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Abstract

Identity based cryptography was first proposed by Shamir [36] in 1984. Rather than de-

riving a public key from private information, which would be the case in traditional public

key encryption schemes, in identity based schemes a user’s identity plays the role of the

public key. This reduces the amount of computations required for authentication, and sim-

plifies key-management. Efficient and strong implementations of identity based schemes

are based around easily computable bilinear mappings of two points on an elliptic curve

onto a multiplicative subgroup of a field, also called pairing.

The idea of utilizing the identity of the user simplifies the public key infrastructure.

However, since pairing computations are expensive for both area and timing, the proposed

identity based cryptosystem are hard to implement. In order to be able to efficiently uti-

lize the idea of identity based cryptography, there is a strong need for an efficient pairing

implementations.

Pairing computations could be realized in multiple fields. Since the main building block

and the bottleneck of the algorithm is multiplication, we focused our research on building

a fast and small arithmetic core that can work on multiple fields. This would allow a sin-

gle piece of hardware to realize a wide spectrum of cryptographic algorithms, including

pairings, with minimal amount of software coding. We present a novel unified core design

which is extended to realize Montgomery multiplication in the fields GF (2n), GF (3m), and

GF (p). Our unified design supports RSA and elliptic curve schemes, as well as identity

based encryption which requires a pairing computation on an elliptic curve. The architec-
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ture is pipelined and is highly scalable. The unified core utilizes the redundant signed digit

representation to reduce the critical path delay. While the carry-save representation used in

classical unified architectures is only good for addition and multiplication operations, the

redundant signed digit representation also facilitates efficient computation of comparison

and subtraction operations besides addition and multiplication. Thus, there is no need for

transformation between the redundant and non-redundant representations of field elements,

which would be required in classical unified architectures to realize the subtraction and

comparison operations. We also quantify the benefits of unified architectures in terms of

area and critical path delay. We provide detailed implementation results. The metric shows

that the new unified architecture provides an improvement over a hypothetical non-unified

architecture of at least 24.88% while the improvement over a classical unified architecture

is at least 32.07%.

Until recently there has been no work covering the security of pairing based crypto-

graphic hardware in the presence of side-channel attacks, despite their apparent suitability

for identity-aware personal security devices, such as smart cards. We present a novel non-

linear error coding framework which incorporates strong adversarial fault detection capa-

bilities into identity based encryption schemes built using Tate pairing computations. The

presented algorithms provide quantifiable resilience in a well defined strong attacker model.

Given the emergence of fault attacks as a serious threat to pairing based cryptography, the

proposed technique solves a key problem when incorporated into software and hardware

implementations. In this dissertation, we also present an efficient accelerator for computing
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the Tate Pairing in characteristic 3, based on the Modified Duursma Lee algorithm.
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Chapter 1

Introduction

Recently there has been an increase in research activity on pairing based cryptography

such as identity based cryptosystems [8]. Identity based cryptography was first proposed

by Shamir [36] in 1984. Rather than deriving a public key from private information, which

would be the case in traditional public key encryption schemes, in identity based schemes

a user’s identity plays the role of the public key. This reduces the amount of computations

required for authentication, and simplifies key-management.

Elliptic curve and RSA (or Diffie-Hellman) schemes are typically implemented over

GF (p) or GF (2n) and over Zn (or GF (p)). Numerous architectures were proposed to

support arithmetic for elliptic curve cryptography and RSA-like schemes [34, 3]. Unified

architectures for the fields GF (p) and GF (2n) were also proposed [34, 17, 43, 33, 38, 35,

1]. However, the emergence of pairing based cryptography has attracted a significant level

of interest in arithmetic in GF (3m). Hardware architectures for arithmetic in characteristic
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three have appeared in [28], [20], and [7].

Pairing based cryptography may utilize all of the three kinds of mathematical structures.

Moreover, ECC and RSA schemes are typically implemented over prime or binary fields

and integer rings, respectively. Thus, it would be highly desirable to have a single piece of

unified hardware that supports arithmetic in all three kinds of domains simultaneously. To

the best of our knowledge, such an architecture is still lacking.

While a unified architecture is highly desirable, the scalability and efficiency of the

hardware is important. Here we use the notion of scalability as introduced in [37]. The de-

sign should scale without the redesign of the architecture, by simply increasing the number

of processing units. The scalability feature along with the unified approach would allow

the architecture to support a wide spectrum of operating points ranging from low-end and

low-power devices to high-end server platforms. For efficiency reasons we design our ar-

chitecture around a carry-free architecture. Furthermore, the scalable nature of the design

allows pipelining techniques to be used to further improve efficiency. Our architecture

supports the basic arithmetic operations (i.e., addition, multiplication and inversion) in the

arithmetic extension fields GF (p)1, GF (2n) and GF (3m). All operations are carried out

in the residue space defined by the Montgomery multiplication algorithm [24].

Efficient implementations of identity based schemes are based around easily com-

putable bilinear mappings of two points on an elliptic curve onto a multiplicative subgroup

of a field, also called pairing. One mapping that seems to be of particular interest is the

1Since we do not make use of the field properties in our design, the architecture supports also arithmetic

in integer rings Zn and hence supports RSA.
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modified Tate pairing by Duursma and Lee, not in the least due to the improved algorithms

due to Kwon and Baretto et al.

Until recently there has been no work covering the security of pairing based crypto-

graphic hardware in the presence of side-channel attacks, despite their apparent suitability

for identity-aware personal security devices, such as smart cards. Indeed, Page and Ver-

cauteren [29] for the first time investigate a fault attack on the modified Tate pairing in the

context of the Baek-Zheng threshold decryption scheme. It allows the attacker to recover

the private point value of the decryption servers with relatively little effort, which leads to

the defacto compromise of the scheme.

1.1 Contributions

Contributions of this work are outlined as follows:

• In order to support Elliptic Curve Cryptography, factoring based cryptographic sys-

tems, public key primitives and recently proposed identity based schemes, we pro-

pose a new and more efficient unified multiplier that operates in three fields, namely

GF (p), GF (2n), and GF (3m). To the best of our knowledge, this is the first attempt

to combine the arithmetic of these three, cryptographically important, finite fields in

a single datapath.

• We present a metric to quantitatively demonstrate the advantages of the proposed

unified multiplier over the classical unified multiplier that supports arithmetic only
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in GF (p) and GF (2n). The unified architectures proposed so far [34, 17, 35, 43],

lacked quantitative analysis of the advantage of using a unified approach. It has

only been reported that unified architecture result in negligible overhead in area and

critical path delay (CPD). In this work, we quantified the gain in terms of the area

× CPD metric, which showed that the benefits of the new unified architecture far

exceed that of the classical unified architecture.

• We utilize a different carry-free arithmetic that allows efficient comparison and sub-

traction operations in GF (p)-mode. The classical unified architectures [34, 17, 35,

43] utilize the carry-save representation in order to eliminate the carry propagation

in GF (p) mode. It is not easy to perform subtraction and comparison operations

in the carry-save representation, where field elements are expressed as the sum of

two integers. For instance, [43] transforms the elements of GF (p) that are in carry-

save form to non-redundant form by adding the number to itself repeatedly in order

to perform comparison and subtraction operations necessary to realize other field

operations such as multiplicative inversion. For our carry-free arithmetic, the field

elements are represented as the difference of two field elements, instead of sum.

This representation facilitates efficient subtraction and comparison operations. Con-

sequently, all arithmetic operations in cryptographic computations can be performed

without the need of transformations between redundant and non-redundant forms.

• We computed execution times of basic operations for three prominent public key
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cryptography algorithms: ECC scalar point multiplication, RSA exponentiation, and

Tate pairing computations. The results show that Tate pairing computations used in

identity based cryptosystems can be performed by the proposed unified architecture

in a comparably efficient manner.

• We apply a specially parameterized variant of the original construction for robust

codes from [18], as well as the construction from [14] to a modified Tate pairing

implementation. Instead of only protecting the loop counter of the algorithm, we

also protect the entire data path to avoid potential attacks on the base points (P,Q).

The resulting architecture achieves a high degree of robustness against even highly

motivated attackers, and at the same time only requires a moderate overhead in area

and delay.

In addition, a contribution of lesser importance is the introduction of scalable Mont-

gomery algorithm for ternary extension field, GF (3m). Although it is a straightfor-

ward adaptation of the algorithm presented in [37] to ternary extension fields, it is

the first attempt to formulate such an algorithm.

1.2 Motivation

The attack described in [29] is just the first one reported, therefore we must expect that

new types of attacks will be discovered in the future. The current attack is focused mainly

on the loop counter of the modified Duursma-Lee algorithm, but in principle there may be
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many more parts of the system that are vulnerable to a fault attack. To provide the highest

level of assurance even under adversarial conditions, we need to protect the entire system

with a robust error detection mechanism.

A common approach to prevent errors in cryptographic hardware involves the use of

existing redundancy, for example by decrypting an encrypted result and comparing to the

input. In other cases simple concepts from classic linear coding theory (parity predic-

tion, Hamming codes) are applied to standard circuits, for low-cost protection against basic

faults. For instance, a number techniques involving parity checking codes [31, 32] and a

more general technique based on linear codes were proposed in [13].

With the advent of more advanced attack techniques and more accurate error and at-

tacker models, these simple techniques may prove to be inadequate. Effective hardening

of systems against sophisticated and malicious fault attacks requires strong error detection

under worst case assumptions rather than average case. A general property of linear codes

is that the sum of two codewords is again a codeword [41]. An error pattern with the same

value as that of a codeword can thus never be detected. Another problematic aspect that

arises out of this property is the code’s behavior with regard to certain error patterns with

Hamming weight a multiple of the codes minimum distance, e.g. burst errors. These errors

are often not detectable and may occur with high probability.

In [18] Karpovsky and Taubin introduced a novel family of non-linear systematic er-

ror detecting codes, which provides robustness according to the minimax criterion, i.e. it

minimizes the maximum probability of missing an error over all non-zero error patterns.
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In addition to the probability of missing an error, the nonlinear encoding also makes the

event of missing an error highly data dependent. Without a priori knowledge of the data it

is therefore practically infeasible to induce an undetected error.

While the adoption of robust codes has been successful for symmetric cryptosystems

like the AES block-cipher [22], robust implementations of public key cryptography has

been challenging due to the seemingly incompatible arithmetic of the encoding procedure

and public key operations. In [14] the authors for the first time gave a general construction

for robust arithmetic codes versatile enough to be applied to any fixed width data-path for

digit serial general purpose arithmetic. Using these codes it is possible to protect any type

of integer ring or prime field arithmetic, e.g. RSA, Diffie-Hellman, Elliptic Curves over

GF (p) against active adversaries. While the codes achieve a high degree of robustness, they

also impose a tremendous computational overhead, which may be too costly for practical

implementations.

1.3 Dissertation Outline

We started our research with the basic building blocks for pairing based cryptosys-

tems. Multiplication is the bottleneck of the cryptographic applications so we focused

our research on efficient multiplier architectures. Since efficient pairing implementations

work on fields other than prime and binary fields, we aimed at building an arithmetic core

that would work on three important fields: prime binary and ternary. This would make



8

the embedding of pairing algorithms into the cryptographic accelerators that utilize many

cryptographic algorithms.

In Chapter 2, we are presenting brief and necessary background information that is used

throughout our research. In Section 2.1, we explain the building blocks of arithmetic in

characteristic three. We give detailed information for hardware implementations of ternary

field arithmetic in this section. In Section 2.2, Tate Pairing algorithm and its modified

version are explained. In Section 2.3 we introduce the traditional RSD representation and

our notational conventions. We utilized the RSD representation to make better use of the

carry-save architecture for our purposes.

Then in Chapter 3 our unified arithmetic core design is explained. We first explain

the implementation of our core implementation. Then, we give detailed explanations of

how to utilize our arithmetic core for basic operations such as addition, subtraction and

comparison.

Chapter 4 presents the Montgomery multiplication algorithms for the three fields. For

this architecture, we utilized our unified arithmetic core. In Section 4.1 we introduce the

Montgomery multiplier design, and describe relevant system level architectural details such

as pipelining and architectural scaling. We then present the complexity analysis and im-

plementation results in Section 4.4. We provide timing estimates for particular schemes

based on the number of processing units and give a comparative analysis in Section 4.4.1.

In Section 4.5, we give a detailed analysis of power consumption of the proposed design

and compare it with other architectures. Section 4.6 provides a discussion on the side chan-
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nel attacks and gives a detailed analysis of dynamic power consumption of the discussed

architectures.

Lastly, in Chapter 5, we give a detailed explanation and analysis of the proposed tamper-

resilient architectures. In Section 5.1, the lightweight and tamper-resilient error detection

scheme built over the extension field is explained in detail, with hardware and software

implementation analysis. Section 5.2 gives a detailed analysis of the lightweight and robust

error detection scheme built over the base field.
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Chapter 2

Background

2.1 Arithmetic in Characteristic Three

In this section, we present hardware architectures for addition, subtraction, multipli-

cation and cubing in GF (3m). Characteristic three arithmetic is slightly more compli-

cated than characteristic two arithmetic since coefficients can take three values: 0, 1 and 2.

