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1. Abstract 
Through study of the model organism Caenorhabditis elegans and its complex neuronal 

pathways, research into the underlying mechanisms behind human behaviors is possible. Many 

of these observable neuronal pathways involve chemosensory interaction between the animal and 

small molecules in its environment. Through chemosensation, C. elegans is capable of detecting 

and responding to a variety of odors and pheromones, including several ascarosides- small 

molecules produced by C. elegans which enable communication and induce attractant or 

repulsive responses in other individuals. One ascaroside, Octapamine Succinyl Ascaroside #9 

(osas#9), is released by starved L1 C. elegans larvae and is known to induce an olfactory 

avoidance response in individuals at all life stages. However, due to multisensory integration in 

response to osas#9 and an unknown metabolite in OP50 E. coli (a typical food source) the 

avoidance behavior is attenuated in young adults. This attenuation reaction is hypothesized to be 

dependent on the ASK and ADF neurons and involve the neurotransmitter serotonin. Avoidance 

behavior assays and attenuation assays were performed and determined the need for the MOD-1 

serotonin-gated chloride channel in attenuation of the osas#9 avoidance pathway in response to 

an unknown E. coli metabolite. Additionally, these assays also pointed to the possible partial 

involvement of the serotonin uptake transporter MOD-5 and the neuropeptide receptor NPR-1. 
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2. Background 
 

2.1 Caenorhabditis elegans as a Model Organism 
Caenorhabditis elegans are small nematode worms, approximately 1 millimeter in length 

as adults, and are typically found feeding on bacteria-rich regions in soil and fruits (Félix and 

Braendle, 2010). Fully grown C. elegans are simple multicellular organisms and contain about 

1000 somatic cells, 302 of which are neurons (Corsi, 2006). Since its first organized use in 

genetic research in 1963, C. elegans has been a commonly used model organism for the study of 

neural pathways and mechanosensory, chemosensory, and thermosensory behavioral responses 

of larger and more complex organisms, including humans (Brenner, 1974).  

The advantages of C. elegans as a model organism are many. Firstly, C. elegans are 

physiologically ideal for studying the correlations between behavioral, genetic, biochemical, and 

anatomical abnormalities (Ward, 1973). These studies are facilitated by the fully-sequenced 

genome, extensively studied neuronal structure, and transparent features of the worm at all life 

stages (Corsi, 2006). In addition to the morphological advantages, C. elegans are also self-

fertilizing, develop between 300 to 1,000 progeny per single adult, and have a generation time of 

only 3.5 days at 22 °C , allowing for the quick and effective development of genetic variants for 

experimental use (Corsi, 2006).  

The life cycle of C. elegans is short and temperature-dependent. At 22 °C, C. elegans 

reach adulthood in approximately 2.5 days, progressing through the life stages of in utero 

embryogenesis, egg development and hatching, four larval stages (L1-L4), young adulthood, and 

adulthood. Colder temperatures (between 16 and 20 °C) slow C. elegans growth and 

development. Under conditions of starvation, overcrowding, or freezing temperatures, C. elegans 

follow an alternative life cycle in which the larval L2 stage develops into the pre-dauer and dauer 

stages. Pre-dauer and dauer specimens exhibit a decreased stress response and may exist in this 

state for as many as 4 months until conditions improve, followed by entry into the L4 larval state 

and normal young adult and adult development (Corsi, 2006). The brevity of the generation time 

as well as the increased species hardiness due to the dauer stage makes C. elegans a simple and 

effective model organism for laboratory use. 
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2.2 Maintenance of Laboratory-Grown C. elegans 
 C. elegans is an effective model organism for even small laboratories, as very few 

materials are required for their use. A wide variety of strains are easily ordered from the 

Caenorhabditis Genetics Center (CGC) and can be easily maintained in a laboratory 

environment. Worms are typically kept in Nematode Growth Medium (NGM) petri dishes 

seeded with a live food source of the OP50 strain of E. coli (Félix and Braendle, 2010).Worms 

may be frozen indefinitely in -196 °C liquid nitrogen for long term storage, or may be actively 

maintained between 16 and 20 °C (Stiernagle, 2006).  

