Computational Analysis of 1-Deoxy-D-xylulose-5-phosphate reductoisomerase in 15 Plant Species

A Major Qualifying Project Report: submitted to the Faculty

of the

Degree of Bachelor of Science by

Pui Kwan Fung

Date: November 16, 2005

Approved:

Acknowledge

I would like to thank Jeffrey Blanchard (UMass, Amherst), Olof Emmanuelsson (Yale University), Julia Krushkal (University of Tennessee) and Frederic F. Souret (Delaware Biotechnology Institute) for their assistance with information and bioinformatics tools. Most importantly, I am very grateful to Professor Pamela Weathers for her guidance throughout the project and her assistance with the writing of this report.

Abstract

The enzyme, 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), is a key regulatory step in the non-mevalonate terpenoid biosynthetic pathway in plastids. To investigate the molecular evolution of the enzyme and to predict its location in the chloroplast, a computational analysis was performed on 15 plant DXR sequences that have a full-length cDNA. Results revealed that DXR has an N -terminal transit domain that is likely bipartite, consisting of a chloroplast transit peptide (cTP) and a lumen transit peptide (lTP). Several features were observed in the ITP which suggest that while DXR is targeted to the chloroplast, it is in fact localized to the thylakoid lumen. These features include a twin arginine motif, a hydrophobic region and a proline-rich region. In addition, the functional domain of DXR is found to be highly conserved between prokaryotic and eukaryotic species.

Contents

Acknowledge 2
Abstract 3
1 Background 5
1.1 Biochemistry of terpenoid synthesis 5
1.1.1 Terpenoids 5
1.1.2 Biosynthesis of terpenoids 5
1.1.3 Biosynthesis of IPP 6
1.1.4 Mevalonate (MVA) pathway 9
1.1.5 Mevalonate independent (non-MVA) pathway 9
1.2 Previous studies on DXS and DXR 10
1.2.1 $\quad 1$-deoxy-D-xylulose-5-phosphate synthase (DXS) 10
1.2.2 \quad-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) 11
1.3 Protein localization processes 13
1.4 Objectives 16
2 Materials and Methods 17
2.1 Sequence Selection 17
2.2 Sequence Alignment 18
2.3 Prediction of transit peptide sequences 18
2.4 Phylogenetic Tree Inference 18
2.5 Secondary Structure Analysis 19
2.6 Hydrophobicity analysis 19
3 Results and discussion 20
3.1 Prediction of transit peptide sequence 20
3.1.1 Prediction using ChloroP, TargetP and LumenP 20
3.1.2 Prediction using manual analysis 22
3.2 Phylogenetic Analysis 24
3.2.1 Established taxonomy 24
3.2.2 Evolution of the functional amino acid domain 26
3.2.3 Evolution of the transit peptide domain 28
3.2.4 Evolution of the full nucleotide sequence 30
3.3 Secondary Structure Prediction 32
3.4 Hydrophobicity analysis 35
3.4.1 Transit peptide domain of DXR 35
3.4.2 Functional domain of DXR 37
4 Conclusion 39
REFERENCES 40
Appendix I 42
Sequence alignment of nucleotide sequences and amino acid sequences of DXR 42
Appendix II 50
Secondary structure prediction of the functional domain in DXR (Boxed regions indicates where differences occurs) 50
Appendix III 58
Hydrophobicity plots for the functional domain of DXR 58

1 Background

1.1 Biochemistry of terpenoid synthesis

1.1.1 Terpenoids

Terpenoids are one of the most structurally diverse groups of natural plant products where they play significant roles in pollinator attraction, defense and plant-plant communication. In addition to their ecological roles in plants, terpenoids are extensively used in the food and cosmetic industries as flavoring agents, since they are constituents of natural essential oils and floral scents. Researchers have also found pharmaceutical importance in terpenoids, with their potential use as antimicrobial agents and anticarcinogens (Mahmoud and Croteau, 2002).

1.1.2 Biosynthesis of terpenoids

Despite the great diversity in structure and function, all terpenoids are derived from two common precursors, isopentenyl diphosphate (IPP) and its allylic isomer, dimethylallyl diphosphate (DMAPP) (Mahmoud and Croteau, 2002). The repetitive head-to-tail addition of IPP units to DMAPP yields the immediate precursors to most of the terpenoid classes, though some less common terpenes are produced by non-head-to tail joining of the two building blocks or by rearrangement of a regular structure (Mahmoud and Croteau, 2002). In either case, the resultant diphosphate skeletons undergo subsequent enzymatic modifications (mostly redox reactions). This is the final and crucial step in terpenoid synthesis which contributes to the structural and functional diversity of the terpenoid family (Croteau et al., 2000). Figure 1 illustrates the general biosynthesis of the various terpenoid classes from IPP and DMAPP.

Figure 1. Terpenoid biosynthesis from IPP and DMAPP. (Taken from Mahmoud and Croteau, 2002.)

1.1.3 Biosynthesis of IPP

Although terpenoids can be found in animals and microorganisms, their synthesis is shown to be the most complex in plants, as reflected by their production of a large and diverse range of terpenoid products (Croteau et al., 2000). In plants, terpenoids are produced via two IPP generating pathways: a mevalonate dependent pathway and a mevalonate-independent pathway (Figure 2). When the mevalonate dependent pathway was first discovered in the 1950s, it was commonly accepted as the only route for
(b)

Figure 2. The mevalonate pathway (a) and the mevalonate-independent pathway (b) for the biosynthesis of IPP and DMAPP. (Taken from Mahmoud and Croteau, 2002.)
terpenoids to be produced, occuring via the condensation of acetyl CoA (Takahashi et al., 1998). In the late nineties, however, a novel non-mevalonate pathway, first identified in bacteria, was found in the plastid (Dubey et al., 2003). While it has been indicated that the mevalonate pathway operates mainly in the cytoplasm and mitochondria, and the nonmevalonate pathway operates in the plastid, the two pathways are not completely independent. It is possible for metabolites to be exchanged between the two pathways in their different compartments (Dubey et al., 2003). Figure 3 illustrates the compartmentalization of the two pathways in higher plants, suggesting the exchange of IPP between cytosol and plastid.

Figure 3. Compartmentation of IPP and isoprenoid biosynthesis in higher plants between cytosol(mevalonate pathway) and plastids (non-mevalonate pathway). (Taken from Souret, 2002)

1.1.4 Mevalonate (MVA) pathway

The classical acetate/mevalonate pathway (Figure 2a) begins with the condensation of three units of acetyl CoA by thiolase and hydroxymethylglutaryl-CoA (HMG-CoA) synthase to form 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA). HMG-CoA is then reduced to form mevalonic acid (MVA) which is transformed to IPP via two steps of phosphorylation and the final step of decarboxylation. HMG-CoA reductase (HMGR), which reduces HMG-CoA to MVA, is a key regulatory enzyme that has been extensively studied. This highly conserved enzyme is known to catalyze the rate-limiting step of IPP biosynthesis in animals, and possibly in the synthesis of cytosolic terpenes in plants (Dubey et al., 2003).

1.1.5 Mevalonate independent (non-MVA) pathway

The mevalonate independent pathway (Figure 2b) is proposed to be the IPP biosynthetic pathway in plastids (Dubey et al., 2003). Although the enzymes in the pathway have all been identified, their characteristics have yet to be fully understood. The first step of the pathway involves a transketolase-type condensation of pyruvate with glyceraldehyde-3-phosphate to form 1-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase (DXS). DXP is then reduced to 2-C-methyl-D-erythritol 4-phosphate (MEP) by DXP reductoisomerase (DXR) and subsequently transformed to yield IPP. Besides being an intermediate for IPP, DXP is also the precursor for the biosynthesis of thiamin (Vitamin B_{1}) and pyridoxol (Vitamin B_{6}). Hence the conversion of DXP to MEP, catalyzed by DXR, is actually the first committed step in the non-MVA pathway (Carretero-Paulet et al., 2002). Consequently, both DXS and DXR could both play significant roles in the regulation of DXP formation, which in turn controls the synthesis
of IPP and terpenoids. A study of these two enzymes would provide a better understanding of the regulation of terpenoid production in the non-MVA pathway.

1.2 Previous studies on DXS and DXR

1.2.1 1-deoxy-D-xylulose-5-phosphate synthase (DXS)

The regulatory role of DXS has been confirmed by experimental results, where an over-expression of DXS in transgenic Arabidopsis has led to an increase production of IPP (Estévez et al., 2001). With DXS catalyzing one of the rate-limiting steps in the nonMVA pathway, it becomes important to fully understand its structural and functional properties. In addition, predicting the protein's subcellular localization would also provide insights into its biological functions.

A previously performed sequence analysis of DXS investigated the evolutionary changes in its structure and function (Krushkal et al., 2003). Phylogenetic inference of 11 plant sequences revealed that DXS is divided into two distinct classes (DXS1 and DXS2). Analysis of the transit domain suggests that DXS is likely bipartite and targeted to the thylakoid lumen by the delta pH pathway. Although the transit peptide domain was not conserved, a consistent set of common features was identified, such as the same hydrophobic slope, hydrophobic region in residues 35-45, and a highly conserved Pro-Pro-Thr motif at the C-terminal of the domain. The functional region was, on the other hand, well conserved among the tested plant species. Secondary structure prediction using Gov IV and HNN showed five regions of conserved secondary structures in the functional domain. In particular, region III is believed to play an important role in the diversification between DXS1 and DXS2.

1.2.2 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR)

The participation of DXR in the regulation of IPP production is also evident in many of the plants tested. Overexpresion of DXR in transgenic peppermint plants led to an increase in production of monoterpenes in leaf tissue (Mahmoud and Croteau, 2001); a positive correlation was detected between the accumulation of DXR transcript and apocarotenoids in mycorhizal roots from monocots (Walter et al., 2000), and also with terpenoid indole alkaloids in periwinkle cell suspension culture (Veau et al., 2000). Thus far, both DXR and DXS have displayed regulatory roles in terpenoid biosynthesis.

