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Abstract

For applications where multiple stakeholders provide recommendations, a fair

consensus ranking must not only ensure that the preferences of rankers are well

represented, but must also mitigate disadvantages among socio-demographic groups in

the final result. However, there is little empirical guidance on the value or challenges

of visualizing and integrating fairness metrics and algorithms into human-in-the-loop

systems to aid decision-makers. In this work, we design and develop a system called

FairFuse, that includes visual encodings of fairness metrics and fair-rank generation

algorithms to generate fair consensus rankings. We design a study to analyze the

effectiveness of integrating such fairness metrics-based visualization and algorithms.

We explore performance through a task-based crowdsourced experiment comparing

FairFuse with a similar system for constructing a fair consensus rankings without the

inclusion of fairness metrics visualization and algorithms, called ConsensusFuse. We

analyze metrics of fairness, agreement of rankers’ decisions, and user interactions in

constructing the fair consensus ranking across these two systems. In our study with

200 participants, results suggest that providing fairness-oriented support features

nudges users to align their decision with the fairness metrics while minimizing the

tedious process of manually having to amend the consensus ranking. We discuss

the implications of these results for the design of next-generation fairness oriented-

systems, along with emerging directions for future research.
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Chapter 1

Introduction

The ubiquitous task of combining preferences by multiple stakeholders into a con-

sensus is challenging for decision-makers that steer this process. Decision-makers

often grapple with diverging preferences provided by different stakeholders, and

must reach a single decision that all stakeholders accept and agree with. A frequent

approach to such decision-making is to employ rankings, where each stakeholder

provides their ranking over the candidates. Candidates might include lists of people,

organizations, or other entities. Decision-makers combine these base rankings from

individual stakeholders into a single consensus ranking as part of the process.

However, when ranking candidates, stakeholders may provide biased or unfair

rankings [1]. Bias can be implicit (unintended), for example, when favoring candidates

from a particular university who happen to be overwhelmingly white. Bias can also

be explicit, for example, weighing women candidates lower due to a perceived lack of

ability for the target role.

One way to mitigate such unfair outcomes is by promoting measures from the

algorithmic fairness community, such as group fairness or statistical parity [2].

Statistical parity, for example, is a requirement that all groups receive an equal

proportion of the positive outcome; in our case, favorable positions in the consensus
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ranking. Without intervention in the ranking process, there is substantial risk of

perpetuating unfair practices, and thus harming marginalized groups.

1.1 State of the Art

Constructing a consensus ranking is challenging [3, 4] and ensuring that this consensus

ranking is fair is even more difficult [5, 6]. Numerous visualization tools have explored

the design space of rankings [7, 8] and rank-based decision making [9, 10, 11]. But

existing approaches have not dealt with the complications of incorporating fairness

into visual encodings, nor with interactive workflows related to consensus rank

generation. A number of interactive visualization systems have been developed to

mitigate socio-demographic biases [12, 13, 14, 15, 16, 17, 18, 19, 20]. These systems

are either limited to classifications or single ranking. Similarly, while research in fair

algorithms has developed rank-focused auditing metrics and fair rank aggregation

methods [5, 6], they have been confined to (non-visual) algorithmic solutions requiring

substantial technical expertise to use. Studies have also been conducted to evaluate

the capabilities of toolkits that incorporate fairness into their process [21, 22, 13, 23].

However, these studies are either limited to ML practitioners or limited number of

users.

1.2 Proposed Solution

To address this gap, we contribute the design and development of FairFuse, an

interactive visualization system for generating, analyzing, and auditing fair consensus

rankings. We conduct a goal and activity analysis (e.g. [10, 11, 24] to define fairness-

oriented tasks in ranking contexts (Table 3.1, 3.2). We propose a parallel-coordinates

style visualization design for rankings with a focus on the group membership of
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Consensus Ranking

Base Rankings

Fairness

Agreement

1. Decision maker inspects base rankings

3. Analyze and 
iteratively refine 
fair consensus 
rankings

2. Generate 
consensus rankings 
of different fairness 
thresholds

Figure 1.1: Illustrating a fairness-oriented ranking workflow enabled by FairFuse

candidate attributes. We develop novel visual encodings for group-based fairness

metrics. FairFuse enables an iterative ranking- and fairness-oriented workflow,

allowing decision-makers to visually inspect and edit consensus rankings as part of

their decision-making process. Our use cases demonstrate how a decision-maker can

use FairFuse in fairness-oriented ranking scenarios.

This research, along with the recent efforts such as work from Mitchell et al.

and Crisan et al. on model cards [25, 26], and Van Berkel et al. on examining the

value of visualization over text for communicating fairness concepts [27] highlight

the inherent promise of interactive visualization for advancing goals in the fairness

community. However, efforts combining visualization approaches and fairness metrics

and algorithms raise both challenges as well as unique opportunities in this space.
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We compare two visualization systems for fair 
consensus ranking, with task-based evaluation 
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representation

Figure 1.2: Overview of the study. We compare two systems: A: ConsensusFuse, a
visualization that enables fairness comparison only by interactive visual displays of
underlying items. B: FairFuse, a similar visualization which visualizes additional
fairness metrics and provides a fair-rank generation algorithm.

Can visualizations aid some fairness-related tasks, but hinder others? Should fairness

metrics be visualized by tightly integrating them with the underlying data items, or

separately through popular visualization techniques such as coordinated multiple

views? Might some visualizations even mislead or otherwise reduce the agency of

users in achieving fairness in decision-making contexts?

In this work, we additionally explore these broad questions through a particular

instance of a controlled task-based visualization study (Figure 1.2). We adapt

FairFuse into a new system, ConsensusFuse, by removing visualized fairness metrics

and algorithms (Figure 3.1). We distill the goals and activities into a set of evaluation

tasks, with measurable outcomes (Table 4.1). With the two systems and above

identified tasks in place, we conduct a between-subjects task-based evaluation with

n = 200 participants.

Results generally validate that visualizing fairness metrics leads to notably in-

creased accuracy in key fairness-related tasks, 82% compared to 47% overall. However,

deeper analysis of measures, exploration behavior, and participant explanations re-

veal nuance, challenges and risks in visualizing fairness metrics. In the discussion
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section, we review findings, such as the fact that the presence of algorithm-driven

fairness schemes tended to “shift” participants’ exploration and ultimate decisions in

a ranking task. We also develop a set of takeaways highlighting where visualized

fairness generally tends to help, but also where it may hinder users in decision-making

contexts.

1.3 Contributions

Taken together, this work makes the following contributions:

• Design of an interactive system that visualizes fairness metrics and algorithms

to build fair consensus rankings.

• Use cases that demonstrate how a decision-maker can use FairFuse in fairness-

oriented ranking scenarios

• A task-based evaluation comparing the system that visualizes fairness metrics

and algorithm results against a control with equivalent functionality, sans

metrics/algorithms.

• Results that generally validate the value of visualizing fairness metrics and

algorithms for rank-focused contexts.

