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Abstract 

An innovative method has been developed for synthesizing aluminum-aluminum nitride 

nanocomposite materials wherein the reinforcing nano-sized aluminum nitride particles are 

formed in-situ in a molten aluminum alloy. This method, which circumvents most issues 

associated with the traditional ways of making nanocomposites, involves reacting a 

nitrogen-bearing gas with a specially designed molten aluminum alloy. The method ensures 

excellent dispersion of the nanoparticles in the matrix alloy, which is reflected in enhanced 

mechanical properties. In this thesis, the author reviews the limitations of the conventional 

methods of manufacturing nanocomposites and develops thermodynamic and kinetic 

models that allow optimizing the in-situ gas-liquid process to produce quality nanocomposite 

material. Also, in this thesis, the author reports the measured room temperature and 

elevated temperature tensile properties of materials that were made by the optimized 

process and compares the measured values to their counterparts obtained for the base 

alloy. A 75 pct. increase in room temperature yield strength is obtained when the base alloy 

is reinforced with one pct. nano-size aluminum nitride particles and this significant increase 

in yield strength is accompanied by only negligible loss of ductility. 
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Executive Summary 

Motivation  

Current aluminum casting alloys are not useful at temperatures exceeding 200ºC and 

pressures around 200 MPa, which are conditions that prevail in many applications such as 

the crown area of automotive pistons. Nano-structured composite materials provide high 

strength, wear resistance, hardness, and exceptional microstructure stability when used in 

these severe conditions2, and therefore they are suitable for such applications. 

Nanocomposite materials ensure performances far superior than alloys strengthened by 

micro-size particles. For example, the tensile strength of a 1 volume pct. Si3N4 reinforced 

nanocomposite in which the average size of the SiC particles is 10 nm is comparable to that 

of a 15 volume pct. SiC reinforced microcomposite in which the average size of the SiC 

particles is 3.5 μm. Also, Ren and Chen [3] fabricated 7075 aluminum matrix reinforced with 

SiC nanoparticles -50 nm- via powder metallurgy, and noticed a significant increase in wear 

resistance and resistance to high temperature creep compared to the composite reinforced 

by 13 μm SiC particles. However, and despite their attractive properties, the use of 

nanocomposite materials in structural applications has been limited; mainly because robust 

economical methods for making these materials have not been developed. The majority of 

the currently available methods for fabricating nanocomposite materials fail to produce a 

homogeneous distribution of the reinforcing particles in the matrix alloy and the ones that 

do are either not cost effective or are not easily scalable to industrial application.  

A class of novel nanocomposite materials, wherein the nanoparticles are formed in-situ 

within the matrix by means of a chemical reaction has been developed. Among these 

methods is the gas injection process, which involves introducing a reactive gas into a molten 

alloy at temperatures that promote chemical reactions that lead to formation of the 

reinforcing nano size particles. Among the many advantages of this method are that (1) it 

can produce uniform distribution of nanoparticles in the metal matrix, (2) it ensures absence 

of contaminants from the interfaces between the particles and the matrix, and (3) it is easily 

scalable and inexpensive. 

This work focuses on the synthesis of aluminum-aluminum nitride nanocomposite materials. 

Aluminum nitride has low density (3.026 g/cm3), low coefficient of thermal expansion (4.5 × 

10-6 K-1, in the temperature range 293-673 K), and good thermal conductivity (110-170 W 

m-1K-1), which makes it attractive as reinforcing particles in aluminum alloys. Moreover, 

aluminum nitride may be easily wetted by aluminum, and it is chemically stable and 

interfacial reactions between it and the aluminum matrix do not occur. However, the use of 

nanosize aluminum nitride particles as a reinforcing phase in metal matrix composites has 

not been widely spread because of its very high cost.  
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Objectives 

The objectives of this work are: 

(1) Establish the feasibility of the gas-liquid in-situ method for the economical production 

of aluminum-aluminum nitride nanocomposites; this entails: 

(i) Establishing the thermodynamic and kinetic principles that govern the process 

and, 

(ii) Develop mathematical models based on thermodynamic and kinetic principles, 

which allow determining the optimum process parameters for the process 

(2) Design and build a robust, scalable apparatus for making aluminum-aluminum 

nitride nanocomposite materials and produce sample materials for characterizing the 

microstructure and measuring the room temperature and elevated temperature 

tensile properties of the material. 

Methodology 

1. An extensive review of the literature pertaining to methods of manufacturing aluminum 

matrix nanocomposite materials has been performed (Chapter 1: Paper I). Each process 

is described and its advantages and drawbacks are highlighted. Both ex-situ methods, 

wherein external reinforcing particles are added to the matrix, and in-situ methods, 

wherein the reinforcing particles are synthesized directly in the matrix by exothermic 

reactions, are discussed.  

2. Thermodynamic and kinetic considerations associated with the in-situ gas-liquid reaction 

have been addressed (Chapter 2: Paper II) including the effect of oxygen on and the 

catalytic effect of magnesium and lithium. The rate of formation of AlN has been 

mathematically modeled and a sensitivity analysis of the process variables has been 

peformed. 

3. The effect of the following process parameters: (i) gas composition (nitrogen, ammonia 

or a combination of the two), (ii) matrix composition (2.5 weight pct. Li, vs. 5 weight pct. 

Li), (iii) processing time, and (iv) impeller rotational speed on the amount, size and 

distribution of AlN has been studied (Chapter 3: In Paper III). Particle distribution in the 

matrix is quantified by a distribution index (DI) calculated by a Matlab-based program 

(Appendix 1). Concentrated nanocomposite materials have been diluted with aluminum 

alloy A356 to produce 0.5 volume pct. AlN, 1 volume pct. AlN, and 2 volume pct. AlN 

materials. Samples of these materials were used to measure the tensile properties of 

the material at room and high temperature (300ºC). 

Outcomes 

The various pathways to manufacturing aluminum matrix nanocomposites have been 

presented and discussed in this critical review. It is clear that the challenges we face in 

manufacturing nanocomposite materials for structural applications are daunting. Our ability 

to achieve a homogeneous distribution of the reinforcing particles in the metal matrix and in 

the same time assure ease of scalability of the manufacturing process is a critical issue. Ex-

situ methods wherein externally manufactured nanoparticles are introduced into the 
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metallic alloy are sub-optimal in this sense. They tend to yield materials that are plagued by 

particle clustering, interface de-bonding, contamination, and porosity; and the processes are 

not cost effective. Homogeneous distribution of the nanoparticles is more readily attained by 

in-situ processing methods wherein the reinforcing particles are created directly in the 

aluminum alloy. One of these methods involves the reaction between a gas and a liquid. 

Synthesizing Al/AlN nanocomposite materials by injecting a nitrogen bearing gas into molten 

aluminum is thermodynamically and kinetically feasible, provided that the oxygen content of 

the system is maintained at a low level. Thermodynamic and kinetic analysis of the process 

has been carried out and showed that attaining this low oxygen content may be helped by 

alloying aluminum with magnesium and/or lithium; with lithium being the more efficient of 

the two elements in this regard. As little as 1 wt. pct. lithium is sufficient to suppress 

oxidation of aluminum and promote its nitridation. The analysis also shows that an increase 

in process temperature significantly increases the density of reactive gas bubbles. In 

addition, the analysis shows that a relatively high flow rate of the reactive gas increases the 

gas-liquid interfacial area. This ‘additional’ gas-liquid interfacial area affects diffusion at the 

gas-liquid interface and positively affects the size and distribution of the AlN particles in the 

matrix alloy. Finally, the analysis shows that an increase in the pressure above the melt 

increases the density number of reactive gas bubbles and reduces the bubble volume; as a 

result, the bubbles rise more slowly, their residence time in the melt increases, and their 

coalescence is minimized. Experiments have been carried out to assess the effect of 

process variables on vol.% of AlN, size of AlN, clusters of AlN. The experimental results of the 

in-situ gas liquid process have been presented. Particle size has been brought down to 

around 60 nm for high impeller rotational speed and particle clusters are almost absent. It 

has been noticed that ammonia enhances the nitridation reaction as well as high amounts 

of Li. This is most likely due to their oxygen-getter actions. Impeller speed mainly affect 

particle size by affecting the size of the gas bubbles. A distribution index (DI) between 0 and 

1 has been defined and used to quantitatively evaluate particle dispersion. Ultrasonic 

energy has shown to be efficient in degassing the material. Mechanical properties both at 

room and high temperature (300 °C) show a dramatic increase. The increase in YS and 

Young’s modulus is almost 100% at room temperature while the UTS is about 46% for 

2%vol. of AlN. The strengthening effect of the particle is likely to Orowan bowing, but further 

TEM investigation will be carried out to confirm this. UTS and YS have been both improved 

by around 50% at high temperature but the most enhancement is attained for the Young’s 

modulus which increases of around 200%. 
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Abstract 

The use of aluminum alloys in automotive and aerospace applications has increased 

significantly in the last few decades mainly because of their high strength-to-weight ratio, 

which allows improvements in vehicle fuel efficiency while answering the strict 

environmental regulations imposed on car manufacturers by the United States and many 

European governments. Unfortunately, the strength of aluminum alloys begins to deteriorate 

at around 250ºC, which makes them unsuitable for use in many high temperature 

applications. Aluminum alloys reinforced with nanoparticles are able to withstand 

temperatures in excess of 250ºC without losing their strength, and for this reason they are 

continually finding new applications, and methods for manufacturing them are earnestly 

being developed. In this review, the processing methods for making aluminum 

nanocomposite materials are presented and discussed. After brief discourses on the market 

trends and applications of aluminum composite materials, the general characteristics of 

particle reinforced aluminum alloys, and a description of the strengthening mechanisms that 

are operative in particle reinforced alloys, the remainder of the review is a detailed 

presentation of the various methods that have been devised for manufacturing aluminum 

nanocomposite materials, including advantages and shortcomings of each method and the 

challenges and opportunities that it provides. 

1. Introduction 

1.1. Markets and Applications of Aluminum Composite Materials  

Aluminum alloys have garnered considerable interest in recent years as suitable materials 

for structural applications, and they are now used extensively by the automotive, aerospace, 

and defense industries. This appeal for aluminum alloys is mainly due to their high specific 

strength and their high thermal conductivity, which translate into reduction in overall vehicle 

weight, lower fuel consumption, and ultimately an undeniable economic advantage1-8. It 

is estimated that a 10 pct. reduction in vehicle weight results in 8 to 10 pct. improvement in 
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fuel economy. Moreover, the quality of recycled aluminum alloys has gradually improved 

over the years to the extent that recycled (also called secondary) aluminum alloys are now 

comparable in their quality to primary alloys. The direct use of secondary aluminum alloys, 

and the partial substation for primary alloys by their secondary counterparts significantly 

adds to the economic advantage of aluminum-based alloys as materials for structural 

applications. On the downside, aluminum based alloys in general exhibit low hardness and 

are unable to retain their strength when used for long periods of time at temperatures 

exceeding 250ºC. This shortcoming compromises the reliability of structural components 

made from aluminum alloys when subjected to thermal cycling or to tribological stresses, 

which are typical forms of loading in many automotive and aerospace applications. Major 

efforts to alleviate these shortcomings focused on adding micro-sized ceramic particles to 

carefully-tailored aluminum alloys in order to make hard, strong aluminum matrix particle 

reinforced composite materials without sacrificing the light-weight advantage of aluminum 

alloys7. The emergence of metal matrix composite materials was mainly in response to 

demands for improved performance from advanced military systems. However, by the late 

1970s, the reduction in new military acquisitions, which was brought about by a decline of 

active military campaigns as the Cold War era approached its end, made research and 

development of innovative, often expensive, materials such as metal matrix composites, a 

low priority8. Nevertheless, driven mainly by the aerospace and the defense sectors, 

research in metal matrix composites was reinvigorated in the 1980s; and technology 

programs such as the National Aero Space Plane (NASP) provided a focal point for the 

development of new materials needed for making the high-performance high-integrity 

components required for service in extreme environments such as those encountered in 

space missions8. By the mid 1980's, programs for developing metal matrix composites were 

in full swing in several major aluminum producing companies9-10. These programs focused 

on developing materials for application in ground transportation vehicles; and the first major 

application of metal matrix composites in an automobile was a selectively reinforced piston 

produced by liquid metal infiltration of ceramic performs. It was made for Toyota Diesel 

engines in 1983. By 1999, aerospace applications accounted for only 14 pct. of the 

worldwide metal matrix composite market while applications in ground transportation 

accounted for nearly 62 pct. In March 2012, Global Industry Analysts, Inc. released a 

comprehensive global report on the metal matrix composites market in which it projected 

the market to exceed $322 million by the year 201711. The report claims that the growth will 

be driven primarily by expansion in end-use applications in high-end products including parts 

for the automotive, aerospace, defense, and semiconductor industries. Today, Corporate 

Average Fuel Economy (CAFE) standards are at their highest level, and they are projected to 

continue to rise for OEM fleets including light trucks12. In response to these tight regulations, 

the use of aluminum in a typical vehicle is expected to double in 2025 compared to its 2008 

level as shown in Fig. 113. Ford Motor Co. has placed the monitory value of vehicle weight 

reduction at between $0.35 and $3.50 per kg depending on vehicle platform8. In freight 

transport by heavy-duty trucks, where vehicle weight savings translate to additional freight 



3 
 

that can be hauled, these savings are estimated to be between $2–$16 per kg depending 

on the equipment's operational cycle. 

 

Figure 1. Light vehicle material mix from 2008 to 2025. EPA baseline vehicle11. 

Compared to traditional aluminum-based composite materials, the fraction of the total 

composites market occupied by aluminum nanocompoites is small. In 2010, the aluminum 

nanocompoites market segment totaled $250 million, 80 pct. of which was in automotive 

applications. Silicon, titanium, tungsten, and tantalum carbides, as well as titanium diboride, 

aluminum nitride, aluminum oxide, and silicon nitride are the most commonly used nano-

particles in aluminum alloy matrices14-15. 
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1.2. Characteristics of Aluminum Alloys Reinforced with Nanoparticles  

Although metal matrix composites offer many advantages, they do have shortcomings; 

paramount among them are low fracture toughness, low ductility, and poor machinability. 

Dispersing the second phase particles in the metal matrix and achieving a strong interfacial 

bond between the matrix and the particles are the two main processing challenges16-17. 

Most fabrication processes fall short of answering these challenges resulting in materials in 

which the particles cluster together, have weak interfaces with the matrix alloy and hence 

compromised ductility8. As far as machining composite materials is concerned, the problem 

demonstrates itself in excessive tool wear caused by the abrasive nature of the ceramic 

reinforcing particles. Consequently, selection of machining tools is limited to a small group 

made of extremely hard and expensive materials such as polycrystalline diamond. Non-

traditional machining processes such as water jet cutting, abrasive water jet cutting, 

electrical discharge machining, ultrasonic machining, and laser cutting, provide precision 

finish, but they are beset by high costs and slow production rates16-17.  

Research work on metal matrix composites reinforced with micrometric particles have 

shown that although with careful processing the particles can be uniformly dispersed in 

metallic alloys, they are less effective in strengthening the matrix alloy than nanometric 

particles (i.e., particles that are in the range of 10-200nm). In general, particles larger than 

1.5µm are susceptible to cleavage, and particles between 200nm-1,500nm tend to form 

cavities at their interface with the matrix, but particles smaller than 200nm tend to bond 

well with the matrix resulting in excellent mechanical properties and attractive thermal and 

electrical characteristics18. Moreover, the same strength can be achieved in a metal matrix 

by incorporating a smaller amount of nano-size particles than micro-size particles19-24. Metal 

matrices reinforced with nanoparticles are characterized by a change in their fracture mode 

from an inter-granular mode to a transgranular mode, and also by significant improvement 

in strength accompanied by moderate improvement in fracture toughness, significant 

improvement in creep resistance, thermal shock resistance, and wear resistance, as well as 

enhanced dimensional stability at elevated temperature. Aigbodion19 compared the 

properties of 356 aluminum alloy with their counterparts for the same alloy reinforced with 

15 pct. micro-size (65µm) SiC and 15 pct. nano-size (20, 30, and 40nm) SiC particles. His 

findings, which are summarized in Figs. 2 and 3, clearly demonstrate the superiority of nano-

size particles over micro-size particles in enhancing the yield and ultimate tensile strengths 

of the alloy. Both strength magnitudes are 20-25 pct. higher for the alloy reinforced with 

nano-size particles than for the alloy reinforced with micro-size particles. Moreover, as Fig. 4 

shows, impact strength, which is reduced to almost half of its value for the un-reinforced 

alloy by the presence of the micro-size particles, is not affected by the presence of the 30nm 

particles. As a matter of fact, it is improved by more than 30 pct. when 20nm particles are 

used. El-Kady20 et al. investigated the effect of particle size and volume pct. on the strength 

of aluminum alloys reinforced with nano-size Al2O3 particles. Their results are summarized in 

Fig. 5 and show a 20 pct. increase in yield strength when 1 volume pct. 60nm Al2O3 is added 
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to the matrix alloy compared to the case when 1 volume pct. 200nm Al2O3 particles are 

added. Their results also show that the improvement in strength with volume pct. particles 

begins to level off at 3-5 volume pct. particles, irrespective of particle size. This is most likely 

due to the tendency of the particles to cluster together at the high particle content. Similarly, 

Mazaheri21 et al. reported a decrease in strength when the amount of nano-size (50nm) SiC 

particles added to 356 alloy exceeds 3.5 volume pct. as shown in Fig.6. The addition of 

nano-size particles to aluminum also significantly improves the high temperature properties 

of the metal. Zebarjad22 et al. compared the effect of adding 25μm, 5μm, and 70nm SiC 

particles to aluminum on the metal’s dimensional stability at elevated temperature. Their 

results, which are summarized in Fig. 7, show that both the micro- and nano-size silicon 

carbide particles improve the high temperature dimensional stability of aluminum. Ren and 

Chan23 showed that adding 50nm SiC particles to 7075 aluminum alloy enhanced the 

alloy’s wear and high temperature creep resistance compared to the alloy reinforced with 

13μm SiC particles. Furthermore, they showed that the same improvement in wear and high 

temperature creep resistance could be attained with much less 50nm SiC particles than 

with 13μm SiC particles. Finally, while the critical size below which reinforcing particles may 

improve the metal’s properties have been reported15 (see Table 1), the mechanism 

responsible for the improvement in each property still remains a matter of debate. 

 

 

Figure 2. Yield strength versus wt.% SiC19. 
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Figure 3. Tensile strength versus wt.% SiC19. 

 

Figure 4. Impact strength versus wt.% SiC19. 
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Figure 5. Yield strength versus vol.% SiC. Comparison for 60 and 200 nm20. 

 

 

Figure 6. Stress vs. strain curve for different vol.% SiC21. 
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Figure 7. Change in length versus temperature for aluminum and its composites at 
constant SiC content (7.5 Vol% SiC)22. 
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enhanced matrix strength incorporating the effect of these mechanisms and assessing 

which one is predominant25. The most popular ones are (i) the Modified Shear Lag theory of 

Nardone and Prewo26, which considers load transfer the main strengthening mechanism; (ii) 

the Eshelby-Based Particle-Compounded Model27, where the reinforcement constraints to 

matrix plastic flow and matrix dislocation motion are accounted for the strengthening action 

of the particles –dislocation arise for thermal mismatch or elastic misfit and loop around the 

particle- (iii) and the Effective Medium Approximation (EMA) model by Stroud28, which has 

been applied to nanocomposite materials by considering the increase in ‘interface density’, 

that can be related to grain refinement. In what follows the five strength contributions will be 

elucidated29-38: 

Orowan Looping – The interaction of the glissile dislocations with dispersed particles 

increases the critical resolved shear stress of the alloy (and therefore its yield strength) by 

an amount  that is a function of the parameters that characterize the dislocation-particle 

interaction. Since in this case the particles are far apart, the dislocations moving under an 

applied stress will bow out between them. The strengthening increment σOR may be 

calculated from Eq. (1) 

      
     √ 

 
  (

 

   
) 

(1) 

 

where   (√
  

  
 

 

 
)    

Particle shearing – A strengthening mechanism that is often observed in age-hardened 

alloys but is seldom used to explain strengthening in nanocomposite materials is particle 

shearing (i.e., particle cutting) by dislocations. Particle shearing is described by the Anti-

Phase Boundary (APB) mechanism30,31 where the strengthening increment σAPB may be 

calculated by Eq. (2).  

       
(    )

 
 

  
√

  

 
 

(2) 

The Orowan Looping and Anti Phase Boundary mechanisms described by Eq. (1) and Eq. (2), 

respectively, correspond to two extremes: the case where the second phase particles are 

very small and lie very close to one another, and the case of relatively coarse particles that 

are far apart. If the particles are far apart, the dislocations moving under an applied stress 

will bow out between them (Orowan Looping). If this model is to apply, then the particles 

must be so hard that the dislocations cannot pass through them. On the other hand, if the 

average particle diameter is very small, the shear stress on each particle is very large and 

the particles may be sheared (Anti Phase Boundary). The critical particle radius beyond 

which the particles are looped rather than sheared is given by Eq. (3)31-33. 
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   √
 

 
(

   

     
)(      √

 

 
) 

(3) 

In Eqs. (1-3), G is the shear modulus, b is burgers vector, f is the volume fraction of particles, 

r is the average radius of the particles, ro is the dislocation core radius (often taken to be 

equal to one burgers vector), APB is the anti-phase boundary energy, and M is the Taylor 

factor. The Taylor factor relates the macroscopic yield strength to the critical resolved shear 

stress so that           . For texture-free fcc metals, Hutchinson31 gives M = 2.6. Fig. 8 

shows the correlation between shear stress and particle size. Zhang and Chen25,34 showed 

that Orowan strengthening reaches its maximum at a critical particle size below which 

strengthening does not occur. They also showed that for the Mg/Al2O3 and the Ti/Y2O3 

systems, the critical size is 5.44 times the Burgers vector, and the critical particle size is 

independent of the volume fraction of particles. 

 

Figure 8. Trend of shear stress versus particle size. Shearing and looping regions 
underlined. 

Load Transfer – In this model, the strength contribution is due to the strong cohesion at the 

atomic level between the matrix and the reinforcing particles, i.e. the particles are directly 

bonded to the matrix34-40. 

Thermal mismatch– Thermal mismatch due to the difference in the coefficient of thermal 

expansion between the matrix and the reinforcing particles causes plastic strain and 

increase the dislocation density ()34-30. The strengthening increment σTH may be 

calculated from Eq. (4) 

         √  (4) 

where 

    
       

  (    )
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In Eq. (4), M is the Taylor factor, β is a constant ( 1.25),    is the difference in the 

coefficients of thermal expansion between the matrix and the reinforcing particles,    is the 

difference between the processing and service temperatures, and A is a geometric constant, 

which varies between 10 and 12 depending on the geometry of the reinforcing particles. 

Grain refining (The Hall-Petch effect) – The flow stress of a metal is almost always observed 

to increase as the size of its grains decreases, and experimental data almost always 

displays a linear relationship between flow stress and the reciprocal of the square root of 

the grain diameter as shown in Eq. (5) 

     
 

√ 
 

(5) 

where σo and k are constants obtained from linear fitting of measured data and d is the 

average grain diameter36,39. Eq. (5) is known as the Hall-Petch equation and the 

strengthening increment caused by refining the grain size is 

     
 

√ 
 

(6) 

The rationale behind Eq. (5) is that in order for deformation to occur, dislocations have to 

move from a deformed grain to an un-deformed grain with grain boundaries acting as 

obstacles to this motion. Therefore the smaller the average size of the grains, the more 

obstacles there are to dislocation motion, and the higher the strength of the alloy. 

Nanoparticles may act as grain refiners and by doing so they contribute to the alloy’s 

strength. 

Zhang and Chen25,34 demonstrated that the strengthening increments due to Orowan 

looping and thermal-mismatch increase significantly with decreasing particle size and 

increasing volume fraction of the reinforcing nanoparticles. They also demonstrated that the 

relative contribution of Orowan looping to the material’s strength increases as the size of the 

reinforcing nanoparticles decreases. Magnesium-based composites have also been studied 

and similar conclusions have been reached. Poirier et al.40 modeled strengthening in Al-

Al2O3 composites and observed (Fig.9) that the yield strength increment calculated from the 

thermal mismatch model and from the Orowan looping model are similar and higher than 

the value calculated by the Load Transfer model. Load transfer between the matrix and the 

reinforcing particles is at the origin of the mechanical behavior of composites with high 

volume fraction of reinforcing particles due to the tendency of the nanoparticles to cluster 

together when present in high concentrations. Poirier et al.40 also concluded that the 

Orowan looping mechanism is insignificant for particles larger than 1 µm because for these 

large particles, the inter-particle distances are too high to effectively impede dislocation 

motion. Sanaty-Zadeh36 confirmed the importance of the strengthening contributions from 

Orowan looping and thermal mismatch (Fig.10), and underlined the importance of the 

contribution from the Hall-Patch effect in Mg-based nanocomposite materials. 
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Figure 9. Incremental yield strength with Al2O3 addition. The triangles and squares 
represent experimental results for Al2O3 particle size above and below 500nm 
respectively40. 

 

Figure 10. Contribution of strengthening mechanisms versus particle size. Mg/Y2O3 
system36. 
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2. Manufacturing Methods for Aluminum Nanocomposite Materials 

Manufacturing methods for aluminum nanocomposite materials may be divided into two 

broad categories: (1) ex-situ methods, and (2) in-situ methods. Ex-situ methods involve 

adding reinforcing particles to the matrix alloy from a source external to the matrix. In-situ 

methods, on the other hand, involve synthesizing the reinforcing particles within the matrix 

during processing42,45.  

Ex-situ manufacturing methods may be further divided into two subcategories42,47: (a) solid-

state processing methods, and (b) liquid-state processing methods. Among the solid-state 

processing methods, powder metallurgy methods and methods based on mechanical 

attrition are the most popular. With these methods, particles can be easily reduced to the 

nanoscale, but the cost is significantly high and the processing times are usually long 

(sometimes more than 100 hours). In addition, oxide contamination of the precursor 

powders can cause cracking and de-bonding at the particle/matrix interface; and high 

processing temperatures are usually necessary, which often result in coarse-grained, 

relatively weak materials. Moreover, the final product often contains significant amounts of 

pores that reduce the fatigue resistance of the composite material and necessitates further 

metalworking, such as high pressure consolidation41-44. Similarly, liquid-state processing 

methods may be divided into three subcategories: (a) methods based on infiltration of 

performs made from nanoparticles, (b) methods based on agitation of melts containing 

nanoparticles (e.g., stir casting), and (c) ultrasonic cavitation-based solidification of melts46. 

Liquid metal is generally less expensive to make and easier to handle than powders, and the 

flexibility offered by casting over powder metallurgy methods in making complex shapes 

constitutes a significant advantage for liquid state processing methods over solid state 

processing methods. Liquid state processing methods are generally fast and easy to scale-

up; however, poor wetting of the reinforcing particles by the molten metal and unwanted 

reactions at the particle/matrix interface may degrade the quality of the resulting composite 

material. Moreover, liquid state processing methods are usually limited to low melting point 

metals41,42. 

In-situ manufacturing methods are not plagued by the shortcomings that are typical of ex-

situ manufacturing methods, although control of the process variables may sometimes be 

difficult. In-situ manufacturing methods may be divided into two major categories: (a) 

reactive methods, where the reinforcing particles are synthesized within the metal by means 

of a gas-liquid, liquid-liquid, solid-solid or solid-liquid reaction, or (b) morphological methods, 

where a favorable composite architecture evolves as a consequence of processing.  

Other manufacturing methods that are not typically used for mass producing near net shape 

components have also been reported in the literature and include methods based on laser 

deposition, spray deposition, sol-gel synthesis, and electroplating. These are all costly 

manufacturing methods and their application is unlikely to be extended to producing 

components on an industrial scale43,47. They are generally used for depositing coatings and 
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thin films on substrates. Only those manufacturing methods that are suitable for large 

production volumes and that can be easily adapted to existing industrial infrastructures will 

be considered in this review. Table 2 lists these manufacturing methods and summarizes 

their main features. 

Table II. Manufacturing methods suitable for mass production of metal matrix nanocomposites. 

Manufacturing Method System Reinforcing 

Particle size 

(nm) 

Main Features 

Ex-situ Solid State 

Powder Metallurgy Al/Al2O3 

Al/Si3N2 

 

~15-100 + Near net shape 

+ Scalable 

- Contamination 
 

- Particle clustering 

- Cracking 

- Expensive 

- Long time 

 

Mechanical Alloying 
 

Al/Al4C3 

Al-Fe/Al3Fe2 

Al/SiC 

 

~10-100 

Ex-situ Liquid State 

Stir Casting Al/SiC 

Al/Al2O3 

40-50 + Easily scalable 

+ Inexpensive 

-  Particle clustering 

-  Particle/matrix de-bonding 
 

Infiltration Al-Cu-

Mg/Al2O3 

50 + Good mechanical properties 

-  Expensive equipment 

-  Uneasy to scale 
 

Ultrasonic-assisted 

Cavitation 

Al-Si/SiC 

Al/Al2O3 

20-100 + Good particle dispersion 

+ Inexpensive 

-  Not easily scalable 

In-situ Reactive Methods (Solid-Solid) 

Mechanochemical 

Synthesis 

Cu/MnO 

Cu/ZnO 

Al/Al2O3 

Al/Al4C3 

Al-Zn/Al2O3 

Al-Ti/Al3Ti 
 

 

 

10-50 

10-50 

 

+ Very small particle size 

+ Versatile 

-  Long time 

-  Contamination 

-  Difficult to scale up 

-  Challenging reaction control 

Friction Stir Processing 6061/SiC 

7050/WC 

Al-Ti/Al3Ti 

Al-Fe/ Al13Fe4 

50 

50 

100 

+ Inexpensive 

+ Versatile 

-  Difficult to scale up 

-  Sensitive to process parameters 



15 
 

In-situ Reactive Methods (Solid-Liquid) 

Combustion Synthesis 

(SHS) 

Al/TiB2 

Al/TiC 

Al-Fe/Al2O3 

Ni-Ti/TiC 

30-100 + Good particle dispersion 

+ Inexpensive 

+ Fast 

+ Versatile  

-  Difficult process control 

Exothermic Dispersion 

(XD) 

Al/TiB2 

Al/TiC 

Al/TiO2 

700  

 

Substitutional 

Chemical Reaction 

 

Al/Al3Zr+Al2O3 

Cu-Ti/TiB2 

 

80 

50 

 

In-situ Reactive Methods (Liquid-Liquid) 

Mixalloy Cu/TiB2 50  

In-situ Reactive Methods (Gas-Liquid) 

 

 

Gas-Liquid Process 

Al-Mg-Li/AlN 

Al-Mg/AlN 

Al-Li/AlN 

Al/AlN 

Al-Si/SiC 

Al-Ti/TiC 

 

 

50-1000 

+ Good particle dispersion 

  and good bonding 

+ Inexpensive 

+ Fast 

+ Adaptable to many systems 

-  Difficult to control 

In-situ Morphological Methods 

Rapid Solidification Al/TiC 

Al-Fe/Al100-xFex 

40-80 

20-150 

+ Very small particle size 

+ Ultra-fine grains  
   

+ Small particle size 

-  Very difficult to scale up 

 

Severe Plastic 

Deformation 

 

Al/Al2O3 

Al-Fe/Al13Fe4 

Al2009/SiC 

 

50 

10 

2.1 Liquid State Ex-situ Methods  

Among all the liquid state ex-situ manufacturing methods, stir casting and solidification 

methods are the least expensive for making microcomposite materials and hence numerous 

attempts have been made to extend their application to particles whose size is in the 

nanometer range. Unfortunately, these attempts are met with many challenges brought 

about by: (i) the potential for inhomogeneous dispersion and poor wetting of the 

nanoparticles by the molten metal, (ii) the potential for rejection of the nanoparticles by the 

solidifying metal front, (iii) the potential for unwanted reactions at the interface between the 

nanoparticles and the melt, (iv) increased melt viscosity due to the increased surface-to-

volume ratio, and (v) the need for large capillary pressures to initiate infiltration of a preform 

made from nanoparticles by molten metal8,43-45. 
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2.1.1 Stir Casting 

Stir casting methods, which are widely used to mix micron size particles in metallic melts, 

have recently been adapted to dispersing small quantities of nanoparticles in molten alloys. 

The problems encountered with using nanoparticles stem from the large surface area of the 

particles, their small size, and their low wettability by the melt, which combine to make 

inserting the particles into the melt and homogeneously dispersing them difficult. Inserting 

the particles into the melt by means of a gas stream and creating a vortex to enhance 

particle dispersion has been used, but only with limited success48. El-Kady et al.20 observed 

severe clustering in stir cast 356 aluminum alloy reinforced with nanosize Al2O3 particles 

when the reinforcing particles are added in amounts higher that 3.5 volume pct. Similar 

results were obtained by Mazaheri et al.21 Experiments and computer simulations made it 

clear that mechanical stirring by means of a rod to disperse nanoparticles in molten metal 

cannot overcome particle clustering, and hence alternative stirring tools have been designed 

to improve the dispersion of the particles. 

When a moving solid/liquid interface approaches mobile solid particles that are suspended 

in the liquid, the particles can be either captured or pushed away by the interface. If the 

particles are captured by the growing solid, minor redistribution of the particles will occur 

during solidification, and hence the distribution of the particles in the solidified material will 

be almost as uniform as it was in the liquid. On the other hand, if the particles are pushed by 

the solidifying metal front, then their distribution will be significantly changed to become 

ultimately segregated in the last pools of liquid to solidify8,49,50. Three particle/solidifying 

metal front interactions are possible: (1) the particle may be pushed ahead of the solidifying 

front causing a buildup of particles in areas of the matrix that solidify last (Particle Pushing – 

PP), (2) The particle may be engulfed by the solidifying front (Particle Engulfment – PEG), 

and (3) the particles may be mechanically entrapped by the solidifying front (Particle 

Entrapment – PET)49,50. These possible particle/solidifying metal front interactions are 

shown schematically in Figure 11, and which one of them occurs depends on the velocity of 

the solidifying metal front and on the solidification process. When a planar interface is 

maintained and the heat transfer is unidirectional, the particles can only be pushed or 

engulfed by the solidifying metal front; but in multidirectional, i.e., dendritic solidification, 

which is typical of metal casting, the particles can also be entrapped in the interdendritic 

regions. This mechanism does not depend very much on the velocity of the solid/liquid 

interface and is usually detrimental to the material’s properties because the particles tend 

to accumulate in grain boundaries. In addition to the shape of the solidifying metal front, 

other factors may affect the interaction between the particles and the solidifying metal front. 

These include the interfacial energy between the particle, the liquid, and the solid; particle 

aggregation; convection in the melt; viscosity of the melt; density of both melt and particles; 

particle shape and size; and the temperature gradient ahead of the solidification front49-71. 
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Figure 11. Interaction modes of particles with a solidifying interface in metals. In the 
case of a planar solidification front particles are pushed at velocities lower than the 
critical velocity (left) or are engulfed at higher velocities (middle). During dendritic 
solidification particles can be entrapped in the interdendritic region (right) without 
dependence from interface velocity50. 

