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Abstract. We extend Bony’s propagation of support argument [2] to C1 solutions of the

non-homogeneous sub-elliptic p−Laplacian associated to a system of smooth vector fields

satisfying Hörmander’s finite rank condition. As a consequence we prove a strong maximum

principle and strong comparison principle that generalize results of Tolksdorf [7].

1. Introduction

Let Ω ⊂ Rn be an open and connected set, and consider a family of smooth vector fields

X1, · · · , Xm in Rn satisfying Hörmander’s finite rank condition [6],

rank Lie[X1, · · · , Xm](x) = n, (1.1)

for all x ∈ Ω. We set Xu = (X1u, · · · , Xmu) for any function u : Ω → R for which the

expression is meaningful.

In this paper we will prove a strong comparison principle for solutions of the class of

quasilinear, degenerate elliptic equations

Lpu =

m∑
j=1

X∗j (Aj(Xu)) = f(x, u), (1.2)

satisfying the structure conditions (3.1), and which includes the p−Laplacian, in the range

p > 1, associated to X1, ..., Xm and to the Lebesgue measure dx in Rn. Note that in (1.2)

we have let X∗j = −Xj + dj(x) denote the L2 adjoint of the operator Xj with respect to the

Lebesgue measure. Here dj is a smooth function obtained as the trace of Xj . We explicitly

note that all the results in this paper continue to hold if one substitutes the Lebsgue measure

dx with any other measure dµ = λ(x)dx with λ ∈ C1 density function. In particular the

results apply in any subRiemannian manifold, for solutions of the subelliptic p−Laplacian

associated to a smooth volume form.

In addition to the structure conditions (3.1), our strong comparison principle holds under

the following hypothesis:

(i) ∂uf ≤ 0 in Ω,

(ii) |f(x, u2 + ε)− f(x, u2)| ≤ Lε, for any ε ∈ [0, ε0], x ∈ Ω
(1.3)
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2 L. CAPOGNA AND X. ZHOU

for some positive constants L, ε0. Our main result is the following

Theorem 1 (Strong Comparison Principle). Let Ω ⊂ Rn be a connected open set and consider

two weak solutions u1 ∈ C1(Ω̄), and u2 ∈ C2(Ω̄) of (1.2) in Ω, with |Xu2| ≥ δ in Ω. We

assume that the structure conditions (3.1), and the hypothesis (1.3) are satisfied. If

u1 ≥ u2 in Ω,

then either u1 = u2 or

u1 > u2 in Ω.

As it will be evident from the proof, the regularity assumptions and the lower bound on

|Xu2| are required only in a neighborhood of the contact set. The lower bound is not required

in the non-degenerate case κ > 0.

Bony’s method can also be used to establish a non-homogenous strong maximum principle.

We suppose that f satisfy the following conditions: for all x ∈ Ω and u ∈ R,

(i) ∂uf ≤ 0,

(ii) |f(x, u)| ≤ C̄(κ+ |u|)p−2|u|
(1.4)

for some positive constant C̄ and κ as in the structure conditions (3.1).

Theorem 2 (Strong Maximum Principle). Let Ω ⊂ Rn be a connected open set and consider

a weak solution u ∈ C1(Ω̄) of (1.2) in Ω. We assume that the structure conditions (3.1) and

the hypothesis (1.4) hold. If

u ≥ 0 in Ω,

then either u = 0 or

u > 0 in Ω.

The proof of these results is at the end of Section 3. Theorem 1 and Theorem 2 extend to

the subelliptic setting the strong maximum and comparison principles proved by Tolksdorff

in [7, Propositions 3.2.2 and 3.3.2].

In the subelliptic setting Theorem 1 seems to be new even in the homogeneous case f = 0.

In terms of previous literature on this subject: we recall that the case p = 2 was established

through geometric methods by Bony in his landmark paper [2]. A proof of the strong max-

imum principle for the subelliptic p−Laplacian in H−type groups can be found in [8]. We

note however that at the conclusion of that proof the authors claim that one can always fit

a gauge ball tangentially at every point of the set where the solution attains the maximum.

This statement is not proved in [8], and since gauge balls have zero curvature at the poles,

we do not seem how it can be proved.

