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Abstract

A novel Markov Random Field (MRF) based method for the mosaicing of 3D ultra-
sound volumes is presented in this dissertation. The motivation for this work is the
production of training volumes for an affordable ultrasound simulator, which offers a
low-cost/portable training solution for new users of diagnostic ultrasound, by provid-
ing the scanning experience essential for developing the necessary psycho-motor skills.
It also has the potential for introducing ultrasound instruction into medical education
curriculums. The interest in ultrasound training stems in part from the widespread
adoption of point-of-care scanners, i.e. low cost portable ultrasound scanning systems
in the medical community.

This work develops a novel approach for producing 3D composite image volumes
and validates the approach using clinically acquired fetal images from the obstetrics
department at the University of Massachusetts Medical School (UMMS). Results us-
ing the Visible Human Female dataset as well as an abdominal trauma phantom are
also presented. The process is broken down into five distinct steps, which include in-
dividual 3D volume acquisition, rigid registration, calculation of a mosaicing function,
group-wise non-rigid registration, and finally blending. Each of these steps, common
in medical image processing, has been investigated in the context of ultrasound mo-
saicing and has resulted in improved algorithms. Rigid and non-rigid registration
methods are analyzed in a probabilistic framework and their sensitivity to ultrasound
shadowing artifacts is studied.

The group-wise non-rigid registration problem is initially formulated as a maxi-
mum likelihood estimation, where the joint probability density function is comprised
of the partially overlapping ultrasound image volumes. This expression is simplified
using a block-matching methodology and the resulting discrete registration energy is
shown to be equivalent to a Markov Random Field. Graph based methods common in
computer vision are then used for optimization, resulting in a set of transformations
that bring the overlapping volumes into alignment. This optimization is parallelized
using a fusion approach, where the registration problem is divided into 8 independent
sub-problems whose solutions are fused together at the end of each iteration. This
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method provided a speedup factor of 3.91 over the single threaded approach with
no noticeable reduction in accuracy during our simulations. Furthermore, the regis-
tration problem is simplified by introducing a mosaicing function, which partitions
the composite volume into regions filled with data from unique partially overlap-
ping source volumes. This mosaicing functions attempts to minimize intensity and
gradient differences between adjacent sources in the composite volume.

Experimental results to demonstrate the performance of the group-wise registra-
tion algorithm are also presented. This algorithm is initially tested on deformed ab-
dominal image volumes generated using a finite element model of the Visible Human
Female to show the accuracy of its calculated displacement fields. In addition, the al-
gorithm is evaluated using real ultrasound data from an abdominal phantom. Finally,
composite obstetrics image volumes are constructed using clinical scans of pregnant
subjects, where fetal movement makes registration/mosaicing especially difficult.

Our solution to blending, which is the final step of the mosaicing process, is also
discussed. The trainee will have a better experience if the volume boundaries are
visually seamless, and this usually requires some blending prior to stitching. Also,
regions of the volume where no data was collected during scanning should have an
ultrasound-like appearance before being displayed in the simulator. This ensures the
trainee’s visual experience isn’t degraded by unrealistic images. A discrete Poisson
approach has been adapted to accomplish these tasks. Following this, we will describe
how a 4D fetal heart image volume can be constructed from swept 2D ultrasound. A
4D probe, such as the Philips X6-1 xMATRIX Array, would make this task simpler as
it can acquire 3D ultrasound volumes of the fetal heart in real-time; However, probes
such as these aren’t widespread yet.

Once the theory has been introduced, we will describe the clinical component of
this dissertation. For the purpose of acquiring actual clinical ultrasound data, from
which training datasets were produced, 11 pregnant subjects were scanned by experi-
enced sonographers at the UMMS following an approved IRB protocol. First, we will
discuss the software/hardware configuration that was used to conduct these scans,
which included some custom mechanical design. With the data collected using this
arrangement we generated seamless 3D fetal mosaics, that is, the training datasets,
loaded them into our ultrasound training simulator, and then subsequently had them
evaluated by the sonographers at the UMMS for accuracy. These mosaics were con-
structed from the raw scan data using the techniques previously introduced. Specific
training objectives were established based on the input from our collaborators in the
obstetrics sonography group. Important fetal measurements are reviewed, which form
the basis for training in obstetrics ultrasound. Finally clinical images demonstrating
the sonographer making fetal measurements in practice, which were acquired directly
by the Philips iU22 ultrasound machine from one of our 11 subjects, are compared
with screenshots of corresponding images produced by our simulator.

Dissertation Supervisor: Peder C. Pedersen
Title: Professor of Electrical and Computer Engineering
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Chapter 1

Introduction

Recently increased attention has been paid towards using high fidelity medical simu-

lation as a training tool for clinicians, particularly in medical ultrasound, evidenced

by a number of commercial simulators having been developed. Research suggests that

traditional methods for medical education, in particular the Halstedian approach of

see one, do one, teach one [6], are less effective than Simulation Based Medical Edu-

cation (SBME) for the acquisition of a wide range of clinical skills. Advanced cardiac

life support, laparoscopic surgery, and cardiac auscultation are just a few examples

where SBME has been linked to improved patient care [46].

After completing medical school, graduates will participate in residency programs

in order to further develop their knowledge base and decision making ability within

a specific field of medicine. However, development of their technical skills, which will

become the foundation of their profession, is lacking. In order to correct this defi-

ciency researchers have proposed innovative high fidelity surgical simulation devices,

ultimately having a positive impact on patient outcomes [69]. The controlled, low

intensity practice environment provided by SBME promotes learning and is easy for

students to access [29]. After analyzing more than 100 simulation studies comprised

of all types of medical simulators, other researchers arrived at the same conclusion,

stating that high-fidelity simulators are effective and should complement education in

patient care settings [7]. A recent review article on simulation in obstetrics and gyne-

cology [23] also advocates for SBME. Despite the mounting evidence that simulation
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based education can improve healthcare delivery, ultrasound simulators have yet to

be integrated into most training curriculums. Even medical schools which include

ultrasound rely on traditional teaching methods [30].

1.1 Motivation for improved ultrasound training

The interest in ultrasound training stems from its widespread adoption in the medi-

cal community, which has been expanding due to the availability of low cost portable

scanning systems. The cost of the an ultrasound scanning system is much less than

the cost of a scanner for other imaging modalities such as CT or MRI, and the indus-

try has reached a point where most medical offices in the U.S. can afford a scanning

system. The medical community is currently experiencing a growth in ultrasound

based diagnostic procedures, which far outpaces the growth in other imaging modali-

ties [77]. In the past large stand-alone ultrasound scanners were used by sonographers,

but approximately 15 years ago the transition to point-of-care (POC) ultrasound be-

gan, which resulted in a variety of clinicians beginning to utilize lower cost, portable

ultrasound scanners. For example in cardiology there was a 60% increase in the use

of POC ultrasound between 2004 and 2009 and also during the same period there

was a 28% increase in POC use by non-radiologist physicians [43]. One worrisome

development that comes with the increased popularity of POC ultrasound is the lack

of formal training for clinical specialists who have begun to use it in their practice

[50]. Most education, delivered through short courses or online training, is ad-hoc

and lacks procedure or discipline specific standards. Because the use of ultrasound

is growing at such a high rate the existing model for education, which requires live

subjects for hands-on training, is no longer adequate. Most of the practical hands-on

experience comes scanning normal, paid human volunteers, but even such training

is costly and of limited availability. The ultrasound manifestations of specific diag-

nosable conditions are limited to observing pre-recorded video tapes, in which the

hands-on learning is eliminated. Simulators could become a key component in meet-

ing standardized training and assessment requirements.
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There are many reasons to study the effectiveness of simulation based ultrasound

education in fields of medicine where it is applicable, i.e. abdominal trauma, cardi-

ology, obstetrics, etc. For instance fetal abnormalities occur in approximately 2% of

pregnancies in the United States, accounting for close to 80,000 events a year, and

are often overwhelming for the families. Conventional ultrasound training has not

led to better detection [45], which can be attributed to the lack of hands-on expe-

rience trainees have scanning these types of patients. Currently only experienced

sonographers with a high number of diverse cases can develop the diagnostic ability

to handle these rare events. SBME lets all obstetricians experience the detection of

unusual fetal abnormalities without requiring live patients to scan.

The effectiveness of simulator training for ultrasound based guided procedures

has also been studied. In [60] a simulator was developed for amniocentesis, the

practice in which a needle is used to sample a small amount of fluid from the amniotic

sac surrounding the developing fetus. In that study, which examined data from

30 trainees, it was shown that the simulator was effective in improving clinician

skills. More recent research in [18] demonstrated that the practical image acquisition

skills acquired during simulated training were directly applicable to human models

in a course designed to teach the Focused Assessment with Sonography for Trauma

(FAST) exam. When including simulator based training alongside didactic training in

ultrasound-guided central venous catheter insertion, the residents which received the

combined training outperformed their peers in aseptic technique and measurements

of knowledge [41]. Transoesophageal echocardiography is another area where marked

improvements in learning accompanied the introduction of commercially available

simulators [61],[12].

Tissue mimicking ultrasound phantoms exist as an alternative to virtual reality

based simulation, for instance CAE Healthcare’s Blue Phantom line, but are expensive

and do not provide a realistic degree of anatomical details. They have been developed

for specialized training in areas such as obstetrics, abdominal trauma, and many

others. For example, the company CIRS has a line of fetal phantoms and Kyoto

Kagaku Co. has developed an abdominal trauma phantom. The problem with this
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model of instruction is the prohibitive cost of the phantoms, which can reach upwards

of $20,000 USD for one Kyoto Kagaku abdominal trauma phantom. In addition they

may only cover a few pathological conditions. There is a lack of anatomical variability

and once a trainee has mastered a particular phantom there is little training value left

in repeat scanning. The images produced from scanning a phantom are often clearer

and contain less artifacts than clinical ultrasound, thus they may not properly prepare

the trainee for scanning an actual patient. Scanning the phantom also requires the

availability of an ultrasound system which runs counter to our goal of delivering a

low cost training solution that can be widely deployed.

1.2 Training challenges

The task of training sonographers presents a unique set of challenges. The trainee

must develop the psycho-motor skills necessary to position the transducer in the

proper plane, ensuring the desired anatomy is imaged by the ultrasound system.

Medical ultrasound has relatively poor spatial resolution and suffers from imaging

artifacts like speckle and shadowing, while other methods such as CT or MR are

acquired at higher resolutions and provide a much clearer image. Also access to

willing subjects remains an obstacle to ultrasound training, particularly in the fields

of obstetrics and abdominal trauma. Too few opportunities exist to scan patients

with varying conditions and the motor skills essential for diagnosis require significant

time, instruction, and practice to master. Simulator based training can be used

to overcome this bottleneck; however the educational value is dependent upon the

simulators realism, which refers to both the image quality and the system’s approach

to transducer manipulation/tracking.

Ultrasound simulators do not use sophisticated phantoms or require patients to

scan, which means that the images must either come from a re-sliced volume stored

on the hard disk or be dynamically generated by the CPU/GPU using a model of the

anatomy. There are essentially two schools of thought when it comes to producing

ultrasound image data for simulation purposes. Proponents of the first school sug-
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gest that realistic ultrasound images can be synthesized numerically using elements

of ultrasound physics. Although the quality of artificial ultrasound images is steadily

improving they are still discernible from clinically acquired images, especially in ob-

stetrics, which possibly limits their training value. One example of this approach can

be found in [13], where ray tracing was used in conjunction with a deformable mesh

model. The second school of thought suggests that the ideal volume for simulation

purposes should be constructed from real ultrasound images of the desired anatomy.

This guarantees that US specific features such as speckle or shadowing seem realistic

in the simulator and don’t appear like a mathematical approximation of the physical

process.

This dissertation develops a novel approach for producing these 3D composite

image volumes and validates the approach using clinically acquired fetal images from

the obstetrics department at the University of Massachusetts Medical School.

1.3 Review of available ultrasound simulator sys-

tems

There are a number of companies/institutions developing ultrasound simulators with a

wide range of training goals in mind. A recent survey of available systems can be found

in [10] where simulators have been classified by type and method of image generation.

One such company is Sonosim, which has developed a laptop-based training solution

with an extensive library of image volumes. Examples of training modules available

include cardiology, abdominal trauma, and OB/GYN. Similar to our system, the

ultrasound image displayed in Sonosim’s virtual console is also sliced from a 3D

volume obtained from a live subject. The crucial difference between our simulator

and the Sonosim is in the actual scanning experience, where our simulator system

utilizes a sham transducer with 5 degrees of freedom (DoF) whereas Sonosim’s only

provides 3 DoF. Sonosim only allows the trainee to place the transducer in certain pre-

determined locations on the body thus the sham transducer is only required to track
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rotation. Because no translation is allowed on the abdomen the scanning experience

isn’t as realistic as the one our system provides. This also implies that the trainee

doesn’t interact with mosaiced image volumes because a separate 3D volume can

simply be stored for each possible probe location. Our system uses volumes which

have been constructed from many partially overlapping 3D volumes whereas Sonosim

does not.

CAE VIMEDIX recently developed an ultrasound simulator with a focus on the

thoracic, abdominal, and pelvic cavities. One version of their product concentrates

on preparing students to work in the Intensive Coronary Care Unit (ICCU); thus it

offers content on the focused cardiac ultrasound exam, the assessment of the lung

and pleural space, and the focused assessment with sonography for trauma (FAST)

exam among others. Another version of their product offers training in prenatal ul-

trasound. Users work on developing proficiency in image acquisition, assessment of

fetal anatomy, gestational age assessment, and maternal adnexal anatomy. These

obstetrics learning modules are closely related to ours, which are briefly described in

Chapter 7; however, our simulator adds fetal measurements such as abdominal cir-

cumference, biparietal diameter, femur length, and amniotic fluid assessment. While

the training goals of the CAE VIMEDIX prenatal ultrasound simulator are compara-

ble to ours, the approaches to simulation are very different. Using the CAE VIMEDIX

system the trainee scans a manikin with a tracked probe. This position/orientation

information enables the system to display the appropriate ultrasound image on the

console. Tracking the transducer as the user scans a manikin adds significant cost

to the system because it now requires some type of magnetic tracking solution. Our

tracking system is much more cost effective. It derives the probe’s position informa-

tion by capturing images of a minuscule printed pattern, which was attached to the

rubber abdomen, using a tiny camera placed in the transducer. More information can

be found in [71]. However, the most significant difference between our system and

the CAE VIMEDIX systems is the source of the image data. The ultrasound image

displayed in the CAE VIMEDIX systems is simulated using a computer model, thus

it is not as realistic as those displayed by our training solution.
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Simbionix is Israeli company producing medical simulation devices and has been

in the market since 1997. Their product line contains several virtual reality surgi-

cal trainers which were designed to simulate procedures ranging from anthroscopic

knee/shoulder operations to laparoscopic surgery. Their ultrasound training system

is known as the U/S Mentor and was built to educate sonographers on basic clinical

skills. There are also bedside echocardiography, FAST, abdominal, trans-esophageal

echocardiography, and trans-vaginal sonography modules available. This system is

similar to the CAE VIMEDIX product in the sense that the trainee is scanning a

manikin while observing simulated ultrasound images. One interesting component

of this system is the section of the user interface that displays a detailed 3D model

of the anatomy being scanned. The simulated ultrasound image is displayed along

with the model, helping the sonographer associate the 2D ultrasound image with a

3D representation of the organ. Sonographers need to develop the intuition to orient

themselves with the patient’s anatomy based solely on 2D ultrasound slices and this

supplemental view may expedite the process. The drawback of this system is the

simulated ultrasound data, most likely generated from CT volumes, which doesn’t

match the realism obtained by re-slicing mosaiced clinical ultrasound volumes. Our

system is superior to the U/S Mentor in this respect.

Finally Medaphor’s ultrasound training systems should be discussed as Medaphor

is the only company that incorporates mosaiced 3D volumes obtained from live sub-

jects into their training simulators, much like our simulator does. The company hasn’t

published the mosaicing algorithm used to produce the composite training volumes in

order to maintain their edge in the market; however, based on the advertised screen-

shots and our experience at various conferences testing their simulators, we infer that

they follow the same basic mosaicing steps that are proposed in Figure 1-2. Al-

though non-rigid registration is an important component in both Medaphor’s volume

generation process and ours, significantly different methods have been proposed in

the literature which could have been used to achieve similar results. Our mosaicing

method cannot be directly compared to Medaphor’s because they have not published

their process due to business concerns. Nevertheless, our approach to the group-wise
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registration of overlapping ultrasound volumes is novel with respect to the published

algorithms and will be examined thoroughly in Chapter 3. Medaphor’s ScanTrainer

product line includes simulators for trans-vaginal and trans-abdominal ultrasound.

The main difference between our simulator design and Medaphor’s is the way in

which the trainee interacts with the sham transducer. The ScanTrainer attaches the

transducer to a custom haptic device which is then used to track position/orientation

information and give the impression that the trainee is scanning a live subject. Appli-

cation specific haptic devices were created for both trans-abdominal and trans-vaginal

scanning. An issue with this approach is that the haptic device adds thousands of

dollars to the cost of an individual system, thus an institution may only be able to

afford a few training simulators. Although the elaborate design is impressive this

solution doesn’t address the need for a low cost training simulator which can provide

a hands-on scanning experience to the masses.

Academic research initiatives have also produced a handful of simulators which

appeared in the literature over the past 5 years. In [70] a transrectal ultrasound sim-

ulator for prostate imaging was developed utilizing a Wiimote attached to a dummy

probe. A FAST simulator with patient specific cases was developed by [59]; how-

ever this system only allows angling of the transducer (3 DoF) at fixed positions and

doesn’t provide a true scanning experience. Perk Tutor, An open-source training

platform for US-guided need insertions, was introduced in [79]. Finally [26] used sim-

ulated ultrasound and fluoroscopy images in a training system designed for prostate

brachytherapy.

1.4 Objectives of affordable ultrasound simulator

Ideally simulators can help provide the requisite hands-on scanning experience to ev-

ery medical professional who needs it. There is a prevalence of scanning systems and

not enough qualified sonographers to fully utilize them. We wish to develop a low-cost

portable ultrasound training simulator that emulates the actual scanning experience

and thus can develop the necessary psycho-motor skills. In addition to increasing ul-
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trasound utilization at home this training system could also impact ultrasound usage

overseas. Imaging the World (ITW) is an organization pushing to bring medical ex-

pertise to the remote corners of the world, which have been neglected up to this point.

The populations in these regions don’t have access to advanced imaging technology

so many treatable conditions, especially maternal disorders, go undiagnosed which

often results in increased morbidity and mortality for mother and child. Due to its

portability/low cost ultrasound is an ideal modality to introduce into these areas. For

example, ITW has established low cost ultrasound programs in some of the poorer

regions of Africa, one of which led to increased attended deliveries at a health clinic in

rural Uganda [67]. Because our simulator was designed from the ground up to be low

cost it would be a great fit for ultrasound training programs in the developing world.

The need for improved ultrasound training is well known in the medical community.

This chapter describes the core motivation behind our research, the main body of

which is presented in Chapters 2 through 7. We will introduce a low cost, PC-based

simulator which uses training data that has been reconstructed from overlapping 3D

ultrasound volumes acquired in a clinical setting. Our philosophy is to provide a

library of real ultrasound volumes comprising a specific region of the body and which

are acquired from a wide range of subjects where each volume has specific training

objectives associated with it. These objectives could as simple as locating anatom-

ical landmarks or more complex such as identifying malignancies or assessing fetal

development. A system with a library of training volumes will permit an unlimited

number of ultrasound learners to be trained in detection of various medical condi-

tions in a virtual environment. We will also discuss how our approach to ultrasound

simulation improves upon the available commercial simulators. Ultimately though,

this dissertation is about the novel stitching techniques that were developed to pro-

duce the training volumes. It should be noted that throughout this dissertation we

will refer to the process of stitching partially overlapping 3D ultrasound volumes as

mosaicing. The challenges encountered and techniques developed in order to produce

volumes which encompass the entire abdomen are discussed in greater detail within

the following chapters.
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1.5 Affordable ultrasound simulator overview

A key part of the proposed training model is the simulator itself and a low cost

PC-based ultrasound simulator has been designed and implemented. The training

is provided by scanning a generic curved compliant scan surface, referred to as the

physical scan surface (PSS) with a sham transducer, containing 5 degrees of freedom

(DoF) position and orientation sensors, while the PC displays both a virtual subject

and a virtual transducer, along with an ultrasound image, obtained from a 3D image

volume. Due to the importance of developing the sonographer’s psychomotor skills,

there is a need for extended (or composite) image volumes and 5 DOF tracking. As

a consequence of this, a mosaicing process needed to be developed. The upper half

of Figure 1-1 shows a screenshot of the simulator running on a laptop with the major

elements labeled. Starting from the right most side we see the image library panel.

After mosaicing, the composite 3D ultrasound volumes were assessed for educational

value and subsequently loaded into the image library if they were deemed to be

instructive. The virtual torso panel, which is displayed above the image library,

enables the trainee to visualize the exact location on the human body where he/she

has placed transducer. This is necessary since there are no anatomical references on

the PSS they are scanning. The instructional field, also shown in Figure 1-1, educates

the user on how to perform specific clinical tasks belonging to the training module they

are currently working on. Obstetrics training modules have been developed with the

help of Dr. Belady and her staff of sonographers at the University of Massachusetts

Medical School and are explained in greater detail in Chapter 7. In this screen shot

the user is measuring the biparietal diameter of the baby’s head. Training modules

could be developed in the future with different medical ultrasound applications in

mind. An abdominal trauma module is a great example of future work which should

be completed. The lower half of Figure 1-1 shows the shame transducer, which has 5

degrees of freedom (DoF), and the physical scan surface used to track the transducers

movement on the abdomen. The position and orientation of the sham transducer is

tracked along on the scan surface. Position accounts for 2 degrees of freedom, while
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3D orientation requires 3 DoF to properly track. The only degree of freedom not

currently implemented is the movement of the probe, normal to the scan surface.

This is directly related to probe pressure, which would display the internal organs

as being deformed if properly simulated. The components described above form

the foundation of the simulator and our focus lies in producing realistic mosaics for

inclusion within the image library.

The simulator addresses the challenges mentioned in this chapter by offering a real-

istic scanning experience, using actual fetal ultrasound data in the obstetrics module.

We also obtained high quality abdominal image data from a trauma phantom bor-

rowed from Kyoto Kagaku Co., which can be used to train sonographers in the FAST

(Focused Assessment for Trauma) exam. The system provides a more realistic scan-

ning experience when compared to competing systems that use simulated ultrasound

data or fewer than 5 DoF, as described above. Also, our sham transducer and track-

ing system can be constructed for a few hundred dollars, encouraging widespread

adoption by institutions with tighter budgets. Because our system is so cost effective

sonographers may train at home, on their personal laptops, when it is convenient for

them. Our vision includes the creation of an online repository of training volumes,

so every sonographer has access to constant stream of unique patient cases.
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Figure 1-1: Key components of affordable training system
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1.6 Overview of mosaicing process

This section discusses the steps which were used to produce training volumes for

the affordable ultrasound simulator. Figure 1-2 shows a flowchart illustrating the

process to construct a global composite volume from individual partially overlapping

3D volumes. We have broken the process down into 5 image processing steps. This

dissertation develops novel techniques to perform steps 2 to 5, focusing on discrete

graph based methods which are popular in the computer vision community due to

their efficiency/performance. We will briefly discuss each block shown in Figure 1-2 so

that the reader has an understanding of all the steps found in our mosaicing pipeline.

The first step in ultrasound mosaicing is 2D image/position acquisition, followed by

the formulation of 3D volumes with uniformly spaced voxels. The 3D freehand scans

were acquired with a Philips iU22 ultrasound system utilizing a convex array coupled

with an Ascension Technologies trakSTAR 6 DoF position tracker. Stradwin software

[78], developed by the medical imaging group at the University of Cambridge, was

used to produce the 3D image volume. This software links position information

from the trakSTAR with each captured frame. Essentially the 2D images which

were collected during the freehand sweep are stacked to form the 3D volume. Once

image acquisition is complete and each frame has been positioned in a coordinate

system defined by the position tracker, we are left with a scattered data interpolation

problem. This is due to the fact that a 3D uniform grid of samples is needed, and

the pixels in the 2D frames acquired in the previous step do not fall on exact voxel

locations in the grid. Many techniques can been used to perform this step [73] and we

implemented the basic algorithm presented in [40]. Our exact hardware configuration

will be discussed in greater detail in Chapter 7, where the clinical results are presented.

Once the individual 3D volumes have been generated it is practical to rigidly regis-

ter adjacent some widely used similarity metrics in order to make them more resilient

in the presence of shadows volumes. This step corrects overall global movement, which

could be caused by the patient or fetus shifting between scans. Chapter 2 discusses

rigid registration with ultrasound data and introduces improvements to. Based on
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Blending along seam
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speckle pattern
mismatch

3D Non-rigid
registration in vicinity
of seam to remove
discontinuities

Figure 1-2: Steps to produce composite 3D ultrasound volume

our experience shadowing in clinical ultrasound can heavily affect registration results.

Next the stitching seam is calculated in order to bisect the area of overlap and join

two neighboring volumes together. We found that the movement between overlap-

ping abdominal volumes makes alignment difficult thus traditional methods of spatial

compounding, the simplest example being a weighted average of overlapping voxels,

produces poor results. This is especially true in fetal imaging where the baby may

move during a scan, which is why our research included stitching seam calculation.

In our initial research, planes were calculated between each of the overlapping

volumes in order to mosaic them together. More optimal stitching surfaces can be

formulated, which are discussed in Chapters 3 and 5. The composite volume was

constructed by adding each source to it sequentially, thus growing it volume by vol-

ume. The stitching plane for each step was required to travel through the overlapping

region’s center of mass. Also, principal component analysis was used to define a coor-

dinate system which was aligned with the overlapping regions 3 major axes. Aligning

the stitching plane’s normal with the smallest principle component resulted in a so-

lution that bisected the overlapping region best. Figure 1-3 shows an example where

planar seams have been used. The left image shows the area of the abdomen (red

volume), which 8 overlapping scans cover when combined. The image also shows the

planar seams between each scan where each plane’s orientation was calculated by
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Figure 1-3: Mosaic created using planar seams. Left-most image shows planes cal-
culated using principal component analysis. The right-most column contains two
example slices of the composite volume.

applying principal component analysis to the overlapping region. On the right are

slices from the combined image volume formed using this method. Because clinical

freehand acquired volumes can be oddly shaped/oriented in relation to each other pla-

nar seams aren’t flexible enough for stitching. This can be seen by the misalignment

in the slices. The stitching mask that designates which volume the data originates

from is also shown as an overlay on each slice. Interpolation based methods, such

as those used for spatial compounding, would require extensive group-wise non-rigid

registration to provide reliable results due to movement/deformation in our clinical

experiments and so are not presented. Figure 1-4 shows the results of graph-cut

based seam selection discussed in Chapter 3. The Left side shows a cross section

of the composite volume. Right top image shows a slice with no non-rigid registra-

tion performed. Bottom right shows results after non-rigid registration is performed

in the vicinity of the seams. This slice is the counterpart to the planar seam slice

shown in the top right corner of Figure 1-3. Step 4 is non rigid registration, which is

used to remove discontinuities along organ edges spanning more than one volume. A

large portion of this dissertation has been dedicated to developing efficient non-rigid

group-wise registration techniques. Chapter 3 describes the probabilistic framework

for this crucial step and then presents novel techniques to perform it on many partially

overlapping ultrasound volumes. The probabilistic framework is linked to a Markov
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Figure 1-4: Results of graph-cut based approach to mosaicing discussed in Chapter 3

random field, which can be efficiently optimized with graph based techniques common

in the computer vision literature. We are essentially performing a group-wise block

matching algorithm in the regions of overlap. Also the non-rigid similarity metric

presented in Chapter 3 is robust to shadow artifacts and is efficiently evaluated us-

ing Fast Fourier Transform (FFT) techniques. The proposed group-wise registration

algorithm was then evaluated using synthetic, phantom, and clinical image data.

The final step in the mosaicing process is seam blending which corrects the speckle

pattern mismatch between adjacent volumes. This results in a continuous mosaic

comprised of several individual 3D volumes. Chapter 6 describes our approach to

blending the overlapping sources in the vicinity of the seams. In essence, a 2D Poisson

image editing algorithm was adapted to handle multiple 3D ultrasound volumes. This

method preserves the distinctive features in each source while forming an unnoticeable

transition between adjacent volumes. Figure 1-5 shows a slice from a completed fetal

image volume, which was constructed using data attained from a live subject at

the University of Massachusetts Medical School. The left-most image displays the

slice along with an overlay designating the source volume for each area. There are

7 identifiable source volumes in this mosaic. The middle image is before non-rigid
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Figure 1-5: A completed fetal image volume. Left image shows a colored overlay
designating the source volume for each region of the mosaic. Middle image shows slice
without non-rigid registration. Right image shows result after non-rigid registration.

registration where the errors between source volumes are apparent. The final result,

after the discontinuities have been removed using non-rigid registration and the source

volumes blended together, can be seen in the right-most image of Figure 1-5.

1.7 Organization of dissertation

The material presented in the following chapters is roughly organized according to

the flowchart in Figure 1-2. Chapter 2 describes ultrasound specific rigid registra-

tion techniques. Following this, Chapter 3 begins with a discussion on the non-rigid

alignment of multiple (≥ 3) overlapping volumes. Seam selection is then introduced

in the context of group-wise non-rigid registration because it is considered to be an

additional pre-processing step specific to ultrasound imaging. Chapter 4 presents

experimental results obtained using the theory developed in the previous chapter.

Chapter 5 presents another approach to seam selection where we attempt to globally

optimize a spline surface using particle swarm methods. This research direction was

dropped due to the effectiveness of the Markov random field approach. Chapter 6

reviews the theory behind the Poisson based blending technique. Chapter 7 presents

the clinical component of this dissertation in which 12 patients were scanned at the

University of Massachusetts Medical School. This process generated a library of fetal

training volumes to be used in the simulator. Chapter 7 also discusses obstetrics
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training goals and how our system can be used to educate sonographers on how to

perform important tasks such as gestational age assessment and fetal position. Chap-

ter 8 describes our approach to imaging the fetal heart using freehand ultrasound.