Hence, two bits are needed to represent each digit in GF (3). There are two common repre-

sentations: i) 0, 1, 2 = 00, 01, 10 and ii) 0, 1, 2 = 00, 01 10, 11. The advantage of the latter

representation is that ”check if zero operation” is implemented by only checking the most

significant bit of the digit since both alternatives for representing digit 0 have 0 in the most

significant position. The disadvantage, however, is that negation is performed by subtract-

ing the digit from zero, which can be done by using the addition circuit again in one clock

cycle. The negation, on the other hand, in the former representation is performed by just
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swapping the most and the least significant bits, which is almost free in hardware imple-

mentations. Since negation operation is used very often especially in performing GF (36m)

multiplication, the former representation is more advantageous in our case. For arithmetic

operations, m-bit elements are expressed as 2m-bit arrays as follows

A = (aH
m − 1, aL

m − 1, ........, aH
1 , aL

1 , aH
0 , aL

0 )

2.1.1 Addition and Subtraction

Addition and subtraction is performed component-wise by using the Boolean expres-

sion in [15], i.e.

Ci = Ai + Bi, for i = 0, 1, ..., m− 1and

t = (AL
i ∨ BH

i )⊕ (AH
i ∨ BL

i )

CH
i = (AL

i ∨ BL
i )⊕ t

CL
i = (AH

i ∨ BH
i )⊕ t

where ∨ and ⊕ stands for logical OR and XOR operations, respectively. In the represen-

tation, negation and multiplication of GF (3) elements by 2 are equivalent operations and

performed by swapping the most and least significant bits of the digit representing the ele-

ment. Therefore, subtraction in GF (3m) is equally efficient as the addition in the same field

and thus the same adder block is used for both operations. If subtraction is needed, bits in

digits of subtrahend are individually swapped and connected to the adder block. Since this

is achieved by only wiring, no additional hardware resource is used.
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2.1.2 Cubing

For the Modified Duursma-Lee algorithm, we need cubing operation in GF (36m) and

it is possible to build a parallel architecture by using GF (3m) cubing blocks as explained

in the next section. Our aim is to build an optimum cubing circuit in GF (3m). Cubing is a

linear operation in characteristic three and we adopt the technique presented in [6].

For characteristic three, frobenius map is written as follows:

A3 ≡ (
m−1
∑

i=0

aix
i)3 (mod p(x)) =

m−1
∑

i=0

aix
3i (mod p(x))

This formula can be represented as follows:

A3 ≡ (

3(m−1)
∑

i=0

ai/3x
i)3 (mod p(x)) ≡ T + U + V (mod p(x))

≡ ((

m−1
∑

i=0

ai/3x
i) + (

2m−1
∑

i=m

ai/3x
i) + (

3(m−1)
∑

i=2m

ai/3x
i)) (mod p(x))

Here the degrees of the terms U and V are bigger than m and need to be reduced. For

p(x) = xm + ptx
t + p0 and t < m/3, the terms can be represented as follows as also

showed in [6]:

U =

2m−1
∑

i=m

ai/3x
i (mod p(x)) =

2m−1
∑

i=m

ai/3x
i−m(−ptx

t − p0) (mod p(x))

V =

3(m−1)
∑

i=2m

ai/3x
i (mod p(x)) =

3(m−1)
∑

i=2m

ai/3x
i−2m(a2t − ptp0a

t + 1) (mod p(x))

Reduction is basically done by additions. For irreducible polynomial p(x) = xm +

ptx
t + p0, each xm and x2m are replaced with (−ptx

t − p0) and (a2t − ptp0a
t + 1)1 ,

1Note that x2m = (xm)2 = (−ptxt − p0)
2 = a2t − ptp0a

t + 1 in GF (3).
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respectively. However, there remain the terms with degrees equal to or bigger than m after

the first reduction step. This problem can be solved by performing reduction one more time.

The result of the first reduction can be stored in a register and the second reduction can be

done in the next clock cycle. This naturally increases the maximum operating frequency of

the block. However since the cubing circuit is not in the critical path, the second reduction

step is implemented in the same clock cycle as the first reduction step.

We optimize the reduction for the well known polynomial p(x) = x97 + x16 + 2 and

calculate the terms to be added in order to achieve reduction in the same clock cycle.

This optimization for a specific polynomial results in a very efficient implementation. We

used 111 GF (3) adders to complete the cubing operation. And critical path of the system

consists of three serially connected GF (3) adders.

2.1.3 Multiplication

The multiplier architecture presented in this section was implemented by Giray Ko-

murcu.

Multiplication is the most important operation for pairing implementations due to its

complexity. Since the modified Duursma Lee algorithm requires GF (36m) multiplications,

we need 18 GF (3m) multipliers in parallel, as explained in the next section. Therefore,

designing an efficient multiplier architecture is the key for an efficient accelerator.

Hardware architectures proposed in the literature for GF (3m) multiplication can be

treated in three major classes: parallel, serial and digit multipliers. Firstly, parallel mul-
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tipliers multiply two GF (3m) elements in one clock cycle. Although parallel multiplier

sustain a high throughput, they consume prohibitively large amount of area and reduce the

maximum clock frequency due to very long critical path. Since area and time complexity

are very critical parameters for the practical usage of pairings, parallel multipliers are not

appropriate on constrained devices.

Secondly, serial multipliers process a single coefficient of the multiplier at each clock

cycle. These types of multipliers require m clock cycles for each GF (3m) multiplication,

while their area consumption and critical path delay are relatively small compared to other

types of multipliers.

Finally, digit multipliers are very similar to serial multipliers but they process n coeffi-

cients of the multiplier at each clock cycle rather than a single coefficient. Consequently,

the operation is completed in m/n cycles. The area consumption is more than the serial mul-

tipliers and increases with the digit size. Since the area critical path delay also increases

with the digit size, the choice of n is important due to area and time concerns.

We prefer to use use serial multipliers in our implementation, which incur increased

number of clock cycles, while providing a better solution in terms of area and frequency.

Serial multipliers can also be treated in two classes: i) least-significant-element-first (LSE)

and ii) most-significant-element-first (MSE). Although there is not much difference be-

tween the two types we implement the LSE Multiplier.

As illustrated in Algorithm 1, the reduction is performed in an interleaved fashion.

For interleaved reduction, we subtract am(pm−1x
m−1 + . . .+p1x+p0x) from the partial
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Algorithm 1 LSE Multiplier [6]

Require: A =
∑m−1

i=0 aia
i, B =

∑m−1
i=0 bia

i, where ai, bi ∈ GF (p)

Ensure: C ≡ A · B =
∑m−1

i=0 cia
i, where ci ∈ GF (p)

1: C ← 0

2: for i = 0 to m− 1 do

3: C ← biA + C

4: A← Aa (mod p(a))

5: end for

6: return (C)

result C whenever am 6= 0 since xm = −pm−1x
m−1 − . . .− p1x− p0.

Two LSE multipliers are designed to examine the effect of fixed versus generic polyno-

mials on time and space complexities. In the generic design, modulus polynomial is given

as input to the block. The advantage of the generic design is that it can be used with any

polynomial in characteristic three. This is an important flexibility for systems that may use

more than one polynomials. In case of fixed polynomials, the coefficients of the polynomial

can be hard coded into the multiplier unit resulting in reduction of design complexity. For

the fixed irreducible polynomial of x97 +x16 +2, used in many pairing based cryptographic

systems in literature, only two GF (3) additions are needed in each iteration of interleaved

reduction.

The proposed GF (3m) LSE multiplier architecture is shown in Figure 2.1.
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Control Unit

A Register

A*B(i)

B input

Reduction

Adder

Output Register

Figure 2.1: LSE multiplier architecture over GF (3m)

2.2 Tate Pairing

The original Tate pairing is defined as follows.

Definition 1 Let E be an elliptic curve over a finite field Fq. Let l be a positive integer

which is a coprime to q. Generally l is a prime and l|#E(Fq). Let k be a positive integer

such that l|(qk − 1). Finally, let G = E(Fk
q). Then the Tate Pairing is a mapping:

〈., .〉 : G [l]×G/lG→ F
∗

qk/(F∗

qk)
l (2.1)

For further information on Tate pairing, we refer the reader to [12, 10].
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2.2.1 Modified Tate Pairing

Duursma and Lee proposed an efficient way of Tate pairing calculations in character-

istic three [10]. They introduced the algorithm known as the Duursma-Lee Tate Pairing

Algorithm on a family of supersingular hyperelliptic curves. Kwon [23] and Barreto et al.

[4] improved the performance of Duursma-Lee Algorithm for Tate Pairing. Their method

for computing the Tate Pairing in characteristic three, the Kwon-BGOS algorithm, is shown

in Algorithm 1 [16].

Following from [4, 5], they constructed their algorithm on the supersingular elliptic

curve E(Fq) : y2 = x3 − x± 1 which is defined over a Galois field GF (3m). Let q = 3m

where m is generally a prime and P = (x1, y1) and Q = (x2, y2) are points of order l:

P,Q ∈ E± [l] (GF (3m)). Then the Kwon-BGOS modified Tate Pairing on the elliptic

curve E is defined as the mapping

〈., .〉 : E± (GF (3m)) [l]×E± (GF (3m)) [l]→ GF (36m) (2.2)

which is a function on two points P andQ given as

ê (P,Q) = el (P, φ(Q))ǫ = τ ∈ GF (36m) (2.3)

where ǫ = (36m − 1)/l and φ is the distortion map defined as φ(Q) = φ(ρ − xq, σyq). It

should be noted that σ and ρ are the zeros of σ2 + 1 and ρ3 − ρ ∓ 1, respectively and thus

satisfy σ2 + 1 = ρ3 − ρ∓ 1 = 0 ∈ GF (36m).

For the purpose of simplicity and to better emphasize the calculations that will be in-

troduced later in this chapter, we utilize the curve E(Fq) : y2 = x3 − x + 1.
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Algorithm 1 - The Kwon-BGOS algorithm [23]

Input: points P = (x1, y1),

Q = (x2, y2) ∈ E± [l] (GF (3m))

Output: fP(φ(Q)) ∈ F ∗

q6/(F ∗

q3)l

Step Operation Comments

1: f := 1

2: x2 := x3
2 GF (3m) arithmetic

3: y2 := y3
2 GF (3m) arithmetic

4: d := ±m (mod 3) GF (3) arithmetic

5: for i from 1 to m

6: x1 := x9
1 GF (3m) arithmetic

7: y1 := y9
1 GF (3m) arithmetic

8: µ := x1 + x2 + d GF (3m) arithmetic

9: λ := y1y2σ − µ2 GF (3m) arithmetic

10: g := λ− µρ− ρ2

11: f := f 3 GF (36m) arithmetic

12: f := f · g GF (36m) arithmetic

13: y2 := −y2 GF (3m) arithmetic

14: d := d∓ 1 (mod 3)

15: return f q3−1

Figure 2.2: Tate Pairing in Characteristic Three
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2.3 Redundant Signed Digit (RSD) Arithmetic

Although carry-free arithmetic decreases the propagation delay in addition operations,

its use for modular subtraction operations introduces significant problems. When two’s

complement representation is used for subtraction, the carry overflow must be ignored. If

there is no carry overflow, the result is negative. Since there can be hidden carry overflow

with carry-free representation, it is hard to be sure that the result is positive or negative. It

requires additional operations and additional hardware, which increases both latency and

area. The RSD representation was introduced by Avizienis [2] in an effort to overcome this

difficulty.

Arithmetic in the RSD representation is quite similar to carry-free arithmetic. An in-

teger is still represented by two positive numbers, however the non-redundant form of the

representation is the difference between these two numbers, not the sum. If the number X

is represented by xp and xn then X = xp − xn.

One advantage of using the RSD representation is that it eliminates the need for two’s

complement representation to handle negative numbers. It is thus much easier to do both

addition and subtraction operations without worrying about the carry and borrow chain.

Furthermore, the subtraction operation does not require taking two’s complement of the

subtrahend. It is a more natural representation if both addition and subtraction operations

need to be supported. This is indeed the case in the Montgomery multiplication and inver-

sion algorithms. Also, comparison of two integers is much easier with RSD representation.

After subtracting one integer from the other one, which is a simple addition operation, a
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conventional comparator can be utilized.

2.3.1 Number Representations

As mentioned earlier, the integer X is represented by two integers, xp and xn, and

X = xp − xn. For the RSD representation, we reserve the notation (xp, xn) to represent

the number X . The RSD representation for extension fields is described as follows:

1. Prime field GF (p): Elements of the prime field GF (p) may be represented as in-

tegers in binary form. In the binary RSD representation its digits can have three

different values: 1, 0 and −1. These three digit values are represented as

1 → (1, 0)

0 → (0, 0)

−1 → (0, 1)

2. Binary extension field GF (2n): Elements of the field GF (2n) may be considered

as polynomials with coefficients from GF (2). This allows one to represent GF (2n)

elements by simply ordering its coefficients into a binary string. Since there is no

carry chain in GF (2) arithmetic, a digit can have the values 1 or 0. These values are

represented as:

1 → (1, 0)

0 → (0, 0)
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3. Ternary extension field GF (3m): Elements of the extension field GF (3m), may be

considered as polynomials over GF (3). The coefficients can take the values−2, −1,

0, 1, and 2. However, since there is no carry propagation in GF (3m) polynomial

arithmetic, the digit values −2 and 2 are congruent to 1 and −1, respectively. The

RSD representations for possible coefficient values are given as

2 → (0, 1)

1 → (1, 0)

0 → (0, 0)

−1 → (0, 1)

−2 → (1, 0)

2.4 Robust Codes

A class of non-linear systematic error detecting codes, so-called “robust codes”, were

proposed by Karpovsky and Taubin [18]. They can achieve optimality according to the

minimax criterion, that is, minimizing over all (n, k) codes the maxima of the fraction of

undetectable errors Q(e) for e 6= 0. The following definition from [18] rigorously defines

a particular class of non-binary codes.