The expression and structure of DXR has been examined by both bioinformatics analysis and experimental methods. In Carretero-Paulet et al. (2002), a sequence alignment of 14 plant DXR sequences as well as the E. coli DXR was performed. Results revealed an extension of 73 to 80 residues at the N -terminal side which was absent in the prokaryotic E. coli sequence. This region was predicted by the ChloroP software (Emanuelson et al., 1999) to contain the transit peptide, with the cleavage site at about 50 residues from the N -terminus, before a conserved Cys-Ser-X motif. The N -terminal end of the transit peptide region was found to be poorly conserved but enriched in Ser residues, while the C-terminal end was more highly conserved and a consensus motif $\mathrm{P}(\mathrm{P} / \mathrm{Q}) \mathrm{PAWPG}(\mathrm{R} / \mathrm{T}) \mathrm{A}$ was identified. The function of this Pro-rich motif was demonstrated by complementing an E. coli mutant defective in DXR activity with either (1) a short derivative of Arabidopsis DXR which lacked the entire N-terminal extended region or (2) a longer version which included the Pro-rich motif. Both forms of Arabidopsis protein exhibited DXR activity. In particular, E. coli rescued by the longer version led to a more vigorous growth, suggesting that the Pro-rich region is likely
important for protein activity or stability. Subcellular localization of plant DXR was also examined by immunofluroscent assay, which showed DXR to be targeted to plastids and localized in chloroplasts of leaf cells (Carretero-Paulet et al., 2002).

Souret (2002) further identified other conserved motifs and their possible functional implication in DXR (Souret, 2002). He predicted the transit peptide to be the first 50-60 residues at the N-terminal. Using the GORIV analytical tool, he suggested that the transit domain has a random coil secondary structure. Further, the domain was found to be positively charged, lacking acidic amino acids, and generally rich in Ser, Thr and small hydrophobic amino acids. The first interesting motif mentioned was the presence of a putative phosphorylation site at Thr^{19}, within a motif $(\mathrm{P} / \mathrm{G}) \mathrm{XXX}(\mathrm{R} / \mathrm{K}) \mathrm{XX}(\mathrm{S} / \mathrm{T}) \mathrm{XXX}(\mathrm{S} / \mathrm{T})$ (residues 8-19) highly similar to the binding site of a 14-3-3- protein involved in plastid transport (Waegemann and Soll, 1996). A study of the functional domain of DXR revealed a potential NADPH binding site at a position between aa 81-87, consistent with the requirement of an NADPH cofactor for DXR enzymatic conversion of DXP to MEP. This motif GSTGSIG was homologous to the NADPH binding site found in ketol acid transketolase (Rane and Calvo, 1997). In addition, four potentially catalytic amino acid residues, Glu ${ }^{294}$ and three histidines $\left(\mathrm{His}^{226,272,320}\right.$) (Kuzuyama et al., 2000) were found to be highly conserved among the five plant and E. coli DXR sequences studied by Souret (2002).

1.3 Protein localization processes

Both DXS and DXR are nuclear-encoded proteins originally synthesized in a precursor form. The precursor contains a plastid targeting peptide called the chloroplast transit peptide (cTP) at its N -terminus, responsible for directing the protein into the chloroplast. Post-translational events take place once the precursor crosses the outer and inner chloroplast membranes into the stroma, where the cTP will be cleaved leaving behind the functional part of the protein. For proteins that are targeted to the thylakoid or the thylakoid lumen, their precursors will contain another transit peptide called the lumen transit peptide (lTP), making the overall transit peptide bipartite. Cleavage of the cTP reveals the ITP domain which, though one of four distinct pathways, continues the translocation of the intermediate precursor to its final destination into either the thylakoid membrane or its lumen (Fig. 4). The SRP and spontaneous pathways transport proteins into the thylakoid membrane, while the Sec and $\Delta \mathrm{pH}$ pathways transport proteins through the thylakoid membrane and into the thylakoid lumen. Once localized, the 1TP will usually be cleaved to expose the functional protein (Mori and Cline, 2001).

Figure 4. Localization pathways of nuclearencoded proteins. (Adapted from Mori and Cline, 2001)

Prediction of subcellular localization can help provide important functional information about a protein, and as such has received much attention in the bioinformatics field. Most bioinformatics tools base their prediction on the presence of conserved motifs and characteristics already identified in known cTP and ITP. Thus far, the $(-3,-1)$ rule (Emanuelsson et al., 2001) is commonly used to detect the cTP cleavage site. According to this rule, the residue in position -1 must be small and neutral (e.g. Ala, Gly, Ser, Cys etc) and the residue in position -3 must be hydrophobic, polar, small and neutral (e.g. Ile, Leu, Val, Ala, Cys). The cTP is also recognized as a region enriched in hydroxylated residues containing a relatively low content of acidic residues (Emanuelsson et al., 2001).

In the lTP, both the Sec and $\Delta \mathrm{pH}$ pathways are characterized by four distinct domains: 1) an acidic N -terminal domain (A); 2) a charged N -terminal domain (N) with a twin arginine motif common in the $\Delta \mathrm{pH}$ pathway; 3) a hydrophobic core domain (H) of 8-12 residues and 4) a polar C-terminal domain (C) which contains basic residues for the $\Delta \mathrm{pH}$ but not the Sec pathway. The function of the acidic A-domain is unknown since its deletion does not impair transport in vitro (Mori and Cline, 2001). In contrast to the $\Delta \mathrm{pH}$ pathway which transports folded proteins, the Sec pathway transports unfolded proteins.

Another distinct feature of the transit domain is the previously mentioned motif (P/G)XXX(R/K)XX(S/T)XXX(S/T), conserved in most of the chloroplast-targeting precursors (Waegemann and Soll, 1996). The motif is related to the binding of 14-3-3 proteins and contains a phosphorylation site on either a Ser or Thr residue in the motif. The 14-3-3 proteins belong to the chaperone family, molecules that are likely to be the
sites of ATP hydrolysis required for precursors to bind to and be transported across the chloroplast membranes (Jackson-Constan et al., 2001). Waegemann and Soll (1996) proposed a model for the role of the 14-3-3 protein during chloroplast import as follow: (1) before entry to the chloroplast, the precursor is first phosphorylated by a kinase (either on a Ser or Thr); (2) the phosphorylated precursor forms a complex with the 14-33 protein and possibly other chaperones; (3) the complex binds to the complementary receptor on the chloroplast outer membrane; and (4) dephosphorylation of the complex by a phosphatase is required for the precursor to be translocated across the chloroplast membranes (Waegemann and Soll, 1996). In thylakoid-targeting precursors which possess bipartite transit sequences, the consensus motif for the 14-3-3 protein and the phosphorylation site are believe to reside within the chloroplast transit domain (Waegemann and Soll, 1996). A later study, however, revealed the presence of 14-3-3 proteins in the chloroplast stroma despite their lack of an import signal, and suggested that the 14-3-3 chaperone may instead be binding to the lumen transit domain (Sehnke et al., 2000).

1.4 Objectives

In this experiment, I will first predict the sub-localization of DXR in chloroplast and the transport pathway used. Subsequently, the structural and functional evolution of DXR among plant species will be studied. Phylogenetic tree construction will provide some insights to the evolutionary path of DXR, while alignment of the various plant DXR sequences will help identify regions of the sequence that had either remained highly conserved or undergone mutations. Comparison of these results with the secondary structure prediction and hydrophobicity analysis of the protein will reveal the amino acids residues that are important in the proper functioning of DXR. In particular, these residues maybe crucial for DXR to function as a regulatory enzyme in the terpenoid synthesis pathway.

2 Materials and Methods

2.1 Sequence Selection

DXR sequences from different species were collected from GenBank via a BLAST (blastn) search, using Artemisia annua as the query sequence. The cutoff point of selection is set to a score of $>=50$. In addition, only species with complete DXR cDNA were included. A total of fifteen species satisfied these criteria. To compare the evolution of DXR between plant and bacteria, a DXR amino acid sequence from E. coli is also included for analysis. Table I lists details of the included species.

Table I. Selected DXR sequences for analysis.

Organism Name	Common Name	GenBank Accession \#		
Dicots	Sweet wormwood	AF182287		
Artemisia annua	Stevia	AJ429233		
Stevia rebaudiana	Madagascar periwinkle	AF250235		
Catharanthus roseus	Tomato	AF331705		
Lycopersicon esculentum	Snapdragon	AY770406		
Antirrhinum majus	Thale cress	AF148852		
Arabidopsis thaliana	Gray popular	AJ574852		
Populus alba x Populus tremula	Flax	AJ623266		
Linum usitatissimum	Kudzu	AY315651		
Pueraria montana var. lobata	Peppermint	AF116825		
Mentha xpiperita	Japanese rice	AF367205		
Monocots	Maize	AJ297566		
Oryza sativa	Barley	AJ583446		
Zea mays				
Hordeum vulgare	Maindenhair tree	AY494186		
Gymnosperm	Japanese yew	AY575140		
Ginkgo biloba	Taxus cuspidata			
Bacteria				NP_414715
Escherichia. coli				

2.2 Sequence Alignment

Sequences were aligned using ClustalX version 1.81. (Thompson et al., 1997).
Nucleotide sequence alignment was performed on the fifteen plant species. Full amino acid sequence alignment was performed on the plant species as well as E. coli. The alignment data can be found in Appendix I.

2.3 Prediction of transit peptide sequences

Predotar (http://genoplante-info.infobiogen.fr/predotar/predotar.html) was used to predict the presence of a plastid transit sequence. ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) and Target P (http://www.cbs.dtu.dk/services/TargetP/) were used to determine if the protein is chloroplast-targeted and to predict the potential cTP cleavage site (Emanuelsson and von Heijne, 2001). Lastly, LumenP (v.1.3, courtesy of Olof Emanuelsson) was also used to determine if the DXR protein is targeted to the thylakoid lumen and to predict the ITP cleavage site (Westerlund et al., 2003).

In addition, manual prediction of the transit peptide was performed by matching the cTP cleavage site motif and the characteristics of the four domains in ITP to the amino acid sequences.

2.4 Phylogenetic Tree Inference

To investigate the molecular evolution of DXR, phylogenetic trees were inferred using MEGA v. 2.1 (http://www.megasoftware.net/) (Kumar et al., 2001).

2.5 Secondary Structure Analysis

Secondary structure of the amino acid sequences were predicted using GORIV (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html) $($ Garnier et al., 1996) and Hierarchical Neural Network (http://npsa-pbil.ibcp.fr/cgibin/npsa_automat.pl?page=npsa_nn.html) (Guermeur, 1997), provided by the Network Protein Sequence Analysis (NPS@) web server at the Institute for the Biology and Chemistry of Proteins (IBCP).

2.6 Hydrophobicity analysis

To determine which amino acids may be critical for the chemical and physical properties of the DXR protein, we compared the hydrophobity plots of the 15 selected species. Hydrophobicity analysis was performed using ProtScale (Gasteiger et al., 2005), available on the ExPASy WWW server (http://www.expasy.org/tools/protscale.html). This program uses the hydrophobicity plotting tool of Kyte and Doolittle (1982).

Hydrophobicity analyses were done and compared separately for the DXR transit peptide and the functional domain. To study similarities between species, each hydrophobicity plot was also analyzed using linear regression.