 

2.3 Avoidance Behavior 
When organisms are exposed to a threatening external environmental stimulus, they 

undergo species-specific reactions in which the organism attempts to prevent a negative effect 

from occurring. These responses, from the fight-or-flight response to the startle reflex, comprise 

the innate self-preservatory activities known as avoidance behavior. External stimuli observed to 

induce an avoidance response in most organisms include harmful chemicals, extreme 

temperature change, physical pain, and alarm pheromones (Andrew, 2012). 

Because C. elegans are incapable of sight, they must navigate their environments strictly 

thorugh the senses of taste, smell, and touch. The detection of dangerous external stimuli, 

including dangerous or communicatory chemical signals, is vital to their survival and social 

interaction. Due to their relatively advanced neuronal system, C. elegans are capable of 

performing multiple behavioral functions dependent on chemosensation, from food detection to 

mating to avoidance of dangerous substances (Chute and Srinivasan, 2014), including quinine, 

glycerol, and other toxic chemicals and plant alkaloids (Hilliard et al., 2002).  

 

2.3.1 Chemosensory neurons 
Such avoidance responses depend on an the largest chemosensory organ in nematodes, 

the amphid. In C. elegans, the right and left amphids consist of a set of 12 sensory neurons 

clustered near the pharyngeal bulb in the head and extend sensory cilia out toward the front tip of 

the animal. These cilia penetrate the cuticle of the worm and allow exposure to the environment 
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(Bargmann, 2006). An image depicting the 12 amphid sensory neurons (plus one male-specific 

sensory neuron) can be seen below in Figure 1. 

 
Figure 1: The 12 amphid sensory neurons plus the male-specific sensory neuron CEM (green). Adapted from Chute 
and Srinivasan, 2014.  

 

11 of these amphid neurons (ADF, ADL, ASE, ASG, ASH, ASI, ASJ, ASK, AWA, 

AWB, and AWC) directly influence chemosensory behavioral responses, while the twelfth, 

ADF, mediates thermosensory responses (Inglis et al., 2007). These neurons function through 

very specific transduction pathways, involving sets of known and unknown components which 

interact with relevant molecules. An example of a partially known chemosensory neuron 

pathway is seen in Figure 2 below and describes the signal transduction of the ASH neuron in 

response to a chemical repellent (octanol). 
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Figure 2: Signal transduction pathway of ASH in response to a chemical repellent (octanol). Dotted lines represent 
an unknown number of unidentified molecules between known components. Components followed by a question 
mark represent an unknown placement of that component in the transduction pathway. Adapted from Hart and Chao, 
2010. 

 
 
The role of each known component to a signal transduction pathway is important, as 

phenotype-altering mutations in those specific components can help to implicate specific neurons 

in larger pathways. Then, selective ablation of those specific neurons could confirm their 

involvement in the observed behavior. 

 

2.3.2 G-Protein Coupled Receptors 
Additional components that are important to the signal transduction pathways of 

chemosensory neurons are G-Protein Coupled Receptors (GPCRs). GPCRs are large 

transmembrane receptors which activate G proteins by binding to external signaling molecules, 

causing a conformational change. This conformational change activates the G protein’s alpha 

subunit through replacement of bound GDP with GTP and diffusion of its beta - gamma dimer, 

allowing the G protein to function in signaling (O’Connor and Adams, 2010). 

 At least 1000 GPCRs are speculated to be encoded in the C. elegans genome, most of 

which are predominantly expressed in chemosensory neurons (Bargmann, 2006). Most of these 

GPCRs, including the STR-xx, SRA-xx, SRG-xx, SRW-xx superfamilies and ODR-10 are 

assumed to be olfactory receptors, coupling to heterotrimeric G-proteins. There are multiple 

receptors expressed in each sensory neuron, any of which possibly having major involvement in 

the transduction pathways of their respective neurons (Hart and Chao, 2010). 
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2.3.3 Ascarosides 
Interspecies communication is also capable of inducing an avoidance response in C. 

elegans individuals. Various stages of C. elegans produce a class of small molecules known as 

“ascarosides,” or glycosides of ascarylose. These ascarosides function as C. elegans pheromones, 

providing methods of communication between individuals by playing a role in several neuronal 

signaling pathways, depending on their specific molecular structures. The first known 

ascarosides, including ascr#1, ascr#2, ascr#5, and ascr#8, were identified to regulate dauer 

formation. Ascarosides can also be found in the pheromones of male and hermaphroditic 

individuals, enabling chemosensory detection and attraction of a potential mate (Chute and 

Srinivasan, 2014).  