Definition 2 Let V be a linear p-ary (n, k) code (p ≥ 3 is a prime) with n < 2k and check

matrix H = [P |I] with rank(P ) = r = n − k. Then CV = {(x, w)|x ∈ GF (pk), w =

(Px)2 ∈ GF (pr)}.
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To quantify the performance of CV we need a metric. The error masking probability

for a given non-zero error e = (ex, ew) may be quantified as

Q(e) =
|{x|(x + ex, w + ew) ∈ CV }|

|CV |
.

Note that we call the code CV robust, if it minimizes maxima of Q(e) over all possible

non-zero errors. Reference [18] provides the following theorem which quantifies the error

detection performance of the nonlinear code CV .

Theorem 1 ForCV the setE = {e|Q(e) = 1} of undetected errors is a (k−r)-dimensional

subspace of V , pk−pk−r errors are detected with probability 1 and remaining pn−pk errors

are detected with probability 1− p−r.

These codes achieve total robustness for the case r = k, when the subspace of un-

detectable errors collapses to the zero codeword and all non-zero error patterns can be

detected with a probability of either 1− p−r or 1. The reduced overhead for the case r < k

is obtained at the expense of the loss of total robustness. Nonetheless, some important

properties of robust codes are retained: Contrary to linear encoding schemes, the probabil-

ity of missing an error is largely data-dependent. This has one very important consequence:

an active adversary trying to induce an undetected error in the data would need to

• know the value of the data a priori in order to compute an undetectable error pattern

• induce a fault with sufficient spatial and temporal accuracy such as to successfully

re-create the matching error in the device.
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In a linear scheme, any error pattern that is a codeword itself will lead to a successful

compromise, regardless of the value of the targeted data vector. Although there also ex-

ist some error patterns in the robust scheme which will escape detection, their number is

significantly smaller than in linear schemes. For robust coding schemes, the number of

such (undetected) error vectors can be made exponentially small by linearly increasing the

number of redundancy bits. Hence, an attacker will have virtually no chance of inserting

an undetectable error vector, unless they read the target data vector first, then compute an

appropriate error pattern, and precisely insert the computed pattern with high spatial and

temporal resolution.
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Chapter 3

Our Unified Arithmetic Unit

Parts of this chapter were presented in [26].

We first build a unified arithmetic core for the basic arithmetic operations (i.e., addition,

subtraction and comparison). The core is unified so that it can perform the arithmetic

operations of three extension fields: GF (p), GF (2n) and GF (3m). Since the elements of

the three different fields are represented using a very similar data structure, the algorithms

for basic arithmetic operations in these fields are structurally identical. We use this fact to

our advantage to realize a unified arithmetic core.

3.1 The Architecture

The conventional 1-bit full adder assumes positive weights for all of its three binary

inputs and two outputs. However, full adders can be generalized to have both positive and

negative-weight inputs and outputs. This allows us to construct an adder design with both
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inputs and outputs in RSD form, since we can have negative weight numbers as inputs.

In our core design, we used two forms of the generalized full adders as shown in Figure

3.1: one negative weight input (GFA-1) and two negative-weight inputs (GFA-2). Note that

GFA-0 is identical to a common full adder design.

c s

z

yx

c s

z

yx

c s

z

yx

Logic
symbol

Function

Type

−x+y−z=−2c+sx−y+z=2c−sx+y+z = 2c+s

GFA−0 GFA−1 GFA−2

Figure 3.1: Generalized full adders

The logic behaviors of a common full adder and two generalized full adders are shown

in Figure 3.2. As visible from the truth table, GFA − 1 and GFA − 2 have the same

logical characteristics. The only difference is the order of the inputs and outputs. The same

hardware is used for both types of generalized full adders. However, it should be noted that

the decoding of the outputs are different. For GFA−1, the result is decoded as 2c−s. For

GFA− 2, the result is decoded as −2c + s.

A single digit unified adder unit is constructed using two of the generalized full adders

as shown in Figure 3.3(b). The unified adder unit has two digits in RSD representation as

inputs and one digit in RSD representation as output. The unified digit adder unit also has

carry input and output, which are only used for arithmetic in GF (p). In total, the unit has

5 bits input and 3 bits output.
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0 0

1 1
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1

0

0

1

1

1

Figure 3.2: Logic tables of the three generalized full adders

We start by designing the hardware for the prime fields (GF (p)) first. Two generalized

full adders connected in the configuration shown in Figure 3.3(a) is sufficient to handle

the digit arithmetic of GF (p) elements. To make the adder architecture work for GF (2n)

arithmetic, we inhibit the carry chain. Also, since the digits can only have the values (0, 0)

and (1, 0), the negative weight inputs of the adder are set to logic 0.

Modifying the adder design to make it also work for GF (3m) is more difficult since the

hardware works for base two and we need to support base three. The carry-free structure

of the GF (3m) arithmetic operations makes our task easier. When carrying out arithmetic

operations in GF (3m), the outputs of the adders have to be decoded. Since the generalized

full adder works in binary form, the output is also in binary. We need to convert this output

to base 3 before entering the data into the second generalized full adder. An XOR gate and

an AND gate is sufficient for this conversion as shown in Figure 3.3(b). There is also need

for multiplexers, where the select inputs of the multiplexers determine the field in which
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(b) Unified RSD adder unit.

Figure 3.3: RSD adder unit with both inputs and outputs in RSD form

the adder is operating. The carry bits are only used when the circuit functions in GF (p)

mode. In Figure 3.3(b), s1 and s0 are the select inputs of the multiplexers. The modes of

the hardware are:

[s1, s0] = 0, 0 → GF (p)

[s1, s0] = 0, 1 → GF (2n)

[s1, s0] = 1, 0 → GF (3m)

Now we need to cascade n single digit RSD units in order to build an n-digit RSD

adder. Figure 3.4 shows the backbone of the structure. There are n 1-digit RSD adders and

one GFA-1 adder to handle the last carry bit, which is omitted in GF (2n) and GF (3m).
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Figure 3.4: RSD adder

In figure 3.4, it can be seen that the carry bits of each RSD adder unit is propagated to the

consecutive adder unit. It should be noted here that since the carry output of each adder

unit is an output from the first GFA, this carry bit propagates only to the second GFA of

the consecutive adder unit, as can be seen in Figures 3.3(b) and 3.3(b).

3.2 Arithmetic Operations

3.2.1 Addition

The addition operation is implemented as shown in Figure 3.4. The negative and posi-

tive parts of the numbers are entered accordingly and the select inputs of the multiplexers

are set for desired field operations. There are also two control inputs to the adder for select-

ing the field, sel2 and sel3, which are not shown in Figure 3.4. These inputs are decoded

accordingly and they determine the select inputs of the multiplexers. It should be noted that

in Figure 3.4, carry propagation occurs only between neighboring cells.
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3.2.2 Subtraction

Subtraction operation is identical to the addition operation. The only difference is that

the positive and the negative parts of the numbers in RSD form are swapped before the

operation. Swapping the positive and negative parts negates the number:

X = (xp, xn) = xp − xn

Y = (yp, yn) = yp − yn

X − Y = (xp, xn)− (yp, yn) = (xp, xn) + (yn, yp)

3.2.3 Comparison

To compare two numbers given in the RSD representation, first one must be subtracted

from the second one. After subtraction, the positive and negative components of the result

are compared. This can be realized using a conventional comparator design. If the positive

part is larger, the first number is greater than the second one. If the negative part is larger,

the second number is greater than the first one. If both parts are equal, then the numbers

being compared are equal.

The comparison operation has 2 components: RSD adder and comparator. There is

already RSD adders in the design and one of them could be utilized for comparison. Also,

a single RSD adder can be instantiated for comparison reasons only, without a significant

area overhead.

Furthermore, a conventional comparator is used for comparing the positive and negative
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parts of the resultant of the subtraction operation. We designed this comparator using

Verilog and synthesized with Synopsys Design Compiler with 0.13µm ASIC library. For

synthesis we used two target frequencies: 500 MHz and the maximum frequency for the

circuit. For the maximum frequency, we setup the synopsys tools to push the limits of the

critical path and optimize as much as possible for timing. The results are shown in Table

3.1.

word 500 MHz Max. Freq.

length Area CPD(ns) Area CPD(ns)

8 47 0.72 70 0.39

16 95 0.80 161 0.42

32 191 1.24 391 0.49

64 451 1.35 756 0.55

Table 3.1: Implementation results of comparator design with different word sizes.

We also implemented a single RSD adder to utilize for comparison. Synthesis results

showed that the minimum CPD of a single RSD adder is 0.66 ns. This shows that the

critical path of an adder and a comparator connected back to back will not be more than

the overall circuit, even for the 64-bit case. Thus, the word comparison operation can be

performed in a single clock cycle.

It should be noted that most of the field arithmetic operations require the equality com-

parison of 2 numbers. Hence, a much simpler comparator could be utilized for comparison

operations.
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Chapter 4

Unified Montgomery Multiplier

Implementation

In this chapter we explain the multiplier design which implements Algorithms 2 and 3

in a single architecture. We do not go into the detail of the global control logic path since

its function can be inferred easily from the algorithms.

4.1 Montgomery Multiplication

4.1.1 General Algorithm

The Montgomery multiplication algorithm [24] is an efficient method for performing

modular multiplication with an odd modulus. The algorithm replaces costly division oper-

ations with simple shifts, which are particularly suitable for implementations on general-
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purpose computers.

Given two integers A and B, and the odd modulus M , the Montgomery multiplication

algorithm computes Z = MonMul(A, B) = A · B · R−1 mod M , given A, B < M and R

such that gcd(R, M) = 1. Even though the algorithm works for any R which is relatively

prime to M , it is more useful when R = 2n where n = ⌈log2(M)⌉. Since R is chosen to be

a power of 2, the Montgomery algorithm performs divisions by a power of 2, which is ba-

sically shift operations in digital computers. The Montgomery multiplication algorithm for

binary extension fields GF (2n) are first introduced in [21]. We describe the Montgomery

multiplication algorithm for ternary extension fields GF (3m) in the subsequent sections.

The proposed adder design is used to build a Montgomery multiplier architecture. Since

we want our hardware to support arithmetic in three different fields, we identify similari-

ties between the arithmetic algorithms and integrate them together into a single hardware

implementation.

4.1.2 Montgomery Multiplication Algorithm for GF (p) and GF (2n)

The use of a fixed precision word alleviates the broadcast problem in the circuit imple-

mentation. Furthermore, a word-oriented algorithm allows design of a scalable unit. For a

modulus of n-bit precision, and a word size of w-bits, e = ⌈(n + 1)/w⌉ words are required

for storing field elements. Note that an extra bit is used for the variables holding the partial

sum in the Montgomery algorithm for GF (p), since the partial sums can reach (n + 1)-bit

precision. The algorithm we used ([37]) scans the multiplicand operand B word-by-word,
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and the multiplier operand A bit-by-bit. The vectors used in multiplication operations are

expressed as

B = (B(e−1), ..., B(1), B(0)),

A = (an−1, ..., a1, a0),

p = (p(e−1), ..., p(1), p(0)),

where the words are marked with superscripts and the bits are marked with subscripts. For

example, the ith bit of the kth word of B is represented as B
(k)
i . A particular range of bits

in a vector B from position i to j where j > i is represented as Bj..i. (x|y) represents the

concatenation of two bit sequences. Finally, 0n stands for an all-zero vector of n bits. The

algorithm is shown in Algorithm 2.

We use the RSD form for every vector in the multiplication algorithm, so each bit

expressed in this algorithm is represented by two bits in the hardware, positive and negative

parts of the numbers. As an example: T 0
0 = (T 0

0,p, T
0
0,n).

The GF (2n) version of the algorithm is structurally identical with only a few minor dif-

ferences. First of all, the operands and temporary variable T are represented as polynomials

in the algorithm. The modulus is also a polynomial, P (x). As a result of the polynomial

arithmetic, the addition symbols, i.e. ‘+’ represent carry-free addition or bit-wise XOR

operation. Since polynomial addition is a carry-free operation, Carry is ignored in Steps

3, 5, 7 and 9. Also, Step 13 is not operated.
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4.1.3 Radix-3 Montgomery Multiplication Algorithm for GF (3m)

Montgomery multiplication algorithms for GF (p) and GF (2n) are similar to each other

because they are both implemented in radix-2. Since the Montgomery multiplication algo-

rithm for GF (3m) is implemented in radix-3, the algorithm needs to be modified. We al-

ready explained the differences for the addition part in RSD representation and we showed

that radix-2 and radix-3 representations can be both implemented on a single hardware.

We will use polynomial basis representation for GF (3m). For a modulus size of m

and a word size of w, e = ⌈(m + 1)/w⌉ words are required. Since there is no carry

computation in GF (3m) arithmetic, there will be no need for any extra digits used other

than those used for the variable polynomials. Every coefficient of the operands and the

modulus is represented by two bits in the hardware, one for the positive part and one for

the negative part, since the coefficients are in RSD representation. The algorithm scans the

words of operand B(x), and the coefficients of operand A(x). In radix-3 representation,

the polynomials used in multiplication operation are expressed as

B(x) = (b(e−1) · x(e−1)·w + ... + b(1) · xw + b(0)),

A(x) = (an−1 · xn−1 + ... + a1 · x + a0),

p(x) = (p(e−1) · x(e−1)·w + ... + p(1) · xw + p(0)),

where the words are marked with superscripts and the coefficients are marked with sub-

scripts. For example, the i-th coefficient of the k-th word of B(x) is represented as B
(k)
i .