Finally, conclusions and future work are presented.
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Chapter 2

Rigid registration with shadows

Rigid registration of 3D ultrasound (US) volumes acquired from human subjects in

a clinical environment introduces an array of difficulties, which aren’t normally en-

countered in a controlled laboratory setting. Ultrasound shadowing, which can either

result from the acoustic properties of the subject’s internal anatomy or because of

strong reflections from bone structures or gas, becomes a major issue when aligning

one ultrasound volume with another. This process is referred to as US-US regis-

tration. Shadowing artifacts coupled with patient movement can prevent common

ultrasound similarity metrics from converging to the correct solution, or even con-

verging to a reasonable solution at all. This makes rigid registration in the presence of

heavy shadowing an interesting problem to study. In this chapter we will introduce

a similarity metric which addresses these problems while also allowing for efficient

optimization of the desired transformation.

2.1 Introduction

As discussed in Chapter 1, our primary goal of producing 3D composite fetal image

volumes for an ultrasound training simulator requires stitching together several par-

tially overlapping volumes obtained by an obstetrics sonographer. Fetal ultrasound

presents additional difficulties to registration algorithms due to fetal movement dur-

ing scanning as well as occasional heavy shadowing which can be seen in the B-mode
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images. Also the patient is more likely to move during the prolonged time it takes to

conduct a complete scan of the abdomen, which is referred to as global movement.

The first step in the mosaicing process, which all subsequent steps rely upon, is to

rigidly align the overlapping volumes to account for this motion. Based on the experi-

ence gained from scanning 12 pregnant women at UMass Medical School’s obstetrics

department, we concluded that the existing registration similarity metrics commonly

used, such as mutual information, were unable to properly align the heavily shadowed

volumes obtained. A robust similarity metric should be employed to ensure proper

alignment prior to non-rigid registration and stitching. Due to our particular applica-

tion this metric must be resilient in the presence of shadows, thus image registration

models which ignore their effects perform poorly on our fetal data.

The key to our similarity metric’s computation will be the identification of regions

with poor ultrasound transmission. Intuitively these regions should contribute less to

the computation of the metric. Recently, a few novel methods for identifying shadows

in ultrasound images have been presented in the literature [28],[34]. In [28] the authors

determine shadows using a combined geometrical/statistical approach. They apply

their method to reconstruction and US-US registration showing an improvement when

incorporating shadow detection. The author’s approach to registration is to mask out

the shadowed regions from the computation of the SSD (sum of squared differences),

which means this metric doesn’t take into account the unique properties of ultrasound

noise.

2.2 Pair-wise registration in a probabilistic frame-

work: a review

Before derivation of the more robust ultrasound similarity measures it is appropriate

to explain the Maximum Likelihood Estimation (MLE) framework for pair-wise image

registration [65], where two overlapping volumes are considered. In this discussion the

transformation type hasn’t been defined yet so it may be rigid or non-rigid; however,
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the results presented in this chapter use a rigid transformation model. In the pair-

wise case one volume is considered the scene, the other volume is considered the

model, and the goal of the optimization process to is determine a transformation

from the scene coordinate system to the model coordinate system. We will give a

brief overview; a more detailed elaboration on this interesting perspective of image

registration can be found in [65]. Consider an image to be a grid of voxels where the

intensity of each voxel is a random variable (r.v.), which may take on an intensity

value from the set I = {0, 1, ..., 255}. Thus an image is a collection of random

variables where the probability of a voxel assuming a specific value from I is given

by P (I (x) = i) where i ∈ I. It is usually assumed in the registration process that

voxels are i.i.d. (independent and identically distributed) as we do but others have

developed similarity metrics that do not require this condition. In terms of probability

maximization we would like to calculate

T̂ = argmax
T

P (I, J, T ) (2.1)

where the source volumes I and J are fixed at their observed values. The solution

for (2.1) is an optimized transformation specified by T̂ . This equation can be further

manipulated using Bayes’ theorem to give us the likelihood function in terms of

probabilities we are able to compute using the acquired image data as follows,

P (I, J, T ) = P (T |I, J) P (I, J)

=
P (I, J |T ) P (T )

P (I, J)
P (I, J)

= P (J |I, T ) P (I|T ) P (T )

≈ P (J |I, T ) P (T ) .

(2.2)

The terms P (J |I, T ) and P (I, J |T ) are usually not distinguished by the literature

in the likelihood function. From this we see that the log likelihood function for the
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MLE framework is

L (T ; I, J) = ln P (J |I, T ) + ln P (T ) , (2.3)

If certain assumptions are made we can derive a joint probability distribution for the

two image volumes in the pairwise registration problem, and then use this distribution

to derive a number of similarity metrics in a maximum likelihood framework. The

derivation of the sum of squared differences (SSD) is shown in this chapter, but other

metrics like the correlation ratio and mutual information can also be derived using

this framework [65]. In the likelihood function the image volumes are fixed to their

observed intensity values, and the transformation parameters are varied to maximize

the likelihood of observing both images. In the case of pairwise registration we see

that the matching or similarity term is given by P (J |I, T ) and the regularization

term is given by P (T ). This is an intuitive result because we would like to penalize

transformations which are not physically realistic and the regularization term pro-

vides a means to do that. The calculation of P (J |I, T ) can be simplified using the

assumption that the voxels of J are independent of each other given the volume I.

Thus we can calculate this term using the following equation,

P (J |I, T ) =
∏
xk∈ΩJ

P
(
jk|i↓k

)
where

 i↓k = I (T (xk))

jk = J (xk)
(2.4)

where ΩJ denotes the voxel grid of image J and x ∈ ΩJ . The arrow notation simply

means that the transformation has been applied. This equation essentially compares

the transformed version of I to J voxel by voxel and expresses the fact that the

volume J is a random variable, which is dependent on I. This makes sense because

pair-wise image registration usually assumes that volume J is produced by imaging

a deformed version of I. The imaging process which produced J is not necessarily

assumed to be identical to the process that produced volume I, which enables the

formulation of multi-modal methods that are outside the scope of this chapter. The

transformation is from J ’s coordinate system to I’s coordinate system; thus it should

22



be noted that the voxel intensity i↓k will have to be interpolated. If the image creation

process is simplified and certain assumptions are made the likelihood function can

derived explicitly. A simple model which expresses the relationship between the fixed

image J and the moving image I is

J (x) = f (I (T (x))) + ε (x) . (2.5)

The function f : R→ R in (2.5) is the intensity mapping, which models differences in

voxel values of the same structure attained during different acquisitions, and where

the function ε (x) represents noise. The volume J can also be thought of as a function

of the random variables I and ε. Volume J is referred to as the fixed image in this

equation because volume I is transformed into J ’s coordinate system for comparison.

As stated before, the acquisitions to be registered do not necessarily use the same

imaging modality so this function can be extremely important. The Correlation

Ratio [66] is an example of a similarity measure that uses a functional relationship

between intensity values in multi-modality image registration. Measures based on

Mutual Information [62] are even more general as there is no functional relationship

assumed, only a statistical one; however, since we are concerned with mono-modality,

specifically ultrasound-ultrasound (US-US) registration of many overlapping volumes,

we are more interested in the computational advantages of simple similarity measures

rather than measures suited for multi-modality registration.

In the simplest case we presume ε (x) to be white Gaussian noise and the intensity

mapping in (2.5) to be identity, meaning that matching tissue classes, such as fetal

bone, in volumes I and J are given the same intensity value. Based on these assump-

tions it can easily be shown that the similarity measure which presents itself in the

MLE framework is just the sum of squared differences or SSD. Here the conditional

densities are Gaussian and can be written as

P
(
jk = j|i↓k = i

)
=

1√
2πσ

exp

(
−(j − i)2

2σ2

)
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which makes the similarity term in the log likelihood function,

ln P (J |I, T ) = ln
∏
xk∈ΩJ

P
(
jk|i↓k

)
=
∑
xk∈ΩJ

ln P
(
jk|i↓k

)
= |ΩJ | ln

√
2πσ +

1

2σ2

∑
x∈ΩI

(
jk − i↓k

)
≈
∑
x∈ΩI

(
jk − i↓k

)2

.

(2.6)

The final term in (2.6) is seen to be the sum of squared differences, which can be useful

in mono-modality registration as long as the intensity value for matching tissue types

in volumes I and J are identical. This is not the case when registering different

types of MRI scans together or MRI-CT scans, but for US-US registration it can be

used if the shadowing/reflectance artifacts associated with varying probe position are

ignored and the speed of SSD is important to the application. Other US-US similarity

metrics exist [3], which assume noise models more consistent with observed clinical

ultrasound images; however, they require more computational effort to calculate, and

we have seen good results using SSD.

2.3 Simple models for ultrasound shadowing

As discussed above, registration similarity metrics are typically constructed using

probability theory by assuming an image formulation model and then deriving an

expression for either P (I|J, T ) or P (J |I, T ), where I, J are the images and T is the

transformation between the two. The simplest model to account for shadowing during

ultrasound image formation is shown below,

I (x) = MI (x)S (TI (x)) + εI

J (x) = MJ (x)S (TJ (x)) + εJ

(2.7)
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where I (x) and J (x) are the acquired ultrasound volumes and S (x) represents the

ideal image of the anatomy. In (2.7) the ideal image has been deformed, had its

intensity scaled and has also been corrupted with additive Gaussian noise, εI and εJ

respectively. We will show in section 2.5 that if you assume this image formulation

model then we can use the probabilistic registration framework presented in section

2.4 [65] to derive the simple algorithm of [28]. We will also consider the ultrasound

image formulation model developed in [17], which accounts for the unique statistical

properties of ultrasound noise and has become popular in the literature due to its im-

proved registration accuracy. This intensity based similarity metric is known as CD2

and it simply considers ultrasound images to be realizations of the ideal anatomical

signal, which has been corrupted by multiplicative noise. By considering two images

of the same source, which have both been corrupted by Rayleigh noise, it is possible

to derive an expression measuring the similarity between them. Also, it is symmetric

in a sense because the two ultrasound images, I and J , have been corrupted by in-

dependent and identically distributed noise processes. CD2 is derived using a model

similar to the following,

I (x) = ηIMI (x)S (TI (x))

J (x) = ηJMJ (x)S (TJ (x))
(2.8)

The key difference between (2.7) and (2.8), the first being linked to the sum of squared

differences similarity metric, is that multiplicative Rayleigh noise is used in (2.8)

instead of additive Gaussian noise. In both equations the source S (x) is scaled by

masks MI (x) and MJ (x), which is unique to our model and added to make the

registration similarity metric robust to shadowing. The original CD2 metric didn’t

incorporate these masks, which will account for the amount of ultrasound transmission

at each voxel. These masks may be Boolean valued such that M : R3 → {0, 1}, or

they could be intensity maps quantifying the degree of ultrasound transmission at a

particular voxel.

Since running the algorithm in [28] results in a binary image mask, it does not
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provide much information about the quality of ultrasound transmission at each loca-

tion. In [34] the authors develop a novel ultrasound confidence measure which assigns

a value v ∈ [0, 1] for each voxel in the B-mode image. This value can also be thought

of as a measure of ultrasound transmission, thus for areas labeled 1 there is complete

transmission and for areas labeled 0 there is none. Their approach builds upon the

much cited work of [27] who introduced random walk segmentation to the medical

imaging field. [34] added ultrasound specific constraints to the model resulting in

their confidence measure. They applied their work to ultrasound reconstruction as

well as the multi-modality task of CT-US registration and demonstrated improved

accuracy. This algorithm was used during the generation of the training volumes

presented by this dissertation to calculate all of the masks required for the rigid and

non-rigid registration steps.

Our contribution is to incorporate this transmission measure into existing ultra-

sound similarity metrics, which already take into account the unique properties of

speckle noise, in order to improve registration of partially overlapping B-mode image

volumes containing shadows. It has been shown in the literature that ultrasound

specific metrics outperform more general ones [17],[3] such as the SSD used in [28],

and also mutual information [83]. Utilizing a probabilistic framework for symmetric

registration we will extend the popular CD2 metric [17] by integrating an ultrasound

transmission measurement using the masks in (2.8). We will show that in certain sit-

uations, an example being abdominal ultrasound where the patient may have shifted

during scanning, the original CD2 metric could fail to converge. The simple exten-

sion derived in this chapter helps alleviate this problem without adding a significant

computational burden.
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2.4 Probabilistic tools for analysis of symmetric

models

In this section we will review the basic probabilistic framework used to analyze the

symmetric registration problem we have presented in section 2.3, where two over-

lapping ultrasound volumes are acquired from an anatomical source. Chapter 3 will

extend the pair-wise registration concepts presented here to a group-wise setting,

which better reflects the mosaicing procedure used to generate training volumes for

the simulation system since the actual scanning produces more than two overlapping

volumes needing alignment. The following framework was derived in [65] and is pre-

sented here as review. In this work an image volume is considered a realization of a

random process which has corrupted the ideal source ”signal”. A few assumptions will

need to be made before the bulk of the derivation is presented. These assumptions

are presented in the context of image I but apply to J as well.

The first assumption is that the voxels in I are conditionally independent given

the source S which is stated as

P (I|S) =
∏

xk∈ΩI

P (ik|S) (2.9)

where ik = I (xk) and ΩI is the uniform grid of voxel coordinates associated with

image I. The second assumption, which allows simplification of the expression in

equation (2.9) even farther, is that the voxel intensity at ik depends only its corre-

sponding voxel intensity in the source, denoted as s↓k = S (TI (xk)). Combining these

ideas one can write

P (I|S, TI) =
∏

xk∈ΩI

P (ik|S, TI) =
∏

xk∈ΩI

P
(
ik|s↓k

)
(2.10)

The second assumption effectively means that the noise corrupting voxel ik can only

depend on s↓k, thus it must be context free. Basically, this means that the neighboring

intensity values of a source voxel do not influence the noise at that particular voxel
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when it is imaged.

As stated before, the goal is to align volume I with volume J by deforming each

one to match in the region of overlap. For the remainder of this chapter we will

assume that J is already aligned with S for the sake of brevity, which implies that

TJ = Id. Also since there is only one transformation of interest left, let TI = T . A

simple extension allows the deformation of both volumes, which will become essential

in the subsequent group-wise registration chapter.

As discussed, the most likely transformation between I and J is the one that

maximizes (2.3), which requires us to calculate the joint probability of I and J during

optimization. The expression in (2.3) doesn’t contain the source volume S; thus the

main challenge of formulating any symmetric registration metric, which is robust to

ultrasound shadowing, becomes integrating out the source probability since we have

no explicit knowledge of it. Canceling the volume S from the models presented in (2.7)

and (2.8) can be done using a bit of algebraic manipulation; however it is instructive

to use this framework since more sophisticated models might not present an algebraic

solution. In models where the source can’t be eliminated from the expression for

P (I|J, T ), techniques such as expectation maximization can be used. The following

derivation will result in an expression that can be used for any symmetric image

formation model.

Starting with the joint probability of the image pair and using the fact that the

images in the pair are independent of each other given the source volume, the following

expression can be written,

P (I, J |T ) =

∫
P (I, J |S, T ) P (S) dS

=

∫
P (I|S, T ) P (J |S) P (S) dS

(2.11)

In order to simplify (2.11) we will assume that the voxels of S are independently

distributed and as a consequence we find that P (S) =
∏

xk∈S
P (sk), where S is the set

of voxel coordinates aligned with the source volume. Finally let T be an injection

mapping, which means that it maps distinct voxels from I to distinct voxels in S, i.e.
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T : ΩI → S. Since T is an injection mapping it is possible to consider the inverse

transformation from S to ΩI and write i↑k = I (T−1 (xk)), where xk ∈ S. Care must

be taken since not all voxels in S necessarily have corresponding voxels in I. Let the

voxels in S which are matched to voxels in I be denoted as SI ≡ T−1 (ΩI). This

also applies to J as well because despite already being aligned with S it may only

contain a limited view of the scene, implying ΩJ ⊆ S. Using the result from (2.10)

the preceding equation can be rewritten as

P (I, J |T ) =

∫ ∏
xk∈SI

P
(
i↑k|sk

) ∏
xk∈SJ

P (jk|sk) P (sk)
∏

xk∈SI∪SJ

dsk

=

 ∏
xk∈SI\SJ

∫
P
(
i↑k|sk

)
P (sk) dsk

( ∏
xk∈SI∩SJ

∫
P
(
i↑k|sk

)
P (jk|sk) P (sk) dsk

)
 ∏

xk∈SJ\SI

∫
P (jk|sk) P (sk) dsk


=

 ∏
xk∈SI\SJ

P (ik)

( ∏
xk∈SI∩SJ

∫
P
(
i↑k|sk

)
P (sk|jk) dsk

)( ∏
xk∈SI∩SJ

P (jk)

)
 ∏

xk∈SJ\SI

P (jk)


=

 ∏
xk∈SI\SJ

P (ik)

( ∏
xk∈SI∩SJ

∫
P
(
i↑k|sk

)
P (sk|jk) dsk

)( ∏
xk∈SJ

P (jk)

)

= P (I|J, T ) P (J)

(2.12)

We are concerned with calculating the similarity measure in the region of overlap

and ignore the prior probabilities in (2.12). To summarize, the goal of the derivation

in (2.12) was to end up with an expression for P (I|J, T ), in which we could plug

in our symmetric image formulation models from (2.7),(2.8) and then subsequently

integrate out the source S. This is because in practice we only have data from the

two acquired volumes I and J . The log likelihood of (2.12) is typically used, which

increases the numerical stability of the expression since we are no longer multiplying

large quantities of extremely small probabilities. The final form of the registration
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similarity measure is shown below,

L (T ; I, J) =
∑

xk∈SI∩SJ

ln

[∫
P
(
i↑k|sk

)
P (sk|jk) dsk

]
(2.13)

This equation allows us to calculate the joint density between two volumes which

may not have been corrupted by the same imaging process. In the next section (2.13)

will be applied to (2.7) and (2.8) to demonstrate how it can be used. An example of

this technique applied to a more complicated imaging model, which ends up requiring

the use of an expectation maximization algorithm, can be found in appendix B of

[65]. Application of (2.13) in that case results in a mixture of Gaussians, which is

a well studied problem with no known explicit solution. Due to the poor quality

of the registration images our ultrasound application doesn’t require anything more

sophisticated than the model given by (2.8).

2.5 Improved similarity metrics

In this section we will analyze the models from (2.7) and (2.8) using (2.13) and then

explain the intuitive equations that result. Starting with (2.7) the first step is to find

the probabilities P
(
i↑k|sk

)
and P (sk|jk), which is simple because the additive noise is

assumed to be Gaussian. The first expression is the probability of observing the voxel

intensity i↑k given it’s corresponding source voxel intensity sk. The second expression

is basically looking the other direction, i.e. what is the probability of a source voxel

having a specific intensity value, given that its corresponding voxel in the acquired

image has a known value. These probabilities are listed below,

P
(
i↑k|sk

)
=

1

σ
√

2π
exp

−
(
i↑k −m

↑
I,ksk

)2

2σ2


P (sk|jk) =

1

σ
√

2π
exp

(
−
(
jk −mJ,ksk

)2

2σ2

) (2.14)
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Substituting (2.14) into (2.13) and then carrying out the integration results in

L (T ; I, J) = −
∑

xk∈SI∩SJ

(
mJ,ki

↑
k −m

↑
I,kjk

)2

2σ2

((
m↑I,k

)2

+
(
mJ,k

)2
) +

1

2
ln

[(
m↑I,k

)2

+
(
mJ,k

)2
]

(2.15)

where the transform independent terms have been dropped because they do not affect

the registration result. Also we have assumed that m↑I,k and mJ,k are both greater than

zero, which is valid because locations where either one is zero provides no information

to the registration algorithm and so these voxels are eliminated from the calculation.

Looking at (2.15) we see that ifm↑I,k = mJ,k = 1, which implies confidence in the image

data from the region of overlap, then the optimization of the expression simplifies to

minimizing the sum of squared differences. This is essentially the same similarity

metric used in [28], where the sum of squared difference calculation is performed

using the set of voxels from the overlapping region which lie outside of areas classified

as shadows. Equation (2.15) is interesting because it allows the mask to lie in the

range 0 < m ≤ 1 and not just take on Boolean values indicating whether or not a

shadow is present. For example voxels with a low ultrasound transmission value may

still contain useful information for the registration algorithm and should be weighted

appropriately. As mJ,k → 0 it is increasingly unlikely that jk captured the original

value of sk and the sensitivity of the similarity measure with respect to i↑k decreases.

Next we will examine the model in (2.8) and show how the minor addition of

MI (x) and MI (x) increase its robustness in the presence of shadows. The origi-

nal model, to which we added these terms, was shown to outperform the sum of

squared differences due to the ultrasound specific nature of multiplicative Rayleigh

noise [17],[83]. Also the authors of the metric take into account the log compression

of ultrasound images. Starting with the model in (2.8) the natural logarithm is taken

on each side results in

Ĩ (x) = M̃I (x) + S̃ (TI (x)) + ln ηI

J̃ (x) = M̃J (x) + S̃ (TJ (x)) + ln ηJ

(2.16)
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where the superscript tilde signifies the natural logarithm operation, for example

Ĩ (x) = ln I (x). As before, the goal will be to derive an equation for the likelihood

in (2.13), i.e. L
(
T ; Ĩ , J̃

)
≈ ln P

(
Ĩ|J̃ , T

)
, which quantifies the similarity between

Ĩ (T−1 (x)) and J̃ (x) in the region of overlap. First we seek to calculate P
(
ĩ↑k|s̃k

)
and

P
(
s̃k|j̃k

)
just as we did in the previous example, since their expressions are required

by equation (2.13) and will be used to derive P
(
Ĩ|J̃ , T

)
. The probability density

function for the multiplicative Rayleigh noise [56] that is used in this ultrasound

image formulation model is

P (η) =
π

2
η exp

(
−πη

2

4

)
(2.17)

Using the fact that Ĩ, given S̃ and the transformation T , is simply a function of the

random variable η, we can derive the following expressions for the desired probabili-

ties,

P
(
ĩ↑k|s̃k

)
=
π

2

(
i↑k

m↑I,ksk

)2

exp

−π
4

(
i↑k

m↑I,ksk

)2


P
(
s̃k|j̃k

)
=
π

2

(
jk

mJ,ksk

)2

exp

−π
4

(
jk

mJ,ksk

)2
 (2.18)

Where ĩ↑k = ln I (T−1 (xk)). Also, note that the probabilities in (2.18) are calculated

using the original voxel intensity values, without the logarithmic compression applied

in (2.16). Inserting the probabilities from (2.18) into (2.13) and the carrying out the

integration will give the log likelihood expression representing the similarity metric.
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This integration is shown below,

L
(
T ; Ĩ , J̃

)
=

∑
xk∈SI∩SJ

ln

[∫
P
(
ĩ↑k|s̃k

)
P
(
s̃k|j̃k

)
ds̃k

]

=
∑

xk∈SI∩SJ

ln

∫ π2

4(sk)
4

(
i↑kjk

m↑I,kmJ,k

)2

exp

−π
4

(
fori↑k

)2

+
(
m↑I,kjk

)2

m↑I,kmJ,k(sk)
2

 ds̃k


=

∑
xk∈SI∩SJ

ln

∫ π2

4(sk)
5

(
i↑kjk

m↑I,kmJ,k

)2

exp

−π
4

(
mJ,ki

↑
k

)2

+
(
m↑I,kjk

)2

m↑I,kmJ,k(sk)
2

 dsk


=

∑
xk∈SI∩SJ

ln

2

(
mJ,ki

↑
k

m↑I,kjk

)2
(mJ,ki

↑
k

m↑I,kjk

)2

+ 1

−2
(2.19)

Determining the optimal rigid transformation for the model described in (2.16) is

done by maximizing the likelihood equation in (2.19) with respect to the transforma-

tion. Since we would rather calculate the transformation from the source’s coordinate

system to volume I’s coordinate system, and thus deform I into S, the optimization

will be done w.r.t. the inverse of T designated as T−1. This becomes important when

more than 2 volumes need to be registered to the common source coordinate system.

For numerical stability it should be noted that m↑I,k,mJ,k must be > 0 in the area

of overlap evaluated by (2.19). Once again if we assume that m↑I,k,mJ,k are Boolean

valued masks, where m↑I,k,mJ,k = 1 indicates a valid uncorrupted voxel intensity, then

(2.19) reduces to simply calculating the CD2 metric in the area of overlap determined

to have no shadow artifacts. Equation (2.19) enables us to use of a range of mask

values, which weight a voxel’s contribution to the similarity metric by how confident

we are in its intensity value. Using the hyperbolic cosine identity cosh (x) = ex+e−x

2
,

the maximization of (2.19) can be rewritten as the minimization of the following
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expression,

L
(
T−1; Ĩ , J̃

)
=

∑
xk∈SI∩SJ

ln
[
cosh

(
ln
(
mJ,ki

↑
k

)
− ln

(
m↑I,kjk

))]
=

∑
xk∈SI∩SJ

ln
[
cosh

(
ln
(
i↑k

)
− ln (jk) + ln

(
mJ,k

)
− ln

(
m↑I,k

))]
=

∑
xk∈SI∩SJ

ln
[
cosh

(
ĩ↑k − j̃k + m̃J,k − m̃

↑
I,k

)]
(2.20)

This formulation makes explicit differentiation of (2.20) w.r.t the parameters of T−1

simple, enabling the use of efficient gradient based optimization algorithms. We are

essentially registering the volumes produced by taking the natural logarithm of the

original data thus in (2.20) we only need to take the logarithm of the image data

once, when the registration initially starts. The first order derivative of (2.20) can be

calculated as follows,

∂

∂Θ
S
(
T−1; Ĩ , J̃

)
=

∑
xk∈SI∩SJ

[
∇Ĩ (y)−∇M̃I (y)

]∣∣∣
y=T−1(xk)

tanh
[̃
i↑k − j̃k + m̃J,k − m̃

↑
I,k

] ∂T−1

∂Θ
(2.21)

where we use the convention that the gradient is laid out as a row vector and Θ

represents the parameters of the transformation. The Quasi-Newton optimization

algorithm that we employed only required the first order derivative for acceptable

results; however second order methods can be readily be derived using (2.21). Also,

direct-search methods such as the Nelder-Mead algorithm work well due to the low

dimensionality of rigid registration and the efficient similarity metric in (2.20). For the

remainder of the chapter the metric in (2.20) will be referred to as CD2 with shadow

masks (CD2+S) stemming from the addition of shadow information to improve its

robustness.

We primarily use this registration method for the rough alignment of clinically

acquired, partially overlapping ultrasound volumes and so a rigid alignment is em-

ployed, which means that T−1 is just a 4x4 transformation matrix. The six degrees of
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Figure 2-1: Source image used for 2D synthetic experiments

freedom can remove most of the misalignment due to patient shifting during scanning.

The group-wise registration algorithm proposed to correct non-rigid deformation will

be discussed in the following chapter.

2.6 Registration results

2.6.1 Experiments using 2D synthetic data

Initial registration experiments were conducted using synthetic images, which were

produced from a user supplied source image that was corrupted with noise/shadow

artifacts based on the image formulation model described by (2.8). The source image

we used is shown in Figure 2-1. The images corresponding to I and J , which will be

registered, are shown in Figure 2-2. Significant noise and shadow artifacts have been

added to the source image from Figure 2-1 in order to test how sensitive the SSD and

CD2 similarity metrics are to the variable conditions found in a clinically acquired

data. Figure 2-3 shows the hand drawn masks that correspond to the image pair

shown above. It is somewhat unrealistic to assume that this information is known;

however, we demonstrate in the next section that an estimate is often good enough to

provide significant improvements to the capture range of the rigid registration algo-

rithm. In order to add an element of uncertainty to the confidence masks we redrew

them after the images in Figure 2-2 were generated, thus they are somewhat different

than the masks which produced the pair and can be thought of as an estimate. These
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Figure 2-2: Shadow and noise artifacts added to source to produce registration images

Figure 2-3: Estimated ultrasound transmission masks
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images have been purposely synthesized with the intent to simulate the issues we en-

countered while registering 3D swept ultrasound volumes which have been acquired

on opposite sides of the abdomen using transverse slices of a pregnant subject. In our

clinical experiments the opposing volumes exhibit strong shadowing on the far side

of the fetus due to its acoustic properties. Most of the acoustic power is lost as the

ultrasound signal travels through the fetus, thus one volume will contain plenty of

detail regarding the positioning of the arms and legs, while the volume acquired from

the opposite side won’t show these extremities at all. Instead, this volume will have

a clear view of the vertebrae which implies that a combination of these two views is

ideal. The expectation is that this combination will generate a high quality training

volume, which contains realistic images of the fetus from both directions. When this

composite volume is incorporated into the training simulator the user can identify

structures in each side of the abdomen and is free to place the transducer in any

position/orientation they wish. We believe that the synthetic images in Figure 2-2

provide a close enough approximation to the issue we just described to be used in our

initial experiments, which will give us some insight into the effectiveness of (2.20).

In order to test the sensitivity of the similarity metrics we apply simple transfor-

mations, such as translation and rotation, to the pair in Figure 2-2 and subsequently

plot the metric’s value versus its transformation parameter. Ideally there should be

a clear maximum with few local minimums for the optimizer to get stuck in. Also it

should be noted that the similarity metrics are normalized by the amount of overlap,

since this changes significantly as they are transformed.

The plot in Figure 2-4 shows how the similarity metric varies as we move the

pair out of alignment using a translation transformation. Since the image pair is

initially aligned perfectly the maximum in each similarity plot should occur at (0, 0),

meaning no translation has been applied in any direction. It is obvious from Figure

2-4 that registration using either SSD or CD2 as a similarity metric in this situation

is impossible. No maximum can be identified in either of these plots, implying that

any optimization method used would just eventually push the image pair completely

apart. The region around (0, 0), where a maximum in the similarity should be obvious,
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is barely discernible from the surrounding values. SSD and CD2 are equally bad in this

case. The most interesting plot in Figure 2-4 corresponds to the recently introduced

measure from (2.20). The correct global maximum at (0, 0) is easily distinguished

in this plot and with no apparent local minima any optimization method should be

successful here. This initial experiment suggests that accounting for shadows in the

similarity metric can have a large impact on the registration accuracy of images with

substantial artifacts.