 Ascaroside biosynthesis is dependent on side-chain formation via peroxisomal β- 

oxidation, which shortens long-chain fatty acids and produces acetyl-CoA in vivo. (Ludewig and 

Schroeder, 2013). Biosynthesis of the different ascarosides is known to be dependent on various 

factors, including the nutritional state of the worm (Chute and Srinivasan, 2014). Studies of loss-

of-function mutants including gpa-2, gpa-3, srbc-64, and srbc-65 have implicated the 

involvement of GPCRs in chemosensory detection of ascarosides. A 2012 study conducted by 

Park et al. found that ascr#2 directly binds to the DAF-37 GPCR, demonstrating the ability of 

GPCRs to act directly as ascaroside receptors. This binding is extremely structure-specific for 

both the GPCR and side chain of the ascaroside of interest (Park et al., 2012).  

 One ascaroside of interest is generated from the succinylation of the C. elegans 

neurotransmitter octapamine, which forms a side chain on the ascarylose sugar base. This 

ascaroside is most structurally similar to ascr#9, connected to the nitrogen of octapamine. This 

ascaroside was named Octapamine Succinylated Ascaroside #9 (osas#9) according to 

WormBase’s Small Molecule Identifier standard naming conventions (Ludewig, 2013). The 

chemical structure of osas#9 and related ascarosides, adapted from Artyukhin et al (2013), can be 

seen in Figure 3 below. 
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Figure 3: Ascaroside Chemical Structures  
The proposed chemical structures of various ascr#9 derivatives, including osas#2, osas#9, and osas#10. Adapted 
from Adapted from Artyukhin et al. 
 

 

The structure of osas#9 was confirmed via NMR comparison of synthetic osas#9 and 

osas#9 produced in vivo. Through HPLC and NMR analysis, osas#9, has been identified as a 

component of the chemical signals released by starved L1 larvae. Osas#9 may be isolated via 

preparative HPLC for use in avoidance behavioral assays. When exposed to concentrated osas#9, 

all life stages of C. elegans have been known to respond with immediate avoidance of the treated 

area through locomotory reversal. As osas#9 is associated with starved L1 larvae, this finding 

draws the conclusion that osas#9 may be used as a component of an intraspecies signal to 

communicate the absence of available food. The study of osas#9’s role in avoidance behavior 

has higher implications for the purpose of biogenic amine succinylation as a method of 

ascaroside-based communication in C. elegans (Artyukhin et al., 2013).  

 

2.3.4 Multisensory integration 
 Further evidence of the biological importance of osas#9 in C. elegans is the ability of the 

avoidance response to be attenuated in the presence of a food source. The ability of C. elegans to 

gather information obtained from multiple senses, in this case olfaction of both osas#9 and the 
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food source simultaneously, is known as multisensory integration. Artyukhin et al. discovered 

the attenuation of this characteristic avoidance response in the presence of both osas#9 and an E. 

coli foodsource, signifying that a metabolite in E. coli may be responsible for this behavior. 

(Artyukhin et al., 2013). The attenuation of the avoidance response is an example of the 

adaptation of neuronal signaling pathways under multisensory integration.  

In 2015, Turland confirmed the dependency of E. coli concentration on the attenuation of 

the avoidance response to osas#9 as well as established the minimum ideal concentration of the 

master stock of E. coli extract to be 1/1000. To date, no attenuating E. coli metabolite has been 

identified and the neuronal pathway remains largely unknown, however two neurons, including 

ASK and ADF, have been identified to be at least partially involved in the attenuation pathway, 

and one neuron, ASH, has been confirmed to be necessary in the detection of osas#9 (Turland, 

2015; Yabut, 2017).  

