
1

Joins In Quality-Aware Database Systems

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Yuchen Liu (CS)

March 4th, 2016

Approved by:

Professor Mohamed Y. Eltabakh (CS)

This report represents the work of one or more WPI undergraduate students

submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its website without editorial or peer

review.

2

Abstract

The purpose of this project is to create a quality-aware database system that

fundamentally extends the standard database management systems to support imperfect

database with evolving qualities. In the real world, the management and query processing

of imperfect databases is a very challenging problem as it requires incorporating the

data’s qualities within the database engine. In this project, quality-aware database

introduces a new quality model that captures the evolution of the data’s qualities over

time and a new query algebra focused on select and join operators that enables seamless

and transparent propagation and derivations of the data’s qualities within a query

pipeline. As a result, a query’s answer will be automatically annotated with quality-related

information at the tuple level.

3

Summary

As with any other model, integrity is one of the most important consideration of

database, which means the database should ensure the accuracy of the representation of

the real world. Yet, our knowledge of the real world is imperfect thus making imperfect

databases very common in many applications. This project will introduce a quality-aware

database system to support imperfect database with evolving qualities.

In order to create this new quality-aware database system, this project will include

the background information about database system, imperfect database, low quality data

and PostgreSQL. After this, it will conduct a research about related work to learn about

existing techniques used for handling data quality problem. Next, this project will describe

quality-aware database system in detail. Finally, this project will test the performance of

quality-aware database system and analyze the test result.

4

Table of Contents

Chapter 1 Introduction .. 6

Chapter 2 Background ... 10

2.1 The Evolution of Database Systems .. 10

2.1.1 Early Database Management Systems .. 11

2.1.2 Relational Database Management Systems .. 11

2.2 The Introduction of Imperfect Database ... 12

2.2.1 Imperfect Information .. 12

2.2.2 Imperfect Manipulation .. 12

2.2.3 Other Imperfections ... 13

2.3 The High Cost of Low Quality Data .. 13

2.4 The Introduction of PostgreSQL ... 13

Chapter 3 Related Work .. 15

Chapter 4 System Design & Methodology .. 18

4.1 Quality-Aware Database Data & Quality Models .. 18

4.1.1 Definition of Quality Node .. 18

4.1.2 Definition of Quality ... 20

4.2 Quality Propagation ... 21

4.2.1 Selection Operation ... 21

4.2.2 Join Operation ... 21

4.2.3 Properties of Merging Qualities ... 23

4.3 Specific Implements in PostgreSQL ... 25

4.3.1 src/backend/parser/parser.c .. 25

4.3.2 src/include/parser/parser.h .. 28

4.3.3 JoinHelper.sql ... 28

Chapter 5 Results and Analysis .. 31

5.1 Description of Test Tables ... 31

5.2 Process of Testing ... 32

5.3 Result of Testing .. 33

5

5.4 Analysis of Result .. 34

Chapter 6 Conclusion .. 38

Reference ... 39

Appendix – Implemented Functions’ Code .. 43

6

Chapter 1 Introduction

In most modern applications it is almost a fact that the working databases may

not be perfect and may contain low-quality data records. The presence of such low-

quality data is due to many reasons including missing or wrong values, redundant and

conflicting information from multiple sources, human errors in data entry, machine and

network transmission errors, or even wrong assumptions or instruments’ calibration

during scientific experimentations that lead to inaccurate results.

Even more challenging, the qualities of the data tuples are typically not static,

instead they may change over time depending on various events taking place in the

database. The emerging scientific applications are excellent examples in which tracking

and maintaining the data’s qualities is of utmost importance. For example, Figure 1.1

illustrates a possible sequence of operations that may take place in biological databases.

First, a data tuple r (e.g., a gene tuple) can be imported from an external source to the

local database. At that time, r would be assigned an initial quality score depending on the

source’s credibility. Then, a scientist may insert a comment highlighting a possible error

in the tuple (e.g., the gene’s start position does not seem correct), based on which r’s

quality should be decreased. After a while, a verification step that compares the local data

with an external repository may confirm that r contains an incorrect value, which will

further decrease r’s quality. Subsequent actions in the database may either increase or

decrease r’s quality over time, which are an update operation on r (e.g., correcting the

gene’s start position), and the addition of a scientific article matching r’s new content,

respectively, should both enhance r’s quality. In general, each tuple in the database may

have its quality and trustworthy changing over time based on different operations taking

place in the database.

7

1- Importing tuple r from Source S. r’s initial quality depends on

S’s credentials

2- A scientist inserting a comment in database

indicating a possible wrong value in r.

r’s quality is decreased

3- Performing a comparison with other

repositories to validate the data. Tuple r did not

match the repository.

r’s quality is decreased

further

4- A scientists updates tuple r and fixes the

error.

r’s quality increases

5- A scientific articles related to and supporting

r’s content is added to database.

r’s quality increases

 ……

 Figure 1.1: Database tuples with Evolving Qualities over Time.

In such imperfect databases with dynamic and evolving qualities over time, the

standard query processing that treats all tuples the same while ignoring their qualities is

indeed a very limited approach. For example, several interesting and challenging

questions may arise beyond the standard data querying, which include: (1) what was the

quality of tuple r before the last revision? (2) Why r’s quality has drastically dropped at

time t, and what did we do to fix that? (3) Given my complex query, e.g., involving

selection, joins, grouping and aggregation, and set operators, what is quality of each

output tuple? Can I trust the results and build further analysis on them or not? (4) Given

T
im

e
 D

im
e

n
s
io

n

8

my query, how to execute it on only the high-quality tuples, e.g., the quality is above a

certain thresh-old? How to join, select, or order the tuples based on their qualities? And

(5) among the low-quality tuples in the database, which ones are more important, e.g.,

frequently participate in queries’ answers, to investigate first?

Certainly, supporting these types of questions is of critical importance to end-

users and high-level applications. On one hand, without modeling and keeping tracking

of the quality information in a systematic way, crucial information will be lost. On the

other hand, without assessing the quality of the output results, scientists and decision

makers will become less confident about the obtained results. And hence, building any

further analysis on low-quality data may not only lead to wrong decisions, but also result

in wasting scientists’ efforts, resources, and budgets.

It is clear that supporting these types of questions warrants the need for

fundamental changes in the underlying DBMS. In this project, we identify three major

tasks to be addressed, which are:

Task 1 Systematic Modeling of Evolving Qualities: With the large scale of modern

databases, even a very small percent-age of low-quality data may translate to a very large

number of low-quality records. This makes it very challenging and time-consuming

process to identify, isolate, or fix these records instantaneously. Therefore, the underlying

database engine must be able to capture and model the data qualities in a systematic way,

and also keep track of their evolution over time, e.g., when and why the quality changes

(Refer to the aforementioned Questions 1 & 2).

Task 2 Quality Propagation and Assessment of Query Results: It is impractical to

assume that applications can freeze their working databases until all records have been

fixed, and then enable them for querying. It is a continuous process of collecting and

generating data of various degrees of qualities—with possible interleaving of offline

efforts to verify and fix the imperfect tuples. Therefore, it is unavoidable to query the data

while having tuples of different qualities. Hence, the query processing engine must be

extended to manipulate not only the data values but also their associated qualities. Each

9

tuple r in the output results should have an inferred and derived quality based on input

tuples contributed to r’s computation (Refer to the aforementioned Question 3).

Task 3 Quality-Driven Processing and Curation: Another important type of

processing—beyond only propagating and de-riving the output’s quality—is the ability to

query the data based on their qualities, i.e., quality-driven processing. This includes the

ability to, for example, select, join, or order the data tuples based on their qualities, and

possibly combine such quality-driven processing with the standard query operators in a

single query plan (Refer to the aforementioned Question 4). Another type of analytics is

the quality-driven curation in which end-users may want to, for example, track how low-

quality tuples affect queries’ results, or rank the low-quality tuples according to their

participation in queries for investigation and fixing purposes (Refer to the

aforementioned Question 5). Enabling this type of quality-driven processing mandates

core changes in the database engine.