Our next experiment measured the sensitivity of the similarity measures to purely

rotational transformations. Image I was rotated from −6◦ to +6◦ around a point

positioned adjacent to the fetus’s chest. A plot showing rotational misalignment ver-

sus similarity was produced for SSD, CD2, and CD2+S. Interpolation algorithms are

especially sensitive to purely rotational transformations and methods such as bilinear

interpolation gave poor results when evaluating the similarity metric at varying de-

grees of rotation. The resulting similarity plots using bilinear and cubic interpolation

were very noisy due to the smoothing effect that small rotations have on the resampled

image. This occurs because the noise properties of the images, which the similarity

metrics are based on, are distorted due to the smoothing effect. Interpolation meth-

ods such as Lanczos resampling do a better job of maintaining the original image’s

noise properties, increasing the smoothness of the registration energy function. Near-

est neighbor interpolation is the simplest method which maintains a majority of the

noise after interpolation and for this reason we used it in our rotational experiments.

The results of the rotational experiment for all 3 similarity metrics, using the image

pair from Figure 2-2, are shown in Figure 2-5. The maximum of the similarity measure

should occur at 0◦ since the images were already in alignment. It is apparent from

Figure 2-5 that the only metric which would allow efficient/accurate optimization in

this instance is CD2+S. The SSD metric is very noisy compared to CD2+S, which

means that it requires more sophisticated optimization methods for convergence, but

most importantly the SSD metric gives an incorrect global optimum around .02 radi-

ans. If the rotational misalignment of the images happen to be negative then there’s a

chance for convergence to the correct solution of 0◦ if a gradient based algorithm was
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Figure 2-4: Plots showing the inability of standard similarity measures (SSD,CD2)
to undue translational movement between synthetic images. The bottom plot shows
the similarity energy versus translation misalignment for the new CD2 metric, which
incorporates shadow detection. The correct global maximum is clearly discernible in
this case, especially when compared to the plots of SSD/CD2 found in the first row.
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chosen; however, based on Figure 2-5, any hope of convergence to the correct solution

is gone if the initial misalignment is greater than 0◦. Taking a closer look at the plot

for CD2 we notice the positive effect of accounting for multiplicative Rayleigh noise.

The incorrect global optimum, which the SSD metric had around .02 radians, is gone

but the plot of the registration similarity still displays a significant amount of noise.

These small local minima seen in this plot present a problem for gradient based opti-

mization methods. Another advantage of using CD2 over SSD for this problem is that

for positive angles of misalignment the CD2 plot looks more conducive to optimiza-

tion when compared to the analogous range of the SSD plot. Finally it is clear that

for this experiment CD2+S is the winner. The plot of registration similarity is much

smoother than the competing methods, with few if any local minima, which makes

optimization much easier. One flaw, which no metric overcame, was a plateau around

the correct global maximum that can be attributed to the intentional inaccuracy of

the shadow masks. Results from the experiment using rotational misalignment agree

with the results from our experiment using translational misalignment so we conclude

that CD2+S passes its initial assessment.

The investigation of (2.20) using simple synthetic data suggests that it is worth

the extra CPU time to estimate per-voxel ultrasound transmission levels, since their

incorporation into the registration algorithm offers improved accuracy and increases

its capture range. The next section will demonstrate this concept using reconstructed

swept 3D ultrasound volumes of an abdominal trauma phantom.

2.6.2 Experiments using abdominal trauma phantom

In this section the improved registration result we achieved on synthetic data from

an ultrasound phantom, after incorporating the confidence measure into our model,

is validated using real ultrasound data from a trauma phantom. The FAST/Acute

abdomen phantom, which was borrowed from Kyoto Kagaku company, simulates the

presence of free intra-peritoneal fluid in trauma patients. The phantom was taken

to UMass Medical School where it was scanned using a Phillips iU-22 ultrasound

machine with a C5-1 transducer, which provides excellent abdominal image quality.
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Swept 3D volumes were created by scanning the phantom along multiple linear paths

from superior to inferior, acquiring transverse images along each scan path. In our

experiments we choose two partially overlapping volumes which contained several

distinctive features in the region of overlap but were also degraded by shadowing

artifacts common in abdominal imaging.

In the first sequence of tests the two volumes were initially registered using the

similarity metric in (2.20), whose result was verified upon careful examination. The

newly transformed volume would serve as the ground truth and assumed to be per-

fectly aligned with its neighbor. Next the similarity values for CD2 and CD2+S were

plotted as the volumes were forced out of alignment using a translation. Since the

volumes are initially aligned, the similarity value for (0,0)cm, corresponding to no

misalignment, should be the global maximum. These results can be seen in the top

row of Figure 2-6 and demonstrate the advantage CD2+S has over CD2. The plot

corresponding to CD2 has a local minimum at (0,0)cm, which allows correction in the

range of translational misalignments that would converge to this point. The problem

with this plot is that the global maximum occurs at the incorrect transformation and

is located around (-4,-4)cm. If the initial misalignment is somewhere near (-2,-2)cm

then the optimization algorithm would actually push the volumes further apart. This

issue can be corrected by using CD2+S, whose improved similarity function is plot-

ted in the top right of Figure 2-6. We can see a clear global maximum at the correct

location and a much more realistic surface plot. As the volumes are moved out of

alignment the similarity drops steeply in all directions. In the next experiment we

used the same methodology but replace the translation with a rotation. The results

are shown in the bottom half of Figure 2-6. Once again the similarity plot of CD2+S is

substantially better compared to the original CD2 metric. The plot for CD2 appears

noisy with no local minimum at 0◦, thus there is limited hope for convergence unless

the initial misalignment is minor. CD2+S once again addresses this issue, providing

the optimization algorithm an ideal surface containing a global maximum at 0◦.

The goal of the next experiment was to test the reliability of the similarity metrics

on misalignments including both rotational and translation components. This was
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Figure 2-6: Results using abdominal trauma phantom dataset comparing CD2 to
CD2+S for 3D registration of overlapping volumes. Translation and rotation are
considered with CD2+S outperforming standard CD2 in the experiments.
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done by applying an arbitrary rigid transformation to one of the volumes in the pair

and subsequently attempting to undue the misalignment. The CD2 and CD2+S

metrics were optimized using the Gauss-Newton algorithm, utilizing the gradient

given by (2.21). Results from one iteration of the test are given in Figure 2-7. The

initial misalignment contained a 2◦ rotation around the x-axis and a .58cm translation

along the z-axis. In order to demonstrate the improvement in registration accuracy of

CD2+S over CD2 we compared the visual quality of the composite volumes produced

after rigid registration using each algorithm. The composite volumes were constructed

by taking the mean at each voxel location in the area of overlap. The two columns

of Figure 2-7 are comprised of three orthogonal planes taken from the composite

volumes produced using registration results from CD2 and CD2+S respectively. The

images in the first column of Figure 2-7 clearly show that CD2 failed to converge to

the correct solution. The blurry grey outlines of misaligned structures are evident in

the first column of images when compared with the optimal reconstruction shown in

the second column, which was completed using CD2+S.
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Figure 2-7: Reconstruction results after registration using CD2 and CD2+S. First
column corresponds to CD2 where the circles highlight areas that appear incorrectly
because CD2 failed to align the volumes. Second column shows results for CD2+S,
which has correctly registered the volumes.
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Figure 2-8: Example of shadow mask used in the registration of fetal ultrasound
volumes

2.7 Conclusions

In this chapter we have shown that accounting for shadows during US-US registra-

tion can result in gains in accuracy and capture range. Convincing results suggesting

the use of CD2+S over CD2 were presented for both synthetic and real ultrasound

data. We employed the similarity metric of (2.20) in the rigid registration step of

the mosaicing procedure, which was then applied to produce the fetal reconstructions

that are presented in this dissertation. Since the shadow masks could most likely be

calculated in real-time with improved implementations of the algorithms available,

they should be included when doing intensity based US-US registration. In 2-8, the

shadow mask calculated using the approach developed in [34] is shown for an ultra-

sound image of the fetal skull, which was acquired in a clinical setting. This example

image was taken during the construction of one of the training volumes discussed in

Chapter 7. The high intensity regions of the shadow mask in 2-8 correspond to the

fetal skull, which is intuitive because the ultrasound echoes are strong here. Likewise,

in the heavily shadowed region of the ultrasound image, the mask approaches 0 due

to the lack of anatomical features. The similarity measures developed here could

also be easily adapted to the group-wise non-rigid registration algorithm presented in

Chapter 3 due to its block-based approach.
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Chapter 3

Group-wise registration and seam

selection: theory

In this chapter we present a group-wise non-rigid registration/mosaicing algorithm

based on block-matching, which is developed within a probabilistic framework. The

discrete form of its energy functional is linked to a Markov Random Field (MRF) con-

taining double and triple cliques which can effectively be optimized with current MRF

optimization algorithms popular in computer vision. Also, the registration problem is

simplified by introducing a mosaicing function which partitions the composite volume

into regions filled with data from unique partially overlapping source volumes.

3.1 Introduction and prior work

We will develop a novel group-wise image registration/stitching algorithm capable of

producing composite volumes with structural continuity from many partially over-

lapping 3D sources. The definition of a discrete energy functional, used to partition

the composite volume into regions corresponding to each unique source, is one con-

tribution of this work and will be referred to as a mosaicing function. The second

contribution is the development of a group-wise block matching algorithm that is de-

rived using a probabilistic framework and enhanced with the precomputed mosaicing

function defined later. The motivation for this research was to produce a compos-
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ite obstetrics volume for use in an ultrasound training simulator, where the image

volume encompasses the mother’s entire abdomen. Unique challenges include fetal

movements and extensive shadowing, which caused volumes acquired from one side

of the abdomen to have few features in common with volumes acquired from the

opposite side.

This work builds on the research of [82], where rigid and non-rigid group-wise

registration techniques were developed for ultrasound using a probabilistic framework.

In [83] rigid registration strategies were developed for 3D ultrasound mosaicing, and

in [82] temporal group-wise non-rigid registration was applied to model liver motion

in 4D. Our work links the accumulated pairwise estimates framework, developed

for group-wise registration, to a discrete Markov Random Field and formulates an

effective method to deal with many partially overlapping volumes.

Previous work on extended field of view ultrasound includes the registration tech-

niques developed in [63] where a set of volumes acquired from a 3D ultrasound machine

was stitched together by linking position information from a tracking system to each

3D volume. Non-rigid registration was performed and the volumes were compounded

by averaging pixel values in overlapping regions. In vitro experiments were performed

by stitching together volumes obtained from a fetal phantom. The composite volume

is grown by using pair-wise registration techniques and sequentially adding adjacent

volumes until all volumes have been incorporated.

Similarity metrics are used to guide registration algorithms, and those which have

been designed with specific modalities in mind can boost the accuracy of the resulting

deformation fields [3]. For example, methods designed for ultrasound have taken

into account the unique statistical properties of signal noise and also the speckle

correlation between volumes acquired close to one another in time. An intensity based

metric, which minimizes the residual complexity between two images, was presented

in [51] and was shown to be superior to mutual information. Other metrics [47]

incorporate local phase information because it is argued that it can provide more

local structural information than intensity. In [52] an improved rigid registration

technique using a 3D scale invariant feature transform was developed. These methods
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have been shown to outperform traditional metrics such as mutual information, or

sum of squared differences in experimental settings but they are costly to compute

and don’t account for the shadow artifacts which are prevalent in clinical ultrasound.

An efficient similarity measure, which can handle large deformations between many

partially overlapping volumes (≥ 3), is desired. To this end we choose instead to

implement an improved sum of squared differences metric capable of dealing with

shadowing artifacts, which dominated the registration error when using clinical data

acquired from live subjects. Our metric can be efficiently calculated in the frequency

domain and effectively handles obscured regions.

Image registration using models based on MRF theory has been proposed by

researchers in the past and shown to produce satisfying results. In [25], [75] a pair-wise

hybrid geometric/iconic algorithm based on MRF theory was proposed and validated

using lung CT data. A group-wise registration method based on MRFs was presented

in [74] and tested on 2D MR human skeletal muscle images. The previously cited

discrete methods use first order derivatives to regularize the transformation fields,

which we found to be problematic when dealing with partially overlapping volumes.

In [38] a higher order regularization term based on second derivatives was proposed

and used to perform pair-wise 2D registration. In [39] this higher order smoothness

term was extended to 3D and used in the pair-wise registration of MR volumes. We

extend this discrete second order smoothness term for use in a group-wise setting.

Our work is unique in that, starting from a probabilistic framework, we develop

a pair of MRF energies for the joint group-wise registration/mosaicing problem and

then show how they may be efficiently optimized using current computer vision ap-

proaches. In contrast to previous efforts we consider the mosaicing function as input

to our registration method in order to focus the similarity metric on the most influ-

ential regions. This novel approach has been specifically designed for the group-wise

registration of many partially overlapping volumes. Choosing an optimal mosaicing

function reduces unwanted image artifacts in the final composite volume as well as

simplifies the group-wise registration problem, leading to increased computational

performance. Existing compounding methods require precise alignment between vol-
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umes, which is not achievable with freehand 3D fetal ultrasound, making our method

a feasible alternative. For the sake of speed we have chosen to implement an improved

version of the sum of squared differences (SSD) similarity metric, where our modifi-

cation increases the metric’s robustness in the presence of shadows. Accounting for

these ultrasound specific artifacts is novel in the context of group-wise non-rigid reg-

istration. This gives us the ability to quickly compute all the similarity information

needed for the entire registration process efficiently by using the FFT method derived

in this chapter, which occurs before any optimization is performed. Using the FFT

for block matching was previously proposed in [55] for pair-wise multi-modal rigid

registration and in this chapter we extend the method for non-rigid registration in a

group-wise setting, taking into account ultrasound specific shadowing artifacts. The

data required for the optimization of the MRF is precomputed and stored for easy

access by whichever optimization algorithm is chosen. Due to the pairwise nature

of the similarity metric coupled with its fast pre-computation we can include addi-

tional volumes with minimal effort. Existing similarity metric data is reused for the

group-wise registration problem involving additional volumes. In addition we present

some results about the parallelization of image registration through deformation field

fusion of independent solutions.

3.1.1 Initial trials and algorithm overview

The movements and deformations associated with capturing multiple obstetrics ul-

trasound image volumes from subjects in a clinical setting means that non-rigid regis-

tration plays an important role in producing a seamless composite image volume. In

our preliminary research we performed pairwise non-rigid registration/stitching be-

tween neighboring volumes and produced a final composite volume by either following

this procedure in a pyramid fashion or sequentially adding a source to the compos-

ite volume one by one. A more intuitive and satisfying result can be obtained by

considering the deformation of all volumes simultaneously using group-wise registra-

tion techniques. The advantage of using group-wise registration is that displacement

fields produced after optimization, which define the non-rigid transformations neces-
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sary to bring the source volumes into alignment within a common coordinate system,

are linked together so that the optimization will produce a result that doesn’t favor

deformation of certain volumes over others.

All source volume transformations are linked together within a discrete summa-

tion of terms resulting from a Markov Random Field (MRF) model of the registra-

tion problem, which is optimized using graph based techniques. This MRF function

contains two types of terms. The first term measures the alignment between the

overlapping volumes in each region. We define these regions as 3D blocks so that

the registration can be thought of as a weighted block matching algorithm. The next

term measures the elastic properties of each displacement field using a discrete 2nd

derivative. The elastic regularization term prevents the block matching term from

producing physically unrealistic deformations. We found that a 2nd order term is

required due to the fact that a 1st order term caused undesirable shearing effects

when using registration masks. In addition the 2nd derivative based regularization

is invariant to linear transformations such as rotation. The complete MRF function

representing this registration problem contains components dependent on double and

triple cliques, which simply means that terms are dependent on 2 or 3 discrete vari-

ables. These discrete variables are assigned labels using the terminology from the

MRF optimization literature.

In our problem the label set contains all the possible displacements in a limited

3D window. The displacement window can be calculated to ensure that the final

transformation remains diffeomorphic. This means the transformation is invertible

or free of folds which aren’t physically possible. Hierarchal group-wise registration

is performed in an iterative fashion, which relaxes the elastic regularization between

iterations so that it becomes fluid-like. The terms in the group-wise registration MRF

are not submodular so we must use advanced optimization techniques to find a solu-

tion. Non-submodular energies with discrete arguments, such as the one formulated

in this chapter, can be minimized using techniques for Quadratic Pseudo Boolean

Optimization (QPBO). The Boros, Hammer and Sun (BHS) algorithm [36] was de-

veloped for this purpose and it is a key component in our registration algorithm. We
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use the alpha expansion technique to optimize each displacement field while taking

advantage of the BHS algorithm instead of a basic graph cut for each expansion step.

The algorithm is implemented in a computationally efficient way by splitting the

computation up to different CPU cores using a technique called QPBO fusion which

was first introduced in the computer vision literature for the purpose of stereo vision.

QPBO fusion breaks the registration problem into 8 separate registration problems

where each considers a limited set of the solution space. At the conclusion these 8

solutions are fused together to produce one final solution that contains the best parts

of each.

3.2 Group-wise registration in a probabilistic frame-

work

The group-wise registration problem will first be described in a maximum likelihood

framework. The reason for this is that a MRF is probabilistic by definition although

this point-of-view is sometimes glossed over in the computer vision literature. If

given N overlapping ultrasound image volumes, which are simply functions from

three-dimensional space mapped to one-dimensional intensity V = {I1, ..., IN} where

the mapping is In : R3 → R, our goal is to calculate N three-dimensional deformation

fields that bring the volumes into alignment in the overlapping regions. Furthermore

these registration regions can be intelligently defined using a mosaicing function which

will be described in a later section. We define a scene coordinate space in R3 and

seek to transform all N volumes into this space where the final mosaiced volume

will reside. Let the set of transformations be defined as T = {T1, ..., TN} where

Tn : R3 → R3. Figure 3-1 demonstrates the group-wise registration concept in the

context of aligning multiple overlapping 3D ultrasound volumes. In order to produce

the composite volume in this example, transformation functions for each source must

be optimized according to some matching criteria. The common coordinate system,

which represents the space where the final mosaiced volume will be created, is shown
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in the lower left corner. Optimized transformations are calculated from the common

coordinate system to each of the individual volume coordinate systems where the

optimization process evaluates the alignment in the regions of overlap. In this case the

yellow/blue regions represent pairwise overlap, and the middle green region designates

where all 3 source volumes overlap. The resulting problem is a fairly complicated

group-wise registration which can be formulated as an energy minimization stated as

T̂ = argmin
T

E (T ; I1, ..., IN) . (3.1)

In the equation above E represents the registration energy that we wish to minimize.

A lower value of E indicates better alignment among the source volumes contained

in V , measured in the regions of overlap. The function E is usually split and written

as a sum of two terms, E = M + R, which represents the total energy to be mini-

mized. This can be looked at as a combination of the image matching criteria and

a deformation field regularization term, M and R, respectively. The matching term

measures alignment of image features and is referred to as a similarity metric while

the regularization term penalizes unlikely transformations such as those containing

very large first or second derivatives. We are minimizing (3.1) over the entire set of

transformations.

Our strategy is to perform a series of group-wise translational alignments at a

fixed number of control points, considering only the region of the source volume that

is influenced by each control point. Control points are locations on a grid with uniform

spacing which define the transformation of each source. Thus each source in V is given

its own set of control points. This alignment process is iteratively repeated to give the

final result. The registration procedure can be considered a group-wise block matching

algorithm which can be analyzed in a maximum likelihood framework. In the following

discussion the transformation model has not been defined, an assumption which has

no effect on the validity of the equations.

Since we have reviewed the maximum-likelihood estimation (MLE) formulation

for the pairwise registration problem in Chapter 2, where one volume remains fixed
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and the second volume is transformed into the coordinate system of the first, we will

now describe how this can be extended to a group of volumes where all are deformed

simultaneously in a group-wise registration framework. The following group-wise

similarity metric is known as accumulated pair-wise estimates; it was derived in [83]

and used for the rigid registration of multiple ultrasound volumes acquired from a

fetal phantom. This approach was later extended to temporal deformable group-wise

registration where a 3D ultrasound system was used to model liver motion [82]. We

will see that this formulation can be directly linked to the discrete graph based MRF

framework that was used for the efficient registration of multiple partially overlapping

fetal image volumes in our experiments. Previously the term P (J |I, T ) was used to

describe the similarity between two image volumes given the transformation and can

be found in the MLE formulation of equation (2.4). When deriving a similarity

measure for the group-wise registration of multiple volumes the following likelihood

equation can be used

T̂ = argmax
T

ln P (I1, ..., In|T ) . (3.2)

In this equation the joint probability is over all possible image volumes and is con-

ditioned on the set of transformations. T contains a transformation for each volume

and the maximum likelihood framework seeks to find the set of transformations that

best explains the observed image volumes by maximizing the probability in (3.2).

In MLE the volumes are fixed to their observed values and T is varied until some

maximum is reached. In this formulation one particular volume is not favored as

being fixed while all others are transformed to its coordinate system. This avoids

the issue of the algorithm choosing a fixed volume, which may be significantly out of

alignment with the rest, while the remaining volumes are fairly close to being reg-

istered to each other. This issue would also cause the outlier volume to be forced

to converge with the group instead of drawing the others toward it as in the case of

choosing a fixed volume. In the derivation that follows all image volumes are assumed

to be conditionally independent of each other thus given a realization of one image

volume all other volumes are independent. This is reasonable if we view the other
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image volumes as being realizations of a random process which corrupts the given

image volume. The first step in the derivation [82] is to rewrite P (I1, ..., In|T ) as

the product of n conditional densities with respect to some image volume In. This

can be done using the product rule and the property of conditional independence

P (A,B|C) = P (A|C) P (B|C), and so we can write

P (I1, ..., In|T ) = P (I1, ..., In−1|In, T ) P (In|T )

= P (In|T )
n−1∏
i=1

P (Ii|In, T ) .
(3.3)

In order to make the likelihood function symmetric with respect to all the volumes

the nth power of the joint density is taken and (3.3) is employed n times, iterating

through the image volumes so that each takes a turn being the given or fixed volume,

which results in

P (I1, ..., In|T )n =

(
n∏
i=1

P (Ii|T )

)(
n∏
i=1

n∏
j 6=i

P (Ij|Ii, T )

)
. (3.4)

Finally the logarithm is applied to the joint probability function in (3.4) resulting

in an expression for the likelihood function ln P (I1, ..., In|T ) which can be used in

practice to evaluate the similarity of multiple overlapping image volumes. This is

shown in the following equation:

ln P (I1, ..., In|T ) =
1

n

n∑
i=1

ln P (Ii|T ) +
1

n

n∑
i=1

n∑
j 6=i

ln P (Ij|Ii, T )

≈
n∑
i=1

n∑
j 6=i

ln P (Ij|Ii, T ).

(3.5)

From (3.5) we see that the higher order joint density representing the group-wise

registration problem can be estimated using the sum of pairwise densities. Here we

are ignoring the prior probabilities of observing each image and only concentrating on

the conditional probability density functions. This is a nice result because it will form

the theoretical foundation for our discrete MRF based formulation of the registration
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problem. Equation (3.5) intuitively states that if the pair-wise similarity in each

possible combination of image volumes is calculated in the region of overlap and then

summed together, it results in a group-wise measure of alignment. If we assume i.i.d.

coordinate samples and functional/probabilistic intensity mappings between image

volumes it is possible to derive group-wise similarity metrics based on popular pairwise

metrics such as SSD, Correlation Ratio, and Mutual Information. For our work with

mono-modal ultrasound registration, the speed advantage of group-wise SSD was

chosen over the versatility of other measures, but there is no reason these could not

be applied using the registration framework described in this chapter. Notice that the

terms inside the summation of (3.5) take the same form as the similarity term from

(2.3), which is just the maximum likelihood formulation of the pairwise registration

problem. Each term only considers two volumes at once and thus if we make the same

assumptions as we did to arrive at the sum of squared differences similarity metric in

(2.6) we arrive at the group-wise SSD metric shown below

ln P (I1, ..., In|T ) =
n∑
i=1

n∑
j 6=i

SSD Comp. Between Vols.[∑
x∈Ω

(
I↓j,k − I

↓
i,k

)2
]

where

 I↓i,k = Ii (Ti (xk))

I↓j,k = Ij (Tj (xk))
. (3.6)

It is important to note that (3.6) considers the SSD computation over the entire image

and will need to be modified in order to be used in the group-wise block matching

algorithm.

3.2.1 The transformation function

We choose to use a parametric transformation model where the parameters are the

displacements of the control points in 3D space. The set of control points forms a

sparse representation of the dense deformation field, and the number of points is usu-

ally far fewer than the number of image voxels. As briefly stated before and shown in

Figure 3-1, the transformations must be from the common scene coordinate system

to the individual model coordinate systems containing the sources. A transforma-

tion in the other direction would require scattered data interpolation to produce the
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deformed volumes. Following this we can construct the deformed volume voxel-wise

by using the transformation function to calculate each voxel’s original location in its

respective source volume. The displacement of each voxel is computed as a weighted

linear combination of control point displacementsDn = {dn,1, ...,dn,m, ...,dn,M} where

dn,m ∈ R3:

Dn(x) =
M∑
m=1

wm(x)dn,m. (3.7)

In this expression n specifies the source volume, m identifies the control point which

dn,m corresponds to, and M is the total number of points. The value weighting func-

tion wm(x) represents the amount of influence that control point m has at location x.

Using displacement function in (3.7) the transformation at each voxel can be calcu-

lated as Tn(x) = x+Dn(x). Each volume to be registered has a unique grid of control

points in the scene coordinate system, and the grids are initially co-located before

the registration algorithm optimizes the position of their control points. Thus we are

trying to determine the displacements in the set {D1, ...,Dn, ...,DN} where each Dn
contains the control points that define the transformation of volume n. In medical

image registration the weighting functions are often chosen to be B-splines and this

type of free form deformation has been thoroughly studied. In our experiments the

weighting functions were chosen from the tri-cubic convolution interpolation algo-

rithm. Because these weighting functions force the deformation field at each control

point location to take the exact value of the control point displacement, a larger step

is taken during iterations of the algorithm. This is beneficial because the computa-

tional requirement to optimize N 3-dimensional displacement fields simultaneously is

large.

The regularization of the transformation field is necessary in the case of general

deformable registration or the problem is ill-posed; however it is not theoretically re-

quired by the block matching algorithm presented in this chapter due to control point

displacements being limited to an arbitrary 3D window in the discrete formulation.

The control point displacements should adhere to the constraints in [68], which result

in a diffeomorphic transformation field after registration. It is still used to enforce
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smoothness on the deformation field in the case of partially overlapping ultrasound

volumes. If two volumes are registered in the region of overlap it is important for the

deformation field to smoothly extend into the non-overlapping region of the image

volumes because there is no similarity measure to guide the registration process here.

We impose regularization on the deformation field using second order as opposed to

first order derivatives because this type of regularization is invariant to linear trans-

formations; thus rigid alignments are not penalized during deformable registration.

3.3 Group-wise block matching as probability max-

imization

In this section a group-wise block matching algorithm will be described based on

the probabilistic concepts discussed previously. Also the mathematical assumptions

made during the development of the group-wise similarity measure presented in this

chapter will be elaborated on. As discussed above in the context of group-wise

image registration, each source volume is given a set of control points placed in

the common scene coordinate system. All transformations are initially identity, i.e.

Dn =
{

(0, 0, 0)>n,1 , ..., (0, 0, 0)>n,m , ...., (0, 0, 0)>n,M

}
for each source volume n, and ev-

ery location in the common scene’s uniformly spaced grid has N coinciding control

points, one for each source image. In addition to concepts already presented we

propose that each source image volume In should be broken down into overlapping

blocks, or sub images, which are centered on each grid point. The set of control

point locations will be denoted as C = {cb|cb ∈ R3 ∧ 1 6 b 6 B} where B denotes

the total number of blocks or control points and will form a rectangular grid of uni-

form spacing h in the scene coordinate system. Let In,{1,...,B} = {In,1, ..., In,b, ..., In,B}

represent the set of B overlapping blocks which comprise image volume n and are

centered on the control points. The location of each block in the scene coordinate

system can be determined using the block index b. The number of blocks in the

grid along the x, y, z dimensions is denoted by Bx, By, Bz, respectively. Also we will
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define a block as a cubic region centered on a control point whose sides are equal to

2h. Individual voxels within a block will be indexed as offsets from the grid coor-

dinates that the block is centered on using the set B = {x|x ∈ Z3 ∧ −h 6 xn 6 h}.

The index of the control points increases fastest along the x dimension, followed by

y and is slowest along the z dimension. Let the each Tn ∈ T be the transformation

associated with image volume In which is defined by a set of displacement vectors

corresponding to the control points associated with In and where the direction of the

transformation is from the common scene coordinate system to the individual model

system. Defining the transformations to be in this direction makes interpolating the

model images in the common scene coordinate system simple. Using the notation

introduced above the displacement vectors for source n will be indexed using the no-

tation Dn = {dn,1, ...,dn,b, ...,dn,B} where dn,b ∈ R3 and dn,b =
[
dxn,b dyn,b dzn,b

]
.

The complete solution, consisting of all the displacement vectors for the N source

volumes, is denoted as D = {D1, ...,Dn, ...,DN}. Simplified notation for the transla-

tion and formation of blocks will be helpful in providing a cleaner presentation. Thus

transformed regions near control point cb from image volume In will be represented

using

I↓n,b = In (x + Tn (x))

= In (x + cb + dn,b +NRn,b (x))

≈ In (x + cb + dn,b) .

(3.8)

In (3.8) the deformation is modeled using a translational component and a non-rigid

component. The NRn,b (x) : R3 → R3 term models the non-rigid correction of the

transformation and is included for completeness but is removed because the deforma-

tion field is estimated using block-matching. When it is included, dn,b + NRn,b (x)

represents the exact transformation of volume In. The symbol I↓n,b represents a trans-

formed version of In where the downward arrow is used to signify translation. This

transformation centers the region of volume In, surrounding control point cb, at the

origin of a provisional coordinate system associated with block b, which is only used

to calculate the similarity between image blocks of the set I{1,...,N},b and their search

windows within the overlapping In. The translational component dn,b is considered
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to be the exact deformation at the control point cb and the term NRn,b corrects for

non-translational movement away from cb. Thus as the control point grid becomes

finer the non-rigid term has less of an effect.

The idea of the algorithm is that at each grid location a group-wise block matching

is performed. If a grid location is common to many (> 3) overlapping volumes it will

be shown that the sum of pairwise terms can serve as the group-wise measure of

alignment for this set of blocks. In a registration algorithm based on block matching

it is assumed that the deformation of the image volume can be locally described by

the translation of a block in a larger search window. The smaller the blocks are the

more valid this assumption is. The dense deformation field can then be calculated

by fitting some function to the block displacement data; we choose to use a bi-cubic

interpolation function based on equation (3.7); however free-form deformation splines

would also work.

