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Abstract 
Dielectric permittivity measurements provide important input to engineering and scientific 

disciplines due to the effects of permittivity on the interactions between electromagnetic energy 

and materials.  A novel ring resonator design is presented for the measurement of permittivity of 

low dielectric constant foams.  A review of dielectric material properties and currently available 

measurement methods is included.  Measurements of expanded polystyrene are reported and 

compared with results from the literature; good agreement between measurements and published 

results is shown. 
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1. Introduction 
Due to their influence on the interaction of electromagnetic energy with materials, dielectric 

properties of materials are useful data for imaging and radar experimentation. In particular, the 

dielectric properties of expanded polystyrene (EPS) foams are interesting as they drive the use of 

EPS foams as physical supports for radar cross-section measurements and other applications. 

These foams are also utilized in modern antenna research as supporting materials for antenna 

construction and for radomes.  Electromagnetic imaging applications require the dielectric 

properties of materials to predict the interaction between fields used for imaging and the 

materials.  Few examples are available of research directed at the measurement of foam 

permittivity, or dielectric constant and loss tangent. 

In this thesis, I describe a new microstrip-based resonant device that is specifically intended 

for permittivity measurements of low dielectric constant materials at frequencies 1 to 10 GHz.  

The device is based on a microstrip ring resonator with the ring and the ground plane/feed 

network physically located in separate planes.  This enables the placement of an arbitrary sample 

of material to be measured between the ring resonator and ground plane. A transmission line 

method (TLM) is used to predict the frequency response including feed and radiation effects. 

Experimental data in L- and S-bands are presented and compared with theory estimates for the 

foams. 
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2. Background 
The dielectric properties of materials are important inputs to a great deal of engineering and 

scientific work in electrical engineering.  They define the interaction between static or dynamic 

electric and magnetic fields and the materials that make up the world around us.  As a result, 

there are many sources of information regarding the definition and measurement of dielectric 

properties in the engineering literature.  In this section, I give an overview of dielectric material 

properties and summarize both U.S. patents and selected items from the literature as they relate 

to dielectric measurement. 

2.1. Dielectric Properties of Materials 
In most dielectric materials, the electric field and electric flux density are related by a simple 

relationship: 

 ED ε=  (1) 

where ε, the permittivity of the dielectric material, is a constant with the units of F/m.  Materials 

for which (1) applies are linear and isotropic.  In general, for such materials ε can be temperature 

and frequency dependent.  As a first-order approximation for applications without wide 

temperature or frequency limits, ε is a constant complex quantity that can be broken into two 

components εr and tanδ: 

 ( )δεεε tan10 jr −=  (2) 

where ε0 = 8.854 x 10-12 is the permittivity of free space.  When expressed in this form, εr and 

tanδ are called the dielectric constant loss tangent of the material.  In the case where tanδ is 

small, on the order of 10-2 or less, the speed at which electromagnetic energy propagates through 

a medium, vp, is given by 
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r

p
c

v
ε

=  (3) 

where c = 2.988 x 108 m/s is the speed of light in a vacuum.  The loss tangent tanδ exhibits how 

strongly energy is absorbed by a medium.  In a homogenous medium, a plane wave traveling 

along the z-axis and with the electric field oriented in the xz-plane is described by 

 ( ) zz
x eEeEzE γγ +−−+ +=  (4) 

where E+ and E- are arbitrary amplitude constants and γ is the propagation constant for the 

medium defined by 

 ( )δεεµωβαγ tan100 jjj r −=+=  (5) 

where µ0 =4π x 10-7 is the permeability of free space. 

The propagation constant γ has another effect on wave propagation that is important for 

imaging considerations.  The propagation constant affects the intrinsic impedance, η, of the 

material: 

 
ε
µ

γ
ωµη == j

 (6) 

When a traveling wave encounters an interface between materials with differing intrinsic 

impedances, some of the energy is reflected at the interface and the remainder crosses the 

interface into the new material.  The reflection and transmission coefficients, denoted Γ and Τ, 

for normal incidence of a plane wave are 
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where η1 is the intrinsic impedance of the medium in which the incident wave starts and η2 is the 

intrinsic impedance of the medium in which the wave is transmitted. 

The material properties dielectric constant and loss tangent play important roles in the 

propagation of electromagnetic energy in dielectric media.  In a low-loss case, the dielectric 

constant εr slows the propagation of energy through a media by altering the phase velocity.  The 

loss tangent tanδ specifies how much energy is absorbed as a wave travels through a medium.  

The propagation constant, which takes εr and tanδ as parameters, defines the intrinsic impedance 

of the medium and the behavior of waves at the interfaces between different media. 

2.2. Dielectric Properties of EPS Foams 
There is a dearth of directly measured data of dielectric permittivities of expanded 

polystyrene (EPS) foams.  Treatment in the literature is generally confined to theoretical 

predictions and indirect results from radar cross-section (RCS) studies.  Reported measurements 

vary over a small range for both bulk and expanded polystyrene. 

In a seminal paper published in January 1965, M. Plonus established a theory for predicting 

the RCS of EPS foam supports used for radar measurements [1].  In this paper, Plonus models 

EPS foam as a collection of “randomly arranged, closely packed spherical shells.”  He finds the 

volume ratio of air to polystyrene in the foam as a function of foam density and uses this to 

determine the dielectric constant of the foam.  For an air-blown EPS foam of density 26 kg/m3 

Plonus concludes a dielectric constant of 1.04 [1]. 

E. F. Knott in August 1993 published his model of plastic foams as a regular cubic lattice [2].  

Knott derives the dielectric constant of a foam from the capacitance of a unit cell of the cubic 

lattice model.  Ultimately, he provides a formula based on the dielectric constants of the base 

polymer and inclusion gas and the volumetric fraction of polymer in the foam.  For an air-blown 
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foam of density 26 kg/m3 Knott’s formula predicts a dielectric constant of 1.03.  He compares his 

result to a logarithmic prediction of dielectric constant by Cuming as well as dielectric constants 

derived from backscatter measurements of extruded polystyrene forms. 

2.3. Measurement Methods for the Dielectric Constant 

Knowledge of the dielectric constant, εr, and loss tangent, tan δ, of a dielectric material is 

required to understand how that material will react to electromagnetic fields and behave in RF 

circuits. A variety of techniques are available to measure these properties, including methods 

based on free-space, waveguide, and resonator measurements.  These techniques have been 

described in both the scientific literature and in United States utility patents.  This section is a 

review of the available literature. 

U.S. Patent 3,965,416, issued June 22, 1976, describes a method of dielectric constant 

measurement using a pulse delay oscillator [7].  The material under test is used to alter the phase 

velocity of signals traveling along a shorted transmission line.  This transmission line is the 

frequency determining component of the pulse delay oscillator, and so the frequency of 

oscillation is used to calculate the phase velocity. 

U.S. Patent 5,132,623, issued July 21, 1992, describes a broadband dielectric property 

measurement technique specifically applied to the problem of oil-bearing strata determination 

[8].  The apparatus described consists of broadband transmitting and receiving antennas which 

are used to measure dielectric constant from frequency- or time-domain methods.  The inventors 

claim a measurement frequency range of 2 kHz-1 GHz. 

U.S. Patent 5,157,337, issued October 20, 1992, describes a probe for dielectric constant 

measurements of thin materials [9].  The device is essentially a resonator constructed from an 

open coaxial transmission line.  Fringing fields from the open end of the resonator penetrate into 
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the material under test, and the resonant frequency is affected by the dielectric constant of that 

material.  The inventors claim accuracy of better than one percent. 

U.S. Patent 6,496,018, issued December 17, 2002, describes a method for determining a 

calibration curve for an open, or radiating, resonator that relates the resonant frequency to the 

dielectric constant and thickness of a sheet of sample material of known dielectric constant [10].  

This calibration curve is then applied to find the dielectric constant of a material with unknown 

properties. 

Free-space methods for measuring dielectric constant rely primarily on reflection and 

transmission of electromagnetic waves through a sample of the material under test.  Reference 

[11] describes a method using dielectric lenses to focus a signal on a small piece of material 

under test.  The dielectric constant and loss tangent are then found from the scattering parameters 

of the complete system.  The authors of [12] use a similar experimental setup to that of [11], but 

establish a relation between the reflection coefficient and the complex permittivity of the 

material under test to determine dielectric constant and loss tangent.  Reference [13] describes a 

method to measure the properties of large slabs of material using two standard horn antennas.  

The authors also use some algebraic manipulation to reduce the problem from a 2-D search of a 

complex space to a search on a real-valued function. 

Waveguide methods for dielectric property measurement involve the comparison of empty 

waveguide with a waveguide including the sample material or the comparison of measured 

scattering parameters and numerical electromagnetic solutions.  The waveguide may be either 

fully or partially filled with the material under test.  In [14], the material under test partially fills 

a shorted waveguide and the measured reflection coefficient is compared to a FEM solution of 

the system.  The authors of [15] fit an expression for the effective complex dielectric constant to 
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measurements of a system composed of two rectangular waveguides separated by a relatively 

thin piece of sample material.  In [16] the complex permittivity of a cylindrical rod is calculated 

from the resonant frequency and bandwidth of the transmission spectrum.  The authors of [17] 

measure the reflection coefficient of a thin sample in a matched waveguide and compare to a 

model of the system using an infinitesimally thin resistive sheet as the sample. 

The literature contains many papers dedicated to resonator structures.  Methods for 

measuring dielectric properties using waveguide cavities [18]-[20], ring resonators [21]-[23], 

microstrip resonators [24]-[25], and dielectric resonators [26]-[27] have been reported.  Other 

papers have focused on the modeling of ring resonators [28]-[29] or on modified resonator 

structures [30].  A special class of resonator-based methods contains those based on the use of 

antennas [31]-[35].  The methods for measuring dielectric properties using resonators are well 

developed and most use the scattering parameters of a one- or two-port resonator system as a 

basic measurement.  These measurements are then compared with numerical or analytical 

solutions of the system to find the dielectric constant and loss tangent values.  Of interest is a 

paper that uses a large open resonator with a multilayered dielectric load to determine the 

properties of an unknown layer in the load [34].  The authors develop an analytical formula for 

the loss tangent of an unknown sample material.  The technique is aimed at the measurement of 

high-permittivity layers in multilayer systems. 