As a big research project and due to the limited scope of my MQP, I focused on

the task1 and partial of task2 (selection and join operators) while deferring the rest of

Task 2 and Task 3 for future work. Quality-Aware database proposes a full integration of

the data’s qualities into all layers of a DBMS. This integration includes introducing a new

quality model that captures the evolving qualities of each data tuple over time, called a

“Quality”, and proposing a new relational algebra when a SQL command requires

selection or join operators, called “Quality Algebra”, which enables seamless and

transparent propagation and derivations of the data’s qualities within a query pipeline.

Hence, when users input a query which include selection and join operators, the output

tuple from this query will be annotated with its derived and inferred quality based on the

contributing input tuples.

10

Chapter 2 Background

This chapter takes a look at the evolution about database system, the introduction

of imperfect database and the impact of low quality data and addresses more details on

PostgreSQL, because this quality-aware database is developed within PostgreSQL.

2.1 The Evolution of Database Systems

Nowadays database which is a collection of information that can exist over a long

time are essential to every business more than at any previous time. When users search

the internet, there are databases behind the scenes serving up the information based on

the users’ requests. As for corporations, the ability to acquire, manage and analyze data

about its operations is one of the key factors to determine the success of this corporation,

so they always use databases to maintain the important records. In addition, databases

also play an important role in many scientific investigations, such as the investigation of

the human genome.

A database management system, or DBMS is a powerful tool designed to assist in

creating and managing large amounts of data with efficiency along with appropriate

security measures. Today, the need for such system is growing rapidly. The following

Figure 2.1 shows the expectation of a DBMS.

Figure 2.1: the expectation of a DBMS.

DBMS

Users can
create new

databases and
specify their

schemas.

Users can
query and
modify the

data.

Support the
storage of

large amounts
of data.

Enable
durability and

recovery of
the database.

Can be access
from many
users at the
same time.

Guarantee the
atomicity of

each
trasaction.

11

2.1.1 Early Database Management Systems

 In the late 1960s, the first commercial database management systems that

evolved from file system appeared. Although these systems have many weakness, they

still can be regard as a huge step because they can hold data for a long period of time and

support the storage of large amounts of data. However, they cannot guarantee the

durability, which means the data might be lost. Additionally, these systems do not directly

support querying the data in the files. Finally, while concurrent access to files by multiple

users or process is allowed in these systems, if several users modify the same file at the

same time, partial of them would fail to appear in the file.

2.1.2 Relational Database Management Systems

 As proposed by Edgar Codd at IBM’s San Jose Research Laboratory in 1970,

Relational database management system is a database system based on the relational

model. Unlike the early database management systems, this kind of database systems

provide the user with an organized table view of data. In 1980s, relational database

systems establish their status as the dominant type of DBMS and continued to gain

widespread use. Even today, we have NoSQL DBMS, in-memory DBMS and many other

categories of DBMS, we cannot ignore the popularity of relational database system that

altered the commercial landscape.

 Developed as part of IBM’s System R project, SQL was standardized in the late

1980s. SQL-- Structured Query Language is a high-level programming language designed

for managing data in a relational database management system. With SQL, the efficiency

of database programmers increased greatly. At present, SQL is the most important query

language based on the relational model.

12

2.2 The Introduction of Imperfect Database

As with any other model, integrity is one of the most important consideration of

database, which means the database should ensure the accuracy of the representation of

the real world. Yet, our knowledge of the real world is imperfect thus making imperfect

databases very common in many applications due to the various reasons.

The following subchapter will describe several different kinds of imperfections

within databases.

2.2.1 Imperfect Information

There are three main reasons for imperfect information: error, imprecision, and

uncertainty.

1. Error: The information in a database is different from the true information in the

real world, and we can say this database information is erroneous. Error is the

simplest reason of imperfect information.

2. Imprecision: The information in a database provides a set of possible values,

however, in the real world, this value should be unique and is just one element of

this set. There are many kinds of imprecision such as disjunctive information (the

value is either a or b), negative information (the value is not c), range information

(the value is between a and b) and information with error margins (the value is a

± b), in some paper, null value also be regarded as one kind of imprecision.

3. Uncertainty: The information in a database with qualified certainty denotes

uncertainty. This is different from the previous one, given an example, “the value

is either a or b” is imprecision, and “the value is probably a” is uncertainly.

2.2.2 Imperfect Manipulation

Besides imperfect information, Manipulation and processing imperfection also have

impact on the integrity of databases.

Transformations are operations that derive new descriptions from stored

descriptions. Query, as the most frequent type of transformation, is often imperfect due

to some reasons. For example, the result of a query written by users who do not have

13

enough knowledge about the information available in the database exhibits a high level

of imperfection.

Modifications, which include update and restructuring, can also cause imperfections.

Like transformations, modifications are defined by users. The users’ uncertainty or

imprecision during the process of manipulation and the lack of enough knowledge of

database system or the information in this database would lead to the imperfection.

2.2.3 Other Imperfections

 There still exist other kinds of imperfections such as faulty experimental setups

and imperfect processing (e.g., a recursive query in a specific database system might be

terminated after a predetermined period of time).

2.3 The High Cost of Low Quality Data

In the scientific investigations’ field, a recent science survey has revealed that 80.3%

of the participant research and scientific groups have admitted that their working

databases contain records of low quality, which puts their analysis and explorations at

risk.

Moreover, in the business field, the high cost of low quality data is enterprise-

threatening. A research has shown that the business cost of low quality data may be as

high as 10-25% of an organization’s revenue. Besides the high cost, low quality data often

breed mistrust and lead to bad or delayed decisions. It has been reported in that wrong

decisions and uninformed analysis resulting from imperfect databases cost US businesses

around 600 billion dollars each year.

Finally, in the healthcare field, which is a field that close to human’s life. It is not

tolerated if any low quality data endangers patients’ life. 314 billion dollar is the cost of

low quality data for each year.

2.4 The Introduction of PostgreSQL

 PostgreSQL, often simply Postgres, is one of the world’s most advanced open

source object-relational database management system. It has been developed over 25

14

years (the first version is released to a small number of users in June 1989) by the

PostgreSQL Global Development Group which is a diverse group of many companies and

individual contributors. In this project, the quality-aware database is developed within

PostgreSQL system. The backend flowchart of PostgreSQL below shows how PostgreSQL

system deals with a SQL command.

Figure2.2 Backend Flowchart of PostgreSQL

15

Chapter 3 Related Work

 Due to its critical importance, data quality has been extensively studied in

literature. The most related to our work are the following.

Cleaning and Repairing Techniques [1, 2, 5-8, 11-13, 15, 17, 18, 22 and 33]: A main

thread of research is on data cleaning, repairing, and cleansing, where potential low-

quality data records are identified, and then fixed. The underlying techniques in these

system vary significantly from fully-automated heuristics-based techniques, comparison-

based with external sources and repositories, and rule-driven techniques, to human-in-

the-loop mechanisms. With the variety of algorithms and techniques for data cleaning,

several extensible and generic frameworks have been proposed to integrate these

algorithms. The common theme in all of these systems is that they all work offline and in

total isolation from query processing. And since the data is evolving and growing rapidly

in all modern applications, the repairing task is a never-ending time-consuming process.

Therefore, it is inevitable that the data will be subject to querying, analysis, and decision

making, while it contains low-quality records. Unfortunately, during query processing,

none of the above techniques can provide any support for assessing the quality of the

results or enabling quality-aware processing. Even worse, if these techniques have

identified potential erroneous records and marked them as pending verification or

fixing—which may take long time to complete, there is no mechanism to integrate such

observations into query processing.