Using the recently introduced notation, the registration problem is stated as

T̂ = argmax
T

P (T1, ..., TN |I1, ..., IN)

= argmax
T

P (I1, ..., IN |T1, ..., TN) P (T1, ..., TN)

P (I1, ..., IN)

≈ argmax
T

P (I1, ..., IN |T1, ..., TN) P (T1, ..., TN)

(3.9)

where the prior probability on the source volumes is ignored as before but could be

utilized as part of an extension in the future. The desired set of transformations which

maximizes this probability is denoted as T̂ . Equation (3.9) is a combination of the

similarity metric and the prior probability on the set of transformations. Given a fixed

image volume all blocks belonging to other volumes are conditionally independent.

Taking the natural log of the argument in the last line of (3.9) yields

T̂ ≈ argmax
T

( ln P (I1, ..., IN |T1, ..., TN) + ln P (T1, ..., TN) ) . (3.10)

First we will concentrate on simplifying the term ln P (I1, ..., IN |T1, ..., TN), which

represents the block based similarity measure. The derivation of an expression repre-
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senting this probability, which can then be evaluated in practice, parallels the work

of [83] introduced previously in this chapter. It will be shown that the modeling

assumptions made by our approach will yield an energy function that can be effi-

ciently optimized using graph based methods once it has been discretized. The block

formulation process for multiple image volumes, given a scene volume I↓i,b, can be

approximated as

Ij,b (x) = f
(
I↓i,b (x− dj,b −NRj,b (x))

)
+ ε where x ∈ B

≈ f
(
I↓i,b (x− dj,b)

)
+ ε

(3.11)

where local non-rigid correction term NRj,b is once again ignored in the final result

of (3.11), and where NRj,b represents the error in assuming that the motion between

volumes can be modeled as displaced blocks. Noise is represented by the term ε.

This equation characterizes the block Ij,b as being a transformed and corrupted sub-

image of the transformed source or scene image I↓i,b . The scene image I↓i,b is simply

one of the source images which underwent a translation specified by di,b. If the

movement between volumes is only translational then the non-rigid correction term

will be zero. Also as the block size decreases so does the importance of the correction

factor because a smaller number of features will be captured in each block. In order

to derive the similarity measure we assume that each block or sub-image is the result

of a separate imaging process. This assumption will enable the development of an

efficient groups-wise metric. Including the non-rigid correction terms means that the

transformation is exact for all values of x and ensures that the neighboring blocks

of an image volume are coherent, meaning that in a stationary scene, image blocks

should have identical voxel intensities in the regions of overlap assuming the noise

from the block formulation process can be known and subtracted. An analogous

and intuitive way to think of the process of capturing blocks or sub-images would be

the way overlapping ultrasound volumes are captured from the same subject. Each

volume is the result of a separate imaging process which is what (3.11) implies about

block formation. Although we form Ij,{1,...,B} from an intact image volume each Ij,b
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is assumed independent of the others for the purpose of deriving the metric.

Starting with equation (3.5) and noting that an image estimated by overlapping

blocks produced using (3.11) will contain superfluous random variables (voxel inten-

sities) in regions of overlap, a group-wise probabilistic block matching term can be

constructed as follows,

ln P (I1, ..., IN |T1, ..., TN) ≈
N∑
i=1

N∑
j 6=i

ln P (Ij|Ii, Ti, Tj)

≈
N∑
i=1

N∑
j 6=i

ln P
(
Ij,{1,...,B}|Ii, Ti, Tj

)
=

N∑
i=1

N∑
j 6=i

B∑
b=1

ln P (Ij,b|Ii,di,b, NRi,b,dj,b, NRj,b)

≈
N∑
i=1

N∑
j 6=i

B∑
b=1

ln P
(
Ij,b|I↓i,b,dj,b

)
.

(3.12)

The terms in the first line signify the probability of observing Ij given Ii and both

transformations. The second line of (3.12) follows the line of reasoning that a com-

plete image or scene can be estimated by overlapping blocks which contain highly

dependent random variables in common regions. The third line of (3.12) is the result

of applying the conditional independence property to the blocks which form an im-

age volume. This property originates from the block formulation process described

in (3.11). Due to our model of the imaging process which produced Ij,{1,...,B} from

I↓i , we can say that the overlapping blocks of Ij are independent given the set of

control point displacement vectors Tj and their corresponding non-rigid correction

terms. The final result of (3.12) ignores the non-rigid component as before which

if included would ensure the spatial coherence of the overlapping blocks; however,

this omission facilitates the derivation of the registration solution as a group-wise

probabilistic block-matching scheme. The approximation of (3.12) becomes increas-

ingly valid as the block size decreases and also allows us to develop a computationally

efficient implementation. The last term in (3.12) can be given an intuitive descrip-

tion. The group-wise similarity metric is calculated by iterating through each image

63



in the outer summation, with each taking a turn as the scene from which all other

images are assumed to be generated from. Next the scene image’s pairwise block

based similarity between it and the remaining volumes are calculated. Finally all the

similarity results are summed. Note that in the final result of (3.12) the transformed

version of Ii is used as the scene image and not the original acquired volume. This

is important because it corresponds to fixing the transformation of volume Ii during

the calculation of P
(
Ij,b|I↓i,b,dj,b

)
.

If we assume zero mean Gaussian noise then the term P
(
Ij,b|I↓i,b,dj,b

)
can be

simplified to the SSD metric calculated over the block designated by the index b,

P
(
Ij,b|I↓i,b,dj,b

)
≈

SSD between vols. i,j over block b∑
x∈B

[
Ij,b (x)− I↓i,b (x− dj,b)

]2

=
∑
x∈B

[Ij,b (x)− Ii (x + cb + (di,b − dj,b))]
2.

(3.13)

The block-wise SSD metric can be evaluated very fast using FFT techniques [21]

and will be elaborated on further. For this reason we choose it for our registration

experiments although there is no reason that more complex similarity measures could

not be used in this block-matching framework. The final likelihood term for the SSD

based group-wise registration algorithm is

ln P (I1, ..., IN |T1, ..., TN) ≈
N∑
i=1

N∑
j 6=i

B∑
b=1

∑
x∈B

[Ij,b (x)− Ii (x + cb + (di,b − dj,b))]
2

(3.14)

The term inside the summations of (3.14) is simply a block-wise similarity measure

which was the goal from the outset. It takes into account translation by both image

volumes Ii and Ij in its calculation but chooses fixed blocks of Ij to match within

larger windows of Ii enabling efficient calculation. The origins of the windows and

blocks are determined by the location of each cb. During the calculation of (3.14) the

only volume which undergoes movement is Ii. The measure is still symmetric because

each image volume takes a turn as the scene volume Ii.

Let us assume that not all image volumes overlap which is realistic considering our
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primary application is ultrasound mosaicing. Let P = {i, j} be the set of volume pairs

which have some amount of overlap. The right side of (3.14) can now be rewritten

to show the symmetry of the metric,

ln P (I1, ..., IN |T1, ..., TN) ≈
∑
i,j∈P

B∑
b=1

∑
x∈B

[Ij,b (x)− Ii (x + cb + (di,b − dj,b))]
2+

[
Ii,b (x)− Ij (x + cb + (dj,b − di,b))

]2
. (3.15)

Thus for each pair of images that overlap we use symmetric block-matching to calcu-

late the similarity in the region of overlap and then sum these values together for all

valid pairs which results in the group-wise registration metric. This intuitive result

stems from the probabilistic formulation of the group-wise registration problem. In

(3.15) we see that the term that drives the registration process is di,b − dj,b = τ ,

which is the difference in translation between overlapping pairs at location cb. This

means that in a group-wise setting only the relative movement between overlapping

image volumes is a factor in the similarity metric, which is an obvious but satisfying

result. There were two main assumptions that were used to produce (3.15). The first

was that all regional deformation around a control point was translational, i.e. we

ignored NRn,b, and the second was that images could be estimated by overlapping

blocks which were produced by separate imaging processes of a fixed scene image.

We also assumed Gaussian noise and an identity mapping between voxel intensities

in the block imaging process. The inclusion of the non-rigid components NRn,b as a

low order parametric term could be considered in the future.

Before the transformation regularization term ln P (T1, ..., TN) from (3.10) is ex-

plained, the displacement window for the control points must be discretized. Equation

(3.15) already uses a discrete value for the image index x; however nothing has been

formally stated regarding transformation variables Ti,b and Tj,b. Each control point is

allowed to move within a fixed window during the optimization process to be discussed
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shortly. Assuming a uniform grid of control points, let the displacement window be

W =
{
d|d ∈ Z3 ∧ −1

2
h 6 dn 6 1

2
h
}
. (3.16)

By limiting the displacement window, our search space is smaller.

The transformation regularization for a registration problem which contains many

partially overlapping image volumes should be a 2nd order regularizer. A regulariza-

tion based on the second derivative of the transformation function is invariant with

respect to linear transformations, which would be desired when for instance the defor-

mation contains mostly rotational components. Minimizing the second derivative as

opposed to the first also has the effect of producing a smoother displacement field. In

an area of overlap the field’s value is dominated by the similarity metric; however, in a

region with no other overlapping volumes the field is totally dependent on the regular-

ization energy to determine its value. Shearing artifacts may occur in the transition

between the overlapping and non-overlapping regions if only a first order regularizer

is used. For each image the set of discrete control point displacements defining the

transformation Tn are used to estimate its 2nd derivative using a central difference

scheme. Each Tn is regularized independently from the rest of the transformations

T{1,...n−1,n+1,...N}, and the total regularization energy for an individual volume is cal-

culated by discretely summing up each control points contribution. The 2nd order

derivatives along the x, y, z dimensions of the deformation field are estimated at the

control points by the following equations:

∂2Tn
∂x2

∣∣∣∣
x=cb

≈ dn,b−1 − 2db + dn,b+1

h2

∂2Tn
∂y2

∣∣∣∣
x=cb

≈ dn,b−Bx − 2dn,b + dn,b+Bx

h2

∂2Tn
∂z2

∣∣∣∣
x=cb

≈ dn,b−BxBy − 2dn,b + dn,b+BxBy

h2
.

(3.17)

Due to the discretization of the registration problem, the regularization of the de-

formation field only considers the translation at each control point in its calculation.
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This is a necessary approximation required to use the graph based optimization meth-

ods to be discussed. For volume In, the regularization contribution associated with

control point cb is found by summing the L1 vector norms of the terms from (3.17).

This contribution is expressed as

Rn,b (dn,b) =

∣∣∣∣dn,b−1 − 2dn,b + dn,b+1

h2

∣∣∣∣+∣∣∣∣dn,b−Bx − 2dn,b + dn,b+Bx

h2

∣∣∣∣+∣∣∣∣dn,b−BxBy − 2dn,b + dn,b+BxBy

h2

∣∣∣∣ (3.18)

≈

∣∣∣∣∣ ∂2Tn
∂x2

∣∣∣∣
x=cb

∣∣∣∣∣+

∣∣∣∣∣ ∂2Tn
∂y2

∣∣∣∣
x=cb

∣∣∣∣∣+

∣∣∣∣∣ ∂2Tn
∂z2

∣∣∣∣
x=cb

∣∣∣∣∣ .
Finally the total regularization of the continuous transformation Tn is approximated

as the sum of discrete terms calculated by applying (3.18) to every control point

associated with Tn. The regularization energy for image volume In is Rn (Dn) =

1
B

B∑
b=1

Rn,b (dn,b). The total energy for the group-wise registration problem is found

by summing the regularization energy for each individual image volume as R =
N∑
n=1

Rn (Dn). This term is substituted into in the registration formulation where

λ controls how much influence the regularization has on the registration process.

A large value of lambda would overpower the similarity metric and force a rigid

transformation of the image volume. Although direct integration of (3.18) with the

similarity metric presented in (3.15) would result in the formation of an optimizable

discrete registration energy functional we would like to link it to the probabilistic term

ln P (T1, ..., TN) and give some meaning to what λ represents. First, since it is assumed

that the prior probability of all transformations should be independent of each other,

the term is rewritten as ln
N∏
n=1

P (Tn). Now assume that the sum of 2nd derivative

approximations, which represent the average regularization energy of a transformation

Tn, is a discrete random variable that resembles an exponential function and models

the prior probability P (Tn). The r.v. is discrete because there are a finite number of

values that Rn can assume due to the discrete nature of the transformation window.
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The expression for the prior probability is P (Tn) ≈ P (Dn) = 1
κ

exp (λRn (Dn)). This

random variable is parameterized by λ, which controls its variance. The constant

κ is needed to ensure that it is a valid probability density. The joint prior of all

transformations ln P (T1, ..., TN) becomes

ln
N∏
n=1

P (Tn) ≈
N∑
n=1

ln
1

κ
exp (λRn (Dn))

= n ln
1

κ
+ λ

N∑
n=1

Rn (Dn)

= const+ λ

N∑
n=1

Rn (Dn).

(3.19)

The final result of (3.19) is the same term used in the registration process minus the

constant which has no effect on the optimization. This result makes sense because

as we increase λ more influence is given to the regularization term which stiffens

the deformation field. This causes the variance of the probability density function,

which models the average 2nd derivative values of each transformation, to shrink thus

making the prior probability of a non-rigid transformation less likely. By linking (3.19)

with the probabilistic framework, discussed previously, we see that an exponential like

distribution of the regularization terms is implied and that the registration parameter

has a simple relationship to the variance of this distribution. It is interesting to note

that the expected value of the transformation 2nd derivative random variable is not

zero; however, this doesn’t interfere with the optimization.

3.3.1 Efficient evaluation of group-wise SSD metric

Our goal in this section is to introduce a computationally efficient way to evaluate

(3.15), utilizing some properties of the Discrete Fast Fourier Transformation (FFT).

The number of block matching operations required for a single iteration of the group-

wise registration algorithm for multiple (|V| > 2) full resolution volumes can be

calculated as 2 |C|

 |V|
2

, where the last term is a binomial coefficient if we assume
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that all volumes overlap completely. Because the number of times this calculation

is performed grows non-linearly with respect the number of volumes, we found that

(3.15) may contain more than 105 3-dimensional block matching operations when

|V| > 3. For example, in a registration problem with five completely overlapping

volumes and an 18x18x18 control point grid the number of block matching opera-

tions is found to be 2 |C|

 |V|
2

 = 2
(
183
)

10 = 116640. This makes it an serious

computational bottleneck. The method of calculation will be shown in the context of

a single block-matching operation, and simple bookkeeping will be required to fully

evaluate all the block-matching terms of (3.15). The full calculation of the group-

wise metric includes the two outer summations where all overlapping volume pairs

are considered. Also care must be taken in the instance where the two volumes fail

to overlap at cb. First we will rewrite the innermost summation of (3.15) in terms

of τ = di,b − dj,b which is a vector variable representing the relative displacement

between image volumes Ii and Ij at location cb. The inner summation can be written

as

SSDi,j
b (τ) =

∑
x∈B

[Ij,b (x)− Ii (x + cb + τ)]2 +
[
Ii,b (x)− Ij (x + cb − τ)

]2
. (3.20)

The inclusion of the term cb in the transformation above is necessary in order to

shift the region surrounding that control point to the origin of the block coordinate

system we defined earlier. It simply allows the summation expressing the similarity

to be calculated using the set B. In [21] the authors show the existence of an optimal

correlation, which can be used to efficiently solve the SSD block-matching problem

while maintaining the accuracy of the naive full search method. They show that it is

possible to calculate the movement vector that minimizes the value of the SSD metric

using two forward FFTs and one inverse FFT which executes 17.8 times faster than

the full search method on the video sequences tested. It is noted in this dissertation

that the reduction in execution time is not only due to the arithmetic gains by doing

the computation in the frequency domain, but also due to the highly optimized FFT
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libraries available. Special low-level instructions and architectural specific speed-ups

can greatly improve performance. Furthermore GPUs are highly suited for FFT

computation. One can naively break down (3.20) into two SSD calculations and

assume that it will take 6 FFT operations to calculate; however this can be reduced

to four FFT operations, three forward and one inverse, by expanding (3.20) and doing

some manipulation in the spatial domain. Expanding equation (3.20) results in the

following summation

SSDi,j
b (τ) =

∑
x∈B

Ij,b(x)2 − 2Ij,b (x) Ii(x + cb + τ)2Ii(x + cb + τ)2+

Ii,b(x)2 − 2Ii,b (x) Ij(x + cb − τ)2 + Ij(x + cb − τ)2. (3.21)

The goal will be to write this expression as the result of two correlation operations

between complex functions to be defined shortly. The correlations can be performed

in the frequency domain using the circular cross-correlation theorem f [n]⊗ g [n]←→
DFT

F [k] Ḡ [k]. First it will be necessary to rewrite (3.21) so that the arguments of Ii, Ij

match, which can be done by defining some intermediary functions. Let I
′
j (x) =

Ij (cb − x) be a time reversed and translated version of Ij which centers the region

surrounding control point cb at the origin. Also let I
′
i (x) = Ii (x + cb) and I

′

i,b (x) =

Ii,b (−x). Note that the terms Ij,b(x)2, Ii,b(x)2 are independent of τ , which indicates

that they influence the similarity metric by a constant value and thus can be dropped

from (3.21) with no effect on the registration result. This equation can be rewritten

as

SSDi,j
b (τ) =

∑
x∈B

−2
(
Ij,b (x) I

′

i(x + τ)2 + Ii,b (x) I
′

j(τ − x)2
)

+ I
′

i(x + τ)2 + I
′

j(τ − x)2

=
∑
x∈B

−2
(
Ij,b (x) I

′

i(x + τ)2 + Ii,b (−x) I
′

j(x + τ)2
)

+ I
′

i(x + τ)2 + I
′

j(x + τ)2

=
∑
x∈B

−2
(
Ij,b (x) I

′

i(x + τ)2 + I
′

i,b (x) I
′

j(x + τ)2
)

+ I
′

i(x + τ)2 + I
′

j(x + τ)2.

(3.22)
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The change of variables x → −x in the second line of (3.22) is possible because

the region B is centered on the origin thus the summation doesn’t change if we

simply iterate through this set in reverse. Equation (3.22) contains four correlation

operations where the first two measure the similarity between an image block and

a region from the designated search window of its paired image. At this point it

is possible to define complex functions which will be used to express SSDi,j
b (τ) as

an efficient calculation performed in the frequency domain. Let us define complex

functions f, g, h,m as follows

f = I
′

i (x) + jI
′

j (x)

g =

 −2
[
Ij,b (x) + jI

′

i,b (x)
]

if x ∈ B

0 otherwise

h = I
′

j(x)2 + I
′

i(x)2

m =

 1 if x ∈ B

0 otherwise
.

(3.23)

Optimization of (3.24) is equivalent to optimization of (3.22) when applying the

functions defined in (3.23).

SSDi,j
b (τ) = Real

[∑
x∈B

g (x) f (x + τ)

]
+
∑
x∈B

m (x)h (x + τ). (3.24)

Due to the fixed displacement window, τ is known to be limited to {τ |τ ∈ Z3 ∧ −h 6 τn 6 h}

thus the search window for each block matching operation can be defined as S =

{x|x ∈ Z3 ∧ −2h 6 xn 6 2h}. Next we calculate DFTs which match the size of S.

Because we are performing a circular correlation the function g is padded with zeros

to match the size of f which is associated with the search window. For example if the

control point spacing h is set to eight voxels, then the DFTs will be 31x31x31 due to

the definition of the search window S. In this case the final dimensions of SSDi,j
b (τ)

should be 17x17x17 in order to match the limits of τ . Also note that the DFT of m

only has to be computed once at the beginning of the registration procedure because
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it is a constant mask, thus its computational burden is negligible. Equation (3.24)

can be computed for each block using three forward FFTs and one inverse FFT as

Real
[
IFFT

(
F (u) Ḡ (u) + H (u) M̄ (u)

)]
(3.25)

Because the image block initially is centered in the search window before the FFT is

taken and due to the effects of the circular correlation, the results from (3.25) must

be rearranged before being assigned to SSDi,j
b (τ). Using the example where h = 8 we

find that the size of SSDi,j
b (τ) is 31x31x31 after computation of (3.25). Care must

be taken to extract the correct 17x17x17 region from this result because it will be

stored in memory for the duration of the registration and referenced by the graph

based optimization algorithm multiple times during its progression, looking up the

value SSDi,j
b (τ) for particular i, j, b, τ values. Precomputing SSDi,j

b (τ) for each valid

i, j, b, τ combination using the efficient FFT technique described above generates all

the data terms which may be required by the graph-based optimization algorithm

during registration. It should be mentioned that padding the argument of the FFT

so that its dimensions are powers of two will result in a speedup of the FFT algorithm.

For example functions of size 32x32x32 were faster to transform than functions of size

31x31x31.

3.3.2 Increasing the robustness of our group-wise block match-

ing term in the presence of shadows

As demonstrated in Chapter 2, shadowing artifacts can substantially hinder efforts to

register partially overlapping ultrasound volumes. These artifacts are very common

in fetal ultrasound, which is the area our stitching efforts are concentrated in, thus our

algorithm should attempt account for them. Our approach to compensate for shad-

ows during non-rigid registration involves a pre-processing detection step followed by

group-wise registration with a modified similarity metric. Shadow detection can be

accomplished using a few different techniques [28] and we have chosen to implement

[34]. The basic idea is to ignore a voxel location’s contribution to the similarity
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metric if it lies inside a region deemed to be occluded. Finally the total similarity

value is normalized by the number of voxels that were used in its calculation. The

normalization is required in order to prevent the registration algorithm from forcing

structures apart in the areas dominated by shadows. Essentially the metric we are

minimizing becomes the average error per voxel in non-shadow regions. In the fol-

lowing discussion let us assume that Mi and Mj are Boolean masks identifying valid

image regions that are free of artifacts. It is easy to incorporate these masks into the

block matching framework presented in this dissertation by modifying (3.20) and this

modification is shown below,

OVRi,j
b (τ ) =

∑
x∈B

Mj,b (x)Mi (x + cb + τ ) +Mi,b (x)Mj (x + cb − τ )

SHDi,j
b (τ ) =

1

OVRi,j
b (τ )

∑
x∈B

[Mi (x + cb + τ ) Ij,b (x)−Mj,b (x) Ii (x + cb + τ )]2

+ [Mj (x + cb − τ ) Ii,b (x)−Mi,b (x) Ij (x + cb − τ )]2

(3.26)

The function OVRi,j
b is the normalization factor which gives the number of unobscured

voxels that volume i and volume j have in common around control point cb when their

relative offset is τ . The function SHDi,j
b calculates the sum of squared differences

while ignoring shadow regions. This can be seen by noticing that the term inside the

summation of SHDi,j
b evaluates to 0 if the voxel location x is obstructed by shadows

in both image volumes, and this result is to be expected. Let us also assume that

the masks calculated during preprocessing were used to eliminate those obscured

regions in the ultrasound volumes via setting their voxels equal to 0. Since we have

determined that those areas were occluded during preprocessing we can assume their

voxel intensities just represent noise anyway. Performing this step prior to registration

ensures that the term inside the summation of SHDi,j
b is only non-zero as long as Mi =

1 and Mj = 1, which is an intuitive result. Equation (3.26) simply calculates the sum

of squared differences using voxels from the overlapping region which haven’t been

obscured by shadowing artifacts. In order to simplify the presentation and provide

equations which are easily translated into code the notation Ii,Sb (x) will be used to
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designate the search window around a control point cb, thus Ii,Sb (x) = Ii (x + cb)

where x ∈ S. Using the methodology presented in the previous section we can

efficiently calculate all possible values of (3.26) for varying τ by employing multiple

FFT operations. Let us define the following complex functions f, g, h, k,m, n which

will be used in the calculation of SHDi,j
b ,

f =

 Ij,b(x)2 − 2jIj,b (x) if x ∈ B

0 otherwise

h =

 I ′i,b(x)2 − 2jI ′i,b (x) if x ∈ B

0 otherwise

m =

Mj,b (x) + jM ′
i,b (x) if x ∈ B

0 otherwise

g =

Mi,wb
(x) + jIi,wb

(x) if x ∈ S

0 otherwise

k =

M ′
j,wb

(x) + jI ′j,wb
(x) if x ∈ S

0 otherwise

n =

 Ii,wb
(x)2 + jI ′j,wb

(x)2 if x ∈ S

0 otherwise

and also define the functions s, t to be used in the calculation of OVRi,j
b ,

s =

Mj,b (x) + jM ′
i,b (x) if x ∈ B

0 otherwise
t =

Mi,wb
(x) + jM ′

j,wb
(x) if x ∈ S

0 otherwise

where the prime notation indicates a time reversal here, i.e. I ′i,b (x) = Ii,b (−x). Using

these functions we see that the following equations are equivalent to those presented

in (3.26),

OVRi,j
b (τ ) = Real

[∑
x∈B

s̄ (x) t (x + τ )

]

SHDi,j
b (τ ) =

1

OVRi,j
b (τ )

Real

[∑
x∈B

f̄ (x) g (x + τ ) + h̄ (x) k (x + τ ) + m̄ (x)n (x + τ )

]
(3.27)

These correlation operations can be written in the frequency domain using well known

identity

(x⊗ y)n =
N−1∑
m=0

x̄ [m] y [m+ n]
DFT↔ X̄ [k]Y [k] (3.28)
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Thus the final similarity measure is calculated using

OVRi,j
b (τ ) = Real

(
IDFT

[
S̄ (u)T (u)

])
SHDi,j

b (τ ) =
1

OVRi,j
b (τ )

Real
(
IDFT

[
F̄ (u)G (u) + H̄ (u)K (u) + M̄ (u)N (u)

])
(3.29)

With this approach we achieved a speedup factor of 10.31 over the naive imple-

mentation which is a substantial improvement. Our results suggest that an efficient

group-wise similarity measure, which is robust to ultrasound shadowing, can be easily

implemented using FFT operations. To our knowledge this is the first attempt at a

group-wise metric for ultrasound mosaicing which accounts for shadowing artifacts

such as commonly experienced in a clinical setting. The two block-wise similarity

measures discussed in this chapter are readily interchangeable in the following discus-

sion on MRF optimization even though we frequently refer to (3.15) instead of (3.26)

due to simplicity. It should be noted that all ultrasound registration experiments de-

scribed in this chapter were conducted using the similarity measure defined in (3.26),

due to its ability to handle heavily shadowed volumes.

3.3.3 Formulation of registration energy

In this section the complete registration energy is formulated, which is a combination

of the similarity measure and the transformation regularization developed previously.

Using the well-known Hammersley Clifford theorem [8] it will also be shown that this

registration energy forms a Markov Random Field (MRF) in which each node corre-

sponds to the displacement of its associated control point. An undirected graphical

model G is called a MRF if two nodes are conditionally independent given the values

of the nodes separating them. This can be stated as P (Xi|XG/i) = P (Xi|XNi
) where

XG\i refers to all the nodes except Xi and XNi
refers to the neighborhood of Xi, i.e.

all nodes which are connected to Xi. The Hammersley Clifford theorem states that

if the joint probability function takes on a specific form called a Gibbs distribution

then it also forms a MRF. A proof can be found in [16]. It will be shown in this sec-

tion that our probabilistic formulation of the group-wise registration problem forms
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a Gibbs distribution with double and triple clique terms. Efficient inference meth-

ods commonly used on MRFs in computer vision will be used to find the optimal

transformations to bring the overlapping volumes into alignment. Formulation of the

registration energy is given as

E (D) =
N∑
i=1

[
N∑
j>i

B∑
b=1

SSDi,j
b (di,b − dj,b) +

λ

B

B∑
b=1

(∣∣∣∣di,b−1 − 2di,b + di,b+1

h2

∣∣∣∣+ ∣∣∣∣di,b−Bx − 2di,b + di,b+Bx

h2

∣∣∣∣+∣∣∣∣di,b−BxBy − 2di,b + di,b+BxBy

h2

∣∣∣∣)
]
. (3.30)

The first thing to note about this equation is the grouping of random variables from

the set D into distinct terms. Like before, each discrete variable dn,b corresponds

to the displacement of a control point located at cb and associated with volume

n. The groupings are referred to as cliques and upon inspection it can be seen

that there are terms in (3.30) which are functions of double and triple cliques. The

similarity terms SSDi,j
b (di,b − dj,b) are examples of double clique terms due to them

being a function of two displacement variables. Each double clique term links the

displacements of co-located control points belonging to a pair of different volumes.

Notice in the SSDi,j
b (di,b − dj,b) terms that the volume identifiers i, j are different but

the location identifier b is identical. As discussed before, this measures the block-wise

similarity between volumes at a region surrounding cb and can be thought of as inter-

volume terms. The triple clique terms found in the second row of (3.30) measures the

regularization energy of the transformations. Each control point in volume n belongs

to three triple cliques, one corresponding to each dimension of the volume. Looking at

the indexes in these terms it is apparent that all triple clique terms are intra-volume

terms since the volume identifier i is constant. This results from our assumption

that the prior probabilities of transformations in the set T are independent. We

can also write (3.30) in a more compact way where double (inter-volume) and triple

(intra-volume) cliques of nodes are collected into the sets {di,b,dj,b} ∈ NInter and
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{di,a,di,b,di,c} ∈ NIntra respectively. Equation (3.30) is now written as

E (D) =
∑

{di,b,dj,b}
∈NInter

SSDi,j
b (di,b − dj,b) +

λ

B

∑
{di,a,di,b,di,c}
∈NIntra

∣∣∣∣di,a − 2di,b + di,c
h2

∣∣∣∣ , (3.31)

which can be described by a graphical model where the cliques are indicated using

edges. This is the most common form found in the computer vision literature. Due to

the Hammersley-Clifford theorem and the fact each of these terms was derived from

a probabilistic expression using the maximum likelihood framework we can arrive at

the conclusion that (3.31) can be represented as a Markov Random Field where each

node in the model corresponds to a single discrete displacement variable dn,b.

Although it is not necessary for the understanding of the registration method,

the Hammersley-Clifford theorem will be reviewed since it forms the foundation for

significant developments in computer vision. A probability distribution, such as P (D)

in our case, defined on an undirected graphical model G is called a Gibbs distribution

if it can be factored into positive functions whose arguments are the cliques which

characterize the nodes and edges of G. That is,

P (D) =
1

Z

∏
c∈Cg

φc (Dc), (3.32)

where Cg is the set of all maximal cliques in G and Z is the normalization constant.