3 Results and discussion

3.1 Prediction of transit peptide sequence

3.1.1 Prediction using ChloroP, TargetP and LumenP

The result of transit peptide sequence prediction using Predotar, ChloroP and TargetP are summarized in Table II.

Table II. Prediction of chloroplast transit peptide (cTP) in DXR proteins.

	Predotar ${ }^{\text {a }}$	ChloroP		TargetP	
		Prediction ${ }^{\text {b }}$	Length ${ }^{\text {c }}$	Prediction ${ }^{\text {b }}$	Length ${ }^{\text {c }}$
A. annua	none	C	46	C	46
S. rebaudiana	plastid	-	2	0	-
C. roseus	possibly plastid	C	83	0	-
L. esculentum	Plastid	C	67	C	67
A. majus	plastid	C	42	C	42
A. thaliana	plastid	C	86	C	86
P. tremula \times alba	possibly plastid	-	45	C	45
L. usitatissimum	plastid	C	50	C	50
P. montana	plastid	C	44	C	44
M. piperita	plastid	C	51	0	-
O. sativa	possible plastid	C	49	C	49
Z. mays	none	C	48	C	48
H. vulgare	possibly plastid	C	59	C	59
T. cuspidata	plastid	C	55	C	55

${ }^{\text {a }}$ None indicates no targeted sequence is present
${ }^{\mathrm{b}} \mathrm{C}$, cholorplast localization; O, other localization besides chloroplast, mitochondria and secretory pathway; - indicates no prediction of a cTP
${ }^{\text {c }}$ Predicted length of the transit peptide; - indicates no length predicted

Most of the DXR sequences were predicted by Predotar to be plastid localized.
The putative cleavage site given by ChloroP and TargetP also agreed in all cases. Only
two distinct disagreements were found in Artemisia and Zea: ChloroP and TargetP predicted the two species to be chloroplast targeted, while Predotar failed to detect any targeting peptide present (Table II). Problems with predicting putative cleavage site using neural network-based methods have been reviewed by Emanuelsson and von Henine (2001). It is also important to verify the prediction results experimentally.

Table III presents the result from LumenP (courtesy of Olof Emmanuelsson) in the prediction of an ITP. A sequence is predicted to contain an ITP if it scores above the cutoffs in both "score" and "CSscore". The "score" measures how ITP-like the Nterminal part of the protein is, while the "CSscore" is the cleavage site motif score. The 1TP length indicates the predicted length of the lTP.

Table III. Prediction of lumen transit peptide (ITP) in DXR proteins.

	LumenP			
	Score (cutoff: >=0.47)	CS score (cutoff: >=6.8)	ITP length	Prediction
A. annua	0.626	7.562	59	Y
S. rebaudiana	0.682	8.267	108	Y
C. roseus	0.575	9.469	67	Y
L. esculentum	0.649	9.469	68	Y
A. majus	0.699	12.129	59	Y
A. thaliana	0.426	8.267	113	N
P. tremula x alba	0.728	7.512	108	Y
L. usitatissimum	0.39	7.512	112	N
P. montana	0.658	7.138	57	Y
M. piperita	0.409	8.203	112	N
O. sativa	0.365	8.267	109	N
Z. mays	0.372	9.469	65	N
H. vulgare	0.341	8.267	119	N
G. biloba	0.177	8.267	N	
T. cuspidata	0.681	7.562	66	Y

All the proteins in this study have relatively high "CS score", and most of them have "score" either close to or above the cutoff. The results gave a strong implication that DXR is likely lumen-targeted. Once again, this has to be verified experimentally.

3.1.2 Prediction using manual analysis

Several known cTP and ITP motifs were successfully located in the DXR transit domain (Fig. 5). Through manual analysis, the cTP is predicted to be approximately 40 amino acids long, with small and neutral residues at the -1 and -3 positions relative to the cleavage site (Fig. 5, $\boldsymbol{\nabla}$) (Emanuelsson et al., 1991). Abundant hydroxylated residues (e.g. S) are observed in the proposed cTP domain (Emanuelsson et al., 1991). The putative phosphorylation site as described in Souret (2002) is also identified in the cTP

Figure 5. (Top) Alignment of amino acid sequences of DXR tp from the 15 plants.
(Bottom) Hydrophobicity plot of DXR amino acid sequence from Artemisia annua. Plots for all 15 species can be found in Fig. 12.
(In the cTP: $\boldsymbol{\nabla}$: cTP cleavage site; $\boldsymbol{\nabla}$: 1TP cleavage site.; * : putative phosphorylation site at Thr; ,-----, : motif containing binding site of the 14-3-3 chaperon
In the ITP: putative acidic A-domain, charged N -domain with twin arginine motif (RR), hydrophobic H-domain with conserved motif "PPPAWPG" (\longleftrightarrow) and polar C-domain containing basic residues).
domain (Fig. 5, *), within a motif similar to the binding site of a 14-3-3 protein involved in plastid transport (Fig. 5, $\leftarrow-\rightarrow$) (Waegemann and Soll, 1996). In addition, hydrophobicity analysis revealed that the cTP cleavage site coincides with a hydrophobic peak in the dicots (Fig. 5, with A. annиa plot as example). Comparison to the previous study on DXS revealed a similar hydrophobic peak between amino acid positions 35-45 (Krushal et al., 2003). This peak possibly corresponds to a transmembrane region, where the cTP is anchored in the chloroplast membranes and was subsequently cleaved off.

The remaining of the transit peptide strongly suggests the presence of a $\Delta \mathrm{pH}$ type of a thylakoid lumen targeting domain. A relatively short A domain continues after the cTP cleavage site, a domain known to be of variable length and usually containing acidic residues. Following this is the N domain which holds the distinct twin arginine motif. As mentioned earlier, this motif is a characteristic of all precursors that use the $\Delta \mathrm{pH}$ pathway (Mori and Cline, 2001), hence providing evidence that DXR is likely lumen targeted. In several of the species, the substitution of the RR motif to KR, RK and KK may hinder proper transportation of the precursor, but there is no indication that this would induce the lTP to convert to the Sec pathway (Mori and Cline, 2001). The next 12-18 residues resemble the hydrophobic H domain. This domain contains the Pro-rich motif "PPPAWPG" (Fig. 5, \longleftrightarrow) as described in Carretero-Paulet et al. (2002). Interestingly, a Pro-rich motif " $\mathrm{PP}(\mathrm{T} / \mathrm{I}) \mathrm{P}$ " is also found in a similar region (amino acid positions 78-81) in the DXS plant sequence (Krushkal et al., 2003). A well-known function of protein domains rich in Pro residues is to mediate protein-protein interactions (Kay et al., 2000). As such, we speculate that this Pro-rich region may play an essential role in the assembly of the $\Delta \mathrm{pH}$-dependent pathway translocon (Mori and Kline, 2002) Finally, the ITP ends
with the polar C domain, which is enriched in basic residues. The The cleavage site of the ITP can be easily deduced from sequence alignment with E. coli. Since bacteria do not contain the transit peptide domain, the start of the E. coli alignment would also indicate the start of the functional domain of the protein, hence revealing the likely lTP cleavage site (Fig. 5, \quad).

3.2 Phylogenetic Analysis

3.2.1 Established taxonomy

Taxonomy data for the 16 selected species were retrieved from NCBI (Table IV). The corresponding species tree is plotted in Fig. 6. Comparison of these established taxonomy data with the inferred trees from the 15 DXR sequences provide information on the evolutionary path of DXR.

Figure 6. Established species tree based on NCBI data.

Table IV. Taxonomy data retrieved from NCBI for species researched in this project.

Species Name	Taxonomy
Dicots	
Artemisia annua	*; Asterids; campanulids; Asterales; Asteraceae; Asteroideae; Anthemideae; Artemisia.
Stevia rebaudiana	*; Asterids; campanulids; Asterales; Asteraceae; Asteroideae; Eupatorieae; Stevia.
Catharanthus roseus	*; Asterids; lamiids; Gentianales; Apocynaceae; Rauvolfioideae; Vinceae; Catharanthus.
Lycopersicon esculentum	*; Asterids; lamiids; Solanales; Solanaceae; Solanum; Lycopersicon.
Antirrhinum majus	*; Asterids; lamiids; Lamiales; Plantaginaceae; Antirrhineae; Antirrhinum.
Arabidopsis thaliana	*; Rosids; eurosids II; Brassicales; Brassicaceae; Arabidopsis.
Populus alba x Populus tremula	*; Rosids; eurosids I; Malpighiales; Salicaceae; Saliceae; Populus.
Linum usitatissimum	*; Rosids; eurosids I; Malpighiales; Linaceae; Linum.
Pueraria montana var. lobata	*; Rosids; eurosids I; Fabales; Fabaceae; Papilionoideae; Phaseoleae; Pueraria.
Mentha x piperita	*; Asterids; lamiids; Lamiales; Lamiaceae; Nepetoideae; Nepeteae; Mentha.
(* = Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; Liliopsida)	
Oryza sativa	*; Poales; Poaceae; Ehrhartoideae; Oryzeae; Oryza.
Zea mays	*; Poales; Poaceae; PACCAD clade; Panicoideae; Andropogoneae; Zea.
Hordeum vulgare	*; Poales; Poaceae; Pooideae; Triticeae; Hordeum.
(${ }^{*}=$ Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta)	
Ginkgo biloba	*; Ginkgophyta; Ginkgoales; Ginkgoaceae; Ginkgo.
Taxus cuspidate	*; Coniferopsida; Coniferales; Taxaceae; Taxus.
	Bacteria
E. coli	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia.