• Additional analyses that highlight particular challenges in visualization design

for fairness, including risks and tensions in fairness interface design that may

require substantial future effort to resolve.
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Chapter 2

Related Works

2.1 Tools and Evaluation Studies on Consensus Building

Visualization systems have been designed to aid decision-makers in inspecting multiple

stakeholders’ preferences to reach a consensus decision [28, 29, 30, 31, 32, 33, 9,

34, 35, 36, 37, 38]. A subset of these tools consider the setting, like ours, in which

stakeholder preferences are encoded as rankings [10, 29, 9]. Liu et al. [9] evaluated

a between-subjects experiment to assess the effectiveness of their proposed tool,

ConsensUs, designed for multiple stakeholders to rate and select candidates. They

found that visualizations helped surface stakeholder disagreement that otherwise

would have gone undetected. Hindalong et al. [11] perform an evaluation study of

six tools (both visualization-focused systems and commercial systems that implicitly

allow for stakeholder preference inspection), including the systems of [10, 9, 29]. The

corresponding evaluation studies are focused on how well these tools help achieve

consensus outcomes – yet none consider the employment of consensus generation

algorithms [39, 40, 41, 42]. In contrast, we study consensus building when decision

makers are supported by fair consensus rank generation algorithms and when fairness

metrics are presented visually throughout the process.
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2.2 Tools for Ranking-based Tasks and Corresponding Evalu-

ation Studies

Interactive systems and evaluation studies of visualization paradigms have been

developed specifically for ranking data. Gratzl et al. [7] propose a visualization

system, LineUp, to compare ranked items along multiple attributes. Their qualitative

evaluation study found that visualizations helped people perform challenging ranking-

based tasks faster. Wall et al. [8] presented Podium, a visual analytics tool for

helping users define a ranking function combining multiple criteria according to

their interactions with a subset of the ranked data. Behrisch et al. [43] presented

a visual system to compare similarities and differences of pairs of rankings using

small multiple views of glyphs. However, while the above works target rank-oriented

workflows, they neither consider the problem of visually comparing a consensus

ranking vis-a-vis the stakeholder’s respective base rankings nor how fairness metrics

should be incorporated visually throughout the consensus ranking process.

2.3 Visualizing and Presenting Fairness in Information Sys-

tems

Much of the work in algorithmic fairness in recent years has focused on proposing

various conceptualizations of fairness, along with algorithmic techniques for ensuring

these definitions are met in decision-making processes. Comparatively less work

has proposed fairness-oriented visualization systems or studied the merits of visual

representations of fairness and bias in decision-making.
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Fairness Visualization Tools and Toolkits

The design of interactive or visual systems has predominately focused on highlighting

and providing recourse for socio-demographic bias in classification tasks [12, 15,

16, 17, 13]. The focus on classification-based machine learning models mirrors the

attention of the larger algorithmic fairness community, namely, where “Fair-ML"

gained prominence in the context of binary classification. Many tools have been

developed to detect algorithmic biases and to evaluate and compare different machine

learning models concerning fairness [44, 14, 45]. Crisan et al. and Mitchell et al.

[26, 25] proposed visual model cards for documenting models for better transparency.

Recent visualization research has focused on addressing group bias discovery and the

interpretation of intersectional bias [46, 47]. In the context of rankings, Yang et al.

[18] provided “nutritional facts" for the fairness of rankings, Ahn et al. [19] proposed

an interactive system for building fair rankings, and Xie et al. [17] introduced a visual

system for fairness comparing rankings produced from graph mining recommender

algorithms.

Evaluation of Fairness-Oriented Toolkits

Several researchers assessed toolkits that incorporate fairness into their process.

Mashhadi et al. [21] studied the impact of the visualization styles of six open-

source fair classification toolkits on student learning of fairness criteria. Lee et al.

[22] evaluated the capabilities of open-source fairness toolkits and their suitability

for commercial use through practitioner interviews and surveys. They found that

many toolkits that contained visual representations of fairness were difficult for

non-technical users to understand, even in tools like the What-If Tool [13], which

were designed for broader audiences. Richardson et al. [23] conducted interviews
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with machine learning practitioners to create a rubric for evaluating fairness toolkits.

While there has been a surge in the development of fairness toolkits, Deng et al. [48]

have highlighted gaps between fairness toolkits’ capabilities and practitioners’ needs.

Evaluation on Presentation of Fairness Information

Studies have evaluated the presentation of fairness related information in different

scenarios. Van Berkel et al. [27] compared the perceived fairness level between

text and scatterplot visualization techniques. The study found that the scatterplot

visualization technique resulted in a lower fairness perception than text. Saxena et

al. [49] investigated people’s attitudes towards algorithmic definitions of fairness and

found that people considered calibrated models, such as ratios, fairer than equal

or meritocratic distributions in the context of loan decisions. Similar studies found

that people perceive demographic parity and equalized odds as fair, depending on

the scenario. Cheng et al. [50] compared three group fairness approaches in a child

maltreatment predictive system. They found that people mostly supported equalized

odds, followed by statistical parity and unawareness. Srivastava et al. [51] found that

people prefer demographic parity among the 6 different notions of group fairness.

Harrison et al. [52] conducted a user study on the perceived fairness of machine

learning models in the criminal justice context and found conflicts between various

inconsistent definitions of fairness. Nevertheless, Hannan et al. [53] showed that the

factors of "what" and "who" matter in fairness perceptions and that the context of

algorithmic fairness is more important in some domains than others.
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Chapter 3

Visualization and Interaction Design

3.1 Goals and Activities Analysis

We characterize the data model and tasks for a decision-maker analyzing multiple

stakeholder preferences and ultimately combining them to generate a fair consensus

ranking.

We are given a set of candidates, described by attributes, to be ranked.

One of the attributes, typically a categorical attribute referred to as the protected

attribute (such as gender, race, or income-level), is associated with bias measurement

and mitigation. We refer to candidates sharing the same value of the protected

attribute as groups, such as Man, Woman, or Non-binary groups in the Gender

attribute. Stakeholders in the committee (called rankers) each order (rank) the set

of candidates to create a list of base rankings provided to the decision-maker.

A decision-maker (head of the committee) using our system generates consensus

rankings with the aim to order the candidates such that the base rankings, and

thereby rankers, mostly agree with the consensus ranking.

The consensus ranking also must be fair. For auditing the fairness of rankings,

we employ two metrics: a group-specific pairwise fairness metric FPR (Favored Pair

10



Representation) [6] to measure the fair treatment of each group in the ranking, and

an aggregate fairness metric ARP (Attribute Rank Parity) [6] to quantify if the

overall ranking across all groups satisfies the statistical parity fairness criteria [2]. In

generating a fair consensus ranking, the decision-maker sets the fairness threshold

value which controls the level of ARP represented in the consensus ranking. The

later is then generated by a function utilizing the Fair-Copeland Algorithm [6].

A function Kendall Tau distance [54] computes the similarity/agreement between

any two rankings.

We begin by employing task abstraction methodologies following procedures

from Lam et al. [55] and recent works on group decision-making by Hindalong et al.

[10, 11]. Table 3.1 outlines the goals and sub-goals for generating and analyzing fair

consensus rankings that combines the preferences of multiple rankers (base rankings)

into a single consensus ranking. For each sub-goal, we identified a set of visualization

activities (Table 3.2) based on a widely used method in the visualization literature

[56], leading to the design and implementation of several views.

3.2 FairFuse

We design FairFuse system to support the process of both analyzing and combining

preferences from multiple stakehodlers into a fair consensus ranking. In designing

FairFuse, we developed core views based on parallel coordinates, augmented with

custom visual encodings for fairness metrics, and interactive components for gener-

ating fair consensus rankings. The system consists of several views and interaction

capabilities to support the goals (Table 3.1) and activities (Table 3.2).