In addition to the characteristics of the solidification process discussed in the preceding 

paragraph, the velocity of the solidifying metal front plays an important role in dictating 

whether or not the reinforcing particles will be captured by the advancing metal front.  The 

critical velocity is the velocity below which the particles are pushed and above which they 

are engulfed by the metal. Theoretical approaches49-90 have resulted in relations between 

the critical velocity,   , and the particle diameter, D, such as Eq. (7) in which   is a constant 

that depends on the material and solidification conditions and the exponent   depends on 

the particles and metal system. 

   
    (7) 

Many models52-90 have been put forth to express the forces that act on the particle, and 

hence the critical velocity of the particle. The most important of these models are given in 

Table III. Note that none of these models accounts for the possible presence of foreign 

species on the surface of the particle (such as oxide layers, etc.)49 and none of them 

accounts for the crystallographic orientation of the particle relative to the solidifying metal 

although these factors have been observed to influence the critical velocity53,65,71. In 

addition, some models [] indicate that    is proportional to the surface energy of the 

particles which, as shown in Table IV, increases significantly when the size of the particles is 

in the nano range93. This means that very high velocities are necessary in order to engulf 

nanoparticles by typical metals. This is often difficult to achieve with conventional casting 

techniques, particularly when making large sections. In such cases, the particles tend to 

cluster at grain boundaries and in the regions that freeze last. Attempts to accurately 
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determine critical velocity values by means of numerical simulations have also been carried 

out89.90. 

Table III. Critical velocity values according to different models. 

model  features & assumptions   critical velocity   b 

Omenyi et al.76-78 

Based only on 

thermodynamic criterion. 

Valid for negligible body 

forces and slow 

solidification rates. 

- 

No    expression 

               

           engulfment 

           pushing 

Uhlmann et al.75 

Repulsive interfacial 

forces and attractive drag 

forces considered. 

   derived by solving the 

diffusion equation on the 

particle/interface gap. 

Particle irregularities are 

considered. 

 

2 

    
   

 
(
      

     
) 

      

Chernov et al.79,80 

Considers Van der Waals 

repulsive forces as 

disjoining pressure 

between particle and 

front and drag forces 

responsible for particle 

engulfment.  

Introduced the effect of 

mismatch in thermal 

conductivities of liquid 

and particle. 

4/3 

 

For R<50 µm 

   
           

   

     
 

Zubko et al.81 

Experimental derivation of 

engulfment solely based 

on the ratio (
  

  
) 

- 

  

  
   engulfment 

  

  
   pushing 

Kim and Rohatgi82,83 

Introduced the effect of 

the thermal gradient G 

across the interface on 

the shape of the 

solidification front and on 
1 

   
     

   
[
   

 
(

  

  
  

 
 

 

 
)] 

                                                           
b
 Refer to Appendix A for Nomenclature. 
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the critical velocity.  

Considered the disjoining 

pressure. 

  
     

   
 

curvature of the solid/liquid 

interface:    
   

 
(
   

 
) 

Bolling and 

Cisse’84,85 

More rigorous 

determination of the 

effect of the shape of the 

solidification front 

Treats smooth and rough 

particles 

3/2    (
            

 
)
    

      
 

Surappa and 

Rohatgi86 

Replaced the thermal 

conductivity criterion with 

an experimental criterion 

based on thermal 

diffusivities. 

- 

(
      

      
)
 

 ⁄

   engulfment 

(
      

      
)
 

 ⁄

   pushing 

Stefanescu et al.72-74 

Considered the effect of 

thermal conductivity 

mismatch and solute 

redistribution ahead of 

the solidification front 

caused by the change in 

curvature 

1/2    (
     

   

     
)

   

 

Potsche and Rogge87 

Repulsive Van der Waals 

forces and thermal 

conductivity mismatch 

considered 

1    
            

    
 

Sen et al.88 

Extend Stefanescu et 

al.72-74 approach to 

account for the effect of 

particle clustering.  

Used X-rays to monitor the 

change of the interface 

shape as it approached 

the particle. 

1/2 

   (
     

     

    

 

  
)

 
 

 

where    is the number of 

particles interacting with the 

interface and   is the radius of a 

circle with the same area as that 

of the cluster 

Table IV. Variation of surface energy of 1 g sodium chloride with particle size93. 

Particle size (cm) Surface area (cm2) Surface energy [J/g] 

0.1 28 5.610-4 

0.01 280 5.610-3 
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0.001 2.8103 5.610-2 

10-4 2.8104 0.56 

10-7 2.8107 560 

Brownian motion also contributes to particle agglomeration. It causes continuous collisions 

between the nano-sized particles in a random fashion, which makes it very unlikely for a 

large number of particles to come into contact with the solidifying front91-94. It has been 

demonstrated that a suspended particle is randomly bombarded from all sides by thermally-

excited molecules coming from the liquid. Einstein showed that if one solid particle is small 

enough to behave like a gas molecule, it is continuously run into and displaced by liquid 

molecules. The magnitude of the displacement   follows a Gaussian statistic distribution 

according to Eq. (8) 

   √
    

    
 

(8) 

where η is the viscosity of the medium, t is the time, r is the particle radius, T is the 

temperature, and k is the Boltzmann constant. The displacement increases with 

decreasing particle radius, thus enhancing the probability of a collision to occur. It has 

been confirmed that the aggregation rate for 20nm particles is four orders of magnitude 

higher when compared to that of 1μm particles93. This behavior can be explained by the 

fact that as the particle size increases, the potential energy of repulsion between 

particles increases, thus making aggregation less likely. It may be concluded that 

agglomeration of nanoparticles during stir casting remains an unresolved issue. 

2.1.2 Infiltration of Porous Nanoparticle Preforms 

This process consists of infiltrating porous performs made from the reinforcing 

nanoparticles with the matrix alloy. Obviously, capillary forces and viscous drag through the 

preform’s interstices act to hinder wetting of the nanoparticles by the melt. Evans et al.42 

noted that metals generally do not bond to non-metals, and concluded that the chemistry of 

the system must be modified, or external pressure must be applied in order to enhance 

wetting. Chemical modification includes coating the reinforcing particles with an appropriate 

material, adding special elements to the melt, or using special atmospheres42,95. Pressures 

of around ten atmospheres are often needed to force molten metal into 1μm wide pores; 

however the high pressure may cause fragmentation and deformation of the fragile perform, 

which in turn may result in uneven distribution of the reinforcing material95. There exists a 

threshold pressure (Pth) and temperature that must be exceeded in order for the liquid metal 

to successfully infiltrate the closely packed particle structure of the preform. Assuming that 

most ceramic particles are non-wetted by molten metals, the onset of flow is achieved when 

the infiltrating pressure exceeds this threshold value. The dependency of the infiltrating 
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pressure on the average radius of the particles can be obtained from the Young-Laplace 

equation as shown in Eq. (9)96,98 

Using the “closely-packed, equal spheres” model, Kaptay96,98 assumed that penetration of 

the liquid metal into the perform occurs perpendicular to the (111) plane of this fcc-like 

structure. This allowed him to calculate a critical wetting angle          ; so that for a 

given melt-particle system if the wetting angle is larger than    , infiltration would occur 

spontaneously. He modified the Young-Laplace equation for particles with        as 

shown in Eq. (10), 

     
  

 
(             ) 

(10) 

Experiments show that    decreases with increasing temperature, and it may also be 

lowered by a wettable coating deposited on the surface of the particle. Particle shape and 

surface texture also affect the threshold pressure. When infiltration is performed against 

gravity, the equilibrium height to which the melt rises is given by Eq. (11), 

    
  

   
(      ) 

(11) 

In Eq. (11),   is a parameter that ranges from 1.73 for         to 0.357 for       , 

and    is atmospheric pressure. Gierlotka et al.97 used a toroid cell at pressures up to 7.7 

GPa and temperatures up to 2,000°C to infiltrate an Al2O3 preform (average grain size = 

10nm). Similarly, Schultz et al. succeeded in infiltrating an Al2O3 preform (average particle 

size = 50nm) with A206 aluminum alloy and produced composites with a 19 pct. increase in 

hardness compared to the base alloy. An important downside to this method for making 

nanocomposites is the high cost of the nano-size ceramic performs, and the extreme 

pressures and temperatures necessary for successful infiltration.  

2.1.3 Ultrasonic Cavitation-Assisted Solidification  

High-intensity ultrasonic waves (>25 W/cm²) can generate strong non-linear effects in 

liquids such as transient cavitation and acoustic streaming. These waves produce a 

dispersive effect and tend to homogenize melts. In the ultrasonic cavitation-assisted 

solidification method for making nanocomposite materials, an ultrasonic probe is immersed 

into the melt to create such an acoustic field (Fig. 12) and nano-size particles are added to 

the melt during the process100-104. The acoustic bubbles burst creating hot micro-spots that 

locally raise the temperature of the melt. This enhances wetting of the nanoparticles by the 

melt and enhances their dispersion.  
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Figure 12. Schematics of ultrasonic apparatus104. 

Fig. 13 shows that the nanocomposite material produced by the ultrasonic cavitation-

assisted solidification method employing 3.5 kW ultrasonic power has tensile ultimate and 

yield strengths that are significantly higher than the base metal104. One limitation of this 

method is the high tendency of the ultrasonic probe to dissolve in the molten metal at the 

process temperature. In order to overcome this problem, a non-contact method wherein the 

probe does not come in direct contact with the liquid metal has been devised103.  

 

Figure 13. Strength increment versus vol.% SiC104. 
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In this case, the mold used to cast the nanocomposite material (rather than the melt) was 

subjected to ultrasonic vibrations. Another limitation of the method is its small yield. The 

amount of material processed with ultrasonic cavitation-assisted solidification generally 

does not exceed 200g at a time and the ultrasonic power necessary to achieve good particle 

dispersion is proportional to the amount of material processed101,102. Therefore, quantities 

suitable for industrial production require prohibitively large power supplies. 

2.2. Solid State Ex-situ Methods  

2.2.1 Powder Metallurgy 

Early attempts to manufacture nanocomposite materials involved the use of powder 

metallurgy techniques; i.e., mixing matrix alloy and reinforcing powders together, followed by 

hot or cold pressing the resulting mix, and then sintering it at an elevated temperature24,45. 

The major advantage of the process is its flexibility and its ability to produce near-net shape 

components; however, it is not cost-effective. The powder metallurgy method was used to 

manufacture aluminum-alumina nano-composite materials24 wherein 50nm alumina 

particles were wet mixed with aluminum powder in pure ethanol; the slurry was then dried at 

150ºC and cold isostatically pressed. The compacts were then vacuum-sintered at 620ºC. 

The resulting material showed excessive particle clustering that increased when smaller 

nanoparticles were used. Ma et al.105 used powder metallurgy methods to fabricate 

nanometer Si3N2-reinforced aluminum composites, and they too reported the presence of 

several agglomerates in the aluminum matrix. A cost effective method was devised by Peng 

et al.106 in which they used powder metallurgy to make aluminum matrix nanocomposites 

reinforced with oxide particles by using the Al2O3 surface layer that invariably exists on 

aluminum particles as reinforcing material. They achieved good particle distribution, but the 

process cannot be controlled and the scalability of the method remains to be proven. 

2.2.2 Mechanical Alloying  

Mechanical alloying as a means of making nanocomposite materials was first introduced by 

J. Benjamin107. In this method, high-energy ball milling produces repeated cold welding, 

fracturing, and re-welding of powder particles without changing their state of 

aggregation44,108,109. The process was initially employed to produce oxide dispersion-

strengthened nickel-base and iron-base superalloys for use in the aerospace industry, and 

then its use was extended to making composite materials. A good example of a material 

made with this method is DISPAL (an aluminum alloy reinforced with Al4C3 particles)24. 

Mechanical alloying progressively increases the total surface area of the solid particles, but 

the mechanical energy supplied to the particles is used not only to create new surfaces, but 

also to produce physical changes in the particles, such as inelastic deformation and 

increase in temperature113. However, size reduction of solids by mechanical means is an 

energy intensive and highly inefficient process. Rittiger suggested that the energy required 
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for particle size reduction is directly proportional to the area of the new surface created as 

shown in Eq. (12) 109 

    (
 

  
 

 

  
) 

(12) 

where    is a constant and    is the starting particle size, and    is the final particle size. 

Eq. (12) does not account for the energy absorbed during elastic deformation of the 

particles, which is several times higher than the energy required for creating the new 

surfaces. Kirpičev and Kick used stress analysis and produced109 Eq. (13), which is not 

applicable to fine and ultrafine milling.  

       
  

  
 

(13) 

Bond suggested the more useful equation shown as Eq. (14) 

     (
 

√  

 
 

√  

) 
(14) 

In Eq. (14), W is known as the Bond Work index, which is the energy required to reduce the 

size of a unit mass of material from infinity to 100µm. 

It has been reported that the input power necessary to grind nanoparticles increases by 

about ten times when the desired final size decreases from 80nm to 30nm109-110. In 

addition to the high energy required for the milling process, Zhang et al.111 also showed that 

there exists a particle size below which further size reduction cannot be achieved. Below this 

threshold size, the stress necessary to fracture the particle is above the process capabilities. 

The stress required for processing is given by Eq. (15) 

   
  

√   

 
(15) 

Where    is the fracture stress,    is the fracture toughness, and    is the average size of 

material defects. When the particles are reduced to the nano-range, internal defects and 

notches on the surface of the particles are considerably reduced. In this case,    

approaches the theoretical strength of the material. The impact stress of silicon carbide is 

over 15GPa, which would be the value needed to fracture a defect-free silicon carbide nano-

particle. Such high stress magnitudes are not achievable with conventional high-energy 

mechanical mills. Nano-size powders are commonly prepared with agitated ball mills, which 

provide shear stress in addition to compression stress. Despite this, a lower threshold for 

particle size still exists.  It appears that the threshold size is in the range of 25nm to 40nm 

for a variety of ceramic particles (both oxides and carbides). Rao et al.114 investigated ball 

milling of SiC particles and found that only after milling for 50 hours it is possible to reduce 

the powder size to 35nm. Also, Indris et al.115 comminuted lithium oxide particles to 25nm, 

but they needed over 100 hours for the powder to reach this size. Rostamzadeh and 
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Shahverdi112 synthesized Al-5%SiC nanocomposites via ball milling and experimented that 

progressive milling from 0 to 25 h change the morphology of the powder particles from flaky 

to near-spherical. Castro et al.108 found the threshold limit for the size to be around 25nm 

for several oxides (Fig. 14). In addition to the existence of a threshold particle size below 

which further size reduction is not feasible, mechanical milled material is prone to 

contamination from the milling tools and the atmosphere. Milling of refractory metals (e.g., 

tungsten) in a high-frequency shaker for extended times can result in iron contamination of 

more than 10at. pct. In order to prevent contamination, the process is typically performed in 

an inert atmosphere and the mills are coated106. 

 

Figure 14. Grain size versus milling time for oxides115. 

When nano-composite materials are synthesized by any one of the in-situ processes, many 

of the fabrication issues that are associated with ex-situ methods are mitigated, or they are 

completely alleviated. The benefits that in-situ manufacturing methods provide include8: 

- They produce composite materials that are thermodynamically stable at high 

temperatures. 

- They produce a clean interface between the particles and the metal matrix, which 

results in strong particle/matrix interfacial bonding. 

- Detrimental phases are eliminated, and the creation of the nascent interface can be 

guided by careful control of the manufacturing process. 

- The range of particle sizes in the nanocomposite material is typically narrower than 

what is available with ex-situ particles.  

- Improved particle distribution gives rise to superior mechanical properties. 
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- Nanocomposite materials with a broad variety of matrix materials (e.g., aluminum, 

titanium, copper, nickel and iron) and reinforcing particles (borides, carbides, nitrides, 

oxides and their mixtures) can be produced by in-situ methods.  

- In-situ methods are usually easy to scale up for industrial practice and they are usually 

cost effective. 

Nevertheless and despite their great potential, commercial use of in-situ methods is limited, 

mainly because of the complexity of the reactions involved. 

2.2.3 Severe Plastic Deformation 

Severe plastic deformation (SPD) is a method used to manufacture nanocrystalline 

materials by applying high pressures at relatively low temperatures (usually less than 0.4 TM) 

to a metallic material. The process is formally defined as “Any method of metal forming under 

an extensive hydrostatic pressure that may be used to impose a very high strain on a bulk solid 

without the introduction of any significant change in the overall dimensions of the sample and 

having the ability to produce exceptional grain refinement.116” Conventional deformation 

methods, such as drawing and rolling produce refined microstructures with low-angle 

interfaces; but SPD processing creates ultrafine-grained structures with high-angle grain 

boundaries. SPD methods can overcome issues such as residual porosity in compacted 

samples and impurities from ball milling. The process is also scalable and can produce large 

billets. Common SPD methods are equal-channel angular (ECAP) pressing and severe plastic 

torsional straining (SPTS). Both methods are shown schematically in Fig. 15116-117.  

 

Figure 15. Schematics of a) SPTS process; b) ECA process116. 

Equal channel angular pressing (ECAP), which is considered118 to be the most promising of 

the SPD methods, is a relatively new technique for producing ultra-fine grain structures by 
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introducing a large amount of shear strain into the material without changing its overall 

shape or dimensions. The process is well suited for aluminum alloys and has been shown to 

be capable of producing ultra-fine grain structures with grain sizes ranging between 200 and 

500 nm116-121. Quang et al.119 made carbon nanotube-copper composites from powders that 

were consolidated by ECAP at room temperature and showed that the measured high 

strength is a result of matrix strengthening and also improved nanotube-matrix bonding. 

They concluded that ECAP of powders is a viable method to achieve full density carbon 

nanotube-copper nanocomposites. Similarly, starting with powders, Goussous et al.116 

produced fully dense Al-C and Al-Al2O3 nanocomposites by combining two severe plastic 

deformation processes, namely mechanical milling to mix the particles, and back pressure 

equal channel angular pressing (BP-ECAP) to consolidate them. The BP-ECAP consolidation 

was performed at 400°C by up to 24 passes. The clusters (about 500nm in size) present in 

the as-received carbon black powder were broken and dispersed homogenously in the Al 

matrix releasing individual carbon particles that were 100nm in size. The Al-Al2O3 nano-

composite material contained Al2O3 particles that were around 50nm in size and they were 

well dispersed in the Al matrix. Also, Zhang et al.118 used a modified ECAP extrusion method 

to manufacture Ni-Ti based composites reinforced with 5 wt.% nano-size (50nm in diameter) 

Al2O3 particles. Nanostructures obtained by SPTS consolidation of Cu and Al micro-size 

powders and SiO2 nano-size powders were recently investigated120. Due to the applied 

severe torsion straining, a homogeneous structure with a mean grain size of about 100nm 

was formed in Al6061/10pct.Al2O3  and Al2009/15pct.SiC  composites. Alexandrov et al. 121 

succeeded in incorporating 5 vol. pct. nano-size Al2O3 particles into an Al matrix and 5 vol. 

pct. SiO2 into a Cu matrix by means of SPTS. The materials had good strength and moderate 

ductility. Moreover, the ultrafine-grained Al-Al2O3 material exhibited superplastic-like 

behavior during tensile testing at 400°C. 

2.3 In-situ Solid-Solid Reactive Processing Methods 

In-situ solid-solid reactive processing of nanocomposite materials involves reacting together 

two or more solid species to form a composite. These methods are typically limited to small 

size components and they are difficult to scale up to industrial production. Effective control 

of the reactions that lead to particle formation is also an issue. However, the starting 

materials are inexpensive and it is possible to obtain very small reinforcing particles with 

these methods. Mechanochemical synthesis is the most commonly used method in this 

category, and more recently, friction stir processing has emerged as a viable manufacturing 

method. 

2.3.1 Mechanochemical Synthesis 

When a chemical reaction occurs entirely in the solid state, the reaction volume is 

continuously reduced as the reactants convert into products and become physically 

separated from one another. As a result, the kinetics of these reactions is controlled by the 

rate at which the reacting species are able to diffuse across phase boundaries and through 
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product layers122. Therefore, high processing temperatures are necessary to ensure 

diffusion. Consequently, coarse-grained materials, undesirable because of their reduced 

strength and wear resistance, are produced122. Mechochemical milling has been recognized 

as an effective way to activate solid-state chemical reactions at low temperatures, and it 

involves a precursor powder mixture that reacts during milling and changes its chemical 

composition. When the reaction enthalpy is sufficiently high, sudden release of heat starts a 

self-propagating combustion reaction that is responsible for this change in chemical 

composition of the reactant powder mix. Most mechanochemical reactions investigated to 

date are of the type given by Eq. (16) in which a metal oxide (MO) is reduced by a reducing 

agent, R to form the pure metal M. 

MO + R → M + RO (16) 

Hot pressing of the reaction products normally follows. The advantages of this process are 

that it allows the direct formation of powder products, and it is possible to produce an alloy 

without passing through the conversion from oxides to pure metals. Moreover, given the 

severe plastic deformation that occurs during milling, nanocrystalline structures can be 

easily synthesized. The main drawback is the milling time that can range from 60 to more 

than 140 hours. Mechanochemical reduction of copper oxide with different reducing agents, 

such as Fe, Al, Ti, Ca, Ni and C, has been widely investigated123-128. The outcome is a 

dispersion of metal oxides in a Cu matrix, such as Cu–Al2O3, Cu-MnO, and Cu-ZnO. The Fe-

Al2O3 system has also been extensively studied129-133  Hwang et al.134,135 were able to 

synthesize 10nm to 20nm Al2O3 particles in aluminum and reported an increase in the 

Rockwell hardness of the nanocomposite material of more than 30 pct. over the matrix 

material. Wu and Li136 employed mechanochemical synthesis to manufacture 

nanostructured aluminum matrix composites reinforced with CuAl2 (100–500nm), Al2O3, 

and Al4C3 (10–50nm). Similarly, Tavoosi et al.137,138 made an Al–13.8 wt. pct. Zn alloy 

reinforced with 5 vol. pct. Al2O3 nano-particles by mechanochemically reacting an Al-ZnO 

powder mixture in an inert atmosphere and hot pressing the resultant material. Nikfar et 

al.139 used a planetary mill to react Al powder and Ti powder to create a very fine Al-Al3Ti 

dispersion. They investigated the effect of pressure and temperature employed in hot 

pressing the resulting material on abnormal grain growth and porosity, which are common 

issues in composite materials manufactured by the mechanochemical synthesis process.  

2.3.2 Friction Stir Processing 

Friction stir processing is a solid state welding technique introduced by Mishra140, and it 

employs a rotating tool equipped with a small pin that is pushed against the material. The 

tool is guided along a straight line in order to modify the microstructure of the region of 

interest. Friction between the tool and the material results in localized heating that 

plastically deforms the material. The severe plastic deformation helps to promote mixing 

and refining of the constituent phases. Nano-sized (50nm) SiC particles have been added to 

6061 Al alloy by packing them in a 1 mm deep groove specially created in the metallic 

alloy141. Using specific values of rotational speed and transverse speed, the nano-particles 
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were successfully mixed into the matrix alloy as shown in Fig.16a, whereas particles are 

heavily clustered if such values are not adopted (Fig.16b).  

Berbon et al.142 applied friction stir processing to billets of cryomilled powders that have 

been hot isostatically pressed. Two ternary aluminum alloys powders (Al-10%Ti-2%Cu and Al-

10%Ti-2%Ni) have investigated. After cryomilling, the Al based powder was a severly 

clustered dispersion of crystals of 200nm in size, which friction stir processing was able to 

break. Moreover, submicron Al3Ti intermetallic particles have also been formed by the 

repeated heating and cooling of the processed areas143. Lee et al.144 have also exploited the 

localized heat of friction stir processing to trigger a reaction in Al-10%Fe billets and 

precipitate Al13Fe4 with an average size of 100nm. Newkirk et al.145 achieved good ductility 

(~8%) when adding nano-sized WC particles to 7050 Al alloy also by carving a slot right 

below the surface of the component. In every application reported so far, the incorporation 

of nano-sized particle via friction stir processing has taken place close to the surface of the 

piece. Bulk production of nano-composite materials using this route appears to be 

challenging.  

 

Figure 16. a) Well dispersed SiC nanoparticles. b) Heavily clustered SiC powders. Low 
rotational speed and penetration depth141. 

2.4 In-situ Solid-Liquid Reactive Processing Methods 

In-situ solid-liquid reactive processes involve elements (or compounds) that react in the 

presence of a metallic liquid phase that acts as a solvent. The reinforcing particles are 

formed by diffusion of these elements in the metal matrix8. Among In-situ solid-liquid 

reactive processes, combustion synthesis, exothermic dispersion, and methods that depend 

on substitutional chemical reactions have been successfully used to synthesize nano-

composite materials. 
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2.4.1 Combustion Synthesis 

Combustion synthesis, also known as self-propagating high-temperature synthesis (SHS) 

was invented by Merzhanov et al.146. SHS is a promising method for the synthesis of several 

classes of advanced materials such as ceramics, intermetallics, and more recently nano-

composites. The process starts with milling and pressing powder mixtures to form loosely- 

compacted pellets. The pellets are added to a solvent that may be molten Al, Mg, or Ti in 

which other non-metallic elements, such as C and/or B, are present146-152. The powder 

mixture is then locally ignited to initiate a highly exothermic and self-sustaining reaction. 

Ignition can be made by means of a laser beam, induction, resistance, microwaves, 

chemical waves, or a spark source8. The exothermic reaction rapidly increases the 

temperature of the pellet so that it quickly surpasses the combustion temperature. The heat 

released during the chemical reaction keeps the propagation front stable by heating up the 

unreacted portion of the pellet147. The equipment is simple, processing times are short due 

to the very high combustion rates (typically 0.15 m/s), and it is possible to form unique 

metastable phases with improved properties as a result of the non-equilibrium conditions 

that prevail (i.e. the steep thermal gradients and the high heating and cooling rates). In 

addition, volatile impurities evaporate because of the high temperatures involved. Typical 

SHS reactions include the following 

Al + Ti + C → Al + TiC + heat = Al/TiC (17) 

Al + Ti + 2B → Al + TiB2 + heat = Al/TiB2 (18) 

Fe + Al + Fe2O3 → FeAl + Al2O3 + heat = FeAl/Al2O3 (19) 

xNi + (x+ y)Ti + yC → xNiTi + yTiC + heat = xNiTi/yTiC (20) 

Lee et al.148 produced sub-micron TiC particles in Al from Al-Ti-C powder. Aluminum was 

found to affect ignition by providing an easier route for reactant mass transfer. Also, ignition 

has been reported to derive from the reaction between titanium and carbon at the interface 

between the titanium-containing aluminum melt and the graphite by diffusion of titanium 

through the aluminum melt to the interface. Talako et al.149 produced FeAl-Al2O3 nano-

composite material by the SHS process after mechanical activation of the precursor 

powders. Burkes et al.150 synthesized NiTi-TiC sub-micron composites with more than 50 vol. 

pct. particles. The resulting material showed excellent strength but poor ductility. In general, 

material produced by the self-propagating synthesis method is pure, but they it is porous 

(around 50 pct. of theoretical density). Post processing operations, such as high-pressure 

consolidation (HIP) is often necessary to eliminate the pores. In addition, the scale of the 

heterogeneities of the reactants (10 µm to 100 µm) can alter or hinder the combustion 

reaction. Aruna et al.151 investigated post processing options to optimize materials made by 

the SHS method; these included intensive milling, mechanical activation, chemical 

treatment, and chemical dispersion. They also discussed SHS with additives, such as salts, 

to enhance nano-particle nucleation and dispersion and carbon combustion synthesis (CCS), 

where carbon is used as the reaction fuel instead of the pure metals that are typically used 



31 
 

in conventional SHS. Process control is major issue in the SHS process. The fast rate of SHS 

reactions and the many physical and chemical phenomena that are involved in the process 

make monitoring and optimizing the process rather challenging and controlling the 

composition, size and morphology of the resultant reinforcing material very difficult. 

Moreover, it has been reported that the strong exothermicity of the reaction may generate a 

combustion wave that passes through the pellets and ignite reactions that can results in 

unwanted products or prevent the desired reaction from happening. Zuccaro et al.152 have 

carried out numerical simulations to predict and thus control the dynamics of the SHS 

process. 

2.4.2 Exothermic Dispersion 

The Exothermic Dispersion (XD) process was developed by Martin Marietta Corporation and 

has been extensively applied to the manufacturing of light-weight materials. Weight savings 

of 30 to 50 pct. have been achieved in the manufacture of jet engine turbine blades with the 

XD process. In this method, ceramic phase(s) and a metallic phase are brought together and 

heated above the melting point of the metallic phase in order to produce a sustained high-

temperature synthesis process153,154. Sub-micron composite materials have been produced 

by this method wherein a mixture of elemental boron, titanium, and aluminum powders is 

compacted and then sintering at around 800°C. Sintering is accompanied with strong heat 

release that ignites the XD reaction and result is in the spontaneous formation of titanium 

diboride and titanium aluminide. The resulting material can contain up to 75 pct. TiB2, 

although a Ti-Al alloy reinforced with only 7 pct. TiB2 made by the XD process has yield 

strength at 980°C that is significantly higher than that of Inconel 713155. Chunhu et al.156 

investigated the potential of producing Ti-Al/TiC composite materials by means of the 

exothermic dispersion method. Their resulting material, which contained about 20 pct. sub-

micron size TiC particles, showed a 20 pct. improvement in Vickers hardness over the matrix 

alloy. The exothermic reaction minimizes the potential for oxidation, and creates clean 

particle/matrix interfaces. However, controlling the reaction remains an issue due to its fast 

rate and the sudden heat release, and hot isostatic pressing of the final material is almost 

always necessary in order to reduce porosity in the final product. 

2.4.3 Substitutional Chemical Reaction  

An in situ copper matrix composite with 3.5 wt. pct. TiB2 particles was prepared by a thermic 

reaction between B2O3, carbon (as reducing agent), and titanium in a copper–titanium 

melt157. The TiB2 particles that resulted from the reaction were about 50nm in size and 

exhibited a homogenous dispersion in the copper matrix. Due to the reinforcing action of 

these nanoparticles, the tensile strength and hardness of the matrix significantly improved. 

The composite material also had high electrical conductivity. Similarly, Zhao et al.158 

synthesized nano-size Al2O3 and Al3Zr particles in an aluminum matrix in the system 

Al−Zr(CO3)2 according to the reaction 

3Zr(CO3)2 + 13Al(liquid)  6CO2 + 3Al3Zr + 2Al2O3 (21) 
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They applied a magnetic field to the reaction chamber in order to enhance the chemical 

reaction and reported that the mean particle size was about 80nm and the particles were 

well distributed in the aluminum matrix. Also, the ultimate tensile strength and yield strength 

of the nanocomposite material were higher than the ultimate tensile strength and yield 

strength of similar material synthesized without the magnetic field. 

2.5 In-situ Liquid-Liquid Reactive Processing Methods 

The MixAlloy Process patented by Sutek Corporation159,160 has been applied to the 

production of nano-composite materials. In this process, two streams of molten metal 

containing ceramic particles interact with each other in a reaction chamber to form 

refractory particles. The mixture is then rapidly cast or atomized. 50nm titanium boride 

particles were produced in a copper matrix with this method. In the first patent disclosure159, 

the impingement of the two metal streams onto each other is direct while in the subsequent 

patent disclosure160 the impingement is indirect so that instabilities in the metal streams 

are mitigated. However, it is believed that the impingement of the two metal streams onto 

each other may not provide adequate energy for mixing; in addition, some un-reacted 

elements have been detected in the resulting material, even though the stoichiometry is 

locally maintained. 

2.6 In-Situ Gas-Liquid Reactive Processing Methods 

In these methods a gas is injected into a specially designed molten metal alloy. The gas 

reacts with the molten metal alloy and forms reinforcing particles. The chemical composition 

of the reinforcing particles that form is dictated by the composition of the reacting gas and 

the molten metal alloy161-164. Fig. 17 is a schematic representation of the apparatus used in 

the initial phase of feasibility assessment  AlN can be observed in Fig.18a and confirmed by 

EDS analysis (Fig.18b). The concept on which the process is based on has been first 

introduced and patented by Koczak and Kumar165 and has the following advantages/ 

disadvantages 

– The gases used are relatively inexpensive and the nano-particles are synthesized in-

situ eliminating the cost of expensive ceramic nano-particles. 

– Particle surface contaminants are absent since there is no contact with air; 

accordingly, interfacial bonding is enhanced. 

– The process has a wide process window and can be easily controlled by controlling 

reaction temperature, gas composition, and melt composition. 

– Homogeneous microstructures are obtained. 

– The temperatures necessary for the reaction to occur are somewhat high (1000-

1200°C) depending on the gas and the matrix alloy). 



33 
 

– Process times may be long. 

– The process is not applicable to materials with high melting temperatures. 

–  

 
Figure 17. Schematic of in-situ gas-liquid process167. 

 

 

Figure 18. AlN and MgO in Al-15 wt% Mg170. 
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Borgonovo and Makhlouf166-170 and Borgonovo and Apelian171,172 investigated two alloy 

systems in-situ gas-liquid reactive processing of Al-AlN nanocomposites; namely, Al-Mg and 

Al-Li alloys; and they investigated three nitrogen-bearing gases: pure nitrogen, opure 

anhydrous ammonia, and a mixture of the two. They assessed the feasibility of the process, 

and studied the role of the alloy composition, the oxygen content of the reaction 

atmosphere, and the processing time on the characteristics of the resulting Al-AlN 

composite material, including particle size, particle size distribution, and the distribution of 

the AlN particles in the alloy matrix. They performed several experiments and were able to 

synthesize submicron AlN with processing times ranging between 4 to 6 hours. They report 

that, with optimum processing conditions, excellent dispersion of 60nm AlN particles in the 

matrix alloy is possible and their conclusions can be summarized as follows 

– Ammonia has an eight times higher nitridation rate than nitrogen when used to 

nitride an Al-20 wt. pct. Mg alloy.  The AlN particle size and particle distribution in the 

metal matrix are also influenced by the type of reactive gas and nitridation with 

ammonia gas produces a more uniform particle distribution and smaller AlN particles 

than nitridation with nitrogen gas.  

– Lithium is more efficient than magnesium in catalyzing the nitridation reaction. Only 

1.15 wt. pct. Li produces around 11 vol. pct. AlN particles whereas 20 wt. pct. Mg is 

needed to form 17 vol. pct. AlN particles. 

– Particle distribution in the Li-containing alloy is improved when ammonia gas is used 

instead of nitrogen gas. In this case, the particle size is more uniform and the particle 

shape is almost spherical. The grain size is considerably decreased and the hardness 

is improved by around 50 pct. relative to the base alloy. 

2.7 In-situ Morphological Processing Methods 

Nayak et al.173,174 melted Al-Fe alloys under an argon atmosphere and then they rapidly 

solidified them by means of a single roller melt spinner that is equipped with a copper 

wheel. The cooling rate was estimated to be around 104K/s. Ultra-fine Al100-xFex particles 

embedded in the α-Al matrix were found in the melt spun Al–2.5Fe alloy as shown in Fig. 19. 