(* species names stem from these points)

3.2.2 Evolution of the functional amino acid domain

Table V: Pairwise amino acid distances among functional regions of DXR
from 16 species.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
1. Artemisia		0.013	0.018	0.019	0.019	0.019	0.023	0.019	0.026	0.024	0.019	0.019	0.019	0.020	0.022	0.057
2. Stevia	0.066		0.017	0.018	0.018	0.018	0.023	0.019	0.026	0.023	0.018	0.017	0.019	0.020	0.022	0.058
3. Catharanthus	0.121	0.109		0.014	0.015	0.016	0.021	0.018	0.026	0.024	0.015	0.015	0.017	0.019	0.020	0.058
4. Lycopersicon	0.133	0.112	0.074		0.016	0.016	0.021	0.018	0.025	0.022	0.014	0.013	0.016	0.018	0.018	0.057
5. Antirrhinum	0.133	0.112	0.086	0.097		0.014	0.021	0.018	0.025	0.021	0.016	0.016	0.016	0.020	0.021	0.058
6. Arabidopsis	0.127	0.112	0.092	0.089	0.071		0.020	0.019	0.025	0.022	0.014	0.015	0.016	0.019	0.019	0.057
7. Populus	0.180	0.186	0.148	0.148	0.155	0.139		0.022	0.027	0.027	0.020	0.020	0.021	0.023	0.024	0.062
8. Linum	0.124	0.124	0.118	0.115	0.121	0.133	0.170		0.027	0.025	0.019	0.019	0.019	0.020	0.022	0.058
9. Pueraria	0.225	0.228	0.232	0.215	0.219	0.219	0.245	0.239		0.030	0.025	0.024	0.025	0.028	0.028	0.060
10. Mentha	0.199	0.183	0.189	0.173	0.155	0.161	0.239	0.209	0.297		0.023	0.023	0.023	0.025	0.026	0.062
11. Oryza	0.133	0.115	0.083	0.074	0.089	0.069	0.145	0.127	0.212	0.180		0.012	0.015	0.018	0.019	0.057
12. Zea	0.130	0.109	0.083	0.066	0.092	0.080	0.142	0.124	0.192	0.180	0.049		0.014	0.019	0.019	0.057
13. Hordeum	0.133	0.130	0.109	0.095	0.095	0.089	0.155	0.127	0.209	0.177	0.083	0.069		0.020	0.020	0.058
14. Taxus	0.136	0.139	0.133	0.112	0.145	0.124	0.186	0.139	0.252	0.215	0.121	0.127	0.145		0.016	0.058
15. Gingko	0.173	0.161	0.142	0.121	0.152	0.130	0.192	0.161	0.252	0.225	0.130	0.133	0.142	0.092		0.058
16. E. coli	0.796	0.814	0.814	0.796	0.814	0.808	0.889	0.820	0.863	0.889	0.802	0.802	0.814	0.814	0.814	

Lower left corner: pairwise distances values
Upper right corner: standard errors

A distance matrix for the conserved functional part of the DXR amino acids sequence shows that, as expected, the bacterium, E. coli, has the largest pair-wise distance value from the other plant species (Table V). A phylogenetic tree was then inferred from the distance matrix using the neighbor-joining method, with amino acid distance adjusted by the Poisson correction (Fig. 7).

Figure 7. Tree inferred from the functional amino acid sequence of DXR using neighboring-joining method.

Compared to the NCBI tree (Figure 6), several misclusterings were present in the inferred tree using the neighbor-joining method (Fig. 7). The first is the misclustering in Pueraria, Populus and Linum. Though they all belong to the Eurosid I family, none of them were clustered together in the inferred tree (Fig. 7). Moreover, Pueraria was separated from the other Eukaryotes and clustered with E. coli, with a bootstrap value of 72%. Another misclustering was with Arabidopsis, which was not clustered with the other Rosids. The monocots, though being clustered together, formed a clade within the other dicots which violates the established plant taxonomy. Most of these misclusterings, however, were supported by weak bootstrap values of less than 75\%. High bootstrap values were only seen in the correct clustering of the dicots Artemisia with Stevia, and the gymnosperms Taxus with Gingko, both supported by a bootstrap value of 97%. Trees inferred by the other methods derived similar conclusions (Fig. 8).

Figure 8. Phylogenetic trees inferred from the functional amino acid sequence of DXR using two different methods.
(Left: minimum evolution method; Right: maximum parsimony method)

3.2.3 Evolution of the transit peptide domain

As mentioned earlier, the full amino acid sequence contains an N -terminal transit peptide domain which is highly mutated and rather unconserved. To investigate if the apparent mutational events leading to the observed transit peptide diversity are related to the evolutionary path of the plant species, phylogenetic trees were inferred from the transit peptide along with the first ten residues of the functional domain (Fig. 9).

Interestingly, using the "maximum parsimony" method, a tree was produced in which the species were correctly clustered into dicots, monocots and gymnosperms (Fig. 9 top), with high bootstrap values of 98%. As such, one can imply that although mutation is a random event, mutation in species within close taxonomy does follow a similar trend and rate, at least in the case of the transit peptide.

Trees inferred using neighbor-joining and minimum evolution methods, (Fig. 9 bottom) produced similar results, except for the violation seen in Arabidopsis. It is the only member of the eurosids II in the list and this may, thus, be a reason for its distance from the other dicots.

Figure 9. Phylogenetic trees inferred from the transit domain of DXR.
(Top: maximum parsimony method; Bottom left: neighboring-joining method;
Bottom right: minimum evolution method; Arabidopsis indicated by \leftarrow)

3.2.4 Evolution of the full nucleotide sequence

When phylogenetic trees are inferred from the full nucleotide sequence, i.e. transit peptide and functional part (Fig. 10; Fig. 11), they showed a topology almost identical to the established species tree from NCBI (Fig. 6). The maximum parsimony method, in particular, produced a tree most closely aligned with the NCBI tree among the three methods used. The tree was also supported by high bootstrap values in most of the nodes ($>80 \%$). The only misclustering was in Linum, which should be clustered with Populus and Pueraria, as members of the eurosids I. Nevertheless, the misclustering is only supported by a low bootstrap value of 33%. With the resemblance observed between the DXR gene tree and the NCBI species tree, there is evidence that the evolution of DXR sequences follows closely with the divergence of the plant species in this study.

Figure 10. Phylogenetic tree inferred from the full nucleotide sequence of DXR using the maximum parsimony method.

Figure 11. Phylogenetic trees inferred from the full nucleotide sequence.
(Left: neighbor-joining method; Right: minimum evolution method)

Unlike our previous study on DXS (Krushkal et al., 2003) where phylogenetic analysis revealed the separation of DXS into DXS 1 and DXS 2, there is no strong indication that DXR is also separated into two classes based on the inferred trees.

3.3 Secondary Structure Prediction

Using the methods GOR IV and HNN, secondary structure prediction was performed on the conserved functional region of the DRX amino acid sequences form 15 plant species. These analyses will help to identify any conserved structural regions which may be altered in certain plant species due to mutations. Six regions of such interest were identified (Appendix II).

Region I (positions 1-25 of the protein alignment) was predicted to be structurally conserved by both GOR IV and HNN, with exception in positions 16-21. In this short region, the structure predicted by GOR IV showed extended strands in Catharanthus, Linum and the gymnosperms, while the other species were predicted as alpha helixes. Several amino acid substitutions were identified to support this structural difference. In Catharanthus, there is at position 12 an amino acid substitution from a larger isoleucine (I) to a smaller valine (V). Linum has a substitution from non-polar alanine (A) to polar, hydroxylated serine (S) at position 21. The gymnosperms had a substitution from small, neutral asparagine (N) to basic histidine (H) at position 23. It is interesting to note that all these substitutions correspond to a change in the residue size. Therefore, although none of these substitutions were located directly within positions $16-21$, substituting to a smaller or larger residue may still have an effect on the secondary structure prediction of nearby regions.

In region II (positions 165-175), the structure predicted using GOR IV showed extended strands in Anthirrhinum, Linum, Pueraria, Hordeum and the two gymnosperms. The other species were all predicted in this region to be alpha helixes. Both Anthirrhinum and Hordeum had an amino acid substitution at position 170, while Pueraria had a
substitution at position 171. There were no significant substitutions in the gymnosperms that set them apart from the rest.

Region III (positions 181-200) contains a conserved chain of alpha helixes as predicted by both GOR IV and HNN. The only exception is in Ginkgo, whose structure is predicted as random coils and extended strands. Amino acid substitutions were found at position 185 (basic glutamic acid (E) to neutral glycine (G)) and at position 193 (nonpolar alanine (A) to polar serine (S)); both positions may contribute to the predicted structural difference in Ginkgo.

Region IV (positions 241-260) can be grouped into two classes based on the amino acid at position 250. Plants with valine (V) at this position had an extended strand motif as predicted by GOR IV, while those with isoleucine (I) were predicted to have an alpha helix motif. Although exceptions were seen in Pueraria and Mentha, it appears that the amino acid at position 250 plays a crucial role in affecting the secondary structure of this region.

Region V (positions $310-327$) is predicted by both GORIV and HNN as a highly conserved region of random coils and helixes. The only exceptions were in Populus and Pueraria, which were predicted to contain extended strands in positions 315-322 by both methods. These positions correspond to a conserved motif " $\mathrm{M}(\mathrm{X}) \mathrm{LAY}(\mathrm{X}) \mathrm{A}$ ", which is highly mutated in both Populus and Pueraria.

Region VI (positions 370-400) is located towards the C-terminal end of the DXR protein. Both GOR IV and HNN predicted the presence of a continuous chain of alpha helixes. In Catharanthus, however, this chain was disrupted by some random coil. The variation was likely due to an amino acid substitution at position 383 .

The structural differences discussed in the above six regions are summarized in Table I. These differences were predicted using the GOR IV methods. Predictions using the HNN method were not significantly different for the six regions. Furthermore, the gymnosperms have consistently similar secondary structure in regions I to VI, which corresponds to the high bootstrap value of 97%. (Fig. 7). Likewise, both Artemisia and Stevia exhibit similar structures in the six regions, and are also supported by a bootstrap value of 97\% (Fig. 7).

Table VI. Six regions of the DXR functional domain with structural differences predicted by GOR IV among 15 plant species.

Region	Extended strand	Alpha helix	Random coil
I	Catharanthus, Linum, Taxus, Ginkgo	Others	-
II	Anthirrhinum, Linum, Pueraria, Hordeum,	Others	-
	Taxus, Ginkgo		
III	Gingko	Others	-
	Artemisia, Stevia, Catharanthus, Vycopersicon, Mentha, Zea,	Others	-
	Taxus, Gingko V		
Vopulus, Pueraria		Others	-

3.4 Hydrophobicity analysis

3.4.1 Transit peptide domain of DXR

Hydrophobicity plots for the fifteen selected DXR sequences are presented in Fig. 12 for the transit peptide region and regression analysis was performed. Although some species have significantly steeper negative slopes than others, the slopes of the resulting regression lines are negative for all species - a feature also observed in the DXS transit peptide (Krushkal et al., 2003). The plots also have similar shapes and share some distinct features. For example, a hydrophobic peak can be observed between amino acid positions $35-45$ in the dicot family, though the peak is less pronounced in the monocots and gymnosperms. As mentioned earlier, this peak corresponds to the putative cTP cleavage site. A corresponding peak was located at similar positions in the transit peptide of DXS (Krushkal et al., 2003), suggesting that this is likely a hydrophobic transmembrane region which may serve a role in the translocation of the peptide. Another distinct feature is the sharp rise in hydrophobicity between amino acid positions 91-100 found in all species, which had been identified as a feature of the H domain in the lTP. The presence of these two hydrophobic peaks likely corresponds to two trans-membrane regions, suggesting that the DXR transit peptide is bipartite.