Quality Assessment Techniques [1, 3, 21, 23, 25 and 30]: On the other hand, very little

attention is given to quality assessment at query time. It has breed addressed in the

context of mining operations, sensor data, and relational databases. The core of these

techniques is based on statistical assumptions about the underlying data, e.g., defining

statistical measures such as completeness, soundness, and probability of error. And then,

each technique studies its domain-specific operations and how they affect the statistical

measures. A major limitation in these systems is that the assumed statistics may not be

available in many applications. For example, the work in —which is the most related to

the quality-aware database—assume that the probability of error in each column in the

16

database is known in advance, which is not the case in many applications. And even if this

knowledge is available, it a coarse-grained knowledge over an entire column and not tied

to specific tuples, e.g., 1% error rate in column X means that among every 100 values in X

, it is expected to find 1 error. Consequently, the estimated output quality is also coarse-

grained and cannot be linked to specific tuples. Moreover, these systems assume a single-

score quality model without taking into account the fact that data records are long-lived

and their qualities evolve over time.

Quality-Aware database is fundamentally different from the above mentioned two

categories in that:

1. It proposes a more rich quality model based on the quality trails instead of the

single-score quality model,

2. It does not put any assumptions on the data’s characteristics, e.g., estimated error

rate, instead the quality trails will be incrementally created and maintained as the

database evolves over time.

3. Its quality model is fully integrated within the query processing engine.

Quality-Aware database is complementary to the cleaning and repairing techniques in

that they together can provide a more comprehensive solution that combines the online

quality-aware query processing, and the offline repairing process, respectively.

Uncertain and Probabilistic Databases [1, 16, 28 and 32]: Another big area of

research is focusing on uncertain and probabilistic databases. In these systems, a given

data value (or an entire tuple) can be uncertain, and hence it is represented by a possible

set of values, a probability distribution function over a given range, or a probability of

actual presence. In uncertain databases, the query engine is extended to operate on these

uncertain values and tuples, and enforce correct semantics (called “possible worlds”).

Although uncertainty is related to data qualities in some sense, these systems are

fundamentally different from quality-aware database since the notion of “quality” is not

part of these systems. Therefore, the uncertain and probabilistic databases can neither

model or keep track of the data’s qualities, nor enable advanced quality-driven query

processing as proposed by the quality-aware database system.

17

Data Lineage and Provenance [1, 9, 10, 20 and 32]: Data provenance is directly

related to data quality since the tuples’ qualities are based on their provenance. Several

systems have addressed the derivation and propagation of the provenance information,

and even some systems such as Trio have combined the uncertainty with the provenance.

However, there are three key distinctions between quality-aware database and the

provenance-based systems, which are:

1. Provenance systems do not provide quantifiable measures on which queries can

interact, i.e., lineage information are usually opaque objects with no easy way to

apply conditions or transformations on.

2. The storage overhead from the propagated provenance information can be

overwhelming and may even exceed the size of the output data, especially under

aggregation operations. For example, under relatively simple aggregation queries,

some output tuples may carry 100s of provenance links attached to them, but the

question is “What does this metadata mean?”

3. Existing provenance techniques do not capture the history (or evolution) of the

data tuples, and thus executing the same query Q at times t1 and t2 would return

the same provenance information even if some changes between t1 and t2 have

altered the data’s qualities.

Quality-Aware database addresses these issues through its new quality and data models,

and its extended query engine.

18

Chapter 4 System Design & Methodology

The purpose of this chapter is to provide an understanding of the system design

and methodology in our project. As mentioned in the previous chapter, the project goal

was to create a quality-aware database system that fundamentally extends the standard

DBMSs to support imperfect database with evolving qualities. This chapter takes a closer

look at the data model that used in the project to capture the evolution of tuple’s quality

and the propagation of this quality. In addition, this chapter also illustrates each specific

implement in the PostgreSQL database system.

4.1 Quality-Aware Database Data & Quality Models

 Besides original data values, each data tuple in quality-aware database

additionally carries a “Quality”. This “Quality” is an extended data model encoding the

evolving quality of this tuple. More formally, for a given relation R having n data

attributes, each data tuple r ∈ R has the schema of: r = {v1 ,v2 ,...,vn ,Qr}, where v1 to vn

are the original data values of r, and Qr is r’s quality. Qr is an array in the form of Qr = {q1

,q2 ,...,qn }, where each element q is a quality node defined as follows.

4.1.1 Definition of Quality Node

 Quality node (QNode) represents a change in a tuple’s quality and it consists of

three fields, which are “Qscore”, “Qtime” and “TriggerEvent”. All of three fields are

mandatory. The Figure 4.1 below shows the structure of quality node and the description

of each field.

19

Figure 4.1 Description of Quality Node (QNode)

Since quality of tuple r is evolving over time, the length of Qr array is also

increasing dynamically over time by the addition of new transitions (Refer to Figure 4.2).

The “Quality” is formally defined in Chapter 4.1.2.

Figure 4.2 Example of r’s Quality Corresponding to Operations in Figure 1.1.

Q
u

al
it

y
N

o
d

e
(Q

N
o

d
e)

QScore
A quality score ranging

between 1 (the lowest quality)
and 5 (the highest quality).

QTime A time at which the score
becomes applicable.

TriggerEvent
A text field describing the
event that triggered this

quality transition.

20

4.1.2 Definition of Quality

A quality of a given tuple r ∈ R is denoted as Qr and is represented as an array of

quality nodes (QNode). The transitions in Qr are chronologically ordered, i.e., Qr[i].Qtime

< Qr [i + 1].Qtime ∀ i. Moreover, the quality nodes have a stepwise changing pattern, i.e.,

Qr [i] is the valid transition over the time period [Qr [i]. Qtime, Qr [i + 1]. Qtime). The Table

4.3 below shows how to use command to insert an initial quality of a given tuple and

update it corresponding to the quality evolution in Figure 4.2.

Time Trigger Event Command

t1 E1: Import tuple from a

trusty source S.

INSERT INTO TableName VALUES(v1,……,vn,

'{"(5,current_timestamp,import from S)"}');

t2 E2: A comment c

indicates a wrong value.

UPDATE TableName SET quality =

ARRAY_APPEND(quality,'(3, current_timestamp,

command c indicates value vx is wrong)') WHERE id

=3;

t3 E3: Failed comparison

with external

repository

UPDATE TableName SET quality =

ARRAY_APPEND(quality,'(2, current_timestamp,

Failed comparison with external repository)') WHERE

id =3;

t4 E4: Update event

correcting the

wrong value

UPDATE TableName SET quality =

ARRAY_APPEND(quality,'(4, current_timestamp,

wrong value vx has been updated)') WHERE id =3;

t5 E5: New article is

added supporting the

tuple’s content

UPDATE TableName SET quality =

ARRAY_APPEND(quality,'(5, current_timestamp,

article ArticalTitle is added supporting the tuple’s

content)') WHERE id =3;

Table 4.3: Command corresponding to the quality evolution in Figure 4.2

21

4.2 Quality Propagation

 This chapter presents the details for propagating the quality within a query plan

that include selection or join operator. A new SQL algebra, called “Quality Algebra" has

been defined in order to enable such derivation and propagation in a transparent and

pipelined way, in which the selection and join operators have been extended to

seamlessly manipulate the quality trails associated with each tuple. In quality-aware

database, selection and join operators will consume and produce tuples conforming to

the data model presented in Chapter 4.1. The assumption for this chapter is that the

quality have been created and maintained (The focus of Table 4.3).

4.2.1 Selection Operation

The operator applies data-based selection predicates p over relation R, and reports

the qualifying tuples. Predicates p reference only the data values v1 ,v2 ,...,vn within the

tuples. The extension to the selection operator is straightforward since the content of the

qualifying tuples do not change, and thus the output quality trails remain unchanged. The

algebraic expression is:

σ p (R) = {r = (v1 ,v2 ,...,vn, Qr) ∈ R | p(r) = True}

4.2.2 Join Operation

Join operator is an instruction to a database to combine data from more than one

tables. Therefore, the corresponding input qualities need to be merged and combined

together. The logic of join operation is shown below.