Most of the particles were less than 20nm in size. Similarly, TiC particles in an aluminum 

alloy were synthesized by melting a mixture of aluminum, titanium, and graphite powder in 

an argon atmosphere. Chill block melt spinning was used to prepare rapidly solidified 

samples from these melts47. The TiC particles that formed in this material were found to be 

between 40-80nm in size. However, some particle clusters were detected at the grain 

boundaries. 
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Figure 19. Ultra-fine Al100-x Fex precipitates embedded in the α-Al matrix173. 

 

3. Summary and Concluding Remarks 

The various pathways to manufacturing aluminum matrix nanocomposites have been 

presented and discussed in this critical review. It is clear that the challenges we face in 

manufacturing nanocomposite materials for structural applications are daunting. Our ability 

to achieve a homogeneous distribution of the reinforcing particles in the metal matrix and in 

the same time assure ease of scalability of the manufacturing process is a critical issue. Ex-

situ methods wherein externally manufactured nanoparticles are introduced into the 

metallic alloy are sub-optimal in this sense. They tend to yield materials that are plagued by 

particle clustering, interface de-bonding, contamination, and porosity; and the processes are 

not cost effective. Homogeneous distribution of the nanoparticles is more readily attained by 

in-situ processing methods wherein the reinforcing particles are created directly in the 

aluminum alloy. Some of these methods, e.g., methods that rely on reactions between a gas 

and liquid aluminum to create the reinforcing particles, are cost-effective and have the 

potential to be scaled up for industrial practice with minimum investment in materials and 

equipment. Moreover, the method produces particle/matrix interfaces that are clean and it 

allows easy tailoring of the matrix alloy and reinforcing particles to meet the requirements of 

specific applications. 
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   Appendix A: Nomenclature 

 = interface shape factor 

   = interfacial energy change 

   = particle-liquid interfacial energy 

   = solid-liquid interfacial energy 

   = particle-solid interfacial energy 

η= dynamic viscosity of the liquid 

  = density of the liquid 

  = density of the particle 

  = density of the solid 

 = atomic volume 

  = interatomic distance 

A= Hamaker constant 

B= disjoining pressure (also called effective Hamaker constant) 

  = diffusion coefficient in the liquid 

G= thermal gradient in the liquid gap 

 = curvature of solid/liquid interface 

  = Boltzmann’s constant 

  = thermal conductivity of liquid 

  = thermal conductivity of particle 

L= latent heat of fusion 

R= particle radius 

  = radius of particle irregularities 

T= temperature 

  = melting temperature 

  = critical velocity 
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Abstract 

In-situ fabrication of the reinforcing particles directly in the metal matrix is an answer to 

many of the challenges encountered in manufacturing metal matrix nanocomposite 

materials. In this method, the nano-sized particles are formed directly within the melt by 

means of a chemical reaction between a specially designed metallic alloy and a reactive 

gas. The thermodynamic and kinetic characteristics of this chemical reaction dictate the 

particle size and distribution in the matrix alloy, as well as the nature of the particle/matrix 

interface; and consequently they govern many of the material’s mechanical and physical 

properties. This article focuses on aluminum-aluminum-nitride nanocomposite materials 

that are synthesized by injecting a nitrogen-bearing gas into a molten aluminum alloy. The 

thermodynamic and kinetic aspects of the process are modeled, and the detrimental role of 

oxygen is elucidated. Also explained are the effects on the AlN particle size and distribution 

of the matrix and gas composition, the process temperature and time, and the average size 

of the gas bubbles. 

1. Introduction 

Aluminum matrix nanoparticle composite materials have mechanical and physical properties 

that make them attractive for many applications in the aerospace, automotive and 

microprocessor industries. These properties derive from the lightweight of aluminum and the 

attractive properties of aluminum nitride, which include low density (3.026 g.cm-3), low 

average coefficient of thermal expansion (4.510-6 K-1), and good thermal conductivity (110-

170 W.m-1.K-1). However, producing these materials on a large scale remains difficult 

despite the many attempts that have been made to overcome the issues associated with 

their manufacture. Recently, Borgonovo and Makhlouf1 reviewed the various methods used 

to manufacture nanocomposite materials and concluded that manufacturing methods that 

are based on adding ex-situ particles to molten metal and employing mechanical stirring to 

disperse them, as well as methods that are based on liquid infiltration of ceramic 
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substrates, and methods that are based on powder metallurgy have serious limitations 

when dealing with nanometer size particles. Paramount among these limitations are the 

high tendency of the particles to cluster and particle/matrix interface de-bonding. Also the 

review asserts that more recent fabrication methods, such as spray deposition, ultrasonic-

assisted cavitations, and plasma synthesis are not easily scalable and invariably costly. 

Synthesizing the reinforcing particles inside the metal matrix overcomes many of these 

issues because the nanoparticles are formed directly within the molten metal by means of a 

controlled chemical reaction between the liquid alloy and an appropriate gas. In-situ particle 

synthesis ensures good distribution of the reinforcing particles in the matrix alloy, a relatively 

small particle size, and a clean thermodynamically stable particle/matrix interface2. 

Moreover, production costs of the final component are comparatively low because the 

expensive nanoparticles are formed in-situ. In-situ synthesis of nanocomposite materials is 

typically performed by introducing a reactive gas into a molten metal alloy to cause a 

chemical reaction that produces the reinforcing particles. The present article focuses on the 

synthesis of aluminum-aluminum nitride nanocomposites by injecting a nitrogen-bearing gas 

into molten aluminum that has been pre-alloyed with magnesium and/or lithium. The 

underlying thermodynamic and kinetic aspects of the process are investigated, and the 

mechanism of formation of the aluminum nitride particles is explained. Also, the effect on 

particle size and particle distribution of the matrix and gas composition, the process 

temperature and time, and the level of melt stirring during gas injection are elucidated. 

Finally, the process is mathematically modeled in order to provide means for process control 

and optimization. 

2. Apparatus and Procedure for Synthesizing Al-AlN Nanocomposites 

Borgonovo and Makhlouf3-7 designed and built the apparatus shown schematically in Fig. 1 

and used it to synthesize Al-AlN nanocomposite material. This apparatus is used here to 

study the thermodynamic and kinetic aspects of the process. Prior to use, the furnace 

chamber is thoroughly cleaned in order to remove any contaminants such as dust. A 

conically-shaped alumina crucible that is 7 cm high and that has a 5 cm upper diameter is 

positioned in the furnace with the help of a fiberscope video camera. The camera is inserted 

from the top of the furnace through a re-sealable fitting and the cover of the furnace is then 

closed. Care is taken to locate the crucible in a uniform temperature region in the furnace 

(at least 35 cm from the top) in order to achieve and maintain the correct temperature for 

the synthesis reaction. A specially designed gas injection rotating impeller that has been 

previously coated with boron nitride is inserted from the top into the furnace chamber and 

its alignment inside the crucible is insured by means of the fiberscope camera. Once the 

alignment is completed, the camera is extracted and the fittings are placed. A high vacuum 

pump is then connected to the furnace and the chamber is evacuated to 10-2 torr. The 

furnace is then flushed with high purity Argon gas (Grade 5) for 15 minutes. Evacuation and 

back filling of the chamber with Argon gas is repeated four times in order to remove as much 
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oxygen from the reaction chamber as possible. Then the heating process is started. Once 

the melt reached 1273 K, the rotating impeller is dipped into the crucible and the reactive 

gas is injected into the melt. Either nitrogen gas or ammonia gas are used, and in both 

cases the flow rate of the reactive gas is maintained between 0.2 and 0.5 L/min. The 

temperature is monitored by two k-type thermocouples and during the heating process a flux 

of Argon gas flowing at 0.2 L/min is maintained in the furnace. Two high capacity oxygen 

getter traps are placed in series along the gas delivery line and the gas is bubbled through 

them before reaching the furnace. These oxygen removal traps have a removal efficiency 

that allows less than 1 ppb oxygen in the gas stream. 

Oxygen-removal trap

Molecular sieve

N2,
NH3

N-bearing 
gas

Thermocouple

High-vacuum 
pump

Argon InletArgon Outlet

Thermocouple

Injection tube

Flow-meter

 

Figure 20. Experimental apparatus. 

 

3. Thermodynamic Considerations 

The detrimental effect of oxygen – The chemical affinity between oxygen and aluminum is 

higher than that between nitrogen and aluminum. Consequently, as the Ellingham diagram 

in Fig. (2) shows, aluminum oxidation is more likely to occur than aluminum nitridation. 

Therefore, it is necessary to determine the minimum amount of oxygen that can be tolerated 

as impurity in the nitrogen-bearing gas so that nitridation is not hindered.  
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Figure 21. Ellingham diagram of oxidation and nitridation of O2 and oxidation of Mg and Li. 

When oxygen is present in the gas stream, Eqs. (1) and (2) will occur with Eq. (2) being 

preferred. Eq. (3) can be deduced from Eqs. (1) and (2) 

             (1) 

               (2) 

                    (3) 

 

The Gibbs free energy of formation of Eq. (3),     , as a function of temperature is given by 

Eq. (4) 

                 
         

      
              (4) 

The permissible partial pressure of oxygen in the gas stream,    
, and hence the maximum 

tolerable amount of oxygen for Eq. (3) to proceed towards the right is  

                   
(

   

    
)
 

(
   

    
)
       (

   

    
)
 

 

 

(5) 
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Since the nitrogen flow rate is very low (~0.2 l/min), the calculation can be simplified by 

assuming that the partial pressure of nitrogen,    
  is equal to the total pressure in the 

reaction system                         . From Eq. (3) and Eq. (5), and using 

thermodynamics data from8,9, Eq. (6) is derived to describe the change in    
 with 

temperature 

     
    

     

 
 

(6) 

By employing Eq. (6) it is found that the permissible partial pressure of oxygen for aluminum 

nitridation at 1273K is 510-20 Pa  which is extremely low, and unlikely to be achieved even 

with ultra-high purity (Grade 5) nitrogen gas. When ammonia gas is employed instead of 

nitrogen, the partial pressure of oxygen may be determined from Eqs. (7) and (8) 

                       (7) 

   
 

 
       

(8) 

The Gibbs energy of formations for Eqs. (7) and (8), i.e.,       and      , are  

                          
     

      
            (9) 

           
 

 
    

     
               

(10) 

Expressing      and      in terms of partial pressures yields Eqs. (11) and (12) 
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(11) 

                   
(
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(
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(12) 

 

The permissible partial pressure of oxygen when ammonia is use for nitridation is 

determined from Eqs. (9- 12) to be around 510-3 Pa, which is possible to achieve even with 

commercial grade anhydrous ammonia gas. Fig. 3 compares the permissible oxygen partial 

pressure for nitriding aluminum by nitrogen gas to the permissible oxygen partial pressure 

for nitriding aluminum by ammonia gas10. It is obvious from the Fig. that nitridation of 

aluminum is easier when ammonia, rather than nitrogen, is used. 
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Figure 22. Permissible partial pressure of O2 for Al nitridation versus temperature. N2-

NH3 gases10. 

The role of alloying elements, Mg and Li – Given the harmful effect of oxygen on the 

nitridation reaction, the oxygen partial pressure in the melt may be lowered by adding 

elements such as magnesium and/or lithium to aluminum3-7,11-13. These elements act as 

catalysts to ‘get’ oxygen and mitigate the aluminum oxidation reaction. Magnesium and 

lithium are ideal for this purpose because, as shown in Fig. 3, the Gibbs free energy for their 

oxidation is lower than that for oxidation of aluminum, and so oxygen will preferentially 

combine with them rather than with aluminum. The continuous flow of the nitrogen-bearing 

gas in the furnace chamber removes the evaporating species (magnesium and MgO, and/or 

lithium and Li2O) from the reaction chamber, thus it maintains a non-equilibrium condition in 

the melt, which is conducive to high mass flow of the volatilizing lithium (or magnesium). 

Both magnesium and lithium have been used from Borgonovo and Makhlouf3-7, and 

Borgonovo and Apelian11,12 to encourage nitridation of aluminum surfaces and also to 

synthesize AlN powder. 

Knowing the partial pressure of oxygen after it reacts with magnesium or lithium allows 

establishing which of the two elements is a more effective ‘oxygen-getter’. Magnesium 

volatilizes when Al-Mg alloys are melted at elevated temperature, i.e., 1273K, which is 

typically used to synthesize AlN. The vapor pressure of pure magnesium,      
 , at 1273K is 

136.45 kPa14, and the vapor pressure of magnesium in Al-Mg alloys,    , is given by Eq. 

(13) in which     is the activity of magnesium in Al-Mg alloys. 
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     (13) 

The chemical reaction that leads to formation of MgO is given by Eq. (14), and the Gibbs free 

energy of this reaction,     , is given by Eqs. (15) and (16) 

   
 

 
       

(14) 

                  (15) 

          
 

(
   

    
) (

   

    
)
   

 
(16) 

Combining Eqs. (13), (15), and (16) yields 

           
      

 
 

 

 
     

 
(17) 

By using these equations, the partial pressure of magnesium and the permissible partial 

pressure of oxygen in the gas stream when aluminum is alloyed with magnesium are 

calculated to be 5564 Pa and 310-28 Pa, respectively.  

In the case of alloying aluminum with lithium, phase equilibrium calculations in the Al-Li-O-N 

system predict that lithium combines with oxygen to form Li2O at low oxygen levels and 

LiAlO2 at higher oxygen levels according to Eqs. (18) and (19) 

     
 

 
        

(18) 

                (19) 

The oxygen content in the high purity nitrogen bearing gases typically used in the synthesis 

of AlN is in the order of parts per billion (ppb), i.e.,  the partial pressure of oxygen in the 

nitrogen bearing gas is 10-9Pa, and Eq. (18) is the relevant reaction. Similar to magnesium, 

lithium volatilizes at the temperatures used to make AlN. The vapor pressure of pure lithium, 

     
 , at 1273K is 136.45 kPa15, and the vapor pressure of lithium in Al-Li alloys,    , is given 

by Eq. (20) in which     is the activity of lithium in Al-Li alloys16,17 

       
     (20) 

The chemical reaction that leads to formation of Li2O is given by Eq. (18) and the Gibbs free 

energy of this reaction,     , is given by Eqs. (21) and (22)  

                  (21) 
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(
   

    
)
   

 
(22) 

Combining  Eqs. (20), (21), and (22) yields 
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(23) 

By using these equations, the partial pressure of lithium and the permissible partial 

pressure of oxygen in the gas stream when aluminum is alloyed with lithium are calculated 

to be 2635 Pa and 4.710-49 Pa, respectively. Add to this the fact that the energy required 

to ionize lithium atoms (5.37 volts) is lower than that required to ionize magnesium atoms 

(7.61 Volts) – which suggests that lithium is more reactive than magnesium – and it 

becomes clear that lithium is much better at removing oxygen from the system than 

magnesium, and hence a significantly smaller amount of lithium compared to magnesium is 

necessary to facilitate aluminum nitridation.  

4. Kinetic Considerations 

In order to react with the aluminum melt, nitrogen gas has to diffuse from inside the gas 

bubble to the bulk liquid aluminum where AlN forms according to the reaction18 

   ( )     ( )      ( ) (24) 

The diffusion-reaction process has been modeled with the two film approach, which is 

represented schematically in Fig. 4 and is typically used for gas-liquid interactions in bubble 

column reactors19-33. Several assumptions were made in order to facilitate the analysis; they 

are as follows: (1) the bubble is spherical, (2) diffusion of gas in and out of the bubble, and 

the consequent bubble shrinkage (or growth) occurs isothermally, (3) the liquid domain is 

finite and steady, (4) the liquid is incompressible, (5) the gas within the bubble is pure and 

obeys the ideal gas law, (6) the bubble surface is free of contaminants, (7) liquid phase 

resistance controls mass transfer in the melt, (8) Henry’s law applies at the gas-liquid 

interface to couple the gas pressure in the bubble with the dissolved gas concentration at 

the bubble surface, (9) mass transfer in the liquid phase is ruled by Higbie’s penetration 

theory19-33, (10) the initial concentration of nitrogen in the liquid bulk is zero, and finally (11) 

the confining walls of the crucible have negligible effect on the bubbles. 

PN2, 0

N2 (g)
PN2, i

xN, i

xN, 0

Gas-liquid Al
interface

Al (l)

δG δL

 

Figure 23. Two-film model for N2 diffusion outside the gas bubble18,20-33. 
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Close examination of the reaction that leads to the formation of the aluminum nitride 

particles reveals that the following five steps are involved  

Step 1: dissociation of ammonia into hydrogen and nitrogen molecules (this step does not 

occur when nitrogen is employed as the nitriding gas) 

Step 2: mass transfer of nitrogen molecules from the gas bulk to the gas-liquid interface 

Step 3: chemisorption of nitrogen molecules at the gas-liquid interface according to Eq. (25) 

N2 (gas)  N (chemisorbed) (25) 

Step 4: mass transfer of nitrogen atoms into the liquid boundary layer according to Eq. (26) 

N(    ) → N(    ) (26) 

Step 5: growth of solid AlN particles in the liquid boundary layer and in the liquid bulk 

according to Eq. (27) 

 (         )    ( )     ( ) (27) 

If nitrogen is used as the nitriding gas, then Step 3, i.e., chemisorption of nitrogen molecules 

and their conversion into nitrogen atoms at the gas-liquid interface, is rate limiting18. This 

can be concluded from Eq. (28), which gives the rate of chemisorption of nitrogen atoms 

    (     ) 
 
 (      

    

 (  )
)    (

   

  
) 

(28) 

Eq. (28) shows that once the nitrogen molecules are physisorbed by the gas-liquid interface, 

they have to overcome an energy barrier (Ea) in order to be chemisorbed into the interface. 

If they do not possess this energy, they eventually become desorbed into the gas bulk. The 

activation energy Ea for nitrogen chemisorption is very high (308 kJ.mol-1) compared to the 

reversible physisorption state (around 50 kJ.mol-1)34, which makes the rate of nitrogen 

chemisorption very slow. On the other hand, chemisorption of oxygen molecules into the 

gas-liquid interface is much more favorable since it consistently lowers the Gibbs free energy 

of the system compared to the physisorbed state as shown in Fig.5. Consequently, if present 

in the nitriding gas, oxygen will occupy the majority of the bonding sites at the gas-liquid 

interface thus further hindering the chemisorption of nitrogen into the gas-liquid interface. 

The extent of occupancy of the available adsorption sites in the gas-liquid interface is given 

by the ‘coverage’, θ,c which is expressed as the ratio of occupied adsorption sites qads and 

total (saturation) adsorption sites qsat; and the rate of chemisorption is proportional to the 

number of free adsorption sites; so that 34,35,36   

  
    

    
 (29) 

                                                           
c
 In Eq. (28), coverage ( ) is accounted for in the constant c 
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    (   ) (30) 

Because the rate of chemisorption of nitrogen atoms into the gas-liquid interface is 

proportional to the number of free adsorption sites, it is important to minimize the amount 

of oxygen in the nitrogen gas before its injection into the melt.  
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Figure 24. Diagram of energy change of the system caused by chemisorption of N2 - 
O2

18,34. 

Another factor that can lower the rate of chemisorption of nitrogen molecules into the gas-

liquid interface is the distribution of nitrogen molecules on the interface. If the nitrogen 

molecules in the gas bulk are unevenly distributed or clustered, then their chemisorption will 

not be homogenous on the gas-liquid interface. When ammonia is employed as reactive gas, 

molecular hydrogen dissociates at temperatures higher than 773 K according to Eq. (31) 

and the aluminum nitridation reaction proceeds according to Eq. (32) 

    ( )    ( )     ( ) (31) 

   ( )      ( )      ( )     ( ) (32) 

It has been observed1,3-7 that free hydrogen is an oxygen getter that lowers the oxygen 

content in the reaction atmosphere, and by doing so it enhances the adsorption of N2 

molecules at the gas-liquid interface and accelerates the rate of AlN formation. When 

anhydrous ammonia, rather than pure nitrogen, is employed as the reactive gas, Step 3 

becomes faster and the rate-limiting step of the reaction becomes Step 4 because of the 

very low diffusion coefficient of nitrogen atoms in liquid aluminumb. Zheng et al.10 have 

analyzed the kinetics of AlN formation in aluminum alloys and found that the mean rate of 

                                                           
b
                (

     

 
)                                            
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forming AlN from ammonia is ten times that from nitrogen; also Experiments No. 1 and 2 of 

this work showed that, when nitrogen is used, it is possible to synthesize only 6 vol. pct. AlN 

in 5 hours, but when ammonia is used, it is possible to synthesize 17 vol. pct. AlN in only 2 

hours. The quantity of AlN,       that forms during a given gas injection time, t, depends on: 

(1) the rate of AlN formation,        and (2) the total area of the gas bubbles that are 

dispersed in the melt, At, as given by Eq. (33)  

     ∫         
 

 

 
(33) 

Rate of AlN formation (    ) – Higbie’s penetration theory considers the gas-liquid interface 

to be composed of a variety of elements continuously brought up to the interface from the 

bulk of the liquid. The diffusion domain of nitrogen atoms in the liquid is a liquid boundary 

layer of thickness    given by Eq. (34)19-33 

   
√     

 
 

(34) 

The local diffusion time, td, indicates how long the bubble stays in contact with a single 

element ahead of its interface and therefore, it indicates the time available for nitrogen 

atoms to diffuse into the liquid metal. It depends on the diameter of the bubble, d, and its 

rising velocity,   , according to Eq. (35) 

   
 (          )

  ( )
 

(35) 

The rate of AlN formation      can be written as 

        (         ) (36) 
 

In Eq. (36), the mass diffusion coefficient of nitrogen in the boundary layer,    , is given by 

Eq. (37) and the enhancement factor, E, which is a non-dimensional parameter that 

accounts for the decreasing level of nitrogen atoms in the melt due to the formation of AlN, 

is given by Eqs. (38-40)20. 
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(40) 

 

Total area of gas bubbles (At) – The total surface area of gas bubbles in the melt is 

determined by the properties of the gas and the liquid, the gas flow rate, and the size of the 

nozzle, as well as the number of bubbles in the melt, Nb, during the injection time and their 

residence time in the melt, tr, as shown in Eq. (41)
41 
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  ( )
   

(42) 

The frequency of formation of gas bubbles, fb, can be derived from Eqs. (43) to (47) and it is 

a function of the nozzle diameter of the injection tube, dno, the hydrostatic pressure in the 

melt at the injection depth, PGo, and of the state of the gas at the inlet of the tube 

(           ) 
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(48) 

                                                        

In terms of gas flow rate, Eq. (48) may be written as: 

   
      

     (         )    
 

(49) 

Previous work42 calculated At and rAlN as constants across the entire liquid domain; as a 

consequence, these calculations show the amount of reinforcement, WAlN, that form near 

the bottom regions of the crucible to be equal to that formed in the topmost regions. In 
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reality, this is not the case because the nitrogen bubbles tend to lose mass to the liquid and 

are subjected to decreasing hydrostatic pressure as they rise. The former effect causes the 

bubbles to shrink whereas the latter causes them to expand. Therefore, the bubble diameter 

varies continuously in the liquid and      and    vary with it according to their dependencies 

on bubble diameter given by Eqs. (35), (37), (41), and (42). The Navier-Stoke simplified 

expression for the problem of a rising bubble in a liquid wherein the bubble size varies with 

time is shown as Eq. (50) 

  

  
 

(        )

  
 

 

  
 

(50) 

The pressure and concentration at the bubble surface are coupled through Henry’s law, Eq. 

(51), and conservation of mass at the interface, Eq. (52)  

     
     

  
 

(51) 
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(52) 

   

The concentration gradient at the bubble surface, 
  

  
|
   

, is determined by means of Fick’s 

second law of diffusion, Eq. (53), with the initial condition for pressure inside the gas bubble 

expressed by Eq. (47) 

  

  
   

   

   
 

(53) 

Figs. 6 and 7 show respectively the progressive decrease in the total surface area of gas 

bubbles, and the progressive decrease in the number of bubbles as the bubbles rise 

towards the surface of the melt. Figs. 6 and 7 were obtained from calculations based on the 

preceding analysis. It is believed that bubble coalescence is responsible for this decrease in 

the total surface area of the gas bubbles and the associated decrease in their number. This 

belief has been confirmed by others; e.g.37. When two bubbles that are rising in a liquid 

coalesce, the process occurs in three steps37-40 : (1) the two bubbles collide and trap liquid 

between them, (2) The surface of the bubbles flatten and the liquid film that was initially 

trapped between them thins as the liquid drains out, and (3) the two bubbles coalesce into 

one.  
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Figure 25. Total gas interface area    per unit volume vs. distance from the bottom of 
the crucible.  

 

The second of the three steps is normally rate limiting. The rate of thinning of the liquid film 

between the two bubbles may be expressed by Eq. (54) in which   is the original liquid film 

thickness,    is the liquid disk between the coalescing bubbles,   is a measure of the 

surface drag or velocity gradient at the surface due to the absorbed layer of gas, and µ is the 

static viscosity of the liquid, in this case, aluminum37-40. 

  

  
  

     

    
   

 
(54) 

Eq. (54) shows that liquids that have high surface energies, such as aluminum (γ = 813 

dyn/cm at 1273K), are more prone to bubble coalescence. Bubble coalescence adversely 

affects the total concentration of the nitrogen gas that diffuses into the liquid boundary layer 

ahead of the gas-liquid interfacec; which in turn adversely affects the rate of formation of AlN 

particles. Fig. 8 shows the decrease in concentration of nitrogen gas with melt depth.           

                                                           
c
This is a consequence of the drop of partial pressure of nitrogen in the bubble,       , as the bubbles coalesce 

(Henry’s law). 
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Figure 26. Number of gas bubbles    per unit volume vs. distance from the bottom of 
the crucible. 

 

 

Figure 27. Concentration of N per unit volume vs. distance from the bottom of the 
crucible.  
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5. Sensitivity Analysis 

Effect of melt temperature ( ) – Figs.9 and 10 show respectively that when the temperature 

of the melt is increased from 1273K to 1573 K, the gas-liquid interfacial area doubles  and 

the density of gas bubbles increases by about ten times. 

 

Figure 28. Total gas interface area    per unit volume vs. distance from the bottom of 

the crucible. T= 1573 K.                                   

 

 

Figure 29. Number of gas bubbles    per unit volume vs. distance from the bottom       

of the crucible. T= 1573 K. 
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Effect of gas flow rate (Q) – The model presented herein is based on the assumption that 

the effect of gas flow rate on the bubble volume at the time of its detachment from the 

nozzle    , is negligible. However, when the gas flow rate exceeds a threshold value, the gas 

flow may transfer into the ‘constant-frequency’ regime in which    , and hence    , 

correlates with gas flow rate according to Eq. (55)41 

          (
  

 
)

   

 
 

(55) 

Figs. (11, 12, and 13) confirm the occurrence of the constant-frequency regime as they 

show that the number of gas bubbles,   , does not increase with increasing flow rate 

whereas the gas-liquid interfacial area increases significantly. This is due to the effect on the 

detaching bubble diameter,    , which influences the size of the bubble during its rise. This 

‘additional’ gas-liquid interfacial area affects diffusion at the gas-liquid interface and leads 

to a nitrogen concentration in the melt that is almost three times higher compared to its 

value with the lower gas flow rate. The increase in amount of AlN particles that form with the 

increase in gas flow rate has been observed by others10. 

 

Figure 30. Total gas interface area    per unit volume vs. distance from the bottom of 

the crucible. Q= 1 l/min.                   
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Figure 31. Number of gas bubbles    per unit volume vs. distance from the bottom of 

the crucible. Q= 1 l/min.                                              
 

 

Figure 32. Concentration of N per unit volume vs. distance from the bottom of the 
crucible. Q= 1 l/min. 
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Effect of pressure in the chamber (    ) – Fig. 15 shows that when the pressure above the 

melt is increased from 1 atm to 5 atm, the density number of bubbles,     increases since 

the frequency of bubble formation,   , increases, as suggested by Eq. (48). The increase in 

pressure affects the bubble volume,   , according to Eq. (46) in that its diameter at the high 

pressure is smaller than at the low pressure. As a result, the bubble rises more slowly and 

its residence time in the melt,   , is longer, which, according to Eq. (42), further contributes 

to a higher   . Fig. 14 shows that the total interface area,   , is not increased by the 

increase in pressure since the average bubble size is smaller for        atm than for 

       atm. However, the total interface area reaches a fairly stable value, which is very 

important to ensure homogeneous distribution of AlN particles in the melt. Figs. 16 and 17 

show that at        atm, the gas velocity is more or less constant throughout the melt and 

it is almost 10 times smaller than its value at         atm, which results in longer bubble 

residence times in the melt. The most noteworthy consequence of employing high pressure 

is the nitrogen concentration profile which, as shown in Fig. 18 exhibits values that are three 

orders of magnitude higher than those for        atm. Moreover, bubble coalescence is 

minimized by the increased pressure. It is known that surface tension decreases and liquid 

viscosity increases with increasing pressure39-40, also the parameter Ф increases with 

increased pressure38-40. These changes contribute to reducing the bubble coalescence rate 

with increased pressure as indicated by Eq. (54). Furthermore, the frequency of bubble 

collisions, which is the first step in bubble coalescence, decreases with increasing pressure. 

 

Figure 33. Total gas interface area    per unit volume vs. distance from the bottom of 
the crucible.     = 5 atm.                               
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Figure 34. Number of gas bubbles    per unit volume vs. distance from the bottom                 

of the crucible.     = 5 atm. 

 

 

Figure 35. Gas velocity vs. distance from the bottom of the crucible.     = 1 atm. 
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Figure 36. Gas velocity vs. distance from the bottom of the crucible.     = 5 atm. 

 

 

 

Figure 37. Concentration of N per unit volume vs. distance from the bottom of the 

crucible.     = 5 atm. 
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6. Conclusions 

Synthesizing aluminum-aluminum nitride nanocomposite materials by injecting a nitrogen 

bearing gas into molten aluminum is thermodynamically and kinetically feasible, provided 

that the oxygen content of the system is maintained at a low level. Thermodynamic and 

kinetic analysis of the process show that attaining this low oxygen content may be helped by 

alloying aluminum with magnesium and/or lithium; with lithium being the more efficient of 

the two elements in this regard. As little as 1 wt. pct. lithium is sufficient to suppress 

oxidation of aluminum and promote its nitridation. The analysis also shows that an increase 

in process temperature significantly increases the density of reactive gas bubbles. For 

example, when the process temperature is increased from 1273K to 1573K, the density of 

reactive gas bubbles increases by about ten times, and the gas-liquid interfacial area 

doubles. This has positive consequences on the size and distribution of the AlN particles in 

the matrix alloy. However, high temperature adversely affects the equipment’s life 

expectancy, particularly the rotating impeller and furnace walls. The temperature should be 

maintained around 1273K for best results. In addition, the analysis shows that a relatively 

high flow rate of the reactive gas increases the gas-liquid interfacial area. This ‘additional’ 

gas-liquid interfacial area affects diffusion at the gas-liquid interface and positively affects 

the size and distribution of the AlN particles in the matrix alloy.  Although high purity nitrogen 

and anhydrous ammonia are not prohibitively expensive, for economic reasons, the gas flow 

rate should be kept no higher than 0.5 l/min. Finally, the analysis shows that an increase in 

the pressure above the melt increases the density number of reactive gas bubbles and 

reduces the bubble volume; as a result, the bubbles rise more slowly, their residence time in 

the melt increases, and their coalescence is minimized. 

Nomenclature 

     activation extent of Li in Al-Li alloys at high Li content (>5%) 

     activation extent of Mg in Al-Mg alloys at high Mg content (>5%) 

   surface tension of aluminum 

    thickness of the diffusion layer in the gas bulk 

    thickness of the diffusion layer in the liquid bulk 

η  dynamic viscosity of liquid aluminum 

θ  coverage, defined as   
    

    
 

Ф measure of the surface drag or velocity gradient at the surface    due to 

the absorbed  layer of the gas  

µ  static viscosity of aluminum 

    density of gas 

    density of liquid aluminum 
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    total gas-liquid interface area 

c  constant in Equation 28 

d  bubble diameter 

     diffusion coefficient of aluminum 

    diffusion coefficient of nitrogen in aluminum 

    bubble diameter at bubble detachment 

     diameter of the nozzle of the tube 

E  Enhancement Factor 

    activation energy for chemisorption of nitrogen atoms 

    frequency of formation of gas bubbles 

He  Henry’s constant for N2 in liquid Al at T=1273 K 

 (  )  partition coefficient of Reaction 25 

      equilibrium constant of Equation 27 

    mass transfer coefficient of nitrogen in the liquid boundary layer 

   thickness of liquid film in between coalescing bubbles 

L  depth of the melt 

M  molar mass of the gas molecule 

    number of gas bubbles in the melt 

    pressure of the gas bubble at the moment of detachment from the  

injection tube 

    pressure in the liquid at the injection level 

       partial pressure of nitrogen in the gas bulk  

       partial pressure of nitrogen at the gas-liquid interface 

             initial state of reactive gas at the inlet of the injection tube 

   
   vapor pressure of pure Li at 1273 k 

   
   vapor pressure of pure Mg at 1273 K 

   gas flow rate 

      occupied adsorption sites on the gas-liquid interface 

      total adsorption sites on the gas-liquid interface 

R  bubble radius that varies in the melt. R=r at the interface 

    radius of the liquid disk between the coalescing bubbles 

    rate of chemisorption of nitrogen atoms 
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T  temperature 

t  gas injection time 

    local diffusion time  

    residence time of the gas bubble in the melt 

    velocity of the gas bubble 

     volume of gas bubble at bubble detachment 

    volume of the gas bubble 

      amount of AlN formed 

     concentration of aluminum 

       concentration of aluminum at the gas-liquid interface 

      concentration of nitrogen atom on the gas-liquid interface 

      concentration of nitrogen atoms in the liquid bulk 
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 Abstract 

Nano-particle reinforced aluminum materials exhibit promising mechanical and thermal 

properties such as high specific strength, hardness, stiffness, and resistance to creep and 

thermal degradation. Unfortunately, processing these materials is challenging and 

numerous attempts have been made to overcome the typical issues associated with their 

synthesis. These methods include mechanical alloying, powder metallurgy, powder 

infiltration and spray deposition.  However, most of these methods are expensive and time 

consuming. Manufacturing methods that are based on mechanical agitation are cost-

effective, but particle agglomerates tend to form due to Van der Waals forces associated 

with the high surface energy of nano-particles. In-situ fabrication of the reinforcement in the 

metal matrix is an answer to many of these challenges.  In this method, the nano-sized 

particles are formed directly within the melt by means of a chemical reaction between a 

specially designed aluminum alloy and a gas. In this publication, we report on the synthesis 

of aluminum-aluminum nitride nanocomposites by the reaction of a nitrogen-containing gas 

with molten aluminum-lithium alloy. The role of matrix chemistry, gas composition, and 

processing time on particle amount, size and distribution has been assessed. The effect of 

stirring velocity of the gas impeller on particle size and clustering tendency has been 

addressed. A dispersion index has been defined to quantify the homogeneity of the 

microstructure and mechanical properties evaluation at room and high temperatures has 

been pursued for different particle concentration levels.  