Dicots

Hordeum vulgare

Gymnosperm

Taxus cuspidata

Ginkgo biloba

Figure 12.
Hydrophobicity plots of the transit peptide of DXR

3.4.2 Functional domain of DXR

Hydrophobicity plots of the functional DXR can be found in Appendix III. Comparison of the hydrophobicity plots for the functional protein revealed high similarity among all 15 species (Fig. 14), in accordance with the fact that the functional domain of DXR is highly conserved. A total of six prominent hydrophobic and hydrophilic peaks were identified (Table VII). In addition, there were two distinct hydrophilic peaks present only in selective species (Table VIII). These eight peaks were illustrated using Artemisia as an example (Fig. 12).

Three hydrophobic and three hydrophilic peaks were found common among all 15 species, with the exception of Pueraria at positions 24, 97, and 201 of the functional domain. Position 24 falls into region I of the predicted secondary structure, which shows an amino acid substitution from hydrophilic asparagine (N) to hydophobic phenylalanine (F) in Pueraria. Similarly, position 201 falls into region III of the predicted secondary structure, and have a hydrophilic asparagine (A) to hydrophobic isoleucine (I) substitution in the Pueraria sequence. No amino acid variation is observed at position 97.

Both Arabidopsis and Mentha were found to contain an additional hydrophilic peak at position 308. Another hydrophilic peak is also observed at position 362 but only in Arabidopsis, Pueraria, Taxus and Ginkgo. However, no amino acid variations are observed at these two positions to explain the absence of these peaks in the other species.

Comparison of Table VII and VIII showed that the hydrophobicity characteristic of Pueraria is different from the other dicots in most instances. Discrepancies are also present in Arabidopsis and Mentha. These three species were also the most distanced from the other dicots in the tree inferred using the maximum parsimony method (Fig. 8).

Table VII. Shared hydrophilic and hydrophobic peaks in the functional domain of DXR.

Position	Ar	St	Ca	Ly	An	Ar	Po	Li	Pu	Me	Or	Ze	Ho	Ta	Gi	Peak
24	-1.233	-1.3	-1.3	-1.3	-1.3	-1.3	-1.233	-1.522	-0.6	-1.3	-1.3	-1.3	-1.3	-1.2	-1.267	hydrophilic
31	1.789	1.722	1.722	1.722	1.722	1.722	1.789	1.789	1.5	1.756	1.722	1.722	1.722	1.789	1.722	hydrophobic
47	-1.2	-1.2	-1.511	-1.622	-1.544	-1.411	-1.578	-1.544	-1.478	-1.544	-1.556	-1.556	-1.556	-1.333	-1.933	hydrophilic
97	2.444	2.444	2.367	2.367	2.367	2.367	2.356	2.1	1.533	2.367	2.367	2.367	2.367	2.356	2.356	hydrophobic
131	2.056	2.056	2.046	2.056	2.056	2.056	2.056	2.056	2.089	2.056	2.056	2.056	2.056	2.056	2.056	hydrophobic
201	-1.878	-1.811	-2.111	-2.111	-2.111	-2.111	-1.811	-1.811	-0.778	-2.022	-2.111	-2.178	-1.811	-2.111	-2.111	hydrophilic

Table VIII. Unique hydrophilic peaks in the functional domain of DXR.

Position	Ar	St	Ca	Ly	An	Ar	Po	Li	Pu	Me	Or	Ze	Ho	Ta	Gi	Peak
309	-1.478	-1.478	-1.756	-1.478	-1.211	-2.111	0	-1.544	-1.178	-2.389	-1.478	-1.544	-1.478	-0.811	-0.811	hydrophilic
362	-1.133	-0.833	-0.544	-1.244	-1.311	-1.833	-1.133	-1.244	-1.722	-1.533	-1.2	-1.2	-1.411	-2.689	-1.978	hydrophilic

(Ar = Artemisia; St =Stevia; Ca =Catharanthus; Ly = Lycopersicon; An = Anthirrhinum; Ar = Arabidiposis; Po =Populus; Li=Linum; Pu =Pueraria; Me = Mentha; Or = Oryza; Ze=Zea; Ho= Hordeum; Ta =Taxus; Gi=Ginkgo)

Artemisia annua

Figure 13. The eight hydrophobic and hydrophilic peaks in the functional domain of DXR, as indicated in Table VII (solid arrow) and Table VIII (dash arrow).

4 Conclusion

These results showed that DXR sequences from the 15 plant species are possibly bipartite, containing features unique to the use of the $\Delta \mathrm{pH}$ transit pathway. To my understanding, this is the first suggestion that DXR proteins are not only targeted to the chloroplast, but also to the thylakoid lumen. In addition, I have identified several amino acids residues from the functional domain of DXR, whose mutations have led to a significant change in either the secondary structure or hydrophobicity behavior of the region. Furthermore, phylogenetic analyses revealed only a single class of DXR, in contrast to the separation of two classes in DXS.

REFERENCES

Carretero-Paulet, L., Ahumada, I., Cunillera, N., Rodriguez-Concepcion, M., Ferrer, A., Boronat, A., Campos, N. 2002. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-Dxylulose 5-phosphate reductoisomerase, the first committed enxyme of the 2-C-methyl-D-erythritol 4phosphate pathway. Plant Physiology 129: 1581-1591.

Croteau, R., Kutchan, T.M. and Lewis, N.G. 2000. Natural Products (Secondary Metabolites). In: Biochemistry \& Molecular Biology of Plants, B.Croteau, W. Gruissem, R. Jones, Eds. American Society of Plant Physiologists: 150-1268.

Dubey, V.S., Bhalla, R. and Luthra, R. 2003. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. Journal of Biosciences 28: 637-646.

Emanuelsson, O., Nielsen, H. and von Heijne, G. 1999. ChloroP, a neural network-based method for predicting chloroplast transit peptide and their cleavage sites. Protein Science 8: 978-984.

Emanuelsson, O., von Heijne, G., 2001. Prediction of organellar targeting signals. Biochimica et Biophysica Acta 1541:114-119.

Estévez, C.M., Cantero, A., Reindl, A., Reichler, S. and Leon, P. 2001. 1-deoxy-D-xylulose 5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. Journal of Biological Chemistry 276: 22901-22909.

Garnier, J., Gibrat, J-F and Robson, B. 1996. GOR secondary structure prediction method version IV. Method in Enzymology 226: 540-553.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. and Bairoch, A. 2005. Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook, Walker, J.M., Eds. Humana Press: 571-607.

Guermeur, Y. 1997. Combinaison de classifieurs statistiques, Application a la prediction de structure secondaire des proteines. PhD. Thesis. University of Paris.

Jackson-Constan, D., Akita, M. and Keegstra, K. 2001. Molecular chaperones involved in chloroplast protein import. Biochimica et Biophysica Acta 1541: 102-113.

Kay, B.K., Williamson, M.P. and Sudol, M. 2000. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. The FASEB Journal 14: 231-241.

Krushal, J., Pistilli, M., Ferrell, K.M., Souret, F.F. and Weathers, P.J. 2003. Computational analysis of the evolution of the structure and function of 1-deoxy-D-xylulose 5-phosphate synthase, a key regulator of the mevalonate-independent pathway in plants. Gene 313: 127-138.

Kumar S., Tamura K., Jakobsen I.B., \& Nei M. 2001. MEGA 2: Molecular Evolutionary Genetics Analysis Software. Bioinformatics 17 (12): 1244-1245.

Kuzuyama, T., Takahashi, S., Takagi, M. and Seto, H. 2000. Characterization of 1-Deoxy-D-xylulose 5Phosphate Reductoisomerase, an Enzyme Involved in Isopentenyl Diphosphate Biosynthesis, and Identification of Its Catalytic Amino Acid Residues. Journal of Biological Chemistry 275(26): 1992819932.

Kyte, J. and Dolittle, R. 1982. A simple method for displaying the hydropathic character of proteins. Journal of Molecular Biology 157: 105-132.

Mahmoud, S.S. and Croteau, R.B. 2001. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase.
Proceedings of the National Academy of Science of the United States of America 98(15): 8915-8920.
Mahmoud, S.S. and Croteau, R.B. 2002. Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends in Plant Science 7(8): 366-373.

Mori, H., Cline, K. 2001. Post-translational protein translocation into thylakoids by the Sec and $\Delta \mathrm{pH}-$ dependent pathways. Biochimica et Biophysica Acta 1541: 80-90.

Rane, M.J., Calvo, K.C. 1997. Reversal of the nucleotide specificity of ketol acid reductoisomerase by sitedirected mutagenesis identifies the NADPH binding site. Archives of Biochemistry and Biophysics 338(1): 83-89.

Sehnke, P.C., Henry, R., Cline, K., Ferl, R.J. 2000. Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid-targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant Physiology 122: 235-241.

Souret, F.F. 2002. Transcriptional regulation of terpenoid genes in transformed roots of Artemisia anпиа. Ph.D. Thesis in Biotechnology, Worcester Polytechnic Institute, Worcester, MA.

Takahashi, S., Tomohisa, K., Hiroyuki, W. and Seto, H. 1998. A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proceedings of the National Academy of Sciences 95: 9879-9884.

Thompson,J.D., Gibson,T.J., Plewniak,F., Jeanmougin,F. and Higgins,D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876-4882.

Veau, B., Courtois, M., Oudin, A., Chenieux, J-C., Rideau, M., Clastre, M. 2000. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochimica et Biophysica Acta 1517(1):159-63.

Walter, M.H., Fester, T., Stract, D. 2000. Arbuscular mycorrhizal fungi induce the non-melvalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the "yellow pigment"and other apocarotenoids. Plant Journal 21: 571-578.

Waegemann, K., Soll, J. 1996. Phosphorylation of the transit sequence of chloroplast precursor protein.
The Journal of Biological Chemistry 271(11): 6545-6554.
Westerlund, I., von Heijne, G. and Emanuelsson, O. 2003. LumenP- A neural network predictor for protein localization in the thylakoid lumen. Protein Science 12: 2360-2366.