 

2.4 Serotonin 
In 2017, Yabut examined the attenuation of the osas#9 avoidance response in a variety of 

genetically mutated strains of C. elegans and found that attenuation is not observed in tph-1 

mutated strains. As tph-1 encodes tryptophan hydroxylase, an enzyme that catalyzes serotonin 

biosynthesis, it is likely that serotonin is in part required for attenuation (Yabut, 2017). 

5-hydroxytryptamine (5-HT), also called serotonin, acts as a monoamine neurotransmitter 

and neuromodulator in many animal species, including C. elegans (Sawin et al., 2000). In 

humans and other vertebrates, serotonin plays a role in a wide variety behavioral responses, 

including sleep modulation and sexual response. It functions in the nervous system by acting as a 

transmitter and producing various paracrine and hormonal effects. Deficiencies in serotonin have 

been linked to such disorders as depression, posttraumatic stress, and epilepsy (National Center 

for Biotechnology Information, 2017). 

In vivo serotonin release in C. elegans is known to modulate locomotion and also has 

implications in the stimulation of egg laying and pharyngeal pumping (Chase and Koelle, 2007). 

Serotonin signaling is a major part of the stress response in both mammals and C. elegans 

(Tatum et al., 2014). When exposed to a bacterial lawn of OP50 as a food source, starved 

animals are more likely to slow their locomotory rate than well-fed animals. This behavior is 

known as the “enhanced slowing response,” which has been observed to require serotonin. Sawin 
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et al. conducted a 2000 study in which the enhanced slowing response was rescued in strains 

mutant for serotonin biosynthetic enzymes with the introduction of 2 mM exogenous serotonin 

(Sawin, et al., 2000). 

 

2.4.1 C. elegans Serotonergic Elements 
Serotonin is utilized and synthesized in several elements in wildtype C. elegans models. 

Serotonin is biosynthesized in 8 types of C. elegans neurons, including CP1-6, R1/R3/R9, NSM, 

HSN, VC4-5, ADF, RIH, and AIM. Of these 8 neurons, ADF, a sensory neuron, has been 

identified to be a part of the attenuation pathway (Chase and Koelle, 2007).  

In C. elegans, several receptors are known to bind serotonin that may have a role in the 

attenuation pathway. Of these, three are GPCRs (SER-1, SER-4, and SER-7), and one is a 

serotonin-gated channel (MOD-1). Also potentially relevant to the attenuation pathway are the 

serotonin neurotransmitter uptake transporter (MOD-5) and the neuropeptide receptor (NPR-1), 

which modulates aerotaxis and feeding behavior (Gurel et al., 2012). 

Of particular interest to this project is the serotonin-gated chloride channel, MOD-1. 

MOD-1 is dependent on the internal concentration of chloride ions rather than cations as is 

common in most C. elegans channels. According to a 2012 study, MOD-1 is one of the major 

receptors (together with SER-4) which allow C. elegans to slow locomotion via exogenous and 

endogenous serotonin, also known as serotonin paralysis (Gurel et al., 2012). While mod-1 

mutants have previously been studied to be defective in the enhanced slowing response 

(Ranganathan et al., 2000), further study has proven that mod-1 requires a background mutation, 

n4954, to be defective (Gurel et al, 2012). Mod-1 is expressed in 11 cells in C. elegans, including 

6 interneurons (AIA, AIB, AIY, AIZ, RIB, RIC), 4 motor neuron (DD, RIM, RME, and VD), 

and 1 neuron that acts as both (RID) (Bhatla, 2009). 
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3. Methods and Materials 

3.1 Strains 
The Bristol N2 wildtype strain was used and obtained from the Caenorhabditis Genetics 

Center (CGC). The N2 strain was utilized in all experiments as a baseline control. A mutant tph-

1 strain was obtained from the CGC and used to confirm previous findings. Strains with point 

mutations of genes coding for various serotonin receptors and serotonin-gated channels, 

including MT9668, MT9771, DA1814, AQ866, RB1584, and CX4148, were also received from 

the CGC. 