The techniques presented in this section have varying applicability to the determination of 

EPS foam permittivity.  In general, the full-wave methods will be very computationally 

intensive, while the methods based on perturbation of a resonant cavity will require standards of 

known dielectric constant and loss tangent to calibrate against.  Therefore, there exists a need for 
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a reasonably accurate method that neither is computationally intensive nor requires samples of 

known permittivity for calibration. 
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3. Theoretical Basis 
In this section I present a theoretical analysis for a ring resonator-based method for the 

measurement of complex dielectric permittivity of materials.  First I present the theory for a 

planar ring and feed structure, and then I extend the theory to a case with the ring in a parallel 

plane above the feeding plane.  Finally, I explain how raw measurements of the ring and feed 

structure can be processed to determine the complex permittivity of a material. 

3.1. Ring Resonator Method 
A ring resonator structure on a printed circuit board (PCB) can be used to determine the 

complex permittivity of the substrate material.  Similar to the methods presented in [21]-[23], I 

use a measurement of the S21 parameter of a two-port ring resonator to determine the permittivity 

of the board substrate. 

3.1.1. Structure 

The ring resonator device consists entirely of printed microstrips on a rigid substrate.  A two-

layer board with one dielectric material is used, as shown in Fig. 1.  Fig. 1a shows the relative 

positions of the ring and feed lines on the upper surface of the board, and Fig. 1b shows a side 

view of the board in which the ground plane is visible.  The ground plane occupies the entire 

lower surface of the board.  The feed lines and ring resonator are printed transmission lines with 

width chosen for 50 Ω characteristic impedance.  A small gap ∆ is included between the ring and 

each feed line; this gap is included to separate the resonant behavior of the ring from the feed 

network and ranges from 0.1 to 1.0 times the width of the feed microstrip.  SMA connectors, 

shown on the left and right sides of Fig. 1a, are used to connect the device to a network analyzer 

for measurement. 
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Fig. 1 Planar ring resonator for measurement of RF substrate shown from a) top and b) side views. 

3.1.2. Network Parameter Formulation 

The device shown in Fig. 1 is represented as a network circuit as shown in Fig. 2.  Each 

shaded box in Fig. 2 is a separately modeled circuit element, and the overall network parameters 

of the device are found from the combination of these elements in cascade.  The feed lines, 

which are approximately lossless and matched to 50 Ω, are not considered in this model because 

it is possible to determine the permittivity of the substrate using only the magnitude of the S21 

parameter. 

 
Fig. 2 Network circuit of planar ring resonator. 
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Each of the circuit elements in Fig. 2 is represented by its network parameters in any one of 

several formulations [36],[37].  A representation of a circuit element in one formulation can be 

converted into a representation of that element in any other formulation using a straightforward 

set of algebraic rules, such as those in Table 4-2 of [36] and Table 4.2 of [37].  This speeds the 

analysis of network circuits as some formulations are particularly suited for particular 

combinations of elements.  For example, admittance parameters, also called Y-parameters, are 

useful because parallel combinations of elements are accomplished by simply adding the Y-

parameter matrices for the elements. 

Ultimately, each element of Fig. 2 is represented in the ABCD parameter formulation of the 

network parameters.  In this formulation, the response of a system can be simply calculated as 

the product of the ABCD parameter matrices of cascaded elements.  The development of the 

ABCD matrices for particular elements is described in the below sections. 

3.1.3. Gap Model 

As shown in Fig. 1, there is a small gap of width ∆ between each feed line and the ring 

resonator.  This gap slightly affects the resonant frequencies of the ring resonator but greatly 

affects the peak amplitudes of the S21 parameter of the device.  In order to take these effects into 

account, an equivalent circuit for the gap must be included in the description of the device.  In 

Fig. 2, the boxes labeled “Left Gap” and “Right Gap” are modeled as a pair of capacitors as 

shown in Fig. 3.  Each gap is modeled by a parasitic capacitor Cp and a gap capacitance Cg, 

following the work of Yu and Chang in [28]. 
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Fig. 3 Network circuit of planar ring resonator with gap model detail. 

The capacitor values are found by closed-form expressions of Garg and Bahl [38] as 

modified by Yu and Chang [28]: 
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where W is the width of the feed line, ∆ is the width of the gap, and h is the thickness of the feed 

line substrate.  The two capacitors are then combined into ABCD parameter formulations for the 

left and right gaps using Table 4-1 of [36] and matrix arithmetic: 
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3.1.4. Ring Resonator Model 

My analysis of the ring resonator, the box labeled “Ring” in Fig. 2 and Fig. 3, also follows 

the work of Yu and Chang.  In [28], they cite a previous work by Owens that concludes that 

curvature effects can be ignored for microstrip ring resonators of sufficiently large diameter as 

compared to their width [39].  In this case, Yu and Chang point out that a microstrip ring 

resonator of large diameter can be modeled as two straight sections of microstrip that are 

connected in parallel.  The parallel configuration of microstrips is shown in schematic form in 

Fig. 4. 

 
Fig. 4 Network circuit of planar ring resonator with gap and ring model detail. 

Analysis of the ring structure begins with the representation of each half-ring microstrip 

section in the S parameter formulation: 
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where γ is the complex propagation constant along the ring microstrip and Rm is the mean radius 

of the ring.  The propagation constant γ is given by 

 ( )δεεµωγ tan100 jj e −=   (23) 

where εe is the effective dielectric constant of the microstrip ring dependent on the ring width W, 

substrate thickness h, and substrate dielectric constant εr.  εe is found by applying a formula 

found in both [40] and [41] for the appropriate value of the ratio of W to h: 
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Since the feed points lie on a diameter of the ring as shown in Fig. 1, the S parameters for 

each half-ring are identical.  The S parameters for the half-ring sections are converted to the Y 

parameter formulation, in which the parallel combination of elements is represented by addition: 
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where Z0 is the characteristic impedance of the microstrip transmission line that forms the ring.  

The Y parameter formulation is then converted to the ABCD parameter formulation: 
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3.1.5. Complete Device Model 

As mentioned above, the overall response of the device is calculated by the products of the 

ABCD parameter matrices of the individual elements.  The ABCD matrix of the system in Fig. 2 

is then 

 [ ] [ ] [ ] [ ]rightringleftdevice ABCDABCDABCDABCD =  (29) 

This ABCD matrix can be converted to the S parameter formulation to completely describe 

the operation of the device in a form that will match that measured by a vector network analyzer. 
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where Z0 is the characteristic impedance of the microstrip ring calculated from formulas in [40] 

and [41]: 
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where Zf is 376.8 Ω, the characteristic impedance of free space. 

3.2. Suspended Ring Resonator Method 
Unfortunately, the device shown in Fig. 1 cannot be used to measure the dielectric 

permittivities of polymer foams due to the difficulty of printing circuits on foams.  The field of 

the microstrip ring is concentrated in the dielectric substrate below and around the ring.  In order 
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to exploit this concentration of field, I propose a suspended ring resonator structure that places 

material to be measured between the microstrip ring and the ground plane.  This ensures that the 

resonator is strongly affected by the properties of the sample material. 

3.2.1. Structure 

Top and side views of the suspended ring resonator concept are shown in Fig. 5. 

 
Fig. 5 Suspended ring resonator for measurement of arbitrary sample material shown from a) top and b) side 

views. 

As shown above, the material to be measured is placed between two supports of known 

dielectric constant and loss tangent.  The lower surface of the lower support is fully metallized to 

provide a ground plane for the feed lines and microstrip ring resonator.  A small air gap is 
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included between the top surface of the sample and the microstrip ring to allow easy insertion 

and removal of the sample.  The sample is larger than the ring to account for fringing fields 

around the microstrip ring; a square dimension of 1.5R2 is sufficient.  The feed structure is 

similar to that of the planar resonator; two 50 Ω microstrip transmission lines are printed on the 

upper surface of the lower support and direct energy into and out of the ring resonator. 

3.2.2. Network Parameter Formulation 

The overall network parameter formulation of the suspended ring device is the same as that 

for the planar ring device.  The schematics in Fig. 2, Fig. 3, and Fig. 4 apply directly to the 

suspended ring concept.  As will be shown in the below sections, the primary difference between 

the analysis of the device in Fig. 1 and that in Fig. 5 is in the calculation of the propagation 

parameters for the microstrip ring. 

3.2.3. Feed-Ring Interface 

In the suspended ring design, the microstrip ring is in a different plane than that of the feed 

lines.  I have chosen to consider the feed gap ∆ as if the ring were projected onto the upper 

surface of the lower support.  Though not an ideal model, this approximation captures the 

essence of the capacitive coupling in the sense that the fringing fields at the end of the feed line 

interact with the fringing fields of the microstrip ring.  This interaction allows one feed line to 

excite fields in the ring and the other to sense fields in the ring. 

3.2.4. Microstrip Ring Resonator 

The microstrip ring resonator in Fig. 5 is largely similar to that in Fig. 1, with the exception 

that the suspended ring resonator has a multilayer dielectric substrate as well as a dielectric 

superstrate with a non-unity dielectric constant.  The primary difference the analysis of these two 

structures is the calculation of the complex propagation constant γ and characteristic impedance 
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Z0.  While for the planar ring resonator I was able to apply simple microstrip theory to determine 

the propagation constant and characteristic impedance, the multilayer dielectric case is somewhat 

more complicated.  In [42], Svačina develops a theory of multilayer dielectric microstrip 

transmission lines using a conformal mapping method.  I have applied this theory to the problem 

of determining the propagation characteristics of the microstrip ring resonator in the suspended 

ring resonator device.  The dielectric environment for the microstrip ring consists of five layers: 

Table 1 Dielectric layers for suspended ring resonator. 