Appendix I

Sequence alignment of nucleotide sequences and amino acid sequences of DXR

CLUSTAL X (1.81) MULTIPLE SEQUENCE ALIGNMENT

 File: G: ull nucleotide alignmentPage 1 of 5

File: G: ull nucleotide alignment
Page 2 of 5

File: G: ull nucleotide alignment
Date: Sun Feb 20 17:42:43 2005
Page 3 of 5

File: G: ull nucleotide alignment
Date: Sun Feb 20 17:42:43 2005
Page 4 of 5

CLUSTAL X (1.81) MULTIPLE SEQUENCE ALIGNMENT

File: G: ull nucleotide alignment
Date: Sun Feb 20 17:42:43 2005
Page 5 of 5

A. annua ---------------- 1419

$\begin{array}{ll}\text { L.esculentum } \\ \text { A.majus } & 1726 \\ & 1475\end{array}$
A. thaliana
P. tremula AAAAAAAAAAAAAAA
1724
$\begin{array}{rrr}\text { usitatissimum } & 1695 \\ \text { P. montana AAAAAAAAAAA------- } & 1788 \\ & 1759\end{array}$
$\begin{array}{ll}\text { M. piperita } & 1759 \\ \text { O. sativa } & 1706\end{array}$
$\begin{array}{ll}\text { O.sativa }-\cdots- \\ \text { Z. mays } & 1706 \\ & 1678\end{array}$
$\begin{array}{cc}\text { H. vulgare } \\ \text { G.biloba } & 1800 \\ 1434\end{array}$
T.cuspidata $-\cdots \quad 155$
ruler 1960..
\qquad

File: H:Full Amino Acid Alignment
Date: Wed Apr 13 19:42:32 2005
Page 1 of 2

File: H:Full Amino Acid Alignment
Date: Wed Apr 13 19:42:32 2005
Page 2 of 2

A. annua
GYLDIFRVVELTCERHOAELVIAPSLEEIIHYDLWAREYAASVKPSSSGLTPALV

Appendix II

Secondary structure prediction of the functional domain in DXR (Boxed regions indicates where differences occurs)

```
GOR IV and HNN:
    Alpha helix (h)
    Extended strand (e)
    Random coil (c)
```


Region I

Artemisia

GOR4
HNNC
Stevia
GOR4
HNNC
Catharanthus
GOR4
HNNC

Lycopersicon
GOR4
HNNC
Anthirrhinum
GOR4
HNNC
Arabidopsis
GOR4
HNNC
Populus
GOR4
HNNC

Linum
GOR4
HNNC
Pueraria
GOR4
HNNC
Mentha
GOR4
HNNC
Oryza
GOR4
HNNC

Zea
GOR4
HNNC
Hordeum
GOR4
HNNC

Taxus
GOR4
HNNC

Ginkgo
GOR4
HNNC

Artemisia VAELKEALAGSDYMPEIIPGDEGVVEVARHPDCVTVVTGIVGCAGLKPTVAAIEAGKNIA

GOR4
HNNC

Stevia
GOR4
HNNC

Catharanthus
GOR4
HNNC

Lycopersicon
GOR4
HNNC

Anthirrhinum
GOR 4
HNNC

Arabidopsis
GOR4
HNNC

Populus
GOR4
HNNC

Linum
GOR4
HNNC

Pueraria
GOR4
HNNC

Mentha
GOR4
HNNC

Oryza
GOR4
HNNC

Zea
GOR4
HNNC

Hordeum
GOR4
HNNC

Taxus
GOR4
HNNC

Ginkgo
GOR4
HNNC
hhhhhhhhcccccccceeccccceeeeeccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhcccccceeeccccceeeeeccccceeeeeeeeecccccchhhhhhhchhhh

VGELKEALADADYMPEIIPGDQGIIEVARHPDCVTVVTGIVGCAGLKPTVAAIEAGKNIA hhhhhhhhhhhccccceeccccceeeeeccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhhhcccccecccccceeeeeccccceeeeeeeeecccccchhhhhhhchhhh

VNELKEALSDVDDKPEIIPGEQGVVEVVRHSDAVTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhcccccccceeccccceeeeeecccceeeeeeeecccccccceeeeeeeeeee hhhhhhhhhccccccceeccccceeeeeecccceeeeeeeeecccccchhhhhhhchhhh

VEELKDALADMEDKPEIIPGEQGVIEVARHPDAVTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhhccccccccccceeeeeecccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhhhhcccceccccceeeeeeccccceeeeeeeeecccccchhhhhhhchhhh

INELKEALFDVEDKPEIIPGEQGIIEVARHPDAVTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhccccccccccccceeeeeccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhhhcccccecccccceeeeeccccceeeeeeeeecccccchhhhhhhchhhh

INELKEALADLDYKLEIIPGEQGVIEVARHPEAVTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhhhhhhhhcccccceeeecccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhhccceeeeeccccceeeeecccceeeeeeeeeecccccchhhhhhhchhhh

VDELKEALADVEEKPEIIPGEQGVVEVARHPDAVSVVTGIVGCAGLKPTVAAIEAGKDIC hhhhhhhhhhhcccccccccccceeeeeccccceeeeeeeecccccccchhhhhhchhhh hhhhhhhhhhhhcccceecccceeeeeeccccceeeeeeeeecccccchhhhhhhcccee

AKELKEALAGLEVMPEIIPGEEGIVEVARHPDAATVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhhhccccccccccceeeeecccccceeeeeeecccccccchhhhhhhhhhh hhhhhhhhhcchccccecccccceeeeeccccceeeeeeeeecccccchhhhhhhchhhh

IDELKEALADVEHKPEIIPGEQGVIEAARHPDSTTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhhccccccccccchhhhhhcccccceeeeeeeeccccccchhhhhhhhhhh hhhhhhhhhhhcccccccccccceeeeccccccceeeeeeeecccccchhhhhhhchhhh

ISELKEALAGFEDMPEIIPGEQGMIEVARHPDAVTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhcccccceeccccceeeeeccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhhhhccccccccccceeeeeccccceeeeeeeeecccccchhhhhhhchhhh

VDELKEALADCDWKPEIIPGEQGVIEVARHPDAVTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhccccccccccccceeeeeccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhhcccccceccccceeeeeeccccceeeeeeeeecccccchhhhhhhchhhh

VDELKEALADCEEKPEIIPGEQGVIEVARHPDAVTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhhcccccccccccceeeeeccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhhhhcccceccccceeeeeeccccceeeeeeeeecccccchhhhhhhchhhh

LNELKEALAGCEEMPEIIPGEQGVIEVARHPDAVTVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhccccccccccccceeeeeccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhcchcccccccccceeeeeeccccceeeeeeeeecccccchhhhhhhchhhh

ATELKEALADIEHKPEIVYGDEGMVEVAQHPEAVSVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhhhhccccceeeccccceeeeccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhhhcccceeeecccceeeeeccccceeeeeeeeecccccchhhhhhhchhhh

ITELKAALSDFEPKPEIISGEEGIVEVARHPEAVSVVTGIVGCAGLKPTVAAIEAGKDIA hhhhhhhhccccccceeeccccchhhhcccccceeeeeeeecccccccchhhhhhhhhhh hhhhhhhhhcccccceeeecccceeeeeccccceeeeeeeeecccccchhhhhhhchhhh

	130140150160	$\underset{170}{\text { Region II }}$	180
	1 \|		
Artemisia	LANKETLIAGGPFVLPLAHKHNVKILPADSEHSAIFQCIQGFPEG	ALRRIILTAS	GAFR
GOR4	hhhhhhhhcccoceecccocccceeecccccchhhhhcccoccco	chhhhhhhhc	cccc
HNNC	hcciceeeccicceeccicccceeeeccccchhhhhhhhhhcchh	chheeeeecc	cchh
Stevia	LANKETLIAGGPFVLPLARKHNVKILPADSEHSAIFQCIQGFPEG	ALRRIILTAS	GAFR
GOR4	hhhhhhhhccecchhhhhhhccceeecccccchhhhhcoccoccc	chhhhhhhhc	CCCC
HNNC	hhccceeeccccchechhcccceeeeccccchhhhhhhhhhcchh	chheeeeecc	cchh
Catharanthus	LANKETLIAGXPFVLP LAHKHKVKILPADSEHSAIFQCIQGLPEG	ALRRIILTAS	GAFR
GOR4	eeeeeeeeccccchhhhhhhcceeeecccccchhhheeeccoccc	chhhhhhhhc	CCCC
HNNC	hhccceeeccicceecciccceeeeeccccchhhhhhhhhhccco	chheeeeecc	cchh
Lycopersicon	LANKETLIAGGPFVLPPAHKHKVKILPADSEHSAIFQCIQGLPEGA	GALRRIILTAS	GAFR
GOR4	hhhhhhhhccccccccccoccceeeecccccchhhheeeccccco	chhhhhhhhc	CCCC
HNNC	hcciceeecciccccicccoceeeeeccccchhhhhhhhhhcccc	chheeeeecc	cchh
Anthirrhinum	LANKETLIAGGPFVLPLAHKHKVKILPADSEHSAIFQCIQGLPEG	GALRRVILTAS	GAFR
GOR 4	hhhhhhhhccccchhhhhhhcceeeeccoccchhhheeeccoccc	ceeeeeeeec	cccc
HNNC	hhccceeeccicceecciccceeeeeccccchhhhhhhhhhcocc	cheeeeeecc	cchh
Arabidopsis	LANKETLIAGGPFVLPLANKHNVKILPADSEHSAIFQCIQGLPEG	GALRKIILTAS	GAFR
GOR 4	hhhhhhhhccocceeccocccoeeeeccoccchhhheeeccoccc	hhhhhhhhcc	cccc
HNNC	hhccheeeccocceeccocccceeeeccccchhhhhhhhhhcchh	cheeeeeecc	cchh
Populus	LANKETLIAGGPFVLPLAHKYNVKILPADSEHSAIFQCIQGLPEG	ALRRIILTAS	GAFR
GOR4	hhccceecccccceeccccocceeeecccccchhhheeecccocc	chhhhhhhhc	CCCC
HNNC	eeccceeeccccceecccccceeeeeccccchhhhhhhhhhcccc	chheeeeecc	cchh
Linum	LANKETLIAGGPFVLPLAHKHKVKILPADSEHSAIFQCIQGLPEG	ALRRIILTAS	GGSER
GOR4	hhhhhhhhccccchhhhhhhcceeeecccccchhhheeecccccc	ceeeeeeecc	CCCC
HNNC	hhccceeeccicceecciccceeeeeccccchhhhhhhhhhcocc	chheeeeecc	cchh
Pueraria	LANKETMIAGAPFVLPLAHKHNIKILPADSEHSAIFQSIQGLPKG	ALRKILLTGS	GAFR
GOR4	hhhhhhhhccccchhhhhhcccceeeccccchhhhhhhhhcccc	eeeeeeeccc	ccch
HNNC	hhccoceecciccecccocccceeeeccccchhhhhhhhhhhchh	chheeeeecc	cchh
Mentha	LANKETLIAGGPFVLPLAKKHNVKILPADSEHSAIFQCIQGLPEG	ALRRIILTAS	GGAFR
GOR4	hhhhhhhhccccchhhhhhcccceeecccccchhhheeecccccc	chhhhhhhhc	CCCC
HNNC	hhccceeeccicceechccccceeeeccccchhhhhhhhhhcccc	chheeeeecc	cchh
Oryza	LANKETLIAGGPFVLPLAQKHKVKILPADSEHSAIFQCIQGLPEG	ALRRIILTAS	GGAFR
GOR4	hhhhhhhhccocchhhhhhhhhhhhhcccccchhhheeeccoccc	chhhhhhhhc	cccc
HNNC	hhccceeeccccchechcccceeeeeccccchhhhhhhhhhcccc	chheeeeecc	cchh
Zea	LANKETLIAGGPFVLPLAHKHKVKILPADSEHSAIFQCIQGLSEG	ALRRIILTAS	GGAFR
GOR4	hhhhhhhhccccchhhhhhhcceeeecccccchhhhhhhcocccc	cchhhhhhhc	CCCC
HNNC	hhccceeeccicceecciccceeeeeccccchhhhhhhhhhhchh	chhheeeecc	CCCC
Hordeum	LANKETLIAGGPFVLPLAHKHNVKILPADSEHSAIFQCIQGLSEG	GSLRRVILTAS	GGAFR
GOR 4	hhhhhhhhccocceeccoccccceeecccccchhhhhhhcocccc	ceeeeeeecc	cccc
HNNC	hhccceeeccicceeccicccceeeeccccchhhhhhhhhhcccc	cheeeeeecc	cchh
Taxus	LANKETLIAGGPFVLP LAHKHKVKILPADSEHSAIFQCIQGLPEG	GALRRIILTAS	GGSFR
GOR4	hhhhhhhhccccchhhhhhhcceeeecccccchhhheeecccccc	ceeeeeeecc	CCCC
HNNC	hhcoceeeccicceecciccceeeeeccocchhhhhhhhhhcocc	chheeeeecc	ccch
Ginkgo	LANKETLIAGGPFVLPLAHKHKVKILPADSEHSAIFQCIQGLPEG	GGLRRIILTAS	GGAFR
GOR4	hhhhhhhhccccchhhhhhhcceeeecccccchhhheeeccoccc	cceeeeeecc	CCCC
HNNC	hhccceeeccicceecciccceeeeeccccchhhhhhhhhhcocc	cceeeeeecc	CcCc