 

3.2 Maintenance of C. elegans  
All strains of C. elegans were maintained on NGM agar plates seeded with 3 drops of E. 

coli OP50 as a food source. Petri dishes were kept in plastic containers at 20 °C. Worms were 

transferred between plates using a flame-sanitized platinum wire periodically to prevent 

overcrowding. Contaminated plates were treated with a diluted bleach solution and the washed 

eggs were transferred to a clean seeded plate.  

 

3.3 Avoidance Behavior Assays 
Drop assays were performed to test the avoidance behaviors of the wildtype strain when 

exposed to different solutions of interest. The young adult worms from each plate were 

transferred onto a clean unseeded plate with a pipette, washing with M9 buffer twice. After being 

transferred, the young adults were allowed to freely move around the plate for 3 hours. A drop of 

solvent control (DI H2O) was pipetted by mouth on the tails of individual worms, allowing the 

solvent to envelop the worm. Within 4 seconds of the drop being placed, behavior was quantified 

as either “avoidance” or “no avoidance” depending on the worm’s locomotion; “Avoidance” is 

defined as either the backward motion of at least one body length or a head turn of greater than 

90 degrees. 20 young adult worms per plate were assayed. The process was repeated for a 

solution of interest, 2M glycerol, which is a known repellent. A separate assay was completed 

using 1 µM osas#9 as the solution of interest. Both assays were performed at least 3 times per 

strain on 3 separate days.  
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3.4 Avoidance Attenuation Assays 
Similar to the avoidance behavior assay (drop assay), an avoidance attenuation drop 

assay was performed on several different strains. This assay tests the avoidance reaction of any 

given strain in comparison to solutions of interest combining a constant concentration of osas#9 

with varying concentrations of E. coli extract. Mixtures prepared for this set of assays included 1 

µM osas#9 and DI H2O as positive and negative solvent controls, and 1 µM osas#9 + 1/1000 

extract, 1 µM osas#9 + 1/2000 extract, and 1 µM osas#9 + 1/10000 extract.  

These dilutions were produced by diluting the master stock of E. coli extract in 1 mL 

100% EtOH to 10% using 10 µL of master stock and 90 µL of 100% EtOH. 5%, and 1% extract 

stocks were produced by mixing 40 µL and 10 µL of the 10% stock with 40 µL and 90 µL of 

100% EtOH, respectively. 98 µL of DI H2O, 11 µL of 10 µL osas#9 in EtOH, and 1 µL of 10% 

extract stock were combined to produce 1 µM osas#9 + 1/1000 extract dilutions. This was 

repeated using 1 µL of 5% extract stock and 1% extract stock to produce 1 µM osas#9 + 1/2000 

and 1 µM osas#9 + 1/10000 extract dilutions respectively. 

 In order to confirm the need for serotonin in the attenuation pathway, an attenuation 

assay was performed on tph-1, a mutation of C. elegans incapable of biosynthesizing serotonin 

via tryptophan hydroxylase. 20 worms per plate were tested with a drop of each of the two 

controls and three solutions of interest. Their avoidance reactions were quantified in the same 

manner as the drop test from Section 3.3. This attenuation assay was completed in triplicate with 

one trial each day over a course of 3 days.  

 In order to identify the exact role that serotonin plays in attenuation, several strains with 

mutations in genes involving serotonin receptor GPCRs, a neuropeptide receptor GPCR, and 

serotonin-related channels were assayed at least 3 times on 3 different days in the same manner. 

The results were compared to three trials of the wildtype, N2. A table of assayed mutant strains 

and their modifications can be seen below. 
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Table 1: Assayed mutant strains and their modifications 

Strain Modified Gene Modified Allele Phenotype 

DA 1814 ser-1 ok345 5-HT2 receptor, 

GPCR 

AQ 866 ser-4 ok512 5-HT1 receptor, 

GPCR 

RB 1585 ser-7 ok1944 5-HT6 receptor, 

GPCR 

CX 4148 npr-1 ky13 Neuropeptide 

receptor, GPCR 

MT 9668 mod-1 ok103 Serotonin-gated 

chloride channel 

MT 9772 mod-5 n3314 Serotonin uptake 

transporter 

 

3.5 Well-fed Avoidance Behavior Assay 
 The avoidance behavior assay from Section 3.3 was repeated on well-fed MT9668 (mod-

1) mutants to confirm the lack of attenuation in the presence of food. The assay was performed 

on the plates on which the worms were raised and used DI H2O as a solvent control and osas#9 

as a solution of interest. This assay was repeated three times on three different days. 