Layer Description
1 Lower support (ε1, tan δ1)

2 Sample (ε2, tan δ2)

3 Air gap (εair, tan δair)

4 Upper support (ε1, tan δ1)

5 Atmosphere (εair, tan δair)
 

Layers 1-3 are below the ring and layers 4 and 5 are above the ring.  Each layer is assigned a 

filling factor based on the thickness of the layer as compared to the height of the microstrip 

above the ground plane and the width of the microstrip compared to its height over the ground 

plane.  The filling factor of the ith layer is designated qi, the width of the microstrip ring is 

designated W, the height of the microstrip ring above the ground plane is designated h, and the 

ratio of the height above the ground plane of the upper surface of the ith dielectric layer to h is 

designated Hi.  For a wide ring, where W is greater than or equal to h: 
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For a narrow ring with W less than h, the following filling factors are used: 
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The effective dielectric constant of the multilayer microstrip ring is calculated from the 

dielectric constant of each layer material and the filling factors: 
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where εi is the complex dielectric constant of the ith layer and εj is the complex dielectric 

constant of the jth layer.  The propagation constant γ is then 

 ej εεµωγ 00=  (47) 

It is important to note the relationship in (46) between the dielectric constant of the microstrip 

mode εe and the individual layer dielectric constants εi; the terms of εe vary as the reciprocal of 

the sum of the reciprocals of the εi.  This means that εe is dominated by low dielectric constant 

layers, such as the air gap above the sample.  A close analogy is given by a parallel resistor 

circuit where individual resistances play similar roles to the εi.  A consequence of this is that 
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high dielectric constant samples will be measured less accurately by this device.  Low dielectric 

constant samples, such as EPS foam, will be accurately measured. 

For thick samples, the height of the microstrip ring resonator above the ground plane may be 

relatively large compared to the width of the microstrip and the guided wavelength of waves at 

the resonant frequencies.  As a result, the ring may exhibit relatively significant radiation losses 

that will affect the frequency and bandwidth of the ring resonances.  In order to take this 

radiation into account, I use semi-analytical techniques presented by Hill, Camell, Cavcey, and 

Koepke [44].  They develop methods for calculating the electric far-field of a straight length of 

microstrip.  To apply this model, the microstrip ring can again be modeled as two parallel 

microstrips due to its low curvature [39].  The authors of [44] first calculate the so-called array 

factor AL for the microstrip: 
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where k is the free-space wavenumber, ke is the microstrip mode of the wavenumber, L is the 

length of the microstrip, and (θ, φ) are spherical coordinates centered  on the microstrip: 

 00εµω=k  (49) 

 ee kk ε=  (50) 

The array factor does not have a meaning of the real array factor for an array of the sources; it’s 

introduction here is only a matter of convenience. Two other supplementary quantities are then 

calculated: 
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where v is dependent on εsr and h is the height of the microstrip above the ground plane: 
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where εi and ti are the real dielectric constant and thickness of the ith dielectric layer above the 

ground plane.  Then, the authors calculate the electric field in θ- and φ-planes due to the currents 

flowing along the microstrip: 
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where r is the distance from the origin in spherical coordinates.  To account for radiation from 

the vertical currents at the feed points of the ring, a third supplementary quantity might be 

needed: 
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The factor of one-half is added to account the vertical currents are shared between the two halves 

of the microstrip ring resonator.  The vertical currents at the feed points do not contribute to the 
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electric field in the φ-plane [44].  The radiation efficiency of the microstrip, Erad, is calculated as 

the quotient of the power radiated over a sphere of radius r and incident power: 
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The squared magnitude of the unknown initial current I0 appears in the numerator of Prad and Pinc 

and cancels, leaving Erad independent of applied power. 

I include the additional loss due to radiation as an additional real term in the expression for 

the propagation constant γ.  The fraction of applied power that reaches the end of a microstrip is 

reduced by the radiation efficiency of the microstrip.  The power lost per unit length is then 
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The S21 parameter of a matched microstrip line of length L takes the form 

 LeS γ−=21  (63) 

Adding a real term to γ is equivalent to modifying the S21 parameter expression by including an 

exponential factor: 

 ( ) RLLR eeeS −−+− == lγγ
21  (64) 

The term R can be found from the application of perturbation theory to a lossy transmission line 

as detailed on page 83 of [45]: 
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and the propagation constant including radiation effects is 
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 R+= γγ rad  (66) 

For the suspended ring resonator, γrad replaces γ in the S-parameters describing the microstrip 

ring.  The MATLAB file RingRadiation.m  calculates the radiation efficiency and is called 

by RingSandwich.m . 

3.2.5. Complete Device Model 

As for the planar ring resonator device, the overall response of the suspended ring resonator 

shown in Fig. 5 is calculated as the product of the ABCD parameter formulations of the left feed 

gap, the microstrip ring, and the right feed gap.  Once again, the S21 scattering parameter is 

calculated from the ABCD parameter formulation of the suspended ring resonator: 
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where Z0 is the characteristic impedance of the measurement system and feed lines, Zring is the 

characteristic impedance of the microstrip ring resonator, and L is πRm.  Z0 is calculated from the 

formulas in [40] and [41] and Zring is calculated from formulas in [43]: 



 

 30 

 1 ,
W
h120

e

≥=
h

W
Z

e
ring ε

π
 (69) 

 1 ,
8

ln
60 <=

h

W

W

h
Z

e
ring ε

 (70) 

3.3. Raw Measurement Processing 
The theory leading to an expression for the S21 parameter of the ring resonator device shown 

in Fig. 5 can be applied to find unknown dielectric constants and loss tangents.  In particular, the 

location and bandwidth of peaks in a plot of the S21 parameter versus frequency will vary with 

the dielectric constant and loss tangent of the material in the sample layer.  Table 2 contains the 

details of the layer stack-up for simulation of a fictitious sample material with a dielectric 

constant between one and ten.  Using the theory from the above sections, the variation in the 

frequency of the first resonance of a suspended ring resonator can be calculated.  For this 

simulation, the ring and feed lines had a width of 2.2 mm and the ring mean radius was 25.9 mm.  

The simulation was performed for sample εr from one to ten at intervals of 0.1, and the results 

are shown in Fig. 6 for the frequency of the first resonance and Fig. 7 for the frequency of the 

second resonance.  Table 3 contains the layer stack-up information for the simulation of a 

fictitious sample material with a dielectric constant of 4 and a loss tangent between 0 and 0.05.  

The variation of loaded quality (Q) factor with loss tangent for the first two resonances is shown 

in Fig. 8 and Fig. 9.  Loaded Q factors are calculated for each resonance as 

 
L3dB,U3dB,

res
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f
Q

−
=  (71) 

where fres is the resonant frequency and f3dB,U and f3dB,L are the upper and lower half-power 

frequencies, respectively; fres, f3dB,U, and f3dB,L are found from the S21 scattering parameter for the 

ring resonator. 
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The resonance locations and bandwidths are calculated using RingSandwich.m , which 

can be found in Appendix A along with supporting function m-files microstrip.m , 

microstrip_nlayer.m , and gap_capacitance.m .  In the sections below, I will present 

further results verifying the use of this theory for the determination of dielectric constants. 

Table 2 Layer detail for variable εεεεr material example. 

Layer Description Material Thickness [mm] εr tanδ

1 Lower support (ε1, tan δ1) FR-4 1.575 4.25 0.016

2 Sample (ε2, tan δ2) 5 1-10 0

3 Air gap (εair, tan δair) Air 0.5 1.00059 0

4 Upper support (ε1, tan δ1) FR-4 1.575 4.25 0.016

5 Atmosphere (εair, tan δair) Air 1.00059 0
 

Table 3 Layer detail for variable tanδδδδ material example. 

Layer Description Material Thickness [mm] εr tanδ

1 Lower support (ε1, tan δ1) FR-4 1.575 4.25 0.016

2 Sample (ε2, tan δ2) 5 4 0-0.05

3 Air gap (εair, tan δair) Air 0.5 1.00059 0

4 Upper support (ε1, tan δ1) FR-4 1.575 4.25 0.016

5 Atmosphere (εair, tan δair) Air 1.00059 0
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Fig. 6 Variation of fres,1 vs. εεεεr of a 5 mm thick sample. 

 
Fig. 7 Variation of fres,2 vs. εεεεr of a 5 mm thick sample. 
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Fig. 8 Variation of Qloaded,1 vs. tanδδδδ of a 5 mm sample. 

 
Fig. 9 Variation of Qloaded,2 vs. tand of a 5 mm sample. 
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4. Experimental Verification 
In this section I present descriptions of test setups for the planar and suspended ring resonator 

concepts as well as dielectric measurement results obtained with both types of resonator.  Unless 

otherwise noted, all measurements were taken at room temperature using a HP/Agilent 8722ET 

network analyzer.   

4.1. Planar Ring Resonator Test Setup 
I designed and constructed a planar ring resonator similar to Fig. 1 in order to verify the 

network parameter theory could be used to determine the dielectric constant and loss tangent of a 

known substrate.  Fig. 10 is a photograph of the constructed device. 

 
Fig. 10 Constructed planar ring resonator. 

4.1.1. Structural Details 

The ring and feed lines are 2.2 mm wide, and the ring resonator has a mean radius of 25.9 

mm.  The gap between each feed line and the ring is 0.25 mm.  The substrate is 62 mil thick FR-

4 manufactured by Isola Laminate Systems Corp.; an Isola datasheet lists the dielectric constant 
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and loss tangent of this material as 4.25 and 0.016 at 1 GHz. The dimensions of the substrate are 

136x90 mm, and the bottom surface of the substrate is fully metallized.  SMA connectors enable 

attachment to measuring equipment.  The board was printed and etched by Advanced Circuits, 

Inc., of Aurora, CO.  I performed final assembly and soldering at WPI. 

4.1.2. Simulation Results 

The device shown in Fig. 10 was connected to a network analyzer and subjected to a 

frequency sweep from 800 MHz to 2.4 GHz at intervals of 1 MHz.  The magnitude of the S21 

parameter was recorded at each frequency point.  I simulated the S21 response of the planar ring 

resonator at the same frequency points.  The microstrip and gap capacitance parameters were 

calculated according to the formulas presented in section 3.1, above, and are listed in Table 4.  

Performance values for the first two resonances are listed in Table 5, and simulated and 

measured S21 parameters for this device are shown in Fig. 11.  As the authors of previous works 

[21]-[23], the simulated S21 parameter matches well with the measured data, validating the use of 

network parameter formulations for the simulation of planar ring resonators. 