1. Initialize output quality Qo which is an array of QNode initially has no QNode.

2. Initialize time t  Earliest QNode time in all qualities.

3. While (time t is not the latest time in all qualities) Do

a. Insert QNode Nodei at time t from each Quality Qi (if Qi exists at t) into

set S = {QNode1, QNode2, …, QNoden}Set of QNode at t from

Q1,Q2,…,Qn

b. QNodeout  A new output transition

22

c. QNodeout.QScore = Min(S.QNodei.score), 1 ≤ i ≤ n

d. QNodeout.QTime = time t

e. QNodeout.TriggeringEvent = Null

f. Qo.add(QNodeout)

g. Set t equal to next earliest QNode time in all qualities.

4. End While

5.  Return Qo

Join operation’s functionality is illustrated using the example in Figure 4.2. Assume

joining three tuples r1, r2 , and r3 having qualities Q r1 ,Q r2 , and Q r3 , respectively. All

qualities are typically aligned from the R.H.S (which is the query time Qt), i.e., each quality

trial must have a valid transition at time Qt . However, the trails are not necessarily aligned

from the L.H.S since the data tuples may be inserted into the database at different times

(See Figure 4.4).

The basic idea behind the algorithm is that, when we merge qualities, the quality of

the output tuple at any given point in time t should be the lowest among the qualities of

the contributing tuples at time t. This is based on the intuition that low-quality inputs

produce low-quality outputs, and that an output tuple should have a high quality at time

t only if all its contributing input tuples have high qualities at t.

Referring to the example in Figure 4.4, the earliest time is at Position 1, where only

Q r1 exists and has a quality level 4-star, which will be produced in the output. Then, the

time t jumps to Position 2, where Q r3 starts participating with a quality level 3-star, and

hence a 3-star QNode will be added to Q o . The sweep time t keeps moving to the

subsequent positions. At each position, it calculates the lowest quality score among the

input participants to be the output’s quality score, sets quality time equals time t, and

sets trigger event equals null (Step 3b-f in the logic of join operation, which merges

qualities) at this position. For example, referring to the example in Figure 4.4, at time t 4,

the contributing input qualities from Q r1, Q r2, and Q r3 are 2-star, 3-star, and 5-star, and

thus the corresponding quality transition on Q o will have a 2-star score.

23

Figure 4.4 Example of the Join operator in Quality-Aware database

4.2.3 Properties of Merging Qualities

From Chapter 4.2.2 the logic of join operator in quality-aware database system,

we can find out that, when we merge qualities, the key step is getting result QScore at

each time point, which should be the lowest among all the QScores of the contributing

tuples at that time point. Because Min operator is commutative and associative, in other

words, min(x,y) = min(y,x) and min(min(x,y),z)=min(x,min(y,z)) = min(x, y, z), merge(x,y) =

merge(y,x) and merge(merge(x,y),z)=merge(x,merge(y,z)) = merge(x, y, z), thus the

process of merging qualities is commutative and associative.

Query Time

24

Proof of Associative Property of Minimum:

If we want to prove min(min(x,y),z)=min(x,min(y,z)) = min(x, y, z), there are the

following cases to consider:

(1):x≤y≤z

(2):x≤z≤y

(3):y≤x≤z

(4):y≤z≤x

(5):z≤x≤y

(6):z≤y≤x

(1) min(min(x,y),z)=x min(x,min(y,z)) =x min(x, y, z)=x

(2) min(min(x,y),z)=x min(x,min(y,z)) =x min(x, y, z)=x

(3) min(min(x,y),z)=y min(x,min(y,z)) =y min(x, y, z)=y

(4) min(min(x,y),z)=y min(x,min(y,z)) =y min(x, y, z)=y

(5) min(min(x,y),z)=z min(x,min(y,z)) =z min(x, y, z)=z

(6) min(min(x,y),z)=z min(x,min(y,z)) =z min(x, y, z)=z

Thus in all cases it can be seen that the result holds.

Proof of Commutative Property of Minimum:

If we want to prove min(x,y) = min(y,x), there are the following cases to consider:

(1): x<y

(2): x=y

(3): x>y

(1) min(x,y) =x min(y,x)=x

(2) min(x,y) =x min(y,x)=x

(3) min(x,y) =y min(y,x)=y

Thus in all cases it can be seen that the result holds.

25

4.3 Specific Implements in PostgreSQL

This chapter demonstrates each specific modification in PostgreSQL to implement

the quality models “Quality” and new SQL algebra “Quality Algebra” that has been

illustrated in Chapter 4.2.

4.3.1 src/backend/parser/parser.c

 File “parser.c” can be regarded as main entry point and driver for PostgreSQL

grammar. Table 4.5 and 4.6 below describe each modification in the existed function and

additional helper functions.

Function Name Function Prototype

raw_parser

List *raw_parser(const char *str)

str_replace

char *str_replace (const char *source, char *find, char *rep)

useseqscan int useseqscan(const char* string)

findfrom char *findfrom(const char* string)

split void split(char **arr, char *str, const char *del)

helpmerge char *helpmerge(char *str)

Table 4.5 Modified Functions and Corresponding Prototypes

26

Function Name Description

raw_parser Raw_parser is an existed function inside parser.c file. When a

query has been given in string form (const char *str), this function

does lexical and grammatical analysis, as the result, it returns a list

of “raw” parser trees (need to be analyzed by “analyze.c” and

related files).

 Here I add three check conditions for input SQL command:

1. If this command is used for creating a table, then raw_parser

adds a new attribute called “Quality”, which is an array of

QNode (defined in JoinHelper.sql), at the end of table. As a

result, when users create a table, the quality model can be

automatically added as an additional attribute.

e.g., “CREATE TABLE student (sid int, sname text, sgender

char(1)); “ “create table student (sid int, sname text,

sgender char(1), Quality QNode[]); “

2. If this command is used for selecting attributes in a table,

then raw_parser adds attribute “Quality” at the end of

SELECT statement. As a result, the quality information can

be printed out at tuple level.

e.g., “SELECT sname FROM student WHERE sid=1;”

“SELECT sname, Quality FROM student WHERE sid=1;”

3. If this command is used for joining several tables (e.g.,

table1, table2,……,tablen), then raw_parser adds

“mergen(table1.Quality, table2.Quality,……,tablen.Quality) as

quality” at the end of SELECT statement (mergen is defined

in JoinHelper.sql). As a result, the quality of the result of join

operation can be printed out at tuple level.

e.g., “SELECT sname, cname FROM student,participantin

WHERE student.sid = participantin.sid;” 

“SELECT sname, cname, merge2(student.Quality,

participantin.Quality) AS quality FROM student,participantin

WHERE student.sid = participantin.sid;”

str_replace str_replace is a helper function. If in the string source, there is a

substring find, then str_replace will replace substring find with

substring rep and return the new string.

27

 For example, str_replace(“This is a table.”, “table”, “chair”) gives

the result “This is a chair.”.

useseqscan Useseqscan is a helper function. If in the SQL command string,

there is only one table in the FROM statement, then useseqscan

return 0, otherwise return 1.

For example, useseqscan(“SELECT sname FROM student WHERE

sid=1;”) gives the result 0, because there is only one table in the

FROM statement which is “student” here.

 Useseqscan(“SELECT sname, cname FROM student,participantin

WHERE student.sid = participantin.sid;”) gives the result 1, because

there is more than one table in the FROM statement which are

“student” and “participantin” here;

findfrom Findfrom is a helper function. It extracts the tables’ names in the

FROM ststement from a given SQL command.

 For example, findfrom(“SELECT sname FROM student WHERE

sid=1;”) returns “student”

 findfrom(“SELECT sname, cname FROM student, participantin

WHERE student.sid = participantin.sid;”) returns “student,

participantin”.

split Split is a helper function. Given a source string str , a string del as

delimitation and an array of string, this function split the source

string str into several substrings based on del, and then store each

substring into given array arr and return this array arr.

 For example, split (“student, professor, course”) returns

{“student”,”professor”,”course”}.

helpmerge Helpmerge is a helper function, given a string str that contains n

tables’ names from FROM statement, this function generates the

corresponding mergen function statement for these n tables and

return the statement generated.

 For example, helpmerge(“table1, table2, table3”) returns “,

merge3(table1.Quality, table2.Quality, table3.Quality) as quality

from”.