A strong comparison and maximum principle for smooth solutions of the subelliptic p-

Laplacian and of the horizontal mean curvature operator has been recently proved by Cheng,

Chiu, Hwang and Yang in their preprint [4]. Their proof is based on a linearization approach

which is different from our arguments, however it also ultimately relies on Bony’s argument,

and holds in every subRiemannian manifold. In comparison to the present paper, on the one

hand our results hold for solutions which do not have to be smooth necessarily1, but for the

1We recall that in general p−harmonic functions do not enjoy more regularity than the Hölder continuity of
their gradient.
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comparison principle we require one of the two solutions to have non-vanishing horizontal

gradient. On the other hand while we only deal with the p−Laplacian, in [4] the authors also

establish far reaching results for the mean curvature operator, including some special cases

where |Xv2| is allowed to vanish in a controlled fashion and still have a comparison principle.

The technical core of the proofs in the present paper is in Lemma 7 and consists in an

adaptation of Bony’s argument to our nonlinear setting. Note that, as in the Euclidean

setting, one cannot relax the conditions on u1, u2 and f unless more hypothesis are added.

In closing we note that both in the elliptic and in the subelliptic case, a corresponding

strong maximum principle for the homogenous problem, f = 0, can be established imme-

diately from the Harnack inequality (see for instance [1], [5], [3]), as well as with small

modifications of the argument presented here. However, while in the linear setting one can

deduce the strong comparison principle from the strong maximum principle, this is no longer

the case in the nonlinear setting, where a new approach is needed.

2. Bony’s propagation of support technique

Tolksdorf’s argument in [7, 3.3.2] breaks down in the subelliptic setting, due to the fact

that the horizontal gradient of the barrier functions typically used in this proof may vanish.

The same problem occurs also in the linear setting, for p = 2. To deal with this issue we

follow the outline of the proof of the strong maximum principle for subLaplacians, from

Bony’s paper [2], and adapt it to our non-linear and non-homogeneous setting.

We begin by recalling from [2, Definition 2.1], the definition of a nonzero vector v orthog-

onal to a set F ⊂ Rn at a point y ∈ ∂F .

Definition 1. Let F be a relatively closed subset of Ω. We say that a vector v ∈ Rn \ {0} is

(exterior) normal to F at a point y ∈ Ω ∩ ∂F if

B(y + v, |v|) ⊂ (Ω \ F ) ∪ {y}.

If this inclusion holds, we write v ⊥ F at y. Set

F ∗ = {y ∈ Ω ∩ ∂F : there exists v such that v ⊥ F at y}.

Note when Ω is connected and ∅ 6= F 6= Ω, we have F ∗ 6= ∅.
We list in the following some of the results and definitions from [2] that play a role in our

proof.

Definition 2. Let X be vector field in Ω and F ⊂ Ω be a closed set. We say that X is tangent

to F if, for all x0 ∈ F ∗ and all vectors v normal to F at x0 one has that their Euclidean

product vanishes, i.e. 〈X(x0), v〉 = 0.

The following results are from [2, Theoreme 2.1], and [2, Theoreme 2.2]:

Theorem 3. Let Ω ⊂ Rn be an open set and F ⊂ Ω a closed subset. Let X be a Lipschitz

vector field in Ω. If X is tangent to F then all its integral curves that intersect F are entirely

contained in F .

Note that the converse of this result is also true, and follows from a direct computation.

Theorem 4. Let Ω ⊂ Rn be an open set and F ⊂ Ω a closed subset. Let X1, ..., Xm be smooth

vector fields in Ω. If X1, ..., Xm are tangent to F then so is the Lie algebra they generate.



4 L. CAPOGNA AND X. ZHOU

As a corollary, if X1, ..., Xm satisfy Hörmander finite rank condition (1.1) and are all

tangent to F then every curve that touches F is entirely contained in F , so that either F is

the empty set or F = Ω.

3. A Hopf-type comparison principle and proof of Theorem 1

First we state precisely the structure conditions imposed on the left hand side of (1.2).

The functions Aj satisfy the following ellipticity and growth condition: For p > 1, for a.e.

ξ ∈ Rm and for every η ∈ Rm,
m∑

i,j=1

∂Aj
∂ξi

(ξ)ηiηj ≥ β(κ+ |ξ|)p−2|η|2

m∑
i,j=1

|∂Aj
∂ξi

(ξ)| ≤ γ(κ+ |ξ|)p−2

(3.1)

for some positive constants β, γ, κ.

One can easily deduce that there exists positive constant λ,C such that for all ξ ∈ Rm,

〈Aj(ξ)−Aj(ξ′), ξ − ξ′〉 ≥ λ

{
(1 + |ξ|+ |ξ′|)p−2|ξ − ξ′|2 if p ≤ 2

|ξ − ξ′|p if p ≥ 2,
(3.2)

and

|Aj(ξ)| ≤ C(κ+ |ξ|)p−2|ξ|.
The subelliptic p−Laplacian

Lpu =

m∑
j=1

X∗j (|Xu|p−2Xju),

corresponds to the choice Aj(ξ) = |ξ|p−2ξj for j = 1, · · · ,m.