Table 4 Planar ring resonator parameters. 

Parameter ValueUnits

εe 3.103

Z0 61.34 Ω
Cp 9.266 fF

Cg 82.90 fF
 

Table 5 Planar ring resonator performance. 

Measured Value Simulated Value Units
fres,1 1.034 1.035 GHz
fres,2 2.068 2.070 GHz

BWres,1 22 22 MHz
BWres,2 40 44 MHz
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Fig. 11 S21 parameter of planar ring resonator. 

4.2. Suspended Ring Resonator Test Setup 
In order to verify the suspended ring resonator concept, I designed and constructed the device 

in Fig. 12.  This device was used to determine the dielectric constant and loss tangent of 

expanded polystyrene (EPS) foam samples. 

4.2.1. Structural Details 

The upper and lower supports are 62 mil thick FR-4 laminate from Isola Laminate Systems 

Corp.  The supports are mounted using metric positioning equipment from Edmund Industrial 

Optics, Inc.  The lower support attaches to a laboratory jack, part number NT54-687; the top 

board mounts independently in a fixed position using two two-part posts, part numbers NT54-

939/956.  The jack and posts attach directly to a bench plate, part number NT54-638.  As with 

the planar ring resonator, the feed lines and microstrip ring are 2.2 mm wide, and the lower 
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surface of the lower support is fully metallized.  In Fig. 12, a sample of EPS foam is shown 

underneath the ring; this sample is smaller than the actual samples measured.  The laboratory 

jack is used to assign the vertical position of the sample with respect to the ring on the lower 

surface of the upper support.  The four long screws that mount the upper support also provide 

support for a copper shield to partially protect the resonator from the room’s EM environment. 

 
Fig. 12 Constructed suspended ring resonator. 

4.2.2. Simulation Results 

Using MATLAB, I simulated the suspended ring resonator in Fig. 12 to determine the 

relationship between sample εr and the shift in the first and second resonances.  For this exercise, 

I assumed 6.22 mm thick sample with 0.75 mm air gap.  Both resonances exhibit nearly linear 

dependence on the sample dielectric constant, as shown in Fig. 13 for the first resonance and Fig. 

14 for the second resonance.  I fit, in a least-squares sense, a 3rd-order polynomial to the data for 
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each resonance.  This results in a maximum error, over the simulated dielectric constants, of 3.9 

x 10-7 in εr for the first resonance and 3.1 x 10-7 in εr for the second resonance. 

 
Fig. 13 εεεεr vs. shift in first resonance for 6.22 mm sample with 0.75 mm air gap. 
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Fig. 14 εεεεr vs. shift in second resonance for 6.22 mm sample with 0.75 mm air gap. 

Table 6 lists the coefficients of the polynomials in the form: 

 01
2

2
3

3 afafafar +++= ∆∆∆ε  (72) 

where f∆ is the resonant frequency shift.  The MATLAB file MultiErFoam.m  can be found in 

Appendix A. 

Table 6 3rd-order polynomials for suspended ring resonator resonance shift vs. εεεεr. 

Resonance a3 a2 a1 a0

1 5.282E-08 1.596E-05 5.348E-03 1.001
2 6.556E-09 3.975E-06 2.667E-03 1.001

 

Given the frequency shift in the first and second resonances, the polynomial coefficients in 

Table 6 can predict the dielectric constant of a 6.22 mm (245 mil) thick sample material at the 

resonances.  Fig. 15 shows measurement results for the first resonance of the suspended ring 

resonator when loaded with a 6.22 mm thick foam sample with density 21.6 kg/m3; Fig. 16 

shows measurement results for the second resonance of the suspended ring resonator with the 



 

 40 

same sample.  Measurements of S21 were made over a band of 40 MHz with 1601 frequency 

points, vertical resolution of 5dB/div, and reference -30 dB. The sweep time was manually set to 

5 sec and the averaging and smoothing options of the network analyzer were disabled. The peak 

magnitude of S21 corresponding to a resonance was recorded at intervals of 5 sec using automatic 

marker tracking. 

Fig. 15 and Fig. 16 also contain plots of two estimates for foam dielectric constant.  The 

dashed horizontal lines are Knott’s prediction of foam dielectric constant, reported in [2] 
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where εpol is the dielectric constant of the base polymer, εgas is the dielectric constant of the 

blowing agent gas, and α is the volumetric fraction of polymer in the foam: 

 
pol

foam

ρ
ρα =  (74) 

where ρfoam and ρpol are the densities of the foam and base polymer.  In [2], Knott cites a 

previous result by Cuming: 

 ∑=
i

ii εαε lnln foam  (75) 

where αi and εi are the volumetric fraction and dielectric constant of the ith component of the 

foamed mixture; this prediction is shown in Fig. 15 and Fig. 16 as the solid horizontal lines.  

Berrie and Wilson, using a slotted waveguide technique, confirmed Knott’s formula (73) for EPS 

foam of density from 13 kg/m3 to 29 kg/m3 in [3].  Fig. 15 shows excellent agreement at the first 

resonance of my predictions of dielectric constant with Knott’s formula.  The second resonance 

results shown in Fig. 16 are slightly lower than those for the first resonance but generally still fall 

between the predictions by Cuming and Knott. 
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Fig. 15 Measured first resonance dielectric constants for 6.22 mm thick EPS foam. 

 
Fig. 16 Measured second resonance dielectric constants for 6.22 mm thick EPS foam. 
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Using the measured dielectric constant for the foam sample above, I simulated the suspended 

ring resonator to determine the relationship between a shift in loaded Q factor and the loss 

tangent for the first two resonances.  Again, I calculated 3rd-order polynomials to approximate 

the simulation results. As for the dielectric constant, the simulations exhibit a mostly linear 

dependence of tanδ on the shift in Q factor.  Results for the first resonance are shown in Fig. 17 

and results for the second resonance are shown in Fig. 18.  The maximum errors over the 

simulated values of loss tangent are 5.2 x 10-7 for the first resonance and 1.7 x 10-7 for the second 

resonance. 

 
Fig. 17 tanδδδδ vs. shift in first resonance Q factor for 6.22 mm sample with 0.75 mm air gap. 
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Fig. 18 tanδδδδ vs. shift in second resonance Q factor for 6.22 mm sample with 0.75 mm air gap. 

Table 7 shows the coefficients of the polynomials in the form 

 01
2

2
3

3tan aQaQaQa +++= ∆∆∆δ  (76) 

where Q∆ is the shift in Q factor.  The MATLAB file MultiTanFoam.m  is included in 

Appendix A. 

Table 7 3rd-order polynomials for suspended ring resonator Q factor shift vs. tanδδδδ. 

Resonance a3 a2 a1 a0

1 9.743E-09 1.042E-06 1.672E-04 1.939E-04
2 5.668E-08 4.413E-06 4.292E-04 3.336E-04

 

Given the shift in Q factor between the air-filled resonator and the sample-filled resonator, 

the polynomial coefficients in Table 7 can be used to predict the loss tangent of a 6.22 mm (245 

mil) thick sample material at the resonances.  Fig. 19 shows measurement results for the first 

resonance of the suspended ring resonator when loaded with a 6.22 mm thick foam sample with 

density 21.6 kg/m3; the results for the second resonance are shown in Fig. 20.  Measurements of 
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S21 were made over a band of 20 MHz for the first resonance and 40 MHz for the second 

resonance with 1601 frequency points, vertical resolution of 1dB/div, and reference -30 dB. The 

sweep time was manually set to 5 sec and the averaging and smoothing options of the network 

analyzer were disabled. The Q factor, which is automatically calculated by the network analyzer, 

corresponding to a resonance was recorded at intervals of 5 sec using automatic marker tracking.  

For these measurements, a shield consisting of solid copper is placed above the ring resonator.  

This shield serves to reduce radiation losses dramatically and allows comparison of  

measurements with simulations that do not include radiation losses. 

Fig. 19 and Fig. 20 also include lines indicating the loss tangent of bulk polystyrene.  The 

results for the first resonance match very well with the loss tangent of the bulk material.  

However, the second resonance loss tangent measurements are much higher.  This is likely due 

to radiation at the second resonance that is not taken into account; it is unlikely that the loss 

tangent undergoes such a dramatic increase between the first two resonances. 
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Fig. 19 Measured first resonance loss tangents for 6.22 mm EPS foam. 

 
Fig. 20 Measured second resonance loss tangents for 6.22 mm EPS foam. 
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4.2.3. Uncertainty Analysis 

There are two primary sources of error in the measurements presented in the above sections.  

Measurement errors and resolution effects affect both the planar and suspended ring resonator 

measurements.  In addition, geometric errors occur in the measurement of the air gap between 

the sample and the suspended ring resonator.  Both of these types of errors contribute to the 

uncertainty in the measurements presented above.  This section will focus on the uncertainty in 

the values of εr determined for samples measured using the suspended ring resonator. 

The resolution of the S21 measurements taken of the device in Fig. 12 contributes to 

uncertainty in the εr measurements made with that device.  As previously noted, the 

measurements were taken over a 40 MHz band with 1601 points and results in a frequency 

resolution of: 

 kHz 25
11601

MHz 40
step =

−
=f  (77) 

The maximum single-sided error introduced by fstep is then 
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For the measurements shown in Fig. 15 and Fig. 16, the first resonance exhibited a mean shift of 

4.541 MHz, resulting in a maximum single-sided error due to fstep of 25 kHz of 1.374 x 10-4 in εr.  

At the second resonance, which exhibited an average shift of 7.291 MHz, the maximum single-

sided error due to fstep is 6.816 x 10-5. 

Estimating the effect of finite measurement resolution on Q factor measurements is more 

difficult, due to the fact that Q factor is a derived measurement equal to the ratio of resonance 

frequency to 3 dB bandwidth.  The maximum step in a Q factor measurement due to fstep is 
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where Q is the measured Q factor and BW3dB is the measured 3dB bandwidth.  For the 

measurements shown in Fig. 19, the mean Q is 149.90 and mean BW3dB is 10.03 MHz.  The 

maximum error in tanδ due to fstep is then 
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where Q∆ is the measured shift in Q factor. 