1. Introduction 

Composites reinforced with ceramic particles such as Al2O3 or SiC are gradually being used 

in many automotive and aircraft applications, and more recently in the microprocessor 

industry. In the automobile industry, aluminum alloy composites lower the overall weight of 

the vehicle and enhance component strength, stiffness, wear resistance and high 

temperature properties. In the microprocessor industry, composite materials improve heat 
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extraction and heat dissipation from critical components thus allowing higher processing 

speeds and superior performance. Particle size has an undeniably strong influence on the 

failure mode, strength, and ductility of composite materials. Decreasing the size of the 

ceramic particles to the sub-micrometer range, or even better to the nanometer range, can 

lead to significant improvements in room temperature mechanical properties as well as 

enhanced thermal and electrical properties. Moreover, refining the size of the reinforcing 

particles limits microstructure degradation at high temperature, which is a necessary 

material property for highly-rated Diesel engine applications. However, the synthesis of a 

material with increased mechanical properties requires a reinforcement phase which is 

thermodynamically stable, less susceptible to cracking and well bound to the matrix. 

Conventional fabrication methods that are based on the addition of particles to the matrix 

(e.g., mechanical stirring, powder metallurgy, and infiltration techniques) have serious 

limitations when dealing with nanometer size particles; these include particle clustering and 

particle/matrix interface de-bonding. More recent fabrication methods, such as spray 

deposition, plasma synthesis, and ultrasonic-assisted cavitation all suffer from the lack of 

scalability and cost-effectiveness. In-situ creation of the reinforcing particles within the 

aluminum matrix has the potential to provide good particle distribution, small particle size, 

and a clean and thermodynamically stable particle/matrix interface. This process involves 

synthesizing the ceramic reinforcing nano-particles within the metal alloy by means of a 

controlled chemical reaction between a gas with a specific composition injected in the 

molten metal alloy through an impeller. The chemical composition of the reinforcing 

particles that form is dictated by the composition of the reacting gas and molten metal alloy. 

When nitrogen-bearing gases are employed for the reaction AlN are formed. Due to its 

attractive properties including high strength and hardness, good thermal conductivity (80-

260 W m-1 K-1) and low thermal expansion coefficient (4.5X10-6 K-1), aluminum nitride is 

an excellent reinforcement candidate for aluminum alloys. An advantage of this phase is 

also the lack of reaction between it and aluminum, on the contrary to the Al-SiC system, 

where the detrimental Al4C3 phase may be created. Borgonovo and Makhlouf have analyzed 

the thermodynamics and the kinetics of the process and have shown that it is feasible on an 

industrial scale. They investigated two alloy systems; namely Al-Mg and Al-Li, and two 

nitrogen bearing gases, namely nitrogen and ammonia (or a combination of the two).   

Magnesium and Lithium serve the purpose of acting as oxygen getters to catalyze the 

nitridation reaction and mitigate the aluminum oxidation reaction, which is 

thermodynamically favorable even when the oxygen content in the nitrogen-bearing gas is 

extremely low (10-9 Pa). Lithium has been shown to be more effective than magnesium as 

only around 1.15 weight pct. lithium is necessary to synthesize the same amount of AlN as 

with around 15 weight pct. Mg in comparable processing times. In this contribution, the 

authors describe the effect of Li content of the matrix alloy, gas composition, processing 

time, and impeller rotation speed on the amount of the AlN formed, as well as on the size 

and distribution of the aluminum nitride particles in the matrix. A distribution index (DI) is 

developed in order to quantitatively describe particle dispersion. 
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2. Materials, Procedures and Apparatus 

About 250 g of material was charged in a graphite crucible and placed in the mullite retort 

shown schematically in Fig.1. The mullite retort was positioned inside an electric resistance 

furnace. Borgonovo and Makhlouf1-5 have underlined the importance of minimizing the 

oxygen content in the reaction chamber. For this reason, subsequent evacuation and 

backfilling of the retort with GRADE 5 Argon gas prior to heating is necessary. The impeller 

was immersed in the metal once the processing temperature (1,000°C) was reached and 

the gas injection was started. The impeller head (the rotor) is 3D-printed from a ceramic 

powder (80 pct. Al2O3-20 pct. SiO2) and coupled to an Inconel 601 tube by means of a large-

pitch thread that is sealed with high temperature cement (Fig.2). The design of the rotor has 

been optimized to ensure uniform dispersion of the gas bubbles in the crucible and has a 

customized head with 24 holes each of which is 3 mm in diameter. Nitrogen gas (GRADE 5) 

and anhydrous ammonia (or a combination of the two gases) was used as reactive gas. 

Moisture traps and oxygen traps are used to purify the nitrogen-bearing gases so that the 

impurities are kept at the parts-per-billion (ppb) level. An oxygen-getting furnace set to 

500°C and filled with Cu coil was placed in line for further gas purification. The reaction 

temperature was kept constant at 1,000°C, and the reaction time was varied between 2 

and 4 hours. The gas flow rate was maintained between 0.4 and 0.6 l/min. After the desired 

reaction time, the melt was left to cool to room temperature in the furnace under an inert Ar 

atmosphere. Around 4 lbs. of molten A356 aluminum alloy was prepared in an induction 

furnace and transferred to the electric resistance furnace in preparation to the addition of 

the Al-Li/AlN composite material. The master composite material was added to the molten 

A356 once the temperature reached 730°C. Silicon metal was added to compensate for the 

dilution of the A356 alloy with Al from the composite alloy. Three different levels of 

reinforcement were produced. A flow of Argon gas (GRADE 5) was kept in the furnace to 

minimize oxidation. After a few minutes, the titanium ultrasonic probe shown in Fig.3 was 

dipped in the metal to degas it. The power unit of the ultrasonic degasser has a maximum 

limit of 1500 W. Degassing was performed at ultrasonic intensities varying from 50 pct. to 

80 pct. The intensity was lowered when the ultrasonic probe showed signs of overheating. 

Ultrasonic processing was performed for around 25 minutes, after which the temperature of 

the metal is raised to 780°C prior to pouring in a standard ASTM-E8 permanent mold that 

has been preheated to 400°C. This mold is used to cast specimens for tensile property 

measurements. A356 base alloy without addition of the composite material was 

ultrasonically degassed for the same length of time and poured in the same mold to produce 

tensile test specimens for comparison. 
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Figure 38. Schematic representation of the apparatus. 

 

 

 
 (a) (b) 

Figure 39. (a) Schematic representation of the shaft assembly, and 

(b) the printed ceramic rotor. 
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Figure 40. Schematic representation of the ultrasonic degassing system. 

 

High purity Al (99.9999%) and Al-5%wt. Li master alloy were used as starting materials. 

Some of the Al-Li master alloy was diluted to 2.5 wt. pct. Li in a separate furnace prior to 

use. Table 1 summarizes the design of experiments. After each experiment, samples from 

the resulting composite material were prepared and etched with diluted 10 vol. pct. NaOH. 

Three concentrations of aluminum nitride particles in A356 aluminum matrix alloy were 

prepared by introducing appropriate amounts of Al-Li/AlN composite master alloy in the 

melt. These are: 0.5 vol. pct., 1 vol. pct., and 2 vol. pct. In each case, the microstructure was 

examined by a scanning electron microscope (SEM) coupled with an energy dispersive X-ray 

spectrometer. The samples were also examined by X-ray diffraction (XRD). A Matlab-based 

computer program (Appendix 1) together with image analysis was used to quantitatively 

characterize the microstructure of the resulting material. This includes calculating volume 

fraction of AlN particles, average AlN particle size, and average AlN cluster size.   

Rockwell B hardness of the composite materials was measured utilizing a total load of 

100Kgf. On average 20 hardness measurements were made on each sample. A minimum of 

6 specimens was used to determine the room temperature tensile properties of the 

material. The measurements were performed according to ASTM standard B557. All 

measurements were performed with a Universal Testing machine. Strain was measured with 

an axial extensometer with a gage length of 2 inches. The extensometer was used until the 

specimen fractured and the testing machine ramp rate was 0.05 in/min. A minimum of 3 

specimens was used to determine the elevated temperature properties of the material. The 
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tensile tests were performed at 300C according to ASTM standard E21 with a Universal 

Testing machine. Strain was measured with a high temperature extensometer. The 

extensometer was used until the specimen fractured and the testing machine ramp rate was 

0.05 in/min. Specimens were heated to 300C, held at temperature, and tested to fracture 

in an environment chamber. The chamber temperature did not vary by more than 3C. The 

data from both room temperature and elevated temperature tensile property measurements 

was analyzed to obtain ultimate tensile strength (UTS), yield strength (YS), elongation (e), 

and modulus of elasticity (E). 

Table 1. Design of Experiments. 

Experiment # Alloy 
composition 

Gas 
composition 

Processing time 
(h) 

Rotational speed 
(rpm) 

1 Al-5 wt% Li N
2
 2 250 

2 Al-5 wt% Li N
2
 4 250 

3 Al-5 wt% Li N
2
+NH

3 (1:1) 2 250 

4 Al-5 wt% Li N
2
+NH

3 
(1:1) 4 250 

5 Al-5 wt% Li NH
3
 2 250 

6 Al-5 wt% Li NH
3
 4 250 

7 Al-2.5 wt% Li N
2
 2 250 

8 Al-2.5 wt% Li N
2
 4 250 

9 Al-2.5 wt% Li N
2
+NH

3
 (1:1) 2 250 

10 Al-2.5 wt% Li N
2
+NH

3
 (1:1) 4 250 

11 Al-2.5 wt% Li NH
3
 2 250 

12 Al-2.5 wt% Li NH
3
 4 250 

13 Al-2.5 wt% Li N2+NH3 (1:1) 4 300 

14 Al-2.5 wt% Li N
2
 2 450 

 

3. Results and Discussion 

 

1.1 Microstructure Characterization 

Table 2 shows the quantitative results of the microstructure characterization. No AlN was 

detected in the samples when N2 gas is injected in Al-5pct. Li alloy for 2 hours. When the 

processing time is increased to 4 hours, XRD analysis (Fig. 4) shows the presence of AlN. 
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The quantitative analysis reveals fairly small AlN particles that are about 600nm in size 

distributed in the alloy matrix. When the reacting gas is ammonia + nitrogen, the volume of 

AlN particles that forms increases compared to the case when only N2 gas is used, and the 

average particle size is around 400 nm. Some clustering of the particles occurs when the 

gas mixture is injected for 2 hours, but the average cluster size was relatively small – around 

1300 nm. Further increase in the volume fraction of AlN particles occurs when ammonia 

only is used as reactive gas. In this case, 48 volume pct. of AlN particles formed after 

processing for 4 hours. The microstructure appears to be very homogeneous for both 2 and 

4 hours processing times (Figs. 5 and 7). Clustering seems to be significantly diminished, 

the average cluster size is reduced to around 1µm, and the average particle size is also 

reduced to 300nm. Fig. 6 shows semi-Gaussian particle size distribution around the average 

particle size. 

 

Figure 41. XRD pattern of the Al-AlN composite produced by Experiment #2. 
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Table 2.  Summary of microstructure characteristics of materials produced according to the 

experiments shown in Table 1. 

Experiment # Vol. pct. AlN Average particle size (nm) Average cluster size (nm) 

1 - - - 

2 6.2 643 nm 1540 nm 

3 9.5 489 nm 1327 nm 

4 26 453 nm 1552 nm 

5 21 274 nm 966 nm 

6 48 312 nm 1114 nm 

7 - - - 

8 - - - 

9 - - - 

10 7.4 655 nm 924 nm 

11 12.8 409 nm 1012 nm 

12 31 293 nm 785 nm 

13 

14 

11 208 nm 435 nm 

14 4 58 nm n/a 

 

 

 

Figure 42. SEM photomicrograph showing AlN particles produced in Experiment #5. 
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Figure 43. Particle size distribution in material produced according to Experiment #5. 

 

 

Figure 44. SEM photomicrograph showing AlN particles produced in Experiment #6. 
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When ammonia is used with the 2.5 wt. pct. Li alloy, the average AlN particle size is 

decreased to around 400 nm for the 2 hours processing time, and 300nm for the 4 hours 

processing time. The volume fraction of AlN is 31 pct. for the 4 hours processing time, which 

is almost 30 pct. lower than when the 5 weight pct. Li alloy is used. In the experiments 

performed with the 2.5 weight pct. Li alloy, no AlN particles were detected when nitrogen 

only was used as reactive gas for 2 or 4 hours. Also, no AlN particles were found when the 

mixture of nitrogen and ammonia gases was injected in the alloy for 2 hours; however, when 

the processing time is increased to 4 hours, around 7 volume pct. AlN was formed as shown 

in the XRD pattern of Fig. 8 and SEM micrograph of Fig. 9. The average cluster size is less 

than 500 nm and the average particle size is around 200 nm. The particle size distribution 

is also homogeneous, as shown in Fig. 10. 

 

Figure 45. XRD pattern of the Al-AlN composite produced by Experiment #13. 
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Figure 46. SEM photomicrograph showing AlN particles produced in Experiment #13. 

 

 

Figure 47. Particle size distribution in material produced according to Experiment #13. 

It has been observed [1-5] that Li acts as a catalyst for the nitridation reaction. The role of Li 

in aluminum nitridation has been investigated by Scholz and Greil [7] and by Borgonovo and 

Makhlouf []. Based on phase equilibrium calculations in the Al-Li-O-N system, Li combines 

with oxygen to form Li2O at low oxygen levels and LiAlO2 at higher oxygen levels according to 

reactions (1) and (2). 
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Aluminum nitridation may also occur because of the ability of Li to remove the gaseous 

reaction products from the reaction site so that equilibrium conditions are never achieved. 

The continuous flow of the nitrogen-bearing gas in the furnace chamber removes the 

evaporating species (Li and Li2O) from the reaction chamber, thus maintaining non-

equilibrium conditions that generate very high mass flow of volatilizing Li. Therefore, the high 

partial pressure of the Li-based vaporized species in the furnace environment causes 

nitridation of aluminum on the surface of the melt first. Channels in the aluminum-lithium 

melt formed by the rising nitrogen bubbles and the stirring action of the impeller are 

probably responsible for nitridation of the bulk of the metal. The role of ammonia has been 

extensively analyzed by Borgonovo and Makhlouf []. During nitridation with ammonia, 

hydrogen dissociates from nitrogen at around 1000°C and functions as an oxygen getter to 

lower the oxygen content of the system thus increasing the permissible oxygen partial 

pressure for nitridation. Also, hydrogen may enhance the adsorption of nitrogen at the gas 

bubble-metal melt interface thereby improving the rate of AlN formation. In addition to this, 

the dissociation of ammonia releases atomic nitrogen, which is more easily chemisorbed on 

the bubble surface and diffused into the molten metal than molecular nitrogen. 

 

Figure 48. SEM photomicrograph showing AlN particles produced in Experiment#14. 

In Experiment 14, the rotation speed is increased to 450 rpm in order to examine the effect 

of impeller rotation speed on AlN particle size and clustering. Microstructure of the resulting 

material is shown in Fig.11. Table 2 shows the microstructure parameters for the composite 

material as computed by the Matlab-based program [6]. The particle size is around 60 nm 

and clusters that are larger than the average particle size are not detected. Only 4 volume 

pct. volume pct. AlN formed in this material, which is probably due to the shorter gas 

injection time. The smaller particle size is a direct consequence of bubble break up that 

leads to smaller gas bubbles. It is common practice to correlate increase in rotational speed 
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to bubble break-up, although this is valid only for certain systems, such as liquid foams. In 

order to predict the bubble size resulting from mechanical stirring, it is useful to calculate 

Weber number, We. This dimensionless number is defined by Taylor, and it reflects the 

balance between the viscous forces that tend to deform the bubble and the interfacial 

forces that tend to maintain its spherical shape. The Weber number is given by Eq. (3) 

      
  ̇   

  
 (3) 

 

where   is the dynamic viscosity,  ̇ is the shear rate,     is the mean bubble diameter,   is 

the gas/liquid interfacial tension, and   is a coefficient which can range from 1 to 2. When 

We becomes larger than a critical value,     , bubble break-up is expected to occur [8-11]. 

The critical Weber diameter can be determined experimentally. For the very low values of 

dynamic viscosity of aluminum at 1000°C, it has been shown that We only depends on  

shear rate, which is directly proportional to the rotation speed, N, for Newtonian fluids and 

on      for Non-Newtonian fluids [9,11]. Therefore, the bubble diameter decreases with 

increasing rotation speed according to Eq. (4) 

      
 

 (     )
 (4) 

Fig. 12 shows that for speeds higher than 450 rpm, the bubble size doesn’t decrease 

significantly, and it eventually reaches a constant value.  

 
Figure 49. Mean bubble diameter versus rotational speed8. 

The process parameters of Experiment #14 were used to make the material to be added to 

commercial A356 foundry alloy. 
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A distribution index (DI) based on the box counting method was defined in order to 

quantitatively determine particle distribution in the matrix. In this method, the matrix is 

divided into a number of small uniform boxes. Selection of an appropriate box size is 

important, and it is related to the number of tracked particles. This quantity was determined 

with the help of the Matlab-based program (Appendix 1) [6]. Jones [12] determined the box 

size such that on average there is one particle per box. If the box size is chosen such that for 

a perfectly random distribution of N particles, 98 pct. of the boxes contain at least one 

particle each, then the box size s for a unit square domain (1  1) is approximately given by 

     
 
  

(5) 

 

Since N is a known parameter, the domain can be easily divided into boxes of size s, and 

then the dispersed particles in each box are counted. For example, tracking 1,600 particles 

requires 400 boxes in the entire domain. Since: 

   (    )
 
       

Then, the number of boxes per domain side is 
 

    
    

Total number of boxes (assuming a square domain) = 202 = 400. This results in a maximum 

of 4 particles (nmax) per box in a homogeneously mixed situation. We can define a 

Distribution Index for each box (Di) as: 

            
  

    
                                   (6) 

 

                    
 

    (7) 

 

where ni is the number of particles in box i. The Distribution Index DI is then defined as 

     
 

 
∑  

 

   

             (8) 

 

The distribution indices calculated for the materials produced according to Table 2 are 

shown in Table 3. The DI varies from 0 for a totally clustered dispersion to 1 for perfect 

dispersion. It can be noticed from Table 3 that higher rotation speeds provide improved 

particle distribution and that when ammonia is present in the gas mixture enhanced particle 

dispersion is achieved. 
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Table 3. Distribution Index (DI). 

Experiment # Distribution Index (DI) 

1 - 

2 0.58 

3 0.37 

4 0.51 

5 0.82 

6 0.74 

7 - 

8 - 

9 - 

10 0.31 

11 0.73 

12 0.65 

13 

14 

                  0.78         

                 14                   0.67 

 

Fig. 13 shows the increase in Hardness of the composite material. It can be noticed that the 

most improvement is attained when ammonia is used as the reaction gas, when Li is at the 

higher level (5 weight pct.), and when the rotation speed of the impeller is increased. 
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Figure 50. Measured Rockwell B Hardness. 

a. Mechanical Properties 

Figs. 14-17 show the room temperature tensile properties of A356/AlN composite materials. 

Fig.14 shows that the improvement in ultimate tensile strength is around 46 pct. for 

2volume pct. AlN and the improvement in UTS is linearly proportional to the amount of AlN 

added to the matrix. Yield strength also increases by about 90 pct. Fig. 15 shows that an 

improvement in YS of about 50 pct. may be achieved by adding as little as 0.5 volume pct. 

AlN. Fig.16 shows that elongation experiences a small decrease (only 10 pct.) with up to 1 

volume pct. AlN. At 2 volume pct. AlN, elongation decreases by 50 pct. Fig.17 shows that the 

Young’s modulus increases by 100 pct. over that of the base alloy when 0.5 volume pct. AlN 

is added, and by 120 pct. when 2 volume pct. AlN is added. 
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Figure 51. Room temperature UTS as function of volume pct. AlN. 

 

        
Figure 52. Room temperature YS as function of volume pct. AlN. 
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Figure 53. Room temperature UTS as function of volume pct. AlN. 

. 

 

Figure 54. Room temperature Young’s modulus as function of volume pct. AlN. 

The presence of AlN in the matrix can be confirmed by SEM analysis (Figs.18-20) AlN 

particles are very homogeneously distributed both for the A356 reinforced with the lower 

amount of AlN and the highest. Moreover, particles have retained good dispersion even 

around the area of the Si needles, which is normally subjected to heavily clustering. The 

strengthening effect of AlN addition can be most likely attributed to Orowan effect or 
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dislocation bowing. This will be further confirmed by TEM analysis. It is unlikely that 

strengthening though particle shearing would contribute to strengthen the material since AlN 

are a very hard and brittle phase, and the size in our case (60-80 nm) is generally too big for 

particle shearing to take place. Fig.21 compares the surface fracture of the base metal 

A356 with A356/1%vol. AlN. It can be noticed that the morphology of the fracture of the 

composite has sharper dimples which indicated the decrease of ductility in the composite 

material.  

 

Figure 55. A356/AlN. Low magnification. 2%vol. AlN. 
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Figure 56. A356/AlN. High magnification. 2%vol. AlN. 

 

Figure 57. A356/AlN. High magnification. 1%vol. AlN. 

 

AlN 
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Figure 58. Left) Surface fracture of A356 base metal processed with ultrasonic energy; right) 

A356/1%vol.AlN processed with ultrasonic energy.  

Ultrasonic processing has proved to be effective in degassing as previously reported by other 

works13-15, as it can be observed from the lack of porosity both in SEM images and on the 

surface fractures. UTS, YS and Young’s modulus at 300 °C have also been determined for 

0.5%vol. and 1%vol. of AlN (Figs.22-24). The increase in UTS is around 40% for the material 

reinforced with 1%vol. of AlN (Fig.22). YS is also enhanced and follows almost a linear 

improvement spanning from 25% for 0.5%vol. of AlN to almost 50% for 1%vol. of AlN 

(Fig.23).  The most significant result is the dramatic increase in Young’s modulus of about 

200% for 0.5%vol. AlN and 240% for 1%vol. AlN (Fig,24).  
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Figure 59. Elevated temperature (300°C) UTS as function of volume pct. AlN. 

 

 

Figure 60. Elevated temperature (300°C) YS as function of volume pct. AlN. 
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Figure 61. Elevated temperature (300°C) Young’s modulus as function of volume pct. AlN. 

4. Conclusions 

In this work, the experimental results of the in-situ gas liquid process have been presented. 

The effect of process variables of vol.% of AlN synthesized, size of AlN and cluster size has 

been devised. Particle size has been brought down to around 60 nm for high impeller 

rotational speed and particle clusters are almost absent. It has been noticed that ammonia 

enhances the nitridation reaction as well as high amounts of Li. This is most likely due to 

their oxygen-getter actions. Impeller speed mainly affect particle size by affecting the size of 

the gas bubbles. A distribution index (DI) between 0 and 1 has been defined and used to 

quantitatively evaluate particle dispersion. Ultrasonic energy has shown to be efficient in 

degassing the material. Mechanical properties both at room and high temperature (300 °C) 

show a dramatic increase. The increase in YS and Young’s modulus is almost 100% at room 

temperature while the UTS is about 46% for 2%vol. of AlN. The strengthening effect of the 

particle is likely to Orowan bowing, but further TEM investigation will be carried out to 

confirm this. UTS and YS have been both improved by around 50% at high temperature. The 

Young’s Modulus at 300 ºC has also increased of around 200%. 
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APPENDIX 1: Matlab-Based Calculation Code for the Dispersion Factor (DI) 

How does it work? 

Uniform particle dispersion is desirable in order to achieve improved mechanical properties 

and therefore, a reliable final component. Mean free space length (also called inter-particle 

distance) is a scale-dependent measure of the homogeneity of particle distribution. Fig. 1a 

shows a perfectly uniform dispersion, while Fig. 1b is characterized by some clustered 

particles. It can be seen how the distance between particles increases in Fig. 1b, where the 

dispersion is non-homogeneous. For decreasing particle size and increasing particle loading, 

the inter-particle distance is reduced.  

 

Figure 62. Illustrations of two possible dispersion states for nanoparticles within a polymer 

matrix: a) a uniform dispersion, b) a more realistic dispersion with two small clusters of 

particles1. 

 
Share et al.1 have formulated a Matlab-based computer program able to characterize 

particle dispersion in the matrix. The first step is to convert the SEM or TEM micrograph into 

black and white bitmap image. The program computes the inter-particle free-space length 

first, being the free-space length defined as the width of the largest randomly placed square 

(on the bitmap image) for which the most probable number of intersecting particles is zero -

equivalent to the use of the Poisson distribution for random systems-. Initially, a square of a 

given length is randomly placed on the image. The number of intersecting particles is 

counted and stored. This procedure is repeated a statistically significant number of times to 

compute the most probable number of intersecting particles –the “mode”- for the 

characteristic square length using the particle occurrence histogram is used (intersection 

occurrence vs. number of particles/square).The code iterates on square size to find the 
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largest square for which the most probable number of intersecting particles in a randomly 

placed square is zero. By inverting the black and white tones of the bitmap image, the 

program is able to compute average particle size and cluster size using the same procedure. 

 

 

                                                   CODE1 

 

 

function [af,l1] = dispersion() 

clear 

clc 

close all 

  

syms logi1 y n; 

 

% Version check for SORT function 

logi1 = input('Is the version of MATLAB 7.0 or later? (Y/N) : ', 's'); 

 

if strcmpi(logi1, 'y') ==1; 

    vzn = 1; 

else 

    vzn = 0; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%% Read TEM b/w bitmap and generate pixel matrix 'A' %%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

[filename,PathName] = uigetfile('*.bmp','Select the .BMP image'); 

  

A = imread([PathName,filename],'bmp'); 

  

offx=ceil(size(A,1)/2); %Offset for periodic boundary 

offy=ceil(size(A,2)/2); %Offset for periodic boundary 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%% Area fraction calculation %%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

filledcells=0; 

totalcells=0;  

 

for i=1:size(A,1); 

    for j=1:size(A,2); 

        totalcells=totalcells+1; 

        if A(i,j)<150; 

            filledcells = filledcells+1; 

        end 

    end 

end 

af=filledcells/totalcells; 

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%% Create data matrix which contains periodic boundary condition %%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%% Top layer: Top quarter of the data matrix 

for i = 1:offx; 

    for j = 1:offy; 

        Matrix(i,j)=A(offx+i,(offy+j)); 

    end 

end 

  

for i = 1:size(A,1); 

    for j = 1:offy; 

        Matrix(i+offx,j)=A(i,j+offy); 

    end 

end 

  

for i = 1:offx; 

    for j = 1:offy; 

        Matrix(i+offx+size(A,1),j)=A(i,j+offy); 

    end 

end 

  

%%%%%%%%% Middle layer: Middle two-rows of data matrix 

for i = 1:offx; 

    for j = 1:size(A,2); 

        Matrix(i,j+offy)=A(i+offx,j); 

    end 

end 

  

for i = 1:size(A,1); 

    for j = 1:size(A,2); 

        Matrix(i+offx,j+offy)=A(i,j); 

    end 

end 

  

for i = 1:offx; 

    for j = 1:size(A,2); 

        Matrix(i+offx+size(A,1),j+offy)=A(i,j); 

    end 

end 

  

%%%%%%%%%%%%% Bottom layer: Bottom quarter of data matrix 

for i = 1:offx; 

    for j = 1:offy; 

        Matrix(i,j+offy+size(A,2))=A(i+offx,j); 

    end 

end 

  

for i = 1:size(A,1); 

    for j = 1:offy; 

        Matrix(i+offx,j+offy+size(A,2))=A(i,j); 

    end 

end 

  

for i = 1:offx; 

    for j = 1:offy; 

        Matrix(i+offx+size(A,1),j+offy+size(A,2))=A(i,j); 

    end 

end 



98 
 

  

syms logi y n; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%% Define initial square parameters %%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

scale1= input('Enter approximate width of TEM image in nanometers:  '); 

scale= scale1/size(A,2);  

xf1 = input('Enter initial guess of characteristic square width in 

nanometers:  '); 

xf = xf1/scale1; 

Nsquares = input('Enter number of random squares to use for analysis:  '); 

  

fprintf('\n\n') 

fprintf('Computation may take several seconds to a few minutes, depending on 

input parameters\n Press Ctrl+C any time to terminate computation\n\n') 

 

s2=size(A,1)*size(A,1); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%% First count to Nsquares (corresponding to manual input of 'xf') %%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

length = ceil(xf*size(A,2)); 

for i = 1:Nsquares; 

    x=ceil(rand*size(A,1))+offx; 

    y=ceil(rand*size(A,2))+offy; 

    counter=0; 

    for s = 1:length; 

        for t = 1:length; 

            mx=x-floor(length/2)+s; 

            my=y-floor(length/2)+t; 

            if Matrix(mx,my)<150; 

                counter=counter+1; 

            end 

        end 

    end 

    P(i)=counter; 

end 

data=P'; 

bimreal=mode(data); 

 

h1=hist(P,2500); 

[m,n1]=max(h1); 

l=xf; 

 

boxar=length^2; 

 

if boxar==bimreal 

    isbimo=1; 

    h1(1,2500)=0; 

    [m,n1]=max(h1); 

else 

    isbimo=0; 

end 
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  if n1~=1 

      

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%%%%%%%%%%% Automatic interation to obtain Free Space Length %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

margin=1; 

while margin > .05 

     

    while n1~=1 

        xfnew=xf/2; 

        l=xf-xfnew; %==xf/2 

        length = ceil(l*size(A,1)); 

        for i = 1:Nsquares; 

          x=ceil(rand*size(A,1))+offx; 

          y=ceil(rand*size(A,2))+offy; 

          counter=0; 

          for s = 1:length; 

              for t = 1:length; 

                mx=x-floor(length/2)+s; 

                my=y-floor(length/2)+t; 

                if Matrix(mx,my)<150; 

                  counter=counter+1; 

                end 

              end 

          end 

        P(i)=counter; 

        end 

    data=P'; 

    bimreal=mode(data); 

    boxar=length^2; 

     

    h2=hist(P,2500); 

     

    if boxar==bimreal 

        isbimo=1; 

        h2(1,2500)=0; 

        [m,n1]=max(h2); 

    else 

        isbimo=0; 

        [m,n1]=max(h2); 

    end 

      

    xf=xfnew; 

            

    end 

     

    if n1==1 

        if vzn == 1; 

            SRT=sort(h2,'descend'); 

        else 

            SRT=fliplr(sort((h2))); 

        end 

         

        margin=1-(SRT(2)/SRT(1)); 

         

        if margin > 0.05 
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            xfjumpup=2.5*xf; 

            xf=xfjumpup; 

            

            xfnew=xf/2; 

             l=xf-xfnew; %==xf/2 

             length = ceil(l*size(A,1)); 

             for i = 1:Nsquares; 

                x=ceil(rand*size(A,1))+offx; 

                y=ceil(rand*size(A,2))+offy; 

               counter=0; 

                for s = 1:length; 

                     for t = 1:length; 

                     mx=x-floor(length/2)+s; 

                      my=y-floor(length/2)+t; 

                     if Matrix(mx,my)<150; 

                         counter=counter+1; 

                     end 

                     end 

                end 

                    P(i)=counter; 

               end 

         data=P'; 

         bimreal=mode(data); 

         boxar=length^2; 

     

         h2=hist(P,2500); 

          

         if boxar==bimreal 

            isbimo=1; 

            h2(1,2500)=0; 

            [m,n1]=max(h2); 

         else 

            isbimo=0; 

            [m,n1]=max(h2); 

         end 

          

         xf=xfnew;     

     

        else 

        end 

    else 

        continue 

         

    end 

     

end 

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%% Display results %%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    l1=l*size(A,2)*scale; 

    disp('Value of required box width is (in nanometers): ') 

    disp(ceil(l1)) 
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disp('Particle area fraction (where particles are represented by black 

pixels): ') 

disp(af) 

     

hist(P,2500), xlabel('# of particle pixels in a box'), ylabel('# of 

occurrences') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%% Manual Mode %%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 logi = input('Automatic iteration completed. Continue to manual mode? (Y/N)  

:', 's'); 

  

while strcmpi(logi, 'y') == 1; 

    xf1 = input('Enter desired square width in nanometers:  '); 

    xf = xf1/scale1; 

    Nsquares = input('Enter number of random squares to use for analysis:  

'); 

 

     s2=size(A,1)*size(A,1); 

      

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  %%%%%%%%%%%%%%%%% Calculate box size for manual input%%%%%%%%%%%%%%%%%%%%%%     

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

    length = ceil(xf*size(A,2)); 

    for i = 1:Nsquares; 

     x=ceil(rand*size(A,1))+offx; 

     y=ceil(rand*size(A,2))+offy; 

      counter=0; 

      for s = 1:length; 

          for t = 1:length; 

              mx=x-floor(length/2)+s; 

              my=y-floor(length/2)+t; 

              if Matrix(mx,my)<150; 

                  counter=counter+1; 

              end 

          end 

      end 

       P(i)=counter; 

    end 

    data=P'; 

    bimreal=mode(data); 

    boxar=length^2; 

          

          

    h1=hist(P,2500); 

     

         if boxar==bimreal 

            isbimo=1; 

            h1(1,2500)=0; 

            [m,n1]=max(h1); 

         else 

            isbimo=0; 

            [m,n1]=max(h1); 

         end 



102 
 

     

    zerocount=0; 

    for j=1:size(P,2); 

      if P(j)==0; 

           zerocount=zerocount+1; 

      end 

    end 

 

     

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %%%%%%%%%%%%%%%%%% Display results %%%%%%%%%%%%%%%%%%%%%%%%%% 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

    hist(P,2500), xlabel('# of particle pixels in a box'), ylabel('# of 

occurrences') 

    disp('Number of boxes with a zero black-pixel count: ') 

    disp(zerocount)     

    logi = input('Enter parameters again? (Y/N)  :', 's'); 

  

end 

 

end 

 

function [result,percents]=mode(x) 

%MODE 

% Finds the mode of a 2d matrix. 

% [result perecents]=mode(matrix) 

% where result is the mode of the matrix 

% and percents is the amount of difference within the mode 

% ORIGNALLY TABULATE.m by B.A. Jones 

% Changes by David Li, UCSB updated: 4-8-2004 

 

[Mo,No]=size(x); 

x=reshape(x,Mo*No,1); 

 

y = x(find(~isnan(x)))+1; 

 

maxlevels = max(y(:)); 

minlevels = min(y(:)); 

[counts values] = hist(y,(minlevels:maxlevels));  

total = sum(counts); 

 

result=-1; 

index=1;  

while(counts(index) ~= max(counts)) 

    index=index+1;     

end 

result=values(index)-1; %disp(result); 

 

percents =counts(index)/total; 

 

end 
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SYNTHESIS OF DIE-CASTABLE NANO-PARTICLE REINFORCED ALUMINUM 

MATRIX COMPOSITE MATERIALS BY IN-SITU GAS-LIQUID REACTIONS 

Cecilia Borgonovo, Makhlouf M. Makhlouf 

Advanced Casting Research Center 

Worcester Polytechnic Institute, Worcester, USA 

ABSTRACT 

Nano-particle reinforced aluminum matrix composites are attractive engineering materials 

for many automotive and aerospace applications because they exhibit numerous desirable 

mechanical and thermal properties, such as high specific strength, hardness, stiffness, and 

resistance to creep and thermal degradation. Unfortunately, making these materials is not 

easy and most of the methods that have been developed so far for their synthesis are either 

not robust, inefficient, or not cost effective.  In this publication, we report on the synthesis of 

die-castable aluminum-aluminum nitride nano-composite materials by the reaction of a 

nitrogen-containing gas with molten aluminum-lithium alloy. Specifically, we report on the 

effect of (1) the lithium content of the alloy, (2) the composition of the reactive gas, and (3) 

the reaction time on (a) the amount, (b) the average size, and (c) the average cluster size of 

the aluminum nitride reinforcing particles; as well as (d) the hardness and (e) the thermal 

stability of the composite material. 