We will need the following immediate consequence of the monotonicity inequality (3.2).

Lemma 5 (Weak Comparison Principle). Let Ω ⊂ Rn be an open and connected set and

v1, v2 ∈ C1(Ω) satisfy in a weak sense{
Lpv2 ≤ f(x, v2) in Ω

Lpv1 ≥ f(x, v1) in Ω,
(3.3)

with Aj satisfying the structure conditions (3.1) and ∂uf(x, u) ≤ 0. If v2 ≤ v1 in ∂Ω, then

v2 ≤ v1 in Ω.

Proof. Given an arbitrary ε > 0, we define Eε = {x ∈ Ω|v2(x) > v1(x) + ε}. Assume that

Eε 6= ∅, then Eε ⊂ Ω. For all ϕ ∈ C1
c (Ω), we haveˆ

Ω
〈Aj(Xv2), Xϕ〉 ≤

ˆ
Ω
f(x, v2)ϕ,

ˆ
Ω
〈Aj(Xv1), Xϕ〉 ≥

ˆ
Ω
f(x, v1)ϕ.
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Subtracting the above two inequalities and setting ϕ(x) = max{v2(x)− v1(x)− ε, 0} then as

a consequence of (ii) in (1.3), one hasˆ
Eε

〈Aj(Xv2)−Aj(Xv1), X(v2 − v1)〉 ≤
ˆ
{v2>v1+ε}

(f(x, v2)− f(x, v1))(v2 − v1 − ε) ≤ 0.

By (3.2), this inequality holds if and only if X(v2 − v1) = 0. Thus, v2 = v1 + C in Eε. The

fact that v2 = v1 + ε on ∂Eε implies that C = ε. It follows that v2 ≤ v1 + ε in Ω. Let ε→ 0,

we get v2 ≤ v1 in Ω. �

Next, we prove an analogue of the classical Hopf comparison principle: Given a subsolution

v2 and a supersolution v1 such that v2 ≤ v1, then every vector field X1, ..., Xm must be tangent

to the contact set F = {v2 = v1}.

Lemma 6. (A Hopf-type Comparison Principle) Let Ω ⊂ Rn be an open and connected set

and v1 ∈ C1(Ω), v2 ∈ C2(Ω) with |Xv2| ≥ δ in Ω satisfy
v2 ≤ v1 in Ω

Lpv2 ≤ f(x, v2) in Ω

Lpv1 ≥ f(x, v1) in Ω.

(3.4)

Set F = {x ∈ Ω : v2(x) = v1(x)}. If the structure conditions (3.1) and hypothesis (1.3) are

satisfied and ∅ 6= F 6= Ω, then for every y ∈ F ∗ and v ⊥ F at y, it follows that

〈Xi(y),v〉 = 0

for all i = 1, · · · ,m.

Proof. We argue by contradiction and suppose that there exists y ∈ F ∗, a vector v ⊥ F at

y, and i ∈ {1, · · ·m} such that σi(y) := 〈Xi(y),v〉 6= 0. We denote by σ(x) the vector field

σ(x) = (σ1(x), ..., σm(x)), and note that for v fixed, this is a smooth vector field on Ω.

Let z = y+v and r = |v|. We denote by |x− z| the Euclidean distance between the points

x, z and proceed to define b̃(x) = e−α|x−z|
2
, and

b(x) = α−2(b̃(x)− e−αr2)

in Ω where the value of the positive constant α is to be determined later. Choose a neigh-

borhood V of y such that 0 < |σ(x)| for x ∈ V ⊂ Ω and denote by M1,M2,M3,M4 positive

constants depending on v2 and F , such that for every x ∈ V one has |Xjσi(x)| ≤ M1,

|XjXi(b+ v2)(x)| ≤M2, and M4 ≤ |σ(x)| ≤M3 for i, j = 1, · · · ,m.

By a direct calculation, one can deduce

Xib(x) = −2α−1b̃(x)σi(x),

|Xb(x)| = 2α−1b̃(x)|σ(x)| = 2α−1b̃(x)
( m∑
i=1

σi(x)2
)1/2

,

XjXib(x) = b̃(x)(4σjσi − 2α−1Xjσi(x)).
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Substituting the identities above in the expression for Lpb yields

Lpb(x) = −
m∑
j=1

m∑
i=1

∂Aj
∂ξi

(Xb)XjXib+ djAj(Xb)

= −b̃(x)

m∑
i,j=1

(
4
∂Aj
∂ξi

(Xb)σjσi − 2α−1∂Aj
∂ξi

(Xb)Xjσi

)
+ djAj(Xb).