For the measurements shown in Fig. 19, the mean shift in Q factor was 0.3530 and fstep was 12.5 

kHz, resulting in a maximum error in tanδ due to fstep of 6.325 x 10-5. 

Uncertainty in the measurement of the air gap will affect the values of the coefficients ai.  

Assuming that the air gap thickness gmeas is bounded by [glow, ghigh] and that the coefficients 

associated with an air gap of gx are ai,x, the following bounds on the error due to air gap 

uncertainty can be assumed: 
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For the first resonance measurements in Fig. 15 with uncertainty in the air gap of ±0.3 mm, δf,high 

is 2.697 x 10-3 and δf,low is 2.846 x 10-3.  For the second resonance measurements in Fig. 16 with 

±0.3 mm uncertainty in the air gap measurement, δf,high is 2.140 x 10-3 and δf,low is 2.262 x 10-3. 
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Uncertainty in the measurement of the air gap affects measurement of the loss tangent in the 

same way that it affects measurement of the dielectric constant.  Assuming that the air gap 

thickness gmeas is bounded by [glow, ghigh] and that the coefficients associated with an air gap of gx 

are ai,x, the following bounds on the error due to air gap uncertainty can be assumed: 
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For the first resonance measurements in Fig. 19 with air gap uncertainty of ±0.3 mm, δtanδ,high is 

9.276 x 10-6 and δtanδ,low is 1.011 x 10-5. 

Measurement uncertainty in the frequency of resonances and the size of the air gap between 

the sample and ring contribute to potential error in the measured dielectric constants and loss 

tangents.  For the dielectric constant measurements, air gap size uncertainty dominates and 

introduces maximum errors into εr measurements on the order of 10-3.  For loss tangent 

measurements, frequency step error dominates and introduces maximum errors on the order of 

10-5. 
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5. Conclusion 
The dielectric constant and loss tangent of materials are important inputs to RF engineering 

tasks.  Many methods for the measurement of these properties are available, and these methods 

are based on a diverse set of tools including direct scattering parameter measurements, 

transmission line and waveguide methods, and resonant structure analysis.   

I have developed a method for determining the dielectric constant and loss tangent of 

arbitrary low dielectric constant materials based on a suspended ring resonator device.  The 

suspension of the ring above the sample material under test maintains strong interactions 

between the fields of the ring resonator and the sample material and produces accurate results.  

Using basic network circuit analysis techniques I have analyzed the behavior of the suspended 

ring resonator with respect to the S21 parameter.  The S21 model includes the effects of feed gaps 

and radiation from the ring.  The magnitude of the calculated S21 parameter is compared to 

measurements of a real device to determine the dielectric constant and loss tangent of EPS foam.  

The measured values of dielectric constant match closely with other sources from the literature. 
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Appendix A MATLAB Codes 

A.1 RingSandwich.m 
function [diff, fMax_air, fMax_sample, BW_air, BW_s ample] = ... 
         RingSandwich(e, d, t, gap, res); 
% This function takes in following parameters: 
% e   - dielectric constant of sample layer 
% d   - loss tangent of sample layer 
% t   - thickness of sample layer [m] 
% gap - thickness of air gap layer [m] 
% res - the number of the desired resonance (1, 2, ...) 
% 
% This function returns the follow parameters: 
% diff        - the difference between fMax_air and  fMax_sample 
% fMax_air    - the location of the desired resonan ce without the sample 
% fMax_sample - the location of the desired resonan ce with the sample 
 
% Constants 
eps_air         = 1.00059;  
mu0             = pi*4e-7; 
eps0            = 8.85418782e-12; 
n0              = sqrt(mu0/eps0); 
w               = 2.2e-3; 
s               = 0.25e-3; 
r               = 25.9e-3; 
len             = pi*r; 
f_minstep       = 1e2; 
f_fact          = 0.9; 
N               = 3; 
maxiter         = 100; 
 
%   Dielectric Data/Resonance Frequency for air (no  sample) 
m       = 2;    % ring is above second layer 
T       = [62e-3*2.54e-2 (t + gap) 62e-3*2.54e-2]; 
E       = [4.25          eps_air   4.25  eps_air]; 
D       = [0.016         0         0.016 0]; 
[line_Eeff line_Z0 line_Vp] = microstrip(w, T(1), E (1)*(1 - j*D(1))); 
[ring_Eeff ring_Z0 ring_Vp] = microstrip_nlayer(w, m, T, E.*(1 - j*D)); 
ring_F0 = res*real(ring_Vp/(2*len)); 
[Cp Cg]     = gap_capacitance(w, T(1), s, E(1)); 
fMax_air = 0; 
found = 0; 
f_start = ring_F0*f_fact; 
f_stop  = ring_F0; 
niter = 0; 
while (0 == found) 
    niter = niter + 1; 
    if (maxiter == niter) 
        error('too many iterations!'); 
    end 
    f_step      = ceil((f_stop - f_start)/(N*f_mins tep))*f_minstep; 
    f_wide      = 
floor(f_start/f_step)*f_step:f_step:ceil(f_stop/f_s tep)*f_step; 
    omega       = 2*pi*f_wide; 
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    Er = E(1:end - 1)*T(1:end)'/sum(T(1:end)); 
    EffRad = []; 
    for i = 1:length(f_wide) 
        EffRad(end + 1) = RingRadiation(Er, real(ri ng_Eeff), real(ring_Z0), 
len, sum(T(1:m)), f_wide(i)); 
    end 
    y           = j*omega.*sqrt(mu0*eps0*ring_Eeff)  - EffRad/(2*len); 
 
    S21         = 8*line_Z0*ring_Z0*Cg^2*exp(-y*len ).*omega.^2./(-
4+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2+4*line_Z0^ 2*omega.^2*Cp^2-
8*line_Z0^2*omega.^2*Cg.*exp(-
2*y*len)*Cp+8*ring_Z0*omega.^2*Cp*Cg*line_Z0.*exp(-
2*y*len)+8*line_Z0^2*omega.^2*Cp*Cg+ring_Z0^2*omega .^2*Cg^2+8*omega.^2*line_Z
0*ring_Z0*Cg*Cp+4*line_Z0^2*omega.^2*Cg^2+4*omega.^ 2*line_Z0*ring_Z0*Cg^2.*ex
p(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp^2*ring_Z0*Cg+lin e_Z0^2*omega.^4*Cp^2*ring_
Z0^2*Cg^2.*exp(-2*y*len)-line_Z0^2*omega.^4*Cp^2*ri ng_Z0^2*Cg^2-
4*line_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)-4*line_Z0^ 2*omega.^2*Cp^2.*exp(-
2*y*len)-ring_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)+4.* exp(-
2*y*len)+4*omega.^2*line_Z0*ring_Z0*Cg^2+2*j*ring_Z 0^2*omega.^3*Cp*Cg^2*line_
Z0-4*j*ring_Z0*omega*Cg-8*j*omega*line_Z0*Cg-
8*j*omega*line_Z0*Cp+4*j*line_Z0^2*omega.^3*Cp^2*ri ng_Z0*Cg.*exp(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2.*ex p(-
2*y*len)+8*j*omega*line_Z0.*exp(-2*y*len)*Cp+8*j*om ega*line_Z0.*exp(-
2*y*len)*Cg-4*j*ring_Z0*omega*Cg.*exp(-2*y*len)-
2*j*ring_Z0^2*omega.^3*Cp*Cg^2*line_Z0.*exp(-2*y*le n)); 
    ind         = find(max(abs(S21)) == abs(S21)); 
    fMax_air    = mean(f_wide(ind)); 
    if (fMax_air <= f_start) 
        f_stop = f_start + f_step; 
        f_start = f_stop - N*f_step; 
    elseif (fMax_air >= f_stop) 
        f_start = f_stop - f_step; 
        f_stop = f_start + N*f_step; 
    elseif (f_step > f_minstep) 
        f_start = f_wide(ind(1)) - f_step/2; 
        f_stop = f_wide(ind(end)) + f_step/2; 
    else 
        found = 1; 
    end 
end 
 
if (fMax_air <= f_start || fMax_air >= f_stop) 
    error('fMax_air not in (f_start, f_stop)!'); 
end 
 
if (3 < nargout) 
    target = 20*log10(max(abs(S21))*sqrt(2)/2); 
    f3dBL_air = 0; 
    found = 0; 
    f_start = fMax_air - 10e6; 
    f_stop  = fMax_air; 
    niter = 0; 
    while (0 == found) 
        niter = niter + 1; 
        if (maxiter == niter) 
            error('too many iterations!'); 
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        end 
        f_step      = ceil((f_stop - f_start)/(N*f_ minstep))*f_minstep; 
        f_wide      = 
floor(f_start/f_step)*f_step:f_step:ceil(f_stop/f_s tep)*f_step; 
        omega       = 2*pi*f_wide; 
 
        Er = E(1:end - 1)*T(1:end)'/sum(T(1:end)); 
        EffRad = []; 
        for i = 1:length(f_wide) 
            EffRad(end + 1) = RingRadiation(Er, rea l(ring_Eeff), 
real(ring_Z0), len, sum(T(1:m)), f_wide(i)); 
        end 
        y           = j*omega.*sqrt(mu0*eps0*ring_E eff) - EffRad/(2*len); 
 