11



Table 3.1: Generic goals for rankings inspection and fair ranking generation and
analysis

GENERIC GOAL

G1 Characterize Differences in Base Rankings
a Discover (dis)agreement on each candidate between rankings
b Assess the discrepancy of candidates’ position between base rankings

G2 Investigate Protected Attribute
a Discover protected attribute groups of the candidates
b Discover groups clustering of protected attribute in each ranking

G3 Discover Bias in the Rankings
a Discover (dis)advantaged groups in each ranking
b Investigate the treatment of groups across rankings
c Intuit fairness of each ranking

G4 Generate Fair Consensus Rankings
a Analyze multiple consensus rankings of different fairness level

G5 Discover Nuances (not captured by the model)
a Analyze discrepancy on candidates between base rankings and consensus rank-

ings
b Re-evaluate Fair Consensus Rankings

3.2.1 Ranking Exploration View

The Ranking Exploration View uses parallel coordinates plot to explore and compare

rankings of candidates between multiple stakeholders (A1, A2, A3, A16, A17) as

shown in Figure 3.1E. It contains all candidates ordered into two or more base rankings.

Columns on the left correspond to input base rankings; while fair consensus rankings

generated by the decision maker are appended to the right upon their creation. Each

candidate’s set of attributes and values are represented by glyphs and colors [57] (A5,

A6), collectively called a Candidate Card (Figure 3.2). By dragging-and-dropping

the Candidate Card (A18), any generated consensus ranking can be adjusted if

necessary.

The parallel coordinates is used to compare candidates across different rankings,

drawing on features from similar rank oriented systems such as LineUp [7] and

12



Figure 3.1: Design of the FairFuse system for constructing and analyzing fair
consensus rankings. A) Consensus Generation, B) Similarity View C) Attributes
Legend, D) Group Fairness View, and E) Ranking Exploration View

Hindalong et al. [10]. The order of candidates in a given column is based on candidate

rank in the case of a base ranking columns, or the Fair-Copeland Algorithm in

generated rankings. Each candidate appears across all rankings, with lines connecting

them to illustrate change in position across rankings. Lines connecting the candidate

across the rankings are colored based on the degree of change in the candidate’s

position between adjacent rankers. Candidates ranked higher in the subsequent

ranking are colored in a gradient scale of blue, while those ranked lower are colored

in a gradient scale of red.

Figure 3.2: Candidate Card contains glyphs representing multi-variate attributes.
The protected attribute is emphasized with a large (versus smaller) shape. Color
represents the value of the attribute.
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To reduce parallel coordinates clutter (e.g. [58]) while maintaining task effec-

tiveness, we hide lines for which both candidates on adjacent rankers are not visible

within the screen. Clutter can also result from orderings of parallel coordinate

columns [59]. Users can drag to re-arrange columns, and FairFuse can be readily

extended with automatic ordering techniques.

Figure 3.3: Compressed view with a group selected. When a group is selected in the
Group Fairness View, all candidates of that group are highlighted, facilitating the
decision-maker in focusing on both group and individual fairness considerations.

We also design a Compressed Ranking View mode (Figure 3.3) which represents

a scaled-down version of the rankings. In this mode, the candidate cards (Figure

3.2) are initially hidden, but appear when hovering over a particular candidate. The

protected attribute glyph is displayed with full saturation so that the decision-maker

can explore how groups are distributed in each ranking, while other attributes are

desaturated so as to be visible while interfering less with the protected attribute

color.

14



3.2.2 Group Fairness View

The Group Fairness View (Figure 3.1E) captures fairness of a ranking at individual

group level utilizing FPR score [6] (A6, A7, A8, A9, A10) and holistically across

groups in the ranking using ARP score [6] (A11, A12, A14).

The FPR metric [6] captures if a specific group is fairly treated throughout the

ranking). Specifically, FRP score = 0.5 denotes totally fair group treatment, while

< 0.5 represents under-advantage and > 0.5 over-advantage. The ARP metric [6]

captures if statistical parity fairness is satisfied by the ranking overall, i.e., all groups

are comparably treated to each other. Here, ARP = 0 is absolute fairness, anything

higher is further and further from total fairness. This novel fairness view is critical

to capture the notion that in multiple-group settings one or more groups may be

fairly treated, while others may be unfairly over- or under-advantaged.

In designing the Group Fairness View, we initially explored 2 alternate prototypes

(Figure 3.4). Because FPR and APR are scalar values, we first represented the

FPR and ARP fairness scores with bar encodings at the top of ranking columns

(Figure 3.4A). However, after determining that this design made it difficult to identify

over-advantaged and under-advantaged groups, our second design placed an axis at

FPR 0.5 and adopted a hybrid dot-plot and box-plot encoding (Figure 3.4B). This

change supports more semantically meaningful visual queries. For example, dots

above FPR 0.5 represent over-advantaged groups, informing the decision maker that

they are unfairly receiving a larger share of favorable rank positions.

As explained below, our third and final design variation of the Group Fairness

View as depicted in Figure 3.4C offers additional advantages. Since ARP measures

the difference between the maximum and minimum FPR scores, we can visualize the

ARP score with the region between the scores of the respective group. This change
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Figure 3.4: Group Fairness View design iterations. A) Colored barchart for FPR;
gray bar for ARP. B) Dot plot for FPR, box-plot for distribution of groups in ranking.
C) Final Design: Dot plot represents FPR, heatmap the distribution of groups, and
shaded region the ARP.

enables visual queries within and across rankings to assess group fairness of each

ranking, as a smaller ARP value would create a smaller shaded region. To mitigate

the limitations of boxplots for showing non-contiguous distributions, we adopt a

marginal mark-based distribution plot. Finally, the view affords interactive features,

such as displaying exact FPR and ARP values on hover, and highlighting groups in

the parallel coordinates plot on click.

3.2.3 Similarity View

The Similarity View (Figure 3.1B) uses a heatmap to show the similarity between any

two rankings (A4, A15) with darker squares representing higher similarity between

the rankings. This includes the ability to compare similarities between any two base

rankings, and a base ranking with a consensus ranking. The similarity measure

is calculated using a common measure for rank dissimilarity called Kendall-Tau

distance [54]. With the help of tooltips and legend, the decision maker can extract

the exact value of similarity between any two rankings.
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3.2.4 Ranking Generation

The Ranking Generation process uses a button to first generate a consensus ranking

without any fairness intervention. After the consensus ranking is displayed, the

generation button is replaced with a slider (Figure 3.1A) – allowing the fairness

threshold of generated consensus ranking to be adjusted (A13, A18). This process

utilizes the Fair-Copeland algorithm [6]. Because a set of base rankings are unlikely

to be completely unfair from the outset, the slider includes a gradient overlay to

indicate that the fairness threshold will only produce fairer results if changed in a

particular region. Similarly, on the other extreme, if the slider is set to 0, it will

generate a consensus ranking solely based on the input base rankings.

3.2.5 Additional Interactions and Workflow

FairFuse provides additional interactions to support the decision-maker in a fairness-

oriented rank analysis and generation workflow. Ranking Exploration, Group Fairness,

and Consensus Generation and Similarity Views include design elements that respond

to user actions such as clicks and hovers. A user hovering in the Ranking Exploration

view, for example, will highlight a Candidate Card for easier exploration across

views. A click in this scenario “pins” a candidate for comparison against other

candidates. Brushing is also enabled [58], allowing the user to drag select ranges of

candidates within particular columns, which is particularly useful in the compressed

views. Similar hover and click functions are available in other views, mainly oriented

towards emphasizing or de-emphasizing visual components to enable the decision-

maker to focus on particular tasks.