The algorithm is shown in Algorithm 3.
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4.2 Pipeline Organization

The presented Montgomery multiplication algorithms have the same loop structure:

outer and inner loops with the variables i and j, respectively. Each processor unit (PU)1 is

responsible for one step of the outer loop with the variable i. Each PU receives the ai digit

as input. Also, every PU receives B(j), p(j) and T (j) as inputs, according to the inner loop

variable j. The pipelined organization is shown in Figure 4.1.

B

p

T

. . . 

T0 T0

SR−T

SR−B

SR−p

a0 ak−1

SR−A

PU

Stage 1

PU

Stage k

Figure 4.1: Pipeline organization for the Montgomery Multiplier

An important aspect of the pipeline is the organization of the registers. The digits ai

of the multiplier A are given serially to the PUs, and are used only for one iteration of

the outer loop. So they can be discarded immediately after use. Therefore, a simple shift

register with a load input will be sufficient. Also, rather than storing the multiplier A in a

register, we can have a serial input for every digit and we store only the necessary ai digit

inside a register, only when it is needed. This will reduce the area and power consumption

1We will define the internal structure of the PU in the following section
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of the architecture. The registers for the modulus p and multiplicand B can also be shift

registers.

The multiplication starts with the first PU by processing the first iteration of the outer

loop of the algorithm. As can be seen from Algorithm 2, the data required for the second

iteration will be ready after 2 clock cycles. Therefore, the second PU has to be delayed

from the first PU by 2 clock cycles. This is realized by using two stages of registers in

between. Also, these registers are handling the shift operations for the partial sum (Step 8

of Algorithm 2) as shown in Figure 4.1.

When the first PU finishes the operations of an iteration step of the outer loop, it starts

working on the next available iteration loop, and the second PU will be done in 2 clock

cycles and start working on the next available iteration. The same computation pattern is

repeated for the entire pipeline organization.

If there are sufficiently many PUs, the first PU will be done with the first iteration of

the loop when the last PU operates on the last iteration of the same loop. There will be

no pipeline stall and no need for intermediate shift registers to hold the data. The pipeline

can continue working without stalling. This condition is satisfied if the number of PUs is

at least half of the number of words of the operand. However, if there are not sufficiently

many PUs, which means that a pipeline stall occurs, the modulus and multiplicand words

generated at the last stage of the pipeline have to be stored in registers.

The shift registers SR − T , SR − p and SR − B to hold these values when there is

pipeline stall. The length of these shift registers is of crucial importance and is determined
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Figure 4.2: Processing Unit (PU) with w = 3.

by the number of pipeline stages k and the number of words e in the modulus. The width

of the shift registers is equal to w, the word size. The length of these registers can be given

as

L =















e− 2 · (k − 1) : if e ≥ 2k

0 : otherwise.

4.3 Processing Unit

The processing unit consists of two layers of adder blocks or unified arithmetic cores

(cf. Section 3). The arithmetic core is capable of performing addition and subtraction

operations in the fields GF (p), GF (2n) and GF (3m). The block diagram of a processing

unit with word size w=3 is shown in Figure 4.2.
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As can be seen in the figure, a PU is responsible for performing the operation

ai · B(j) + T (j) ± p(j) .

This step is common for all the three fields, so this part of the PU is a very simple com-

bination of the unified arithmetic cores. The inputs to these adders come from decoders

designed to handle arithmetic in three different fields.

We need a simple logic for multiplying a single digit ai of the multiplier A with a word

B(j) of the multiplicand B to realized the first part ai · B(j) of the operation. Since ai

can only have the values (0, 0), (1, 0) or (0, 1), the result of ai · B(j) can be 0, B(j) or

−1 · B(j) respectively. Negating an integer is realized by simply swapping the positive

and negative bits of its digits. A simple special encoder would be sufficient for this. We

need another logic circuit to determine the parity in each iteration of the outer loop. We

check the right-most digit of the modulus, i.e. p
(0)
0 and the right-most digit of the operation

T (0) = a0 · B(0) + T (0), T
(0)
0 and determine the parity:

Parity =































(0, 0) : if T
(0)
0 = (0, 0)

(0, 1) : if p
(0)
0 = T

(0)
0

(1, 0) : otherwise

This is very similar to the encoder logic we used earlier. One difference is that since the

parity is computed only once for every iteration step, it needs to be stored in a register after

being computed by the PU.
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4.4 Complexity Analysis

As mentioned earlier, if the number of PUs is at least half of the number of words

in the operand, the pipeline will not stall and every PU will continuously operate. For

multiplication, the total computation time, latency (clock cycles), is given as

Latency =















2(m− 1) + e if e ≥ 2k

(
⌈

m
k

⌉

)e + 2((m− 1) mod k) otherwise

(4.1)

The graphs given in Figure 4.3 illustrate how the latency of Montgomery Multiplication

changes for various operand lengths and for a variable number of PUs.
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Figure 4.3: Computation time of Montgomery Multiplication for various number of PUs

and operand lengths.

Table 4.1 shows the estimates for the number of clock cycles required for realizing

ECC scalar point multiplication, RSA exponentiation, and Tate pairing computations with
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the modified Duursma-Lee algorithm. We pick a word size of 8-digits. For the imple-

mentation of ECC with 160-bits we assume mixed coordinates and the NAF representation

are used to realize the scalar point multiplication operation. For point doubling we use

Jacobian coordinates and for point addition we use affine+Jacobian coordinates. For RSA

we assume a full 1024-bit exponent and use the square multiply algorithm. The Tate pair-

ing computation is realized using the modified Duursma-Lee algorithm [19] over the field

GF (36×97) (The original Duursma-Lee algorithm was proposed in [11]).

Note that the chosen lengths provide similar levels of security. We are not getting

into the details of the clock cycle computations for the ECC and RSA cases since the

computations are trivial. For the Tate pairing case we note that the modified Duursma-

Lee algorithm [19] iterates 97 times and works by performing the operations in the field

GF (397). In each iteration 20 multiplications and 10 cubing operations are carried out

in the field GF (397). Each cube computation may be realized via two multiplications

bringing the total number of multiplications to 40 per iteration of the main loop of the

modified Duursma-Lee algorithm. Including the additional 4 multiplications performed in

the initialization of the algorithm the total number of multiplications are found as 40 · 97 +

4 = 3884. In the 4 PU case the latency of one multiplication is found using Equation 4.1

as 312 clock cycles. Hence, the total paring computation requires 3884 · 312 = 1211808

cycles. For the 8 PU case the latency of one multiplication operation is found as 205 clock

cycles leading to a total number of 796220 clock cycles.
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Number of 160-bit ECC 1024-bit RSA Tate Pairing

GF (397)
PUs (clock cycles) (clock cycles) (clock cycles)

4 1507728 50340864 1211808

8 772524 25187328 796220

16 630708 12628992 796220

32 630708 6386688 796220

Table 4.1: The execution times for ECC scalar multiplication, RSA Exponentiation and

Modified Duursma-Lee algorithms

Number of 160-bit ECC 1024-bit RSA Tate Pairing

GF (397)
PUs (msec) (msec) (msec)

4 3.015 100.681 2.424

8 1.545 50.374 1.592

16 1.261 25.258 1.592

32 1.261 12.773 1.592

Table 4.2: Execution times at frequency f = 500 MHz (Section 4.4.1)

4.4.1 Results and Comparison

In this section, we provide implementation results of the proposed unified architecture

to demonstrate its advantage over classical architectures. We also include the implementa-

tion results of unified Montgomery multiplier circuit that operates in three finite fields. In

addition, we present a qualitative comparison of the proposed architecture with previously

defined architectures.
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PU Architecture

The presented architecture was developed into Verilog modules and synthesized using

the Synopsys Design Compiler tool. In the synthesis we used the TSMC 0.13 µm ASIC

library and assumed a word size of 8 bits. The maximum operating frequency of the design

was found as 800 MHz. However, the synthesize tool will try to optimize the circuit for

timing if we set the target frequency at 800 MHz. Thus, for the rest of this section, we

assume a target frequency of 500 MHz for synthesis results. The timing results at 500

MHz for three prominent public key operations are given in Table 4.2. We note that if

the pipeline does not stall, as the number of PUs increases the register space will increase.

Otherwise, the register space will stay constant with increasing number of PUs.

For proof of concept, we built and synthesized different PUs working on different fields.

First category of implementations are those working on a single field only. The implemen-

tations, denoted as A1, A2, and A3, are those working in fields GF (p)-only, GF (2n)-only,

and GF (3m)-only, respectively. In the second category, there are two unified architectures.

The implementation, denoted as A4, is a unified architecture working in both fields GF (p)

and GF (2n). And finally, the implementation A5 is the unified architecture working in

all three fields, namely GF (p), GF (2n), and GF (3m). All five architectures are imple-

mented for three different word sizes, 8, 16, and 32 and the implementation results of these

architectures are summarized in Table 4.3.

From Table 4.3, the cost of unified architectures compared to GF (p)-only implementa-

tion can be captured as overhead both in the area and critical path delay (CPD). However,
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word A1 A2 A3 A4 A5

length Area CPD Area CPD Area CPD Area CPD Area CPD

(ns) (ns) (ns) (ns) (ns)

8 516 1.91 91 0.77 656 1.92 576 1.87 795 1.91

16 963 1.90 168 0.79 1257 1.92 1034 1.90 1556 1.92

32 1980 1.89 329 0.84 2534 1.92 2132 1.90 3013 1.92

Table 4.3: Implementation results of a PU with different word sizes.

the figures in Table 4.3 hardly give an idea about the advantage of the unified architectures.

Apparently, the advantage of the unified architectures are saving in the area without too

much adverse effect on the critical path delay. In order to measure the advantage of the

unified architecture, we used (Area × CPD) as the metric. We first investigated the first

unified architecture A4 that has a single datapath for GF (p) and GF (2n) and compared

it against the implementation results of a hypothetical architecture, denoted as A1 + A2,

that has two separate datapaths for GF (p) and GF (2n). For the hypothetical architecture

A1+A2, the area is the sum of areas of A1 and A2 architectures while the critical path delay

is the maximum CPD of these two architectures. The implementation results are summa-

rized in Table 4.4. The improvement of the architecture is found to be about 7%-8.5% in

terms of the Area × CPD metric.

Similarly, we also investigated the advantage of the unified architecture, A5 over a hy-

pothetical architecture, A1+A2+A3, that has three separate datapaths for the fields GF (p),

GF (2n), and GF (3m). The results, summarized in Table 4.5, show that the advantage of

using the unified architecture, A5 is at least 34.83% in terms of the metric (Area × CPD).
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word Area CPD

length A1 A2 A1 + A2 A4 A1 A2 A1 + A2 A4

8 516 91 607 576 1.91 0.77 1.91 1.87

16 963 168 1131 1034 1.90 0.79 1.90 1.90

32 1980 329 2309 2132 1.89 0.84 1.89 1.90

word Area × CPD improvement

length A1 + A2 A4 %

8 1159 1077 7.07

16 2149 1965 8.56

32 4364 4051 7.17

Table 4.4: Advantage of the unified architecture A4, for GF (p) and GF (2n)

The improvement figures in Table 4.5 clearly demonstrate that the unified architecture A5

provides far superior performance compared to the classical unified architectures working

for only the fields GF (p) and GF (2n).

word Area CPD

length A3 A1 + A2 + A3 A5 A3 A1 + A2 + A3 A5

8 656 1263 795 1.92 1.92 1.91

16 1257 2388 1556 1.92 1.92 1.92

32 2534 4843 3013 1.92 1.92 1.92

word Area × CPD improvement

length A1 + A2 + A3 A5 %

8 2425 1518 37.40

16 4585 2988 34.83

32 9299 5785 37.78

Table 4.5: Advantage of unified architecture A5, for GF (p), GF (2n), and GF (3m).

In order to see more clearly what one can gain with the new unified architecture A5

over the classical one, A4, we also compared the two unified architectures in terms of the
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Area × CPD metric. The results summarized in Table 4.6 highlights the advantage of the

new unified architecture over the classical one, which is at least 32%.

word Area CPD Area × CPD improvement

length A4 + A3 A5 A4 + A3 A5 A4 + A3 A5 %

8 1232 795 1.92 1.91 2365 1518 35.81

16 2291 1556 1.92 1.92 4399 2988 32.07

32 4666 3013 1.92 1.92 8959 5785 35.43

Table 4.6: Advantage of the new unified architecture A5 over the classical unified architec-

ture A4

From Tables 4.3, 4.4, 4.5 and 4.6, we can conclude the scalability property of the unified

architecture and the pipelining organizations. The correlation between the word size of a

single PU and area numbers is linear. Also, increasing the word size does not alter the

critical path delay of the entire circuit. This scalability property is also true for the number

of PUs used in the architecture. Tables 4.1 and 4.2 shows that the number of PUs is linear

with the latency numbers before the saturation of the number of PUs.

Montgomery Multiplier Architecture

The Montgomery multiplier architecture presented in Section 4 was developed into

Verilog modules and synthesized using the Synopsys Design Compiler. In the synthesis we

used the TSMC 0.13 µm ASIC library and assumed a word size of 8 bits. The maximum

operating frequency of the multiplier architecture was found as 800 MHz. This shows that

the PU constitutes the critical path of the entire design. The synthesis results showed that

the area of the multiplier for 4 PUs and 8 PUs was 11,512 and 15,361 two-input NAND
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equivalent gates, respectively. We note that as the number of PUs increases, the register

space will increase if the pipeline does not stall. Otherwise, the register space will stay

constant with increasing number of PUs.