        S21         = 8*line_Z0*ring_Z0*Cg^2*exp(-y *len).*omega.^2./(-
4+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2+4*line_Z0^ 2*omega.^2*Cp^2-
8*line_Z0^2*omega.^2*Cg.*exp(-
2*y*len)*Cp+8*ring_Z0*omega.^2*Cp*Cg*line_Z0.*exp(-
2*y*len)+8*line_Z0^2*omega.^2*Cp*Cg+ring_Z0^2*omega .^2*Cg^2+8*omega.^2*line_Z
0*ring_Z0*Cg*Cp+4*line_Z0^2*omega.^2*Cg^2+4*omega.^ 2*line_Z0*ring_Z0*Cg^2.*ex
p(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp^2*ring_Z0*Cg+lin e_Z0^2*omega.^4*Cp^2*ring_
Z0^2*Cg^2.*exp(-2*y*len)-line_Z0^2*omega.^4*Cp^2*ri ng_Z0^2*Cg^2-
4*line_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)-4*line_Z0^ 2*omega.^2*Cp^2.*exp(-
2*y*len)-ring_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)+4.* exp(-
2*y*len)+4*omega.^2*line_Z0*ring_Z0*Cg^2+2*j*ring_Z 0^2*omega.^3*Cp*Cg^2*line_
Z0-4*j*ring_Z0*omega*Cg-8*j*omega*line_Z0*Cg-
8*j*omega*line_Z0*Cp+4*j*line_Z0^2*omega.^3*Cp^2*ri ng_Z0*Cg.*exp(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2.*ex p(-
2*y*len)+8*j*omega*line_Z0.*exp(-2*y*len)*Cp+8*j*om ega*line_Z0.*exp(-
2*y*len)*Cg-4*j*ring_Z0*omega*Cg.*exp(-2*y*len)-
2*j*ring_Z0^2*omega.^3*Cp*Cg^2*line_Z0.*exp(-2*y*le n)); 
        ind         = find(min(abs(20*log10(abs(S21 )) - target)) == 
abs(20*log10(abs(S21)) - target)); 
        f3dBL_air    = mean(f_wide(ind)); 
        if (f3dBL_air <= f_start) 
            f_stop = f_start + f_step; 
            f_start = f_stop - N*f_step; 
        elseif (f3dBL_air >= f_stop & (f_start + N* f_step) <= fMax_air) 
            f_start = f_stop - f_step; 
            f_stop = f_start + N*f_step; 
        elseif (f_step > f_minstep) 
            f_stop = min(fMax_air, f_wide(ind(end))  + f_step/2); 
            f_start = f_stop - range(f_wide(ind)) -  f_step; 
        else 
            found = 1; 
        end 
    end 
 
    if (f3dBL_air <= f_start || f3dBL_air >= f_stop ) 
        error('f3dBL_air not in (f_start, f_stop)!' ); 
    end 
 
    f3dBU_air = 0; 
    found = 0; 
    f_start = fMax_air; 
    f_stop  = fMax_air + 10e6; 



 

 56 

    niter = 0; 
    while (0 == found) 
        niter = niter + 1; 
        if (maxiter == niter) 
            error('too many iterations!'); 
        end 
        f_step      = ceil((f_stop - f_start)/(N*f_ minstep))*f_minstep; 
        f_wide      = 
floor(f_start/f_step)*f_step:f_step:ceil(f_stop/f_s tep)*f_step; 
        omega       = 2*pi*f_wide; 
 
        Er = E(1:end - 1)*T(1:end)'/sum(T(1:end)); 
        EffRad = []; 
        for i = 1:length(f_wide) 
            EffRad(end + 1) = RingRadiation(Er, rea l(ring_Eeff), 
real(ring_Z0), len, sum(T(1:m)), f_wide(i)); 
        end 
        y           = j*omega.*sqrt(mu0*eps0*ring_E eff) - EffRad/(2*len); 
 
        S21         = 8*line_Z0*ring_Z0*Cg^2*exp(-y *len).*omega.^2./(-
4+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2+4*line_Z0^ 2*omega.^2*Cp^2-
8*line_Z0^2*omega.^2*Cg.*exp(-
2*y*len)*Cp+8*ring_Z0*omega.^2*Cp*Cg*line_Z0.*exp(-
2*y*len)+8*line_Z0^2*omega.^2*Cp*Cg+ring_Z0^2*omega .^2*Cg^2+8*omega.^2*line_Z
0*ring_Z0*Cg*Cp+4*line_Z0^2*omega.^2*Cg^2+4*omega.^ 2*line_Z0*ring_Z0*Cg^2.*ex
p(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp^2*ring_Z0*Cg+lin e_Z0^2*omega.^4*Cp^2*ring_
Z0^2*Cg^2.*exp(-2*y*len)-line_Z0^2*omega.^4*Cp^2*ri ng_Z0^2*Cg^2-
4*line_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)-4*line_Z0^ 2*omega.^2*Cp^2.*exp(-
2*y*len)-ring_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)+4.* exp(-
2*y*len)+4*omega.^2*line_Z0*ring_Z0*Cg^2+2*j*ring_Z 0^2*omega.^3*Cp*Cg^2*line_
Z0-4*j*ring_Z0*omega*Cg-8*j*omega*line_Z0*Cg-
8*j*omega*line_Z0*Cp+4*j*line_Z0^2*omega.^3*Cp^2*ri ng_Z0*Cg.*exp(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2.*ex p(-
2*y*len)+8*j*omega*line_Z0.*exp(-2*y*len)*Cp+8*j*om ega*line_Z0.*exp(-
2*y*len)*Cg-4*j*ring_Z0*omega*Cg.*exp(-2*y*len)-
2*j*ring_Z0^2*omega.^3*Cp*Cg^2*line_Z0.*exp(-2*y*le n)); 
        ind         = find(min(abs(20*log10(abs(S21 )) - target)) == 
abs(20*log10(abs(S21)) - target)); 
        f3dBU_air    = mean(f_wide(ind)); 
        if (f3dBU_air <= f_start & (f_stop - N*f_st ep) >= fMax_air) 
            f_stop = f_start + f_step; 
            f_start = f_stop - N*f_step; 
        elseif (f3dBU_air >= f_stop) 
            f_start = f_stop - f_step; 
            f_stop = f_start + N*f_step; 
        elseif (f_step > f_minstep) 
            f_start = max(fMax_air, f_wide(ind(1)) - f_step/2); 
            f_stop = f_start + range(f_wide(ind)) +  f_step; 
        else 
            found = 1; 
        end 
    end 
 
    if (f3dBU_air <= f_start || f3dBU_air >= f_stop ) 
        error('f3dBU_air not in (f_start, f_stop)!' ); 
    end 
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    BW_air = (f3dBU_air - f3dBL_air)/1e9; 
end 
 
%   Dielectric Data/Resonance Frequency for sample 
m       = 3;    % ring is above third layer 
T       = [62e-3*2.54e-2      t      gap      62e-3 *2.54e-2]; 
E       = [4.25               e      eps_air  4.25  eps_air]; 
D       = [0.016              d      0        0.016  0]; 
[line_Eeff line_Z0 line_Vp] = microstrip(w, T(1), E (1)*(1 - j*D(1))); 
[ring_Eeff ring_Z0 ring_Vp] = microstrip_nlayer(w, m, T, E.*(1 - j*D)); 
ring_F0 = res*real(ring_Vp/(2*len)); 
[Cp Cg]     = gap_capacitance(w, T(1), s, E(1)); 
fMax_sample = 0; 
found = 0; 
f_start = ring_F0*f_fact; 
f_stop  = ring_F0; 
niter = 0; 
while (0 == found) 
    niter = niter + 1; 
    if (maxiter == niter) 
        error('too many iterations!'); 
    end 
    f_step      = ceil((f_stop - f_start)/(N*f_mins tep))*f_minstep; 
    f_wide      = 
floor(f_start/f_step)*f_step:f_step:ceil(f_stop/f_s tep)*f_step; 
    omega       = 2*pi*f_wide; 
     
    Er = E(1:end - 1)*T(1:end)'/sum(T(1:end)); 
    EffRad = []; 
    for i = 1:length(f_wide) 
        EffRad(end + 1) = RingRadiation(Er, real(ri ng_Eeff), real(ring_Z0), 
len, sum(T(1:m)), f_wide(i)); 
    end 
    y           = j*omega.*sqrt(mu0*eps0*ring_Eeff)  - EffRad/(2*len); 
 
    S21         = 8*line_Z0*ring_Z0*Cg^2*exp(-y*len ).*omega.^2./(-
4+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2+4*line_Z0^ 2*omega.^2*Cp^2-
8*line_Z0^2*omega.^2*Cg.*exp(-
2*y*len)*Cp+8*ring_Z0*omega.^2*Cp*Cg*line_Z0.*exp(-
2*y*len)+8*line_Z0^2*omega.^2*Cp*Cg+ring_Z0^2*omega .^2*Cg^2+8*omega.^2*line_Z
0*ring_Z0*Cg*Cp+4*line_Z0^2*omega.^2*Cg^2+4*omega.^ 2*line_Z0*ring_Z0*Cg^2.*ex
p(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp^2*ring_Z0*Cg+lin e_Z0^2*omega.^4*Cp^2*ring_
Z0^2*Cg^2.*exp(-2*y*len)-line_Z0^2*omega.^4*Cp^2*ri ng_Z0^2*Cg^2-
4*line_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)-4*line_Z0^ 2*omega.^2*Cp^2.*exp(-
2*y*len)-ring_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)+4.* exp(-
2*y*len)+4*omega.^2*line_Z0*ring_Z0*Cg^2+2*j*ring_Z 0^2*omega.^3*Cp*Cg^2*line_
Z0-4*j*ring_Z0*omega*Cg-8*j*omega*line_Z0*Cg-
8*j*omega*line_Z0*Cp+4*j*line_Z0^2*omega.^3*Cp^2*ri ng_Z0*Cg.*exp(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2.*ex p(-
2*y*len)+8*j*omega*line_Z0.*exp(-2*y*len)*Cp+8*j*om ega*line_Z0.*exp(-
2*y*len)*Cg-4*j*ring_Z0*omega*Cg.*exp(-2*y*len)-
2*j*ring_Z0^2*omega.^3*Cp*Cg^2*line_Z0.*exp(-2*y*le n)); 
    ind         = find(max(abs(S21)) == abs(S21)); 
    fMax_sample = mean(f_wide(ind)); 
    if (fMax_sample <= f_start) 
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        f_stop = f_start + f_step; 
        f_start = f_stop - N*f_step; 
    elseif (fMax_sample >= f_stop) 
        f_start = f_stop - f_step; 
        f_stop = f_start + N*f_step; 
    elseif (f_step > f_minstep) 
        f_start = f_wide(ind(1)) - f_step/2; 
        f_stop = f_wide(ind(end)) + f_step/2; 
    else 
        found = 1; 
    end 
end 
 
if (fMax_sample <= f_start || fMax_sample >= f_stop ) 
    error('fMax_sample not in (f_start, f_stop)!');  
end 
 
if (3 < nargout) 
    target = 20*log10(max(abs(S21))*sqrt(2)/2); 
    f3dBL_sample = 0; 
    found = 0; 
    f_start = fMax_sample - 10e6; 
    f_stop  = fMax_sample; 
    niter = 0; 
    while (0 == found) 
        niter = niter + 1; 
        if (maxiter == niter) 
            error('too many iterations!'); 
        end 
        f_step      = ceil((f_stop - f_start)/(N*f_ minstep))*f_minstep; 
        f_wide      = 
floor(f_start/f_step)*f_step:f_step:ceil(f_stop/f_s tep)*f_step; 
        omega       = 2*pi*f_wide; 
 