A maximal cliques refers to the largest set of fully connected nodes. If a set of nodes

forms a maximal clique then adding any other node from G breaks the fully con-

nected property of the set. We identify the displacement values dn,b of the nodes for

an individual clique using the notation Dc. In our registration problem the set of Cg

contains the double and triple cliques found in (3.31) which are associated with the

functions φc that compute the similarity and regularization terms. (3.32) turns into

the summation of (3.31) after taking the natural logarithm. A partial graph corre-

sponding to a two dimensional version of our registration problem is shown in Figure

3-2 for clarity. The 3D version is a straightforward extension of this 2D version. Fig-

ure 3-2 shows control point nodes corresponding to three overlapping 2D images and
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Image 2

Image 1

Image 3

SSD
1,2

SSD
1,3

SSD
2,3

SSD
1,3

Regularization of T
3

Regularization of T
2

Regularization of T
1

Figure 3-2: Graph for Markov Random Field representing registration problem with
three overlapping 2D images. Each control point node is represented by a circle, with
its latent value being defined as a displacement vector. Probabilistic dependencies
between nodes are modeled by the edges connecting them. For example, similarity
dependencies are edges which extend between images while smoothness dependencies
are represented by edges between nodes of the same image.
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demonstrates the intra and inter-volume dependencies. The maximal cliques which

are grouped into the terms of (3.31) are also easily seen in Figure 3-2. Using this

graph we desire to make an inference on the displacement values for each node. In

the optimization section the method chosen to make this inference will be discussed

in detail. The double clique terms corresponding to the similarity measure are mod-

eled by edges between the images while the triple clique terms corresponding to the

regularization are modeled by the edges confined to each image’s grid of nodes. Not

all edges are shown in this figure, but can be deduced by (3.31). We can make some

statements about the probabilistic dependencies of these displacement nodes using

the Hammersley-Clifford theorem which has found much use since its formulation in

1974. The theorem tells us that the definition of a Gibbs distribution is equivalent to

the definition of a Markov Random Field, which means that in the graphical model

G described above two nodes are conditionally independent whenever they are sepa-

rated by evidence nodes. Evidence nodes have displacements which have been given

specific values. In our problem this implies that for every node dn,b in our graph the

following conditional property holds,

P (dn,b |D\dn,b ) =

P
(
dn,b

∣∣d{1...n−1,n+1...N},b,dn,b+1,dn,b−1,dn,b+Bx ,dn,b−Bx ,dn,b+BxBy ,dn,b−BxBy

)
(3.33)

This is a nice representation of the displacement dependencies in our registration

method. It defines the local Markov property which characterizes this group-wise

block matching algorithm. This works well for group-wise image registration be-

cause these conditional properties of Markov Random Fields lead to implicit global

dependencies between the volumes.
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3.4 Efficient optimization of registration energy us-

ing fusion techniques

Since our displacement label space W is large, i.e. if control point spacing h=8 then

|W| = 93 using the definition of W from (3.16), and the MRF representing the reg-

istration energy given by (3.30) contains a considerable amount of double and triple

clique terms which may not be submodular, we are left with a substantial NP-hard

optimization problem. Our strategy to optimize this energy will be to employ a par-

allelized alpha-expansion technique which was recently developed in [42]. It should

be noted that each triple clique term in our energy function is expanded into six

double clique terms before optimization, since the methods we employ operate on

pair-wise potentials. A key component of this algorithm will be the optimization

of non-submodular binary-labeled MRFs which are sub-problems of the registration

procedure. The BHS algorithm presented in [36] will be used for this purpose. The

general idea of the fusion technique is to combine different suboptimal solutions in an

intelligent way in order to produce a better solution with lower registration energy.

In our application the unique suboptimal solutions will result from exploring different

regions of the transformation space independently and in parallel using multiple CPU

threads. These solutions are then fused in a principled way that will be described

in this section. The authors of [42] applied this algorithm to the common computer

vision problem of calculating optical flow. They coined their approach Fusion-Flow,

which is a discrete/continuous optimization scheme based on fusion moves that com-

bines the advantages of both. Different optical flow approaches have diverse strengths

and weaknesses, and a superior solution may result from a combination of unique ap-

proaches fused together to get the final result. For example in [42] the authors fused

flow solutions resulting from two classic optical flow algorithms, the Lucas-Kanade

solution which behaves well in textured regions but is useless in smooth areas, and the

Horn-Schunck method which gives a good approximation but over smooths motion

discontinuities. The authors produced around 200 proposal solutions by varying the

parameters of each algorithm and fused them together using the approach will be
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discussed in detail below. The final fused result was very close to the ground truth

demonstrating the effectiveness of the concept.

Before explaining the registration optimization algorithm, the minimization of

binary MRFs is briefly reviewed. The registration energy will need to be expressed

in this form. These problems take the form

E(x) =
∑
i∈V

Φi(xi) +
∑

(i,j)∈N

Ψij(xi, xj) where x ∈ L|V| (3.34)

where V is a set of nodes, N is a set of undirected edges connecting pairs of nodes,

and L is the set of labels. In the registration energy these nodes correspond to control

points, but in other computer vision applications such as stereo vision they usually

correspond to pixels or voxels. The labeling x assigns each node a label from the

space L and the goal of the optimization is to find x̂ = argminE (x)
x

. The terms Φ

and Ψ are real valued functions referred to as unary and pairwise potentials, which

are used to calculate the energy of a labeling. These symbols are commonly found

in the literature and so are used here in order to introduce the graph cut theory;

however they are not equivalent to the symbols which were used earlier to define the

registration problem. It is well known that if L = {0, 1} and the Φ and Ψ terms

satisfy a certain condition called sub-modularity then a globally optimal labeling

can be found by solving a minimum cut problem on a specially constructed graph.

Minimization of (3.34) with this binary label space is known as quadratic pseudo-

Boolean optimization (QPBO) [36] where quadratic refers to the highest ordered term

being pairwise. The submodularity condition for a discrete binary labeling problem,

which is analogous to the convex property of continuous functions, can be stated as

Ψij(0, 0) + Ψij(1, 1) 6 Ψij(1, 0) + Ψij(0, 1) (3.35)

The minimization of equations which take the form of (3.34) can be accomplished us-

ing a popular algorithm known as alpha expansion, which is based on graph cuts. The

idea behind alpha expansion is to choose a label, which in this application would be
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one of the possible displacements from the discretized window W , and then perform

a binary graph cut optimization which results in that label expanding its footprint

in the final solution vector. Because graph cuts are inherently binary, each label is

expanded individually during optimization until no label expansion produces a lower

energy value. During each cycle of alpha expansion we label the nodes corresponding

to the control points defining each transformation as 0 if they should retain their cur-

rent displacement value or 1 if they should take on the value of the displacement label

currently being expanded, also known as alpha. If the pairwise terms in (3.34) satisfy

the submodularity constraint given by (3.35) then each expansion produces a globally

optimal result. Moves that are globally optimal during each cycle of alpha expansion

make this optimization method resilient to getting trapped in local minima. This con-

dition implies that neighboring nodes in the graph construction must be encouraged

to take the same label, which is usually the case in medical imaging applications such

as segmentation. Alpha expansion often outperforms optimization methods based

on local gradients because during each expansion an exponential amount of moves is

considered, and the globally optimal move can be chosen efficiently due to advances in

max flow/min cut algorithms. Because each cycle results in a globally optimal result

for that expansion sub problem the final result after all labels are expanded is very

good. When the submodularity condition is satisfied, the energy after optimization

using alpha expansion is within a known bound from the globally optimal solution,

and can be calculated using the Ψij terms.

This theory will now be discussed in the context of group-wise image registration,

and an efficient method to calculate all the non-rigid transformations will be devel-

oped. Alpha expansion has been effectively used to perform traditional pair-wise reg-

istration in [72] where their contribution outperformed other registration algorithms

including both continuous approaches such as the diffeomorphic demons found in the

Insight Toolkit and also discrete approaches found in [24]. Their idea was to perform

alpha expansion using the set of labelsW . It should be noted that using a maximum-

cut computation to perform each expansion step is only valid for sub-modular func-

tions, which is what [72] dealt with. The restriction to pairwise registration coupled
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with a 1st order transformation regularizer guarantees sub-modularity of the reg-

istration energy. However, in the group-wise registration formulation of (3.30) no

guarantees can be made on the sub-modularity of the terms so a more sophisticated

optimization method must be applied for each expansion step. This is due to the

group-wise nature of the algorithm coupled with the 2nd order regularizer.

This is where the BHS algorithm is utilized. It effectively optimizes non-submodular

binary labeled MRFs. As discussed above, the global optimum for a binary labeled

submodular function can be computed exactly; however, this isn’t possible during

the alpha-expansion steps in the registration procedure because submodularity isn’t

guaranteed. What is possible however is a partial result where each node that has

been labeled by the BHS algorithm is part of the globally optimal solution. Thus

the BHS algorithm is executed on a non-submodular binary labeling problem during

each expansion and produces an output vector x which contains 0,1 or ?. The nodes

given values 0 or 1 are considered labeled and part of the global optimal solution

whereas the nodes designated as ? are considered unlabeled. In our experience the

registration algorithm produces very few unlabeled nodes, less than .01%, which are

simply left with the default displacement of zero. This was also the result of the

stereo vision experiments in [36]. A very important property of the BHS algorithm,

which is required for its use within alpha-expansion, is called the persistence prop-

erty. This states that if we replace the unlabeled nodes of the output vector x with

labels from an arbitrary vector y the energy of the composite vector x′ is guaranteed

to be less than or equal to E (y). This is an interesting but not obvious property

which results from the fact that any labeled node must be part of a globally optimal

solution. Thus in our application only labeled nodes or control points are assigned

displacement values from the set W while the rest remain in their initial location.

The registration energy in (3.30) reduces to the form shown in (3.34) as discussed

but it should be noted that the pairwise terms increase exponentially with respect

to the number of control points. This is due to the 2nd order regularizer which ne-

cessitates the use of triple cliques. In addition to the computational burden from

the additional pairwise functions used to express the triple clique terms there is also
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overhead associated with using the more complex BHS algorithm which is necessary

due to the non-submodularity of the problem. In light of this complexity we propose

an approach where mutually exclusive regions in the solution space are explored in

parallel and determine that this method enables efficient and accurate calculation of

the transformation functions associated with each volume. In the 3-dimension appli-

cation of ultrasound mosaicing the cubic search window is separated into 8 distinct

regions corresponding to the 8 corners of the cube. Figure 3-3 demonstrates how the

label spaceW is broken down into separate simplified registration problems which are

then computed in parallel. This figure also explains how the 8 suboptimal solutions

which were computed initially by parallel CPU threads are fused into a final enhanced

solution. There is very little overhead associated with the fusion process since the

label space is so large. For example each fusion step requires the BHS algorithm to

run once whereas computing an initial solution using alpha-expansion with a limited

displacement label set requires 92 BHS executions if |W| = 93.

Consider two registration solutions d0 ∈ W |C|0 and d1 ∈ W |C|1 where |C| is simply

the number of control points formally stated as the cardinality of the set C. The

solutions are referred to as labellings where the subscript indicates the region of the

displacement windowW that was considered during their calculation. Also note that

they are vectors whose lengths are equal to the number of control points. The goal of

the fusion step is to determine a composite labeling dc where the displacement vector

of each node must come from either d0 or d1. Thus dc ∈ (W0 ∪W1)|C| and can be

expressed as a linear combination of d0 and d1 using a binary vector y ∈ {0, 1}|C| as

dc (y) = d0 • (1− y) + d1 • y where the multiplication is done element-wise. The

binary vector y has an element associated with every displacement node and can be

indexed using the same notation that was used to index the displacement vector d.

Also, all inter and intra volume nodal relationships or cliques are identical in the new

MRF problem. Using this construction for dc the fusion of two registration solutions

can be written as a non-submodular binary-labeled MRF which can be solved using

the BHS algorithm discussed earlier. The new binary optimization problem is shown
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Final transformation fuses solutions from initial problems

8 independent registration problems consider mutually exclusive windows

Fusion
steps

designated
by

arrows

Figure 3-3: Displacement label space is segmented into 8 regions which are evaluated
in parallel. Fusion steps detail how final registration solution is calculated.
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below

E (dc (y)) =
∑

{yi,b,yj,b}
∈NInter

Ψi,j
b (yi,b,yj,b) +

∑
{yi,a,yi,b,yi,c}
∈NIntra

Θi
a,b,c(yi,a,yi,b,yi,c) (3.36)

where the new potentials Ψij and Θijk are defined as

Ψi,j
b =

 SSDi,j
b

(
d0
i,b − d0

j,b

)
SSDi,j

b

(
d0
i,b − d1

j,b

)
SSDi,j

b

(
d1
i,b − d0

j,b

)
SSDi,j

b

(
d1
i,b − d1

j,b

)
 (3.37)

and

Θi
a,b,c (yi,a,yi,b,yi,c = 0) =

 ∣∣∣d0
i,a−2d0

i,b+d0
i,c

h2

∣∣∣ ∣∣∣d0
i,a−2d1

i,b+d0
i,c

h2

∣∣∣∣∣∣d1
i,a−2d0

i,b+d0
i,c

h2

∣∣∣ ∣∣∣d1
i,a−2d1

i,b+d0
i,c

h2

∣∣∣


Θi
a,b,c (yi,a,yi,b,yi,c = 1) =

 ∣∣∣d0
i,a−2d0

i,b+d1
i,c

h2

∣∣∣ ∣∣∣d0
i,a−2d1

i,b+d1
i,c

h2

∣∣∣∣∣∣d1
i,a−2d0

i,b+d1
i,c

h2

∣∣∣ ∣∣∣d1
i,a−2d1

i,b+d1
i,c

h2

∣∣∣


(3.38)

The optimization of the fusion energy in (3.36) produces a binary solution vector y

which equals 0 at nodes that are designated to use the displacement value from d0 and

1 at nodes that are designated to use the displacement value from d0. The binary

vector y is used to generate the improved composite solution dc. The procedure

described above is known as fusion and will be designated by the operator �. The

pseudo-code for registration energy optimization is shown in algorithm 1. An intuitive

example that shows the usefulness of fusing two suboptimal solutions in the context of

group-wise image registration is given in Figure 3-4. In Figure 3-4 the goal is to align

two simulated images where translational movement has occurred near the baby’s face.

The dots indicate control point locations which need to be labeled with displacement

values from W . In this simple 2-dimensional example we are only concerned with

control point cb which is at the center of the cropped images. As shown in Figure 3-1

the goal is to align these two images in a common coordinate system by calculating

a transformation function for each. The control point spacing in this example is h,

and we will allow the points to be displaced a maximum of h
2

in any direction. The

displacement window is broken into four regions, and this example concentrates on the
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Algorithm 1 Parallelized alpha-expansion for MRF group-wise registration

Split displacement window W into W1...W8

Calculate all block-based similarity terms
d1 ←

(
(0, 0, 0)>, ..., (0, 0, 0)>

)
for several sweeps do

d2...d8 ← d1

parfor i ∈ (1...8) do
for α ∈ W i do

di ← di � α
end for

end parfor
Wait for all threads
d1 ← d1 � d2 // 1st level of fusion
d3 ← d3 � d4

d5 ← d5 � d6

d7 ← d7 � d8

d1 ← d1 � d3 // 2nd level of fusion
d5 ← d5 � d7

d1 ← d1 � d5 // Final result
end for
return d1
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T1 = (h
2
, h

2
)

T2 = (−h
2
,−h

2
)

Results of above independent registration problems computed in parallel:

y

x

Window 1

Window 2

Similarity measurement of blocks centered on cb:

Original Images where magnitude of translational misalignment at cb is
√

2h:

T1 = (h
2
, h

2
)

T2 = (0, 0)

Registration limited to window 1:

T1 = (0, 0)
T2 = (−h

2
,−h

2
)

Registration limited to window 2:

Result after fusion step shows large deformations can be infered by fusing the results
of registration problems whose solutions are limited in scope and computed in parallel:

∑
x∈B

[I1,b (x)− I2 (x + cb + τ)]2 + [I2,b (x)− I1 (x + cb − τ)]2

y

x

Image 1 Image 2

y

x

Trans. Image 1

Trans. Image 2

h
2

−h
2

-h
2

h
2

cb

Figure 3-4: Simple example showing fusion techniques ability to compute large de-
formations
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upper right and lower left quadrants of this space. The similarity measure in (3.30)

contains pairwise block-matching terms, and in this example the term corresponding

to control point cb is isolated. Figure 3-4 displays the block/window associated with

each half of the expression
∑
x∈B

[Ij,b (x)− Ii (x + cb + τ)]2 +[Ii,b (x)− Ij (x + cb − τ)]2.

Two registration problems are formulated and solved using discrete displacement

values from the set W1 and W2, respectively. The resulting transformations are also

shown in this figure along with the resulting images overlaid on top of each other.

In the left-half of the figure, where we have forced the control point displacements of

the solution to take values from W1, it is apparent that no values from this set will

improve the similarity measure at cb by transforming Image 2. However the alignment

at cb can be improved by translating Image 1 by
(
h
2
, h

2

)
, which belongs in the setW1.

Analogously for dual registration problem, where the window was been limited to

W2, we observe that no displacement values from this set can improve alignment

by transforming Image 1. In this case Image 2 is translated by
(
h
2
, h

2

)
to maximize

the similarity metric. As seen in the individual solutions of these dual registration

problems are far from perfect though they have slightly improved the translational

alignment at cb. Once these two registration problems have been solved we wish to

fuse them together to produce a single solution which increases the similarity metric

by taking the best components of each. In the final row the fused solution is given

which combines the transformation of Image 1 computed from the first registration

problem with the transformation of Image 2 computed from the second registration

problem. The resulting images are perfectly aligned at cb. The extension of this

concept to three dimensions and increasing the number of volumes beyond two is

straightforward and results in the same advantages, namely a large speedup when

using multiple processing cores.

Although we used the fusion technique in order to improve the efficiency of our

group-wise registration algorithm by computing sub-optimal solutions in parallel one

can think of other registration applications of this algorithm. For example one may

find that improved registration may result from the fusion of solutions calculated

using different similarity measures or regularization techniques.
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3.5 A modified MRF for focused registration

The group-wise registration algorithm was developed with the intent to stitch together

overlapping 3D image volumes, with ultrasound being the primary modality for vol-

ume generation. Because we are dealing with living structures, including a fetus that

typically exhibits some motion during the ultrasound scanning, registration is both

difficult and essential when attempting to construct an accurate training volume from

clinical data. Thus a seam selection algorithm was developed which would enable the

group-wise registration algorithm to focus on regions of overlap where anatomical fea-

tures are similarly represented in all overlapping volumes and the movement between

volumes in this region therefore is hopefully minimized. To this end we borrowed

concepts from the common image processing task of seamless image stitching, albeit

slightly modified for multiple overlapping 3D ultrasound volumes. We consider this

step a preprocessing task before group-wise non-rigid registration. Ultimately this

step labels the voxels in the composite volume’s common scene coordinate system

with a source ID. Thus the label space for this problem is defined as L = {1..N}.

This leads to mutually exclusive regions of the abdomen being derived from a partic-

ular source volume. Seams are implicitly defined as the transitions between regions

with different source IDs or labels. The regions are chosen in a way that attempts

to minimize intensity and gradient differences between volumes at the seams. We

would expect these differences to be minimal in areas with limited movement and

well aligned features. Next we will express seam selection as a discrete optimization

problem in the form of (3.34), which will also be minimized using the graph cut

based alpha expansion technique. In this instance each element of the vector variable

x corresponds to a single voxel in the common scene coordinate system.

In seam selection preprocessing step, where we wish to label each voxel in the

global image volume with its corresponding source volume, the random variable x

described above may take on values from 1 to N, where N is the number of sources.

The sources are partially overlapping and may comprise the entire abdominal region

of the subject. The unary terms prevent the optimization process from labeling the
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voxels in the global image volume with source IDs, which contain no meaningful data

in that location. The source ID is an element of L and indicates which volume the

composite should acquire its data from at this voxel location. We have redefined T

in this section so it no longer represents a registration transformation. As before the

3D ultrasound source volumes are designated as I1.....IN where In : R3 → R and now

let T : R → R3 map the voxel index to its 3D spatial coordinates. Because of the

common scene space is comprised of a number of irregularly shaped overlapping 3D

ultrasound volumes, not every voxel location in this space lies in the domain of each

source volume. The unary term found in (3.34) is used by our mosaicing application

to guarantee that the entire domain of the composite volume,
N⋃
n=1

Domain(In), is

comprised of valid image data and is calculated as

Φi(xi) =

 0 if T (i) ∈ Domain(Ixi)

∞ Otherwise
(3.39)

This term ensures that the voxel in the composite volume associated with xi is as-

signed a source that coincides with this location.

The pairwise terms control where the surface boundaries are placed between over-

lapping volumes in the composite image. We wish to limit the intensity and gradient

differences across the boundary, which will result in the most continuous compos-

ite volume. This approach has been used in an interactive digital photo montage

framework [2] and extended for use in 3D ultrasound mosaicing here. The following

expression gives the pairwise interaction terms

Ψij(xi, xj) =
∥∥Ixi(T (i))− Ixj(T (i))

∥∥+
∥∥Ixi(T (j))− Ixj(T (j))

∥∥+∥∥∇Ixi(T (i))−∇Ixj(T (i))
∥∥+

∥∥∇Ixi(T (j))−∇Ixj(T (j))
∥∥ (3.40)

where i,j are neighboring voxels. The first term in (3.40) measures the intensity

difference if neighboring voxel locations in the composite volume are labeled with

different sources. If neighboring locations in the composite volume are labeled with

the same source then this term is 0 and no seam runs through this region. The end
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result is the creation of a visually appealing and probably more anatomically correct

composite image volume because overlapping sources are stitched together in regions

that closely match in intensity value. The second term in (3.40) penalizes gradient

differences along the seams in the composite volume which limits discontinuities along

surfaces between neighboring sources. These terms are necessary for the creation of

large composite volumes because subject movement and organ deformation during ac-

quisition coupled with ultrasound imaging artifacts result in overlapping sources with

large inconsistencies. These inconsistencies presented themselves as large intensity

differences between multiple overlapping volumes in certain regions which couldn’t

be eliminated with non-rigid image registration. This was especially apparent when

stitching fetal ultrasound volumes together.

It is easy to show that the terms in (3.40) satisfy the submodularity constraint

given in (3.35). We see that Ψij(1, 1) evaluates to 0 because it signifies the neighboring

voxels both taking the new label specified by alpha. Using the triangle inequality,

‖X + Y ‖ 6 ‖X‖+ ‖Y ‖, we get the following result

∥∥Ixi(T (i))− Ixj(T (i))
∥∥ 6 ‖Ixi(T (i))− Iα(T (i))‖+

∥∥Iα(T (i))− Ixj(T (i))
∥∥∥∥Ixi(T (j))− Ixj(T (j))

∥∥ 6 ‖Ixi(T (j))− Iα(T (j))‖+
∥∥Iα(T (j))− Ixj(T (j))

∥∥
(3.41)

This proves the submodularity of the energy function. Ideally neighboring locations

in the composite ultrasound image volume should come from the same source volume

if possible.

Substituting the newly defined terms Φi(xi) and Ψij(xi, xj) from (3.39) and (3.40)

into (3.34) and then optimizing using alpha-expansion results in a labeling that can

be used to produce a mosaiced volume as well as guide group-wise registration. This

labeling implicitly defines the 3-dimensional seams between overlapping volumes in

the common scene coordinate system. Let the final labeling be represented as Γ (x) :

R3 → R where x ∈ R3 is a location in the common scene. In the regions of the

composite volume where no sources intersect, that is Γ (x) = 0, because there is no

information available to determine what the mosaiced volume should look like here.
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This function defines how the individual sources could be distributed in the composite

volume in an intelligent way to minimize artifacts caused by gradient and intensity

discontinuities between volumes. It is considered a mosaicing function and we wish

to use it as a guide for the registration algorithm.

The basic idea is to consider a fixed region in the neighborhood of the implied

seams and only compute the similarity metric from (3.30) inside this region. The 2nd

order regularization will guide the transformation function outside of areas which

aren’t included in the similarity metric calculation. There are many advantages

to performing registration of multiple overlapping ultrasound volumes in this way.

Firstly the performance of group-wise registration in terms of computation time is

greatly improved due to the decreased complexity of the graph representing the reg-

istration problem. Secondly the influence on the registration process from shadowing

artifacts and fetal movement can be minimized by registration around the seams. For

instance it might be beneficial to ignore movement of the baby’s extremities during

registration and only concentrate the baby’s abdominal movement. Heavily shadowed

regions could easily be penalized by the seam selection algorithm above resulting in

a mosaicing function which produces few shadows in the composite volume and thus

will mostly be ignored by the registration algorithm. Now we will explain how the

MRF function in equation (3.30) is altered to take into account the mosaicing function

that has been calculated as a preprocessing step.

Since the registration energy expressed by (3.30) is composed of many thousands of

discrete terms the simplest way to introduce the mosaicing function is to use it to crop

the similarity terms that may negatively affect the registration outcome. Thus certain

SSDi,j
b (di,b − dj,b) terms are removed from the registration energy if they lie too far

away from the junction of multiple image volumes. The process for cropping the

pairwise similarity terms can be formalized after introducing a few utility functions.

Let Di (x) be a distance function which measures the minimum distance from point

x to the region in the composite volume labeled with source i. Thus Di (x) can be
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defined using set notation as

let Ωi =
{
x|x ∈ Z3 ∧ Γ (x) = i

}
Di (x) =

 0 if x ∈ Ωi

inf
y∈Ωi

‖x− y‖ if x ∈ Ωc
i where Ωc

i is the complement of Ωi

(3.42)

Thus Ωi is the set of voxels in the composite image volume which has been designated

to source i and the infimum measures the closest distance from any voxel to this region.

Next a parameter will be defined that controls the number of terms which are cropped

from the registration energy. This parameter has the effect of limiting the registration

to regions surrounding the source boundaries. Let ς be the maximum distance from

a seam that we wish to consider when calculating the similarity metric. This means

that the width of the total region influencing the pair-wise alignment terms will be

2ς. The last step before expressing the new focused registration energy will to define

an indicator function that is used to removes blocks from consideration when they

are greater than 2ς from a seam. The indicator function δi,jb is defined as

δi,jb (cb) =

 1 if Di (cb) 6 ς and Dj (cb) 6 ς

0 otherwise
(3.43)

Using this indicator function the focused registration energy is can now be defined as

E (d) =
∑

{di,b,dj,b}
∈NInter

δi,jb (cb) SSDi,j
b (di,b − dj,b) +

λ

B

∑
{di,a,di,b,di,c}
∈NIntra

∣∣∣∣di,a − 2di,b + di,c
h2

∣∣∣∣
(3.44)

The only difference between (3.44) and (3.31) is the addition of the indicator func-

tion used to cancel the unwanted block-based similarity terms. The indicator function

can also be thought of as eliminating specific inter-volume edges from the MRF graph

defining the problem in Figure 3-2. As ς increases, more blocks are considered by the

registration algorithm until all overlapping regions influence the registration solution.

This would be the complete group-wise registration algorithm that is usually consid-
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ered. The advantage of this formulation for focused registration is that the regions

in which the similarity metric is calculated may have greater than two source vol-

umes. There is no constraint on the number of volumes considered at each control

point. Without further modification of the registration energy it is possible to have

regions where only pair-wise alignment is performed, coupled with regions that con-

sider the complete group-wise registration problem. Thus different degrees of volume

interaction may be optimized during the same execution.

This concept is demonstrated in Figure 3-5 which shows the results of image

volume stitching using our algorithm. In the upper left is a color coded labeling

which assigns each voxel in the common scene coordinate system to a particular

source volume. This image is just a 2D slice of Γ (x) which was discussed above.

The upper right corner shows the distance maps Di (x) for each source volume which

can easily be calculated using built-in functions common in most image processing

toolboxes. The most interesting part of Figure 3-5 is the center image (a) which

shows varying degrees of volume interaction and also demonstrates how these regions

are dependent on the parameter ς. The numbers in the center image indicate which

volumes are considered during the similarity measure calculation. For the particular

value of ς chosen in this example there are four regions where pair-wise alignment is

measured and two regions where group-wise alignment is measured using three out

of the four volumes. We see that in the upper right corner (a) volumes 1,3,4 interact

with each other and in the lower right volumes 1,2,3 interact. The dark regions in

the image (a), which contain no numbers, are solely influenced by the 2nd order

regularization terms in (3.44). By constructing the registration problem as a discrete

Markov random field we find that the focused registration concept, which has proven

useful during 3D volume mosaicing, can easily be integrated into our algorithm.
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Final Composite volume and overlay showing source volumes

Src. 1

Src.
4

Src.
2

Src.
3

Volume interactions - used to ”crop” MRF representing registration energy

1,4

1,2

1,3

1,2,3

1,3,4

Stitching mask - used to focus
registration and build composite
volume

Distance maps - needed to
compute volume interactions

(a) (b)

(c)

(d) (e)

Figure 3-5: Mosaicing function is used to focus registration.
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3.5.1 Summary of registration concepts and application to

3D mosaicing

This section will briefly summarize the registration and seam concepts discussed pre-

viously with the overall goal of generating composite 3D volumes from overlapping

scans. Simulated and clinical results will be presented in the next section. Given a

set of partially overlapping 3D volumes we desire to form a mosaiced volume which

fills as much of the composite coordinate system as possible. To this end the first

step is to perform seam selection using the algorithm discussed above. This results in

labeled regions of the composite coordinate system where each label corresponds to

a particular source volume. At this point it is possible to create a mosaiced volume

by simply assigning each voxel in the composite coordinate system with the intensity

value from its designated source. Let the final image be designated as F (x) which is

constructed as follows,

F (x) =

 IΓ(x) (x) if Γ (x) > 0

0 otherwise
. (3.45)

where Γ (x) is the final labeling. In order to improve the visual quality of the com-

posite volume we perform group-wise registration before mosaicing by minimizing the

energy of equation (3.44) using the parallel alpha-expansion technique. After group-

wise registration is completed and before the final mosaic is constructed the seams

are recalculated to account for large deformations of the source volumes which may

be part of the registration solution. Finally equation (3.45) is used to construct the

composite volume. We have also experimented with a Poisson blending technique,

which improves the visual quality around the seams without eliminating edges or

causing substantial blurring.