Similarly, we also investigated the advantage of the unified Montgomery multiplier ar-

chitecture over a hypothetical architecture that has three separate datapaths for the fields

GF (p), GF (2n), and GF (3m). The results, summarized in Table 4.7, show that the advan-

tage of using the unified architecture is at least about 25% in terms of the metric (Area ×

CPD). The improvement figures in Table 4.7 clearly demonstrate that the unified multiplier

architecture provides far superior performance compared to the classical unified architec-

tures working for only the fields GF (p) and GF (2n).

# of Area CPD Area × CPD improvement

PUs Separate Unified Separate Unified Separate Unified %
Paths Paths Paths

4 10644 8372 2 1.91 21288 15991 24.88

8 15672 12128 2 1.91 31344 23164 26.10

Table 4.7: Synthesis results for Montgomery multiplier architectures, with unified and sep-

arate datapaths.

For our architecture, the final results are in the RSD form. After the field operations

are completed, the results need to be converted back to the more conventional form before

being sent to the adversary. For example, if we are using our multiplier in a Diffie-Hellman

protocol, we need to perform an exponentiation operation first. During the exponentia-

tion operation, the intermediate results will stay in the RSD form. After completing the

exponentiation operation, the final result has to be converted back to the desired form, de-
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pending on the protocol. This conversion can be performed serially utilizing an 8-bit ripple

carry adder. Since this is done only once, the latency overhead it produces is negligible,

we could even use a bit-serial adder. However, we built an 8-bit ripple carry adder using

Verilog and synthesized it with Synopsys Design Compiler, with 0.13µm library with a

target frequency of 500 MHz. Synthesis results showed that the critical path of this adder

is 1.34 ns, which is in the range of our multiplier circuit. The area of this adder is 66 gates

equivalent. Thus, a word-serial addition operation can be performed without a significant

area or latency overhead.

Comparison with Previous Unified Architectures

In this section, we compare the new architecture against the previously proposed unified

architectures in [1, 17, 33, 34, 35, 38, 43] to put it in a perspective in relation to other

unified architectures. The architecture in [34] is the first and perhaps the most basic unified

architecture, whose simplified processing unit (PU) for three bits is shown in Figure 4.4.

It basically consists of two layers of dual-field adders (that add with or without carry) and

assumes that all inputs are in non-redundant form. It keeps temporary result in redundant

form and therefore the final result is produced in redundant form as well. Consequently,

the result must be converted back to non-redundant form if further computation is needed,

which is the case with all public key cryptography algorithms. For instance, a scalar point

multiplication in ECC with moderate security level (e.g. 160-bit) requires hundreds of
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Figure 4.4: Processing Unit (PU) of the Original Unified Architecture with w = 3.

multiplications2, which results in as many conversion operations.

The redundant representation used in previous unified architectures is the carry-save

form, where an integer is represented as the sum of two other integers. The disadvantages

of carry-save form are that i) two integers in carry-save form cannot be compared, and ii)

subtraction is costly. Therefore, the partial results during the computations of cryptographic

operations (i.e. elliptic curve scalar point multiplication, RSA exponentiation, etc.) must

be converted back to the non-redundant form after every multiplication operation. The cost

of the back transformation is two-fold: i) area for converter circuit and ii) time overhead

(clock cycles) for reverse transformation. At the expense of extra overhead in time, the

need for an extra inverter circuit can be eliminated as suggested in [43], where conversion

2More than a thousand multiplications are required for the same security level if the projective coordinates

are used.
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is achieved by repeated carry-save addition.

In summary, all previously proposed unified architectures are designed to efficiently

perform a single field multiplication operation. They offer different properties to be appeal-

ing from various perspectives. The original unified architecture [34] utilizes single-radix,

where the multiplier is scanned one bit at a time. [1, 38] proposes unified multipliers that

scan the multiplier two or three bit at a time in order to reduce the cycle count without too

much adverse effect on the critical path delay. The multiplier in [35] scans higher number

of multiplier bits in GF (2n) mode than in GF (p) mode in order to speedup the GF (2n)

multiplication. The multipliers in [17, 43] are not scalable (i.e. work for a fixed precision)

while the architecture in [43] is suitable for performing other field operations with the aid

of conversion between redundant and non-redundant representations. Finally, [33] intro-

duces a word-level (i.e. r-bit × r-bit) unified multiplier to be used in a ECC processor. An

extensive comparison of all unified architectures and the proposed one is summarized in

Table 4.8.

The proposed unified architecture is currently a single-radix implementation. However,

it can easily be modified to work in higher radix or dual radices by applying the design

techniques in [1, 38, 35]. There is support for other arithmetic operations such as com-

parison and subtraction in GF (p)-mode due to the new redundant signed representation.

This support also exist in [43] at the expense of conversion operations from redundant to

non-redundant representation.
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Arc. GF(3) Scalable Conversion High Dual Support for

support Necessary? Radix Radix Comparison

Possible? Possible? &Subtraction

[1] No Yes Yes High-radix No No

[17] No No Yes No No No

[33] No No Yes No No No

[34] No Yes Yes Extensible Extensible No

[35] No Yes Yes High-radix Dual-radix No

[38] No Yes Yes High-radix No No

[43] No No Yes No No Yes

proposed Yes Yes No Extensible Extensible Yes

Table 4.8: Comparison of unified architectures(Arc.)

4.5 Power Consumption

The presented architecture was developed into Verilog modules and synthesized using

the Synopsys Design Compiler tool. In the synthesis we used the TSMC 0.13 µm ASIC

library. We assumed a target frequency of 500 MHz for synthesis results.

For proof of concept, we built and synthesized different PUs working on different fields.

The implementations, denoted as A1, A2, and A3, are those working in fields GF (p)-only,

GF (2n)-only, and GF (3m)-only, respectively. In the second category, there are two unified

architectures. The implementation, denoted as A4, is a unified architecture working in

both fields GF (p) and GF (2n). Finally, the implementation A5 is the unified architecture

working in all three fields, namely GF (p), GF (2n), and GF (3m). All five architectures are

implemented for three different word sizes, 8, 16, and 32 and the implementation results of

these architectures are summarized in Table 4.9.

From Table 4.9, the cost of unified architectures compared to GF (p)-only implemen-
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word A1 A2 A3

length Average Leakage Average Leakage Average Leakage

(µW ) (µW ) (µW ) (µW ) (µW ) (µW )

8 294.1275 6.8174 95.2853 2.3031 291.1586 7.7956

16 575.0258 13.1837 183.3014 4.4212 569.4142 15.2590

32 1131.6 25.8050 367.1780 8.6914 1122 30.0756

word A4 A5

length Average Leakage Average Leakage

(µW ) (µW ) (µW ) (µW )

8 336.9356 7.9878 393.1408 10.1903

16 657.6506 15.4158 767.4490 19.6494

32 1285.3 30.4312 1516.3 38.4589

Table 4.9: Power consumption of a PU with different word sizes.

tation can be captured as overhead in power consumption. We first investigated the first

unified architecture A4 that has a single datapath for GF (p) and GF (2n) and compared

it against the implementation results of a hypothetical architecture, denoted as A1 + A2,

that has two separate datapaths for GF (p) and GF (2n). For the hypothetical architecture

A1+A2, the total power consumption is the sum of that of the A1 and A2 architectures. The

implementation results are summarized in Table 4.10 and Table 4.11. The improvement of

the architecture is found to be about 12%-14%.

word Average Power(µW )

length A1 A2 A1 + A2 A4 Improvement

8 294.1275 95.2853 389.4128 336.9356 13.47%

16 575.0258 183.3014 758.3272 657.6506 13.27%

32 1131.6 367.1780 1498.778 1285.3 14.24%

Table 4.10: Advantage of the unified architecture A4, for GF (p) and GF (2n) for average

power consumption
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word Leakage Power(µW )

length A1 A2 A1 + A2 A4 Improvement

8 6.8174 2.3031 9.1205 7.9878 12.41%

16 13.1837 4.4212 17.6049 15.4158 12.43%

32 25.8050 8.6914 34.4964 30.4312 11.78%

Table 4.11: Advantage of the unified architecture A4, for GF (p) and GF (2n) for leakage

power

Similarly, we also investigated the advantage of the unified architecture, A5 over a

hypothetical architecture, A1 + A2 + A3, that has three separate datapaths for the fields

GF (p), GF (2n), and GF (3m). The results, summarized in Table 4.12 and Table 4.13, show

that the advantage of using the unified architecture, A5 is around 40% in terms of power

consumption. The improvement figures in Table 4.12 and Table 4.13 clearly demonstrate

that the unified architecture A5 provides far superior performance compared to the classical

unified architectures working for only the fields GF (p) and GF (2n).

word Average Power(µW )

length A1 + A2 + A3 A5 Improvement

8 680.5714 393.1408 42.23%

16 1327.7414 767.4490 42.19%

32 2620.778 1516.3 42.14%

Table 4.12: Advantage of unified architecture A5, for GF (p), GF (2n), and GF (3m) for

average power consumption.

In order to see more clearly what one can gain with the new unified architecture A5

over the classical one, A4, we also compared the two unified architectures in terms of

power consumption. The results summarized in Table 4.14 highlights the advantage of the

new unified architecture over the classical one, which is at least 35%.



53

word Leakage Power(µW )

length A1 + A2 + A3 A5 Improvement

8 16.9161 10.1903 39.76%

16 32.8639 19.6494 40.21%

32 64.572 38.4589 40.44%

Table 4.13: Advantage of unified architecture A5, for GF (p), GF (2n), and GF (3m) for

leakage power.

word Average Power(µW ) Leakage Power(µW )

length A4 + A3 A5 Improvement A4 + A3 A5 Improvement

8 628.0942 393.1408 37.41% 15.7834 10.1903 35.44%

16 1227.0648 767.4490 37.43% 30.6748 19.6494 35.94%

32 2407.3 1516.3 37.01% 60.5068 38.4589 36.44%

Table 4.14: Advantage of the new unified architecture A5 over the classical unified archi-

tecture A4

4.6 A Note on Side-Channel Attacks

In this section we would like to briefly comment on the side-channel characteristics

of the proposed RSD multiplier as it is crucial to prevent information leakage through so-

called side-channels (i.e. execution time, power consumption, EM and temperature profiles

etc.) in cryptographic applications. We would like to note that most of the side-channel

countermeasures are typically applied at either the algorithm or the circuit levels. For

instance, an effective DPA counter-measure implemented at the algorithm layer is random-

ized exponentiation [9]. On the other hand, at the circuit level masking techniques may

be applied [25]. At even lower levels, so-called power balanced cell libraries [39, 40, 30]

which provide IC primitives that (ideally) have power consumption which is independent

of the input bits, may be utilized. Any one of these techniques can be used alongside with
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the proposed multiplier. For instance, the presented architecture may be re-synthesized

using a power balanced library at the cost of growing the area by roughly 2-3 times. On

the other hand, a similar increase in area would be expected if the (non-unified) multiplier

units are separately re-synthesized with the same cell library.

As far as the side-channel performance of individual components at the arithmetic level

are concerned we could identify very little work in the literature. In [42] Walter and Samyde

demonstrated a direct correlation between the Hamming weights of the operands, and the

power traces obtained during their multiplication. The authors conclude that it would be

possible to gain useful side-channel information from a parallel multiplier built using Wal-

lace trees. The processing element used in the multiplier proposed in this chapter utilizes

a redundant representation which will significantly reduce (if not eliminate) the correlation

between the power traces from the Hamming weight of the operands. We can clearly claim

that the proposed multiplier will be more resilient from this perspective than more tradi-

tional multipliers to side-channel attacks. Furthermore, the same reference ([42]) considers

pipelining to be an effective counter-measure to power attacks as multiple words of the

operands are processed together. This will make the task of discerning operand bits from

power traces more difficult. The proposed architecture, therefore, has an additional level of

protection against side-channel attacks due to its highly pipelined design.