	190200	$\begin{array}{llll}0 & 210 & 22030 & 240\end{array}$
Artemisia	DWPVEKLKDVKVADALKHP	JWSMGRKITVDSATLFN-KGLEVIEAHYLYGSSYDNIDIVI
GOR 4	cchhhhhchhhhhhhhccc	ccccceeeechhhhhh-cchhhhhhhhhccccccceeeee
HNNC	hhhhhhhhchhhhhhhccc	ccccceeeechhhhhh-chhhhhhheeeecccccceeeee
Stevia	DLPVEKLKDVKVADALKHP	TWSMGKKITVDSATLEN-KGLEVIEAHYLYGSDYDNIEIVI
GOR4	cchhhhhhhhhhhhhhccc	cccoceeeecchhhhh-cchhhhhhhhhcccoccceeeee
HNNC	nhhhhhhcchhhhhhhccc	(ccccoeeeechhhhhh-cchhhhhheeeecccccceeeee
Catharanthus	DWPVEKLKEVKVADALKHP N	WWNMGKKITVDSATLFN-KGLEVIEAHYLFGAEYDNIDIVI
GOR4	cchhhhhhhhhhhhhhccc	ccccoeeeecchhhhh-cchhhhhhhhhhcccccceeeee
HNNC	hhhhhhhhhhhhhhhh ccc	ccocceeeechhhhhh-cchhhhhhhheeccicceeeeee
Lycopersicon	DWPVEKLKEVKVADALKHP ${ }^{\text {J }}$	TWNMGKKITVDSATLFN-KGLEVIEAHYLFGAEYDNIEIVI
GOR4	cchhhhhhhhhhhhhhccc	ccccceeeecchhhhh-cchhhhhhhhhhccccoceeeee
HNNC	hhhhhhhhhhhhhhhhccc	+cccoeeeechhhhhh-cchhhhhhhheecciccoeeeee
Anthirrhinum	DLPVEKLKEVKVADALKHP	WWNMGKKITVDSATLFN-KGLEVIEAHYLFGAEYDDIEIVI
GOR4	cchhhhhhhhhhhhhhccc	ccocceeeecchhhhh-cchhhhhhhhhcocccoceeeee
HNNC	hhhhhhhhhhhhhhhhccc	+cccoeeeechhhhhh-cchhhhhhhheecciccoeeeee
Arabidopsis	DWPVEKLKEVKVADALKHP	TWNMGKKITVDSATLFN-KGLEVIEAHYLFGAEYDDIEIVI
GOR4	cchhhhhhhhhhhhhhccc	ccccceeeecchhhhh-cchhhhhhhhhccccocceeeee
HNNC	hhhhhhhhhhhhhhhh ccc	cccoceeeechhhhhh-cchhhhhhhheeccoccoeeeee
Populus	DWPVEKLKEVKVADALKHP	TWSMGKKITVDSATLFN-KGLEVIEAHYLFGAEYDNIDIVI
GOR4	cchhhhhhhhhhhhhhccc	ccccceeeecchhhhh-cchhhhhhhhhhcccccoceeee
HNNC	hhhhhhhhhhhhhhhhccc	Ccccceeeechhhhhh-cchhhhhhhheecccccceeeee
Linum	DLPVEKLKDVKVADALKHP	WWSMGKKITVDSATLFN-KGLEVIEAHYLFGADYDNIDIVI
GOR4	cchhhhhhhhhhhhhhccc	-cccoceeecchhhhh-cchhhhhhhhhccccccccceee
HNNC	hhhhhhhhchhhhhhhcec	ccccceeeechhhhhh-cchhhhhhhheecccccceeeee
Pueraria	EWP AEKMKD IKLADALKHP	WSLGRKITIDSATLFN-KGLEVIEAHYLFGASYDDIEIVI
GOR4	hhhhhhhhhhhhhhhhccc	
HNNC	hhhhhhhhhhhhhhhhhcch	hhcchheeecchhhhh-chhhhhhhhhhhcccccceeeee
Mentha	DLPVEKLKEVKVADALKHSNT	JWNMGKKNTVRLLQLFFNKGLEVIKAHYLFGAEYDDIEIVI
GOR 4	cchhhhhhhhhhhhhhhhc	ccccccchhhhhhhhhhcchhhhhhhhhhccccceeeeee
HNNC	nhhhhhhhhhhhhhhhhhc	(ccccchhhhhhhhhhhhcchhhhhheheecccciceeeee
Oryza	DWPVDKLKEVKVADALKHP	TWNMGKKITVDSATLFN-KGLEVIEAHYLFGAEYDDIEIVI
GOR4	ccchhhhhhhhhhhhh ccc	+cccoceeeecchhhhh-cchhhhhhhhhcccoccoeeeee
HNNC	hhchhhhhhhhhhhhhccc	.cccoceeeechhhhhh-cchhhhhhhheeccoccoeeeee
Zea	DWPVDRLKDVKVADALKHP N	WWNMGRKITVDSATLFN-KGLEVIEAHYLFGAEYDDIEIVI
GOR 4	cccccccchhhhhhhhccc	ccccoeeeechhhhhh-cchhhhhhhhhccoccoceeeee
HNNC	hcchhhhhhhhhhhhhccc	+cccoeeechhhhhh-cchhhhhhhheeccoccceeeee
Hordeum	DWPVEKLKDVKVADALKHP	TWSMGKKITVDSATLFN-KGLEVIEAHYLFGAEYDDIDIVI
GOR4	cchhhhhchhhhhhhhccc	ccccceeeecchhhhh-cchhhhhhhhhccccccceeeee
HNNC	hhhhhhhhchhhhhhhccc	ccccceeeechhhhhh-cchhhhhhhheecccccceeeee
Taxus	DWPVEKLKEVKVADALKHP J	WWNMGKKITVDSATLFN-KGLEVIEAHYLYGVDYDNIEIVI
GOR4	cchhhhhhhhhhhhhhccc	ccocceeeecchhhhh-cchhhhhhheeeccocccoeeee
HNNC	hhhhhhhhhhhhhhhhccc	.ccciceeeechhhhhh-cchhhhhhheeecccocceeeee
Ginkgo	DWPVGKLKEVKVSDALKHP N	WWNMGKKITVDSATLFN-KGLEVIEAHYLYGADYDNIEIVI
GOR4	Cccccccceeeeeeeeccc	cccoceeeecchhhhh-cchhhhhhhhhcocccocceeee
HNNC	ccccocceeeeeccccccc	(ccccoeeeechhhhhh-chhhhhhhhheecccccoeeeee