Table 4.6 Modified Functions and Corresponding Descriptions

28

4.3.2 src/include/parser/parser.h

Parser.h contains the definitions for the “raw” parser (flex and bison phases only)

and the prototype from each functions in parser.c. Because several additional helper

functions has been added in parser.c file, this header file should include the prototypes

of each additional helper functions.

These prototypes are:

extern char *str_replace (const char *source, char *find, char *rep);

extern int useseqscan(const char* string);

extern char *findfrom(const char* string);

extern void split(char **arr, char *str, const char *del);

extern char *helpmerge(char *str);.

4.3.3 JoinHelper.sql

JoinHelper.sql should be run when users create a new database. It creates new

data type “QNode” to implement the quality model and creates functions mergen to

merge qualities from each tuple that need to be joined together and return the result

quality. Figure 4.7 below shows the logic of merge2 function which merge the qualities

from two tuples and return the result quality.

29

 T1 T2 T3 T4 T5 T6 T7

Quality1 4 2 1 4 5

Quality2 3 2 2

Result

 T1

q1 4

q2 6

 T1

Result 4

Figure 4.7 Logic of merge2 Function

 Besides function merge2, there are merge3, merge4 and merge5 which merge

the qualities from three, four and five tuples and return the result quality. Except merge2,

the rest of functions use mergen-1 to process n-1 tuples and use merge2 to merge the

result quality from n-1 tuples and the nth tuple. Because of the associative and

Time Point T1

Assume we need to join tuple1 and tuple2, the

qualities of both tuples are shown in the left

table (each number represents the QScore at

each time).

While there still exists time points, get next time

point, store in a local variable time. Otherwise

return Result.

Store QScore of Quality1 and Quality2 at time in

local variables q1 and q2. If time is earlier than the

start time of Qualityn, store 6 in qn, here is q2.

Initialize an empty QNode array

Result to save result quality.

Insert a QNode into Result with QScore

= Min(q1, q2), QTime = T1,

TriggerEvent = null.

30

commutative properties illustrated in Chapter 4.3.3, the logics of merge3 – 5 work. For

example, the Figure 4.8 below shows the logic of merge4.

Figure 4.8 Logic of Function merge4

Quality1 Quality2

 Quality1

Quality3

 Quality1

Quality4

 Quality1

ResQuality1&2

 Quality1

Merge2

Merge2

ResQuality1&2&3

 Quality1

Merge2

ResQuality1&2&3&4

 Quality1

Merge2

Merge3

Merge4

31

Chapter 5 Results and Analysis

 This chapter focuses on the testing and analysis of performance of Quality-Aware

database. As mentioned in the previous chapters, Quality-Aware database introduces a

new quality model that captures the evolution of the data’s qualities over time and a new

query algebra focused on select and join operators that enables seamless and transparent

propagation and derivations of the data’s qualities within a query pipeline. So, this

chapter utilizes two tables with several different size of inserted data sets to test the

performance of selection and join operation with/ without quality model.

5.1 Description of Test Tables

 Table “supplier” and table “product” are created as the test tables to test the

performance of quality-aware database. Following Table 5.1 and 5.2 show the scheme of

each table and description of each attribute.

Attribute Type Description

Sid Integer A unique supplier id number for each supplier.

Sname Text Name of supplier.

Age Integer Age of supplier.

Gender Character(1) Gender of supplier. (“F” stands for female and “M”

stands for male)

Address Text Address of supplier.

Table 5.1 Description of Table “supplier”

Attribute Type Description

Pid Integer A unique product id number for each product.

Sid Integer Supplier id number for who supply this product.

Pname Text Name of product.

PType Text Type of product.

Instock Character(1) Whether this product is in stock or not. (“T” stands

for in stock and “F” stands for out of stock)

Table 5.2 Description of Table “product”

32

5.2 Process of Testing

 There are three different size of “supplier” data sets (with and without quality):

10 000 records, 50 000 records and 100 000 records and one fixed size of “product” data

set (with and without quality): 50 000 records. In this project, the performance of an

operation, which is need to be analyzed, is determined by the execution time. In other

words, short execution time means great performance and long execution time means

poor performance. Detailed process of testing shows below.

Step1 Create table “supplier” and “product” (refer to Chapter 5.1)

Step2 Create 8 SQL files to insert different sizes and different kinds of data.

1. File1: 10,000 supplier data (with quality)

2. File2: 50,000 supplier data (with quality)

3. File3:100,000 supplier data (with quality)

4. File4: 50,000 product data (with quality)

5. File5: 10,000 supplier data (without quality)

6. File6: 50,000 supplier data (without quality)

7. File7: 100,000 supplier data (without quality)

8. File8: 50,000 product data (without quality)

Step3 Execute File1 to insert first data set into “supplier” table.

Step4 Input command “EXPLAIN ANALYZE SELECT sid, sname FROM supplier

WHERE age>30;”, record the execution time of selection for three times

(after recording current execution time, log off system and log in, then run

the command to record the next execution time).

Step5 Delete data in the table “supplier” using “DELETE FROM supplier;”, prepare

for insertion next time.

Step6 Repeat Step3, 4, 5 for File 2, repeat Step3, 4 for File3.

Step7 Execute File4 to insert first data set into “product” table.

Step8 Input command “EXPLAIN ANALYZE SELECT pname, sname FROM

supplier,product WHERE product.sid = supplier.sid;”, record the execution

time of join operation for three times (after recording current execution

time, log off system and log in, then run the command to record the next

execution time).

33

Step9 Make the size of data in the table “supplier” equal 50,000 by using “DELETE

FROM supplier WHERE sid>=50000;”.

Step10 Repeat Step8.

Step11 Make the size of data in the table “supplier” equal 10,000 by using “DELETE

FROM supplier WHERE sid>=10000;”.

Step12 Repeat Step8.

Step13 Remove quality model and query algebra. Change to original RDBMS.

Step14 Repeat Step3~12 for File5, 6, 7, 8.

Step15 Add quality model and query algebra. Change back to quality-aware

database.

5.3 Result of Testing

Selection with Quality:

 First

time

(ms)

Second

time

(ms)

Third

time

(ms)

Average time(ms)

(First time + Second time + Third

time)/3

10,000

records

5.554 5.656 5.592 5.601

50,000

records

20.613 20.525 20.539 20.559

100,000

records

41.190 39.700 42.654 41.181

Table 5.3 Testing Result of Selection with Quality

Selection without Quality

 First

time

(ms)

Second

time

(ms)

Third

time

(ms)

Average time(ms)

(First time + Second time + Third

time)/3

10,000

records

3.636 3.861 3.893 3.797

50,000

records

20.082 21.274 20.632 20.663

100,000

records

42.437 40.686 40.863 41.329

Table 5.4 Testing Result of Selection without Quality

34

Join with Quality

 First

time

(ms)

Second

time

(ms)

Third

time

(ms)

Average time(ms)

(First time + Second time + Third

time)/3

10,000

records

1403.701 1392.092 1399.189 1398.327

50,000

records

2913.619 2938.804 2937.110 2929.844

100,000

records

2964.514 2994.645 2979.916 2979.692

Table 5.5 Testing Result of Join with Quality

Join without Quality

 First

time

(ms)

Second

time

(ms)

Third

time

(ms)

Average time(ms)

(First time + Second time + Third time)/3

10,000

records

56.652 54.110 57.321 55.998

50,000

records

105.992 107.973 105.191 106.385

100,000

records

138.540 137.221 139.022 138.261

Table 5.6 Testing Result of Join without Quality

5.4 Analysis of Result

I used two vertical bar charts to display the average execution time of selection

and join operator because:

1. Vertical bar chart is easy to compare sets of data between different groups at

a glance

2. Vertical bar chart is easy to see the relationship of the data between the x and

y axes

3. Vertical bar chart is effective to present trends or changes over time

35

In each bar chart there are two series: With Quality and Without Quality, and each

series has three categories: 10,000 RECORDS, 50,000 RECORDS and 100,000 REOCRDS.