 

3.6 Exogenous Rescue Attenuation Assay 
A rescue assay using exogenous serotonin was performed to attempt to restore the ability 

of the mutant worms to attenuate their avoidance response to osas#9 when exposed to a food 

source. 1.5g NaCl, 1.75g bacto peptone, and 8.5g agar were dissolved in 500 mL of DI H2O and 
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autoclaved for 30 minutes. The solution was allowed to cool to approximately 50 °C. 25 mL of 

1M KH2PO4 buffer, 1 ml of 1M MgSO4, 1 ml of 1M CaCl2, 1 mL of cholesterol stock (5 mg/mL 

in ethanol), and 425.36 mg serotonin hydrochloride powder (MW= 212.68 Da) were added to the 

cooled solution, bringing the final concentration of serotonin to 4 mM. The solution was poured 

into 50 5 cm plates under a fume hood and allowed to cool overnight. The 4mM serotonin NGM 

plates were stored at room temperature until use.  

 The avoidance attenuation assays from Section 3.4 were repeated, transferring the 

starved worms to these 4mM serotonin NGM plates instead of standard NGM plates and 

allowing the worms to move freely about the plate for 3 hours. MT 9668 (mod-1) and tph-1 

mutant strains were assayed using DI H2O and 1 µM osas#9 as solvent controls and 1 µM osas#9 

+ 1/1000 extract, 1 µM osas#9 + 1/2000 extract, and 1 µM osas#9 + 1/10000 extract as solutions 

of interest. The assay was performed three times per strain on three different days. 

 

3.7 Statistical Analysis 
 Statistical analysis was performed using the Data Analysis Tools contained in the 

FUNCRES.XLAM add-on to Microsoft Excel. Mann-Whitney U tests and parametric one-way 

ANOVAS were used to determine statistical significance. 
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4. Results 
 

Drop assays were performed to confirm the tendency of starved wildtype C. elegans to 

avoid osas#9 and develop a baseline for further study. Figure 4 below shows the results of the 

assay of N2 avoidance of 2M glycerol (3A) and 1µM osas#9. (3B). 

 

(A)           (B) 

    
Figure 4: Wildtype avoidance assays 
(A) Avoidance of wildtype (N2) samples to solvent control (DI H2O) and solution of interest (2M glycerol). P 
=0.0009, N=11. (B) Avoidance of N2 samples to solvent control (DI H2O) and solution of interest (1µM osas#9). 
P=0.0275, N=4. P-values were obtained via Mann-Whitney tests. Error bars represent SEM. 
 

 

Several starved strains were then assayed to determine their ability to attenuate the 

avoidance response to osas#9 when exposed to varying levels of E. coli extract. A graph of the 

results of each assay is below in Figure 5. 
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Figure 5: Avoidance attenuation assays of wildtype strain and 7 mutant strains 
All P values calculated comparing positive control (1 µM osas#9) and 1 µM osas#9 + 1/1000 extract using one-way 
ANOVA. Non-significant strains include mod-1 (p=0.6278, N=4) and tph-1 (p=0.4217, N=3). 
 
 
 The wildtype strain accurately shows the expected response of a negative correlation 

between extract concentrations and avoidance index. Of the 7 tested mutant strains, 5 showed a 

statistically significant difference between the positive control (1 µM osas#9) and the 1 µM 

osas#9 + 1/1000 extract, verifying the strain’s ability to attenuate the osas#9 avoidance response 

in the presence of E. coli. The remaining two strains, mutant for mod-1 and tph-1, did not display 

statistically significant differences (P=0.6278 and P=0.4217, respectively), drawing the 

conclusion that both the MOD-1 serotonin-gated channel and TPH-1 are required for attenuation. 