To support iteration and adjustment of consensus rankings, FairFuse provides the

decision-maker with editing features on consensus rankings. FairFuse supports manual
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editing of fair consensus rankings, as the decision-maker may have additional context

and information that they need to preserve in the resulting ranking. Decision-makers

may adjust the fairness threshold of a consensus ranking to obtain another result,

create or “pin” rankings, and manually adjust the position of candidates. Importantly,

repositioning candidates immediately triggers the recalculation of fairness metrics,

showing the decision-maker how fairness is lost or gained through their manual

editing.

3.3 Use Case Scenarios Using the FairFuse System

A scholarship administrator, Jo, is responsible for determining the merit scholarship

package of prospective students1. Jo needs to combine the recommendations of

three rankers, teachers in Math, Reading, and Writing, and form a single ranking

to allocate the merit scholarships. Cognizant that systemic and societal biases can

affect how students of differing races perform in academic subject exams, which in

turn can affect how students are perceived by subject-specific rankers, Jo seeks to

detect and mitigate excess bias in the consensus ranking to ensure all groups are

comparably treated.

Jo loads the data of base rankings given by the teachers along with candidate

attribute information into the FairFuse. Jo uses the Similarity View to assess to

what degree each base ranking agrees with others, along with visually inspecting

the lines between adjacent rankings in the Rank Exploration View. At this point Jo

uncovers that the Math teacher disagrees to some extent with the other teachers,

which can make a consensus challenging, even before considering fairness.

Next, Jo switches to the compressed view to evaluate how candidate attributes

are distributed across rankings. Auditing primarily for fairness, however, Jo pays
1An additional usage scenario is presented in supplemental material.
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particular attention to the protected attribute, race. For this task, Jo studies the

Group Fairness View on top of each ranking (Figure 3.1D), which shows distributions

of protected attributes throughout the ranking. Jo notices immediately that the FPR

fairness metric indicates that white students have a stronger advantage over students

from other races. On closer examination, Jo discovers that across all rankings,

students from the white group are clustered at the top, while students from the black

group are clustered more towards the bottom. This is then reflected in the ARP

scores (gray area) of the rankings, indicating the base rankings in general are far

from fair as defined by statistical parity.

After exploring and comparing the similarities and fairness of the base rankings

(Figure 3.1 B, D), Jo initiates the auto-generation of a consensus ranking, using

the Consensus Generation. Immediately, Jo notices that the consensus ranking

reflects the biases found in base rankings. Jo then progressively adjusts the Fairness

Threshold (Figure 3.1A) to generate a fairer consensus ranking. Throughout this

process, Jo references the Similarity View matrix and base rankings themselves to

evaluate the extent to which base rankings are represented in the fair consensus.

Honing in on a consensus ranking that balances the desired trade-off between the

fairness and preference representation, Jo makes manual swaps between candidates

to refine the target consensus ranking. With each edit, Jo’s changes are audited

visually by changes in the Group Fairness View (Figure 3.1D), helping ensure this

manual manipulation does not drastically change the desired fairness measure. The

resulting consensus ranking is both fair with respect to mitigating the over-advantage

of white students and their disproportionately large merit awards, while ensuring

the teacher recommendations expressed by base rankings are adequately combined

and represented.
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Table 3.2: Activities resulting from the goals and activities analysis, designed to
support the goals in Table 3.1

ACTIVITY

G1a Discover (dis)agreement on each candidate between rankings
A1 Locate each candidate across the rankings
A2 Compare position of candidates across rankings

G1b Assess the discrepancy of candidates’ position between base rankings
A3 Compare position of multiple candidates between rankings
A4 Compare Kendall Tau distance [54] between rankings

G2a Discover protected attribute groups of the candidates
A5 Identify protected attributes of candidates

G2b Discover groups clustering of protected attributes in each ranking
A6 Locate candidates of each group in a ranking
A7 Analyze distribution of candidates of each group

G3a Discover (dis)advantaged groups in each ranking
A8 Identify FPR score of each group
A9 Compare FPR score with a baseline fair score

G3b Investigate the treatment of groups across rankings
A10 Compare FPR score of groups across rankings

G3c Intuit fairness of each ranking
A11 Identify ARP scores of the rankings
A12 Compare ARP across rankings

G4a Analyze multiple consensus rankings of different fairness level
A13 Generate consensus rankings with different ARP thresholds
A14 Compare ARP and FPR scores between rankings (including consensus

rankings)
A15 Compare Kendall Tau distance between rankings (including consensus

rankings)

G5a Analyze discrepancies on candidates between base rankings and
consensus rankings
A16 Compare individual candidate positions in base rankings with consensus

rankings
A17 Identify candidates with major differences in base rankings with consensus

rankings

G5b Re-evaluate Fair Consensus Rankings
A18 Manipulate candidate position or Re-iterate fair consensus ranking genera-

tion with different fairness threshold
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Chapter 4

Study Design

We now aim to investigate the challenges and opportunities of a system like FairFuse

for the activities associated with fairness-oriented tasks. We adapt FairFuse into a

new system, ConsensusFuse, by removing visualized fairness metrics and algorithms.

ConsensusFuse system acts as a baseline for comparison in our study. Changes

included the removal of 1) encodings of fairness metrics in the Group Fairness View

(Figure 4.1H), 2) the Similarity View which uses metrics to compare the similarity

of fair rankings, and 3) the fairness algorithm in the consensus ranking generation

process, which had a slider to control the ARP [6]. Differences are shown in Figure

4.1.

In our study, we presented a scenario where participants were tasked with con-

structing a fair consensus ranking for scholarship distribution based on teachers’

rankings of students. We performed a between-subjects study in which each partici-

pant was assigned to use either FairFuse or ConsensusFuse system.
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Visualizations 
supporting Fairness 
Metrics are removed 
in ConsensusFuse

Similarity View is 

only provided in 
FairFuse

A

B

G

H

C

D

E

F

Fair Consensus Generation appears in FairFuse 
after generating a consensus ranking

Figure 4.1: FairFuse and ConsensusFuse System Designs with changes in visualiza-
tions related to fair consensus generation. A) Consensus Generation, B) Similarity
View (in FairFuse), C) Attributes Legend, D) Tasks presented to the participants, E)
Group Fairness View (in FairFuse), F) Ranking Exploration View, G) Fair Consensus
Generation (in FairFuse), H) Group View (in ConsensusFuse).

4.1 Procedure

We recruited 200 English-speaking participants agreeing to an IRB-approved consent

form on Prolific, a crowd-sourcing platform. Based on multiple pilot studies, each

participant was paid $5 USD for an estimated 25-minute study time, with an hourly

rate of $12.00 USD. Since both the system used for the study is built for large screens,

participants were filtered to use only desktop devices using Prolific’s screening process.

Our study consists of 3 phases: training, study, and feedback phase (Figure 4.2) as

seen in a similar user study in the literature [60].

Training Phase. The study starts with the training phase (Figure 4.2A)

introducing participants to different parts of the system through textual, figurative,

and video explanations while also encourging them with analysis regarding consensus

finding and bias mitigation.
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FairFuse

FairFuse

ConsensusFuse

ConsensusFuse

Training Phase

8 tasks
Consensus Ranking / Fairness Tasks

1 task
Open-Ended Fair Ranking Analysis Task

Feedback Phase

Tasks designed based on goals and activities 
analysis, specifically targeting different views of 
the system

Video / Textual / Image 
tutorial on different 
parts of the system

Given a ranking scenario, participants freely generate and 
manipulate consensus ranking until they decide it is representative 
of all stakeholders’ rankings and is fair to all race groups

A

Study PhaseB

C

Figure 4.2: Study Design: We explore using visualization-enabled fairness metrics
in building a fair consensus ranking. Participants are divided into two conditions,
FairFuse: system with visualization-enabled fairness metrics and ConsensusFuse:
system without visualizations for fairness metrics. Participants go through three
phases. A) Training Phase, B) Study Phase and C) General Feedback Phase.