KEYWORDS 

Aluminum, lithium, nano-composites, in-situ process, nitrogen-bearing gas, aluminum 

nitrides. 

INTRODUCTION 

Global efforts are continually being made in order to improve fuel economy in the 

automotive and aerospace industries. Fuel efficiency standards require manufacturers to 

increase fuel efficiency by 5% per year starting from 2012. Nano-particle reinforced metal 

matrix composites, particularly those based on an aluminum alloy matrix allow decreasing 

the weight of the vehicle while enhancing the strength and stiffness of components, which 

leads to significant improvements in the fuel efficiency of the vehicle. Traditionally, such 

materials are produced by powder metallurgy [1], mechanical alloying [2], spray deposition 

[3], and several casting methods that involve stirring particles of the reinforcing phase in the 

molten metal alloy [4] or infiltration methods [5]. Since these conventional fabrication 

techniques involve adding exogenous reinforcing particles to the metal alloy, they suffer 

from several drawbacks including contamination, interfacial reactions between the particles 

and the alloy matrix, and clustering of the particles due to their poor wettability by the matrix 

alloy [3,6]. A class of novel nano-composite material fabrication processes in which the 

particles are formed within the parent phase (in-situ) by means of a chemical reaction has 

been recently developed. Belonging to this class is the gas injection process, which is based 

on introducing a reactive gas into a molten metal to cause a chemical reaction that 

produces the reinforcing particles [6]. Uniform particle distribution, lack of contamination, 
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and clean interfaces between the reinforcing particles and the matrix can be achieved by 

this process, and the process is easily scalable and inexpensive. The present study focuses 

on the synthesis of Al-AlN nano-composites, which has received considerable attention in 

recent years [7-10]. Aluminum nitride has low density (3.026 g/cm3), low coefficient of 

thermal expansion (4.5×10-6 K-1 in the temperature range 293-673 K), and good thermal 

conductivity (110-170 W.m-1.K-1), which makes it an attractive material for electronic 

substrates and optoelectronic parts. Moreover, AlN is much more wettable by aluminum 

than other compounds, such as Al2O3, is chemically stable and does not decompose or in 

aluminum. However, and despite their many attractive characteristics, Al-AlN 

nanocomposites have not been widely used because of the high cost of AlN nano-powders. 

Zheng and Reddy [7-10], Hou et al. [11], Huashun et al. [12] and others [13,14,15] have 

demonstrated the feasibility of synthesizing Al-AlN nanocomposites by the gas injection 

process. The mechanism of AlN formation has also been discussed, as well as the 

detrimental effect of oxygen on the nitridation of aluminum [8]. In this paper, we report on 

the synthesis of die-castable aluminum-aluminum nitride nano-composite materials by the 

reaction of a nitrogen-containing gas with molten aluminum-lithium alloy. Specifically, we 

report on the effect of (1) the lithium content of the alloy, (2) the composition of the reactive 

gas, and (3) the reaction time on (a) the amount, (b) the average size, and (c) the average 

cluster size of the aluminum nitride reinforcing particles; as well as (d) the hardness and (e) 

the thermal stability of the composite material. 

MATERIALS AND PROCEDURES 

 
 

Fig. 63. Apparatus used to synthesize Al-AlN composite materials. 



106 
 

Fig. 1 shows a schematic representation of the apparatus used in the gas injection process. 

It consists of a mullite retort placed inside a resistance furnace. A graphite crucible was 

used to melt the alloy. The gas bubbling impeller has a customized head with 24 holes each 

3 mm in diameter. The rotor head wass printed from a ceramic powder (80% Al2O3- 20% 

SiO2) and coupled to an Inconel 601 tube by means of a large-pitched thread that is sealed 

with a high temperature cement. Al-5 wt% Li master alloy was used as the starting material 

and high purity Al (99.9999%) was added when dilution of the master alloy was required. 

The total weight of the charge was about 250g. Nitrogen gas (GRADE 4) and anhydrous 

ammonia were used as reactive gases. Drierite traps, moisture traps, and oxygen traps were 

used to purify the nitrogen-bearing gases so that the impurities are at the parts-per-billion 

(ppb) level. The reaction temperature was kept constant at 1000°C, and the reaction time 

was varied between 2 and 4 hours. The gas flow rate [0.4 and 0.6 liter per min (lpm)] was 

maintained by a flow meter. After the desired reaction time, the melt was left to cool down to 

room temperature in the furnace under an inert atmosphere. 

Table 1 summarizes the design of experiments. After each run, samples from the resulting 

composite material were removed and etched with diluted 10 vol% NaOH. The 

microstructure of each sample was examined by a scanning electron microscope (SEM) 

coupled with an energy dispersive X-ray spectrometer. The samples were also examined by 

X-ray diffraction (XRD). A Matlab-based computer program [16] was optimized and used to a 

quantitatively characterize the microstructure, including calculating the volume fraction of 

the AlN particles, the mean free space length, the average AlN particle size, and the average 

AlN cluster size. The free space length is a scale-dependent measure of particle distribution 

and can be related to the other microstructural variables. It decreases with increasing 

volume percentage of particles, decreasing particle size and cluster size. The hardness of 

the composite materials was measured with the Rockwell B scale utilizing a total load of 

100Kgf. On average 15-20 hardness measurements were made on each sample. Thermal 

stability of the AlN particles was assessed by holding the samples at 450ºC for 24 hours in 

an electrical box furnace and then measuring the increase in size of the AlN particles.  

Table 4. Design of Experiments. 

Experiment # Alloy composition Gas composition Processing time 

1 Al-5 wt% Li N2 2 

2 Al-5 wt% Li N2 4 

3 Al-5 wt% Li N2/ NH3=1/1 2 

4 Al-5 wt% Li N2/ NH3=1/1 4 

5 Al-5 wt% Li NH3 2 

6 Al-5 wt% Li NH3 4 

7 Al-2.5 wt% Li N2 2 

8 Al-2.5 wt% Li N2 4 
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9 Al-2.5 wt% Li N2/ NH3=1/1 2 

10 Al-2.5 wt% Li N2/ NH3=1/1 4 

11 Al-2.5 wt% Li NH3 2 

12 Al-2.5 wt% Li NH3 4 

RESULTS AND DISCUSSION 

Microstructure characterization – Table 2 shows the quantitative results of the 

microstructure characterization. No AlN was detected in the samples when N2 gas is injected 

in Al-5 wt% Li alloy for 2 hours. When the processing time was increased to 4 hours, XRD 

analysis (Fig. 2) shows the presence of AlN. Both the quantitative analysis and the 

micrograph (Fig. 3) reveal a uniform distribution of fairly small AlN particles (~600nm) in the 

alloy matrix. When ammonia was mixed with nitrogen, the volume of AlN particles that 

formed increased after 2 and 4 hours processing time compared to the case when only N2 

gas was used and the average particle size was around 400 nm. However, some clustering 

of the AlN particles occurred when the gas mixture was injected for 2 hours, but the average 

cluster size was relatively small – around 1300 nm as seen in Fig. 4. For 4 hours processing 

time, the average particle size remains more or less the same, but the average cluster size 

slightly increases to 1500 nm as seen in Fig. 5. Further increase in the volume of AlN 

particles occurred when ammonia only is used as the reactive gas. In this case, 48 vol% of 

AlN particles formed after processing for 4 hours. The microstructure appears to be very 

homogeneous for both processing times (Figs. 6 and 7). Clustering seems to be significantly 

diminished, the average cluster size is reduced to around 1µm, and the average particle size 

is also reduced to 300nm.   

 

 

Fig. 64. XRD pattern of the Al-AlN composite produced by Experiment #2. 

Table 5: Microstructure parameters of the composite materials processed according to Table 1. 
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Experiment # Volume fraction 

(%) 

Mean free space 

length (nm) 

Average particle 

size (nm) 

Average cluster 

size (nm) 

1 - - - - 

2 6.2% 1890 nm 643 nm 1540 nm 

3 9.5% 1723 nm 489 nm 1327 nm 

4 26% 1262 nm 453 nm 1552 nm 

5 21% 1649 nm 274 nm 966 nm 

6 48% 861 nm 312 nm 1114 nm 

7 - - - - 

8 - - - - 

9 - - - - 

10 7.4% 2670 nm 655 nm 924 nm 

11 12.8% 2416 nm 409 nm 1012 nm 

12 31% 1635 nm 293 nm 785 nm 

 

 

 

Fig. 65. SEM image of the Al-AlN composite produced by Experiment #2. 
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(a)                                                                  (b) 

Fig. 66. SEM image of the Al-AlN composite produced by (a) Experiment #3, and (b) Experiment #4. 

 

         
 

 (a) (b) 

Fig.  67. SEM image of the Al-AlN composite produced by (a) Experiment #5, and (b) Experiment #6. 

In the experiments performed with the 2.5 wt% Li alloy, no AlN particles were detected when 

nitrogen only was used as reactive gas for 2 or 4 hours. Also, no AlN particles were found 

when the mixture of nitrogen and ammonia gases was injected in the alloy for 2 hours; 

however, when the processing time was 4 hours, around 7 vol% AlN was formed as seen in 

Fig. 6. This amount is about four times less than the amount that formed when the Al-5 wt% 

Li alloy was used. Also, the large mean free space length of this composite material (2670 

nm) reveals that clustering is more severe than in previous experiments, despite the fact 

that the average cluster size is less than 1 µm and the average particle size is around 650 

nm. When ammonia is used with the 2.5 wt% Li alloy, the average AlN particle size is 

decreased to around 400 nm for 2 hours processing time, and 300nm for the 4 hours 

processing time. The volume fraction of AlN is 31% for the 4 hours processing time, which is 

almost 30% less than when the 5 wt% Li alloy is used. Localized clustering can still be 

observed (See Figs. 7 and 8), but the average cluster size is around 700 nm. 



110 
 

 

Fig. 68. SEM image of the Al-AlN composite produced by Experiment #10. 

       

 (a) (b) 

Fig. 69. SEM image of Al-AlN composite produced by (a) Experiment #11, and (b) Experiment #12. 

The role of Li in aluminum nitridation has been investigated by Scholz and Greil [17]. They 

indicate that Li may act as an “oxygen-getter” to locally lower the oxygen content in 

aluminum and allow the nitridation reaction, which competes with aluminum oxidation, to 

take place. According to phase equilibrium calculations in the Al-Li-O-N system, Li combines 

with oxygen to form Li2O at low oxygen levels and LiAlO2 at higher oxygen levels according to 

reactions (1) and (2). 

                                                                    
 

 
                                  

(1) 

                                                                                                                   
(2) 

Aluminum nitridation may also occur because of the ability of Li to remove the gaseous 

reaction products from the reaction site so that equilibrium conditions are never achieved. 

The continuous flow of the nitrogen-bearing gas in the furnace chamber removes the 

evaporating species (Li and Li2O) from the reaction chamber, thus maintaining non-

equilibrium conditions that generate very high mass flow of volatilizing Li. Therefore, the high 

partial pressure of the Li-based vaporized species in the furnace’s environment causes 

nitridation of aluminum on the surface of the melt first. Channels in the aluminum-lithium 
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melt derived from the rising nitrogen bubbles and the stirring action of the impeller are 

probably responsible for nitridation of the bulk of the metal. 

Hardness and thermal stability – Fig. 8 shows the measured hardness values of the 

composite materials shown in Table 2. The hardness measurements made on the samples 

produced with the 5 wt% Li alloy have an error range of 14%, while hardness measurements 

made on the samples produced with the 2.5 wt% Li alloy have an error range of 20%. This is 

most likely due to “macro” agglomeration, i.e. particles, and also clusters, located on 

interconnected paths so as to create a relatively large mean length of free space. 

Accordingly, it is possible that during measuring the hardness, the indenter has a higher 

tendency to hit areas of the metal matrix where there are almost no particles. Notice how 

the hardness values dramatically increase for the materials produced in Experiments #6 

and #12. This is because of the high volume fraction of AlN particles in these materials. 

 

Fig. 70. Measured hardness of the Al-AlN composite materials shown in Table 2. 

Thermal stability – The thermal stability of the Al-AlN composite materials was assessed by 

measuring the increase in size of the AlN particles after the samples were maintained at 

450ºC for 24 hours. In all samples, the average particle size did not change (±5% accuracy) 

except for the sample produced in Experiment #2 in which the average AlN particles size 

increased by about 14%. This sample will be further analyzed in order to find the reason for 

this behavior. 

SUMMARY AND CONCLUSIONS 

 Al–AlN composite material was synthesized by the reaction of a nitrogen-containing gas 

with molten aluminum-lithium alloy. 

 The effect of different lithium levels in the molten aluminum alloy, gas composition, and 

processing time on the structure of the composite material was investigated. 
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 The average size of the AlN particles was found to be in the sub-micron range and the 

average size of the AlN clusters was found to be around 1 µm.  

 Lithium in the melt acts as a catalyst for the aluminum nitridation reaction and results in 

composites with a higher volume fraction of AlN.  

 Ammonia as the reactive gas results in composites with a higher volume fraction of AlN 

particles.  Also, as expected, longer processing times (4 hours compared to 2 hours) 

result in composites with a higher volume fraction of AlN. 

 Particle clustering appears to be more sever for the 2.5wt% Li alloy than in the 5 wt% Li 

alloy although the average cluster size is smaller. 

 Hardness measurements show a significant increase when ammonia is used as the 

reactive gas and for longer processing times. 

 The Al-AlN composites produced with this in-situ method have excellent thermal stability. 
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Abstract. Aluminum nitride (AlN) possesses superior thermal and electrical properties and is an 

ideal candidate for high-temperature, as well as for packaging and optoelectronic applications. 

Aluminum based composites reinforced with AlN have been manufactured via an in situ gas-

assisted process, where nitrogen gas is injected in the molten aluminum at 1273-1323 K. The 

process is carried out in an inert atmosphere in order to avoid oxygen contamination. Addition of 

Mg lowered the oxygen content in the melt by forming MgO and thus favoring the nitridation 

reaction. The reinforcement phase has been detected throughout the casting in two morphologies: 

pockets of powders and embedded in the microstructure. Particle size formed in the matrix 

varied from 1- 3 µm to sub-micron scale. 

Introduction 

Particulate reinforced metal matrix composites have been widely used in modern engineering 

applications. With the development of nanotechnologies, the particulate size progressively scaled 

down to the nano-level. Aluminum matrix nanocomposites reinforced with ceramic particles 

(AlN, Al2O3, SiC) are gradually being implemented into production in automotive, electronic or 

aircraft industries due to their promising mechanical and thermal properties: higher strength, 

hardness, stiffness, dimensional stability at high temperatures, and creep resistance. However, 

obtaining a composite material non-susceptible to cracking and whose ductility is retained 

requires the successful dispersion of the reinforcement phase in the matrix [1]. Numerous 

attempts have been made to overcome particle agglomeration and to establish an industrially 

scalable and cost-effective route for the fabrication of nanocomposite materials. 

Several near-commercial manufacturing methods have been pursued, such as mechanical 

alloying, powder metallurgy, infiltration techniques and spray deposition. All these techniques 

involve the addition of ceramic reinforcements to the matrix materials (ex-situ processes), which 

may be in molten or powder form. However, they are expensive and do have their own 

limitations, especially when the reinforcement size is in the nano-scale range. Agitation 
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techniques are cost-effective, but agglomeration due to Van der Waals forces cannot be avoided. 

Surface contamination also affects the reliability of ex-situ techniques through interfacial 

reactions and poor wettability between matrix and reinforcement. Particle dispersion via 

ultrasonic processing has been achieved but the process suffers from scalability issues. 

A class of novel composites, in which the reinforcements are synthesized by chemical 

reactions (in-situ processes), addresses the challenges associated with manufacturing of 

nanocomposites. Compared to ex-situ methods, these in-situ processes exhibit cleaner and 

thermodynamically stable interfaces, resulting in less degradation at elevated-temperatures and 

strong interfacial bonding. Moreover, the in-situ formed particles are finer in size and their 

distribution in the matrix is uniform.   

Among the wide range of in-situ techniques, the synthesis of nitride particles by means of a 

gas-assisted reaction, patented by Koczak and Kumar [2], has shown promise. Aluminum nitride 

is a refractory compound characterized by attractive properties such as high thermal 

conductivity, high electrical resistance, low dielectric constant, and a thermal expansion 

coefficient similar to silicon [3,4]. Hou et al. [3] have been able to manufacture aluminum matrix 

composites reinforced with AlN with a diameter smaller than 0.1 μm. Zheng et al. [5] have 

converted 14% weight of Mg-Al alloy into aluminum nitrides with a diameter of 400 nm. Tyagi 

et al. [6] also manufactured aluminum nitrides with a diameter smaller than 1 µm by bubbling 

ammonia gas in an Mg-Al melt. The composite material is formed in three stages: reactive gas 

dissociation, synthesis of reinforcing phases and kinetics of their growth [1,7]. Reinforcement 

particles are created as a result of the intensive exothermic reaction of gas cavities with metal 

alloying additions, such as Mg, Ti, and Si [1]. Significant advantages of this method are the 

possibility of applying casting techniques for forming the products [8], and of tailoring the 

matrix-reinforcement system by selecting reactive gas and alloying elements. However, the gas-

assisted reaction process is affected by challenging control of process variables and repeatability 

issues. In addition, the temperatures necessary for the reaction to occur are high (1000-1300 Cº 

depending on the gas and the matrix) [9,10].  

The aim of the present investigation is to highlight the dynamics of aluminum nitridation and 

the mechanism of nitride formation via the injection of nitrogen gas in the melt.  

Experimental Details 

A stainless steel sealed resistance chamber was evacuated and purged several times with Argon 

gas (Grade 5, Aimtek). During the heating process, inert atmosphere was maintained by 

constantly injecting Argon at a flow rate of 0.2 l/min. The ceramic crucible was placed at the 

bottom of the chamber where the temperature profile is more uniform. Two K-type 

thermocouples inserted in the furnace walls and inside the crucible were used to monitor the 

temperature. Once the process temperature (1000 Cº) was achieved, a 1.5 mm diameter alumina 

tube was submerged in the melt and High Purity Nitrogen gas (99.9999% purity, Aimtek) 

bubbled for 6 to 8 hours through the tube at a flow rate of 0.1 l/min and a pressure of 0.1 MPa. 

Two high capacity oxygen-and moisture- removal traps were used in series at the gas inlet. Each 

trap had the capability to lower the oxygen content to less than 1 ppb and the moisture level to 

less than 10 ppb. Alloy compositions selected for the experiments are 100wt% Al and Al-15wt% 

Mg. Each casting involved the melting of 150 g of metal previously ultrasonically cleaned for 20 

minutes. X-Ray Diffraction (XRD) analysis was also performed in order to detect the presence of 

nitrides and secondary phases. Field Emission Gun SEM has been employed for microstructure 

observation, Energy Dispersive X-ray (EDS) microanalysis and X-ray mapping.  
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Fig.71: Experimental set-up. 

Results and Discussion 

No AlN were detected in the matrix when pure Al was used as the parent material. Such result 

can be attributed to the presence of oxygen in the Nitrogen gas, which has a detrimental effect on 

aluminum nitridation. Oxygen preferentially reacts with aluminum to form aluminum oxide, 

inhibiting the nitridation reaction [7,10,11]. This has been demonstrated empirically by 

measuring the time required to form aluminum nitride and the time required to form aluminum 

oxide, where it has been found that the rate of nitridation of aluminum is several orders of 

magnitude slower than the rate of its oxidation at any given temperature [11]. Thermodynamic 

analysis of the equilibrium reaction (Eq.1) confirms the preferential formation of Al2O3 versus 

AlN. The Gibbs free energy calculation (Eq.2) shows that the permissible oxygen partial 

pressure for the nitridation reaction    
 at 1000°C is around 10

-19
 Pa and directly proportional to 

the process temperature T. 

                                                                  2 3 2 22 2 4 3Al O N AlN O  
                                                             

(1)         

                                                (
   

    
)
 
       

      
        

 
                      (2) 

This very low oxygen content is not achievable with commercially available nitrogen gases. 

Moreover, the processing temperature for aluminum alloys should not exceed 1000C. This is 

mainly dictated by the cost of energy and deterioration of the furnace furniture. Therefore, efforts 

have been made to minimize oxygen in the reaction chamber by passing the stream of nitrogen 

gas through traps filled with deoxidizing materials (such as Cu and Mn) and evacuating the 

furnace chamber prior to melting. Yet, oxygen in the system remains high enough to render the 

current technology inefficient for the synthesis of Al-AlN composite materials through direct 

nitridation of aluminum.  

This suggests that nitridation of aluminum requires the presence of a catalyst such as Mg. 

Several publications refer to this mechanism as more likely to be responsible for nitride 

formation than direct nitridation [5,10,12]. The addition of 15% Mg to the aluminum matrix was 

investigated and resulted in the synthesis of a consistent amount of aluminum nitrides.  
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Fig.72: XRD pattern of the upper part of the crucible for Al-15%wt. Mg. 

 

XRD analysis (Fig.2) of the upper part of the crucible confirms strong peaks for AlN along 

with peaks for MgO (periclase). SEM analysis shows the presence of AlN throughout the length 

of the resultant casting. AlN particles have been found in two different morphologies: (i) 

embedded in the microstructure in the lower section of the casting (Fig. 3), and (ii) as pockets of 

powder in the upper section of the casting (Fig. 4). In the powder phase, MgO is located on the 

AlN particles and tightly connected with them. The size of AlN is ~1 µm for AlN embedded in 

the microstructure and in the submicron range (around 0.4 µm) in the powder phase. Size control 

as well as optimized nitride distribution along the casting still remains an issue and it is currently 

being studied at WPI. 
 

 
Fig.73: SEM image and EDS spectrum of AlN embedded in the matrix in the lower section of 

the casting. Al-15%wt. Mg matrix. 

 
Fig.Fig.74: SEM image and EDS spectrum of pockets of AlN and MgO powder in the lower 

section of the casting. Al-15%wt. Mg matrix. 
 

The catalytic action of Mg can be explained as follows. At high temperatures, Mg vaporizes 

(Eq.3) and acts as an “oxygen-getter”. It combines with oxygen to form MgO (Eq.4) and thus 

locally lowers the partial pressure of the residual oxygen in the nitriding gas. 



117 
 

                     Mg(l)=Mg(g)                                             (3) 

 

                                                                         2Mg(g)+O2=2MgO                                                            (4) 

 

                                                         
2

2 2 3 42
exp( )

2
O Mg Mg

G G
P x

RT
    


                                                                   

(5)     

Depending on the temperature and the concentration of Mg, the equilibrium partial pressure of 

O2 is given by Eq. 5, where γMg is the activity coefficient of Mg, xMg is the Mg concentration, 

ΔG3 and ΔG4 are the standard Gibbs energy changes for reactions 3 and 4, respectively. From 

thermodynamic data reported in the literature, the partial pressure of the residual oxygen for 15 

wt.% Mg in aluminum matrix is in the range of 0.1 Pa (versus 10
-19

of pure Al matrix), which can 

be achieved by commercial deoxidizing traps. 

Concluding Remarks 

Aluminum nitridation via gas-assisted nitridation of aluminum is feasible. The in-situ route to 

manufacture nanocomposites has the potential to be a commercial process where scalability, 

homogeneous distribution and cost-effectiveness are important criteria. AlN particles, whose 

thermal and electrical properties are exceptional, have been successfully synthesized. They have 

been observed throughout the bulk and they are present in two morphologies: (i) embedded in 

the matrix, and (ii) as pockets of powder with MgO. The size of AlN ranges from 0.4 µm to 

about than 1 µm. The catalytic action of Mg as “oxygen-getter” has also been confirmed by the 

absence of AlN in the pure aluminum matrix, and by MgO tightly connected to the nitride phase. 

Mg lowers the local oxygen partial pressure in the melt, allowing aluminum nitridation to occur. 

The control of AlN particle size and the kinetics of the nitridation process need further study. 

This work is continuing to establish the mechanisms to address the kinetics of the reaction in 

order to enable us to attain particles that are in the nano-range.  
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ABSTRACT  

 

Aluminum matrix nano-particle composite materials exhibit promising mechanical and 

thermal properties such as high specific strength, hardness, stiffness, and resistance to 

creep and thermal degradation.  Unfortunately, processing these materials is not easy and 

numerous attempts have been made to overcome the typical issues associated with their 

synthesis.  These methods include mechanical alloying, powder metallurgy, powder 

infiltration and spray deposition [1,2].  However, most of these methods are expensive and 

each one of them has its own limitations.  Manufacturing methods that are based on 

mechanical agitation are cost-effective, but the particles tend to agglomerate because of the 

excessive Van der Waals forces associated with nano-sized particles [3].  The agglomerated 

particles can be dispersed by ultrasonic vibrations, but the use of ultrasonic devices on the 

foundry floor is not practical and the method is not easily scalable [4].  In-situ fabrication of 

the particles in the metal matrix is an answer to many of these challenges.  In this method, 

the nano-sized particles are formed directly within the melt by means of a chemical reaction 

between a specially designed aluminum alloy and a gas.  In this publication, we report on 

the synthesis of aluminum-aluminum nitride nano-composites by the reaction of a nitrogen-

containing gas with molten aluminum-lithium alloy.  

 

Keywords: lightweight, nanocomposites, aluminum, magnesium, lithium, aluminum nitride, 

in-situ processing. 
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INTRODUCTION  

 

Particle-reinforced metal matrix composites, particularly aluminum alloy matrix composites, 

have been used as structural materials in the aerospace, the automotive, the domestic, and 

more recently the microprocessor industries. In the automobile industry, aluminum alloy and 

magnesium alloy composites lower the overall weight of the vehicle and enhance 

component strength and stiffness. In the microprocessor industry, composite materials 

improve heat extraction and heat dissipation from critical components thus allowing higher 

processing speeds and superior performance. Despite these benefits, the large size 

(typically from a few to several hundred micrometers) of the ceramic reinforcing particles in 

traditional composite materials increase the tendency of  

 

the material to cracking during mechanical loading, which can lead to premature failure of 

components . Particle size has an undeniably strong influence on the failure mode, strength, 

and ductility of composite materials. Therefore, decreasing the size of the ceramic particles 

to the sub-micrometer range, or even better to the nanometer range, can lead to significant 

improvements in room temperature mechanical properties as well as enhanced thermal and 

electrical properties. Moreover, refining the size of the reinforcing particles limits 

microstructure degradation at high temperature, which is a necessary material property for 

highly-rated Diesel applications [6]. However, conventional fabrication methods that are 

based on the addition of particles to the matrix (e.g., mechanical stirring [3], and infiltration 

techniques [5], powder metallurgy [7,8]) have serious limitations when dealing with 

nanometer size particles, e.g., particle clustering and particle/matrix interface de-bonding. 

More recent fabrication methods, such as spray deposition [1], ultrasonic-assisted cavitation 

[4], and plasma synthesis [9] all suffer from the lack of scalability and cost-effectiveness. On 

the other hand, in-situ creation of the reinforcing particles within the aluminum matrix has 

the potential to provide good particle distribution, small particle size, and a clean and 

thermodynamically stable particle/matrix interface [10]. This process involves synthesizing 

the ceramic reinforcing nano-particles within the metal alloy by means of a controlled 

chemical reaction between a suitable gas and a suitable molten metal alloy. The chemical 

composition of the reinforcing particles that form is dictated by the composition of the 

reacting gas and molten metal alloy [11-14]. Two alloy systems are used in the current 

investigation: Al-Mg and Al-Li and a nitrogen-bearing gas – namely nitrogen + anhydrous 

ammonia – is injected in the molten alloy to form aluminum nitride (AlN) particles. The 

feasibility of the process is investigated, and the role of (1) the alloy composition, (2) the 

oxygen content of the reaction atmosphere, and (3) the processing time on the 

characteristics of the resulting Al-AlN composite material is characterized. 

 

MATERIALS AND PROCEDURES   

 

Two hundred grams of either (1) Al-20 wt.% Mg or (2)  Al-Li C460 alloy are ultrasonically 

cleaned and then placed in a refractory crucible. The crucible is positioned in the stainless 

steel sealed resistance furnace shown in Fig. 1 and the furnace chamber is evacuated and 

flushed with Nitrogen gas (Grade 5). This process is repeated three times in order to remove 

oxygen and any other contaminating agents from the furnace atmosphere. The alloy is 

heated at a rate of 10°C/min from room temperature to just below its liquidus temperature 
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of about 600°C (1,112 °F), and 5 ºC/min from such temperature to the process 

temperature of 1000 ºC (1832 ºC). K-type thermocouples are placed in the furnace wall and 

inside the crucible. The reaction gas – either nitrogen or anhydrous ammonia (C-Grade) is 

then injected into the metal alloy for different processing times through an 80 cm-long  4 

mm diameter alumina tube. The gas flow rate is kept constant at 1 l/min. The crucible is at 

a 10° angle to the horizontal so that the reaction gas is efficiently dispersed within the 

molten alloy. High capacity moisture and oxygen traps are used to dry the reaction gas and 

to minimize the oxygen content before it enters the furnace. Once formed, the composite 

material ingot is left to cool in the furnace under an inert atmosphere (the cooling rate is 

about 3C/min).  

Characterization of the microstructure of the composite ingot is performed by X-Ray 

Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy 

(EDS). Samples are extracted from locations near the upper and the lower parts of the ingot 

in order to provide a representative structure and particle distribution along the length of the 

ingot. Image analysis software (ImageJ) is used to quantify the volume percentage of AlN 

particles formed in the ingot. Hardness measurements are performed via indentation.  

 

 

Fig. 1. Schematic representation of the apparatus. 

 

 

Table 1. Chemical composition (in wt %) of Alloy C460. 

 

 

 

 

        Table 2. Design of Experiments. 

Si Li Fe Cu Mn Mg Zn Ti Al 

0.02 1.16 0.03 2.65 0.26 0.27 0.82 0.02 Bal. 

Experiment # Alloy Gas  Time 

(hr.) 
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RESULTS 

 

EXPERIMENT # 1  

 

XRD (Fig. 2) and image analyses of the resulting ingot show the formation of AlN particles in 

the alloy. On average there is about 6 vol.% AlN particles that are equally distributed in the 

upper and lower sections of the ingot. Small discontinuities that resemble cracks are 

observed in the ingot. These may be attributed to ineffective mixing of the Al and Mg 

constituents of the alloy which give rise to composition gradients within the ingot.  

 

 

Fig. 2. XRD spectrum of AlN in Al-20 wt.% Mg composite synthesized by means of nitrogen 

gas. 

 

The AlN particles are detected mainly along these discontinuities (Fig. 3) and their 

orientation shows that they nucleated on the Mg-rich side of the crack and proceeds 

towards the Al-rich areas. This confirms the fact that Mg acts as a catalyst for the aluminum 

nitridation reaction [15,16,17]. The AlN phase appears as a net of interconnected particles 

with a rod-like and polygonal morphology developing along the discontinuities. The cross 

section is fairly large, ranging from 1 to 3 µm. The different crystallographic orientation of 

the particles reveals a powder-like morphology. 

 

 

 

                                                           
d
 Processing time has been chosen to be 2 because of the    

    high reactivity of 20 wt% Mg and ammonia has 

1 Al-20wt.%Mg N2 6 

2 Al-20wt.%Mg NH3 2d 

3 

4 

C460  

C460  

NH3 

NH3 

6 

4 
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(a)                                              (b) 

 

Fig. 3. (a) SEM image of AlN particles along matrix discontinuities, and (b) EDS spectrum of 

the Al-20wt%Mg-AlN composite synthesized by nitrogen gas.  

 

EXPERIMENT # 2  

 

Fig. 4 shows the XRD pattern obtained from this ingot. In this case, the average conversion 

to AlN is 17 vol.%. 

 

 

Fig. 4. XRD spectrum of AlN in Al-20 wt.% Mg matrix synthesized by ammonia gas. 

 

Similar to Experiment #1, the unsatisfactory mixing between Mg and Al causes non-

homogeneous distribution of the aluminum nitride particles. However, in this case the AlN 

particles are not located along cracks in the matrix; but rather, they are embedded in the 

matrix.  
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Fig. 5. SEM image of AlN particles detected in the Mg-rich areas of the Al-20wt.%Mg matrix. 

The ingot is synthesized with ammonia gas. 

 

The conversion to AlN in the Mg-rich areas of the matrix is substantial, while only a few 

particles are detected in the Mg-depleted regions (Fig. 5). Particle size is very homogeneous 

throughout the microstructure and averages around 0.6 µm, and the particles are more or 

less spherical in shape. 

 

EXPERIMENTS # 3 AND # 4  

 

As shown in Table 4, the amount of AlN formed in experiments #3 and #4 are comparable to 

one another. 

 

           Table 4. Vol.% AlN formed in C460 alloy. 

Processing time Vol.% AlN 

C460. 4 hrs. 11 

C460. 6 hrs.  13 

 

AlN are detected both in the upper and lower parts of the ingot. The top section of the ingot 

(shown in Figure 6) contains about 20% more AlN particles than the bottom section (shown 

in Figure 7). 

 

 
                                              

Fig. 6. SEM image of AlN particles in the top section of C460-AlN ingot synthesized by 

ammonia gas. 

  

It can be seen that in this case, the interface between the AlN particle and the alloy matrix is 

improved and that the distribution of AlN particles in the alloy matrix is considerably 

enhanced. The size of the AlN particles ranges from 200 nm to 500 nm (Figure 8). However, 

a narrow particle size distribution and complete elimination of particle clustering are still not 

achieved as some larger size particles and aggregates of small particles can be detected in 

the matrix (Figure 6). Vigorous stirring of the molten metal may break these particle clusters 

and may provide a finer gas bubble size which will help formation of smaller AlN particles. 

 

Grain size is a useful indicator of the distribution of the reinforcing particles since the 

addition of particles constraints grain growth and strengthens the matrix [18]. The grain size 
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of the C460 matrix alloy that is cast under similar conditions to those used to make the 

composite material is shown in Figure 9(a). The average grain size is about 6 mm. The 

average grain size of the composite material is shown in Figure 9(b) and is only about 2.5 

mm. 

 

 

Fig. 7. SEM image of AlN particles in the bottom of C460-AlN ingot synthesized with 

ammonia gas. 

 

 

Fig. 8. SEM image of nano-size AlN particles formed in C460 alloy synthesized by ammonia 

gas. 