These results confirm the previous finding that TPH-1 is required for the attenuation of 

the avoidance response to osas#9 and implies the direct or indirect involvement of MOD-1. More 

specifically, individuals that are incapable of chloride uptake via the MOD-1 protein are not able 

to detect or respond to the metabolite in E. coli responsible for attenuation. This MOD-1 protein 
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requires serotonin to act as a proper chloride channel, the major source of which could be from 

TPH-1 in wildtype strains. 

While they do show a statistically significant difference when comparing the positive 

control to the 1/1000 extract, there is a slight visual deviation from the wildtype for the mod-5 

and npr-1 mutants in the 1/10000 and 1/2000 extracts in Figure 5. At smaller concentrations 

(<1/1000), mod-5 appears to not respond to the extract and npr-1 appears to respond more than 

the wildtype. While this finding is not entirely significant, it does imply that NPR-1 and MOD-5 

may be partially involved in the attenuation response and suggests further research. 

In order to provide more evidence of the need for MOD-1 in the attenuation response, an 

avoidance attenuation assay was performed on well-fed mod-1 mutant samples. The results of 

this assay can be seen below in Figure 6. 

 

 
Figure 6: Well-fed avoidance behavior assay (mod-1) 
Avoidance of mutant mod-1 samples to solvent control (DI H2O) and solution of interest (1 µM osas#9). P =0.0007, 
N=3. Significance determined via one-way ANOVA. 
  

 

 The difference between the solvent control and the solution of interest is statistically 

significant, implying the inability of mod-1 mutants to attenuate the osas#9 avoidance response 
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even in the presence of a large amount of food. This provides further evidence into the need for 

MOD-1 in the attenuation pathway. 

 

 Finally, an exogenous rescue via exposure to 4mM of exogenous serotonin was attempted 

for the mod-1 and tph-1 mutant samples in order to restore the ability of both strains to attenuate 

the osas#9 avoidance response. The results of an attenuation behavior assay on these attempted 

rescues can be seen below in Figure 7.  

 

(A)        (B) 

 
Figure 7: Avoidance attenuation assays for exogenous rescues of tph-1 and mod-1  
(A) Avoidance attenuation assays of rescued tph-1 strain after treatment with 4mM serotonin. There is a statistically 
significant difference between tph-1 and tph-1 rescue for 1 µM osas#9 + 1/2000 extract (P=0.0078, N=3) and 1 µM 
osas#9 + 1/1000 extract (P=0.0394, N=3). (B) Avoidance attenuation assays of rescued mod-1 strain after treatment 
with 4mM serotonin. There is a statistically significant difference between mod-1 and mod-1 rescue for 1 µM osas#9 
+ 1/1000 extract (P=0.0401, N=4). WT provided for visual comparison. All p-values determined via one way 
ANOVA. Error bars represent SEM. 
 

 

 While a statistically significant difference was achieved for the 1 µM osas#9 + 1/1000 

extracts in both tph-1 to tph-1 rescues (P=0.0394) and mod-1 to mod-1 rescues (P=0.0401), 

neither rescue was able to completely restore the attenuation response. The tph-1 rescue was able 

to increase attenuation over the tph-1 mutant by approximately 16%, while the mod-1 rescue was 

only able to increase attenuation by approximately 13%.  
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5. Discussion 
This project aimed to investigate the possible role(s) of serotonin in the neuronal pathway 

responsible for attenuation of the avoidance response to osas#9 in the presence of an E. coli food 

source. Confirmation of these possible roles is capable of implicating several neurons in this 

neuronal pathway and directing future studies. 