The resource of data in Figure 5.7: last column (Average time) in Table 5.3 – 5.4 in Chapter

5.2. The resource of data in Figure 5.8: last column (Average time) in Table 5.5 – 5.6 in

Chapter 5.2.

Figure 5.7 Average Execution Time of Selection

From Figure5.7 above, we can find: with the increase of the records, the execution

time of selection in both database systems also increase. When there are 10,000 records,

the execution of selection in quality-aware database system (selection with quality) is

slower than in original database system (selection without quality). The reason is that the

size of 10,000 records in quality-aware database system is larger than in original database

system, because as mentioned in Chapter 4.1, besides original data values, each data

tuple in quality-aware database additionally carries a “Quality”. But if the number of

records increase to 50,000 or more than 50,000, there is no significant difference

between the execution time of quality-aware database system and original database

0

5

10

15

20

25

30

35

40

45

10,000 RECORDS 50,000 RECORDS 100,000 RECORDS

5.601

20.559

41.181

3.797

20.663

41.329

Ex
e

cu
ti

o
n

 t
im

e
 in

 m
s

Average Execution Time of Selection

With Quality Without Quality

36

system. Because when databases deal with large size of data, the execution time mainly

contributes to carrying data from cache to main memory.

Figure 5.8 Average Execution Time of Join

 From Figure5.8 above, we can find that: with the increase of the records, the

execution time of join operator in both database systems also increase. The execution of

join in quality-aware database system (selection with quality) is much slower than in

original database system (selection without quality). Because when quality-aware

database system processes selection, it just need to print out one additional attribute,

however, when it processes join operator, it need to call joinhelper.sql to deal with several

qualities, obtain the result quality of join result and print it out. In order to keep track of

where the execution time of join in quality-aware database is going, I commented out

each step in function merge2, compiled, ran the join command “EXPLAIN ANALYZE

SELECT pname, sname FROM supplier,product WHERE product.sid = supplier.sid;”,

recorded the execution time for three sizes of record (10 000, 50 000 and 100 000) and

calculated the average execution time among these sizes for each step. Finally used a pie

chart (see Figure 5.9) to display. It can be seen from this pie chart that getting each time

0

500

1000

1500

2000

2500

3000

10,000 RECORDS 50,000 RECORDS 100,000 RECORDS

1398.327

2929.844 2979.692

55.998 106.385 138.261

Ex
ec

u
ti

o
n

 t
im

e
 in

 m
s

Average Excution Time of Join

With Quality Without Quality

37

point takes 24% of total time; after that, finding the QScores in both qualities at this time

point takes 33% of total time, which is the most expensive step in merge2; then, merge

QScores and construct result Quality at this time point takes 25% of total time.

Figure 5.9 Execution Time of Join with Quality

24%

33%

25%

18%

Execution Time of Join with Quality

Find each time point

Find Qscores in both
Quality at that time point

Merge Qscores, and
construct result Quality

Others

38

Chapter 6 Conclusion

In this project, a quality-aware database system has been created to deal with the

imperfect database. This quality-aware database fundamentally extends PostgreSQL and

contains a new quality model—“Quality” to capture the evolution of the data’s qualities

over time and a new query algebra—“Quality Algebra" for propagation and derivations of

the data’s qualities when do selection and join operation.

This project introduced the background research about database system and

imperfect database, the harm of low quality data and PostgreSQL. After that, some

related works has been included, which provide different techniques to handle data-

quality problems. Next, this project took a closer look at new data model —“Quality” and

new query algebra—“Quality Algebra" with illustration of each specific implement in the

PostgreSQL database system. Finally, a test has been conducted to compare the

performance of quality-aware database system and standard database system, and an

analysis of the test result has been included in this project.

39

Reference

[1] Anh Pham, Glusher Kooner, Mohamed Y. Eltabakh. QTrail-DB: A Query Processing

Engine for Imperfect Databases with Evolving Qualities

[2] A. Arasu, C. Ré, and D. Suciu. Large-Scale Deduplication with Constraints Using

Dedupalog. In ICDE, pages 952–963, 2009.

[3] D. P. Ballou, I. N. Chengalur-Smith, and R. Y. Wang. Sample-Based Quality

Estimation of Query Results in Relational Database Environments. IEEE Knowledge and

Data Engineering, 18(5), 2006.

[4] C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies and

Techniques. Addison-Wesley, 2006.

[5] G. Beskales, M. A. Soliman, I. F. Ilyas, and S. Ben-David. Modeling and Querying

Possible Repairs in Duplicate Detection. Proc. VLDB Endow., 2(1):598–609, 2009.

[6] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A Cost-based Model and Effective

Heuristic for Repairing Constraints by Value Modification. In Proceedings of ACM SIGMOD

International Conference on Management of Data, pages 143–154, 2005.

[7] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional

Functional Dependencies for Data Cleaning. In ICDE, pages 746–755, 2007.

[8] L. Bravo, W. Fan, and S. Ma. Extending Dependencies with Conditions. In

Proceedings of the 33rd International Conference on Very Large Data Bases, pages 243–

254, 2007.

[9] P. Buneman, A. Chapman, and J. Cheney. Provenance management in curated

databases. In SIGMOD, pages 539–550, 2006.

[10] P. Buneman, S. Khanna, and W. Tan. Why and where: A characterization of data

provenance. Lec. Notes in Comp. Sci., 1973:316–333, 2001.

[11] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving Data Quality: Consistency

and Accuracy. In Proceedings of the 33rd International Conference on Very Large Data

Bases (VLDB), pages 315–326, 2007.

40

[12] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas, M.Ouzzani, and N.

Tang. NADEEF: a commodity data cleaning system. In SIGMOD Conference, pages 541–

552, 2013.

[13] A. Ebaid, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A. Quiane-Ruiz, N.Tang, and S.

Yin. NADEEF: A Generalized Data Cleaning System. Proc. VLDB Endow., 6(12):1218–1221,

2013.

[14] W. Eckerson. Data Quality and the Bottom Line: Achieving Business Success

through a Commitment to High Quality Data. In The Data Warehousing Institute, 2002.

[15] H. Galhardas, A. Lopes, and E. Santos. Support for User Involvement in Data

Cleaning. In Proceedings of the 13th International Conference on Data Warehousing and

Knowledge Discovery, pages 136–151, 2011.

[16] J. Galindo, A. Urrutia, and M. Piattini. Fuzzy databases: Modeling, design, and

implementation. Idea Group Publishing, 2006.

[17] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLUNATIC Data-cleaning

Framework. Proc. VLDB Endow., 6(9):625–636, 2013.

[18] J. Han, D. Jiang, and L. Li. Automatic Accuracy Assessment via Hashing in Multiple-

source Environment. Journal of Expert Systems with Applications, 37(3):2609–2620,

2010.

[19] A. Haug, F. Zachariassen, and D. van Liempd. The costs of poor data quality. Journal

of Industrial Engineering and Management, 4(2):168–193, 2011.

[20] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying Data Provenance. In

SIGMOD, pages 951–962, 2010.

[21] A. Klein and W. Lehner. Representing Data Quality in Sensor Data Streaming

Environments. Journal of Data and Information Quality, 1(2):10:1–10:28, 2009.

[22] A. Lopatenko and L. Bravo. Efficient Approximation Algorithms for Repairing

Inconsistent Databases. In ICDE, pages 216–225, 2007.

[23] A. Motro and I. Rakov. Estimating the Quality of Data in Relational Databases. In

In Proceedings of the 1996 Conference on Information Quality, pages 94–106. MIT, 1996.

41

[24] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh. Incremental Maintenance for

Non-Distributive Aggregate Functions. In VLDB, pages 802–813, 2002.

[25] R. K. Pon and A. F. Cardenas. Data quality inference. In International Workshop on

Information Quality in Information Systems (IQIS), pages 105–111, 2005.

[26] M. N. Radziwill. Foundations for Quality Management of Scientific Data Products.

Quality Management Journal, 13(2):7–21, 2006.