It is also possible to construct ultrasound mosaics using spatial compounding tech-

niques. For example, one of the simplest methods is to use the maximum intensity

value of all overlapping sources at each voxel in the composite. This type of approach

works well when creating mosaics of stationary organs such as the liver, or those with
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predictable motion patterns such as the heart; however, they give poor results when

faced with large non-deterministic movement, which is the type that occurs during

fetal ultrasound scanning. Since our clinical application is the construction of fetal

mosaics for use in a training simulator our proposed method outperforms spatial com-

pounding techniques, which require almost perfect alignment between volumes in the

composite space. Figure 3-6 compares the mosaicing results of our proposed method

with a simple spatial compounding approach. The first row shows two slices from

a composite volume created using the maximum intensity technique, where the red

circles indicate poor quality in the constructed mosaic. In this case fetal leg move-

ment between scans was too great to correct with non-rigid registration, resulting in a

composite volume that is unsuitable for training purposes. The second row of Figure

3-6 shows the same source volumes stitched using our proposed mosaicing function.

The errors seen in the top two slices have been correctly dealt with resulting in a

composite volume that can be included in the simulator. In the last row the mosaic-

ing function is overlaid onto the composite slices showing how the five overlapping

volumes are stitched together.

3.5.2 Discussion on consistent image registration in MRF

framework

In group-wise registration it is desirable to transform the source volumes into an aver-

age reference shape in the scene coordinate system. This concept has been discussed

in the literature concerning both the continuous [9] [5] [53] and discrete domains

[76]. Our ultrasound mosaicing problem doesn’t require consistent image registra-

tion techniques to achieve good results but since we are using a group-wise method

they should be mentioned. In the pairwise case (N = 2) the registration problem

becomes the optimization of two control point lattices which are initially overlaid on

top of each other in the scene coordinate system. In this example we see that the

resulting transformed sources will represent the true average shape of both volumes

if D1(x) + D2(x) = 0 for ∀x ∈ Ω where Ω represents the domain of the composite
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Mosaicing function overlaid onto slices from composite volume:

Coronal/transverse slices formed using mosaicing function:

Coronal/transverse slices formed using maximum intensities in overlapping areas:

Figure 3-6: Comparison between spatial compounding technique and our proposed
mosaicing function using fetal ultrasound data

99



volume in the scene coordinate system. For group-wise registration problems where

N > 2 the condition for consistent registration is formulated as

N∑
n=1

Dn(x) = 0 ∀x ∈ Ω. (3.46)

Because the transformation at each point is linearly dependent on the control point

displacements the condition in (3.46) can be simplified to an expression only involving

these values. If the sum of control point displacements at each grid location is zero

then (3.46) holds as long as the transformation is modeled in the form given by (3.7)

[9]. Thus the final registration problem including the new consistency constraint is

min E (D)

subject to
N∑
n=1

dn,b = 0 ∀b : cb ∈ C.
(3.47)

There are two possible ways to incorporate the new constraint into the MRF frame-

work that was presented in this chapter. The first is to add a consistency term to

the registration energy in (3.30) in order to penalize transformations that violate the

constraint of (3.47). This term might look like κ
N∑
n=1

B∑
b

dn,b. The problem with this

new term is that for registration regions encompassing many overlapping volumes it

becomes dependent on higher order cliques which are known to put a tremendous com-

putational burden on current MRF optimization algorithms. The consistency term

of the new MRF would add numerous edges to the already complicated graph from

Figure 3-2. Much research is currently underway to develop optimization methods

for high order Markov Random Fields due to their rich descriptive features. However,

for our task we did not find the incorporation of a consistency term necessary to pro-

duce good results. A more efficient method to obtain results that satisfy (3.47) is to

project the solution computed from the optimization of (3.30) onto the hyper-plane

where the linear system of consistency constraints is satisfied. This can be written

as a set of three quadratic optimization problems, one for each dimension, for which

many efficient solvers exist. We found that the projection can be computed in one
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or two seconds when dealing with multiple overlapping clinical ultrasound volumes.

If we form a binary matrix A ∈ {0, 1}|C|×|D| to represent the linear consistency con-

straint of (3.47) and write the solution set D as a collection of vectors d the quadratic

optimization problem becomes

min
xx
‖xx − dx‖ subject to A xx = 0

min
xy
‖xy − dy‖ subject to A xy = 0

min
xz
‖xz − dz‖ subject to A xz = 0

projection satisfying constraints: D̂ = [xx xy xz] .

(3.48)

In (3.48) the superscript is used to specify the dimension. After satisfying the consis-

tency requirement for control point displacements in each dimension the final solution

vector d̂ is obtained by concatenating these results. The matrix A is sparse and can

be constructed by

Ab,|C|(n−1)+b =

 1 if volume n has a control point at cb

0 otherwise
. (3.49)

Each row of this matrix corresponds to a single control point designated by b and sums

the displacement values from all the sources which overlap at this control point. The

minimization problems in (3.48) can also be rewritten as min 1
2

(
xd
)>

xd −
(
dd
)>

xd

where d ∈ {x, y, z} specifies dimension. Coupled with the equality constraint this is

a quadratic optimization problem that can be easily solved. This formulation will

produce a result satisfying the constraints of (3.47); however, the registration energy

may increase. This is important in cases where the solution vector must be altered

substantially because the modification of the transformation function could cause

unchecked spikes in the regularization energy. A remedy for this problem could be to

guide the solution vector toward the consistency constraint’s hyper-surface at different

points during the optimization procedure instead of only at the end. The system in

(3.48) may be solved during optimization whenever the functions A xx,A xy,A xz

cross some user specified bound. Further optimization after reinitializing the solution
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vector using (3.48) will correct the spike in regularization energy and also lead to a set

of transformations which are closer to representing the mean shape. We do not need

the solution of the group-wise registration to satisfy the consistency requirement in

order to produce good results for our application so extensive experiments using (3.48)

have not been conducted; however in simulated trials using a finite element model

of the Visible Human Dataset the algorithm produced transformations that aligned

the overlapping volumes as well as satisfied (3.47). More experimentation will be

required to suggest the frequency and placement of the re-initialization procedure in

the group-wise registration algorithm presented in this chapter.
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Chapter 4

Group-wise registration and seam

selection: experimental results

In this chapter we present experimental results to demonstrate the performance of

the group-wise registration algorithm. It is initially tested on deformed abdominal

image volumes generated using a finite element model of the Visible Human Female to

show the accuracy of its calculated displacement fields. Also results using real ultra-

sound data from an abdominal phantom are presented. Finally composite obstetrics

image volumes are constructed using clinical scans of pregnant subjects, where fe-

tal movement makes registration/mosaicing especially difficult. In addition, results

are presented suggesting that a fusion approach to MRF registration can produce

accurate displacement fields much faster than standard approaches.

4.1 Quantitative results using Visible Human Dataset

In order to validate this procedure we constructed a finite element model (FEM) us-

ing the Visible Human Female dataset [1] then subsequently deformed it with varying

pressure applied to the surface in order to produce three overlapping and uniquely de-

formed image volumes. The FEM simulations, which produced each of the deformed

volumes, were done using the software package Comsol. Nodes on the surface of the

model, which were identified to be adjacent to the current transducer scan path, were
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displaced into the body approx. 25 mm. in order to simulate transducer pressure.

Displacement was also applied internally in the direction perpendicular to the trans-

verse plane to simulate breathing. The kidneys, liver, stomach, and intestines were

segmented during construction of the FEM model using ITK-Snap [86], and subse-

quently given appropriate mechanical properties to produce a more realistic deforma-

tion field. This procedure simulates the process of mosaicing partially overlapping 3D

image volumes with large deformations. Although these images are visually different

from ultrasound and do not suffer from the same artifacts, this framework provides a

way to quantify the performance of the mosaicing/registration algorithm on multiple

overlapping 3D volumes by using the deformation fields provided by the finite element

simulations as the gold standard. The voxels in the Visible Human Female data that

we used in this experiment are cubic with 1 mm sides. The procedure is outlined in

Figure 4-1. The first step is to uniquely deform the finite element model three times

and extract distinct but overlapping regions from each deformation. This results in

a transformation function from the deformed coordinate system to the original coor-

dinate system of the Visible Human Female for each region. The colored rectangles

shown identify the individual regions extracted during the deformation process. We

applied a maximum deformation of 3 centimeters to the center region and 1.5 cen-

timeters to the rightmost region. The leftmost region was undeformed. Breathing

artifacts were also included by applying a force to the model in the inferior direction.

The right and left volumes each partially overlap with the middle volume but they

have no voxels in common with each other; thus, the registration algorithm should

be able to use the information contained in these 2 overlapping regions to bring all 3

volumes into alignment for the purpose of mosaicing. The two top images in Figure

4-2 show stitching results before the registration procedure has been applied. It is

apparent that the misalignment is significant at the organ boundaries as well as the

surface of the skin and will require large displacement fields to correct.

Using the simultaneous registration procedure described earlier we create an MRF

inference problem which can be solved using quadratic pseudo Boolean optimization

that will bring each volume into alignment with its neighbor in the region of overlap.
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Calculate accuracy of
reconstruction by mapping voxels
in the overlapping region of
adjacent sources back to their
original locations in the
undeformed VHF volume and then
compute the magnitude of their
vector difference.

Compute group-wise
registration/mosaicing solution
for the deformed model to
produce the transformations
R1, R2, and R3.

Deform FEM model of
VHF using varying
forces to produce 3
partially overlapping
volumes with significant
non-rigid misalignment.

Construct finite element model
using female image data from
Visible Human Project. Kidneys,
stomach, intestines and liver were
segmented and meshed to produce
more realistic deformations.

Regions of
overlap show
the absolute
intensity
difference
between
neighboring
volumes.

Example of error in
composite volume

Figure 4-1: VHF validation procedure used to quantify mosaicing algorithms perfor-
mance
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Every volume is elastically linked together by the MRF construction so displacement

in the left volume can be influenced by displacement in the right volume even though

they have no overlapping region. An implicit linkage between two non overlapping

image volumes is intuitive in the case of mosaicing because structures may span

more than two volumes. The output of the registration algorithm in this case is

three displacement fields, with one corresponding to each region of the visible human

female that was extracted during the finite element modeling. A slice from the fully

mosaiced volume is shown in the bottom of Figure 4-2. The result is a continuous 3D

volume where the extreme discontinuities in organs spanning more than one volume

have been corrected.

This situation is similar to what is encountered during the several minute long

scanning in a clinical setting where the goal is to acquire 8-10 overlapping ultrasound

volumes encompassing the entire abdomen. Patient breathing and fetal movement

result in large deformations between neighboring ultrasound volumes, and this exper-

iment attempts to simulate the process of mosaicing highly deformed structures.

Qualitative results for the registration quality of our algorithm are shown in Figure

4-2. However, a finite element model allows us to quantify the performance of our

algorithm by calculating the reconstruction error at each voxel location in a region

surrounding the seam, which is shown in the bottom half of Figure 4-1. By composing

the transformation function from the registration algorithm with the transformation

from the finite element model, we can form a function which maps coordinates in

the final mosaiced volume to coordinates in the original undeformed Visible Human

Female dataset. Anatomical consistency can be defined to mean the error (in mm)

associated with voxels near the seam, where the voxels are common to more than

one registered volume. It is calculated by mapping voxel locations in the overlapping

regions back to the coordinate system of the undeformed finite element model by

utilizing the composed transformations shown in Figure 4-1. Locations in overlapping

regions are associated with ≥ 2 composed transformations; ideally, locations near the

seam between two or more regions in the mosaiced volume should map to the same

location of the original undeformed coordinate system, regardless of which composed
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transformation is used.

When a single voxel maps to two different locations in the original coordinate

system, depending on the transformation, the distance between these two points

is calculated and becomes the metric for consistency in the region surrounding the

seam. Good anatomical consistency implies that anatomy has been reconstructed

correctly from multiple overlapping image volumes. Figure 4-3 shows slices where

consistency has been measure before and after the registration process has been com-

pleted. When no non-rigid registration has been completed it is expected that the

anatomical consistency between volumes would be very low and this is shown in the

top row of Figure 4-3. The overlapping regions between the 3 volumes are shown with

the intensity corresponding to the degree of anatomical inconsistency at each voxel.

After registration, when the structure has been mosaiced correctly, the consistency

has significantly improved, as shown in the bottom row of Figure 4-3. There is some

error along the skin surface and this is most likely due to the fact that there are no

structures to align in the fatty layer.

The accuracy/performance results of our Visible Human Female experiments are

compiled in Table 4.1. The mean error in consistency, calculated over the regions of

overlap shown in Figure 4-3, is given in column 2. The standard deviation of this

error is given in column 3. For these calculations we don’t consider the error in the

external fatty layer because the absence of structures made it difficult to register. The

results show the algorithm’s ability to reconstruct anatomy from multiple partially

overlapping volumes with sub-pixel accuracy using this dataset. Experiments with

simulated data were used to verify the correctness of the algorithm and to measure

the effects of parallelization on speed/accuracy. It was not designed to mimic the

mosaicing process when using clinical ultrasound data which is discussed in the next

section. Interestingly we found that the parallelization of the registration algorithm

using the fusion technique did not affect the accuracy of the reconstruction as much as

we thought it might. Splitting the registration between one, four, and eight processes

still produced highly accurate mosaics of the finite element model and the speedup was

impressive. The registration time in Table 4.1 includes the processing time to build
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Table 4.1: Visible Human Female mosaicing accuracy/speed

# Processes Mean Error (mm) Std. Dev. (mm) Exec. Time (secs) Speedup
1 0.8067 0.8566 3176.0 1.00
4 0.8278 0.6035 1470.0 2.16
8 0.7271 0.4585 811.6 3.91

the similarity metric data-structure, which is done before any MRF optimization, and

thus could be shortened by increased parallelization of that calculation. This affects

the speedup factor in Table 4.1.
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Figure 4-2: VHF stitching results showing the qualitative performance of our algo-
rithm. The left half shows slices from the mosaiced volume when no registration
is performed. The right half demonstrates how our algorithm can reconstruct the
anatomy seamlessly, using multiple partially overlapping volumes. All images were
formed using Γ (x)
.
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(a) (b)

(c) (d)

Figure 4-3: Vector magnitude of misalignment in overlapping regions of Visible Hu-
man Female FEM before and after group-wise registration. (a) Axial slice of model
before registration. (a) Axial slice of model after registration. (c) Coronal slice of
model before registration. (c) Coronal slice of model after registration. Error is shown
in mm.
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4.2 Validation of group-wise registration algorithm

using FAST/ER abdominal phantom

This section describes the procedure that we have used to measure the effectiveness

of the group-wise registration algorithm on ultrasound data acquired from an abdom-

inal phantom. Previously we have showed that the algorithm can effectively register

3 overlapping volumes generated from the Visible Human Female dataset; however,

these volumes don’t present the difficulty that US image volumes do. Our goal in the

previous section was to quantify and compare the registration accuracy for varying

degrees of parallelization as well as to demonstrate the ability of the algorithm to

handle large deformations at the surface. This section compliments those results by

demonstrating that our algorithm can effectively register several partially overlapping

ultrasound volumes attained from an US phantom. An abdominal US phantoms is

ideal for this verification because the internal anatomy remains static between over-

lapping sweeps, thus the non-rigid misalignment between volumes can be more easily

controlled. Also visualizing registration improvement is more difficult with live sub-

jects due to artifacts caused by abdominal gases or fetal movement between sweeps,

which are uncontrollable. After the acquisition procedure we applied an additional

large non-rigid deformation to each volume in order to make the experiment more re-

alistic. This is a necessary because scanning a phantom doesn’t the simulate motion

artifacts caused by a patient’s movement/breathing and the deformation resulting

from the non-constant pressure of the transducer against the skin.

The abdominal phantom used in this section was borrowed from the Kyoto Ka-

gaku Co. and was designed to provide training in the FAST (Focused Assessment with

Sonography for Trauma) procedure. To this end it contains various internal injuries

that are detectable via US such as the presence of free intra-peritoneal or pericardial

fluid in traumatic patients. The Philips iU22 Ultrasound system was used in com-

bination with a C5-1 convex array transducer, on which was mounted an Ascension

trakSTAR 6 DoF position sensor. The video output of the scanner was connected

to a laptop running Stradwin software [78]. Sonographers at UMass Medical School
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5 Vols.

4 Vols.

3 Vols.

2 Vols.

1 Vol.

0 Vols

Number of overlapping volumes per voxel in transverse slice of FASTFAN:

Figure 4-4: Degree of overlap increases as we move towards center mass. An intelligent
group-wise registration algorithm designed for ultrasound mosaicing should be able
to deal with varying degrees of overlap.

Table 4.2: Thin plate spline deformation field statistics

Volume 1 Volume 2 Volume 4 Volume 5
Max disp. (cm) 1.7446 1.9888 1.9430 2.2609
Mean disp. (cm) 0.6828 0.6955 0.6792 0.6737

performed the scanning for us and produced five partially overlapping volumes using

swept 3D ultrasound, which encompassed the majority of the phantom. Figure 4-4

shows the degree of overlap at each voxel location in the composite volume. In the

outer regions of the composite, where only 2 volumes overlap, a pair-wise similarity

metric is used; however we see that as many as 5 volumes overlap at each voxel close

to the center; thus our group-wise similarity metric is useful here. Non-rigid motion

between overlapping volumes was simulated by applying a random deformation fields

to 4 of the 5 volumes using thin plate splines [11]. Each volume was deformed in-

dependently of the others by randomly positioning approximately 75 control points

inside each volume and subsequently assigning a random displacement value based on

a uniform distribution. Table 4.2 provides some statistics on the each volume’s unique

displacement fields. It should also be noted that the depth of the C5-1 transducer

was set to 16 cm. Most common ultrasound mosaicing tools, such as Stradwin [78],

generate the composite volume by defining planar boundaries between overlapping

112



volumes. We chose this seam selection method to validate the group-wise registration

algorithm due to its popularity and also due to the fact that planar boundaries are

unaware of the image misalignment through which they pass, thus the improvement

in the composite volume before and after registration can be substantial.

Figure 4-5 shows the procedure used to generate the initial composite volume

before our algorithm was applied. The top row of images in Figure 4-5 are slices

from the five original volumes obtained using swept 3D ultrasound. Dashed arrows

denote the application of the random non-rigid transformations that were based on

thin plate splines, while the second row of images show how the original slices are

deformed. Thin plate splines are popular because they have a closed-form solution,

the interpolation is smooth, and there are no free parameters to adjust. The bending

of a thin metal plate is the physical analogy usually used to explain the model. Since

4 out of 5 volumes are randomly deformed, the net effects of the transformations in

the overlapping areas are considerable because each adds to the misalignment. Two

slices from the composite volume, which was produced using planar seams, are shown

in the 3rd row of Figure 4-5. Significant misalignment between volumes is obvious

and will need to be corrected before using the data in a US simulator. Instead of

sequentially performing pair-wise non-rigid registration and thus inefficiently growing

the composite result one additional volume at a time, our technique simultaneously

aligns all 5 overlapping volumes from the abdominal FAST/ER FAN phantom at

once, requiring only a single energy function, as described in (3.31). The last row

in Figure 4-5 qualitatively shows the effect of the random transformations on each

original volume. The vector plot in the lower left part of Figure 4-5 is one example of a

random thin plate spline deformation, specifically the deformation applied to volume

2. The lower right shows the difference images between each original volume and its

deformed version. Major abdominal structures are significantly displaced between

original and deformed volumes.

Next we will describe how the various parameters of our algorithm were set for

the validation experiment. We used a multi-resolution approach based on a Gaussian

pyramid with 3 levels. Each subsequent level was produced by convolving the volume
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Mosaicing of deformed FASTFAN data before applying group-wise registration:

Slices of mosaiced volume showing significant misalignment at seams:

Dashed arrows denote additional random deformation using thin plate splines

Slices from 5 overlapping US volumes:

3D deformation field for Volume 2:

Vol. 1 Vol. 2

Vol. 3 Vol. 4

Difference between slices before
and after TPS deformation:

Figure 4-5: Diagram showing the procedure used to deform 4 of 5 overlapping volumes
acquired from the FAST/ER FAN
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with a 3D version of the typical Gaussian kernel w = 1
16

[
1 4 6 4 1

]
and then

down-sampling by a factor of 2 [14]. During registration all 5 volumes were permitted

to deform in order to achieve alignment in the regions of overlap. It is also possible

to fix individual volumes in place if desired, thus transforming the associated pair-

wise inter-volume energy terms from (3.31) into unary terms because now one volume

isn’t permitted to move. Because the C5-1 transducer can produce sector US images

with a wide angle, we limited the potential interactions by removing pair-wise terms

from (3.31) if they corresponded to a situation where i,j were farther than 2 volumes

apart from each other in the composite. This had no effect on the quality of the

reconstruction and since MRF optimization speed is directly dependent on the number

of nodes in the problem it makes sense to crop these unwanted terms. We performed 6

iterations at the lowest resolution, where the original volumes were down-sampled by

a factor of 4, then 8 iterations at the middle resolution and finally 1 iteration at the

original resolution, where each voxel was approximately 0.48 mm3. The regularization

parameter in (3.31), denoted by lambda, was allowed to relax during optimization.

This ensures that the initial iterations of the registration algorithm results in more

rigid transformations, which attempt to globally align the overlapping volumes, before

allowing more fluid-like transformations.

We produced qualitative and quantitative results using the experimental proce-

dure described above. Figures 4-6 through 4-8 show improvement after registration,

and we see that the misalignment between structures spanning more than one im-

age volume is almost entirely eliminated. The planar seam mask for each slice is

also shown in the bottom of the figures and identifies which source each voxel in the

composite volume should get its intensity value from. The next result we present

quantifies the intensity differences between overlapping volumes in each region of the

composite, which have been designated by the planar seam mask. Referencing the

seam mask in Figure 4-6, for each region labeled as volume n we use its adjacent
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volumes n− 1 and n+ 1 to calculate an error measure as follows

DIFF (x) =
1

3

(∣∣IΓ(x)+1 (x)− IΓ(x) (x)
∣∣ +∣∣IΓ(x) (x)− IΓ(x)−1 (x)

∣∣+∣∣IΓ(x)+1 (x)− IΓ(x)−1 (x)
∣∣ ) (4.1)

where is the mosaicing function described previously. Care must be taken when

evaluating (4.1) for voxels that belong to the outer regions of the composite volume. In

that case only a single term from (4.1) contributes to the difference measure since that

region only has one adjacent volume. The error measure described by (4.1) simply

adds the difference errors between all possible combinations of adjacent overlapping

volumes at a specific voxel location in the composite volume. The result of (4.1)

before and after group-wise registration was performed is presented in Figures 4-

6 through 4-8. The improvement is substantial with much of the difference error

being removed. This image gives a better visualization of our algorithms ability to

correct misalignment between multiple (in our case 5) volumes when compared to the

mosaiced results since we aren’t restricted to evaluating the error at just the boundary

between adjacent volumes.

In order to quantify our registration results for the FAST/ER FAN data, where the

correct transformations are unknown and therefore cannot be used for comparison,

we compute an adaptation of sum of squared differences error measure by squaring

each term in (4.1) and summing all valid voxels. This result is then normalized by the

number of contributing terms and can be thought of as a group-wise mean squared

error measure. Before registration this measure was 1581 and after group-wise regis-

tration it shrank to 707. We achieved an improvement factor of 2.24 over the entire

volume. We anticipate that this factor isn’t greater due to the noisy nature of ultra-

sound images; However, the anatomical structures were well aligned after registration,

which is the most important aspect in ultrasound mosaicing and which can be seen

in Figures 4-6 through 4-8. We should note that incomplete structures residing on a

volumes edge posed some difficulty. This can be attributed to the large deformation
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we applied after acquisition which substantially changed the degree of overlap in some

cases. Remaining errors are also due to the variation in the position/orientation of

the transducer between volumes which results in differing image intensities for the

same structure. Despite these difficulties, high quality mosaicing results can be easily

produced using clinical ultrasound data from live patients, and our experiments using

fetal data show this.

In order to understand the size of the problem we tracked the number of nodes

pair-wise energy terms needed for each level of the Gaussian pyramid. This would be

advantageous in the future if we wish to implement more advanced optimization meth-

ods that are designed for large-scale non-submodular MRFs containing triple cliques.

At every pyramid level in the FAST/ER FAN experiment the labeled nodes defined 5

non-rigid transformations, 1 corresponding to each source. The lowest resolution re-

quired approximately 9,000 pair-wise energy terms in order to evaluate the group-wise

similarity metric, the second lowest required 69,000, and the highest resolution need

281,000. We should note that pre-computation using the FFT method at the highest

resolution required
(
173 search window size

)
(281000 nodes) (2 bytes per uint16) =

2.76 GB to hold the SSD data from (3.31). We also found that optimization at

the highest resolution didn’t offer substantial improvement over registration at 1
4

res-

olution, as the relatively sizable structures were pretty well aligned by this point.

However, ultrasound images containing finer features would certainly benefit from

full resolution registration.

The FAST/ER FAN data was also used to quantify the performance increase that

we achieved by pre-computing the pair-wise similarity terms in (3.26) using the FFT

approach. In order to strictly measure the improvement in optimization speed the

interpolation time wasn’t included in the timing results. Both the FFT and the naive

approach were implemented as Matlab functions and care was taken to vectorize

the naive approach, utilizing Matlab’s strengths where possible. This ensured that

our comparison wasn’t unfairly biased. We measured the amount of time it took to

complete an iteration of alpha expansion, consisting of only one sweep over the label

set, at the middle resolution of our pyramid scheme. As stated before, registration
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at this resolution required 69000 pair-wise energy terms and produced high-quality

results with the FAST/ER FAN data thus we believe this to be an ideal setting to

evaluate the performance of both approaches. Alpha expansion required 1556 seconds

using the FFT based approach and 16040 seconds using the naive approach giving

a speedup factor of 10.31. Most alpha expansion schemes use multiple passes over

the label set and since the 1556 seconds already includes the preprocessing time

the speedup factor between the FFT and naive approaches would only increase as

the number of passes increased. We conclude that the FFT approach is the most

efficient method to compute the group-wise similarity measure in (3.31) using an

MRF optimization scheme.

These results suggest that intra-volume misalignment of many (≥ 2) partially over-

lapping ultrasound volumes can be effectively corrected using an intuitive group-wise

MRF approach. The most important factor to consider when constructing ultrasound

mosaics is how well major anatomical structures align when spanning more than one

volume. Based on the results presented our algorithm does a good job when dealing

with many partially overlapping volumes.

Future work could compare the accuracy of our improved group-wise SSD metric

shown in (3.26), which is robustness in the presence of ultrasound shadowing arti-

facts, to the other modern similarity metrics mentioned in the introduction using an

abdominal phantom such as the FAST/ER FAN. One possible way to conduct this

investigation would be to initially create a gold-standard from the original US vol-

umes through careful acquisition and registration. This wouldn’t be difficult due to

the rigid nature of the FAST/ER FAN. Major structures would be segmented in the

original image volumes, prior to deformation with thin plate splines. Due to the high

quality US images we saw using the FAST/ER FAN this step should also be fairly

straightforward and can be accomplished using ITK Snap or some other segmentation

tool. The DICE coefficient, which measures the agreement between sets, can be used

to quantify the alignment between the segmented structures in each undeformed vol-

ume. Anatomy obscured by shadows shouldn’t be counted in the calculation of the

DICE coefficient. A coefficient of 1 indicates perfect set agreement thus before defor-
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mation this coefficient should be close to 1 when comparing all segmented structures

in the overlapping regions. After artificial deformation, various configurations of the

stitching algorithm would be applied to bring these volumes into alignment. Because

all transformations are known we have the ability to map the initial segmentation

results to the new coordinate system produced by the group-wise registration algo-

rithm. Finally, to quantify the algorithms accuracy the DICE coefficient needs to be

calculated again between the segmented organs in the regions of overlap. This result

would tell us how well the anatomical contours in each individual volume are aligned

and also give us some idea of our proximity to an ideal solution. Since ultrasound is

inherently noisy and lacks fine detail we believe that tracking and comparing organ

boundaries using segmentation and the DICE coefficient is a good way to judge the

registration accuracy of a group-wise method. The DICE coefficient has also been

used in segmentation validation [88] as well as in papers analyzing registration per-

formance [35]. The next section presents clinical results where multiple overlapping

fetal image volumes were mosaiced.
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Mosaic before group-wise registration: Mosaic after group-wise registration:

Group-wise difference before registration: Group-wise difference after registration:

Final mosaic with seam mask overlaid on top:

Figure 4-6: Result of registration showing improvement in coronal slice of mosaiced
volume 120



Mosaic before group-wise registration: Mosaic after group-wise registration:

Group-wise difference before registration: Group-wise difference after registration:

Final mosaic with seam mask overlaid on top:

Figure 4-7: Result of registration showing improvement in slice orthogonal to planes
displayed in Figures 4-6 and 4-8
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Mosaic before group-wise registration: Mosaic after group-wise registration:

Group-wise difference before registration: Group-wise difference after registration:

Final mosaic with seam mask overlaid on top:

Figure 4-8: Result of registration showing improvement in slice orthogonal to planes
displayed in Figures 4-6 and 4-7
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4.3 Results from clinical ultrasound

In order to validate our approaches we used clinical ultrasound data obtained from

obstetrics patients at the University of Massachusetts Medical School. With the

same set-up that was used to scan the FAST/ER phantom we collected individual

volumes from the patients along multiple overlapping linear scan paths. The best

results were achieved when stitching together overlapping volumes produced from

2D ultrasound images acquired in the mother’s sagittal plane. The first step after

3D image acquisition is to rigidly register the multiple volumes together in order to

remove the global misalignments caused by shifts of anatomical structures during the

scanning; such shifts are due to breathing, variation in muscle tone, fetal movements

and non-uniform probe pressure. The rigid registration can be accomplished using the

highly optimized modular algorithms found in the Insight Toolkit [32]. We found that

the Insight Toolkit worked well enough for our initial rough alignment but it should be

mentioned that in [83] group-wise rigid registration of overlapping ultrasound volumes

is discussed in detail and a more robust algorithm is developed. Since we require only

a rough rigid alignment for our group-wise non-rigid registration algorithm to work

well the improvements in [83] were not necessary. Once this step is complete the

volumes are stitched together using the approach described above.