The data confirms the involvement of serotonin in the attenuation pathway. In Figure 5, 

no statistical difference was found between the positive control (1 µM osas#9) and the 1 µM 

osas#9 + 1/1000 extract trials of mod-1 (P=0.6278) and tph-1 (P=0.4217), implying the inability 

of such mutants to attenuate the osas#9 avoidance response through detection of the unknown E. 

coli metabolite. This finding points to the involvement of the serotonin-gated chloride channel 

MOD-1 and the serotonin biosynthesizer TPH-1 in the response. Figure 5 also visually opens up 

several other receptors, including NPR-1 and MOD-5, as possible candidates fornpr further 

study. Attempts to provide more evidence as to the involvement of MOD-1 resulted in a 

statistically significant difference between the solvent control and the solution of interest in well-

fed mod-1 mutants (Figure 6, P=0.0007) and provided a proof of concept that rescue of the mod-

1 strain may be capable of restoring its ability to attenuate the osas#9 avoidance response (Figure 

7B, P=0.0394). 

Exposure to 4mM exogenous serotonin was not an effective technique in completely 

rescuing the attenuation of the avoidance response to osas#9. However, this result is to be 

expected as exogenous serotonin is known to decrease locomotory movement in wildtype (N2) 

samples (Gurel et al., 2012). An initial trial of increasing the concentration of exogenous 

serotonin from 4mM to 8 mM for mod-1 rescues resulted in a lack of avoidance response to 

either 1 µM osas#9 or 2M glycerol. Future experiments may be capable of rescuing the 

attenuation response through an endogenous rescue or through titration of exogenous serotonin 

in order to minimize the paralyzing response to serotonin in N2 samples.  

Additionally, this research draws attention a connection between the ability of mod-1 

mutants to attenuate their avoidance response to osas#9 and perform enhanced slowing in 

response to an apparent E. coli metabolite. (Chase and Koelle, 2006). For this reason it is 

possible that the mechanisms for enhanced slowing in starved worms and attenuation of the 

osas#9 avoidance response are related, including similar E. coli metabolite uptake and detection.  
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Further continuation of this project would benefit to study into possible correlations between 

enhanced slowing and attenuation of starved C. elegans samples in response to a food source. 

This project opens up the opportunity for directed study into the neuronal pathways 

involved in the attenuation response. Previous research has theorized a working neuronal 

pathway involving ASH as the primary sensory neuron facilitating osas#9 avoidance, while ADF 

and ASK may work cooperatively in detecting the unknown E. coli metabolite and attenuating 

the avoidance response. The working model developed by Yabut is below in Figure 8. 

 

 
Figure 8: A working model of the neuronal pathway for attenuation of the osas#9 avoidance response. Adapted from 
Yabut, 2017.  
 

These findings may also implicate several interneurons in the neuronal signaling pathway 

of attenuation, including AIA, AIB, AIY, and AIZ. For example, the AIA interneuron, which is 

known to utilize MOD-1, forms a gap junction with ADF and is synapsed onto and synapses 

onto both ASK and ASH. Further study would provide important insights into the working 

model of the neuronal pathway of osas#9 avoidance attenuation in young adults. For example, 

attenuation avoidance assays, as described in Section 3.4, conducted on C. elegans individuals 

ablated for ADF, ASK, and/or any of the possible MOD-1 utilizing interneurons would be 

capable of determining each neuron’s involvement in the attenuation pathway. 

Once more neurons are identified to be involved in the attenuation response to osas#9 

avoidance and the neuronal signaling pathway becomes more complete, proper identification of 
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the E. coli metabolite responsible for this attenuation response may become a reality. Assays of 

isolated known chemical compounds detected by the involved sensory neurons could confirm the 

responsible metabolite if they invoke a similar attenuation response as the E. coli extract. If not, 

it may confirm the need for multiple synergistic metabolites or the existence of another 

unidentified sensory neuron. 

 

6. Conclusions 
 

The study of the neuronal pathways involved in multisensory integration is important for 

research into many human mental illnesses and disorders, including autism, attention deficit 

disorder, and developmental dyslexia. The use of the organism C. elegans as a model of neuronal 

activity and behavior is effective in designing straightforward and reproducible assays to better 

understand similar mechanisms in humans. The results of this study further assert the possibility 

of major multisensory integration malfunctions due to small genetic mutations in the elements 

involved in the related neuronal pathways. Understanding the roles and functions of these key 

elements in C. elegans models, including those enabling olfactory detection of environmental 

signals, can lead to a higher understanding of innate human behavior. 
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