We modeled the proposed PU design in Verilog with a word size of 4 bits. We used

the Synopsys tools Design Compiler and Power Compiler for synthesizing our designs

and Modelsim for simulation. Our target was the TSMC 0.13 µm ASIC library, which is
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characterized for power. We assumed a target frequency of 500 MHz for dynamic power

analysis. We analyzed all five designs A1−5 using the power analysis design flow. For

designs A4 and A5, we analyzed the PU architecture for all the supported modes. Figures

4.5, 4.6 and 4.7 show the dynamic power profiles of the A1, A2 and A3 implementations,

respectively. Figures 4.8 and 4.9 show the dynamic power profiles of the A4 design with

GF (p) and GF (2) modes, respectively. Figures 4.10, 4.11, 4.12 show the dynamic power

profiles of the A5 implementation with GF (p), GF (2) and GF (3) modes, respectively.
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Figure 4.5: Power profile of the design A1 at 100MHz clock frequency

From these figures we can conclude that the unified architectures consume less power

than that of the single GF (p) and GF (3) architectures. For GF (2) operations, it is more

feasible to utilize a single GF (2) arithmetic unit. Since we are targeting architectures that
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Figure 4.6: Power profile of the design A2 at 100MHz clock frequency

will operate on all the 3 fields, such as cryptographic accelerators with pairing support, it is

much more feasible to use a unified architecture than single field arithmetic units. Also, we

speculate that since the proposed unified architecture shows a more homogeneous power

profile for all the 3 modes, it is promising to be more resistant against power attacks.
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Figure 4.7: Power profile of the design A3 at 100MHz clock frequency
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Algorithm 2Montgomery multiplication algorithm for GF (p)

Require: A, B ∈ GF (p) and p

Ensure: C = A · B · 2−n ∈ GF (p), where n = ⌈log2 p⌉

1: T := 0n

2: for i from 0 to n− 1 do

3: (Carry|T (0)) := ai · B(0) + T (0)

4: Parity := T
(0)
0

5: (Carry|T (0)) := Parity · p(0) + (Carry|T (0))

6: for j from 1 to e− 1 do

7: (Carry|T (j)) := ai · B(j) + T (j) + Parity · p(j) + Carry

8: T (j−1) := (T
(j)
0 |T

(j−1)
w−1..1)

9: end for

10: T e−1 := (Carry|T (e−1)
w−1..1)

11: end for

12: C := T

13: if C > p then C := C − p

14: return C
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Algorithm 3Montgomery multiplication algorithm for GF (3m)

Require: A(x), B(x) ∈ GF (3m) and p(x)

Ensure: C(x) = A(x) · B(x) · 3−m ∈ GF (3m), where m is the degree of p(x)

1: T (x) := 0

2: for i from 0 to m− 1 do

3: T (0) := ai · B(0) + T (0)

4: if T
(0)
0 = p

(0)
0 then

5: T (0) := T 0 − p(0)

6: for j from 1 to e− 1 do

7: T (j) := ai · B(j) + T (j) − p(j)

8: T (j−1) := (T
(j)
0 |T

(j−1)
w−1..1)

9: end for

10: else

11: T (0) := T 0 + p(0)

12: for j from 1 to e− 1 do

13: T (j) := ai · B(j) + T (j) + p(j)

14: T (j−1) := (T
(j)
0 |T

(j−1)
w−1..1)

15: end for

16: end if

17: T e−1 := ((0, 0)|T (e−1)
w−1..1)

18: end for

19: return T (x)
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Figure 4.8: Power profile of the design A4 for GF (p) mode at 100MHz clock frequency
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Figure 4.9: Power profile of the design A4 for GF (2) mode at 100MHz clock frequency
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Figure 4.10: Power profile of the design A5 for GF (p) mode at 100MHz clock frequency
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Figure 4.11: Power profile of the design A5 for GF (2) mode at 100MHz clock frequency
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Figure 4.12: Power profile of the design A5 for GF (3) mode at 100MHz clock frequency



65

Chapter 5

Tamper-Resilient Tate Pairing

Architectures

Parts of this chapter were presented in [27]. Gunnar Gaubatz helped with the applica-

tion of robust codes to Tate Pairing.

Our goal is to use strong error detecting codes to build tamper-resilient algorithms and

architectures for Tate pairing computations. Here we specifically focus on the Kwon-BGOS

algorithm which computes a pairing over characteristic 3, although it is fairly straightfor-

ward to generalize our techniques to support other pairing algorithms defined over different

characteristics. The error model will apply with minor variations. For instance, for the

Duursma-Lee Tate pairing algorithm, one would have to extend the existing units with a

cubic-root computation circuit.

Our objective is to protect the arithmetic operations used in a Tate pairing computation
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against a sufficiently large class of error patterns, while keeping the overhead in perfor-

mance low. As mentioned in the previous section, full robustness can only be achieved

with r = k, resulting in a duplication of the operand size and likely more than 100% over-

head. Furthermore, as we will show in the next section, only very specific choices of the

sub-matrix P allow us to define arithmetic operations in such a way that the check-symbol

of the result can be predicted efficiently based on the input operands’ check-symbols.

An alternative method for tamper resilient multi-precision arithmetic was presented in

[14], which achieves total robustness by encoding single digits separately. Such a high

degree of protection, however, can only be obtained by accepting a substantial amount

of overhead on the predictor and error detection networks. Depending on the anticipated

threat level, such rigor may not be required. As long as the probability of error detection

is sufficiently high to render malicious fault insertions infeasible, a lighter-weight scheme

will work as well.

For our purposes we need a linear code over GF (q) with rank(P ) = n − k, which

we will transform into an error resilient code. The error correcting properties and ease

of decoding are irrelevant in this setting. For our purposes it suffices to select a simple

linear code which will allow us to build resilient versions of the arithmetic operations (as

described in the next section) in an efficient manner. We therefore pick a simple parity

code of length n = k + 1. Note that by choosing r = 1 the r × n error check matrix

H = [P |Ir] becomes simply H = [1 1 1 . . . 1 1]. Hence, for a vector a representing an

element of GF (qk), the matrix-vector product Pa may be computed by simply summing
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the coefficients of a = (a0, a1, . . . , ak−1), i.e. Pa =
∑k−1

i=0 ai. Thus the resilient encoded

form of a ∈ GF (qk) is simply
(

a, (
k−1
∑

i=0

ai)
2

)

The Duursma-Lee Algorithm and The Kwon-BGOS Tate Pairing algorithm (Fig.2.2)

both include arithmetic operation in GF (3m) and GF (36m). Our approach could be applied

to either the base field GF (3m) or the extension field GF (36m). If the proposed approach is

applied to the base field, each GF (3m) operation utilized to calculate the GF (36m) multi-

plication and cubing operations in Algorithm 1 will have an error detection scheme, which

will cause a huge overhead on the latency of the algorithm, as well as the area utilization.

However, if we apply our approach to the extension field, there will be only one error de-

tection scheme for each GF (36m) operation. This will reduce the overhead of our approach

significantly. Thus, we decided to build our scheme on the extension field GF (36m).

The Duursma-Lee Algorithm [10] includes one GF (36m) multiplication operation, while

Kwon-BGOS algorithm includes one multiplication and one cubing operations in GF (36m).

Regardless of the complexity and efficiency of both algorithms, in order to show proof of

concept and examine our approach in a broader spectrum of operations, we chose to ex-

amine the Kwon-BGOS algorithm (Fig.2.2) and build a tamper resilient version of this

algorithm.
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5.1 Lightweight and Tamper-ResilientError DetectionBuilt

Over the Extension Field

For our purposes we need a linear code over GF (36m). Following the notation from

Section 2.4, we have q = 3m and k = 6, and thus GF (q) will become GF (3m), while

GF (qk) will be GF (36m). Let f ∈ GF (36m) represent an operand used in the Kwon-

BGOS Tate pairing algorithm scheme. Let w = (Pf)2 ∈ GF (3m). For proof of concept,

we built our Modified Tate Pairing scheme using a parity code for P = [1 1 1 . . . 1]. We

assumed that the introduced error ef is in GF (36m) and ew is in GF (3m).

Based on the original definition of robust codes by Karpovsky and Taubin [18], we

derive a slightly modified construction which allows us to accommodate the specific arith-

metic needs of the pairing computation. Specifically, the original robust codes were defined

over GF(p), with p > 2 a prime, while we extend the definition for codes over field ex-

tensions GF(q), where q = pm. The resulting construction is no longer robust in the sense

defined by Karpovsky. However, it will have significantly lower overhead.

As in the original paper, we use a simple, but appropriate additive error model, i.e. when

an error e = (ef , ew) is introduced to an operand f , the operand becomes (f + ef , w + ew).

Thus, if

w + ew 6= (P (f + ef ))
2 (5.1)

then our error detection scheme will work and the error detection network will flag an error.

Definition 3 Let V ′ be a linear q-ary parity code (q = pm, p > 2 is a prime) with n = k+1
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and check matrix H = [P |I] with rank(P ) = 1. Then CV ′ = {(f, w)|f ∈ GF (qk), w =

(Pf)2 ∈ GF (q)}.

We capture the performance of this specific non-linear error detection code with the fol-

lowing theorem.

Theorem 2 A non-zero error e = (ef , ew) on a code word (f, w) ∈ CV ′ will not be de-

tected if and only if it satisfies the error masking equation

(Pf)2 + ew = (P (f + ef ))
2 . (5.2)

For CV ′ the set of undetectable errors ({e|Q(e) = 1}) is a (k − 1)-dimensional subspace

of V ′, qk − qk−1 errors are detected with probability 1, and the remaining qk+1− qk errors

are detected with probability 1− q−1.

Proof 1 From (5.1), we have

2(Pf)(Pef) + (Pef)
2 = ew (5.3)

There are three cases that will satisfy equation (5.3):

1. Pef = ew = 0: For this condition, Equation (5.3) is satisfied for all f . Since ef is in

GF (qk):

Pef = Σk−1
i=0 efi

= 0 (5.4)

The number of ef satisfying Equation (5.4) is qk−1. Also, there is only one ew satis-

fying ew = 0. Thus, the total number of errors e = (ef , ew) satisfying this condition

is qk−1.
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2. Pef = 0 and ew 6= 0: Equation (5.3) is not satisfied for any f . The number of ef

satisfyingPef = 0was calculated to be qk−1. In addition to this, we need to calculate

the number of errors ew satisfying ew 6= 0. Since ew ∈ GF (q), total number of ew

for ew 6= 0 is q − 1. Thus, the total number of errors e = (ef , ew) satisfying this

condition is qk−1 · (q − 1) = qk − qk−1.

3. Pef 6= 0: for any e = (ef , ew) there exists a uniquePf satisfying Equation (5.3). Let

f be randomly selected and let ef be satisfying the condition Pef 6= 0 The number

of errors ef satisfying this condition is qk − qk−1. The total number of errors ew is

q. Thus, the total number of errors e = (ef , ew) is (qk − qk−1) · q = qk+1 − qk. The

probability that a randomly selected f and an error ef such that Pef 6= 0 will not be

satisfying Equation (5.3) is 1− q−1.

Example 1 For the modified Tate pairing algorithm we have k = 6 and q = 3m. Thus the

number of undetected errors is 35m, the number of reliably detected (with probability 1)

errors is 36m − 35m, and 37m − 36m errors are detected with probability 1− 3−m.

This probability is incorrectly calculated in [27]. While it provides some level of pro-

tection, the technique is not robust as defined by Karpovsky et al [18].

Even though this method is sufficient against weak adversaries, a more advanced at-

tacker can still easily bypass this error detection mechanism and manipulate the device

under attack. Here we should note that a weak attacker can only introduce random errors to

the circuit. The weak attack model is easy to carry out. An attacker can change the stored
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values in the circuit with conventional methods: temperature variation and laser heating in-

duced attacks, clock glitching, etc. This type of attack requires little control. It means that

an attacker can only introduce random errors to the circuit and then observe the output. On

the other hand, a strong attacker can insert any additive error pattern of his choosing. Thus,

a strong attacker can identify and introduce errors that are not detectable by the circuit and

deduce information from the arithmetic operations carried out in the circuit.

As seen from Algorithm 1, the implementation of efficient arithmetic for GF (36m)

and GF (3m) is essential in Tate Pairing algorithm of Kwon-BGOS. These field operations

determine the efficiency and the complexity of the overall Tate Pairing operation. Thus,

in order to build an efficient, yet tamper-resilient architecture for Tate Pairing, it is crucial

to implement resilient arithmetic primitives that are light-weight for GF (36m) as well as

GF (3m). Sections 5.1.1 and 5.2.1 will provide more detail on the performance analysis of

the field operations in GF (36m) and GF (3m), respectively.

5.1.1 GF (36m) Operations

The elements of GF (36m) are represented in the basis {1, σ, ρ, σρ, ρ2, σρ2}. Let a ∈

GF (36m) and

{ζ0, ζ1, ζ2, ζ3, ζ4, ζ5} = {1, σ, ρ, σρ, ρ2, σρ2}. Then,

a = Σ5
k=0akζ

k = a0 + a1σ + a2ρ + a3σρ + a4ρ
2 + a5σρ2

where ak ∈ GF (3m). It was noted previously that σ and ρ are the zeros of σ2 + 1 and

ρ3 − ρ∓ 1, respectively and thus satisfy σ2 + 1 = ρ3 − ρ∓ 1 = 0 ∈ GF (36m).



72

Following this notation, multiplication and cubing operations in GF (36m) can be per-

formed utilizing GF (3m) arithmetic. In this section, we will present explicit formulations

of GF (36m) arithmetic. The equations presented could be further optimized for hardware

implementation. However, our aim is to explain only the mathematical background of these

operations. Also, we present the mathematical background for our error detection strategy

as it is applied to GF (36m) operations.

Multiplication

Step 12 of Algorithm 1 is a multiplication operation in GF (36m). The two elements,

f and g ∈ GF (36m) are multiplied. We can break this multiplication operation down into

arithmetic in characteristic three as follows:

f = f0 + f1 · σ + f2 · ρ + f3 · σρ + f4 · ρ2 + f5 · σρ2

g = g0 + g1 · σ + g2 · ρ− ρ2 (g3 = g5 = 0, g4 = −1)

r = f · g

= (f0g0 − f1g1 + f5g2 − f2) +

(f1g0 − f0g1 + f4g2 − f3) · σ +

(f2g0 − f3g1 + f0g2 + f5g2 − f2 − f5) · ρ +

(f3g0 − f2g1 + f1g2 + f4g2 − f3 − f4) · σρ +

(f5g0 − f4g1 + f2g2 − f0 − f5) · ρ2 +

(f4g0 − f5g1 + f3g2 − f1 − f4) · σρ2
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We pick a simple parity code and apply the approach explained in Section 5.1:

wf = (f0 + f1 + f2 + f3 + f4 + f5)
2

wg = (g0 + g1 + g2 − 1)2

wr = ((f0g0 − f1g1 + f5g2 − f2)

+ (f1g0 − f0g1 + f4g2 − f3)

+ (f2g0 − f3g1 + f0g2 + f5g2 − f2 − f5)

+ (f3g0 − f2g1 + f1g2 + f4g2 − f3 − f4)

+ (f5g0 − f4g1 + f2g2 − f0 − f5)

+ (f4g0 − f5g1 + f3g2 − f1 − f4))
2

= ((f0 + f1 + f2 + f3 + f4 + f5) · g0

+ (f0 − f1 + f2 − f3 − f4 + f5) · g1

+ (f0 + f1 + f2 + f3 − f4 − f5) · g2

+ (−f0 − f1 + f2 + f3 + f4 + f5))
2

= (
√

wf
√

wg + f1g1 + f3g1 + f4g1 + f4g2 + f5g2 − f2 − f3 − f4 − f5)
2

= wfwg + (f1g1 + f3g1 + f4g1 + f4g2 + f5g2 − f2 − f3 − f4 − f5)
2

+2 · (f1g1 + f3g1 + f4g1 + f4g2 + f5g2 − f2 − f3 − f4 − f5) ·
√

wf
√

wg

= wfwg + T 2
1 + T2
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where

T1 = f1g1 + f3g1 + f4g1 + f4g2 + f5g2

−f2 − f3 − f4 − f5

T2 = 2 · (f1g1 + f3g1 + f4g1 + f4g2 + f5g2

−f2 − f3 − f4 − f5) ·
√

wf
√

wg

As an outcome of these equations, we can clearly state that the check-symbol of the result

of the multiplication, wr, can be extracted from the check-symbols of the inputs, wf and

wg. This extraction logic includes 1 multiplication in GF (3m) for wfwg, 2 multiplications,

4 additions and 4 subtractions for T2 and 1 square operation for T 2
1 . The calculation of

wg costs 1 square and 2 addition operations. Also, the calculation of wr costs 1 square

operation. Since f is the result of another GF (36m) operation, the calculation of wf is

not included in the overhead analysis, because it is calculated as wr of another operation.