Region IV					
	250260	0270	280	290	300
Artemisia		LGWP DMRLP ILYTLSWPDRVQCS－－－－EITWPRLDLCKLG			
	HPQSIIHSMVETQDSSVLAф				
GOR4		¢ccccicccoeeeecccoeeecc－－－－ceecccccccccc			
HNNC	hheheehcccccheeelt	hccicccceeeeeeeccicccicc－－－－cccciccchhhcc			
Stevia	HPQSIIHSMVETQDSSVLAф	LGWPDMRLP ILYTLSWPDRISCS－－－－EITWPRLDLCKLG			
GOR4	eeeeeeccccceeee¢	¢cccciccceeeeecciceeeec－－－－ceecccciccccc			
HNNC	hhehehhcccccheeeh	hccccccceeeeeeeccccccccc－－－－ccccccchhhcc			
Catharanthus	HPQSIIHSMVETQDSSVLAф	LLGWPDMRLP ILYTLSWPDRISCS－－－－EITWPRLDLCKLG			
GOR 4	creeeeeecccoceeee申	¢ccccccccceeeeecccceeeec－－－－ceecccccccccc			
HNNC	hheheehcccccheeeh	ccicccoeeeeeeeccccccccc－－－－cccccccchhhcc			
Lycopersicon	HPQSIIHSMVETQDSSVLA中	LLGWPDMRLP ILYTLSWPDRVYCS－－－－EITWPRLDLCKLG			
GOR4	eeeeeeccccceeee	¢ccccccccoeeeeeccreeeee－－－－ceecccccccccc			
HNNC	hhehehhcccccheeet	ccccccceeeeeeeccccceee \qquad C			
Anthirrhinum	HPQSIIHSMIETQDSSILAф	LGWPDMRLP ILYTLSWPDRVHCS－－－－EITWPRLDLCKLG			
GOR 4	cccchhhhhhhcccchhhhn	ccccccccoeeeeeccceeeee－－－－ceecccccccccc			
HNNC	hhehhhhcccchheeet	hccccccceeeeeeeccccccccc－－－－cccccccchhhcc			
Arabidopsis	HPQSIIHSMIETQDSSVLAф	中LGWP DMRLP ILYTMSWP DRVPCS－－－－EVTWPRLDLCKLG			
GOR 4	cccchhhhhhhcccchhhhn	cccccceeceeeeeeccceeccc－－－－ceecccccccccc			
HNNC	hhcccccheeet	hcccccceeeeeeeccccccccc－－－－cccccccchhhcc			
Populus	HQQSIIHSMIETQDSSVIA中	中LGWP DMRLP ILYTMSWP DRVYCSKAP DNVKYP SMDLAYAA			
GOR 4	chhhhhhhhhhccoceeee¢	戈cccceeceeeeeeccceeeeccccccccccchhhhhhh			
HNNC	ecchhehheecccoceeee¢	电cccccceeeeeeeccccceeccccccccccccchhhhhh			
Linum	HPQSIIHSMIETQDSSVLA中				
GOR 4	cccchhhhhhhcccchhhhn	cccccceeceeeeeeccceeccc－－－－ceecccccccccc			
HNNC	cochhehhhhcccocheeek	hccccccceeeeeeeccccccccc－－－－cccccccchhhcc			
Pueraria	HPQSIIHSLVETQDSSVIA中	QLGIPDMRLPLLYTLSWPERIYCS－－－－EVTWPRLDLSKYG			
GOR4	cccchhhhhhhcccchhhhi	h cccccccceeeeecccceeeee－－－－ccccccccccccc			
HNNC		hcccccccceeeee \qquad $-\operatorname{ccccccccccc}$			
Mentha	HSP S I IHSMVETQDSSVLAф	中LGWP DMRLPILYTLSWPERVYCS－－－－EITWPRLDLCKVD			
GOR4		¢cccccccceeeeecccceeeec－－－－ceecccccccccc			
HNNC	eeeeeecccocheeeh	ccccccceeeeeeeccccceeec－－－－cccccccceecc			
Oryza	HPQSIIHSMIETQDSSVLAф	QLGWPDMRIPILYTMSWPDRIYCS－－－－EVTWPRLDLCKLG			
GOR4	cccchhhhhhhcccchhhhn	hinccccceeeeeeeecccceeeee－－－－ceecccccccccc			
HNNC	hhehhhhcccocheeen	hcccccceeeeeeee ccccceee \qquad cccccccchhh			
Zea	HPQSIIHSMVETQDSSVLA中	¢LGWP DMRLP ILYTLSWPDRIYCS－－－－EVTWPRLDLCKLG			
GOR 4	cccceeeeeecccccee	ccccicccceeeeecccceeeee－－－－ceecciccccccc			
HNNC	ccchheheehcco	ccccccceeeeeee ccccceee －－－－cccccccchhh			
Hordeum	HPQSIIHSMIETQDSSVLAф	¢ 4 GWP DMRLP ILYTLSWPDRVYCS－－－－EVTWPRLDLCKLG			
GOR4	cccchhhhhhhcccchhhhi	hincccccccceeeeeeccceeeee－－－－ceecccccccccc			
HNNC	chhehhhhcccccheeeh	ehccccccceeeeeeeccccceeec－－－－cccccccchhhcc			
Taxus	HPQSIIHSMVETQDSSVLA¢	¢LGWPDMRLP ILYTMSWPERVPCS－－－－EITWPRLDLCKLG			
GOR 4	cccreeeeeeccccceeee申	Cccccceeceeeeecccceeccc－－－－ceecccccccccc			
HNNC	ccchhehehhcccccheeeh	ehccccccceeeeeeeccccccccc－－－－cccccccchhhcc			
Ginkgo	HPQS IVHSMVETQDSSVLAф	中LGWPDMRLP I	ERV	EVTW	KSG
GOR4	cccceeeeeecccrceee	cccccoeece	cee	cee	CCC
HNNC	eccreeeeeecccccheeet	pccccccee	ccc	CCC	Ccc

	Region V			
	310320	330 340 350		
	-1	\|		
Artemisia	SLTFKAPDNVKYP SMHLAYSAGRAG	¢TMTGVLSAANEKAVEMFLDEKIGYLDIFKVVELT		
GOR4	ccccceccdccecchhhhhhccecc	ceeeehhhhhhhhhhhhhhhcccccceeeeeeee		
HNNC	cceeccccaccccchhehhhccccc	ceeeeeecchhhhhhhhhhhhhchhhhhhhhhhh		
Stevia	SLTFKAPDNVKYP SMDLAYAAGRAG	¢TMTGVLSAANEKAVEMFIDEKIQYLDIFKVVELT		
GOR4	ccccceccdccecchhhhhhhhhcc	chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh		
HNNC	cceeccocc ${ }^{\text {coccchhhhhhhhccc }}$	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhh		
Catharanthus	SLTFKTPDNVKYP SMDLAYAAGRAG	¢TMTGVLSAANEKAVELFIDEKISYLDIFKVVELT		
GOR4	cccceccecceccehhhhhhhhhcc	chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh		
HNNC	cceecccocccochhhhhhhhccc	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhh		
Lycopersicon	SLTFKAPDNVKYP SMDLAYSAGRAG	FTMTGVLSAANEKAVELFISERISYLDIFKIVELT		
GOR4	ccceccecceccecchhhhhccecc	chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh		
HNNC	cceeccecceccechhhhhhhhcce	ceeeeeechhhhhhhhhhhhhhhhhhhhhhhhhh		
Anthirrhinum	SLTFKVPDNVKYP SMDLAYAAGRAG	¢TMTGVLSAANEKAVEMF IDEKISYLDIFKVVELT		
GOR4	cceeccccoccccchhhhhhhhhcc	ceeeehhhhhhhhhhhhhhchhhhhhhhhhhhhc		
HNNC	cceeecccoccccchhhhhhhhccc	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhc		
Arabidopsis	SLTFKKPDNVKYP SMDLAYAAGRAG	¢TMTGVLSAANEKAVEMFIDEKISYLDIFKVVELT		
GOR4	cccceccecoccechhhhhhhhhcc	ceeeehhhhhhhhhhhhhhchhhhhheeeeeeec		
HNNC	cceecccedccccchhhhhhhhcce	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhc		
Populus	EITWPRLDLCKLGSLTFG----RAG	¢TMTGVLSAANEKAVEMFIDEKISYLDIFKVVELT		
GOR4	hhhhccccclcccceeeee----ccc	ceeeehhhhhhhhhhhhhhchhhhhheeeeeeec		
HNNC	hhccccchhhhccceecc----ccc	cceeeehhhhhhhhhhhhhhhhhhhhhhhhhhec		
Linum	SLTFRAPDNVKYP SMNLAYAAGRAG	¢TMTGVLSAANEKAVELFIDEKIAYLDIFKIVELT		
GOR4	ccccccccocccechhhhhhhcccc	ceeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhh		
HNNC	cceecccedccccchhhhhhhhcce	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhh		
Pueraria	SLTFFAPDDKKFPSVNLCYAAGRAG	¢TMTGVLSAANEKAVEMFVEEKISYLDIFKVVELT		
GOR4	ccccceeceeeeecccc	ceeeehhhhhhhhhhhhhhhhhchhhhhhhhhhh		
HNNC	eeeeecccclccccceeehhhcccc	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhh		
Mentha	-LPFKKPDNREIPAMDLAYAAWKSR	\$TMTGVLSAANEKAVEMFIDEKIGYLDIFKVVELT		
GOR4	-ccccccecccehhhhhhhhhhhcc	cceeehhhhhhhhhhhhhhhhccccceeeeeeec		
HNNC	- ccceccecocechhhhhhhhhhcc	cccchhhhhhhhhhhhhhhhhhchhhhhhhhhec		
Oryza	SLTFKAPDNVKYP SMDLAYAAGRAG*	FTMTGVLSAANEKAVELFIDEKIGYLDIFKVVELT		
GOR4	cccccecceccecchhhhhhhhhcc	ceeeehhhhhhhhhhhhhhhhhcccceeeeeeec		
HNNC	cceecccceccccchhhhhhhhccc	ceeeeeecchhhhhhhhhhhhhchhhhhhhhhec		
Zea	SLTERAPDNVKYPSMDLAYAAGRAG	¢TMTGVLSAANEKAVELFIDEKISYLDIFKVVELT		
GOR4	ccccocccoccccchhhhhhhhhcc	chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhc		
HNNC	cceecccec cccechhhhhhhhccc	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhh		
Hordeum	SLTEKAPDNVKYPSVDLAYAAGRAG	¢TMTGVLSAANEKAVELFIDEKISYLDIFKVVEMT		
GOR4	ccccccccocccecchhhhhhcccc	chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhc		
HNNC	cceecccectcccohhhhhhhhccc	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhc		
Taxus	SLTEKAPDCVKYPSMDLAYSAGRAG	¢TMTGVLSAANEKAVELFIDERISYLDIFKVVEKT		
GOR4	eecccccceeccccccchhhccccc	chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhccc		
HNNC	cceecccocccccohhhhhhhhccc	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhh		
Ginkgo	SLTFKAPDCVKYPSMDLAYSAGRAG	¢TMTGVLSAANEKAVELFIEEKISYLDIFKVVEMT		
GOR4	eecccccceeccccccchhhccccc	chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhc		
HNNC	ceeecccocccocchhhhhhhhccc	ceeeeeecchhhhhhhhhhhhhhhhhhhhhhhhc		

Region VI

Artemisia
GOR4
HNNC

Stevia
GOR4
HNNC

Catharanthus
GOR4
HNNC

Lycopersicon
GOR4
HNNC

Anthirrhinum
GOR4
HNNC

Arabidopsis
GOR4
HNNC

Populus
GOR 4
HNNC

Linum
GOR4
HNNC

Pueraria
GOR4
HNNC

Mentha
GOR4
HNNC

Oryza
GOR4
HNNC
Zea
GOR4
HNNC
Hordeum
GOR 4
HNNC

Taxus
GOR4
HNNC

Ginkgo
GOR4
HNNC

Appendix III

Hydrophobicity plots for the functional domain of DXR

Dicots

Artemisia annua

Stevia rebaudiana

Catharanthus roseus

Antirrhinum majus

Arabidopsis thaliana

Populus alba x Populus tremula

Linum usitatissimum

Pueraria montana var. lobata

Mentha x piperita

Monocots

Oryza sativa

Zeamays

Hordeum vulgare

Gymnosperms

Taxus cuspidata

Ginkgo biloba