 

The results of hardness measurements performed using scale “R” for soft materials (1/2 

inch ball, 10 kgf preload, and 50 kgf load) are shown in Table 5. The small decrease in 

hardness observed for 6 hours processing time may be attributed to pores that formed in 

the matrix created by the entrapment of ammonia gas in the ingot during the later stages of 

the process. 
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(a)                                           (b) 

Fig. 9. optical micrographs showing grain size of (a) C460 alloy, and (b) C460-AlN 

composite. Graff-Sargent’s etchant. 

 

 

     Table 5. Hardness values for C460 alloy and for  C460-AlN composite. 

Alloy  Hardness 

Unprocessed C460 76 

C460/AlN. 4 hrs. 118 

C460/AlN. 6 hrs. 113 

 

 

DISCUSSION 

 

EFFECT OF CHEMICAL COMPOSITION OF THE MATRIX ALLOY ON ALUMINUM NITRIDATION 

 

Previous investigations by the authors [19,20] show that nitridation of pure aluminum does 

not lead to the formation of AlN particles and direct nitridation of aluminum according to the 

reaction shown in Eq. (1) will not occur:  

 

                                                            Equation 1 

 

This can be attributed to the detrimental effect of oxygen which hinders the nitridation 

reaction even when present in very small amounts in the nitriding gas or in the furnace 

environment [13]. Studies demonstrate that the rate of aluminum nitridation is several 

orders of magnitude slower than the rate of aluminum oxidation at any given temperature 

[21].The partial pressure of oxygen that is necessary for the formation of nitrides – and not 

oxides – can be quantified by means of  a thermodynamic balance of the competing 

reactions as follow: 

                                                 Equation 2 

  

                                                      Equation 3 

 

          (
   

    
)
 

      Equation 4 

 

     
      

        

 
                                   Equation 5 

 

At 1000°C (1832 °F), the partial pressure of oxygen (   
) that allows formation of AlN is 

around 10-13 MPa. Such a low oxygen pressure is difficult to attain even after passing the 

nitrogen gas through de-oxidating traps. Alloying elements such as Mg and Li act as 

catalysts for what is known as indirect nitridation of aluminum [12,22,23]. Studies by Zheng 

et al. [17], Hou et al. [24] and Haibo et al. [25] propose that the mechanism follows the 

reactions depicted by Eqs. (6) and (7) 
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                                                   Equation 6 

 

                                           Equation 7 

 

The authors provide a different view [20] based on the fact that magnesium nitrides are not 

detected in the material or in the reaction vessel, while MgO has been found to nucleate in 

the same locations where AlN forms. The catalytic action of Mg (via formation of MgO) may 

be explained as follow: at high temperatures, Mg vaporizes and acts as an “oxygen-getter”. 

Mg combines with oxygen and thus it locally lowers the partial pressure of the residual 

oxygen in the nitriding gas. The reactions are given by Eqs. (8), (9), and (10) 

    

Mg(l)=Mg(g)                                                     Equation 8 

 

   ( )    ( )                                    Equation 9 

 

   
    

     
      (

      

   
)                            Equation 10 

 

In Eq. (10), γ is the activity coefficient of Mg, x is the Mg concentration,    and    are the 

standard Gibbs energy changes for Eqs. (8) and (9), respectively. From thermodynamic data 

reported in the literature, the partial pressure of the residual oxygen can be derived to be in 

the range of 10-6 MPa.  

 

Despite its beneficial “oxygen-getting” action, 20wt.% Mg is a very large amount to be added 

to aluminum. Casting conditions become more challenging to control and the tendency of 

Mg to burn can compromise the integrity of the casting. Previous studies on aluminum 

nitridation [26] show that the addition of small quantities of lithium (1.5-2 wt.%) significantly 

enhances the rate of AlN formation. Lithium in small amounts also provides a cleaner 

casting and considerably enhances the matrix strength. The experimental results reported in 

the current work confirm the enhanced nitriding action of Li. Only 1.16 wt.% Li provides 

about 11 vol.% AlN when ammonia is injected in the matrix for 4 hours, whereas in order to 

synthesize 17 vol.% AlN, 20 wt.% Mg is necessary for an injection time of 2 hours. This is 

mainly due to the extreme reactivity of Li which comes into play in Eq. (10). Scholz and Greil 

in [26] analyze the nitridation behavior of an Al-2.3 wt.% Li melt and calculate considerably 

high conversion rates (up to 1 wt.% per minute) even when using an un-purified nitrogen 

gas. They confirmed the “oxygen-getting” action of Li and hypothesize that Li evaporation 

helps in breaking the oxide layer on the top of the melt which hinders the nitridation of bulk 

aluminum. On the other hand, the high tendency of Li to float towards the surface of the 

molten metal (see Table 5 and compare the measured Li concentration in the top and 

bottom sections of the ingot) hinders uniform distribution of the AlN particles within the ingot 

as is the case in Experiments #3 and #4. 

 

Table 5. Measured chemical composition of the C460-AlN composite material of Experiment 

# 4. 

 Li Fe Cu Mn Mg Zn Ti 

Top  0.83 0.04 1.8 0.14 0.01 0.69 0.02 
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Bottom  0.38 0.03 2.01 0.26 0.02 0.62 0.02 

 

EFFECT OF REACTIVE GAS COMPOSITION ON ALUMINUM NITRIDATION  

 

The rate of nitridation of Al-20 wt.% Mg alloy is eight times higher when ammonia gas is 

used compared to when nitrogen gas is used. The effectiveness of ammonia in the 

nitridation process has been previously reported [11,27,28]. During nitridation with 

ammonia, hydrogen dissociates from nitrogen at around 1000°C (~1832 °F) and functions 

as an oxygen getter to lower the oxygen content in the reaction sites, thus increasing the 

permissible oxygen partial pressure for nitridation. Also, hydrogen may enhance the 

adsorption of nitrogen at the gas bubble-metal melt interface thereby improving the rate of 

AlN formation. In addition to this, the dissociation of ammonia releases atomic nitrogen, 

which can be more easily chemisorbed on the bubble surface and diffused into the molten 

metal than molecular nitrogen [11]. The reactions that describe nitridation with ammonia 

are shown as Eqs. (11) through (14): 

 

     ( )    ( )    ( )                            Equation 11 

            
   ( )   ( )     ( )                                 Equation 12   

  

    ( )    ( )  
 

 
  ( )     ( )         Equation 13 

 

  ( )      ( )     ( )  
 

 
  ( )     ( )     Equation 14 

 

SUMMARY AND CONCLUSIONS  

 

In-situ nitridation of aluminum alloy melts to form aluminum nitride reinforced composite 

materials is feasible. It is found that: 

 

 Ammonia has an eight times higher nitridation rate than nitrogen when used to nitride an 

Al- 20 wt.% Mg alloy. Particle size and particle distribution in the metal matrix are also 

influenced by the type of reactive gas: Nitridation with ammonia gas produces a more 

uniform particle distribution and smaller particles than nitridation with nitrogen gas (0.6 

µm versus 1-3 µm).  

 

 Lithium is more efficient than magnesium in catalyzing the nitridation reaction. Only 1.15 

wt.% Li produces around 11vol.% AlN particles whereas 20 wt% Mg is needed to form 17 

vol.% AlN particles. The tendency of lithium to evaporate causes the top section of the 

ingot to be 20-25% enriched with AlN particles compared to the bottom section. 

Segregation of Li towards the top of the melt and its undesirable effects may be mitigated 

by vigorously stirring the melt during nitridation. This can be efficiently done with a 

rotating impeller. An apparatus that incorporates melt stirring is being constructed and 

will be used in future experiments. 
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 Particle distribution in the Li containing alloy is improved when ammonia gas is used 

instead of nitrogen gas. In this case, the particle size is more uniform and the particle 

shape is almost spherical. The grain size is considerably decreased and the hardness 

enhanced by around 50%. 

 

 The mechanism of nitride formation is illustrated and the role of alloying elements acting 

as “oxygen-getters” is explained. The higher reactivity of ammonia gas compared to 

nitrogen gas has also been discussed. 
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Abstract. In the last two decades, metal matrix nanocomposites have witnessed tremendous 
growth. Particulate-reinforced nanocomposites have been extensively employed in the automotive 
industry for their capability to withstand high temperature and pressure conditions. Several 
manufacturing approaches have been used to fabricate them. Non-homogeneous particle dispersion 
and poor interface bonding are the main drawbacks of conventional manufacturing techniques. A 
critical review of nanocomposite manufacturing processes is presented; the distinction between ex-
situ and in-situ processes is discussed in some detail. Moreover, in-situ gas/liquid processes are 
elaborated and their advantages are discussed. The thermodynamics and kinetics of the reaction 
between the precursor gas and the liquid metal have been analyzed and their role on particle 
formation studied.  This critical review will provide the reader with an overview of nanocomposite 
manufacturing methods along with a clear understanding of advantages and disadvantages. 
 

Metal-matrix Composites in Context 

 

Metal-matrix composites are a hybrid material in which rigid ceramic reinforcements are embedded 
in a ductile metal alloy matrix. They tailor the best properties of two different materials, such as 
ductility and toughness of the metallic matrix and the high modulus and strength of ceramic 
reinforcements. Their first application can be traced back to the late 1960s, with the development of 
a steel-wire reinforced copper alloy [1]. The aerospace industry led the application and use of 
composite materials in spacecrafts components. High-performance and high-integrity materials are 
required for extreme environments and critical applications such as for space missions. It is 
interesting to note that during its lifetime, the International Space Station will undergo 175,000 
thermal cycles from +125 C° to -125 C° as it moves in and out of the Earth’s shadow. During the 
last 4 decades, aluminum matrix composites were specifically developed to meet both aerospace 
and defense needs. Continuous boron fiber reinforced aluminum was used in the Space Shuttle 
Orbiter as the frame and rib truss members in the mid-fuselage section; there are other applications 
such as landing gear drag link yielding 45% weight savings. A Gr/Al composite is the constituent of 
a high-gain antenna boom for the Hubble Space Telescope. This boom (3.6 m long) offers the 
stiffness required to maintain the position of the antenna during space maneuvers. In the 1980's and 
early 1990's, metal matrix composite development programs were in vogue and there was much 
activity at all major aluminum producers. Alcan, through its Duralcan subsidiary, established a 25 
million pound per year production capability for particulate-reinforced aluminum composites. The 
Aluminum Association convened the Aluminum Metal Matrix Composites Working Group, a 
product of which was the ANSI H35.5 standard that established a nomenclature system for 
aluminum composites [2]. As expected, metal matrix composites found applications in a variety of 
other markets such as automotive, electronic packaging, industrial product and recreational products 
[3]; though not a conclusive list, the components given below illustrate applications that utilize Al 
based composites: 
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• Chevrolet Corvette and GM S/T pick-up truck drive shafts 

• Plymouth Prowler brake rotors and GM EV-1 brake drums 

• Toyota diesel engine pistons 

• Pratt & Whitney 4000 series engine fan exit guide vanes 

• Motorola’s Iridium Satellites and GM EV-1 electronic packaging applications 

• F-16 fighter aircraft ventral fins and fuel access covers 

• Bicycle components and golf clubs  

 

Fig.1. Global outlook of metal-matrix composites by application segment (2004-2013). Source: 
BCC Research. 

An almost 70% increase in metal matrix composites is estimated to occur in the use of Al in 
vehicles from 2004 to 2013, see Fig.1. The choice of aluminum alloys as matrix is dictated by the 
compelling need to have vehicles with low fuel consumption and reduced emissions for a 
sustainable future. Because of their high strength-to-weight ratio, aluminum alloys are considered to 
be an alternative to conventional steels and to the more expensive superalloys. The amount of 
aluminum per automobile produced in USA has increased from 251 lb. of 1999 to 280 lb. forecast 
for 2014 [4,5]. In Europe it went from 220 lb. of 1999 to 462 lb. forecast for 2014 [6], see Fig.2. 
Aluminum-based composites have contributed to such growth by improving strength and hardness 
of the aluminum matrix, broadening the application field to more highly-rated regimes. 

2 Advances in Metal Matrix Composites



 

Fig.2. Amount of aluminum per automobile in USA and Europe (1999-2014) [4-6]. 

When compared to ferrous sand casting, high-production of metal matrix composite components 
through die casting, squeeze casting and semi-solid molding can compete effectively in terms of 
cost. In the commercial aircraft industry, weight savings has been estimated to be around $450/kg; 
and in spacecraft, it can reach $40,000/kg. For what concerns the automotive industry, Ford Motor 
Co. has placed the value of weight reduction at between $0.35-3.50/kg depending on vehicle 
platform. In freight transport, the weight savings of a component translates to additional freight that 
can be hauled. For heavy-duty trucks, such savings has been valued from $2-16/kg depending on 
the equipment's operational cycle [7]. Aluminum metal matrix composite also win out on iron 
components in terms of marketability and maintainability. Though metal matrix composites offer 
many advantages, they do have shortcomings such as low fracture toughness, low strength and 
hardness at high temperatures and poor machinability. The main concern of machining particulate 
metal matrix composites is the extremely high tool wear due to the abrasive action of the ceramic 
reinforcing particles. Tool selection is limited to a small group of extremely hard and expensive 
materials. The cutting tool must be able to withstand intermittent cutting of hard (reinforcement) 
and soft (matrix) materials. Polycrystalline diamond tools are often recommended for machining 
this particular class of materials and the high cost of such tools together with the need of frequent 
tooling changes increases the cost of the machining process [8]. Conventional machining methods 
have applied on composites with poor results. Non-traditional processes like waterjet, abrasive 
waterjet cutting, electrical discharge machining, ultrasonic machining and laser cutting provide 
precision finish but are characterized by very high costs and slow machining rates [9]. Therefore, 
machining still remains an issue to address since it will continue to be a necessary step to produce 
the required close dimensional tolerances and surface finish.  
 
There is a compelling need for an aluminum-based material whose strength at high temperatures is 
retained and whose manufacturing process can be adapted to existing industrial infrastructures. 
Nanocomposite aluminum matrix materials have emerged as a viable alternative to overcome the 
limitations of aluminum (micro-) composites. Tensile strength, hardness and fracture toughness are 
enhanced as well as dimensional stability at high temperatures, see Fig.3 [12]. They currently 
represent a market segment of $ 250 million, 80% of which is covered by automotive applications. 
Nanoparticles in castings are considered to be the most promising segment in casting material 
development [10]. However nanocomposites are challenging to produce as structural components 
due to difficulties in attaining a homogeneous distribution of the nano-phased particles. Clusters of 
secondary phases are detrimental for the final component performances and also affect post-
processing techniques and the ability to machine the part. Representative metal nanocomposite 
systems and associated attributes are given in Table 1 [11].   
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Fig.3. The variation of change in length versus temperature for aluminum and its composites at constant SiC 
content (7.5 Vol% SiC) [12]. 

 

Matrix/Nano-sized 

Reinforcement 
Properties 

Al/SiC  Mg/SiC 
Al/Al2O3  Mg/Al2O3 

Improved ultimate 

strength, hardness 

and elastic modulus 

Al/AlN 
Higher compression 

resistance and low 

strain rate 

Ni/PSZ  (partially-
stabilized zirconia) 
and Ni/YSZ (yttria-
fully stabilized 
zirconia) 

Improved hardness 

and strength 

Cu/Al2O3 
Improved 

microhardness 

Table 1. Metal Nanocomposite Systems of Interest and Associated Attributes [11]. 

Nano-particle reinforced composites. Nano-particles have progressively replaced other 
discontinuous reinforcement structures such as nano-fibers, nano-wires or nano-platelets. SiC, TiC, 
WC, TaC, TiB2, AlN, and Al2O3 are some of the most common types of nano-particles that have 
been utilized. The characteristics of nano-particle reinforced composites can be summarized as 
follows: 

- drastic change of fracture mode from inter-granular fracture in monolithic metal to trans-
granular fracture in nano-composites; 

- moderate to significant improvement in strength; 

- moderate improvement of fracture toughness; 

- significant improvement of creep resistance, thermal shock resistance, and wear resistance; 

- enhancement of dimensional stability at high temperatures. 

4 Advances in Metal Matrix Composites



 

Zebarjad et al. [13] compared the effect of 25 µm, 5 µm, and 70 nm SiC particles on dimensional 
stability in an aluminum alloy. The temperature sensitivity of aluminum decreases in the presence 
of both micro and nano-sized silicon carbide, though the effect of nano-sized silicon carbide on 
dimensional stability is much higher than that of micro-sized ones. Ren and Chan [13] added SiC 
nano-particles (50 nm) to 7075 aluminum alloy. They pointed out that this resulted in increased 
wear resistance and high temperature creep resistance compared to the same alloy reinforced with 
larger sized 13 µm SiC particles. Furthermore, the volume percentage of nano-particles needed to 
achieve this result was considerably smaller than in the case of the 13µm SiC particles. Similarly, 
the tensile strength of an aluminum alloy reinforced with 1 % volume of Si3N4 (10 nm) has been 
found to be comparable to that of the same alloy reinforced with 15 % volume of SiC particle in the 
micro-sized range (3.5 µm); the yield strength of the nano-metric composite being significantly 
higher than that of the micro-metric one [14]. The existence of a threshold size (“critical size”) 
below which the addition of particles improves properties has been reported – see Table 2) [11]. It 
must be noted that the mechanism responsible for property improvements remains a matter of 
debate among researchers.   
 

 

                                                                                                                    

 

 

 

 

 

 

 

 

 

Table 2.Critical Size for Properties Improvement in Nanocomposites [11]. 

Strengthening theory based on a continuum approach is not useful; since it ignores the influence of 
particles on micromechanics of deformation - i.e., location of particles, grain size, and dislocation 
density. Several discontinuous approaches have been formulated to include particle effects. The 
modified shear lag theory [16] of Nardone and Prewo, the Eshelby- based particle-compounded 
model and the EMA (effective medium approximation) model by Stroud are the most popular ones 
[16]. They take into account one or more of the following strengthening mechanisms: 

- Orowan mechanism: the stress that must be applied to force dislocations to by-pass an 
obstacle (such as a particle) is the principle of the Orowan strengthening mechanism. The 
stress arises due to the resistance of closely spaced hard particles as dislocations pass 
through.   If the particles are coarse (in the micro-size range) and the inter-particle spacing is 
large, the Orowan effect is not significant [16]. When highly dispersed nano-sized particles 
are present, Orowan strengthening becomes more favorable. Creep resistance and thermal 
stability are consistently enhanced. TEM (transmission electron microscopy) observations 

Properties 
Critical Reinforcement 

size (nm) 

Catalytic activity <5 

Softening of hard 
magnetic materials 

<20 

Change of refractive 
index 

<50 

Producing 
electromagnetic 
phenomena such as 
super paramagnetism 

<100 

Strengthening and 
toughening 

<100 

Modifying hardness and 
plasticity 

<100 
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reveal strong dislocation bowing and tangling around the particles, confirming the operating 
mechanism [15, 16]. 

- Thermal mismatch: matrix and reinforcement have different coefficients of thermal 
expansion. During cooling of the component, plastic deformation is produced in the matrix 
at the various interfaces. These deformations increase the density of dislocation [16].  

- Load-bearing: the strong bond due to the cohesion between particles and the matrix 
contributes to load-bearing capacity [16]. 

When all these factors are taken into account, the increase in mechanical properties with the 
decrease in size can be estimated. 
 
Critical Issues in Processing of Nanocomposites 
 

The main challenge for nanocomposites is how to make them – the processing routes to 
manufacture them.  Dispersing the second phase particles in the matrix and achieving a strong 
interfacial bond are the two main processing challenges.  Most fabrication processes fall short of 
fulfilling these tasks. Clusters of particles and weak matrix-reinforcement interfaces compromise 
the ability of the composite material to function under extreme conditions, such as high temperature 
and pressure typical of automotive applications (especially Diesel engines).   

Uneven dispersion and agglomeration. Agglomeration is a common phenomenon that occurs 
when a solid particle comes into contact with a non-wetting medium [17, 18]. The clustered 
particles significantly reduce the failure strain of the composite; degradation is attributed to 
preferential nucleation of cracks in clustered regions.  Final fracture is produced by the crack 
propagating to other clusters. Clustering occurs due to combined effects of agglomeration, 
sedimentation (particle settling rate) and particles pushing by the advancing solidus-liquidus 
interface. Particle clustering occurs since the system tends to minimize its free energy. A solid 
inclusion is never perfectly smooth: its surface is covered with cavities filled with gas, which 
contribute to increasing the system’s Gibbs energy. This is can be seen by analyzing the equation 
describing the Gibbs energy of a gas-liquid-solid system [17]: 

lg lg( ( , ) ( , ))µ µ γ γ γ∆ = − + ∆ + ∆ + ∆
g l sg sg sl sl

G T P T P S S S                                            (1)                                            

where T is the temperature, P the pressure in the liquid, µg
 and µl

 the chemical potentials of gas 

and the liquid, ∆S is the change in interfacial areas and γ surface energies. When the particle size is 
brought down to the nano-scale range, surface energy is enhanced by three orders of magnitude 
(Table 3), introducing strong instability in the system and hindering particle wetting by the molten 
metal. 

 

 

 

 

 

Table 3. Variation of Surface Energy with Particle Size (1 g of sodium chloride) [20]. 

 

Particle size [cm] Total surface area [cm²] Surface energy [J/g] 

0.1 28 5.6 410−×  

0.01 280 5.6 310−×  

0.001 2.8 310×  5.6 210−×  

410−  2.8 410×  0.56 

710−  2.8 710×  560 

6 Advances in Metal Matrix Composites



 

The natural tendency towards equilibrium is the “spring” that allows the system to assume a 
physical configuration for which the Gibbs energy is lowered to a minimum value. With this 
perspective, agglomeration acts like a “stability configuration”: several nano-particles cluster in one 
micro-agglomerate (Fig.4), providing a less extended total interfacial area. The dynamics of the 
relative motion of two nano-sized particles has been extensively studied [18, 20]. Due to the 
complexity of the problem, the analysis is usually limited to two main mechanisms: Brownian 
diffusion/motion (or perikinetic aggregation), and inter-particle forces (electrostatic and Van der 
Waals). External forces are not considered and particle inertia is neglected.  

 

Fig. 4. Clusters of SiC nano-particles [19]. 

Brownian motion. It has been demonstrated [18] that a suspended particle is randomly bombarded 
from all sides by thermally-excited molecules coming from the liquid. Brownian diffusion ensures 
continuous collision between particles [19]. It can be defined as the incessant random motion 
exhibited by microscopic particles immersed in a fluid.  Einstein noticed that if one solid inclusion 
is small enough to behave like a gas molecule, it is continuously collided by liquid molecules and 
displaced as a consequence. The magnitude of the displacement follows a Gaussian statistic 
distribution according to the relation:  

2

6

kTt
d

rηπ
=                                                                   (2) 

where η is the viscosity of the medium, t the time, r the particle radius, T the temperature and k the 
Boltzmann’s constant. The displacement increases with decreasing particle radius, thus enhancing 
the probability of a collision to occur. It has been confirmed [18] that for particles smaller than 3.5 
µm, Brownian motion totally dominates the agglomeration dynamics. The aggregation rate for 20 
nm particles has been evaluated to be four orders of magnitude higher when compared to particles 
in the range of 1 µm [20]. This behavior can be explained by the fact that as the particle size 
increases the potential energy of repulsion increases, thus making aggregation less likely. 

Inter-particle forces: Van der Waals attraction and electrostatic repulsion. According to Van 
der Waals, the non-ideality of gases can be attributed to the existence of molecular or atomic 
interactions [21]. Such dynamic interactions are established between the instantaneous dipoles 
formed in an atom’s orbiting electrons. Thus, the resulting force is weak and becomes significant 
only at a short particle distance. Hamaker [21] found such interactions to exist between particles 
and modified Van der Waals’ formulation through the so called “additivity concept” (single atoms 
or molecules make up the particle). When the cavities located on a solid inclusion are filled with 
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gas, negative Van der Waals forces come into play, causing particle agglomeration. Attraction is 
favorable because it reduces the value of the Gibbs free energy by θ: 

   
212

Ar

H
θ

−
=                                (3) 

where A is the Hamaker constant, which depends on the polarization properties of the molecules on 
the particle surface, r is the reduced particle radius and H the inter-particle distance [18]. When  the 
dimension of the particle is smaller than 1 µm, Van der Waals forces dominate.                                   
Coulomb force of repulsion competes with Van der Waals attraction.  It can be noted from Fig.5 
that the electrostatic repulsion is overcome by the Van der Waals attraction force for a inter-particle 
distance down to 1 nm. For smaller values, the Born repulsion of adjacent electron clouds 
dominates. 

 

Fig. 5. Forces acting between two particles [20]. 

Interface debonding. Interface bonding between particles and the matrix is critical as it affects 
load transfer from the matrix to the particle and for delaying the onset of particle–matrix de-
cohesion. Voids nucleation and growth have also been observed to be correlated with the loss of 
coherency at particle/matrix interface. All these aspects have a profound effect on the strength and 
stiffness of the composite. Interface debonding caused by large thermal mismatch between metal 
and ceramic has been noticed to be the main mechanism responsible for fracture of the material 
[22]. Matsunaga et al. [23] measured the effect on strength and fracture toughness of surface 
oxidation of SiC particles, according to the reaction: 

2 22 3 2 2 ( )SiC O SiO CO gas+ → +                   (4) 

They detected enhanced strength only for thick oxide layers (1.4 µm), while fracture toughness 
consistently decreased after the oxidation process for all temperatures and exposure times. 
Therefore, crack initiation on particle surface is more likely to occur, affecting life duration of the 
component. It’s difficult to determine whether cracking of the oxide layer is responsible for the 
frailure mechanism of the composite materials. Exposure of clusters of bare particles on the 
fractured surface (Fig.6) could be an indication of such phenomenon. EDS analysis confirms the 
presence of silicon dioxides on particles surface (Fig.7). Other studies [24,25,26] found that the 
wettability of the reinforcement by liquid aluminum is improved when an oxide coating is applied. 
However, the very thin film character of silicon dioxide makes it brittle, fragile and easy to break-
down during particle incorporation and vigorous stirring. In addition to this, when a high percentage 

8 Advances in Metal Matrix Composites



 

of coating material is used in the oxidation process the interfacial bonding between particle and 
matrix is degraded and a typical bondless morphology underlines the non-wetting characteristic 
between both surfaces. Therefore, wettability is enhanced only for specific coating thickness and for 
layers that are continuous, which is a feature connected to the nature of the heat treatment. 
Oxidation in air has shown not to improve the contact angle between particle and matrix [27], 
whereas it is improved in oxygen supported atmosphere. Large thermal mismatches between 
particle and matrix can also cause interface debonding and fracture upon cooling to room 
temperature [28]. 

 

 

Fig.6. SiC nano-particles on an A356 aluminum alloy fractured surface. 
 

 

      Fig.7. EDS spectrum of a SiC nano-particle on the fractured surface. 
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Manufacturing Routes 

Classification of processing routes. Metal matrix composite manufacturing processing can be 
divided into two general categories: ex-situ and in-situ. Ex-situ is when the reinforcement is 
externally added to the matrix. In-situ synthesis involves the production of reinforcements within 
the matrix during the processing stage [33, 34]. The same classification applies for nanocomposite 
manufacturing as well. Ex-situ manufacturing techniques can be further classified into two main 
processing schemes [33,36]: solid-state and liquid-state. In some instances when the processing is in 
the semi-solid range (such as in droplet consolidation or similar techniques) then the classification 
could be further expanded to solid-state, liquid-state and semi-solid state. For the purposes of this 
review we will limit ourselves to the first two processing routes.  Among solid-state techniques, 
powder metallurgy and mechanical attrition are the most popular ones. The nano-scale can be easily 
reached, although the cost of the powder is significantly high. Interfacial and surface wetting issues 
are considerably diminished. This is because both phases remain in the solid state, where diffusivity 
is much lower [29, 30]. The final products are generally affected by a high amount of porosity, 
which strongly decreases the fatigue resistance and requires further metalworking. When the 
process involves attrition at high temperatures chemical modification of the initial constituents is 
likely to occur [31, 32]. Liquid-state routes can be sorted into four major categories: infiltration, 
agitation, spraying and ultrasonic cavitation based solidification. Semi-solid casting of 
nanocomposite materials is still an open field; a novel method of melting, compacting and 
solidifying semi-solid billets has been tested in [35]. Liquid metal is generally less expensive and 
easier to handle than powders, and the shape flexibility constitutes a significant advantage. Liquid-
state processes are generally fast and easy to scale-up. Despite this, they are affected by the lack of 
wettability of the reinforcement and by interfacial reactivity. Moreover, they are often limited to 
low melting point metals [29, 30].  In-situ metal matrix composites are not affected by the 
shortcomings typical of ex-situ composites, although control of process variables still remains an 
issue. In-situ fabrication methods can be divided into two major categories according to the physics 
of the process itself: “reactive” routes, where the reinforcement is synthesized within the metal 
matrix through a gas-liquid, liquid-liquid, or solid-liquid reaction, or “morphological” routes, 

where a favorable composite architecture evolves as a consequence of processing.  
Other methods, which cannot be used for mass production of near net shape parts can be traced in 
the literature [31,36]. The most important are laser deposition, spray deposition, sol gel synthesis, 
nano-sintering and electroplating. They are costly, time and energy consuming processes. 
Therefore, their application is unlikely to be extended to the industrial scale. Such techniques are 
generally used for coating and thin films deposition. In this review, only mass production methods 
see table, which could be adapted to existing industrial infrastructure and can meet the need to large 
production volumes will be taken into account. 
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Process System (matrix/reinforcement) 
Reinforce

ment size 
Main features 

Ex-situ: solid-state           

(Section 3.2.1) 

  

+ Near net   shape; 
+Industrially scalable;         -
Non homogeneous particle 
size distribution;    -Costly. 

- Powder metallurgy Al/ 2 3Al O , Al/ 3 2Si N  

15-100 nm 

- Mechanical attrition 
and alloying 

Al-Fe/ 5 2Al Fe , Al/ 4 3Al C , 

Al/SiC 

9-27 nm 

Ex-situ: liquid state      

(Section 3.2.2) 

  
 

- Stir casting 
Al/SiC 40 nm 

+Industrially compatible 
+Industrially scalable; 
+Inexpensive; -Particle 
clustering and debonding. 

- Ultrasonic cavitation 
based solidification 

Al-Si/SiC, Al/ 2 3Al O  

< 100 nm, 
10 nm 

+Good particle dispersion; 
+Inexpensive; -Industrially 
non-scalable. 

- Infiltration Al-Cu-Mg/ 2 3Al O  

50 nm +Good mechanical 
properties;       -Expensive 
equipment (preform);        -
Un-easy to scale up.      

In situ: reactive routes  

(Sections 3.3.1,3.3.2,3.3.3) 

  
 

- Combustion 
synthesis 

Al/ 2TiB  30-100 nm 

 

 

+Good particle dispersion 
and particle/matrix bonding; 
+Inexpensive; +Industrially 
scalable;          -Difficult 
process control. 

 

- Exothermic 
dispersion 

Al/ 2TiB  < 0.7 µm 

- Substitutional 
chemical reaction 

Al/ 3Al Zr + 2 3Al O  

Cu-Ti/ 2TiB  

80 nm 
50 nm 

- MixAlloy by Sutek Cu/ 2TiB  50 nm 

- Gas-liquid process Al alloys/AlN, SiC, TiC 
100-500 
nm 

In-situ: morphological    

(Section 3.3.4) 

  

- Rapid solidification Al-Fe/ 100 x xAl Fe− , Al/TiC 
20-150 nm,  
40-80 nm 

Table 4. Manufacturing Methods for Metal Matrix Nanocomposites (Mass Production). 

 

Ex-situ methods 

Solid state 

Powder metallurgy. Prior work in synthesizing nanocomposites involves the use of powder 
metallurgy techniques, which are usually not cost-effective. Blending of matrix and reinforcement 
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powders followed by hot or cold pressing and sintering is a standard fabrication sequence; a 
schematic of a typical powder metallurgy (P/M) processing scheme is shown in Fig.8. In P/M 
processing, agglomeration can be minimized only if the size of the matrix powder is in the size 
range of the reinforcement phase. In addition, further working of the product via P/M may cause the 
reinforcement phase to break up and deform the surrounding matrix, leading to stress concentration 
and cracking [34]. The advantages of the process are flexibility and the ability to produce near-net 
shaped components. The size range of metal powders available on the market is quite wide which it 
is an advantage. P/M has been used [14] to add 50 nm alumina particles to aluminum powder. The 
process consists in wet mixing (aluminum powder mixed with varying volume fraction of Al₂O₃ 
powder in a pure ethanol slurry), followed by drying at 150ºC and cold isostatic pressing to 
compact the powder. The compacted powder is then vacuum sintered at 620ºC (approximately 60ºC 
below the melting temperature of aluminum). Massive clustering has been observed, and its 
occurrence increases with decreasing particle size. Ma et al. [37] fabricated via P/M processing 
nanometric silicon-nitride reinforced aluminum composites. They reported the presence of several 
agglomerates in the aluminum matrix. Peng et al. [38] created a novel and simplified process for 
producing aluminum matrix nanocomposites reinforced with oxide particles. The novelty lays in the 
use of Al₂O₃ surface layers existing on matrix aluminum particles as the ceramic reinforcement. A 
good distribution has been achieved, although the process does not allow satisfactory control of the 
process. Moreover, the effectiveness and the scalability of the method remain to be proven. 
 

    

Fig.8. Processing routes for particulate                      Fig. 9. Grain size and strain vs. milling for             
reinforced composites [34].                                                           WC particles [39]. 
 

Mechanical attrition and alloying. Mechanical alloying was invented in 1980 to manufacture 
particle strengthened metal alloys. In the last ten years, the method of high-energy milling gained 
much attention as a non-equilibrium process able to produce nano-scale microstructures. A variety 
of ball mills have been developed for different purposes including tumbler mills, attrition mills, 
shaker mills, vibratory mills, and planetary mills [32]. In the high-energy ball milling process, 
alloying occurs as a result of repeated breaking up and welding of matrix and reinforcement 
particles. Both powders are subjected to severe plastic deformation due to collision with the milling 
tool. Deformation occurs at high strain rates; thus, after extended milling (Fig.9), the average 
powder grain size can be reduced to few nanometers [32,39]. It should be noted that aluminum 
nanocomposites with the trade-name DISPAL, reinforced with Al₄C₃ particles, are manufactured 
via mechanical alloying [14]. Flexibility and scalability are key advantages of the process; 
contamination by the milling tool and the atmosphere are the main disadvantages of the process. 
Milling of refractory metals (tungsten) in a high-frequency shaker for extended times can result in 
iron contamination of more than 10 at% [38]. To prevent contamination, the process should be 
carried out in an inert atmosphere and the mills ought to be coated. Another major issue is the 
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occurrence of chemical reactions as a consequence of converting mechanical energy into thermal 
energy [32]. Zhang et al. [40] proved that there exists a particle size below which further size 
reduction cannot be performed, since the stress necessary to break the particles is above the process 
capabilities. The stress required for processing can be expressed as: 

c
f

c

K

a
σ

π
=                                                     (5) 

Where 
f

σ  is the fracture stress, 
c

K the fracture toughness and 
c

a size of material defects. When the 

particles are reduced to the nano-range, the likelihood of having internal defects and surface notches 

are considerably reduced. In this case, 
f

σ  will approach the theoretical strength of the ceramic 

material. The impact stress of silicon-carbides is over 15 GPa, which is the value needed to fracture 
a “perfect” (with no defects) ceramic. Such stress is not achievable with conventional high-energy 
mechanical mills. Furthermore, nano-particles produced by attrition do not possess uniform size 
distribution and the process is limited to materials with very poor thermal conductivity [41]. 