Study Phase. The second phase (Figure 4.2B) involved participants completing

tasks. Both FairFuse and ConsensusFuse systems’ interfaces were adjusted to include

a view displaying the tasks. The sidebar was shortened to accommodate the tasks

and participant answers at the bottom. During this phase, the participants interacted

with the visualizations to find the answer(s). Each task was followed by a multiple-

choice form with a dropdown or checkbox, and some were also followed by a free

text form. The tasks in this phase were designed to increase in complexity gradually.

Participants could refer back to the tutorial if they encountered difficulty. This phase

was further divided into two parts. The first part focused on the systems’ specific

views and activities (Table 3.2) while additionally serving as a guided tutorial for the

second part of this phase. On the other hand, the second part invited participants to

interact with all system views while completing an open-ended task of constructing

a fair consensus ranking.

Feedback Phase. The final phase of the study (Figure 4.2C) collected qual-

itative feedback on the system regarding generating a fair consensus ranking and

demographics-related information.
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4.2 Tasks Scenario Data

For this study, we adapted the data from the publicly available dataset [61] of

students’ rankings. The dataset contains multiple attributes, but for generating a

consensus ranking, we used the relative ordering of students in three subjects, math,

reading, and writing, as base rankings. Since our study phase has two parts, we

created two datasets of 30 students each, where one dataset was used for each of

the two study parts. The dataset was split such that both had all 5 groups of the

protected attribute, race, the advantaged and disadvantaged groups can be separable.

Race was the protected attribute for both datasets, with five groups: White, Native,

Black, Asian, and Pacific Islander.

4.3 Study Task Design

Targeting the goals and activities (Table 3.2), we created a set of tasks for the

participants, listed in Table 4.1. The first eight tasks focus on different individual

views of the system. These tasks encompass the Ranking Exploration View with

candidate cards containing attributes of the candidate and parallel coordinates plot of

the rankings, Similarity View, Group Fairness View, and the Consensus Generation

process. The final task asks participants to conduct a free-form fair consensus ranking

generation.
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Table 4.1: List of task prompts given to the participants. Tasks are targeted at the
Goals and Activities (Table 3.2) analysis.

Task / Task Prompt Target Activity

T1 Locating protected attribute
What is the race of Taylor Landry?

A1, A5

T2 Identifying Advantaged Group(s)
Which race groups are over advantaged in the Math ranking?

A6, A7, A8, A9

T3 Visualization Use
Click on the visualization you primarily used to deduce the
answer for the previous question?

T4 Identifying Attribute-level Unfairness
Which of the 3 rankings is the most unfair? Please express
why it is unfair?

A11, A12

T5 Identifying Group-level Unfairness
Which of the 3 rankings have the most advantaged White race
group?

A6, A7, A10

T6 Utilizing PCP Position Comparison
How is Taylor Landry’s position ranked in Math compared to
Reading?

A2, A3

T7 Interpreting PCP Gradient
Select the candidate with most disagreement between Math
and Reading rankings. Please explain how you deduced your
answer.

A2

T8 Using Consensus Generation Procedure
STEP 1: Generate a consensus ranking using the button on
the top of the left sidebar.
STEP 2: Use the pin icon in the heading of the generated
ranking to pin the ranking.
STEP 3: Please identify which base ranking is most dissimilar
to consensus ranking you just generated.

A4, A13, A15

T9 Using Fair Consensus Generation Procedure
Generate a fair consensus ranking that:
1. Is representative of all the base rankings
2. Does not over or under advantage race groups

A1 - A18
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Chapter 5

Results

We recruited 200 participants (a number obtained via power analyses following

pilot studies) and evenly divided them into two groups, namely, FairFuse and

ConsensusFuse. We computed 95% confidence interval using a bootstrapped method

and effect size using Cohen’s d. Our results also include p-value (p) from the Wilcox

Test (W).

5.1 Ranking Exploration Tasks

Since three of the tasks, T1, T6 and T7, relied on the unmodified views presented

for both groups, we observe that there is no significant difference in the answers given

by the participants. The violin plot with confidence intervals, p-value and effect

size are shown in Figure 5.1. We report no significant difference in all three tasks

between the two conditions, namely, p = 0.0827, p = 1.0, and p = 0.637, respectively.

We find that participants are able to identify attributes and compare positions of

candidates between rankings using Parallel Coordinates Plot in both systems. For

T7, which is an advanced task compared to T1 and T6, we see a slight decrease in

the correct answers. T7 asked participants to identify the candidate with the most
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1~[1,1]

0.97~[0.91,0.99]

T1 − What is the race of Taylor Landry?
Accuracy

CF

FF

0.0 0.5 1.0

W=5150 p=0.0827 d=−0.247~[−0.527,0.0325]

(a) Locating protected attribute [T1]

0.84~[0.75,0.89]

0.84~[0.74,0.89]

T6 − Taylor's rank in Math vs. Reading?
Accuracy

CF

FF

0.0 0.5 1.0

W=5000 p=1 d=0~[−0.279,0.279]

(b) Utilizing PCP Position Comparison [T6]

0.74~[0.64,0.81]

0.71~[0.6,0.78]

T7 − Identify the most disputed candidate
Accuracy

CF

FF

0.0 0.5 1.0

W=5150 p=0.637 d=−0.0669~[−0.346,0.212]

(c) Interpreting PCP Gradient [T7]

Figure 5.1: Results for Ranking Exploration

disagreement between two rankings. This task involved identifying a candidate card

connected with a line between two adjacent rankings with the most inclination.

5.2 Fairness-oriented Tasks

T2 asks participants to identify advantaged groups in one of the three rankings

provided. During the experiment, participants were provided with checkboxes of

five race groups allowing them to select multiple race groups. The ground truth

included two advantaged race groups based on the FPR scores. We observe that the

user performance in FairFuse (M = 0.84 ∼ [0.74, 0.89]) is significantly better than

ConsensusFuse (M = 0.23 ∼ [0.15, 0.31]) as shown in the violin plot (Figure 5.2a)

with a large effect size (d = 1.54 ∼ [1.22, 1.86]). The careful design of the Group
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0.23~[0.15,0.31]

0.84~[0.74,0.89]

T2 − Identify over−advantaged race groups
Accuracy

CF

FF

0.0 0.5 1.0

W=1950 p=6.42e−18 d=1.54~[1.22,1.86]

(a) Results for Identifying advantaged
Group(s) [T2] (both native and white as
correct answer)

0.92~[0.85,0.96]

0.92~[0.82,0.95]

T3 − Use of Group (Fairness) View for T2
Usage

CF

FF

0.0 0.5 1.0

W=5000 p=1 d=0~[−0.279,0.279]

(b) Results for use of Group (Fairness) View
for T2 [T3]

0.4~[0.29,0.49]

0.83~[0.73,0.88]

T4 − Which of the 3 rankings is the most unfair?
Accuracy

CF

FF

0.0 0.5 1.0

W=2850 p=4.62e−10 d=0.98~[0.685,1.28]

(c) Results for Identifying Attribute-level
Unfairness [T4]

0.81~[0.71,0.87]

0.97~[0.91,0.99]

T5 − Identify ranking with most advantaged white group
Accuracy

CF

FF

0.0 0.5 1.0

W=4200 p=0.000313 d=0.526~[0.243,0.81]

(d) Results for Identifying Group-level Un-
fairness [T5]

Figure 5.2: Results for Fairness Intuition

Fairness View in FairFuse with the affordance of a horizontal line providing a visual

cue of the baseline that separates the advantaged from disadvantaged groups could

have helped FairFuse achieve better accuracy for this question. We also find that

both FairFuse and ConsensusFuse participants use the same view for tackling this

question T2 as seen in Figure 5.2b. It’s noteworthy that the majority of participants

in the ConsensusFuse study selected one of the two correct advantaged groups, while

the participants in FairFuse identified both correct advantaged groups (as shown

in Figures 5.3a and 5.3b). This highlights the significance of fairness metrics and

visualizations in identifying multiple advantaged or disadvantaged groups when a

large number of groups are involved.