Applying the structure conditions (3.1) of Aj , it follows that for every x ∈ V ,

Lpb(x) = −b̃(x)

m∑
i,j=1

(
4
∂Aj
∂ξi

(Xb)σjσi − 2α−1∂Aj
∂ξi

(Xb)Xjσi

)
+ djAj(Xb)

≤ −b̃(x)
(

4β(κ+ |Xb|)p−2|σ|2 − 2α−1M1γ(κ+ |Xb|)p−2
)

+ C(κ+ |Xb|)p−2|Xb|

= −b̃(x)(κ+ |Xb|)p−2

(
4β|σ|2 − 2α−1M1γ − Cα−1|σ(x)|)

)
.

Similarily,
m∑

i,j=1

∂Aj
∂ξi

(Xv2)XjXib ≥ b̃(x)(κ+ |Xv2|)p−2

(
4β|σ|2 − 2α−1M1γ

)

≥ b̃(x)(κ+ |Xv2|)p−2

(
4βM2

4 − 2α−1M1γ

)
.

In view of the non-vanishing hypothesis on |Xv2|, there exist α1 and a positive constant ε1
such that for α ≥ α1 and x ∈ V

|Xb(x)| ≤ 1

2
|Xv2(x)|,

Lpb(x) ≤ 0,
m∑

i,j=1

∂Aj
∂ξi

(Xv2)XjXib(x) ≥ ε1b̃(x). (3.5)

Since Aj(ξ) is smooth in Rn \ {0}, there exists positive constants C, ε2 such that

m∑
i,j=1

|∂Aj
∂ξi

(X(b+ v2))− ∂Aj
∂ξi

(Xv2)| ≤ C|Xb| ≤ ε2α−1b̃(x) (3.6)

for x ∈ V . Thus,
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Lp(b+ v2) = −
m∑

i,j=1

∂Aj
∂ξi

(X(b+ v2))XjXi(b+ v2) + djAj(Xb+Xv2)

= −
m∑

i,j=1

(∂Aj
∂ξi

(X(b+ v2))− ∂Aj
∂ξi

(Xv2) +
∂Aj
∂ξi

(Xv2)
)
XjXi(b+ v2) + djAj(Xb+Xv2)

= −
m∑

i,j=1

(∂Aj
∂ξi

(X(b+ v2))− ∂Aj
∂ξi

(Xv2)
)
XjXi(b+ v2)

−
m∑

i,j=1

∂Aj
∂ξi

(Xv2)XjXib−
m∑

i,j=1

∂Aj
∂ξi

(Xv2)XjXiv2 + djAj(Xb+Xv2)

≤M2ε2α
−1b̃(x)− ε1b̃(x) + Lpv2 − djAj(Xv2) + djAj(Xb+Xv2)

≤ (−ε1 +M2ε2α
−1)b̃(x) + f(v2) + |dj ||Aj(Xb+Xv2)−Aj(Xv2)|

≤ (−ε1 +M2ε2α
−1 + Cα−1|σ(x)|)b̃(x) + f(x, v2)

≤ (−ε1 +M2ε2α
−1 + Cα−1|σ(x)|)b̃(x) + |f(x, b+ v2)− f(x, v2)|+ f(x, b+ v2)

(By (ii) in (1.3)) ≤ (−ε1 +M2ε2α
−1 + Cα−1|σ(x)|)b̃(x) + L|b|+ f(x, b+ v2)

We can now choose α ≥ α1 such that Lp(b+ v2) ≤ f(x, b+ v2) on V .

Next, we let U = V ∩B(z, r) and express its boundary as the union of two components

∂U = Γ1 ∪ Γ2,

where Γ1 = B(z, r) ∩ ∂V and Γ2 = V ∩ ∂B(z, r).

For x ∈ Γ1 ⊂ Ω \ F , we have v2(x) < v1(x). Choose α be sufficiently large so that

v2(x) + b(x) ≤ v1(x) on Γ1 and Lp(v2 + b) ≤ f(x, b + v2) on U . On the other hand, since

b(x) = 0 when x ∈ Γ2, then the estimate v2(x) + b(x) ≤ v1(x) also holds on Γ2. Thus one

eventually obtains 
v2 + b ≤ v1 in ∂U

Lp(v2 + b) ≤ f(x, b+ v2) in U

Lpv1 ≥ f(x, v1) in U.