Liquid state  

Stir casting. Stir mixing techniques, widely utilized to mix micron size particles in metallic melts 
[34, 41] have recently been modified for dispersing small volume percentages of nanosize 
reinforcement particles in metallic matrices [41]. The restraints correlated with mixing nanosize 
particles in metallic melts are: 

-  Particle introduction into the melt;  
-  Particle clustering;  
-  Weak bond between matrix and reinforcement because of surface contamination of the externally    
    added reinforcement. 

Because of increased surface area together with the reduction in particle size, inserting the particles 
in the melt and homogeneously dispersing them is a challenge. The increase of interfacial energy 
raises the free energy of the system, causing agglomerates to form. Xiaodan et al. [42] managed to 
avoid agglomeration of 40 nm SiC particles in aluminum by designing an experimental setup 
consisting in fusion, vacuum, and stir parts. In fact, simple stirring by means of a lance or rod does 
not overcome particle clustering. Alternative stirring tools have also been developed to improve the 
dispersion. Ultrasonic based solidification has been the most successful one.  
 
Ultrasonic cavitation based solidification. High-intensity ultrasonic waves (above 25 W/cm²) can 
generate strong non-linear effects in the liquid such as transient cavitation and acoustic streaming 
[43]. These waves produce a dispersive effect and tend to homogenize the microstructure of the 
melt [44]. An ultrasonic probe is immersed into the melt to create the acoustic field (Fig.10) and 
nano-sized particles are added during the process. The acoustic bubbles burst, creating hot micro-
spots that locally raise the temperature of the melt. This enhances particle wettability and favors 
good dispersion. It has been measured [43] that with a 3.5 kW ultrasonic power, the ultimate 
strength and yield strength were improved more than 60% and 100% (Fig.11). In addition, 2.0 vol% 
SiC nano-particles improved hardness by 20% [45]. 
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Fig.10. Schematic of ultrasonic solidification    Fig. 11. Strength vs. percentage nano-particles         
processing [43,44].                                                             added percentage [45].                                                    

One drawback of this technique is the dissolution of the oscillating probe in contact with the molten 
metal. To overcome such difficulty a non-contact method, where the ultrasonic probe is not in direct 

contact with the liquid metal, was attempted to disperse 10 nm 2 3Al O particulates in aluminum 

matrix [46]. In this method the mold was subjected to ultrasonic vibration.  The reinforcement was 
found to be uniformly distributed. The amount of material processed with ultrasonic cavitation 
based solidification generally does not exceed 200 g. The ultrasonic power necessary to achieve 
good particle dispersion is proportional to the amount of material processed. Therefore, industrial 
scale quantities would require enormous and costly power supplies. 
 
Infiltration. The process consists of infiltrating a porous preform. Capillary forces and viscous drag 
through preform interstices hinder wetting of the preform by the melt. Evans et al. [30] observed 
from an “energetic” standpoint that metals generally do not bond to non-metals, and that the 
chemistry of the system must be modified, or external pressure must be applied. Chemical 
modification includes coating, adding special elements to the melt, or using special atmospheres 
[47,30]. Mechanical force reduces porosity and improves interfacial bond. Pressures of around ten 
atmospheres are needed to infiltrate the melt into 1 µm wide pores [30]. As a result, preform 
fragmentation, deformation and unevenly reinforced castings [47] may result. Kaptay [48] noted 
that that when the partially infiltrated liquid metal reaches the “equilibrium depth” (the depth at 
which interfacial forces are zero), further infiltration will occur by additional pressure. The 
threshold pressure is given by:  

   
(1.63 )

3
threshold lv

P W
R

π
σ= −                               (6) 

Where R is the particle radius, W the adhesion energy and 
lv

σ  the interfacial energy between the 

liquid and vapor phases. The lower the particle radius, the higher is the threshold pressure. When 
pressures of some GPa are applied, nano-materials can be manufactured. Gierlotka et al. [49] used a 
toroid cell at pressures up to 7.7 GPa and temperatures up to 2000 °C for the infiltration of an 
alumina preform with a grain size of 10 nm. Schultz et al. [50] succeeded in the infiltration of an 
alumina preform with particle size of 50 with Al alloy A206. The composite showed an increase in 
hardness by 19% compared to the base alloy. The downside of the infiltration technique is the high 
cost of nano-sized ceramic preform. The latter is a significant disadvantage. 
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In brief, Ex-situ processes as described above have their distinct advantages and disadvantages. In 
general however, Ex-situ processes suffer from: 

- Thermodynamic incompatibility: interfacial reactions between the reinforcements and the 

matrix may occur. Detrimental phases such as 4 3Al C and 5 3Ti Si  have been detected in 

composite materials manufactured through mechanical stir casting; 
- Contamination: oxide layers around the particles increase the surface energy, decreasing 

wettability of the system [51]; 
- Inhomogeneous microstructures: particle agglomeration and clustering occur. 

 
 

In-situ methods 

When nano-composite materials are synthesized via In-situ processes, fabrication issues associated 
with ex-situ methods are mitigated or completely alleviated. The benefits that in-situ manufacturing 
methods provide are [52]:  

- Thermodynamic stability at high temperatures; 
- Clean interface between particle and matrix, resulting in strong interfacial bonding. 

Detrimental phases are eliminated and the creation of the nascent interface can be guided by 
process control. Wear resistance is enhanced as a result; 

- Range of particle size in the nanocomposite are lower than via Ex-situ processes; 
- Improved distribution yields to superior mechanical properties; 
-  Composites with a broad variety of matrix materials (aluminum, titanium, copper, nickel and 

iron) and reinforcing particles (borides, carbides, nitrides, oxides and their mixtures) can be 
produced;  

- Process is scalable and cost effective. 

Commercial applications are still limited by the complexity of the reactions and the lack of 
knowledge concerning these techniques. The two classes of processes –reactive and morphological 
are described and discussed below. 

 
Reactive processes: solid-liquid state 

Elements or compounds react in the presence of a third liquid metallic phase that acts as a solvent 
medium. The reinforcement is generated via diffusion of components in the metal matrix [52]. 
Combustion synthesis, XD process, mixed salt reaction, direct metal oxidation and reactive 
synthesis are examples of solid-liquid processes. There are detailed below. 

Combustion synthesis. Combustion synthesis (see Fig.12) -or self-propagating high-temperature 
synthesis (SHS)- was invented by Merzhanov et al. [53]. A mixture of powdered elements is 
initially prepared and pressed into cylindrical pellets. Electrically heated coils or a laser act as the 
heat source that initiates a chemical reaction between the various elements. The solvent can be 
molten Al, Mg, or Ti where other non metallic elements, such as C and B, are present. The ceramic 
compounds are burnt via ignition waves at a temperature higher than the melting point of the metal 
matrix. A typical reaction is:  

Al + Ti + 2B  → Al + TiB₂ + HEAT = Al/TiB₂                  (7) 

The highly exothermic nature of the process allows it to be self-sustaining and is energy efficient. 
The heat released during the reaction keeps the propagation front stable by heating up the un-
reacted portion of the sample. The equipment is simple, processing times are short due to very high 
combustion rates (0.15 m/s) and metastable phases can be synthesized. In addition, volatile 
impurities are evaporated due to high temperature of the process. Although a variety of shapes and 
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geometries can be attained, porosity (up to 10%) in the final component still remains an issue. 
Further processing such as high-pressure consolidation is a necessary step. At present, a major 
program is underway between WPI and Colorado School of Mines to explore using combustion 
synthesis to die cast Al and Mg engine components that contain 20-40% second phases. 

  

       

                                              Fig.12. Combustion synthesis process [54]. 

Exothermic dispersion (XD process). The XD process was developed by Martin Marietta 
Corporation and has been extensively applied to the manufacturing of light-weight materials [52]. 
Jet engine turbine blades with weight savings of 30% to 50% have been fabricated with this 
process. It is a sustained high-temperature synthesis whose driving force is the difference of melting 
temperatures of the components. Ceramic phases and a third metallic phase are emplaced together 
and heated above the melting point of the metallic phase. The ceramic phases release heat and 
interact, forming very fine (nano-sized) particulates [52, 55], Fig.13. Particle size and distribution 
are system-dependent. It depends on the thermal conductivity of the environment and the amount of 
heat developed during the reaction. Tailoring the composition of the initial species can regulate the 
volume percentage of reinforcement. The exothermic reaction eliminates oxides and provides clean 
interfaces [52]. Hot isostatic pressing of the final component is necessary in order to reduce 
porosity.  

                               

Fig.13. Schematic diagram of XD process [52]. 

Substitutional chemical reaction. An in situ copper matrix composite with 3.5 wt.% 2TiB  was 

prepared by thermic reactions of 2 3B O , carbon as reduction agent and titanium in copper–titanium 
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melt [56]. The in situ-formed 2TiB   particles with a size of about 50 nm exhibited a homogenous 

dispersion in the copper matrix. Due to their reinforcement, the tensile strength and hardness of the 

in situ Cu– 2TiB  composite significantly improved. The in-situ composite also had a high electrical 

conductivity. Zhao et al. [57] synthesized nano-sized 2 3Al O  and 3Al Zr  particles in aluminum in the 

system 3 2Al Zr(CO )− according to the reaction: 

 

3 2 2 3 2 3l
3Zr(CO ) + 13Al  = 6CO + 3Al Zr + 2Al O                             (8) 

 
A magnetic field is also applied in order to enhance the chemical reaction. The mean particle size is 
about 80 nm, and the nano-sized particles are well distributed in the Al matrix. The ultimate tensile 
strength and yield strength of the nanocomposites are enhanced with increasing of particulate 
volume fraction, and are higher than that of the Al nanocomposites synthesized under zero magnetic  
field. 
 

Reactive processes: liquid-liquid state 

The MixAlloy Process patented by Sutek Corporation [58] has been applied to manufacture 
nanocomposite materials. Two streams of metal melts containing ceramic inclusions interact with 
each other in a reaction chamber to form refractory particles. The mixture is then rapidly cast or 
atomized. Titanium boride particles in a copper matrix have been manufactured with this method. It 
has been reported [52] that particle sizes around 50 nm have been achieved. In the first process 
disclosure by Nam.P.Suh [58], the impingement between the metal streams is direct, while in a 
subsequent patent [59] the impingement is indirect. In this manner, instability in the metal streams 
are mitigated. The impingement may not provide adequate energy to mix the metal streams; in 
addition, un-reacted elements have been detected, even though the stoichiometry is locally 
maintained [59].    

Reactive Processes: gas-liquid state 

The gas-liquid process belongs to the category of in-situ techniques.  A gas is injected into the 
aluminum melt composed by one or more elements. Such gas reacts chemically with the melt and 
form the reinforcement phase (Fig.14). Refractory elements can also be added to the melt to tailor 
the precipitates. Table 5 shows gases, matrices and secondary phases that can be synthesized, 
together with the chemical reactions involved [60-66] (Fig. 15). Tyagi et al. [67] manufactured 
aluminum nitrides with a diameter smaller than 1 µm, by bubbling ammonia gas in an Mg-Al melt. 
The temperature was kept at 900 C° and the gas was purged for 70 minutes with a constant flow 
rate. Shyu et al. [65] bubbled methane gas in Al-Ti melt to form TiC particles. The yield strength 
increased up to 18 % and the hardness by 20%. The size of the particles was smaller than 0.1 µm. 
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  Table 5. Gas-Liquid Process Gases, Matrices, Products and Reactions. 

The process is characterized by:   

- Negligible costs. Gas is relatively inexpensive [60]. The particles are found in-situ 
alleviating the cost of expensive second phase nano-particles; 

- Surface contamination is eliminated thus enhancing interfacial bonding; 

- The thermodynamics of the process can be controlled to suppress the formation of 
unfavorable phases [60,61].  

- Homogeneous microstructures are obtained. The particles are naturally dispersed in the 
metal matrix, Fig. 15 [60]. 

Some limitations of the process are [65]:  

- The temperatures necessary for the reaction to occur are high (1300-1600 K depending on    
      the gas and the matrix); 
-    High apparent viscosity hinders the production of high percentages of reinforcement; 

      -    Process times may be lengthy as the kinetics are challenging;  
      -     The method is not applicable to materials with high melting temperatures. 

  
Fig.14. Schematic of gas-liquid process [61].            Fig. 15. AlN particles in Al matrix via gas-  

                                liquid process [60]. 
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Morphological processes: rapid solidification 

Nayak et al. [68] have melted under argon atmosphere Al-Fe alloys. Rapid solidification processing 
of the molten alloys was carried out by a single roller melt spinner with a copper wheel   at different 
linear wheel speeds with cooling rates estimated to be in the range of 104–105 K/s.  

Ultra-fine 100 x xAl Fe−  precipitates embedded in the α-Al matrix were found in the melt spun Al–2.5 

% Fe alloy as shown in Fig.16. Most of the precipitates here are less than 20 nm in size that 
structurally resemble some nanoquasicrystalline (NQ) phase. Increasing iron content up to 5% gives 
a cellular microstructure of around 150 nm in size. TiC have also been fabricated by melting a 
mixture of Al, Ti, and graphite powder under argon atmosphere [36]. Chill block melt spinning was 
used to prepare rapidly solidified samples in ribbon form. The TiC particles were found to be 40-80 
nm in size and some clusters detected at the grain boundaries. 

 

Fig.16. 100 x xAl Fe−  precipitates embedded in the α-Al matrix [68]. 

Concluding Remarks 

The various pathways to manufacture metal matrix nanocomposites have been presented and 
discussed in this critical review.  It is quite clear that the challenges we face in manufacturing 
nanocomposites for structural applications are daunting.  Scalability is a critical issue; there are 
many reported methods for producing small quantities in a laboratory setting. However, commercial 
production on a large scale is another matter.  To be able to manufacture nanocomposites with a 
homogeneous distribution of the second phase nano-sized particles is also another critical issue.   
As presented and discussed in this review, this requirement remains to be the most difficult one 
especially for ex-situ processing methods.  Homogeneous distribution of the nano-sized particles is 
more readily attainable via in-situ processing methods. Ex-situ methods are characterized by the 
difficulty to introduce the reinforcement in the melt and effectively disperse it (liquid state), as well 
as porosity and distortion in the final component (solid state). Lastly, cost is a major factor, as the 
processing method selected needs to be cost-effective. Composite materials (both micro- and nano-
scale) are difficult to machine because of the wear action of reinforcement particles on the cutting 
tool. Therefore, there is the impellent need to select manufacturing methods which can provide 
near-net shape, so that the machining step could be eliminated. The knowledge of properties of the 
composite material, such as tribological properties, is fundamental for the design stage. Such data 
greatly differ from the matrix properties and have a consistent impact on the behavior of the final 
component. For instance, friction coefficients influence coupling and therefore lubrication between 
parts of an automotive assembly, as well as coefficients of thermal expansion have to be taken 
account when the cooling system of a component subjected to high temperatures is designed. The 
optimal method to determine such properties for nanocomposite materials needs to be established.  
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Abstract. Aluminum nitride (AlN) possesses superior thermal and electrical properties and is an 

ideal candidate for high-temperature, as well as for packaging and optoelectronic applications. 

Aluminum based composites reinforced with AlN have been manufactured via an in situ gas-

assisted process, where nitrogen gas is injected in the molten aluminum at 1273-1323 K. The 

process is carried out in an inert atmosphere in order to avoid oxygen contamination. Addition of 

Mg lowered the oxygen content in the melt by forming MgO and thus favoring the nitridation 

reaction. The reinforcement phase has been detected throughout the casting in two morphologies: 

pockets of powders and embedded in the microstructure. Particle size formed in the matrix varied 

from 1- 3 µm to sub-micron scale. 

Introduction 

Particulate reinforced metal matrix composites have been widely used in modern engineering 

applications. With the development of nanotechnologies, the particulate size progressively scaled 

down to the nano-level. Aluminum matrix nanocomposites reinforced with ceramic particles (AlN, 

Al2O3, SiC) are gradually being implemented into production in automotive, electronic or aircraft 

industries due to their promising mechanical and thermal properties: higher strength, hardness, 

stiffness, dimensional stability at high temperatures, and creep resistance. However, obtaining a 

composite material non-susceptible to cracking and whose ductility is retained requires the 

successful dispersion of the reinforcement phase in the matrix [1]. Numerous attempts have been 

made to overcome particle agglomeration and to establish an industrially scalable and cost-effective 

route for the fabrication of nanocomposite materials. 

Several near-commercial manufacturing methods have been pursued, such as mechanical 

alloying, powder metallurgy, infiltration techniques and spray deposition. All these techniques 

involve the addition of ceramic reinforcements to the matrix materials (ex-situ processes), which 

may be in molten or powder form. However, they are expensive and do have their own limitations, 

especially when the reinforcement size is in the nano-scale range. Agitation techniques are cost-

effective, but agglomeration due to Van der Waals forces cannot be avoided. Surface contamination 

also affects the reliability of ex-situ techniques through interfacial reactions and poor wettability 

between matrix and reinforcement. Particle dispersion via ultrasonic processing has been achieved 

but the process suffers from scalability issues. 

A class of novel composites, in which the reinforcements are synthesized by chemical reactions 

(in-situ processes), addresses the challenges associated with manufacturing of nanocomposites. 

Compared to ex-situ methods, these in-situ processes exhibit cleaner and thermodynamically stable 

interfaces, resulting in less degradation at elevated-temperatures and strong interfacial bonding. 

Moreover, the in-situ formed particles are finer in size and their distribution in the matrix is 

uniform.   
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Among the wide range of in-situ techniques, the synthesis of nitride particles by means of a gas-

assisted reaction, patented by Koczak and Kumar [2], has shown promise. Aluminum nitride is a 

refractory compound characterized by attractive properties such as high thermal conductivity, high 

electrical resistance, low dielectric constant, and a thermal expansion coefficient similar to silicon 

[3,4]. Hou et al. [3] have been able to manufacture aluminum matrix composites reinforced with 

AlN with a diameter smaller than 0.1 µm. Zheng et al. [5] have converted 14% weight of Mg-Al 

alloy into aluminum nitrides with a diameter of 400 nm. Tyagi et al. [6] also manufactured 

aluminum nitrides with a diameter smaller than 1 µm by bubbling ammonia gas in an Mg-Al melt. 

The composite material is formed in three stages: reactive gas dissociation, synthesis of reinforcing 

phases and kinetics of their growth [1,7]. Reinforcement particles are created as a result of the 

intensive exothermic reaction of gas cavities with metal alloying additions, such as Mg, Ti, and Si 

[1]. Significant advantages of this method are the possibility of applying casting techniques for 

forming the products [8], and of tailoring the matrix-reinforcement system by selecting reactive gas 

and alloying elements. However, the gas-assisted reaction process is affected by challenging control 

of process variables and repeatability issues. In addition, the temperatures necessary for the reaction 

to occur are high (1000-1300 Cº depending on the gas and the matrix) [9,10].  

The aim of the present investigation is to highlight the dynamics of aluminum nitridation and the 

mechanism of nitride formation via the injection of nitrogen gas in the melt.  

Experimental Details 

A stainless steel sealed resistance chamber was evacuated and purged several times with Argon gas 

(Grade 5, Aimtek). During the heating process, inert atmosphere was maintained by constantly 

injecting Argon at a flow rate of 0.2 l/min. The ceramic crucible was placed at the bottom of the 

chamber where the temperature profile is more uniform. Two K-type thermocouples inserted in the 

furnace walls and inside the crucible were used to monitor the temperature. Once the process 

temperature (1000 Cº) was achieved, a 1.5 mm diameter alumina tube was submerged in the melt 

and High Purity Nitrogen gas (99.9999% purity, Aimtek) bubbled for 6 to 8 hours through the tube 

at a flow rate of 0.1 l/min and a pressure of 0.1 MPa. Two high capacity oxygen-and moisture- 

removal traps were used in series at the gas inlet. Each trap had the capability to lower the oxygen 

content to less than 1 ppb and the moisture level to less than 10 ppb. Alloy compositions selected 

for the experiments are 100wt% Al and Al-15wt% Mg. Each casting involved the melting of 150 g 

of metal previously ultrasonically cleaned for 20 minutes. X-Ray Diffraction (XRD) analysis was 

also performed in order to detect the presence of nitrides and secondary phases. Field Emission Gun 

SEM has been employed for microstructure observation, Energy Dispersive X-ray (EDS) 

microanalysis and X-ray mapping.  

 

 
Fig.1: Experimental set-up. 
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Results and Discussion 

No AlN were detected in the matrix when pure Al was used as the parent material. Such result can 

be attributed to the presence of oxygen in the Nitrogen gas, which has a detrimental effect on 

aluminum nitridation. Oxygen preferentially reacts with aluminum to form aluminum oxide, 

inhibiting the nitridation reaction [7,10,11]. This has been demonstrated empirically by measuring 

the time required to form aluminum nitride and the time required to form aluminum oxide, where it 

has been found that the rate of nitridation of aluminum is several orders of magnitude slower than 

the rate of its oxidation at any given temperature [11]. Thermodynamic analysis of the equilibrium 

reaction (Eq.1) confirms the preferential formation of Al2O3 versus AlN. The Gibbs free energy 

calculation (Eq.2) shows that the permissible oxygen partial pressure for the nitridation reaction  

at 1000°C is around 10
-19

 Pa and directly proportional to the process temperature T. 

                                                                  2 3 2 22 2 4 3Al O N AlN O+ → +
                                                             (1)         

                                          (2) 

This very low oxygen content is not achievable with commercially available nitrogen gases. 

Moreover, the processing temperature for aluminum alloys should not exceed 1000°C. This is 

mainly dictated by the cost of energy and deterioration of the furnace furniture. Therefore, efforts 

have been made to minimize oxygen in the reaction chamber by passing the stream of nitrogen gas 

through traps filled with deoxidizing materials (such as Cu and Mn) and evacuating the furnace 

chamber prior to melting. Yet, oxygen in the system remains high enough to render the current 

technology inefficient for the synthesis of Al-AlN composite materials through direct nitridation of 

aluminum.  

This suggests that nitridation of aluminum requires the presence of a catalyst such as Mg. Several 

publications refer to this mechanism as more likely to be responsible for nitride formation than 

direct nitridation [5,10,12]. The addition of 15% Mg to the aluminum matrix was investigated and 

resulted in the synthesis of a consistent amount of aluminum nitrides.  

 

 
Fig.2: XRD pattern of the upper part of the crucible for Al-15%wt. Mg. 

 

XRD analysis (Fig.2) of the upper part of the crucible confirms strong peaks for AlN along with 

peaks for MgO (periclase). SEM analysis shows the presence of AlN throughout the length of the 

resultant casting. AlN particles have been found in two different morphologies: (i) embedded in the 

microstructure in the lower section of the casting (Fig. 3), and (ii) as pockets of powder in the upper 

section of the casting (Fig. 4). In the powder phase, MgO is located on the AlN particles and tightly 

connected with them. The size of AlN is ~1 µm for AlN embedded in the microstructure and in the 

submicron range (around 0.4 µm) in the powder phase. Size control as well as optimized nitride 

distribution along the casting still remains an issue and it is currently being studied at WPI. 
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Fig.3: SEM image and EDS spectrum of AlN embedded in the matrix in the lower section of the 

casting. Al-15%wt. Mg matrix. 

 
Fig.Fig.4: SEM image and EDS spectrum of pockets of AlN and MgO powder in the lower section 

of the casting. Al-15%wt. Mg matrix. 
 

The catalytic action of Mg can be explained as follows. At high temperatures, Mg vaporizes 

(Eq.3) and acts as an “oxygen-getter”. It combines with oxygen to form MgO (Eq.4) and thus locally 

lowers the partial pressure of the residual oxygen in the nitriding gas. 
                     Mg(l)=Mg(g)                                             (3) 

 

                                                                         2Mg(g)+O2=2MgO                                                            (4) 

 

                                                         
2

2 2 3 42
exp( )

2
O Mg Mg

G G
P x

RT
γ − − ∆ + ∆

=
                                                                   (5)     

Depending on the temperature and the concentration of Mg, the equilibrium partial pressure of 

O2 is given by Eq. 5, where γMg is the activity coefficient of Mg, xMg is the Mg concentration, ∆G3 

and ∆G4 are the standard Gibbs energy changes for reactions 3 and 4, respectively. From 

thermodynamic data reported in the literature, the partial pressure of the residual oxygen for 15 

wt.% Mg in aluminum matrix is in the range of 0.1 Pa (versus 10
-19

of pure Al matrix), which can be 

achieved by commercial deoxidizing traps. 

Concluding Remarks 

Aluminum nitridation via gas-assisted nitridation of aluminum is feasible. The in-situ route to 

manufacture nanocomposites has the potential to be a commercial process where scalability, 

homogeneous distribution and cost-effectiveness are important criteria. AlN particles, whose 

thermal and electrical properties are exceptional, have been successfully synthesized. They have 

been observed throughout the bulk and they are present in two morphologies: (i) embedded in the 

matrix, and (ii) as pockets of powder with MgO. The size of AlN ranges from 0.4 µm to about than 

1 µm. The catalytic action of Mg as “oxygen-getter” has also been confirmed by the absence of AlN 

in the pure aluminum matrix, and by MgO tightly connected to the nitride phase. Mg lowers the 

local oxygen partial pressure in the melt, allowing aluminum nitridation to occur. 

The control of AlN particle size and the kinetics of the nitridation process need further study. 

This work is continuing to establish the mechanisms to address the kinetics of the reaction in order 

to enable us to attain particles that are in the nano-range.  
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Abstract. Aluminum nitride (AlN) possesses superior thermal and electrical properties and is an 

ideal candidate for high-temperature, as well as for packaging and optoelectronic applications. 

Aluminum based composites reinforced with AlN have been manufactured via an in situ gas-

assisted process, where a nitrogen-bearing gas is injected in the molten aluminum at 1273-1323 K. 

The process is carried out in an inert atmosphere in order to avoid oxygen contamination. Addition 

of Mg lowered the oxygen content in the melt by forming MgO and thus favoring the nitridation 

reaction. Particle size formed in the matrix varied from 1- 3 µm to sub-micron scale depending on 

the gas injection time. Longer bubbling times give rise to improved reinforcement dispersion. 

Addition of Si is detrimental for the synthesis of AlN; 2Mg Si phase precipitates, replacing the 

formation of MgO and hindering the nitridation reaction.  The challenges of controlling the kinetics 

are discussed. 

 

Introduction 

Aluminum based nanocomposites have increasingly gained attention as weight-saving functional 

materials with improved mechanical properties. Carbide or nitride particles are added to the 

aluminum matrix to attain superior hardness, wear resistance and dimensional stability at high 

temperatures. Several manufacturing methods such as mechanical stirring, infiltration and powder 

metallurgy have been employed to date and the subject has been covered in some detail in a critical 

review by the authors [1]. None of the ex-situ conventional processes meet the three key challenges: 

scalability, homogeneous distribution, and cost-effectiveness. In contrast, in-situ synthesis routes 

offer pathways that address key challenges in the manufacture of nanocomposites for structural 

applications [2,4,5]. The secondary phase is created in-situ through a chemical reaction; the in-situ 

creation of the reinforcement phase ensures clean and thermodynamic stable interfaces and good 

particle dispersion. Moreover, it is possible to produce composites with a broad variety of matrix 

materials (aluminum, titanium, copper, nickel and iron) and reinforcing particles (borides, carbides, 

nitrides, oxides and their mixtures).   

 

Among the wide range of in-situ techniques, the synthesis of nitride particles by means of a gas-

assisted reaction has shown promise. Hou et al. [3] have been able to manufacture aluminum matrix 

composites reinforced with AlN with a diameter smaller than 0.1 µm. Zheng et al. [4] have 

converted 14% weight of Mg-Al alloy into aluminum nitrides. The process involves the 

introduction of a nitrogen-bearing gas in the melt so that nitridation of aluminum takes place. 

Control of process variables (processing temperature and time amongst others) can tailor the 

amount and size of the reinforcement in the matrix [4,5]. Aluminum nitride is a refractory 

compound characterized by attractive properties such as high thermal conductivity, high electrical 

resistance, low dielectric constant, and a thermal expansion coefficient similar to silicon [6]. It is 

suitable for producing substrates and packaging materials in high-power integrated circuits, as well 

as coatings, insulators and optoelectronic devices. Although liquid nitridation has been widely 
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investigated over the years, the mechanism (and kinetics of formation) of AlN is not well 

understood. Two different formation mechanisms have been identified: direct nitridation according 

to the reaction 22Al N 2AlN+ →  and indirect nitridation assisted by a catalyst such as magnesium. 

The latter involves the formation of an intermediate phase ( 3 2Mg N ) through the reaction 

2 3 23Mg N Mg N+ →  followed by the substitution reaction 3 2Mg N 2Al 2AlN 3Mg+ → + . Several 

publications refer to this mechanism as more likely to be responsible for nitride formation than 

direct nitridation [8,9,11]. Shtapitanonda and Margrave [10] observed the tendency of magnesium 

nitrides to form in the gaseous phase after the volatilization of magnesium when melted in a 

controlled atmosphere. The substitution reaction takes place once the 3 2Mg N phase is in contact 

with the melt. Pech-Canul et al. [11] pointed out how the formation of magnesium nitrides is 

kinetically more favored than the formation of AlN. Moreover, they confirmed the occurrence of 

the substitution reaction to form AlN, which is a more thermally stable compound at around the 

process temperature range (1273-1373 K). Despite this, there is no agreement about the formation 

mechanism (direct or indirect). Dopants  (Mg, Si) and oxygen content in the reactive gas have been 

found to be important parameters. Scholz and Greil [12] stated that for higher Mg/Si ratio and  for 

decreasing oxygen content in the gas, the conversion from Al to AlN is more favorable. Jinxiang et 

al. [13] investigated the influence of Mg and Si on the rate of nitride formation, underlining the 

predominant role of magnesium over silicon. Zheng and Reddy [7] found that amount of nitrides 

formed are increased when ammonia is used as a reactive gas. Ammonia’s oxygen-getter action, 

due to the dissociation of nitrogen and hydrogen at around 1273 K, results in lower oxygen content 

and thus a lower oxygen partial pressure in the melt. The detrimental effect of oxygen is clear when 

the thermodynamics of the system are analyzed. The Ellingham diagram of the reaction through 

which aluminum oxides are formed 2 2 34Al 3O 2Al O+ → shows a lower Gibbs free energy 

compared to the Gibbs energy of the nitridation reaction (Fig.1).  
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Fig.1. Ellingham diagram for the nitridation and oxidation of aluminum. 

Studies of the initial nitridation period of aluminum at 673 K and higher show that the rate of 

nitridation is much slower than the rate of oxidation at a given temperature [13]. The aim of this 

work is to establish the feasibility of aluminum nitridation via in-situ gas/liquid reaction. The effect 

of the addition of catalysts such as Mg and Si has been investigated and a mechanism of nitride 

formation purposed. 

 

Experimental Procedure  

Experiments were carried out in a sealed stainless steel resistance furnace with a temperature range 

of 1223-1273 K; the setup is shown in Fig.2. The temperature is measured by two K-type 
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thermocouples placed in the furnace walls and inside the crucible. Alloy compositions selected for 

the experiments are 100wt% Al, Al-15wt% Mg, Al-15wt%Mg-8wt%Si (see Table 1). Both 

commercial 3NH  -99.998% pure- and High-Purity 2N -99.9999% pure- (purchased from AIMTEK) 

were employed as reactive gases. Pure Al ingots (purchased from ALCOA) were sectioned and 

ultrasonically cleaned in acetone for 20 minutes. For each experiment, 150 g of metal was melted; 

alloying elements were added to the pure Al in the reaction crucible and placed in the furnace. A 

uniform temperature distribution in the crucible was ensured by properly placing it in the furnace. A 

fiberscope camera was inserted laterally in the furnace walls to ensure alignment between the 

crucible and the nitrogen-bearing injection tube. Prior to every run, the chamber was cleaned in 

order to avoid contamination of the melt by impurities such as dust and coating material. Once the 

gas-delivery tubes and the thermocouples were fixed in place, the furnace was sealed. The chamber 

was subsequently evacuated and purged with High Purity Argon Grade 5 gas four times in order to 

minimize oxygen presence inside the furnace. During the heating process, inert atmosphere is 

maintained by constantly injecting Argon at a flow rate of 0.2 l/min. The reaction temperature is 

1273 K and it is held constant by an adjustable power controller. When the reaction temperature 

was reached, an alumina tube of 1.5 mm diameter is submerged in the melt and nitrogen-bearing 

gas is bubbled through the tube at a flow rate of 0.1 l/min and a gas pressure of 0.1 MPa. Two high 

capacity oxygen-and moisture-removal traps were used in series at the gas inlet. Each trap can 

lower the oxygen content to less than 1 ppb and moisture levels to less than 10 ppb. 

  

                                             

Fig.2. Schematic of in-situ gas/liquid process. 

The gas was bubbled through the melt for a designated time and the furnace power was turned off. 

The metal is left to cool down in the inert atmosphere in order to avoid oxygen contamination.  

Samples were taken from bottom, middle and top part of the crucible to characterize reinforcement 

distribution at different lengths. The samples were mounted in green phenolic powder and polished 

according to standard procedures; the sample was then cleaned ultrasonically for 20 minutes to 

remove residuals of alumina and colloidal silica. The samples were sputter-coated with carbon so 

that the AlN particles are conductive for Scanning Electron Microscopy (SEM). X-Ray Diffraction 

(XRD) analysis was performed in order to detect the presence of nitrides and secondary phases. 

Field Emission Gun SEM has been employed for microstructure observation, Energy Dispersive X-

ray (EDS) microanalysis and X-ray mapping. 
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Experiment Gases Al alloying elements  

 Mg (wt%)          Si (wt%)  

Process time (hr.) 

      1 

                    

Al + 2N  

Al + 3NH                         

       0                      0  

       0                      0 

2, 6, 8 

 

      2 

 

Al + 2N  

Al + 3NH  

     15                      0 

     15                      0 

2, 6, 8 

 

      3 Al + 2N  

Al + 3NH  

     15                      8 

     15                      8 

2, 6, 8 

 

Table 1. Details of Nitridation Experiments. 