Thus, the overall overhead for this approach is 3 multiplication, 3 square, 6 addition and 4

subtraction operations. The standard implementation of Algorithm 1 utilizes 18 multiplica-

tions in the base field GF (3m) plus a number of addition/subtraction operations [19]. Since

the operational complexity of addition/subtraction operations are small compared to multi-

plication operations in Algorithm 1, we will only calculate the overhead of the operations

in terms of multiplication and cubing operations in GF (3m) for the rest of the chapter.
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Cubing

Step 11 of Algorithm 1 is a cubing operation in GF (36m). This cubing operating is

carried out with 6 GF (3m) cubing operations. As shown in step 11, the element f ∈

GF (36m) is cubed. The equations for the cubing operation are as follows:

f = f0 + f1 · σ + f2 · ρ + f3 · σρ + f4 · ρ2

+f5 · σρ2

f 3 = f 3
0 + f 3

1 · σ3 + f 3
2 · ρ3 + f 3

3 · σ3ρ3 + f 3
4 · ρ6

+f 3
5 · σ3ρ6

=
(

f 3
0 + f 3

2 + f 3
4

)

−
(

f 3
1 + f 3

3 + f 3
5

)

· σ +
(

f 3
2 − f 3

4

)

· ρ

+
(

f 3
5 − f 3

3

)

· σρ + f 3
4 · ρ2 − f 3

5 · σρ2

We pick a simple parity code and apply the approach explained in Section 5.1:

wf = (f0 + f1 + f2 + f3 + f4 + f5)
2

wf3 =
(

f 3
0 − f 3

1 − f 3
2 + f 3

3 + f 3
4 − f 3

5

)2

=
((

f 3
0 + f 3

1 + f 3
2 + f 3

3 + f 3
4 + f 3

5

)

+
(

f 3
1 + f 3

2 + f 3
5

))2

= w3
f +

(

f 3
1 + f 3

2 + f 3
5

)2
+ 2 ·

(

f 3
0 + f 3

1 + f 3
2 + f 3

3 + f 3
4 + f 3

5

) (

f 3
1 + f 3

2 + f 3
5

)

= w3
f + T 2

3 + T4
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where

T3 =
(

f 3
1 + f 3

2 + f 3
5

)

T4 = 2 ·
(

f 3
0 + f 3

1 + f 3
2 + f 3

3 + f 3
4 + f 3

5

)

·
(

f 3
1 + f 3

2 + f 3
5

)

According to these equations, we can state that the resulting check-symbol of the cubing

operation, wf3 , can be extracted from the check-symbol of the input, wf . This extraction

logic includes 1 cubing in GF (3m) for w3
f , 1 multiplication for T4 and 1 square operation

for T 2
3 . Also, the calculation of wf3 costs 1 square operation. Again, since f is a result of

another GF (36m) operation, the calculation of wf is not included in the overhead analysis,

because it is calculated as wr of another operation. Thus, the overall overhead for this

approach is 1 cubing, 1 multiplication and 2 square operations.

5.1.2 Performance Analysis

In this section we will summarize the complexity analysis of Algorithm 2.2 and the

overhead caused by using the tamper-resilient arithmetic.

Mathematical Analysis

GF(36m) operations. The GF (36m) multiplication operation in the Kwon-BGOS Tate

Pairing algorithm is carried out with 18 GF (3m) multiplications, while the cubing opera-

tion in GF (36m) is carried out with 6 GF (3m) cubing operations [19]. Table 5.1 shows the
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# GF (3m) operations

GF (36m) Standard Resilience

operations Implement. Overhead

Mult. 18 muls 3 muls, 3 square

Cube 6 cube 1 cube, 1 mul, 2 square

Table 5.1: Complexity of GF (36m) operations for standard and resilient implementations.

# GF (3m) operations

Standard Resilience

Step Implement. Overhead

2 1 cube 1 square, 1 cube

3 1 cube 1 square, 1 cube

6 2 cube 2 square, 2 cube

7 2 cube 2 square, 2 cube

8 1 add 3 square, 1 mul

9 1 mul 1 square, 1 mul

1 square 1 square

Table 5.2: Number of additional GF (3m) multiplication operations required for imple-

menting resilient GF (3m) operations.

complexity of GF (36m) operations for standard implementation, plus the additional over-

head required for resilient implementation. It should be noted that these numbers are not

dependent on the field size m, since we built our scheme on the extension field.

GF(3m) operations Table 5.2 shows the detailed number of GF (3m) operations required

for the remaining steps of the algorithm. Also, the table illustrates the additional number

of operations required for the resilient approach.
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# of operations utilized

GF (3m) Standard Resilience

operations Implement. Overhead

Cube 6 1

Mult. 18 9

Table 5.3: Total number of GF (3m) multiplication, cubing and square operations required

for Algorithm 1.

Hardware and Software Implementations

The implementation of Algorithm 2.2 requires one multiplication and one cubing oper-

ation in GF (36m). Following from Table 5.1, multiplication is realized with 18 base field

multiplications and the cubing operation is realized with 6 base field cubing operations.

The overhead caused by our approach can also be calculated from these two tables. The

total overhead for a GF (36m) multiplication is 3 multiplications and 3 squaring operations

carried out in the base field GF (3m). For the GF (36m) cubing operation, the total overhead

is 1 cubing, 1 multiplication and 2 squaring operations in GF (3m). Table 5.3 gives the total

number of GF (3m) multiplication and cubing operations required to realize Algorithm 2.2

(assuming that the complexity of a squaring operation is roughly equal to the complexity

of a multiplication operation) as well as the overhead caused.

If the extension field arithmetic of Algorithm 1 is implemented in hardware, there are

various area/speed trade-offs one can make to tailor the implementation to meet the overall

requirements of the application. For instance, to achieve maximum speed performance,

one can utilize 27 multipliers and 7 cubing units (operating in GF (3m)) realizing the entire

loop iteration in parallel within one clock cycle. On the other extreme, we can take a serial
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approach by implementing only one multiplier and one cubing unit in hardware. The serial

approach will require many more iterations (clock cycles), however, the area is significantly

reduced. If the number of multipliers employed to realize the resilient approach is more

than half of the number of multipliers employed for the standard implementation, then the

resilience approach will not cause any overhead in latency. However, it will cause an area

overhead of about 50%.

In software implementations all of the operations mentioned need to be calculated seri-

ally. Since the number of operands that needs to be stored in registers is constant, there is

no opportunity for trade-off between area and speed. The total (latency) overhead incurred

in implementing our approach in software applications is therefore approximately 50%.

Note that while 50% overhead may seem excessive from a performance point of view,

the overhead is significantly less than that of comparable techniques, given the level of pro-

tection it provides. For instance, the technique proposed in [14] protects an arbitrary data-

path with common integer addition and multiplication units (e.g. Montgomery multiplier)

with more than 200% overhead. Also, the technique proposed for symmetric cryptosystems

like the AES block-cipher [22] requires an area overhead of more than 100 %.

The overhead that is associated with our scheme may seem excessive at first glance,

especially when compared to some low-cost linear schemes [31, 32, 13]. It is important,

however, to take into account the error model on which a particular method is based. Simple

parity-based methods often only detect single bit-errors, but even in more advanced linear

schemes the error detection capabilities are limited. Generally speaking, any error pattern
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that is a valid codeword can never be detected, since a linear combination of codewords

results in another codeword. In our error model we assume that the device is under attack

by a weak adversary with limited resources. As such, the error detection scheme needs to

be resilient enough to detect random codeword error patterns with high probability. Such

strong error detection capability comes at a moderate cost due to the non-linear encoding.

Note that, at the current level of protection in the worst case errors are detected with

probability 1 − 3−m. To give a concrete example, a common implementation choice is

m = 93, where the detection probability becomes lower bounded by 1− 3−93 ≈ 1− 2−147.

In addition, we may decide to sacrifice a little bit from the security level and choose a

much smaller number of check digits. For instance, we may choose the parity matrix

to map to a subfield of GF (393), e.g. GF (331) which would yield a security level of

1− 3−31 ≈ 1− 2−49. Such a security level would suffice in practice due to the fact that the

circuit would be disabled even after the first fault is detected and the attacker would have

to acquire a new unit with the same settings (e.g. a smart card) to continue with the attack.

From a performance viewpoint, the operations on the check bits would be implemented

over a much smaller field (with 3-times fewer digits), and therefore the complexity of the

operations, and hence the overhead, would be reduced significantly. For this, however, the

resilient components would have to be redesigned and we leave this along with an actual

implementation as future work.
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5.2 Lightweight and Robust Error Detection Built Over

the Base Field

Based on the original definition of robust codes by Karpovsky and Taubin [18], we

derive a slightly modified construction which allows us to accommodate the specific arith-

metic needs of the pairing computation, while maintaining robustness properties. Specif-

ically, the original robust codes were defined over GF(p), with p > 2 a prime, while we

extend the definition for codes over field extensions GF(q), where q = pm.

As in the original paper, we use a simple, but appropriate additive error model, i.e. when

an error e = (ex, ew) is introduced to an operand x, the operand becomes (x + ex, w + ew).

Thus, if

w + ew 6= (P (x + ex))
2 (5.5)

then our error detection scheme will work and the error detection network will flag an error.

Definition 4 Let V ′ be a linear q-ary parity code (q = pm, p > 2 is a prime) with n = k+1

and check matrix H = [P |I] with rank(P ) = 1. Then CV ′ = {(f, w)|f ∈ GF (qk), w =

(Pf)2 ∈ GF (q)}.

We capture the performance of this specific non-linear error detection code with the fol-

lowing theorem.

Theorem 3 A non-zero error e = (ex, ew) on a code word (x, w) ∈ CV ′ will not be de-
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tected if and only if it satisfies the error masking equation

(Px)2 + ew = (P (x + ex))
2. (5.6)

For CV ′ the set of undetectable errors ({e|Q(e) = 1}) is a (k − 1)-dimensional subspace

of V ′, qk − qk−1 errors are detected with probability 1, and the remaining qk+1− qk errors

are detected with probability 1− q−1.

Proof 2 From (5.5), we have

2(Px)(Pex) + (Pex)
2 = ew (5.7)

There are three cases that will satisfy equation (5.7):

1. Pex = ew = 0: For this condition, Equation (5.7) is satisfied for all x. Since ex is in

GF (qk):

Pex = ex = 0 (5.8)

The number of ef satisfying Equation (5.8) is 1. Also, there is only one ew satisfying

ew = 0. Thus, the total number of errors e = (ef , ew) satisfying this condition is 1.

2. Pex = 0 and ew 6= 0: Equation (5.7) is not satisfied for any x. The number of

ex satisfying Pex = 0 is 1. In addition to this, we need to calculate the number of

errors ew satisfying ew 6= 0. Since ew ∈ GF (q), total number of ew for ew 6= 0

is q − 1. Thus, the total number of errors e = (ex, ew) satisfying this condition is

qk−1 · (q − 1) = qk − qk−1. In our case, qk − qk−1 = 3m − 1.
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3. Pex 6= 0: for any e = (ex, ew) there exists a unique Px satisfying Equation (5.7). Let

x be randomly selected and let ex be satisfying the condition Pex 6= 0 The number

of errors ex satisfying this condition is qk − qk−1. The total number of errors ew is

q. Thus, the total number of errors e = (ex, ew) is (qk − qk−1) · q = qk+1 − qk. The

probability that a randomly selected x and an error ex such that Pex 6= 0 will not

be satisfying Equation (5.7) is 1 − q−1. For our case, qk+1 − qk = 32m − 3m and

1− q−1 = 1− 3−m.

As seen from Algorithm 1, the implementation of efficient arithmetic for GF (36m)

and GF (3m) is essential in Tate Pairing algorithm of Kwon-BGOS. These field operations

determine the efficiency and the complexity of the overall Tate Pairing operation. Thus,

in order to build an efficient, yet fault-tolerant architecture for Tate Pairing, it is crucial to

implement robust arithmetic primitives that are light-weight for GF (3m) Section 5.2.1 will

provide more detail on the performance analysis of our robust field operations in GF (3m).