        Er = E(1:end - 1)*T(1:end)'/sum(T(1:end)); 
        EffRad = []; 
        for i = 1:length(f_wide) 
            EffRad(end + 1) = RingRadiation(Er, rea l(ring_Eeff), 
real(ring_Z0), len, sum(T(1:m)), f_wide(i)); 
        end 
        y           = j*omega.*sqrt(mu0*eps0*ring_E eff) - EffRad/(2*len); 
 
        S21         = 8*line_Z0*ring_Z0*Cg^2*exp(-y *len).*omega.^2./(-
4+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2+4*line_Z0^ 2*omega.^2*Cp^2-
8*line_Z0^2*omega.^2*Cg.*exp(-
2*y*len)*Cp+8*ring_Z0*omega.^2*Cp*Cg*line_Z0.*exp(-
2*y*len)+8*line_Z0^2*omega.^2*Cp*Cg+ring_Z0^2*omega .^2*Cg^2+8*omega.^2*line_Z
0*ring_Z0*Cg*Cp+4*line_Z0^2*omega.^2*Cg^2+4*omega.^ 2*line_Z0*ring_Z0*Cg^2.*ex
p(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp^2*ring_Z0*Cg+lin e_Z0^2*omega.^4*Cp^2*ring_
Z0^2*Cg^2.*exp(-2*y*len)-line_Z0^2*omega.^4*Cp^2*ri ng_Z0^2*Cg^2-
4*line_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)-4*line_Z0^ 2*omega.^2*Cp^2.*exp(-
2*y*len)-ring_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)+4.* exp(-
2*y*len)+4*omega.^2*line_Z0*ring_Z0*Cg^2+2*j*ring_Z 0^2*omega.^3*Cp*Cg^2*line_
Z0-4*j*ring_Z0*omega*Cg-8*j*omega*line_Z0*Cg-
8*j*omega*line_Z0*Cp+4*j*line_Z0^2*omega.^3*Cp^2*ri ng_Z0*Cg.*exp(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2.*ex p(-
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2*y*len)+8*j*omega*line_Z0.*exp(-2*y*len)*Cp+8*j*om ega*line_Z0.*exp(-
2*y*len)*Cg-4*j*ring_Z0*omega*Cg.*exp(-2*y*len)-
2*j*ring_Z0^2*omega.^3*Cp*Cg^2*line_Z0.*exp(-2*y*le n)); 
        ind         = find(min(abs(20*log10(abs(S21 )) - target)) == 
abs(20*log10(abs(S21)) - target)); 
        f3dBL_sample    = mean(f_wide(ind)); 
        if (f3dBL_sample <= f_start) 
            f_stop = f_start + f_step; 
            f_start = f_stop - N*f_step; 
        elseif (f3dBL_sample >= f_stop & (f_start +  N*f_step) <= fMax_sample) 
            f_start = f_stop - f_step; 
            f_stop = f_start + N*f_step; 
        elseif (f_step > f_minstep) 
            f_stop = min(fMax_sample, f_wide(ind(en d)) + f_step/2); 
            f_start = f_stop - range(f_wide(ind)) -  f_step; 
        else 
            found = 1; 
        end 
    end 
 
    if (f3dBL_sample <= f_start || f3dBL_sample >= f_stop) 
        error('f3dBL_sample not in (f_start, f_stop )!'); 
    end 
 
    f3dBU_sample = 0; 
    found = 0; 
    f_start = fMax_sample; 
    f_stop  = f_start + 10e6; 
    niter = 0; 
    while (0 == found) 
        niter = niter + 1; 
        if (maxiter == niter) 
            error('too many iterations!'); 
        end 
        f_step      = ceil((f_stop - f_start)/(N*f_ minstep))*f_minstep; 
        f_wide      = 
floor(f_start/f_step)*f_step:f_step:ceil(f_stop/f_s tep)*f_step; 
        omega       = 2*pi*f_wide; 
 
        Er = E(1:end - 1)*T(1:end)'/sum(T(1:end)); 
        EffRad = []; 
        for i = 1:length(f_wide) 
            EffRad(end + 1) = RingRadiation(Er, rea l(ring_Eeff), 
real(ring_Z0), len, sum(T(1:m)), f_wide(i)); 
        end 
        y           = j*omega.*sqrt(mu0*eps0*ring_E eff) - EffRad/(2*len); 
 
        S21         = 8*line_Z0*ring_Z0*Cg^2*exp(-y *len).*omega.^2./(-
4+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2+4*line_Z0^ 2*omega.^2*Cp^2-
8*line_Z0^2*omega.^2*Cg.*exp(-
2*y*len)*Cp+8*ring_Z0*omega.^2*Cp*Cg*line_Z0.*exp(-
2*y*len)+8*line_Z0^2*omega.^2*Cp*Cg+ring_Z0^2*omega .^2*Cg^2+8*omega.^2*line_Z
0*ring_Z0*Cg*Cp+4*line_Z0^2*omega.^2*Cg^2+4*omega.^ 2*line_Z0*ring_Z0*Cg^2.*ex
p(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp^2*ring_Z0*Cg+lin e_Z0^2*omega.^4*Cp^2*ring_
Z0^2*Cg^2.*exp(-2*y*len)-line_Z0^2*omega.^4*Cp^2*ri ng_Z0^2*Cg^2-
4*line_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)-4*line_Z0^ 2*omega.^2*Cp^2.*exp(-
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2*y*len)-ring_Z0^2*omega.^2*Cg^2.*exp(-2*y*len)+4.* exp(-
2*y*len)+4*omega.^2*line_Z0*ring_Z0*Cg^2+2*j*ring_Z 0^2*omega.^3*Cp*Cg^2*line_
Z0-4*j*ring_Z0*omega*Cg-8*j*omega*line_Z0*Cg-
8*j*omega*line_Z0*Cp+4*j*line_Z0^2*omega.^3*Cp^2*ri ng_Z0*Cg.*exp(-
2*y*len)+4*j*line_Z0^2*omega.^3*Cp*ring_Z0*Cg^2.*ex p(-
2*y*len)+8*j*omega*line_Z0.*exp(-2*y*len)*Cp+8*j*om ega*line_Z0.*exp(-
2*y*len)*Cg-4*j*ring_Z0*omega*Cg.*exp(-2*y*len)-
2*j*ring_Z0^2*omega.^3*Cp*Cg^2*line_Z0.*exp(-2*y*le n)); 
        ind         = find(min(abs(20*log10(abs(S21 )) - target)) == 
abs(20*log10(abs(S21)) - target)); 
        f3dBU_sample    = mean(f_wide(ind)); 
        if (f3dBU_sample <= f_start & (f_stop - N*f _step) >= fMax_sample) 
            f_stop = f_start + f_step; 
            f_start = f_stop - N*f_step; 
        elseif (f3dBU_sample >= f_stop) 
            f_start = f_stop - f_step; 
            f_stop = f_start + N*f_step; 
        elseif (f_step > f_minstep) 
            f_start = max(fMax_sample, f_wide(ind(1 )) - f_step/2); 
            f_stop = f_start + range(f_wide(ind)) +  f_step; 
        else 
            found = 1; 
        end 
    end 
 
    if (f3dBU_sample <= f_start || f3dBU_sample >= f_stop) 
        error('f3dBU_sample not in (f_start, f_stop )!'); 
    end 
 
    BW_sample = (f3dBU_sample - f3dBL_sample)/1e9; 
end 
 
fMax_air = fMax_air/1e9; 
fMax_sample = fMax_sample/1e9; 
diff = fMax_air - fMax_sample; 

A.2 microstrip.m 
function [Eeff Z0 Vp] = microstrip(w, h, Er) 
 
eps0 = 8.85418782e-12; 
mu0  = pi*4e-7; 
c = 299792458; 
 
Zf = sqrt(mu0/eps0); 
 
Eeffn = 0; 
Z0n = 0; 
if 1 > w/h 
    Eeffn = (Er+1)/2 + (Er - 1)*((1 + 12*h/w)^-0.5 + 0.04*(1 - w/h)^2)/2; 
    Z0n = Zf*log(8*h/w + w/(4*h))/(2*pi*sqrt(Eeff)) ; 
else 
    Eeffn = (Er+1)/2 + (Er - 1)*(1 + 12*h/w)^-0.5/2 ; 
    Z0n = Zf/(sqrt(Eeffn)*(1.393 + w/h + 2*log(w/h + 1.444)/3)); 
end 
 
if  1 < Er 
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    q = (Eeffn - 1)/(Er - 1); 
else 
    q = 1; 
end 
 
 
Eeff = Eeffn; 
Z0 = Z0n; 
Vp = c/sqrt(Eeffn); 

A.3 microstrip_nlayer.m 
function [Eeff Z0 Vp] = microstrip(w, h, Er) 
 
eps0 = 8.85418782e-12; 
mu0  = pi*4e-7; 
c = 299792458; 
 
Zf = sqrt(mu0/eps0); 
 
Eeffn = 0; 
Z0n = 0; 
if 1 > w/h 
    Eeffn = (Er+1)/2 + (Er - 1)*((1 + 12*h/w)^-0.5 + 0.04*(1 - w/h)^2)/2; 
    Z0n = Zf*log(8*h/w + w/(4*h))/(2*pi*sqrt(Eeff)) ; 
else 
    Eeffn = (Er+1)/2 + (Er - 1)*(1 + 12*h/w)^-0.5/2 ; 
    Z0n = Zf/(sqrt(Eeffn)*(1.393 + w/h + 2*log(w/h + 1.444)/3)); 
end 
 
if  1 < Er 
    q = (Eeffn - 1)/(Er - 1); 
else 
    q = 1; 
end 
 
 
Eeff = Eeffn; 
Z0 = Z0n; 
Vp = c/sqrt(Eeffn); 