For T4, participants were asked to identify the most unfair ranking among the

three rankings provided. While T2 focused on the level of advantage each group has

using FPR measure [6], T4 focused on utilizing the ARP metric [6]. Similar to T2,
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with T4, we get significantly different results between the two conditions with high

accuracy in FairFuse (ConsensusFuse: M = 0.4 [0.29, 0.49] vs. FairFuse: M = 0.83

[0.73, 0.88]) as shown in Figure 5.2c. We also instructed participants to express why

they think their ranking choice is unfair. Two types of reasoning are found most

commonly in the FairFuse condition: expression at the vis-level and expression at the

understanding level. Expression at vis-level reports the ARP score or visualization

that mimics the ARP score, such as:

The grey bar is the widest with [the] highest ARP index.

Expression at the understanding level goes beyond just reporting the ARP score,

such as:

Reading shows the largest disparity between the highest and lowest group

fairness scores, ergo the disparity between highs and lows would be the

most unfair.

ConsensusFuse participants tend to consider only a single group resulting in

incorrect answers, such as:

The black group is very under-advantaged and is ranked a lot lower than

other groups.

0.29~[0.19,0.38]

0.94~[0.86,0.97]

T2 − White race correctly labelled as advantaged
Accuracy

CF

FF

0.0 0.5 1.0

W=1750 p=4.49e−21 d=1.79~[1.46,2.12]

(a) Results for Identifying Advantaged
Group(s) with white as correct answer [T2]

0.9~[0.82,0.94]

0.88~[0.79,0.93]

T2 − Native race correctly labelled as advantaged
Accuracy

CF

FF

0.0 0.5 1.0

W=5100 p=0.654 d=−0.0636~[−0.343,0.215]

(b) Results for Identifying Advantaged
Group(s) with native as correct answer [T2]

Figure 5.3: Results per individual group for Identifying advantaged Group(s) [T2]
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Also, it is interesting that some ConsensusFuse participants did meticulous

calculations of individual groups, such as:

100% of the white students are in the top half, but only 28.5% of the

black students are.

Task T5 builds from T2 and T4, where participants were asked to identify

the ranking with the most advantaged White race group. We find a small but

significant difference in accuracy (p = 0.000313; FairFuse: M = 0.97 ∼ [0.91, 0.99]

vs. ConsensusFuse: M = 0.81 ∼ [0.71, 0.87]) with medium effect size (d = 0.526 ∼

[0.243, 0.81]) as shown in Figure 5.2d. This may be because T5 specifically asks

about a particular group instead of multiple groups resulting in similar results like

Identifying Advantaged Group(s) (T2) with native as a correct answer (Figure 5.3b).

5.3 Consensus Representation and Analysis Tasks

0.45~[0.34,0.53]

0.65~[0.54,0.73]

T8 − Identify most dissimilar ranking to consensus ranking
Accuracy

CF

FF

0.0 0.5 1.0

W=4000 p=0.00459 d=0.408~[0.127,0.69]

Figure 5.4: Results on Using Consensus Generation Procedure [T8]

To assess FairFuse’s performance in identifying similarity of consensus ranking to

base rankings, we device T8. To ensure a fair comparison between the systems, we

asked both groups to start with generating a fairness-unaware consensus ranking,

followed by selecting the most dissimilar base ranking. This way, both groups have

the same state of rankings to begin with. The violin plot shows the result (Figure

5.4) with a significant difference between the two groups and a medium effect size
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(p = 0.00459, d = 0.408 ∼ [0.127, 0.69]). Although FairFuse (M = 0.65 ∼ [0.54, 0.73])

was more accurate than ConsensusFuse (M = 0.45 ∼ [0.34, 0.53]), the advantage was

not very high.

For this particular task, we also asked participants to reason their choice of

answer. We find that most of the participants in FairFuse, even though they correctly

identify the most dissimilar ranking, seems to have mentioned the use of Group

Fairness View instead of the Similarity View, such as:

The ARP of reading is the furthest away from the ARP of the consensus.

Interestingly, despite having the Similarity View in FairFuse, some participants

either used a process similar to that of the ConsensusFuse participants by dragging

individual base rankings towards the consensus ranking and counting line crossings,

or didn’t find the view useful.

I dragged each individual ranking over to place it side-by-side with the

consensus ranking. [...] reading had the most lines that strayed from this

path.

I did not find the Similarity View very helpful.

As a result, while the quantitative data supports the expectation that FairFuse

would perform better in identifying the (dis)similarity between the consensus ranking

and base rankings, with a statistically significant difference, the qualitative results do

not fully support this conclusion. Participants focused more on the fairness metrics

and disregarded other crucial information like the Similarity View.

5.4 Open-Ended Fair Ranking Analysis Task

In T9, we ask participants to generate a fair consensus ranking that is representative

of all the base rankings such that it does not over or under-advantage race groups.
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Lower represents fairer ranking considering ARP
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(a) Results for ARP of generated fair consen-
sus ranking [T9]
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0.18~[0.17,0.18]

T9 − PD Loss of the consensus ranking
Lower is more representative of the base rankings
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(b) Results for PD Loss of generated fair
consensus ranking [T9]
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T9 − Interactions to build consensus rank.
Interactions Count
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FF
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W=5638 p=0.119 d=−0.346~[−0.627,−0.0648]

(c) Total interactions the participants made
to build fair consensus ranking [T9]

Figure 5.5: Results for Open-Ended Fair Ranking Analysis Task

We analyze the ARP scores between the two groups (which ranges from 0 to 1,

with 0 representing a ranking with perfect statistical parity [6]) to measure the

group fairness requirement. We find that FairFuse participants generally agree on

consensus rankings with lower ARP scores (M = 0.15 ∼ [0.12, 0.18]) compared to

ConsensusFuse (M = 0.31 ∼ [0.29, 0.33]) with a large effect size (d = −1.39 ∼

[−1.71,−1.08]), interpreting that the participants fail to create a fairer consensus

ranking in ConsensusFuse. However, we note that some of the participants, even

without the fairness metrics and its visualizations, built consensus rankings with low

ARP scores.