Initial clinical experiments verified that the registration/mosaicing algorithm worked

correctly with two overlapping ultrasound volumes. In Figure 4-9 a volumetric ren-

dering of the mosaicing function, which was calculated for two overlapping volumes

using our graph based algorithm, is shown in image (a). Every voxel colored blue

receives its value from volume 1 and every voxel colored gray receives its value from

volume 2. Also displayed in Figure 4-9 are two slices from the composite volume,

one before non-rigid registration denoted as (c) and one after non-rigid registration

denoted as (d). The misalignment along the limbs of the fetus is obvious. We also

observe that the mosaicing function chooses to pass through the arm of the fetus

suggesting that the misalignment in the rest of the overlapping region is worse than

this area. In fact the reason that the seam selection algorithm chooses this area is
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(a) (b) (c) (d)

Figure 4-9: Pairwise mosaicing function with non-rigid registration. (a) A volumetric
rendering of the mosaicing function. (b) A slice of the composite volume with the
mosaicing function overlaid. (c) Same slice before non-rigid registration. There is a
definite discontinuity in the fetal arm. (d) Same slice from final composite volume.

due to extensive shadowing artifacts which are often encountered during fetal ultra-

sound. In this experiment volume 1 shows the orientation and position of the limbs

of the fetus in detail while volume 2 only contains a limited view of this region due

to shadowing. Thus the mosaicing function chooses the region where the overlap-

ping volumes contain similar structures and by focusing the registration algorithm in

this area better results are obtained. Image (d) demonstrates the improvement after

non-rigid registration and the effectiveness of focusing on common structures during

alignment. Using the entire overlapping region for alignment of fetal volumes gives

unusable results in this experiment due to the disparity between the structures view-

able in volume 1 versus the structures viewable in volume 2. Also the fact that we

choose an optimal mosaicing function reduces the amount of registration necessary to

bring the adjacent volumes into alignment in the vicinity of the seam. The inability

to easily and effectively register multiple overlapping volumes of clinical obstetrics

data makes ultrasound compounding methods based on various weighting schemes a

bad choice for 3D ultrasound mosaicing in our experiments [34]. The deformation

field in the rest of the volume relies entirely on the 2nd order regularization of the

transformation field.

Finally we present results from the complete abdominal reconstruction of three
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obstetrics patients that were 26-30 weeks along in their pregnancy. During clinical

scanning at UMass Medical School 10+ individual image volumes were acquired from

each subject encompassing the entire fetus and placenta. We collected such a large

number of scans because swept 2D ultrasound was used to generate the volumes and is

very sensitive to fetal movement. During construction of the composite volume some

of the individual volumes were found to be unusable making redundant scanning of

the subject necessary. Any sudden movements of the baby would ruin an active scan.

We found that it only requires around 5-6 carefully placed volumes to reconstruct

the anatomy of interest in our case. Figures 4-10, 4-11, and 4-12 show slices of the

composite volume created from each of these subjects. The overall image quality

is very good and the slices show anatomical details which wouldn’t be visible in

a single scan. For example in the top of Figure 4-10 amniotic fluid is visible on

both sides of the fetus which typically doesn’t occur during clinical scanning due to

the shadowing effects of obstetric ultrasound. Also visible are details of the baby’s

limbs and spine which are hard to capture simultaneously. The mosaicing function

was chosen to construct the composite volume from the registered source volumes as

opposed to a voxel-wise weighting scheme because the overlapping source volumes

were much too different in regions far away from the optimized seams. Again, this is

mostly due to fetal movement and shadowing. Correcting the misalignment between

volumes caused by the fetus shifting its limbs is more difficult than correcting for

predictable movement such as elastic deformation or a heartbeat which is why the

mosaicing function is used. We do not require the limbs in all source volumes to

be aligned, only the limbs in the sources specifically used to construct this region of

the composite volume. The right side of each figure demonstrates how the mosaicing

function partitions the composite volume into regions corresponding to each of the

overlapping sources. By looking at the image continuity in Figures 4-10, 4-11, and

4-12 we see that stitching algorithm is effective at producing visually satisfying results

from multiple partially overlapping ultrasound volumes.

Our primary purpose for developing the algorithms explained in this chapter is

to produce anatomically correct abdominal ultrasound volumes for use in obstetrics
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ultrasound simulators. Thus in order to evaluate the training value and correctness

of each composite volume we loaded them into our laptop based US simulator [57]

and encouraged the sonographers at University of Massachusetts Medical School to

compare the simulator experience to that of scanning a live patient. Our simulator

allows the user to re-slice the composite volume in any orientation/position by uti-

lizing a sham transducer with a 5 degree of freedom tracking system. From an initial

evaluation the sonographers were impressed with the quality and realism that our

composite volumes added to the training experience. The main issue was a slight

blurring in some re-slices that are used to calculate certain fetal measurements such

as abdominal circumference. Scanning procedures which focus on areas of the fetus

important to clinicians and careful selection ensuring we use the best image data to

construct the composite volume should improve this aspect.

4.4 Conclusions

The novel algorithm we presented in this chapter essentially requires two MRF op-

timizations to mosaic N partially overlapping ultrasound volumes. The first opti-

mization determines how the volumes should be stitched together by attempting to

minimize the intensity/gradient differences between adjacent volumes. This could be

used as preprocessing step to more sophisticated compounding techniques if desired.

The second optimization determines N deformation fields which bring the overlap-

ping volumes into alignment in regions of overlap. Precomputation of the similarity

metric using FFTs and a focused registration energy resulted in a very efficient mo-

saicing algorithm. Performance was further enhanced by splitting the solution space

into distinct regions, exploring them in parallel, then fusing the results.

The framework developed here is modular, which allows improvements in opti-

mization or similarity measure to be easily integrated into the algorithm. As more

efficient higher order MRF optimization methods are developed their speed/accuracy

should be tested on the registration energy in (3.44). Improved MRF optimization

could enable the use of more sophisticated registration models, such as those including
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Figure 4-10: Re-slices of composite volume created from subject 1. Rightmost images
show how final volume is partitioned into regions corresponding to overlapping source
volumes.

127



Figure 4-11: Re-slices of composite volume created from subject 2. Rightmost images
show how final volume is partitioned into regions corresponding to overlapping source
volumes.
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Figure 4-12: Re-slices of composite volume created from subject 3. Rightmost images
show how final volume is partitioned into regions corresponding to overlapping source
volumes.
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both rigid and elastic components. Joint registration/segmentation would also be in-

teresting to explore in this framework. Finally work towards efficient pre-computation

of more sophisticated group-wise similarity metrics should be completed.

The qualitative evaluation by sonographers at UMass complements the quanti-

tative results we found using a finite element model built from the Visible Human

Project data. It demonstrates the ability of the mosaicing technique developed in

this chapter, to overcome large deformations with only a small degree of overlap.

With the techniques for producing composite image volumes in place, additional

simulator development work includes the addition of landmarks that will be used in

educational modules providing training on the acquisition of common fetal measure-

ments, which is a task clinicians must be proficient in. Also an evaluation of the

simulators training benefit will be conducted by incorporating it into the curriculum

of a small number of medical students.
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Chapter 5

Optimizing spline surfaces using

Particle Swarm Optimization

In this chapter we introduce a technique for the global optimization of spline surfaces

and apply it to the task of finding the optimal stitching seam between two neighboring

and overlapping 3D image volumes. Finding the optimal location of the control

points that define the surface is a large scale constrained optimization problem and

it is solved using a cooperatively coevolving particle swarm based approach. This

was an early approach to our problem, which was abandoned when we realized the

performance benefits of the graph based techniques described in Chapter 3. It is

included in this dissertation for completeness and offers an alternative approach for

optimizing spline surfaces.

5.1 Introduction

As discussed in Chapter 1, we believe that the choice of an optimal seam is an

important step towards producing artifact-free joined image volumes in hard to stitch

cases. This is analogous to 2D image panorama creation, where a good seam is one

which divides the composite image, created from the source images, into regions such

that few discontinuities occur along the boundary. This surface should avoid moving

objects and regions of high information content because of the need to maintain
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optimal image continuity across the overlapping 3D image regions. We also do not

want to non rigidly deform rigid objects like fetal arms and legs in obstetrics image

volumes. 2D seam selection has been described extensively [48] and we have extended

this concept to 3D. In this chapter, we have formulated the task of generating a 3D

surface representing the ideal seam between volumes as a shape optimization problem.

5.2 Parametric seams with B-splines

In order to develop any shape optimization algorithm a suitable mathematical rep-

resentation must be chosen. A number of models for deformable surfaces have been

developed, each with unique properties. These models may be discrete or continu-

ous, allow for or preclude topology changes, and differ in their evolution laws. We

choose to implement the seam as a cubic B-spline surface because of their inherent

smoothness constraints, i.e. first and second derivatives are continuous across control

points. This property is very important for the implementation of an efficient global

optimization scheme. There is no need to accommodate topology changes in our

seam optimization application so other representations such as implicit surfaces were

excluded. Discrete meshes, particle systems, and Fourier modes were also considered

and rejected. A review of deformable models was presented in [49] which contains

details on properties and methods of evolution.

B-splines are well known and a recursive formulation of the basis functions are

used in our implementation. A surface can be constructed using the tensor product

of these functions coupled with a control point grid. A properly formed knot vector

guarantees that the surface terminates on the exterior control points and this property

is used to ensure that the seam divides the overlapping volume into 2 sections. This

is accomplished by constraining the exterior control points to reside on the boundary

of the overlapping volumes.

For completeness the recursive definition will be given. Let U = {u0, · · · , um+2k}

be a knot vector where m is a positive integer, k > 0 and u0 ≤ · · · ≤ ui ≤ · · · ≤ um+2k.

The B-spline basis functions of degree k are constructed using the follow recursive
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formula,

Ni,0(u) =

 1, for u ∈ [ui, ui+1)

0, otherwise
i = 0, 1, · · · ,m+ 2k − 1

Ni,k(u) = u−ui
ui+k−ui

Ni,k−1(u) + ui+k+1−u
ui+k+1−ui+1

Ni+1,k−1(u), i = 0, 1, · · · ,m+ k − 1

(5.1)

where we assume that u0 = u1 = · · · = uk = 0, uk < · · · < um+k, um+k = · · · =

um+2k = 1 and 0
0

= 0. The tensor product surface x ∈ R3 is generated using the

following equation,

x(u, v) =

m1+k−1∑
i1=0

m2+k−1∑
i2=0

ci1,i2Ni1,k(u)Ni2,k(v), u, v ∈ [0, 1] (5.2)

where ci1,i2 ∈ R3 is an individual control point in 3D space taken from an array

indexed by the variables i1 and i2. In our application we take k = 3 which generates

cubic basis functions. Also m1 and m2 must be positive integers. The B-spline basis

function is represented by Ni,k.

The exterior control points of the grid define where the surface terminates, while

the interior control points define the overall shape and the boundary between volumes.

Figure 5-1 shows an example of how a tensor-product B-spline surface can be used

to represent the seam. It also shows a region in the 3D volume corresponding to

zero misalignment which is represented by a tetrahedral mesh. Using our shape

optimization framework we would like to calculate the control point displacements

which cause the B-spline seam to flow through this region. This process will be

discussed in detail in the following section but this image serves to illustrate the b-

spline model of the seam. The left image in figure shows the ideal seam region and

the initial plane which bisects the volume. This volume was synthetically generated

to test the algorithm on easy seams before advancing to anatomical data. The right

image shows the surface after optimization. The algorithm was able to find the correct

seam and by constraining the motion of the exterior control points the final result

still bisects the volume. The B-spline model is well suited for this application.

Efficient implementations exist to compute points on a B-spline surface along with
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Figure 5-1: The left image shows the initial planar bisecting surface. The right image
shows the surface converging to the correct region.

derivatives at their locations. This is important in global minimization because the

fitness function for the surface will need to be evaluated numerous times during the

optimization process. For example, digital filtering techniques are available for the

processing and representation of signals (surfaces) in terms of continuous B-spline

basis functions [80, 81]. Especially useful are the digital filters designed to evaluate

derivatives along the surface. All B-spline operations can be implemented as con-

volutions in this framework, which may be employed in the future to speed up our

algorithm.

The surface must be initialized before we can optimize it. A number of 3D vol-

umes in different orientations overlap and the overlapping region between each pair

of volumes is not necessarily aligned with the common coordinate axes. This requires

care in order to initialize a planar surface, which bisects the overlapping region of two

volumes that differ in orientation/position. Principal Component Analysis is used to

generate a coordinate system aligned with the major axis of the overlapping region.

A bisecting surface can be formed using the normal representation of a plane which

is then transformed into its B-spline counterpart.
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5.3 Fitness function for stitching seam surface

The fitness function evaluates the quality of a seam, which is parameterized by its

control point locations. The total fitness is a weighted sum of an error term and a

regularization term and we wish to minimize this sum. This is a common approach

in medical image processing. We choose to use RMS error along the surface coupled

with a regularization term based on elastic energy. The fitness function is shown in

equation (5.3).

Fitness =

√
1

SurfArea

∫∫
V (x(u, v))2

∣∣∣∣∂x

∂u
× ∂x

∂v

∣∣∣∣ dudv
λ

∫∫ [
κ2

1 + κ2
2

] ∣∣∣∣∂x

∂u
× ∂x

∂v

∣∣∣∣ dudv (5.3)

Two principal curvatures are needed in order to calculate the regularization term.

The letter x represents the surface parameterized by u and v. V represents the

misalignment in the overlapping region we wish to divide. Both of these terms are

surface integrals calculated along on the B-spline seam. The RMS error was chosen

because it penalizes larger errors more severely. We can correct for small continuity

violations between the volumes along the stitching surface but correcting for large

concentrated errors are more difficult.

The second term in the fitness equation is arguably more important than the first

because it is what makes global optimization of a B-spline surface possible. It is

weighted by λ so its influence on the optimization can be adjusted. Low values of λ

allow the surface to take on more complicated shapes while higher values will result

in a smoother seam. Complete freedom of movement was needed to allow the seam

to escape local minima during optimization. As will be discussed in the next sec-

tion, most gradient based methods are inadequate because large steps are necessary.

This results in a significant risk of self-intersection because each of the control points

can freely move in any direction during optimization. When the B-spline surface

described above self-intersects its elastic energy grows very large due to the flexing
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of the surface necessary to cause the intersection. Explicitly checking the surface for

self-intersections is costly for an optimization method dependent on fitness function

evaluations so elastic energy was the mechanism chosen to prevent this problem [20].

Before elastic energy was finally implemented we attempted to utilize curvilinear er-

ror to control the smoothness and prevent self intersection however this term didn’t

provide the regularization necessary. Curvilinear error has been used for B-spline reg-

ularization and also to control B-spline snake smoothness and is described in detail

in [33, 84]. It is an error metric that increases when the control points aren’t evenly

spaced and thus penalizes shapes with regions of high curvature. The advantage of

curvilinear error is that it only requires the computation of 1st derivatives however it

failed to prevent self intersection during optimization. More research would be neces-

sary to correctly implement this error metric and to determine if the computational

savings is worth it. Curvilinear error for a curve is shown in (5.4) and can easily be

extended to a surface.

Error =

1∫
0

[∥∥∥∥dxdu
∥∥∥∥− CurveLength]2

du (5.4)

5.4 Optimization algorithm for seam surface selec-

tion

In order optimize the 3D stitching seam, in terms of minimizing RMS error, an al-

gorithm capable of handing large scale non-separable problems was needed. The

algorithm also had to be able to fully explore the solution space in order to avoid

getting stuck in local minimums which is one of the disadvantages of using gradient

based methods. This type of global optimization is well suited for evolutionary algo-

rithms such as genetic and particle swarm based approaches. If we consider a B-spline

surface with a 10x10 grid of control points located in a 3D coordinate system then

there are now 300 variables to optimize, which poses large difficulties for traditional

evolutionary algorithms. Since we also desire a surface with no self intersections this
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problem becomes a large scale constrained optimization problem. Many large scale

optimization problems can be handled by grouping dependent variables together and

solving several sub problems. This works well when the dependency is known and

the problem is separable; however in the seam selection problem these characteristics

are not present. The risk of self intersection adds dependencies between variables,

which change based on the shape of the surface and are difficult to describe mathe-

matically. The simplest method is to assume that the amount of variable dependence

is a function of control point proximity; however every control point is somewhat

dependent on all the others no matter what the distance between them. After inves-

tigating various methods such as differential evolution and modern genetic algorithms

we implemented a particle swarms based algorithm described in [44] and developed a

random grouping algorithm to partition the control point displacement variables into

sub-swarms based on location.

5.4.1 Cooperatively Coevolving Particle Swarms for Large

Scale Optimization

Particle swarm optimization (PSO) is modeled after the behavior of social animals

in large groups. In nature it has been observed that these groups display a collec-

tive intelligence when problem solving. In PSO each particle maintains its current

position as well as its personal best position in the solution space where the personal

best position for the particles represents the highest fitness value it has found so far

while traversing the solution space. In this application a position in the search space

corresponds to a control point configuration which generates a unique surface. During

each iteration of basic PSO, every particle updates its current position according to

an update rule that takes into account the individual particle’s best position found

so far and also the best positions found by its neighboring particles. Early versions of

PSO used a global best position in the update rule for each particle which meant that

the particles all moved towards the same solution during each iteration, sometimes

resulting in premature convergence. In this case all the particles in a swarm were
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considered neighbors, and communication between particles, i.e. exchanging personal

best positions, is modeled as a fully connected graph. Here the global best position

was the solution with the highest fitness value found by all the particles. In the

optimization algorithm a Cauchy and Gaussian based update rule is used. Equation

(5.5) shows the update rule.

xi,d(t+ 1) =

 yi,d(t) + C(1) |yi,d(t)− ŷi,d(t)| , if rand ≤ p

ŷi,d(t) +N(0, 1) |yi,d(t)− ŷi,d(t)| , otherwise
(5.5)

In eq, xi,d(t) represents particle i’s position at time t. The subscript d indexes

an individual variable for multi variable optimization problems. C(1) is a Cauchy

random variable and N(0, 1) is a normal random variable. yi,d(t) represents particle

i’s personal best position at time t and ŷi,d(t) represents particle i’s neighborhood

best position. The variable p controls the likelihood of sampling around the particle’s

personal best position or its neighborhood best position. In our experiments p was

set to .5 which used in [44]. The Gaussian random variable is used to sample around

the particle’s neighborhood best position and the Cauchy is used to sample around

the particle’s personal best position. An update equation which only uses a Gaussian

distribution has a limited ability to search the solution space especially when its

standard deviation becomes small. A Cauchy random variable’s probability density

function has larger spread, which means it is more likely to sample farther away from

the particle’s personal best thus being more exploratory. With p set to .5 half of

the time we are exploring around a particle’s personal best using a Cauchy r.v. and

the other half we are converging on a plausible solution using a Gaussian random

variable.

In PSO the neighborhood topology heavily influences the performance of the al-

gorithm. A ring topology was used because it allows the greatest exploration of the

global search space and prevents premature convergence. It accomplishes this by

slowing down the spread of the swarms best fitness value, which may correspond to a

local minima, to the distant particles where distance between particles is a function of

the topology. One disadvantage of the ring topology is the slow convergence rate but
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Particle Contents: 
 

Current Position 
Personal Best Position 

 
In this application a position in 
the search space corresponds 

to a control point configuration 
which generates a unique 

surface 

 

 
Figure 5-2: The left image shows a ring topology and the right image shows the
contents of an individual particle.

for non separable problems increased exploration is important. Once topology has

been defined population size must also be considered. Low connected topologies and

a high number of particles results in slow propagation of information, and therefore

a more parallel search is performed [19]. We choose a population of 64 which was

shown to have good results. This number allowed us to implement a SIMD (single

instruction multiple data) fitness function effectively utilizing all 32 CPU cores we

had at our disposal.

Early versions of PSO only utilized one swarm. However this did not scale well as

the number of variables to be optimized grew. For large scale optimization, the strat-

egy of divide and conquer can be applied, where sub-swarms are used to optimized

subcomponents of the problem and the final solution is constructed by concatenating

the solutions of each sub-swarm. This approach is known as cooperatively coevolv-

ing optimization and has been applied to other evolutionary algorithms as well as

particle swarm optimization [85]. This approach worked with separable problems but

performed poorly on non separable problems which led to the development of random

grouping. The reason for this was that the algorithms failed to capture the variable

interdependencies and new strategies needed to be developed. This lead to the intro-

duction of decomposition through random grouping [54]. The idea behind random

grouping was to increase the chances that two dependent variables would be optimized
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together by a sub-swarm. Ideally all closely interacting variables would be grouped

together in a subcomponent and the dependency between subcomponents would be

minimized. Each subcomponent would then be input into a cooperatively coevolving

optimization algorithm. Early work used genetic algorithms as the subcomponent

optimizer but PSO was introduced later.

The algorithm cooperatively coevolving particle swarm optimization two (CCPSO2)

[44] has been modified from its original version for the optimization of the B-spline

surface described above. The modifications have been introduced to handle the non

self-intersecting constraint and also to take into account the dependence that neigh-

boring control points have on each other. The flow chart describing our algorithm is

shown in Figure 5-3.

The concept of the algorithm is to split the seam into a number of random patches

called subcomponents, each to be optimized individually by a sub-swarm. The control

points which reside in the same patch are grouped together into a subcomponent

which will be optimized by a sub-swarm. These patches are optimized in a round

robin fashion as shown in Figure 5-3. In order to evaluate a particles fitness in

each sub swarm a complete solution (seam surface) must be constructed. A context

vector, ŷ, is used to hold the best control point locations found during optimization

so far by all sub-swarms. To evaluate the fitness of each particle the variables in

ŷ corresponding to the current sub swarm are replaced by the particles values. For

example we may be optimizing a surface with 100 control points and decide to split

the surface so each patch or subcomponent contains 25 points, which then results in

4 sub-swarms optimizing 25 points each. In order to evaluate the fitness of a particle

in each sub swarm we must construct the entire surface thus all 100 control point

locations are required. In order to evaluate the i’th particle in the j’th sub-swarm

the function b(j, Pj.xi) is used which returns the n dimensional vector consisting of

ŷ with its jth component replaced by Pj.xi. This is the complete solution needed

for the fitness function which measures how well particle Pj.xi cooperates with the

best solutions found so far in the other sub swarms. The for loops iterate through

each sub swarm resulting in coevolution of the particles. Progress made in the search
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Randomly initialize "particles" which 
don't introduce self intersections 
into their respective surfaces.

Construct swarms using random patch 
generation algorithm.  Each swarm contains 
a subset of control points.  If the fitness 
hasn't improved increase # of patches

"Move" particles using Cauchy Gaussian 
update rule shown in eq. 4

Repeat until convergence

For each swarm j

Update neighborhood best

for each particle I

1 1. localBest( . , . , . )j i j i j i j iP y P y P y P y  

Update personal and swarm best

for each particle i

if

if

fit(b( , . )) fit(b( , . ))j i j ij P x j P y

ˆ. fit(b( , . ))j i jP y j P y
. .j i j iP y P x

ˆ. .j j iP y P y

Update segment of context vector 
corresponding to jth swarm 

if 

jth part of

ˆ ˆfit(b( , . )) fit( )jj P y y
ˆ ˆ.jy P y

Figure 5-3: This flowchart illustrates the optimization process, beginning with the
initial population of random surfaces or particles and concluding with the generation
of a seam minimizing the RMS error calculated as the surface integral.
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space during each iteration is used in subsequent iterations. In the first nested for

loop we are updating the particle’s personal best position, if their new position in the

search space is an improvement. Also we are checking the jth swarm best for update,

finding each particle’s local best position using a ring topology, and finally updating

the context vector ŷ if the swarm best results in the highest fitness found so far. In

the final nested for loop each particles new position is calculated using its personal

best and neighborhood best values. As described in [44] matrix representations seem

natural to hold the personal best and current position of each particle, as formulated

in Equation representations.

X =


x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

x64,1 x64,2 . . . x64,n

 Y =


y1,1 y1,2 . . . y1,n

y2,1 y2,2 . . . y2,n

...
...

. . .
...

y64,1 y64,2 . . . y64,n

 (5.6)

Each row corresponds to a particle and each column is a unique variable where n

depends on the number of control points we use to represent the surface. As stated

before, we use 64 particles to efficiently utilize CPU power, and thus there are 64

rows. X holds each particles current position and Y holds each particles personal

best position. Columns from these matrices are chosen using a random grouping

method designed for a B-spline surface representation and put into sub swarms to be

optimized using the CCPSO2 algorithm described above.

The grouping algorithm is applied before each iteration, prior to evolving the

sub swarms. Each particle’s personal best fitness value must be reevaluated at the

beginning of each iteration as a result of being assigned to a new sub-swarm. Special

care must be taken to ensure that the context vector ŷ is reconstructed properly, its

components corresponding to the newly formed groups. This ensures that optimal

control points locations found in previous iterations can be used in future iterations.

Also before calling the fitness function to evaluate a particle we must make sure that

the variables in the input vector are rearranged and placed in their original locations
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in order to obtain the correct value.

Intelligent grouping strategy

The original CCPSO2 algorithm uses a simple random grouping strategy to create

the sub-swarms. All variables have the same probability of being placed together

which is good for optimization problems where dependency is unknown. Because of

the frequent regrouping, dependent variables have a good chance of being optimized

together at some point by CCPSO2. A high frequency of regrouping should benefit

large scale non-separable problems since it is more likely that interacting variables

will be placed in the same sub component. In our case however we have some prior

knowledge of variable interaction in a B-spline surface. Using this fact we have

designed a more intelligent grouping algorithm to improve performance. A cubic B-

spline surface patch requires a 4x4 grid of control points to define it thus the optimal

location of these control points are heavily dependent on each other. Following this

we would like to randomly group control points based on location relative to each

other. Each control point has 3 degrees of freedom defining its location relative

to its initial position on the dividing plane, which was constructed using principal

component analysis at the start of the optimization. Random regions on the surface

are constructed and the control points are grouped according to which region they lie

in. The 3 displacement variables belonging to a control point in a region are added to

that region’s subcomponent. All of the subcomponents are then used in one iteration

of CCPSO. Regions are constructed by introducing randomly placed points in the

control point grid. All of the spatial coordinates closer to point i than any other

point belong in point i’s region. These regions are equivalent to the Voronoi diagram

of the randomly placed points which is shown in Figure by the solid lines. The points

are generated to have a uniform spatial distribution within the grid. In order to

calculate which region a control point belongs to a Delaunay triangulation is formed

which is used as input into a nearest neighbor algorithm implemented by Matlab.

The nearest randomly placed point to each control point is its subcomponent.

143



3 3

3 3 3 3

3 3 3 3

3 3 3 3 3

3 3 3 3

4

4 4

4 4 4

4 4 4

4 4 4 4

4 4 4 4

4 4 4 4 4

4 4 4 4

6 6 6 6 6 6

6 6 6 6 6

6 6

5 5

5 5

5 5

5 5

5

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Figure 5-4: The control point grid is split into random regions before each iteration
of CCPSO2 in order to improve performance. Numbers indicate which group the
control point at this location is assigned to. The blue lines separate regions.
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Generation of initial population

A key step of the optimization algorithm is the generation of the initial particle

population where each particle represented a unique seam. As stated previously a

swarm size of 64 was used which meant it was necessary to randomly generate 64

particles prior to optimization, each representing a unique seam. Ideally the initial

population would cover enough of the search space to make optimization possible

and efficient but would not contain particles which violated the non self-intersection

constraint. Particles were generated by randomly perturbing the bisecting plane in 3D

space. As long as the polygonal mesh formed by the control points does not contain

any self-intersections than the resulting B-spline surface would not contain any self-

intersections. To this end the control point mesh of each particle was tessellated and

each tessellation was checked for self-intersections. Particles which passed this test

were used in the initial population.

5.5 Experiments and results

Initial tests were completed on simple synthetic 3D volumes to ensure that the algo-

rithm was capable of handling such a large number of optimization variables coupled

with the non self intersection constraint. Volumes were created where the optimal

seam was known a priori as shown in Figure 5-1. In this experiment the algorithm was

easily able to find the correct seam. In subsequent tests the algorithm was tasked to

find much more complicated seams where the desired result was not known a priori.

The anatomical dataset from the Visible Human Female was used to construct a finite

element model consisting of the major abdominal organs. This model was deformed

by applying a force to the abdomen which was then reflected in the corresponding

medical images producing deformed and undeformed volumes. Originally this model

was constructed to evaluate registration methods. The surface optimization algorithm

was then tasked to find a seam between the deformed and undeformed Visible Human

Female volumes and the results are shown in Figure 5-5 for slices approximately 5

voxels apart. The RMS error along the seam before optimization was 21.39 and after
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Figure 5-5: Slices through the Visible Human Female test volume show the final
seam avoiding high intensity regions. The curve in each slice represents the surface’s
intersection with the image plane. The right image shows the final surface and 5
slices from the volume it traverses.

optimization this was reduced to 9.93 by the algorithm. The misalignment between

adjacent volumes was significant and slices through the error volume changed fast.

The control points were spaced around 10 voxels apart and the slices shown were 5

voxels apart so in order to reduce the RMS error further a refinement of the control

point grid would be required. We feel that a control point spacing of 10 voxels is

adequate for stitching clinical data. The Figure demonstrates the method’s ability

to avoid high intensity areas which would be more difficult to correct. The curve in

each image represents the intersection of the optimized surface with that particular

slice.
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5.6 Conclusions

A global shape optimization algorithm was presented and applied to the task of 3D

seam selection. The algorithm uses particle swarm optimization coupled with an in-

telligent grouping strategy which allows it to avoid local minima. Energy functions

were evaluated to prevent self intersection from being introduced during evolution. It

has potential to be extended to other medical image processing tasks such as segmen-

tation or shape matching by slightly modifying the surface model and/or changing

the fitness function. After experimenting with graph based methods this direction

research was discontinued in favor of better performing approaches. The popularity

of graph based techniques in all aspects of computer vision, ranging from registra-

tion to segmentation to denoising and many others, is impressive and demonstrates

how effective they can be. Particle swarm optimization isn’t as well suited to handle

computer vision problems.
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Chapter 6

Improving the mosaic:

blending/filling

After the seam is calculated and the source volumes are non-rigidly registered there

is one final step before the mosaiced training volume is complete and ready for inte-

gration into the simulation system. The trainee will have a better experience if the

volumes are visually seamless and this usually requires some blending prior to stitch-

ing. Also, regions of the volume where no data was collected during scanning should

have an ultrasound like appearance before being displayed in the simulator. This

ensures the trainee’s experience isn’t degraded by unrealistic images. This chapter

will elaborate on the approaches used to accomplish these tasks and provide examples

of their application to the clinical datasets.