[27] T. C. Redman. The Impact of Poor Data Quality on the Typical Enterprise. Commun.

ACM, 41(2):79–82, 1998.

[28] S. Singh and et al. Database support for probabilistic attributes and tuples. ICDE,

pages 1053–1061, 2008.

[29] M. Stonebraker, L. A. Rowe, and M. Hirohama. The implementation of POSTGRES.

TKDE, 2(1):125–142, 1990.

[30] Y. Su, D. Li, and J. Peng. Modeling Information Quality Risk in Data Mining. In

Wireless Communications, Networking and Mobile Computing (WiCOM), pages 1–4,

2008.

[31] M. Twombly. Science online survey: Support for data curation. Science Journal,

331, 2011.

[32] J. Widom. Trio: A system for integrated management of data, accuracy, and

lineage. CIDR, pages 262–276, 2005.

[33] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas. Guided Data

Repair. Proc. VLDB Endow., 4(5):279–289, 2011.

[34] E. Zimnyi and A. Pirotte. Imperfect Information in Relational Databases. In

Uncertainty Management in Information Systems, pages 35–87. Springer US, 1997.

[35] English, L. (1998, January 1). The High Costs of Low-Quality Data. Retrieved from

http://www.information-management.com/issues/19980101/771-1.html

[36] Pratte, D. (2001, May 30). Poor-quality data can rob your company of information.

Retrieved from http://www.techrepublic.com/article/poor-quality-data-can-rob-your-

company-of-information/

42

[37] McKnight, W. (2009, June). 7 Sources of Poor Data Quality. Retrieved from

https://www.melissadata.com/enews/articles/0611/2.html

[38] Ramakrishnan, R., & Gehrke, J. (1997). Database management system (Second

ed.). New York, N.Y.: McGraw-Hill, Page 3 -10

[39] Motro, A., & Smets, P. (1997). Uncertainty management in information systems:

From needs to solutions. Boston: Kluwer Academic, Page 35-87

[40] Motro, A. IMPRECISION AND UNCERTAINTY IN DATABASE SYSTEMS (pp. 5-17,

Rep.).

[41] THE TRUE COST OF BAD DATA. (n.d.). Retrieved from

http://lemonly.com/work/the-cost-of-bad-data/

[42] Garcia-Molina, Hector, Jeffrey D. Ullman, and Jennifer Widom. Database Systems:

The Complete Book. Second ed. Upper Saddle River, NJ: Prentice Hall, 2002. Print. Page1-

3

[43] "Max and Min Are Associative." - ProofWiki. Web.

<https://proofwiki.org/wiki/Max_and_Min_are_Associative>.

[44] "Max and Min Are Commutative." - ProofWiki. Web.

<https://proofwiki.org/wiki/Max_and_Min_are_Commutative>.

[45] "Bar Graph." Smartdraw. Web. <https://www.smartdraw.com/bar-graph/>.

[46] "PostgreSQL." Wikipedia. Wikimedia Foundation. Web.

<https://en.wikipedia.org/wiki/PostgreSQL>.

[47] "Backend Flowchart." PostgreSQL: Backend Flowchart. The PostgreSQL Global

Development Group. Web. <http://www.postgresql.org/developer/backend/>.

https://www.melissadata.com/enews/articles/0611/2.html

43

Appendix – Implemented Functions’ Code

src/backend/parser/parser.c:

char *str_replace (const char *source, char *find, char *rep){
 int find_L=strlen(find);
 int rep_L=strlen(rep);
 int length=strlen(source)+1;
 int gap=0;
 const char *former=source;
 char *result = (char*)malloc(sizeof(char) * length);
 char *location= strstr(former, find);
 strcpy(result, source);
 gap+=(location - former);
 result[gap]='\0';
 length+=(rep_L-find_L);
 result = (char*)realloc(result, length * sizeof(char));
 strcat(result, rep);
 gap+=rep_L;
 former=location+find_L;
 strcat(result, former);
 return result;
}

int useseqscan(const char* string){
 char *sub1 = "where";
 char *sub2 = "group by";
 char *sub3 = "order by";
 char *sub4 = ",";
 int length=strlen(string)+1;
 char *fromsentense = (char*)malloc(sizeof(char) * length);
 const char *total = str_replace(string, "from","from /");

if (strstr(string, sub1) != NULL) {
const char *final = str_replace(total, "where","@ where");
printf("%s\n", final);
sscanf(final, "%*[^/]/%[^@]", fromsentense);
printf("%s\n", fromsentense);
}
else if (strstr(string, sub2) != NULL) {
const char *final = str_replace(total, "group","@ group");
printf("%s\n", final);
sscanf(final, "%*[^/]/%[^@]", fromsentense);
printf("%s\n", fromsentense);
}
else if (strstr(string, sub3) != NULL) {
const char *final = str_replace(total, "order","@ order");
printf("%s\n", final);
sscanf(final, "%*[^/]/%[^@]", fromsentense);
printf("%s\n", fromsentense);
}
else {

44

const char *final = str_replace(total, ";","@ ;");
printf("%s\n", final);
sscanf(final, "%*[^/]/%[^@]", fromsentense);
printf("%s\n", fromsentense);
}

if (strstr(fromsentense, sub4) != NULL) {
return 1;
}
return 0;
}

char *findfrom(const char* string){
 char *sub1 = "where";
 char *sub2 = "group by";
 char *sub3 = "order by";
 char *sub4 = ",";
 int length=strlen(string)+1;
 char *fromsentense = (char*)malloc(sizeof(char) * length);
 const char *total = str_replace(string, "from","from /");

if (strstr(string, sub1) != NULL) {
const char *final = str_replace(total, "where","@ where");
sscanf(final, "%*[^/]/%[^@]", fromsentense);
}
else if (strstr(string, sub2) != NULL) {
const char *final = str_replace(total, "group","@ group");
sscanf(final, "%*[^/]/%[^@]", fromsentense);
}
else if (strstr(string, sub3) != NULL) {
const char *final = str_replace(total, "order","@ order");
sscanf(final, "%*[^/]/%[^@]", fromsentense);
}
else {
const char *final = str_replace(total, ";","@ ;");
sscanf(final, "%*[^/]/%[^@]", fromsentense);
}

return fromsentense;
}

void split(char **arr, char *str, const char *del) {
 char *sub1 = "where";
 char *sub2 = "group";
 char *sub3 = "order";
 char *sub4 = ";";
 char *s = strtok(str, del);

 while((s != NULL) && (strstr(s, sub1) == NULL) && (strstr(s, sub2) == NULL) && (strstr(s, sub3) == NULL)
&& (strstr(s, sub4) == NULL)) {
 *arr++ = s;
 s = strtok(NULL, del);
 }

45

}

char *helpmerge(char *str){
 int i = 0;
 int j = 0;
 char* tnum;
 const char *delim = ",";
 char *tablename[5];
 while(i<5){
 tablename[i] = "null";
 i++;
 }
 char *total;
 const char *s1 = ", merge";
 const char *s2 = " (" ;
 const char *s3 = ".Quality";
 const char *s4 = ") as quality from" ;
 const char *s5 = ",";
 split(tablename, str, delim);
 i=0;
 while (strcmp(tablename[i], "null")!=0){
 i++;}
 if (i==1){
 tnum = "1";}
 if (i==2){
 tnum = "2";}
 if (i==3){
 tnum = "3";}
 if (i==4){
 tnum = "4";}
 if (i==5){
 tnum = "5";}
 total =
(char*)malloc(strlen(s1)*sizeof(char)+strlen(s2)*sizeof(char)+strlen(s3)*9*sizeof(char)+strlen(s4)*sizeof(c
har)+strlen(s5)*sizeof(char)+strlen(str)*sizeof(char)+sizeof(char));
 strcat(total, s1);
 strcat(total, tnum);
 strcat(total, s2);
 while(j<i-1){
 strcat(total, tablename[j]);
 strcat(total, s3);
 strcat(total, s5);
 j++;
 }
 strcat(total, tablename[i-1]);
 strcat(total, s3);
 strcat(total, s4);
 return total;
}

/*
 * raw_parser
 * Given a query in string form, do lexical and grammatical analysis.