We observe that the PD Loss [6] (representation of base rankings in the consensus
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Figure 5.6: Results of ARP vs. PD Loss throughout each user interaction while
generating a fair consensus ranking. The white dot indicates the ARP and PD Loss
of the initial consensus ranking in both conditions.

ranking, with 0 representing that all the base rankings exactly match the consensus

ranking) in both groups are similar (Figure 5.5b) despite some participants in

ConsensusFuse ending up producing rankings that are far in distance from the

base rankings, yet on the fair side, as seen in scatterplot (Figure 5.6D). Figure

5.6A marks the initial consensus ranking for both conditions, which has a relatively

higher ARP score. Interactions included drag-and-drops of candidate cards for

updating the consensus ranking and generation of consensus rankings. Figure 5.6B

marks the vastly improved mean ARP value in FairFuse compared to Figure 5.6C in

ConsensusFuse. We find that FairFuse participants make fewer interactions to agree

on a fair consensus ranking as shown in the violin plot (Figure 5.5c) (ConsensusFuse:

M = 18.76 ∼ [15.03, 24.62] vs. FairFuse: M = 12.2 ∼ [10.1, 15.08]).
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Chapter 6

Discussion

Overall results suggest that while both systems are suited for exploring ranking-

related tasks, FairFuse outperforms in terms of accuracy in fairness-related tasks.

Also, fewer interactions are involved in generating fair consensus rankings in FairFuse.

We find that FairFuse, with its unique visualization-enabled fairness metrics, helps

keep a balance between generating a ranking that maximizes the agreement of base

rankings while keeping it as fair as possible concerning statistical parity, a common

definition of fairness. However, we also find that users are drawn towards relying

on fairness metrics and algorithms to complete the tasks, sometimes erroneously so.

This introduces a tension between the goals of building a representative consensus

versus ensuring that it is fair– a tension that creates interesting constraints and

challenges for design.

Based on our study, we distilled a set of 4 takeaways summarizing how we

observed visualized fairness metrics and algorithms helping or hindering in tasks

and decision-making contexts. These takeaways may hold broader implications for

developers of fairness metrics and algorithms, designers of visual interfaces, and the

fairness community at large.
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1) Help: Researchers developing fairness-aware algorithms should incor-

porate ways for end-users to tune fairness, relative to other problem

objectives.

Given evolving societal norms and values, definitions of fairness can change

over time and place. Definitions also vary from one discipline to another

[62]. Algorithms designed to assist in incorporating fairness incorporate ways

for decision-makers to tune fairness in the specific problem context. This

increases both agency on the part of decision-makers, and incorporates their

specific domain knowledge and worldviews. While FairFuse could produce

an absolute fair consensus ranking based on the algorithm used, we find that

participants set the fairness threshold close to the absolute threshold to generate

a fair consensus ranking. This behavior suggests that allowing individuals

to adjust the parameters of an algorithm can lead to more satisfactory and

appropriate results. Moreover, making fair algorithms tunable allows for more

transparency and accountability in decision-making, as decision-makers can

see and understand the factors influencing the algorithm’s output.

2) Hinder: Visualization designers should be mindful that visually

displaying fairness metric may lead to increased credence in and

over-reliance on metrics

Our results suggest that decision makers’ decisions align with visualization-

enabled fairness metrics (Figure 5.6). From a positive perspective, alignment

with fairness metrics can promote fairness in decision-making. Yet, designers

should also be cautious about the consequences of such drift. Nudging decision-

makers toward visual indications of fairness may result in decision-makers

blindly trusting such metrics and algorithms could miss the societal nuances
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that the metrics cannot capture, which is reflected in participants’ comments,

e.g.: "Fairness threshold [of ] 1 seems to do the job?", "I use the slider and

slide it to fairness threshold to 1. [...] Then the ranking will be unbiased."

Visualization designers and the fairness community should be mindful of the

potential for “fairness drift”, particularly as metrics are increasingly incorporated

into visual interfaces.

3) Help: Properly designed visualizations of fairness metrics can help

people navigate complexity in decision-making contexts

The multi-objective nature of fairness related tasks can be tricky to navigate for

non-expert users where achieving a goal (such as a building a good consensus

ranking) is also subjected to bias mitigation. Inclusion of large number variables

can make it worse as we see in our results where participants were able to

identify only one of the two advantaged groups without the help of visualizations

supporting fairness metrics (Figure 5.3). Identifying such groups can highlight

areas of concern, making it easy for further analysis in mitigating bias. Properly

designed visualization of fairness metrics can help identify bias across a larger

number of variables helping individuals to make informed decisions in the

decision-making process.

4) Hinder: Improperly designed fairness metrics visualizations can lead

people to incorrect conclusions

While visualization tools like FairFuse can be used to promote fairness in

building a consensus ranking, it is crucial for visualization designers to be

mindful of the way in which fairness metrics are presented, as improper design

can lead individuals to draw incorrect conclusions. For example, in the case

of FairFuse, presenting new visualization such as the Group Fairness View

36



on occasion led participants to overlook other important information such

as the Similarity View (see Section 5.3), Yet, the later is equally important

in maintaining consensus. Failure to do so could result in an incomplete

understanding of the task at hand.
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Chapter 7

Limitations and Future Work

Both the FairFuse system [63] and the crowd-sourced study comes with certain

limitations. FairFuse focusses on ARP and FPR fairness metrics [6] within the widely

accepted definition of group fairness in the fairness community. It also considers one

tunable algorithm for generating fair consensus ranking. The fulfillment of the goals

of the system relied on those metrics in the tasks abstraction phase. However, Verma

and Rubin [64] highlight that a decision considered fair by one definition may be

deemed unfair by others, and laypeople’s judgment often aligns with simple notions

of fairness like group fairness [65]. Therefore, future work could incorporate multiple

fairness definitions and algorithms, and conduct similar user studies. Future studies

might also examine the potential benefits and drawbacks of using tunable algorithms

like in FairFuse for fairness-related tasks. In addition, these studies could assess the

impact on decision-makers trust in these systems and the possibility of an increased

cognitive load.
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Chapter 8

Conclusion

The concern for fairness in AI tools and online platforms has amplified the need for

effective methods of identifying and mitigating bias in ranking processes. However,

the complexities of fair consensus ranking, including multiple bias-causing factors

and nuanced ethical and societal values, make a fully automated system unreliable.

Human-in-the-loop systems, which offer a comprehensive approach to bias mitigation,

can be valuable, but there is limited evidence on the benefits and challenges of

designing visualizations that support fairness metrics.

To investigate these challenges, we built a system for building fair consensus rank-

ings, FairFuse. We then conducted a crowd-sourced study across goals and activities

designed for building a fair consensus ranking between a metrics-based visualization

FairFuse and a non-metric based visualization system ConsensusFuse. Our findings

suggest that well-designed visualizations can aid in creating fair consensus rankings,

but they may also hinder certain tasks, particularly balancing goals beyond fairness

in decision-making contexts.
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Appendix A

Appendix

A.1 Datasets

For the demonstration of generating fair consensus rankings, we used the following

publicly available datasets for two different scenarios:

1. Scholarships Distribution scenario: We used the dataset of 60 students with

students scores in 3 subjects: Maths, Reading and Writing. The dataset

contains multiple attributes but we utilize the exam scores in the dataset to

convert it into 3 base rankings and build a fair consensus rankings by taking

race as a protected attribute. Within the race attribute, there are 5 groups.

http://roycekimmons.com/tools/generated_data/exams

2. Employee Bonus Distribution scenario: We used a subset of dataset of Em-

ployee Attrition and Performance. We utilized the performance rating in the

dataset to convert it into 3 base rankings (R1, R2 and R3). We randomized the

rankings between these rankings so that they resemble the disagreement in rank-

ings as in real-world. https://www.kaggle.com/datasets/pavansubhasht/

ibm-hr-analytics-attrition-dataset
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Name Symbol Representation
Candidates X = x1, ..., xn n candidates ranked
Base rankings R = r1, . . . , rm m rankings produced by multiple stakeholders

(rankers)
Protected Attribute p Attribute for bias measurement/mitigation

such as gender
Favored Pair Repre-
sentation [6]

FPR(Gp:v, r) Measure quantifying if a group Gp:v is fairly
treated in ranking r. Ranges from [0, 1] where
value 0.5 denotes fair treatment, 0 denotes
complete disadvantage, and 1 denotes over-
advantage.