A.4 gap_capacitance.m 
function [Cp Cg] = gap_capacitance(w, h, s, Er) 
 
Ceven96 = 0; 
if 0.1 < s/w & 0.5 > s/w 
    Ceven96 = 12*w*(s/w)^0.8675*exp(2.043*(w/h)^0.1 2); 
elseif 0.5 <= s/w & 1.0 >= s/2 
    Ceven96 = 12*w*(s/w)^(1.565/(w/h)^0.16 - 1)*exp (1.97 - 0.03*h/w); 
else 
    error('Ratio s/w must be between 0.1 and 1.0');  
end 
 
Codd96 = w*(s/w)^((w/h)*(0.619*log10(w/h) - 0.3853) )*exp(4.26 - 
1.453*log10(w/h)); 
 
CevenEr = 1.167*Ceven96*(Er/9.6)^0.9; 
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CoddEr  = 1.1*Codd96*(Er/9.6)^0.8; 
 
Cp = 1e-12*CevenEr/2; 
Cg = 1e-12*(2*CoddEr - CevenEr)/4; 

A.5 RingRadiation.m 
function EffRad = RingRadiation(Er, Eeff, Z0, L, h,  f) 
 
% Constants 
mu0             = pi*4e-7; 
eps0            = 8.85418782e-12; 
n0              = sqrt(mu0/eps0); 
c0              = 1/sqrt(mu0*eps0); 
 
w = 2*pi*f; 
k = w*sqrt(mu0*eps0); 
ke = k*sqrt(Eeff); 
v = sqrt(Er - 1); 
 
A = @(theta, phi) sin((ke - k*sin(theta)*cos(phi))* L/2) ./ ... 
                     ((ke - k*sin(theta)*cos(phi))* L/2); 
 
Rv = @(theta) (1 - j*v*tan(k*v*h)./(Er*cos(theta)))  ./ ... 
              (1 + j*v*tan(k*v*h)./(Er*cos(theta))) ; 
 
Rh = @(theta) (1 + j*v*cot(k*v*h)./cos(theta)) ./ . .. 
              (1 - j*v*cot(k*v*h)./cos(theta)); 
 
F = @(theta, phi) j*2*sin((ke - k*sin(theta)*cos(ph i))*L/2); 
 
r = 10*c0/f; 
 
Etheta = @(theta, phi) j*w*mu0*L*A(theta, phi).*(Rv (theta) - 
1).*cos(theta)*cos(phi)*exp(-j*k*r)/(4*pi*r) + ... 
                       j*w*mu0*F(theta, phi).*(Rv(t heta) + 
1).*sin(theta)*tan(k*v*h)*exp(-j*k*r)/(4*pi*Er*k*v* r); 
Ephi   = @(theta, phi) j*w*mu0*L*A(theta, phi).*(Rh (theta) + 
1)*sin(phi)*exp(-j*k*r)/(4*pi*r); 
 
P = @(theta, phi) (abs(Etheta(theta, phi)).^2 + abs (Ephi(theta, 
phi)).^2).*sin(theta)/n0; 
 
Pr = 2*dblquad(P, 0, pi/2, 0, pi, 1e-4); 
 
EffRad = Pr/Z0; 

A.6 MultiErFoam.m 
function [P1 P2] = MultiErFoam(t, g) 
% MultiErFoam.m 
% Generates a 3rd-order polynomial to fit shift in resonant frequency to 
% dielectric constant. 
% Accepts two parameters: 
% t - thickness of sample 
% g - thickness of air gap 
% Returns two parameters: 
% P1 - vector of coefficients for first resonance f itting polynomial 
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% P2 - vector of coefficients for second resonance fitting polynomial. 
 
% filename is related to thickness and gap in micro ns 
filename = sprintf('P1P2 %d %d.mat', round(t*1e6), round(g*1e6)); 
 
if (exist(filename)) 
    load(filename); 
else 
    disp(strcat(filename, ' does not exist, calcula ting P1 and P2...')); 
end 
 
if (1 ~= exist('P1')) 
    disp('Starting first resonance...'); 
    SHIFT1 = []; 
    for e = 1.00:0.001:1.10 
        disp(sprintf('Starting Er = %f...', e)); 
        tic; 
        [diff fMax_air fMax_sample] = RingSandwich( e, 3.0e-4, t, g, 1); 
        SHIFT1 = [SHIFT1; e diff*1e3]; 
        stime = toc; 
        disp(sprintf('Completed Er = %f in %f secon ds.', e, stime)); 
    end 
    disp('Completed first resonance.'); 
 
    P1 = polyfit(SHIFT1(:,2), SHIFT1(:,1),3); 
end 
 
figure(1); 
plot(SHIFT1(:,2),SHIFT1(:,1),... 
     0:0.1:20,polyval(P1,0:0.1:20),... 
    'LineWidth',2); 
ylabel('\epsilon_r'); 
xlabel('Resonant Shift [MHz]'); 
legend('Simulated shift vs. \epsilon_r',... 
       '3^{rd}-order polynomial fit',... 
       'Location','SouthEast'); 
grid on; 
set(gca, 'YLim', [1 1.12]); 
 
if (1 ~= exist('P2')) 
    disp('Starting second resonance...'); 
    SHIFT2 = []; 
    for e = 1.00:0.001:1.10 
        disp(sprintf('Starting Er = %f...', e)); 
        tic; 
        [diff fMax_air fMax_sample] = RingSandwich( e, 3.0e-4, t, g, 2); 
        SHIFT2 = [SHIFT2; e diff*1e3]; 
        stime = toc; 
        disp(sprintf('Completed Er = %f in %f secon ds.', e, stime)); 
    end 
    disp('Completed second resonance.'); 
 
    P2 = polyfit(SHIFT2(:,2), SHIFT2(:,1),3); 
end 
 
figure(2); 
plot(SHIFT2(:,2),SHIFT2(:,1),... 
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     0:0.1:40,polyval(P2,0:0.1:40),... 
    'LineWidth',2); 
ylabel('\epsilon_r'); 
xlabel('Resonant Shift [MHz]'); 
legend('Simulated shift vs. \epsilon_r',... 
       '3^{rd}-order polynomial fit',... 
       'Location','SouthEast'); 
grid on; 
set(gca, 'YLim', [1 1.12]); 
 
save(filename, 'P1', 'P2', 'SHIFT1', 'SHIFT2'); 

A.7 MultiTanFoam.m 
function [P3 P4] = MultiTanFoam(t, g, e) 
% MultiErFoam.m 
% Generates a 3rd-order polynomial to fit shift in resonant frequency to 
% loss tangent. 
% Accepts three parameters: 
% t - thickness of sample 
% g - thickness of air gap 
% e - dielectric constant of sample 
% Returns two parameters: 
% P3 - vector of coefficients for first resonance f itting polynomial 
% P4 - vector of coefficients for second resonance fitting polynomial. 
 
% filename is related to thickness and gap in micro ns 
filename = sprintf('P3P4 %d %d %d.mat', round(t*1e6 ), round(g*1e6), 
round(e*1e3)); 
 
if (exist(filename)) 
    load(filename); 
else 
    disp(strcat(filename, ' does not exist, calcula ting P1 and P2...')); 
end 
 
if (1 ~= exist('P3')) 
    disp('Starting first resonance...'); 
    SHIFT3 = []; 
    for d = 0:1e-5:0.005 
        disp(sprintf('Starting tand = %f...', d)); 
        tic; 
        [diff fMax_air fMax_sample BW_air BW_sample ] = RingSandwich(e, d, t, 
g, 1); 
        Q_diff = fMax_air/BW_air - fMax_sample/BW_s ample; 
        SHIFT3 = [SHIFT3; d Q_diff]; 
        stime = toc; 
        disp(sprintf('Completed tand = %f in %f sec onds.', d, stime)); 
    end 
    disp('Completed first resonance.'); 
 
    P3 = polyfit(SHIFT3(:,2), SHIFT3(:,1),3); 
end 
 
figure(1); 
Q_range = min(SHIFT3(:,2)):0.1:max(SHIFT3(:,2)); 
plot(SHIFT3(:,2),SHIFT3(:,1),... 
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     Q_range,polyval(P3,Q_range),... 
    'LineWidth',2); 
ylabel('tan\delta'); 
xlabel('Q Shift'); 
legend('Simulated shift vs. tan\delta',... 
       '3^{rd}-order polynomial fit',... 
       'Location','SouthEast'); 
grid on; 
 
if (1 ~= exist('P4')) 
    disp('Starting second resonance...'); 
    SHIFT4 = []; 
    for d = 0:1e-5:0.005 
        disp(sprintf('Starting tand = %f...', d)); 
        tic; 
        [diff fMax_air fMax_sample BW_air BW_sample ] = RingSandwich(e, d, t, 
g, 2); 
        Q_diff = fMax_air/BW_air - fMax_sample/BW_s ample; 
        SHIFT4 = [SHIFT4; d Q_diff]; 
        stime = toc; 
        disp(sprintf('Completed tand = %f in %f sec onds.', d, stime)); 
    end 
    disp('Completed second resonance.'); 
 
    P4 = polyfit(SHIFT4(:,2), SHIFT4(:,1),3); 
end 
 
figure(2); 
Q_range = min(SHIFT4(:,2)):0.1:max(SHIFT4(:,2)); 
plot(SHIFT4(:,2),SHIFT4(:,1),... 
     Q_range,polyval(P4,Q_range),... 
    'LineWidth',2); 
ylabel('tan\delta'); 
xlabel('Q Shift'); 
legend('Simulated shift vs. tan\delta',... 
       '3^{rd}-order polynomial fit',... 
       'Location','SouthEast'); 
grid on; 
 
save(filename, 'P3', 'P4', 'SHIFT3', 'SHIFT4'); 