Results and Discussion 

Pure Al was bubbled with both nitrogen and ammonia gas for 30 minutes, 1 hour and 2 hours, 

respectively, under evacuated and inert atmosphere (Experiment 1- Table 1). XRD analysis of the 

top, middle and bottom part of the crucible revealed that no nitrides were formed. This result 

suggests that a catalyst (such as Mg) needs to be added to the metal in order for the nitridation 

reaction to occur - as suggested by previous work [7, 8, 11]. In order to investigate the role of 

magnesium on the nitridation reaction, 15wt% was added to pure Al (Experiment 2). The results 

differ depending on the bubbling time. When the de-oxidized nitrogen is injected in the melt for 30 

minutes no aluminum nitrides are detected. Whereas, when Nitrogen gas was injected in the Al-Mg 

melt for 1 h, a consistent amount of nitrides was observed. XRD analysis confirms strong peaks of 

AlN in the upper part of the crucible along with MgO (Fig.3).  SEM analysis shows the presence of 

AlN with two different morphologies: embedded in the microstructure (Fig.4a) or as AlN powder 

(Fig.4b). In the powder phase, MgO is observed on the AlN particles and tightly connected with 

them. The size of the aluminum nitrides ranges from 1 to 3 µm while submicron MgO is also 

detected. The bubbling time was further increased to 2 hours and AlN was observed throughout the 

whole casting. AlN is present with two different morphologies - embedded in the microstructure 

(Fig.5a), and pockets of powder (Fig.5b). XRD analysis reveals AlN and MgO peaks also in the 

middle/bottom part of the crucible. The peaks in middle/bottom part of the crucible are less intense 

than at the top of the casting and have XRD patterns similar to that in Fig.3. In sum, the amount of 

AlN in the middle of the casting is less than the top of the casting. The average size of AlN is 

smaller for shorter injection times compared to when gas injection for longer times – i.e., 2 hrs. The 

size of the AlN formed is around 1 µm for the particles embedded in the microstructure and ~ 0.5 

µm in the powder phase. Size control still remains an issue and kinetics and control of particle size 

work is continuing at the Metal Processing Institute (WPI). No difference was noticed in AlN 

formation between the use of ammonia and nitrogen gas. Ammonia quickly dissociates into 

nitrogen and hydrogen when in the injection tube. In addition, the use of ammonia is undesirable 

because of the high amount of porosity that is observed at the center/bottom of the casting 

(Experiment 3, when injected for 2 hours). This is explained by the fact that the fraction of AlN 

formed is initially limited to the upper portion of the melt, which increases the viscosity of the melt 

in this region. As a result, the melt traps more hydrogen causing porosity. 
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Fig.3. XRD pattern of the upper part of the crucible for 1 h injection time (Experiment 2). 

a)                                                                                    b) 

 

Fig.4. a) SEM image of AlN imbedded in the matrix in the upper part of the crucible; b) Pockets of 

AlN and MgO powder in the upper part of the crucible Experiment 2) - 1 hour injection time. 

 

 

AlN 
MgO 
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a)                                                                                   b)                                        

 

Fig.5. a) SEM image of AlN imbedded in the matrix in the middle part of the crucible; b) Pockets of 

AlN and MgO powder in the middle part of the crucible (Experiment 2, 2 hours gas injection time). 

Silicon is an important element for fluidity and its influence on the nitridation of aluminum was 

investigated (Experiment 3). The literature contains contradictory information about Si’s effect 

when it is added to the melt together with Mg [10,11,12]. In these experiments, when 8wt% Si was 

added to the Al-Mg melt, AlN was not formed whether nitrogen or ammonia gas was used. XRD 

pattern reveals strong peaks of silicide phase - 2Mg Si  (Fig.6). EDS (Fig.7b) and X-ray mapping 

further confirm the presence of the silicide phase. Oxygen is undesirable since it favors the 

formation of aluminum oxides versus aluminum nitrides. It can be noticed (Fig.8) that the 

permissible oxygen partial pressure for nitridation is e-16 MPa at 1273 K, value that can be hardly 

achieved with commercial oxygen traps. The presence of MgO together with AlN suggests that the 

former could act as an oxygen-getter to reduce the oxygen partial pressure in the melt. At this point, 

aluminum nitrides form by direct nitridation according to the reaction 22Al N 2AlN+ → . 

Therefore, nitridation does not occur indirectly by substitution with Mg but through a Mg assisted 

direct reaction. The Ellingham diagram of MgO, AlN and the Al-Mg substitution reaction is given 

in Figure 9. It can be noted that MgO is thermodynamically stable over a wide range of 

temperatures and that indirect nitridation 3 2Mg N 2Al 2AlN 3Mg+ → +  is less favorable than the 

sequence 22Mg O 2MgO+ →  and 22Al N 2AlN+ → . When silicon is added to the melt, AlN and 

MgO are not formed, while Mg2Si phase formed as evidenced by the microstructural analysis. It is 

hypothesized that the synthesis of the silicide phase is favorable compared to synthesis of MgO, and 

that Mg in the melt was depleted by the precipitation of Mg2Si. An important note concerning the 

temperature of formation of MgO, and therefore of AlN is worth making. The formation of Mg2Si 

starts at 923 K and is completed at 823 K (Fig.10). Therefore, MgO formation must occur at 

temperatures equal or smaller than 953 K. This leads us to note that direct nitridation of aluminum 

takes place during the cooling process and not at temperatures ~ 1273 K. 
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Fig.6. XRD pattern of Al-Mg-Si microstructure (Experiment 3). 

 

a)                                                                                           b) 

Fig.7. a) SEM magnification of the magnesium silicide phase; b) EDS analysis. 
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Fig.8. Maximum oxygen partial pressure           Fig.9 Ellingham diagram for indirect nitridation                  

for nitridation vs. temperature.                                            and Mg assisted direct nitridation.    

 

Fig.10. Fraction solid of magnesium silicide formed vs. temperature (Pandat Software). 

 

Conclusions 

Gas-assisted nitridation of aluminum is feasible. The in-situ route to manufacture nanocomposites 

has the potential to be a commercial process where scalability, homogeneous distribution and cost-

effectiveness are important criteria.   

AlN particles, whose thermal and electrical properties are exceptional, have been successfully 

synthesized. Specifically: 

- Particle sizes in the sub-micron range were achieved when the gas was injected in the melt 

for 2 hours.  

- Distribution is improved for longer injection times. For shorter bubbling times (1 hour) AlN 

were observed only on the upper section of the casting, while for longer times (2 hours) AlN 

was found throughout and particularly the middle and bottom sections of the casting. 
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- Ammonia does not improve the rate of nitride formation and causes an increase in porosity 

especially for long injection times. This can be attributed to the entrapment of hydrogen in 

the upper part of the crucible where viscosity is higher due to AlN and MgO that synthesize 

at an early stage. 

- Addition of Mg in the casting is fundamental for the mechanism of formation of AlN. When 

pure aluminum was used as matrix, no reinforcement was formed. XRD analysis and SEM 

observation showed the presence of MgO along with AlN.  This suggests an alternative 

hypothesis about the mechanism of formation of nitrides. Oxygen content is lowered and 

AlN forms through direct nitridation or through direct Mg-assisted nitridation. 

- Silicon totally hinders the nitridation reaction. No MgO has been detected but magnesium 

silicide is present in the microstructure. This suggests that 2Mg Si suppresses the formation 

of MgO. Since the latter precipitates during cooling, aluminum nitridation may take place at 

lower temperatures during cooling.  

The control of AlN particle size and the kinetics of the nitridation process need further study.  This 

work has shown that the process is feasible and that this in-situ approach has merit and has 

commercial potential. The aim of producing nano sized (30-40 nm particles) was not achieved in 

these experiments; however, the pathway to do so was clearly laid out.  This work is continuing to 

establish the mechanisms to address the kinetics of the reaction in order to enable us to attain 

particles that are not submicron but rather in the nano range. 
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Research Summaryaluminum: cast shop and alloys 

How would you…
…describe the overall signifi cance 
of this paper?

This paper describes a methodology 
and a conceptual framework 
to manufacture Al-based nano-
composites in a cost-effective way. 
It gives a pathway to make nano-
composites directly from melt.

…describe this work to a 
materials science and engineering 
professional with no experience in 
your technical specialty?

Al-based alloys cannot be used 
above 285°C as the precipitation 
hardening mechanism falls apart. 
Nano-composite Al alloys can be 
utilized at temperatures above 
300°C which gives the opportunity 
to use them for a variety of elevated 
temperature applications.

…describe this work to a 
layperson?

Diesel engines are quite effective 
in that energy usage is less. 
Diesel is quite effective and gets 
excellent mileage (miles/gallon). 
However, diesel engines operate at 
higher temperatures than internal 
combustion engines. Al alloys fall 
short for many diesel applications as 
the Al does not maintain its strength 
at elevated temperatures. Nano-
composites open up a way for us to 
use Al for diesel applications.

Aluminum casting alloys convention-
ally used in the automotive and aero-
space industries (i.e., Al-Zn-Mg, and 
Al-Cu-Mg systems) are able to achieve 
excellent tensile strength at room tem-
perature. At high temperatures, such 
alloys lose dimensional stability and 
their mechanical properties rapidly de-
grade. Aluminum-based nanocompos-
ites show the potential for enhanced 
performance at high temperatures. The 
manufacturing process, however, is dif-
fi cult; a viable and effective method for 
large-scale applications has not been 
developed. In the current study, an in-
novative and cost-effective approach 
has been adopted to manufacture Al/
AlN composites. A nitrogen-bearing 
gas is injected into the melt and AlN 
particles synthesize in-situ via chemi-
cal reaction. In a preliminary stage, 
a model able to predict the amount of 
reinforcement formed has been devel-
oped. AlN dispersoids have been suc-
cesfully synthesized in the matrix and 
the model has been experimentally 
validated. 

intRoduction

Aluminum nanocomposites are 
a novel class of lightweight materi-
als that possess excellent mechanical 
properties and improved dimensional 
stability at high temperatures; applica-
tions of interest are for aerospace, au-
tomotive, defense, etc. However, the 
conventional processing methods for 
the production of metal matrix nano-
composites are sub-optimal.1,2 For ex-
ample, semi-solid processing methods 
may not evenly distribute the reinforc-
ing particles in the matrix alloy.3 Infi l-
tration techniques are diffi cult to scale 
up and may not be cost-effective.4 Ul-
trasonic cavitation techniques provide 
a homogeneous microstructure but the 

aluminum nanocomposites for 
elevated temperature applications

C. Borgonovo, D. Apelian, and M.M. Makhlouf

fl ux densities needed for scale up are 
diffi cult to attain.5 Powder metallurgy 
and mechanical attrition methods result 
in residual microporosity, deterioration 
of the interface between the matrix and 
the reinforcement, and high processing 
costs.6,7 In order to overcome the disad-
vantages associated with these ex-situ
conventional processing routes, a novel 
approach has been followed where the 
reinforcement is not externally added 
but is formed within the parent phase 
(in-situ) via chemical reaction(s) be-
tween elements or between elements 

and compounds.1

 A variety of in-situ techniques, such 
as directional solidifi cation, heavy de-
formation processing, self-propagating 
high-temperature synthesis, exother-
mic dispersion, reactive hot pressing, 
direct reaction synthesis, and vapor–
liquid–solid reaction process, etc., have 
been developed. These processes are 
broadly classifi ed based on the react-
ing phases, i.e. liquid-gas, liquid-solid, 
and solid-solid reactions.8 Liquid-gas 
reaction processing involves the in-
jection of a reactive gas into the melt 
and has shown promise to be a viable 
method;8,9 gas and alloy composition 
determine which phases form. Uniform 
dispersion of the reinforcement, clean 
and coherent particle-matrix interfaces, 
thermodynamical stability of the com-
posite material and cost effectiveness 
are key process characteristics. The 
liquid-gas reaction process allows one 
to manufacture a wide range of matrix 
materials (aluminum, titanium, copper, 
nickel, and iron), and secondary phases 
(nitrides, borides, carbides, oxides, and 
their mixtures).9,10

 Liquid-gas processing approaches 
where the gas is in direct contact with 
the melt surface have been reported;8–12

direct melt oxidation (DIMOX) and di-
rect melt nitridation (PRIMEX) follow 
the liquid-gas reaction approach; how-
ever the melt is in a static/fl owing gas 
environment.10,11 Gas injection, which 
is the process we have developed and 
refi ned, differs from direct melt reac-
tion techniques in that the synthesis of 
the reinforcement is not limited to the 
surface of the melt, but occurs through-
out the depth of the melt. Direct melt 
reaction techniques such as DIMOX 
and PRIMOX are suitable for singular 
phase reinforced composites, whereas 
a large number of reinforcing constitu-
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Table I. Nitridation Gas Injection 
Processing Conditions

                                         Al Alloying 
          Elements       Process

 Mg Si  Time
Experiment  Gases (wt.%) (wt.%) (h)

1 Al + N2 0 0  2, 6, 8
2 Al + N2 15 0  2, 6, 8
3 Al + N2 15 8  2, 6, 8

ents can be formed with the gas injec-
tion method. The price one pays is that 
with the gas injection process control is 
more difficult.10 Gas injection was first 
developed by Koczak and Kumar;12 
they investigated both nitrogen-bearing 
gases (forming AlN, TiN, and their 
mixtures) and carbon-bearing gases 
(forming SiC, TiC, and their mixtures) 
in aluminum alloys matrix. 
 Among various reinforcements for 
aluminum alloys, AlN offers high ther-
modynamic stability and good wet-
tability. Moreover, its high thermal 
conductivity, high electrical resistance, 
low dielectric constant, and a thermal 
expansion coefficient similar to that 
of silicon make it a good candidate 
for thermal management applications, 
as well as for coatings, insulators and 
optoelectronic devices.9,13 It must be 
pointed out that AlN powder is rela-
tively expensive, and thus a deterrent 
when considering AlN/Al for cost-ef-
fective applications. Thus, in-situ fab-
rication of AlN/Al composites by the 
reaction of a nitrogen-bearing gas with 
molten Al is an attractive manufac-
turing route. Although liquid nitrida-
tion has been widely investigated, the 
mechanism for AlN formation is not 
well understood; as expected, process 
control without a sound understanding 
of the underpinning mechanism has not 
been developed. In addition, the effect 
of alloying elements such as Mg and Si 
still remains unclear. Two different for-
mation mechanisms have been identi-
fied: direct nitridation according to the 
reaction 2Al + N

2
 → 2AlN and indirect 

nitridation assisted by a catalyst such 
as magnesium. The latter involves the 

formation of an intermediate phase 
(Mg

3
N

2
) through the reaction 3Mg + N

2
 

→ Mg
3
N

2
 followed by the substitution 

reaction Mg
3
N

2
 + 2Al → 2AlN + 3Mg. 

This mechanism is more likely to be 
responsible for nitride formation than 
direct nitridation.14–19 Hou et al.9 have 
manufactured AlN sub-micron com-
posites in an Al-Mg matrix via nitrogen 
injection and have verified the theory 
of indirect nitridation. Pech-Canul et 
al.15 have shown that the formation of 
magnesium nitrides is kinetically more 
favorable than the formation of AlN. 
However there is no good agreement 
and understanding of indirect nitrida-
tion in Al melts. 
 Nitridation studies have confirmed 
the detrimental effect of oxygen on 
nitride formation.20–22 Oxidation of alu-
minum is a more exothermic reaction, 
and is more favorable than nitridation. 
Daniel et al.10 found that nitridation is 
more sensitive than oxidation to reac-
tion temperature and partial pressure of 
the reactant gas. They also have shown 
that moisture in the reactive gas hinders 
the synthesis of AlN. Zheng et al.17,23 
confirmed that when nitrogen gas is re-
placed by ammonia gas, hydrogen dis-
sociates and acts as an oxygen getter, 
reducing the oxygen partial pressure in 
the melt and enhancing the rate of alu-
minum nitridation. The effect of Si on 
AlN formation is also unclear. Scholz 
and Greil24 stated that low Si contents 
favor nitridation. Jinxiang et al.22 in-
vestigated the influence of Mg and Si 
on the rate of nitride formation, under-
lining the predominant role of magne-
sium over silicon. Zheng et al.23 have 
reported successful formation of AlN 

in an Al-Si melt when processed with 
ammonia gas.
 In this paper we show the feasibil-
ity of AlN formation in Al melts via 
injection of a nitrogen-bearing gas; we 
have done this both through a compre-
hensive mathematical model as well as 
experimental verification. 

Methodology

Procedure and Apparatus 

 The synthesis of AlN in Al melts was 
carried out in a sealed electric resis-
tance furnace (Figure 1). Al (99.9%), 
Al-15wt.%Mg and Al-15wt.%Mg-
8wt.%Si charges of approximately 150 
g were heated in a BN-coated conical 
alumina crucible placed in a stainless 
steel chamber. The crucible was lo-
cated in the lower part of the furnace 
and temperature control throughout 
the melt was ensured. Mg and Si were 
added in the form of Al-50%Mg master 
alloy and pure Si. The furnace was first 
evacuated to 10–2–10–3 Torr and subse-
quently purged with argon (Grade 5) 
gas. This operation was repeated three 
times before backfilling the furnace 
with argon. The furnace was heated 
to 1,000°C, measured by K-type ther-
mocouples inserted in the furnace wall 
and in the crucible. During the heat-
ing cycle, argon gas was introduced 
into the system at a rate of 0.2 l/min. 
was maintained. Once temperature was 
stabilized at 1,000°C, a BN-coated alu-
mina tube was inserted in the melt and 
nitrogen gas (Grade 5) was injected 
through the melt for different process-
ing times (Table I); a gas flow rate of 
0.5 l/min. was maintained. Two high 
capacity oxygen-and moisture-removal 
traps were used. The active material in 
each trap can lower the oxygen content 
to less than 1 ppb and moisture levels 
to less than 10 ppb. Once gas injection 
was completed, the tube was extracted 

Figure 1. Schemat-
ic diagram of the 
in-situ liquid-gas 
process.
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Equations

and the melt was left to cool down in 
the furnace in an argon atmosphere. 

Microstructure and reaction products 
were investigated via scanning electron 
microscopy (SEM, JEOL JMS-5610 
equipped with EDS) and x-ray diffrac-
tion (XRD, D/MAX2200, Rigaku) us-
ing Cu K radiation operated at 36 kv 
and 26 mA. The amount of aluminum 
nitrides formed was determined by 
weighing the sample before and after 
the gas injection process and calculat-
ing by considering the ratio of molecu-
lar weight of AlN and atomic weight 
of nitrogen. Samples were sectioned 
from the bottom, the middle, and the 
top parts of the casting to characterize 

the distribution of AlN particles in the 
matrix.

Model Formulation

The feasibility of nitridation can be 
mathematically expressed by Equa-
tion 1, where W

AlN
 is the total amount 

of AlN formed during the process. t is 
the injection time, A

t
 is the total gas-

liquid interface and 
AlN

 is the rate of 
formation of AlN particles. (All equa-
tions are shown in the table.) Calcula-
tion of A

t
 and 

AlN
 is necessary in order 

to determine W
AlN

. The bubble diameter 
d

b
 affects A

t
 according to Equation 2, 

where N
b
 is the number of gas bubbles 

in the melt and A
t
 is the bubble area. 

The bubble diameter also affects 
AlN

according to Equation 3, where E is 
an enhancement factor, K

L
 is the mass 

transfer coefficient, C* is the nitrogen 
concentration at the gas-liquid inter-
face and C

i
 is the initial nitrogen con-

centration in the melt. Both E and K
L
 

can be derived from the bubble diam-
eter, d

b
.

Calculation Domains  
and Assumptions

 The process is modeled on two cal-
culation domains:
  Two dimensional (2-D) domain 

considering the overall evolution 
of the gaseous flow in the crucible 
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 One-dimensional domain consid-
ering the kinetics of particle for-
mation at the gas-liquid interface 
ahead of the gas bubble 

 The following assumptions were 
made:
  The bubble is spherical
  Finite liquid domain
  Gas in the bubble is pure and 

obeys the ideal gas law
  Bubble surface is contaminant-

free
  Bubbles do not interact with one 

another
  Liquid phase resistance controls 

mass transfer in the melt
  Mass transfer in the liquid phase 

is ruled by Higbie’s penetration 
theory27,28,32

 Effects of the confining crucible 
walls on the bubbles are negligi-
ble

  Influence of melt composition 
(addition of alloying elements) on 
the nitridation reaction is negli-
gible

 The bubbly flow module and PDE 
mode of COMSOL Multi-physics 
were used to solve the coupled partial 
differential equations and determine 
the bubble radius and gas flow veloci-

ty in the liquid. Two mesh modes were 
used for the 2-D domain: a boundary 
layer at the boundaries and a free mesh 
on the sub-domain. A boundary layer 

mesh is a mesh with dense element 
distribution in the normal direction 
along specific boundaries. It is typi-
cally used for fluid flow problems to 
resolve the thin boundary layers along 
the no-slip boundaries where a layered 
quadrilateral mesh is employed.

Total Gas-Liquid Interface Area (A t )

 The number of gas bubbles in the 
melt, N

b
 is calculated by Equation 4, 

where  is the bubble residence time in 
the melt and f

b
 is the frequency of gas 

bubble formation at the nozzle and is 
defined by Equation 5. Here V

g
 is the 

volume flux of the gas at the nozzle 
and V

bo 
is the volume of the detach-

ing bubble given by Equations 6 and 
7,25 where d

bo
 is the diameter of the 

detaching bubble. V
g
 is derived from 

the ideal gas law approximation, given 
in Equation 8, where P

in
, T

in
, V

in
 is the 

state of the gas at the inlet of the injec-
tion tube. Substituting Equations 6, 7, 
and 8 into Equation 5 allows f

b
 to be 

calculated as Equation 9.
It can be noted that the frequency 

of bubble formation increases with 
increasing temperature and gas flow 
rate, whereas it decreases with in-
creasing interface energy and pressure 
in the furnace. 

Figure 2. Schematic 
diagram of the diffu-
sion domain in the 
melt (Higbie’s Penetra-
tion Theory28,32)

Figure 3. XRD pattern of the upper part of the crucible. Processing time = 6 h.
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b

Figure 4. (a) SEM image and (b) EDS spectrum of AlN imbedded in the matrix in the upper 
part of the crucible. Processing time = 6 h.

Figure 5. (a) SEM image and (b) EDS spectrum of pockets of AlN and MgO powder in the 
upper part of the crucible. Processing time = 6 h.
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Bubble Radius 

A simplified expression of the Na-
vier–Stokes equation for an isolated 
bubble rising in an incompressible 
liquid is used to calculate r

b
, Equa-

tion 10,26 where P
g 

is the pressure in 
the bubble, P

l
 the liquid pressure, s 

the surface tension of aluminum and 
 is the dynamic viscosity of the liq-
uid. Pressure and concentration at the 
bubble surface are coupled through 
Henry’s law (Equation 11) and mass 
balance (Equation 12). He is Henry’s 
constant, where R is the ideal gas con-
stant, T is the temperature, and D is 
the diffusion coefficient of nitrogen in 
aluminum whose dependence on tem-
perature is expressed by Equation 13.
 The concentration gradient at the 
bubble surface =

∂
∂ b

c
t r r  (A) is determined

by Fick’s second law of diffusion in 
a steady liquid domain (the convec-
tion term is neglected), as given in 
Equation 14. The initial condition for 
the pressure in the gas bubble, P

GO
 is 

given by the hydrostatic pressure at 
the nozzle of the injection tube and 
is given by Equation 15, where P

atm

is the atmospheric pressure, r
l
 is

 
the 

liquid density, h is the crucible height, 
and d

no
 is the nozzle diameter of the 

injection tube. The initial condition 
for concentration at the bubble surface 
is derived from Henry’s law with P

g

= P
GO

, while the initial condition for 
concentration in the liquid domain is 
zero.

Rate of Formation of AlN Particles 

 Diffusion of nitrogen atoms in the 
liquid is modeled by Higbie’s penetra-
tion theory (Figure 2), which consid-
ers that the gas-liquid interface is 
composed of various elements con-

tinuously brought up to the interface 
from the melt.
 The rate of formation of AlN is con-
sidered to be equal to the rate of nitro-
gen atoms diffusing in the melt, and 
can be calculated by Equation 3. Hen-
ry’s Law (C* = P

g
/pt

c
) applies at the 

gas-liquid interface. The mass transfer 
coefficient according to Higbie’s Law 
is given by Equation 16,28,32 where t

c
 

is the local diffusion time or contact 
time, i.e. the time that a single element 
spends in contact with the gas bubble. 
t
c
 is the time needed for diffusion to 

occur in the boundary layer. Bubble 
diameter and bubble velocity are con-
sidered when calculating t

c
. Synthesis 

of AlN lowers the number of nitrogen 

atoms in the melt after diffusion, and 
thus it increases the nitrogen concen-
tration gradient between the bubble 
surface and the melt. The enhance-
ment factor (E) is a non-dimensional 
index that accounts for such phenom-
enon. The enhancement factor for a 
first order chemical reaction such as 
the one between aluminum and nitro-
gen has been reported by Madhavi et 
al.29 as Equations 17–19, where k

c
 is a 

kinetics constant for the direct nitrida-
tion reaction, D

Al
 is the diffusion co-

efficient of aluminum and C*
Al

 is the 
aluminum concentration at the gas-
liquid interface.

Results and discussion

Experimental

 Pure aluminum was injected with 
nitrogen for 2, 6, and 8 hours at 
1,000°C. XRD analysis of the top, 
middle and bottom sections of the 
cast product revealed that no nitrides 
were formed. This suggests that the 
nitridation reaction needs a catalyst 
such as Mg. The addition of 15% Mg 
to the aluminum was investigated and 
resulted in a consistent amount of ni-
trides for 6 and 8 hours processing 
times. In the case of nitridation for 6 

1 mm

1 mm

1 mm

a

a

a

b

b

b

AlN

Figure 6. (a) SEM image and (b) EDS spectrum of AlN embedded in the matrix in the 
middle section of the casting. Processing time = 8 h.
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Figure 8. (a) SEM image and (b) EDS spectrum of magnesium silicide.

Figure 7. (a) SEM image and (b) EDS spectrum of pockets of AlN and MgO powder in the 
middle section of the casting. Processing time = 8 h.
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hours, XRD analysis confirms strong 
peaks of AlN in the upper part of the 
crucible along with peaks for MgO 
(periclase) (Figure 3). SEM and EDS 
analyses confirm the presence of two 
different morphologies of AlN: (i) em-
bedded in the microstructure (Figure 
4) or (ii) AlN + MgO powder (Fig-
ure 5). The size of aluminum nitrides 
formed ranges from 1 to 3 mm whereas 
the MgO particles were of submicron 
size. 

When the bubbling time is increased 
to 8 hours, AlN was observed through-
out the length of the resultant casting. 
The AlN particles were present in two 
different morphologies: (i) embedded 
in the microstructure (Figure 6), and 
(ii) as pockets of powder (Figure 7). 
XRD analysis reveals AlN and MgO 
peaks in the middle and bottom sec-
tions of the casting. 

The peaks from the middle and bot-
tom sections of the casting are less in-
tense than those from the top section. 
It can be noted that the average size of 
AlN particles is smaller compared to 
the case when shorter bubbling times 
were used. Specifically, the AlN is ~1 
mm for AlN embedded in the micro-
structure and in the submicron range 
(around 0.4 mm) in the powder phase. 
Size control still remains an issue and 
it is currently being studied at WPI. It 
is expected that rotating the injection 
tube will significantly improve the dis-
tribution of AlN particles in the ma-
trix. 

The principal role of Mg during 
the synthesis of AlN can be explained 
when the detrimental effect of oxygen 
on nitridation is considered. Studies 
have demonstrated that the rate of alu-
minum nitridation is several orders of 
magnitude slower than the rate of alu-
minum oxidation at any given temper-

ature.24 According to the equilibrium 
reaction (Equation 20), at 1,000°C the 
partial pressure of oxygen ( PO2

) that 
is necessary for formation of AlN is 
around 10–19 Pa (Equation 21). Such 
a low oxygen pressure is difficult to 
attain even after passing the nitrogen 
gas through deoxidating traps.
 At high temperatures, Mg vapor-
izes and acts as an “oxygen-getter.” It 
combines with oxygen and thus it lo-
cally lowers the partial pressure of the 
residual oxygen in the nitriding gas. 
The reactions are given as Equations 
22 and 23.
 Depending on the temperature and 
the concentration of Mg, the equilib-
rium partial pressure of O

2
 is given by 

Equation 24,  is the activity coeffi-
cient of Mg, x is the Mg concentration, 
G

22
 and G

23
 are the standard Gibbs en-

ergy changes for reactions 22 and 23, 
respectively. From thermodynamic 
data reported in the literature, the par-

tial pressure of the residual oxygen for 
15 wt.% Mg is in the range of 0.1 Pa. 
It can be stated that the mechanism of 
AlN formation is direct and assisted 
by Mg.
 When silicon is added to the melt, 
XRD analyses reveal that AlN and 
MgO do not form, whereas Mg

2
Si 

(magnesium silicide) precipitates as 
shown in Figure 8. It is hypothesized 
that the synthesis of the Mg

2
Si phase 

is favored compared to the synthe-
sis of MgO, and that the Mg content 
in the melt becomes depleted by the 
precipitation of the Mg

2
Si phase. As 

a result, AlN cannot form due to the 
high oxygen content in the reactive 
gas. An important note concerning 
the temperature of formation of MgO, 
and thus AlN, is that the Mg

2
Si phase 

begins to form at 680°C and its forma-
tion is complete at 550°C (Figure 9). 
Therefore, MgO formation must occur 
at temperatures equal or smaller than 
680°C. This leads us to conclude that 
direct nitridation of aluminum occurs 
during cooling and not at temperatures 
~1,000°C.

Model Outcomes

Bubble Radius 

The bubble may shrink due to the 
diffusion of nitrogen ahead of the 
gas-liquid interface (conservation of 
mass), and may also expand due to a 
decrease in the hydrostatic pressure as 
it rises in the melt. Expansion is slight-

Figure 10. Bubble radius vs. dis-
tance from the bottom of the cru-
cible. Q = 0.5 l/min., T = 1,000°C, 
and t = 6 h.

Figure 11. Local diffusion time 
vs. distance from the bottom of 
the crucible. Q = 0.5 l/min., T = 
1,000°C, t = 6 h.
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Figure 9. Computer calcu-
lated fraction solid of mag-
nesium silicide formed vs. 
temperature (Pandat Soft-
ware).
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ly predominant (Figure 10) but over-
all, the bubble radius remains nearly 
constant. This can be attributed to the 
small depth of the crucible used in our 
experiments (~5 cm) which limits the 
effect of both the hydrostatic pressure 
and the mass diffusion. The model has 
no restrictions and can be applied to 
domains of any size range. For indus-
trial bubble columns (meters tall), the 
variation in bubble radius is expected to 
be larger. The detachment radius of 3.5 
mm (large bubble regime) also induces 
dimensional stability of the bubble dur-
ing its rise. Clift et al.30 demonstrated 
that large bubbles (r

b
 > 2 mm) rising 

in a liquid tend to retain their size and 
their velocity. 

Rate of Formation of AlN Particles 

The bubble radius and velocity, the 
local diffusion time t

c
, the mass trans-

fer coefficient K
L
, were used to calcu-

late the Enhancement Factor E, which 
is used to determine the rate of alumi-
num nitride formation. Figures 11 and 
12 show a slight decrease in the local 
diffusion time and an increase in the 
mass transfer coefficient as the bubble 
approaches the surface of the melt and 
expands. An explanation of this phe-
nomenon is given by Pinheiro,31 who 
claims that when a gas bubble expands, 
the diffusion boundary layer ahead of 
the gas-liquid interface is stretched, 
and its thickness () decreases. Hence, 
according to the relation K

L
 = D/, the 

mass-transfer coefficient increases. The 
lower diffusion time is also due to the 
decrease in the thickness of the diffu-
sion boundary layer. 
 The enhancement factor remains 
nearly constant at 2 (Figure 13). It has 
been shown that for bubble column 
reactors the scatter in E as the bubble 
rises in the liquid is more consistent. 
Therefore, E is strictly correlated to 
the residence time of the bubble in the 
liquid, which in our case—small liquid 
pool—is limited. Figure 14 shows that 
the rate of formation of AlN particles 
in the melt increases in the upper part 

of the crucible. This phenomenon has 
been experimentally confirmed, since 
AlN has been detected mainly in the 
upper section of the casting for all pro-
cessing times. 

Validation of the Model

 In order to confirm the results of 
the model, the sample was weighed 
and compared with the base alloy. The 
weight loss due to evaporation has been 
taken into account by performing ex-
periments under the same conditions 
but without injecting gas in the ma-
trix alloy. The difference in molecular 
weight was also taken into account. 
Figure 15 shows that the model pre-
dictions and the experimental results 
are in good agreement. For two hours 
injection time, the model predicts the 
synthesis of some AlN, whereas no 
AlN was experimentally detected. It 
appears that the accuracy of the model 
increases with gas injection time. A 
comment concerning the effect of Mg 
addition on the validity of the model is 
worth making. The increase in the mea-
sured weight is due to the formation of 
AlN and MgO. The model does not take 
into account such phenomenon. The 
chemistry of the matrix, as well as the 
composition of the reactive gas, plays 
a fundamental role in the dynamics of 
the process. The model will be opti-
mized by considering the effect of trace 
amounts of oxygen in the reactive gas 
and the addition of alloying elements. 

Figure 12. Mass transfer coeffi-
cient vs. distance from the bot-
tom of the crucible. Q = 0.5 l/
min., T = 1,000°C, t = 6 h.

Figure 13. Enhancement factor 
vs. distance from the bottom of 
the crucible. Q = 0.5 l/min., T = 
1,000°C, t = 6 h.

Figure 14. Rate of formation of 
AlN particles vs. distance from 
the bottom of the crucible. Q = 
0.5 l/min., T = 1,000°C, t = 6 h.

Figure 15. AlN formed (vol.%) 
vs. gas injection time. Model 
prediction and measurements.
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conclusions

 Liquid-gas nitridation of aluminum 
is feasible. The in-situ route to man-
ufacturing nanocomposites has the 
potential to be a commercial process 
where scalability and cost-effective-
ness are important criteria. AlN par-
ticles, whose thermal and electrical 
properties are exceptional, have been 
successfully synthesized. It is found 
that:
 For higher injection times, the size 

of the AlN particles is in the sub-
micron range and particles distri-
bution is improved.

 The presence of Mg in the casting 
is necessary for the formation of 
AlN. When pure aluminum is used 
as a matrix, AlN did not form. 
XRD analysis and SEM observa-
tions showed the presence of MgO 
along with AlN. This suggests an 
alternative hypothesis about the 
mechanism of formation of ni-
trides. Oxygen content is lowered 
by the formation of MgO, and AlN 
forms through direct Mg-assisted 
nitridation. 

 Silicon totally hinders the nitrida-
tion reaction. No MgO was de-
tected, but magnesium silicide was 
present in the microstructure. This 
suggests that Mg

2
Si suppresses the 

formation of MgO. Since the latter 
precipitates during cooling, alumi-
num nitridation may take place at 
lower temperatures during cool-
ing. 

  A reliable model for the prediction 
of the amount of AlN that forms 
has been developed and validated. 
The variation of local diffusion 
time, mass transfer coeffi cient, en-

hancement factor (E), and rate of 
AlN formation along the depth of 
the crucible was investigated. The 
rate of formation of AlN increases 
near the surface of the melt as the 
gas bubble expands during its rise. 
The model can be applied to do-
mains of any size. The effect of 
alloying elements will be studied 
with the intent to further optimize 
the model.
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