Attribute Rank Par-
ity [6]

ARP (p, r) Measure quantifying if ranking r is fair with
respect to statistical parity for p. Ranges
from [0, 1], 0 denotes absolute fairness, and 1
denotes complete unfairness.

Kendall-Tau [54] distKT (r1, r2) Ranking similarity metric comparing rankings
r1, and r2. The value represents the number
of pairs swap needed to convert r1 to r2.

Consensus Ranking C Ranking that is closest to the base rankings,
thereby best representing R.

Fairness Threshold t Parameter controlling the maximum ARP of
the fair consensus ranking, i.e., maximum re-
sulting ARP of fair consensus ranking = 1− t

Fair-Copeland Algo-
rithm [6]

FC(R,X, p, t) Method to generate a fair consensus ranking,
such that all preferences in R are maximally
represented subject to the result having at
most ARP of 1− t

Table A.1: Data model used for fair consensus ranking generation

These datasets do not contain individual names. So, we used the names python

package 1 for generating names.

A.2 Detail of Data Model

A.2.1 Input

Our system FairFuse is designed to aid consensus decision-making in regards to a set

of candidates for the task at hand (e.g., candidates for scholarships). We assume
1https://pypi.org/project/names/
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that in the set of n candidates X, each candidate is described by a set of attributes

A, and categorical protected attribute p such as gender, race, or income-level.

We refer to p as the protected attribute chosen by the user for bias measurement

and mitigation. For each possible value v of the protected attribute p, there is a

group Gp:v composed of individuals in set X that have the same value v for the

protected attribute p. For instance, Grace:asian is the group of all candidates that

have the value asian for the race protected attribute.

The decision-maker utilizes our system to explore and combine (into a consensus

decision) the preferences over X of multiple stakeholders. We refer to these stake-

holders as as rankers. Each of the m rankers provides a ranking ri ordering the

candidates in X. We collectively refer to the rankings produced by the rankers as a

set of base rankings, R = r1, ..., rm.

A.2.2 Metrics

In quantifying bias in the base rankings R our system employs the group fairness

notion of statistical parity [2]. Statistical parity is a contemporary fairness notion

stipulating that candidates must receive an equal proportion of the positive outcome

regardless of their protected attribute value. In our setting, the positive outcome is

favorable rank positions. Thus, when assessing statistical parity we measure if in the

given ranking (a base ranking or consensus ranking) groups have equal proportions

of favorable rank positions. To quantify statistical parity fairness we use the metrics

introduced in Cachel et al. [6]. Namely, we utilize the metrics of FPR (Favored

Pair Representation) and ARP (Attribute Rank Parity). For auditing rankings, the

former quantifies how fairly a specified group is treated, while the later quantifies

the presence (or lack) of statistical parity.

ARP and FPR are pairwise metrics. Any ranking r over n candidates can be
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decomposed into (n(n - 1))/2 pairs of candidates (xi, xj) where xi ≺r xj . Specifically,

the metrics count mixed pairs, where a mixed pair is pair comparing candidates

from two different groups. For instance, a pair with two woman candidates is not a

mixed pair, while a pair with a man and woman is a mixed pair. Intuitively, the

more mixed pairs a group is favored in (or "wins"), the higher up in the ranking

that group is compared to other groups.

The FPR metric ranges from [0, 1], where a value of 0.5 indicates the given

group in the specified ranking is fairly treated [6]. A value of 0 indicates the group

is totally disadvantaged (i.e, occupying the bottom and thus worst rank positions),

and a value of 1 indicates the group is over advantaged (i.e, occupying the top and

thus best rank positions). Equation A.1 shows the calculation for the FPR measure

for a given group Gp:v in ranking r, where ωM(Gp:v, r) is the total number of mixed

pairs in ranking r.

FPR(Gp:v, r) =
∑

xi∈Gp:v

∑
xl /∈Gp:v

countpairs(xi ≺ xl)

ωM(Gp:v, r)
(A.1)

Next, the ARP measure utilizes the FPR scores for all the groups in order to

quantify if the given ranking satisfies statistical parity. Specifically the ARP measure

is the maximum absolute difference between FPR scores. The ARP measure ranges

from [0, 1], when ARP = 1 then the protected attribute is maximally far from

statistical parity and the ranking is maximally unfair [6]. Meaning, one group is

entirely at the top of the ranking, while a second group is entirely at the bottom of

the ranking. When ARP = 0, perfect statistical parity is achieved and the ranking

is totally fair. Equation A.2 shows the calculation for the ARP measure for a given

protected attribute p in ranking r.

43



ARP (p, r) = argmax
∀ (Gp:v ,Gp:j)∈X

|FPR(Gp:v, r)− FPR(Gp:j, r)| (A.2)

Finally, to measure how similar rankings are (both base and consensus rankings)

we employ the rank similarity Kendall-Tau distance [54]. Equation A.3 expressed

the Kendall-Tau distance between two rankings r1 and r2.

distKT (r1, r2) =

|{{xi, xj} ∈ X : xi ≺r1 xj and xj ≺r2 xi}|
(A.3)

A.3 Use Case Scenario for Employee Bonus Distribution

A manager is tasked with deciding annual bonuses for employees in their organization.

They setup a committee with leads from different departments within the organization

who rank all the employees. The manager now needs to combine each of the committee

preferences into a final consensus ranking so that bonus awards can be allocated

to employees. However, they also want it to be fair with respect to employees

from different job roles to not advantage certain role at bonus time. To tackle this

challenge, all the rankings made by the committee members are uploaded to the

FairFuse tool with job roles as a protected attribute.

The manager immediately notices that rankings by the committee have a lot

of disagreement by inspecting the number of crossings in the Ranking Exploration

View. Looking at the Group Fairness View, they notice that the Human Resource

(HR) group is highly advantaged while Research Directors are highly disadvantaged

across all three rankings. Upon generating a consensus ranking, the manager notices

this bias is transferred and reflected in consensus ranking as well. So, they decide

to mitigate bias by adjusting the Fairness Threshold Slider and re-generating the
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Figure A.1: Selecting a group in the Group Fairness View highlights candidates of
that group. In this case, there is only single candidate representing Human Resource
Group.

consensus ranking. While the ARP score is significantly reduced, they notice that

HR group is still advantaged with higher FPR score.

Looking back at the heatmap in the Group Fairness View, there seems to be a

single employee as HR. So, to inspect this employee they select the dot that represents

HR. The HR employee is highlighted in the ranking exploration view as well. They

click on the highlighted employee in the ranking exploration view and realize that

the employee’s rank does not change much between base rankings by the committee

members, but the generated fair consensus ranking lowers this employees position

(Figure A.1). The employer does not like this as the employee is the only one as an

HR. Hence, they decide to manually adjust the ranking of the employee by dragging

the employee card higher in the rank. Happy with the final fair consensus ranking,

the manager proceeds with distributing bonuses based on the ranking.
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A.4 Demographics of the crowd-sourced user study

Demographics of the participants pool.
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