(3.7)

The Weak Comparison Principle in Lemma 5 implies that v2 + b ≤ v1 in U . Since y is a

maximum point of v2 − v1 in Ω, then necessarily its gradient at y must vanish, i.e. ∇(v2 −
v1)(y) = 0. Finally we invoke the C1 regularity of v1 near the contact set and we observe

that

0 = 〈v,∇(v2 − v1)(y)〉 = lim
t→0+

v2(y + tv)− v1(y + tv)− (v2(y)− v1(y))

t

≤ −〈v,∇b(y)〉

= −2α−1r2e−αr
2
< 0.

Since we have arrived at a contradiction the proof is complete.

�
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By a similar argument, a Hopf-type maximum principle can be established.

Lemma 7. (A Hopf-type Maximum Principle) Let Ω ⊂ Rn be an open and connected set and

v ∈ C2(Ω) satisfy {
v ≥ 0 in Ω

Lpv ≥ f(x, v) in Ω.
(3.8)

Set F = {x ∈ Ω : v(x) = 0}. If the structure conditions (3.1) and hypothesis (1.4) are

satisfied and ∅ 6= F 6= Ω, then for every y ∈ F ∗ and v ⊥ F at y, it follows that

〈Xi(y),v〉 = 0

for all i = 1, · · · ,m.

Proof. We argue by contradiction and suppose that there exists y ∈ F ∗, a vector v ⊥ F at

y, and i ∈ {1, · · ·m} such that σi(y) := 〈Xi(y),v〉 6= 0. We denote by σ(x) the vector field

σ(x) = (σ1(x), ..., σm(x)), and note that for v fixed, this is a smooth vector field on Ω.

Let z = y+v and r = |v|. We denote by |x− z| the Euclidean distance between the points

x, z and proceed to define b̃(x) = e−α|x−z|
2
, and

b(x) = k(b̃(x)− e−αr2)

in Ω where the value of the positive constant k and α are to be determined later. Choose a

neighborhood V of y such that 0 < |σ(x)| for x ∈ V ⊂ Ω and denote by M1,M2,M3 positive

constants depending on v2 and F , such that for every x ∈ V one has |Xjσi(x)| ≤ M1 and

M2 ≤ |σ(x)| ≤M3 for i, j = 1, · · · ,m.

Elementary calculations and hypothesis (1.4) show that for α sufficiently large,

Lpb(x) = −
m∑
j=1

m∑
i=1

∂Aj
∂ξi

(Xb)XjXib+ djAj(Xb)

≤ −kb̃(x)α2(κ+ |Xb|)p−2

(
4β|σ|2 − 2α−1|Xσ|γ − 2 sup

V

|d||σ(x)|α−1

)
= −kb̃(x)α2(κ+ 2α|σ(x)|kb̃(x))p−2

[
4βM2

2 − 2α−1M1γ − CM3α
−1

]
(choosing α sufficiently large we may assume that the expression in brackets is larger than M2β)

≤ −αβ|b(x)|(κ+ |b(x)|)p−2

≤ −C̄|b(x)|(κ+ |b(x)|)p−2 ≤ f(x, b(x))

for every x ∈ V . Next, we let U = V ∩B(z, r) and express its boundary as the union of two

components

∂U = Γ1 ∪ Γ2,

where Γ1 = B(z, r) ∩ ∂V and Γ2 = V ∩ ∂B(z, r).

For x ∈ Γ1 ⊂ Ω \ F , we have v(x) > 0. Choose k be sufficiently small so that b(x) ≤ v(x)

on Γ1. On the other hand, since b(x) = 0 when x ∈ Γ2, then the estimate b(x) ≤ v(x) also

holds on Γ2. Thus one eventually obtains
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
b(x) ≤ v(x) in ∂U

Lp(b) ≤ f(x, b) in U

Lpv ≥ f(x, v) in U.

(3.9)

The Weak Comparison Principle in Lemma 5 implies that b(x) ≤ v(x) in U . Since y is a

minimum point of v(x) in Ω, then necessarily its gradient at y must vanish, i.e. ∇v(y) = 0.

Finally we observe that in view of the C1 regularity of v, one has

0 = 〈v,∇v(y)〉 = lim
t→0+

v(y + tv)− v(y)

t

≥ lim
t→0+

b(y + tv)− b(y)

t

= 2kαr2e−αr
2
> 0,

arriving at a contradiction. �

In view of the Hopf-type comparison principle and of Theorem 4, we deduce that the

contact set F = {v2 = v1} must be either all of Ω or the empty set, thus completing the proof

of the strong comparison principle in Theorem 1.

Likewise, the strong maximum principle theorem 2 follows from the Hopf-type maximum

principle.
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