processing.

Path expression cannot all be evaluated with a single index organization. MASS

has taken the approach of creating efficient building blocks for indexes, then using

this building blocks to construct efficient indexes that can together provide efficient

path indexing for all of the axes in XPath. To our knowledge, this is the first proposal

for structural indexing at this scope.

44



References
1. Dan Suciu. Semistructured Data and XML. AT&T Labs, Technical Report 1997.

2. Jason McHugh, Jennifer Widom, Serge Abiteboul, Quigshan Luo, and Anand

Rajaraman. Indexing Semistructured Data. Stanford University Technical Report,

1998.

3. Tova Milo and Dan Suciu. Index Structures for Path Expressions, 1997.

4. Jayavel Shanmugasundaram, Kristen Tufte, Gang He, Chun Zhang, David

DeWitt,

and Jeffrey Naughton. Relational Databases for Querying XML Documents:

Limitations and Opportunities. In Proceedings of the 25th annual VLDB

Conference, 1999.

5. Jason HcHugh and Jennifer Widom. Query Optimization For XML. In

Proceedings of

the 25th annual VLDB Conference, 1999.

6. Jyh-Herng Chow, Josephine Cheng, Daniel Chang, Jane Xu. Index Design for

Structured Documents Based on Abstraction. IBM Santa Teresa Labs Technical

Report, 1998.

7. Daniela Florescu and Donnald Kossmann. Storing and Querying XML Data

using an

RDBMS. IEEE Technical Committee on Data Engineering, 1999.

8. Dongwook Shin, Hyuncheol Jang, and Honglan Jin. BUS: An Effective Indexing

and Retrieval Scheme in Structured Documents. ACM Digital Library, 1998.

9. Weidong Chen, Jyh-Herng Chow, You-Chin Fuh, Jean Grandbois, Michelle Jou,

Nelson Mattos, Brian Tran, and Yun Wang. High Level Indexing for User

Defined

Types. In Proceedings of the 25th annual VLDB Conference, 1999.

10. Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing Semistructured Data

with STORED.  University of Pennsylvania.

11. Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, David Maier,

and Dan Suciu. Querying XML Data. IEEE Technical Committee on Data

Engineering, 1999.

12. Don Chamberlin, Jonathan Robie, and Daniela Florescu. QUILT: An XML

Query

45



Language for Heterogeneous Data Sources. 2000.

13. Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer

Widom. Lore: A Database Management System for Semistructured Data.

Stanford University Technical Report, 1998.

14. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, 1992.

15. Jim Clark and Steve DeRose. XML Path Language (XPath),  Version 1.0W3C

Recommendation November 1999. http://www.w3.org/TR/xpath.html

16. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon, and M.

Stefanescu. XQuery 1.0: An XML query language. Working Draft,

http://www.w3.org/TR/2001/WD-xquery-20011220, 20 December 2001.

17. Hartmut Liefke, Dan Suciu: XMILL: An Efficient Compressor for XML Data.

SIGMOD Conference 2000: 153-164.

18. R. Goldman and J. Widom. DataGuides: Enable query formulation and

optimization in semistructured databases. In Proceedings of 23rd International

Conference on Very Large Data Bases, pages 436 445, August 1997.

19. Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, Moshe

Shadmon: A Fast Index for Semistructured Data. VLDB 2001: 341-350.

20. Q. Li and B. Moon, "Indexing and Querying XML Data for Regular Path

Expressions", Proc. of 27th Intl. Conf. on Very Large Data Bases, 2001.

21. Chin-Wan, Chung, Jun-Ki Min, Kyuseok Shimy, “APEX: An Adaptive Path

Index for XML Data”, ACM SIGMOD  2002.

22. D. Knuth: “The Art of Computer Programming: Volume 3, Sorting And

Searching”, Addison-Wesley, 1973

23. Xerces C++ parser. The Apache XML Project. http://xml.apache.org/xerces-

c/index.html

24. Xmark-The XML-Benchmark Project. http://monetdb.cwi.nl/xml/index.html

25. Standard Template Library Programmer's Guide. http://www.sgi.com/tech/stl/

46