5.2.1 Robust GF (3m) Operations

In order to apply robust arithmetic to all operations of Algorithm 2.2, we extended

the approach taken for GF (36m) operations to also cover GF (3m) operations. To do so,

we simply regarded an element in GF (3m) to be an element in GF (36m) with all of the

coefficients being 0, except the coefficient of ζ0. The parity of an element is simply itself,

and the computed checksum is its square.
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Cubing

Steps 2, 3, 6 and 7 of Algorithm 2.2 include cubing operations in GF (3m). The input

for this cubing operation is x and the output is r = x3. Application of the robust approach

from Section 5.2 yields: wx = x2 and wr = r2 = (x3)2. Thus, we can extract wr from wx

by simply taking the cube of wx. This approach adds an overhead of 1 square and 1 cubing

operations in GF (3m).

Addition

Step 8 of Algorithm 2.2 is addition operation in GF (3m). The inputs for this operation

are x1 and x2 and the output is r = x1 + x2. If we apply our approach we get: wx1
= x2

1,

wx2
= x2

2 and wr = (x1 + x2)
2 = x2

1 + 2x1x2 + x2
2. Thus, we can extract wr from wx1

and

wx2
by simply adding these two values to 2x1x2. The overhead for this is 3 squares and 1

multiplication operation in GF (3m).

Multiplication

Step 9 of Algorithm 2.2 includes multiplication operations in GF (3m). The inputs

for this multiplication operation are y1 and y2 and the output is r = y1y2. This yields:

wy1
= y2

1 , wy2
= y2

2 and wr = (y1y2)
2 = y2

1y
2
2. Thus, we can extract wr from wy1

and wy2

by simply multiplying these two values, with an overhead of 3 square and 1 multiplication

operations in GF (3m).
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Squaring

Step 9 of Algorithm 2.2 includes a squaring operation in GF (3m). The input for this

squaring operation is µ and the output is r = µ2. Here we have for the check-symbols :

wµ = µ2 and wr = (µ2)2. Thus, we can extract wr from wµ by simply squaring it, which

has an overhead of 2 square operations in GF (3m).

5.2.2 Previous Work

In [19], it is stated that GF (36m) can be considered as an extension field over GF (32m)

with irreducible polynomial z3−z±1. This way, the multiplication in GF (36m) is realized

in two steps: i) Karatsuba multiplication for polynomials with coefficients from GF (32m),

and ii) reduction with irreducible polynomial z3 − z ± 1. Reader can profitably refer to

[19] for further details.

In Figure 5.1, GF (36m) Karatsuba multiplier unit, as proposed in [19], is illustrated,

where nodes represent the GF (32m) adders, subtracters, and multipliers. Similarly, GF (32m)

is also an extension field over GF (3m) with irreducible polynomial y2 + 1. Since the

adder/subtracter units operate on the corresponding coefficients of the operand polynomi-

als, their structure is the same as GF (3m) adders. GF (32m) multiplier, however, consists

of GF (3m) adders, subtracters, and multipliers as seen in Figure 5.2.

As seen in Figure 5.1, GF (36m) Karatsuba multiplier has five GF (32m) elements as

output. The result of the Karatsuba multiplier has the form d̃4z
4 + d̃3z

3 + d̃2z
2 + d̃1z + d̃0.

Since z3 = z +1 from the irreducible polynomial, we have (d̃2 + d̃4)z
2 +(d̃1 + d̃4 + d̃3)z +
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Figure 5.1: GF (36m) multiplier unit from [19]

(d̃0 + d̃4).

To summarize, 18 GF (3m) multipliers and 52 GF (3m) adders are used in one GF (36m)

multiplier. For our robust approach, this is extremely high cost. Every adder and multiplier

that is included in the circuit needs an extra multiplier. There are a total of 70 units, which

adds extra 70 multipliers to the circuit. This is more than 300% increase in the area. De-

tailed calculations for this will be given in Section 5.2.6.

5.2.3 Our GF (36m) Robust Multiplier Subblock

The first and most expensive GF (36m) block is for performing multiplication operation.

This multiplication unit could be implemented as explained in Section 5.1.1. Recall from
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Section 5.1.1 that

f = f0 + f1 · σ + f2 · ρ + f3 · σρ + f4 · ρ2 + f5 · σρ2

g = g0 + g1 · σ + g2 · ρ− ρ2 (g3 = g5 = 0, g4 = −1)

r = f · g

= (f0g0 − f1g1 + f5g2 − f2) +

(f1g0 − f0g1 + f4g2 − f3) · σ +

(f2g0 − f3g1 + f0g2 + f5g2 − f2 − f5) · ρ +

(f3g0 − f2g1 + f1g2 + f4g2 − f3 − f4) · σρ +

(f5g0 − f4g1 + f2g2 − f0 − f5) · ρ2 +

(f4g0 − f5g1 + f3g2 − f1 − f4) · σρ2

As stated before, multiplication operation in GF (36m) involves 18 multiplications, 8
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additions and 16 subtractions in GF (3m). It should be noted that the robust approach adds

18 + 24 = 42 multiplier units to the hardware, which is not illustrated in the figure.

5.2.4 Our GF (36m) Robust Cubing Subblock

The second GF (36m) block is for performing cubing operation and as in the case of the

multiplier it is constructed using arithmetic units of the base field GF (3m). As shown in

Figure 5.3, GF (36m) cubing circuitry includes 6 adder/subtracter and 6 cubing blocks in

GF (3m). Recall that

f = f0 + f1 · σ + f2 · ρ + f3 · σρ + f4 · ρ2

+f5 · σρ2

f 3 =
(

f 3
0 + f 3

2 + f 3
4

)

−
(

f 3
1 + f 3

3 + f 3
5

)

· σ +
(

f 3
2 − f 3

4

)

· ρ

+
(

f 3
5 − f 3

3

)

· σρ + f 3
4 · ρ2 − f 3

5 · σρ2

Thanks to the efficient GF (3m) cubing blocks, implementing GF (36m) cubing block with

parallel blocks does not consume much area and allows to finish the operation in one clock

cycle. As stated before, cubing operation in GF (36m) involves 6 cubings, 4 additions and

2 subtractions in GF (3m). It should be noted that the robust approach adds 6 multiplier

units to the hardware, which is not illustrated in the figure.
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Figure 5.3: Our GF (36m) cubing unit

5.2.5 Our Coprocessor Architecture

After building the efficient blocks that are needed for our accelerator, we design a con-

trol unit and a datapath for the Tate Pairing operation. The operation may be divided into

two big phases as initialization and loop. In Table 5.4 operations are described in detail.

In the initialization phase, four GF (3m) elements are input into the accelerator. For

this part we use 2m-bit long bus structure and connect it to all four related registers. With

address selection and write signals, data are written into the accelerator in four clock cycles.

Cubing operations in the steps 3 and 4 also take place during the initialization. Since our

cubing block is purely combinational, no extra clock cycles are used at these steps. The

length of the databus can be adjusted depending on place-and-route and timing issues.

When the initialization is completed, accelerator starts operating in a loop. Our con-

trol unit is composed of mainly two counters. First counter counts the loop’s execution
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Step Operation clock total cycle for

cycle m = 97

initialization 1 α = xp 1 1

initialization 2 β = yp 1 1

initialization 3 x = x3
r 1 1

initialization 4 y = y3
r 1 1

Loop 5 α = α3, β = β3 1 97

Loop 6 α = α3, β = β3 1 97

Loop 7 u = α + x + d 1 97

Loop 8 γ = (−µ2)ζ0 + (−βy)ζ1 97 97*97

+(−µ)ζ2 + (−1)ζ4

Loop 9 t = t3 1 97

Loop 10 t = t ∗ ζ, y = −y, d = d− 1 mod 3 97 97*97

Table 5.4: Explanations for number of clock cycles required for modified Duursma-Lee

algorithm

number to end the operation when completed. Second counter determines which step to be

executed.

For the entire operation, we use only one GF (36m) multiplier for step 10, one GF (36m)

cubing circuit for step 9, two GF (3m) cubing circuits for steps 5 and 6, two GF (3m)

multipliers for step 8 and a number of adders. Each block starts working according to the

counter 2. We also overlap the operations that do not depend on each others’ outputs to

reduce the number of clock cycles. For instance, in step 10 three operations are done in the

same clock cycle. The main advantage of our accelerator is that most of the operations are

completed in a single clock cycle. If the adder and cubing circuits were implemented with

registers, clock count would increase around by 400 and registers would increase the area

of the accelerator.

It should be noted that each multiplier and adder circuits included in our design are im-
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plemented with the robust approach. Therefore, each subblock has an additional overhead

as explained in Section 5.2.1 and Section 5.2.1.

5.2.6 Implementation Results

The presented architecture was developed into Verilog modules and synthesized using

the Synopsys Design Compiler tool. In the synthesis we used the TSMC 0.13 µm ASIC

library. The synthesis results for the subblocks for arithmetic in GF (3m) are shown in

Table 5.5

The synthesis results for the subblocks for arithmetic in GF (36m) are shown in Table

5.6.

5.3 Robust Counters

As vividly displayed by the [29] attack, the loop index is perhaps the weakest point in a

Tate Pairing implementation. Note, however, that the attack may be easily detected by us-

ing the robust encoding introduced by Gaubatz et al. [14]. The proposed technique may be

incorporated into the datapath of a hardware implementation or when a software implemen-

tation is concerned into the code, or may be implemented directly in the microprocessor

architecture.

The technique assumes that operands are represented as k-bit integers and works by

computing the check bits wx = x2 (mod p) where p is picked as a prime integer less than
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(but close to) 2k, i.e. the word boundary. Then the error detection performance of the code

for a nonzero e pattern is bounded as max{Q(e)} = 2−rmax{4, 2k−p+1}where r denotes

the number of bits used to represent p.

To develop a robust increment unit, we consider the check bits of the incremented

counter x + 1: wx+1 = (x + 1)2 (mod p) = wx + 2x + 1 (mod p). Hence we may build

a predictor that takes as input the robust encoded operand (x, wx) and predicts the check

bits for the incremented value by computing only one shift to implement the multiplication

by 2 and two additions in GF (p). Note that we also require a modular squaring operation

to be performed on the incremented value. Hence, (ignoring the cost for shifting) the total

overhead becomes 1 squaring and two additions in GF (p).



93

Area(Gates) Critical Path Delay(CPD)

GF (3m) Multiplier 7947 3.33 ns

GF (3m) Adder 1284 0.41 ns

GF (3m) Cubing 1469 1.06 ns

Table 5.5: Implementation results of GF (3m) components of the Tate Pairing hardware.

Non-Robust Robust Overhead

Area CPD Area CPD Area CPD

(gates) (ns) (gates) (ns) (gates) (ns)

GF (36m) Multiplier 184948 4.05 541369 4.28 143% 5.68%

GF (36m) Cubing 18302 1.69 129917 4.02 609% 138%

Entire Hardware 241438 5.23 752483 5.92 212% 14%

Table 5.6: Implementation results of GF (36m) components of the Tate Pairing hardware.
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Chapter 6

Conclusion

In this dissertation we aimed at developing efficient and tamper-resilient architectures

to support pairing computations for Identity-Based cryptography. We presented a scalable

and unified architecture to support arithmetic in GF (2n), GF (3m), and GF (p). Our design

makes use of the redundant signed digit representation, (RSD) which reduces the critical

path delay and simplifies the support for characteristic three arithmetic. Previous unified

architectures are exclusively designed to implement field multiplication operations and thus

carry-save representation they utilized makes it very difficult to perform other operations

such as comparison and subtraction. Consequently, classical unified architectures have

to transform redundant representation to non-redundant representation to perform these

operations. However, these operations benefit from the proposed architecture. For instance,

a subtraction operation result in no overhead compared to addition since it can be done by

wiring in hardware.
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Although there has been a consensus on the benefits of unified architectures, no attempt

has been reported in the literature to this date to quantify this benefit. We, for the first time,

characterized and compared our unified architecture in terms of the {Area × CPD} metric

and provided extensive implementation results to give a concretely establish the value of the

proposed architecture. We have found out that the proposed unified architecture provides at

least 24.88% and 32.07% improvement over non-unified architectures and classical unified

architectures, respectively.

Our design is pipelined for improved efficiency and is scalable. Hence, different preci-

sions can be easily supported without the redesign of the core. The number of processing

units can be adjusted to given silicon area and/or the desired performance. We believe, this

highly versatile architecture will fulfill a critical need in supporting elliptic curve cryptog-

raphy, RSA/DH schemes, and identity based cryptography using a single architecture in an

efficient manner.

Furthermore, we presented a novel scheme for building strong error detection capa-

bilities into Tate pairing computations when realized either in hardware or software. The

proposed scheme over the extension field provides quantifiable levels of protection in a

weak attacker model. The other proposed scheme built on the base field provides quantifi-

able levels of protection in a well defined strong attacker model.

We determined the overhead incurred by implementing the robust approach in hardware

at various operating points. IThe overhead varies for hardware implementations. When a

more serial implementation approach is taken (reducing the arithmetic units and increas-



96

ing the number of iterations), then the latency overhead is reduced, and eventually almost

vanishes, when the number of multipliers employed to realize the robust approach is more

than half of the number of multipliers employed for the standard implementation.

Finally, we developed a mathematical framework that allows one to build arithmetic

components as well as robust counters to realize looping in the Tate pairing algorithms by

Kwon [23] and Barreto et al. [4].
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[37] A. F. Tenca and Ç. K. Koç, A Scalable Architecture for Montgomery Multiplication.,

Cryptographic Hardware and Embedded Sytems - CHES 1999 (Ç. K. Koç and C. Paar,
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