46

 *
 * Returns a list of raw (un-analyzed) parse trees.
 */
List *
raw_parser(const char *str)
{
 core_yyscan_t yyscanner;
 base_yy_extra_type yyextra;
 int yyresult;
 char *substr = "create table";
 char *substr2 = "select";
 if (strstr(str, substr) != NULL) {
 const char *total = str_replace(str, ");",", Quality QNode[]);");
 /* initialize the flex scanner using modified string*/
 yyscanner = scanner_init((const char *)total, &yyextra.core_yy_extra,ScanKeywords,
NumScanKeywords);
 }
 else if (strstr(str, substr2) != NULL && useseqscan(str) == 0) {
 const char *total = str_replace(str, "from",", Quality from");
 /* initialize the flex scanner using modified string*/
 yyscanner = scanner_init((const char *)total, &yyextra.core_yy_extra,ScanKeywords,
NumScanKeywords);
 }
 else if (strstr(str, substr2) != NULL && useseqscan(str) != 0) {
 char *from = findfrom(str);
 char *merge = helpmerge(from);
 const char *total = str_replace(str, "from", merge);
 /* initialize the flex scanner using modified string*/
 yyscanner = scanner_init((const char *)total, &yyextra.core_yy_extra,ScanKeywords,
NumScanKeywords);
 }
 else {
 /* initialize the flex scanner */
 yyscanner = scanner_init(str, &yyextra.core_yy_extra,ScanKeywords, NumScanKeywords); }

 /* base_yylex() only needs this much initialization */
 yyextra.have_lookahead = false;

 /* initialize the bison parser */
 parser_init(&yyextra);

 /* Parse! */
 yyresult = base_yyparse(yyscanner);

 /* Clean up (release memory) */
 scanner_finish(yyscanner);

 if (yyresult) /* error */
 return NIL;

 return yyextra.parsetree;
}

47

src/include/parser/parser.h:

extern char *str_replace (const char *source, char *find, char *rep);
extern int useseqscan(const char* string);
extern char *findfrom(const char* string);
extern void split(char **arr, char *str, const char *del);
extern char *helpmerge(char *str);

JoinHelper.sql:

CREATE TYPE QNode AS (QScore int, QTime timestamp, TriggerEvent text);

CREATE OR REPLACE FUNCTION merge2 (arr1 QNode[], arr2 QNode[]) RETURNS QNode[] AS $$
 DECLARE
 q1 int;
 q2 int;
 size1 int;
 size2 int;
 sizet int;
 time timestamp;
 i1 int;
 i2 int;
 ir int;
 i11 int;
 i22 int;
 res QNode[];
 temp QNode;
 BEGIN
 i1 := 1;
 i2 := 1;
 ir := 1;
 i11 := 1;
 i22 := 1;
 size1 := array_length(arr1, 1);
 size2 := array_length(arr2, 1);

 while i1<=size1 and i2<=size2 loop
 if arr1[i1].QTime < arr2[i2].QTime then
 time := arr1[i1].QTime;
 i1:=i1+1;
 elsif arr1[i1].QTime = arr2[i2].QTime then
 time := arr1[i1].QTime;

 i1:=i1+1;
 i2:=i2+1;
 else time:= arr2[i2].QTime;

 i2:=i2+1;
 end if;

48

 if arr1[i11].QTime=time then
 q1 := arr1[i11].Qscore;
 i11 := i11+1;
 if i11>size1 then
 i11:=i11-1;
 end if;
 elsif arr1[i11].QTime>time then
 if i11=1 then
 q1 := 6;
 else q1 := arr1[i11-1].Qscore;

 end if;
 else q1 := arr1[i11].Qscore;
 end if;

 if arr2[i22].QTime=time then
 q2 := arr2[i22].QScore;
 i22 := i22+1;
 if i22>size2 then
 i22:=i22-1;
 end if;
 elsif arr2[i22].QTime>time then
 if i22=1 then
 q2 := 6;

 else q2 := arr2[i22-1].Qscore;

 end if;
 else q2 := arr2[i22].Qscore;
 end if;

 temp.Qscore := LEAST(q1, q2);
 temp.QTime := time;
 temp.TriggerEvent := null;
 res[ir] := temp;
 ir :=ir+1;
 end loop;

 if i1-1=size1 and i2-1<size2 then
 while i2<=size2 loop
 time := arr2[i2].QTime;
 i2:=i2+1;
 if arr1[i11].QTime=time then
 q1 := arr1[i11].Qscore;
 i11 := i11+1;
 if i11>size1 then
 i11:=i11-1;
 end if;
 elsif arr1[i11].QTime>time then
 if i11=1 then
 q1 := 6;
 else q1 := arr1[i11-1].Qscore;

49

 end if;
 else q1 := arr1[i11].Qscore;
 end if;

 if arr2[i22].QTime=time then
 q2 := arr2[i22].QScore;
 i22 := i22+1;
 if i22>size2 then
 i22:=i22-1;
 end if;
 elsif arr2[i22].QTime>time then
 if i22=1 then
 q2 := 6;

 else q2 := arr2[i22-1].Qscore;

 end if;
 else q2 := arr2[i22].Qscore;
 end if;

 temp.Qscore := LEAST(q1, q2);
 temp.QTime := time;
 temp.TriggerEvent := null;
 res[ir] := temp;
 ir :=ir+1;
 end loop;
 elsif i2-1=size2 and i1-1<size1 then
 while i1<=size1 loop
 time := arr1[i1].QTime;
 i1:=i1+1;

 if arr1[i11].QTime=time then
 q1 := arr1[i11].Qscore;
 i11 := i11+1;
 if i11>size1 then
 i11:=i11-1;
 end if;
 elsif arr1[i11].QTime>time then
 if i11=1 then
 q1 := 6;
 else q1 := arr1[i11-1].Qscore;

 end if;
 else q1 := arr1[i11].Qscore;
 end if;

 if arr2[i22].QTime=time then
 q2 := arr2[i22].QScore;
 i22 := i22+1;
 if i22>size2 then
 i22:=i22-1;

50

 end if;
 elsif arr2[i22].QTime>time then
 if i22=1 then
 q2 := 6;

 else q2 := arr2[i22-1].Qscore;

 end if;
 else q2 := arr2[i22].Qscore;
 end if;

 temp.Qscore := LEAST(q1, q2);
 temp.QTime := time;
 temp.TriggerEvent := null;
 res[ir] := temp;
 ir :=ir+1;
 end loop;
 end if;

 RETURN res;
 END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION merge3 (arr1 QNode[], arr2 QNode[], arr3 QNode[]) RETURNS QNode[]
AS $$
 DECLARE
 res QNode[];
 BEGIN
 res := merge2(arr1, arr2);
 res := merge2(arr3, res);
 RETURN res;
 END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION merge4 (arr1 QNode[], arr2 QNode[], arr3 QNode[]) RETURNS QNode[]
AS $$
 DECLARE
 res QNode[];
 BEGIN
 res := merge3(arr1, arr2);
 res := merge2(arr3, res);
 RETURN res;
 END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION merge5 (arr1 QNode[], arr2 QNode[], arr3 QNode[]) RETURNS QNode[]
AS $$
 DECLARE
 res QNode[];
 BEGIN
 res := merge4(arr1, arr2);
 res := merge2(arr3, res);

51

 RETURN res;
 END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION merge1 (arr1 QNode[]) RETURNS QNode[] AS $$
 BEGIN
 RETURN arr1;
 END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION merge (arr QNode[][]) RETURNS QNode[] AS $$
 DECLARE
 ct int;
 res QNode[];
 BEGIN
 ct := 3;
 res := merge2(arr[1], arr[2]);
 WHILE ct<array_length(arr,1) LOOP
 res := merge2(arr[ct], res);
 ct := ct+1;
 END LOOP;
 RETURN res;
 END;
$$ LANGUAGE plpgsql;