6.1 Blending of volumes using a discrete Poisson

approach

Once the overlapping volumes have been brought into alignment minor discontinuities

and intensity variations between adjacent volumes may still exist, necessitating the

use of advanced blending techniques. The naive approach would be to use alpha

blending, which simply calculates a weighted average of neighboring volumes near a
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seam. Employing this method would cause edges in the overlapping region, which

may not be visible in both volumes due to shadowing artifacts, to appear blurry in the

final blended volume. To overcome this issue we adapted a Poisson editing technique,

which uses guided interpolation to perform image blending, for use with partially

overlapping 3D data. This approach is a straightforward extension of [58], which was

designed for photo editing. Other approaches for blending have been proposed, for

example [87] is based on minimizing false edges and shows some improvement over

[58] when using photos; however, ultrasound images are of too poor a quality so other

works weren’t considered in our application.

Before we review the theory and demonstrate how it can be applied to partially

overlapping ultrasound volumes, some preliminary definitions will be helpful. Re-

call that in the group-wise registration chapter we defined the mosaicing function,

Γ (x) : R3 → R, to map locations in the composite volume to a source ID, whose

corresponding intensity value should be used to construct the mosaic. The composite

volume is split into separate domains based on the mosaicing function where each

domain, denoted by Ωn, is linked to a specific source and represents its contribution

to the composite volume. The left half of Figure 6-1 illustrates the problem using

three partially overlapping images. We wish to blend the three images together in

the region Ψ surrounding the seam. The boundaries between Ψ and the sources used

in the mosaic are denoted by ∂Ψ1, ∂Ψ2 and ∂Ψ3, which are shown in the right half of

Figure 6-1. In this figure the image volumes are represented by the scalar functions

I1, I2 and I3 while the area between the volumes that we wish to fill is denoted by the

scalar function F . The idea of the algorithm is to consider the calculation of image

intensities F within the domain Ψ as an interpolation problem, where a specially con-

structed vector field is used for guidance. This vector field will be discussed shortly

and ensures edge details are not lost during blending. The continuous formulation of
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Ω2Ω3

Ψ

Ω = {Ω1 ∪ Ω2 ∪ Ω3}

∂Ψ1

∂Ψ3 ∂Ψ2
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2
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Scan
3 Sc
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2

FI1, I2, I3

Figure 6-1: Regions/boundaries associated with 3 partially overlapping ultrasound
volumes

this problem is shown below,

min
F

∫
Ψ

|∇F −V|2dx with

F |∂Ψ1 = I1|∂Ψ1

F |∂Ψ2 = I2|∂Ψ2

F |∂Ψ3 = I3|∂Ψ3

(6.1)

The boundary conditions force F to match the intensity values of the composite

volume along the edges of Ψ, thus F is used to simply fill in the blended region. The

solution of (6.1) is equal to the unique solution of the following Poisson equation

using identical boundary conditions,

∆F = ∇ ·V over Ψ (6.2)

In (6.2) the symbol ∆ represents the Laplacian operator and ∇ is the gradient oper-

ator. The vector field V is needed to include the features of each overlapping volume

in the blended region and is defined as follows,

for x ∈ Ψ, V (x) = {∇In (x) |∀m : |∇In (x)| ≥ |∇Im (x)|} (6.3)

Equation (6.3) states that the guidance vector at x should be equal to the largest

gradient of all the overlapping volumes at this location. This helps prevent shadow
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artifacts from diminishing the quality of edges in the blended region.

Next we will present the discrete version of (6.2) that we applied to our ultrasound

mosaicing problem and then discuss how its solution must satisfy a particular system

of linear equations, enabling the use of efficient solvers. This approach follows [58] but

includes modifications for use with 3D data. A mathematical definition for the domain

of the blended region is also presented and used in our implementation. Recall that

Dn (x) was defined in Chapter 3 as a distance function which measures the minimum

distance from point x to the region in the composite volume labeled as source n.

The discrete set of voxels in the blended region can be expressed using the following

equation,

Ψ =
{
x ∈ Z3|Γ (x) 6= 0,∃n : 0 < Dn (x) < ς

}
(6.4)

Here ς controls the distance from the seam where the blending will occur. The discrete

counterpart for Ωn is now defined as the set Ωn = {x ∈ Z3|Γ (x) = n}. For each voxel

p ∈ Z3 in Ω = Ω1∩ ...∩ΩN , let Np be the set of 8 connected neighbors in Ω. Also let

〈p,q〉 denote a voxel pair such that q ∈ Np. The boundaries of Ψ are discretized and

can be expressed as ∂Ψn = {p ∈ Ωn\Ψ|Np ∩Ψ 6= ∅}. Finally let fp = F (p). Using

the notation from [58] our task is to compute the set of intensities f |Ψ = {fp|p ∈ Ψ}.

The finite difference discretization of (6.1) yields the following quadratic optimization

problem,

min
f |Ψ

∑
〈p,q〉∩Ψ 6=∅

(fp − fq − vpq)2 with fp = In (p) for all p ∈ ∂Ψn (6.5)

where,

vpq = {In (p)− In (q) |∀m : |In (p)− In (q)| ≥ |Im (p)− Im (q)|} (6.6)

It should be noted that if a particular image volume isn’t defined at either p or q then

it’s gradient at this location is considered to be zero. The solution of this optimization
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problem also satisfies the following system of linear equations,

for all p ∈ Ψ, |Np| fp −
∑

q∈Np∩Ψ

fq =
∑
n

 ∑
q∈Np∩∂Ψn

In (q)

+
∑
q∈Np

vpq (6.7)

We used the preconditioned conjugate gradient method to solve (6.7) and obtained

good blending results using our clinical datasets in a matter of minutes.

The overall goal of this work was to produce a seamless mosaiced image volume,

removing any obvious transition between neighboring sources that might appear while

the user was scanning with the simulator. Now we discuss the blending results we

achieved using clinical volumes acquired at the University of Massachusetts Medi-

cal School. In the leftmost column of Figure 6-2 some of the irregularities between

adjacent volumes, which remained after group-wise non-rigid registration, are iden-

tified. The rightmost column shows their remediation using the proposed blending

technique. Elimination of the discontinuities in the composite volume makes for a

much more realistic scanning experience.

6.2 Filling volumes using a discrete Poisson ap-

proach

This section will briefly describe the method we used to fill the regions of the com-

posite volume where there was no source information, which appear black in Figure

6-2. The user experience with the simulator is improved if the scan plane they are

currently viewing slowly transitions to gray instead of abruptly ending where no clin-

ical data was acquired. The difficulty of acquiring and stitching ultrasound volumes,

which encompass every possible view that the simulator may need, makes this step

necessary. The idea is to set the exterior boundary voxels of the cubic volume to gray

and then use the membrane interpolant based on the Poisson equation to fill in the

black areas. This is a very well-known interpolation technique thus we won’t discuss

its implementation here. Next, multiplicative noise or speckle is added to make the
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Slices of mosaiced volume before and after blending:

Figure 6-2: Results of blending algorithm. Jagged edges and noticeable transitions
between sources are removed with circles spotlighting highly effected areas.
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Figure 6-3: Results of filling technique applied to volume shown in top right of Figure
6-2.

filled in areas look more ultrasound like. The interpolation step can completed using

(6.1) with the guidance vector V removed. The domain Ψ to be filled is defined as the

black region surrounding the image information shown in Figure 6-2. The boundaries

are now the exterior voxels of the cubic volume, which we set to gray, and the exterior

voxels of the mosaiced data. Figure 6-3 shows the results of the filling procedure.

This simple approach achieves the desired result without putting an additional

burden on the CPU/GPU; however generating the fill in real-time, based on the

current simulator ultrasound image, would appear more realistic to the user. More

complex algorithms have been proposed to perform image in-painting/blending, how-

ever our implementation of [37] resulted in undesirable texture patterns in the filled

area. This method best suits our goal of developing a simulator which runs on most

available laptops.
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Chapter 7

Clinical results with fetal

ultrasound

This chapter will describe the clinical component of the research of this dissertation.

For the purpose of acquiring actual clinical ultrasound data, from which training

datasets were produced, 11 pregnant subjects were scanned by experienced sonogra-

phers at the University of Massachusetts Medical School following an approved IRB

protocol. First, we will discuss the software/hardware configuration that was used

to conduct these scans, which included some custom mechanical design. With the

data collected using this arrangement we generated seamless 3D fetal mosaics, that is,

the training datasets, loaded them into our ultrasound training simulator, and then

subsequently had them evaluated by the sonographers at University of Massachusetts

Medical School (UMMS) for accuracy. These mosaics were constructed from the raw

scan data using the techniques developed in Chapters 2 and 3. This chapter will also

discuss the specific training objectives that were established based on the input from

our collaborators in the obstetrics sonography group. Important fetal measurements

are reviewed, which form the basis for training in obstetrics ultrasound. Next, we

discuss how our subject scanning/mosaicing procedure was tailored with these mea-

surements in mind. Finally clinical images demonstrating the sonographer making

fetal measurements in practice, which were acquired by the Philips iU22 ultrasound

machine from a live subject, are compared with screenshots of corresponding images
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produced with our simulator.

7.1 Motivation

Obstetrics sonography is a critical tool for monitoring the health of both mother

and child during pregnancy. Using their skillset, sonographers trained in obstetrics

ultrasound are able to determine gestational age and monitor growth to verify the

proper development of the fetus. The sonographer would be the first to notice any

abnormalities which may cause harm to the mother or child. Due to the variability

between pregnancies this a challenging field in ultrasound medicine. The skill to

correctly identify and measure the anatomy for a wide range of gestational ages

and fetal positions requires a great deal of hands-on experience to master. The

sonographer must not only be able to identity the anatomy in the images they are

viewing; they must also develop the motor skills necessary to move the transducer to

the correct location based on their current view. Normally this skill would be honed

by practicing on patients; however, with the availability of a training simulator for

obstetrics ultrasound, students can start to develop these motor skills by practicing on

a simulator before ever scanning a live person. The generation of obstetrics training

volumes for simulation purposes will be discussed right after the clinical acquisition

configuration is presented in the next section.

7.2 Configuration of software/hardware

The main contribution of this dissertation is the development of a novel mosaicing

algorithm used to stitch partially overlapping 3D volumes; however, we should review

the techniques used to construct the individual 3D volumes since this is the first step

in generating the mosaics that were incorporated into the simulator. As noted earlier

we used the software package Stradwin [78] (to be described later in this section),

which was developed at the University of Cambridge, for image acquisition and con-

struction of the individual overlapping 3D volumes. In this section the basics of 3D
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swept ultrasound will be discussed along with our particular clinical configuration.

For clinical scanning at UMMS, a laptop running the Stradwin software was connected

to the video output of a Philips iU22, a high end ultrasound scanner often used in

obstetrics ultrasound, using a common Belkin video capture device running through

a USB port. Also connected to the laptop, via a SERIAL to USB adapter, was a 6

degree of freedom (DoF) Ascension Technologies trakSTAR system which was used

track the ultrasound transducer. The three main components of the trakSTAR system

include the position sensor, a DC magnetic transmitter, and the processing unit con-

nected to our laptop. The interconnection of these hardware/software components is

illustrated by Figure 7-1. Solid lines represent wired connections and arrows are used

to denote the direction of data flow between components. A dashed arrow represents

the DC magnetic field generated by the transmitter. This field is subsequently mea-

sured by the position sensor in order to determine the position and orientation of the

transducer to which it has been attached. The left side of Figure 1 is associated with

image acquisition while the right side is associated with position tracking. In order to

accurately track the ultrasound transducer (a Philips C5-1 convex array transducer),

the position sensor had to be fastened securely enough that the sonographer’s grasp

wouldn’t shift it during prolonged scanning. To this end we designed a clamshell type

bracket using Solidworks which fit snugly over the end of the transducer. In order

to capture the non-uniform shape of the transducer’s handle we placed it in a vice

and utilized the trakSTAR’s position sensor to capture a 3D point cloud that was

subsequently turned into a NURBS (Non-Uniform Rational B-Spline) surface and

imported into Solidworks. Both halves of this bracket are shown in Figure 7-2. A

notch, visible in Figure 7-2, was also cut out for holding the position sensor. The

bracket was constructed using a 3D printer, enabling the contours of the ultrasound

transducer to be easily replicated. Nylon bolts were then used to fasten both sides

together. Now that the position sensor was securely fastened to the transducer the

next challenge was to build a structure with an arm that could hold the transmitter

close to the subject’s abdomen since its range is limited. We utilized the mid-range

transmitter from Ascension Technologies which guarantees the position/orientation
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Laptop running Stradwin
v4.7 to synchronize
image/position data

Philips iU-22
ultrasound
system

DC magnetic transmitter
placed within 24 inches of
abdomen using arm/tripod

Ascension
trakSTAR
processing unit

Position sensor
attached to C5-1
transducer

Position
information sent
to laptop via
serial to USB
interface

2D Ultrasound
images acquired
using a Belkin USB
video capture device

Figure 7-1: Diagram showing the interconnection of hardware/software components
used for the freehand 3D scanning of patients
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Figure 7-2: 3D rendering of bracket used to fasten position sensor to Philips C5-1
transducer

measurements to be accurate to within stated specifications [4] as long as the sensor

remains inside a cube box with side dimensions of 31’ directly in front of it. Outside

interference can introduce noise and artifacts into the measurements and unshielded

magnetic metals can cause distortion so the arm’s materials were carefully chosen.

We also wanted the option to swing the transmitter over the hospital bed so both

sides of the abdomen could be accurately captured without requiring us to move the

transmitter mid-scan, as the position sensor’s accuracy decreases when its distance to

the transmitter increases. The solution was to purchase a very sturdy tripod and de-

sign/build an attachment to hold the transmitter. The final design is shown in Figure

7-3. The tripod was made from carbon fiber so as to not have any metallic structures

near the transmitter which could distort the magnetic field it generated. The arm

itself was made out of two wooden dowels while the tripod/transmitter mounts were

designed in Solidworks and constructed using a 3D printer. Since the transmitter is

fairly heavy, the arm required a sliding counterweight which can be seen in the left

side of Figure 7-3. The counterweight was constructed out of plastic and filled with

sand, once again ensuring nothing interfered with the magnetic field generated by the

transmitter. Also two plastic tubes pass through the main body of the counterweight,

allowing it to slide along the wooden dowels. The Solidworks design of the mount
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Figure 7-3: Photo showing our clinical setup at the University of Massachusetts
Medical School

which connects the dowels to the tripod is shown in Figure 7-4. A threaded brass

insert is pressed into it which allows the mount to be securely fastened to the tripod.

It clamps the dowels in place using two additional bolts that can be seen in Figure

7-4. The right sides of Figure 7-3 and Figure 7-4 show the transmitter mount, which

slides over the ends of the dowels and is held in place with glue. Two threaded brass

inserts allow the transmitter to be screwed to it. Using this design we were able to

capture the position/orientation information in a clinical setting accurately enough

to produce realistic training volumes for our simulator.

Now that the hardware configuration for data collection has been presented we

will discuss the software component in a bit more detail. Stradwin generates 3D

ultrasound volumes by tagging each 2D image acquired by the video capture card with

the corresponding position/orientation information given by the trakSTAR sensor.

Next it places them appropriately in 3D space based on this information. It should

be noted that since the sensor is arbitrarily mounted to the transducer a calibration

procedure is required in order to calculate the transformation from the sensor to the
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Figure 7-4: 3D rendering of parts used to construct the transmitter arm. The left-
most images represent the tripod mount, which fixes the arm in place by clamping the
wooden dowels. The right-most image is the transmitter mount which was fastened
to the end of the dowels.

corner of the ultrasound image, which is the actual position/orientation we desire

to store. The procedure we used is described in detail in [64]. The calibration only

had to be performed once, when the position sensor was fixed to the transducer,

so this method sufficed; however, much faster methods have been proposed recently

[31]. A quicker calibration procedure could be performed prior to each scan, thus

ensuring reconstruction accuracy even if the position sensor had been inadvertently

shifted between scans. Stradwin generates re-slices of the 3D ultrasound volume in

its viewing window directly from the acquired 2D images and thus doesn’t allow 3D

non-rigid registration between overlapping volumes. Interpolation methods [73] can

be used to construct volumes with uniform voxel grids from the 2D images, which

have been positioned in the transmitter’s 3D coordinated system. Stradwin can export

these volumes which can be used as input into our stitching algorithm.
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7.3 Obstetrics image volumes for affordable ultra-

sound simulator

Each ultrasound mosaic was constructed with a number of obstetrics training tasks

in mind. Firstly, the sonographer must be able to determine the fetal position, which

becomes very important as the expecting mother nears delivery. One example would

be occiput anterior, where the smallest part of the baby’s head leads the way through

the birth canal; thus is the most preferred. A C-section is usually recommended for

difficult positions such as breech, making this a fundamental observation every sonog-

rapher needs to be comfortable with. Placental position is also visible in our training

volumes. The bladder, lower uterine, and cervix are detectable in the majority of the

cases.

We have implemented the most common fetal assessments and measurements in

our training modules. After the mosaics were constructed and incorporated into

the simulator landmarks were added to the composite volumes by Dr. Petra Be-

lady, an assistant professor in the Dept. of Obstetrics and Gynecology at UMass

Med. School. The students locate anatomical structure, determine fetal position and

take fetal measurements within the simulator as they work their way through each

learning objective. The identified structures and measured values are compared to

the previously inserted landmarks to determine correctness. Currently implemented

measurements include the amniotic fluid index, bi-parietal diameter, abdominal cir-

cumference, and femur length. The amniotic fluid index is calculated by measuring

the amount of fluid in four separate quadrants within the uterus. Biparietal diam-

eter is the diameter across the developing baby’s skull, and is useful for estimating

weight. Abdominal circumference is important in assessing size/growth during preg-

nancy and can be measured in the plane where the stomach is visualized. Finally the

femur length is another mandatory measurement enabling the sonographer to exclude

certain medical conditions such as dwarfism.
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7.3.1 Scanning procedure for fetal ultrasound

This section will discuss the scanning protocol we used for freehand 3D swept ultra-

sound of a pregnant subject. The collected data was used in the generation of the

composite training volumes, or fetal mosaics, described above. Based on our expe-

rience with the stitching process, using individual volumes created from ultrasound

B-mode images acquired in both the sagittal and transverse planes of the fetus, we

have determined that stitching was easier when B-mode images of the sagittal plane

were used. These images were acquired along a set of parallel scan paths, with ad-

jacent paths shifted about 2”, formed by moving the transducer right to left across

the subject’s abdomen. The reasoning behind this is that the effects of the shadow-

ing artifacts on the stitching process are amplified when stitching together individual

volumes produced from images of the transverse plane, collected along scan paths

which run superior to inferior. This may be due to the fact that ultrasound images

of anatomical structures in the overlapping regions of adjacent volumes have been

obtained from opposite sides of the abdomen.

A volume produced using images of the transverse plane on one side of the ab-

domen may display the fetus’s arms and legs clearly while the vertebrae are completely

absent. Conversely, scanning on the other side of the abdomen may give very clear

images of the baby’s back; however the arms and legs are missing from the image

volume. This may be due to the attenuation of the ultrasound as at travels through

the fetus or due to some shadowing effect. Because of this, stitching volumes acquired

in this fashion is difficult because there are no or few common features which can be

used to align the individual volumes and thus the registration (alignment) solution

isn’t well defined. We have found that stitching overlapping volumes together, which

were produced with images of the fetus’s sagittal plane, produced better results based

on evaluation by clinicians. The reasoning is that the features captured by multiple

ultrasound volumes acquired in this fashion are generally very similar in the over-

lapping region between volumes. The two different scanning directions are shown in

Figure 7-5 with the preferred scan direction/orientation designated as the primary.
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Primary probe orientation acquires images
of mother’s sagittal plane

Secondary probe orientation acquires
images of mother’s transerse plane

Figure 7-5: Illustration of the two possible scan paths along the abdomen which can
be followed to obtain individual ultrasound volumes from a pregnant subject using
freehand 3D techniques

To acquire the individual volumes necessary for the creation of a complete obstetrics

training volume we propose to scan in the primary direction/orientation first, collect-

ing 4-5 volumes encompassing the entire abdomen and fetus. These volumes should

overlap minimally in order to limit the effects of fetal movement during the stitching

process but also must contain enough shared structures to make registration possible.

Also it is very important that the scan path used to produce the individual image

volumes cover the full extent of the mother’s abdomen because adding small volumes

to an otherwise complete composite volume is difficult. Care must also be taken to

completely capture the fetal head and bottom as well a subset of the mother’s or-

gans, which are needed to help the sonographer orient themselves. This procedure

should be repeated a 2-3 times in order to minimize the likelihood that the baby was

actively moving during the image collection which should result in 12-15 volumes.

The sonographer should also scan along the secondary direction/orientation to ac-
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quire additional scans which may be used if the primary volumes prove too hard to

stitch. Finally, fetal biometric measurements are taken which can be utilized after

the mosaicing process in order to prove that the volume was constructed accurately.

In addition to these measurements, the corresponding 2D ultrasound images are also

saved because they identify the planes in which the trainee should complete the mea-

surement tasks using the simulator, once the training volume has been generated of

course.

SCAN PROTOCOL:

1. Scan so as to ascertain the baby’s actual position

2. Determine the scan paths that will capture the baby’s head and feet

3. Scan the abdomen of the pregnant subject with right to left sweeps acquiring

images of the sagittal plane

4. Repeat the scanning in Step 3

5. Scan the abdomen of the pregnant subject with superior to inferior sweeps

acquiring images of the transverse plane

6. Repeat the scanning in Step 5

Table 7.1 contains an overview of the clinical scans conducted at the University

of Massachusetts Medical School. Each date corresponds to a different subject and

provides information on the number/type of freehand 3D scans acquired. Because of

fetal movement not all sessions produced a usable training volume for the simulator,

which is noted in the last column.
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7.3.2 Using ITK-SNAP to isolate best view of anatomy for

specific training objective

Due to the large amount of image overlap we acquired from each subject, using the

scanning procedure outlined above, multiple views of the significant anatomical struc-

tures were captured. The position/orientation of the transducer during each sweep

determines the region of the fetus that appears clearest; thus, concerning each fetal

measurement/training objective, it is desirable to choose the volume that provides the

most realistic image for the simulator. Using the mosaicing algorithm developed in

Chapter 3, the sonographer has the ability to designate regions within the individual

volumes that they feel best represent certain anatomical features. Each region which

has been identified to contain the clearest view of a particular structure is used to

generate that section of the composite volume. For example when considering a fetal

measurement such as femur length, if an individual volume is identified as providing

the most realistic view, then it should be used to construct the femur in the com-

posite training volume. During production of the training volumes described in this

dissertation special care was taken to select the best available images for the fetal

head, femur, and abdomen, which are all crucial to the objectives described above.

The ability to preselect certain regions can be easily implemented in the framework

proposed in Chapter 3 by introducing an energy term into the mosaicing algorithm

which penalizes the seam if user designated regions are labeled with a different source

ID than specified. For example if volume 1 contains the best view of the femur then

a mask for volume 1 is created which segments this region. This mask penalizes the

seam selection algorithm if it chooses to generate the femur in the composite volume

using another source. Figure 7-6 demonstrates the construction of the mask using

ITK-SNAP [86]. In this figure the leg is segmented because this particular volume

provides the most realistic view for the simulator. The mosaicing algorithm will now

use this source to generate the femur in the composite training volume.
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Figure 7-6: ITK Snap is used to designate regions of individual volumes which must be
included in the final mosaiced training volume. User interaction during the mosaicing
process allows the clearest images to be selected from the group of individual 3D
volumes, for each anatomical structure of interest. This example demonstrates the
fetal leg being highlighted.

7.3.3 A catalog of simulator volumes

This section describes the library of fetal volumes generated during our research and

subsequently evaluated at the UMMS for training value. The measure of quality for

a particular composite volume was whether or not the sonographer could successfully

complete each training objective using the simulator. The results of this evaluation

are detailed in Table 7.2. Each date corresponds to a unique subject being scanned.

An X mark indicates that the sonographer was unable to accurately perform the

task listed, while a check mark indicates success. A check minus means that the

image quality was marginal; however, the sonographer was still able to complete the

particular training objective. The mosaics constructed using the datasets from 21

November 2013, and 14 May 2014 produced the highest quality training volumes.

These are the only 2 datasets in which all 7 training objectives can be completed.

Referring to the table we see that the capturing the bladder, lower uterine, and

cervix was the most difficult. This could be due to the sonographer concentrating on

capturing the fetus and neglecting to capture the surrounding structures completely.
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Also, during stitching process we focused more on the fetal anatomy than on the

mother’s. Each volume listed in Table 7.2 adds training value to the simulator in

some respect and combining the positive aspects of each provides a solid curriculum

in obstetrics ultrasound. It should be noted that each volume is approximately 500

MB.
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7.3.4 Comparison between clinically acquired and simulator

generated images for fetal measurements

In this section we will compare the clinical ultrasound images with the simulator

images for the abdominal circumference, parietal diameter, and femur length mea-

surements. The initial positive assessment of the simulator by sonographers at the

UMMS speak to the realism of the training volumes generated using the methodol-

ogy presented in this dissertation. It is also encouraging that the fetal measurements

obtained with the Philips iU22 ultrasound machine during initial scanning are in satis-

factory agreement with those taken within the simulator, using the subsequently con-

structed 3D mosaic. For that particular evaluation, the sonographer who completed

the initial fetal measurements on the live subject was different than the sonographer

who operated the simulator. The clinical and simulated biometric measurements for

two training volumes are presented in Table 7.3.

Table 7.3: Clinical vs. Simulated biometric measurements (cm)

Date
subject
scanned

Type of
measure-
ment

Abdominal
circumfer-
ence
measure-
ment

Biparietal
diameter
measurement

Femur
length
measure-
ment

9 May 2013 Clinical 22.31 6.48 4.68
9 May 2013 Simulated 24.67 7.6 5.21
21 Nov 2013 Clinical 28.91 8.31 6.21
21 Nov 2013 Simulated 23.43 8.3 5.6

Using the dataset from 21 of November 2013 the sonographer measured 23.43

cm, 8.3 cm, and 5.6 cm for abdominal circumference, biparietal diameter, and femur

length respectively within the simulator environment. These numbers can be directly

compared with the measurements taken using the Philips iU22 on the same patient,

which were 28.91 cm, 8.31 cm, and 6.21 cm respectively. We see that the biparietal

diameter measured in the simulator is in good agreement with the clinical result.

The femur length and abdominal circumference measurements vary but are within

an acceptable level of error when considering the sensitivity of the measurements to
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factors like fetal position and differences between particular sonographers. Although

the stomach bubble is distinct in both images where abdominal circumference is

measured the umbilical vein doesn’t have the same appearance, indicating that the

sonographers measured the AC in different planes causing some deviation between

the simulated and clinical result. Also, errors introduced by swept 3D ultrasound and

non-rigid registration may affect these numbers. The simulated measurements using

the dataset from 9 of May 2013 also agree fairly well with the clinical measurements.

The abdominal circumference measurements were 22.31cm versus 24.67cm for the

Philips iU22 and simulator respectively. The biparietal diameter measurements were

6.48cm versus 7.6cm for the Philips iU22 and simulator respectively. Finally, the

femur length measurements were 4.68cm versus 5.21cm.

It is important to remember that the most important factor in this evaluation is

how realistic the images look within the simulator. Figures 7-7 and 7-8 present a

comparison of the clinical images with the simulator images, which are very similar

in appearance. Because of fetal movement during prolonged scanning, the fetus was

captured in different positions thus the images are not identical; however, it is hard

to distinguish the image produced by the simulator from the image produced by the

Philips iU22 for this volume. For each particular training objective, the sonographer

needs to locate certain anatomical features in order to get accurate measurements.

The first row of Figure 7-7 shows the abdominal circumference measurement, where

the stomach cavity (or stomach bubble) is visible in both the simulator and clinical

images. The second row shows the biparietal diameter, where the appearance of the

cranium is very distinct. The last row shows the femur length being measured.
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Abdominal circumference measurement:

Biparietal diameter measurement:

Femur length measurement:

Figure 7-7: Clinical versus simulator images for subject scanned on 21 November
2013
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Abdominal circumference measurement:

Biparietal diameter measurement:

Femur length measurement:

Figure 7-8: Clinical versus simulator images for subject scanned on 9 May 2013
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7.4 Conclusions

We have successfully built a library of obstetrics training volumes using the novel

stitching approach developed in Chapter 3. The composite volumes were evaluated

by medical professionals to determine training value, since our ultrasound expertise

is technical in nature. The results of this evaluation were very encouraging and the

next step is to measure the effectiveness of the simulator in an obstetrics curriculum.

The central question is whether the introduction of our ultrasound simulator can

supplement the requirement for live patient scanning, possibly shortening the time

necessary to train obstetrics sonographers.
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Chapter 8

4D Fetal heart volume:

construction from freehand sweep

This chapter will describe how a 4D fetal heart image volume can be constructed

from swept 2D ultrasound. A 4D probe, such as the Philips X6-1 xMATRIX Array,

would make this task simpler as it can acquire 3D ultrasound volumes of the fetal

heart in realtime. In our approach we have to image multiple cardiac cycles in order

to collect enough 2D slices to generate a 4D volume. The Philips X6-1 could image

the entire 4D volume in 1 cycle with greater accuracy; However, probes such as these

aren’t widespread yet.

8.1 Introduction

The goal of our obstetrics ultrasound training simulator is to give the trainee a realistic

scanning experience at an affordable cost. Anatomy such as the fetal heart, whose

motion is highly during scanning, should not be overlooked despite the lack of specific

training objectives developed for it. Properly displaying the heart is key to creating

a more realistic experience for the sonographer, especially considering how fully fetal

development is within the gestational age range of 24 to 36 weeks.

The goal is to capture 4D volumes of the fetal heart, integrate them with the 3D

volumes discussed in Chapter 7, and then dynamically reslice the combined dataset
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during training; thus displaying the appropriate cross-section of the beating heart

where the user’s scan plane intersects it. Rendering the heart in the simulator is

fairly simple once the 3D and 4D volumes are spatially aligned, as one just needs to

track time and ensure effective blending along the boundaries between the stationary

3D volume and the dynamic 4D volume. The challenge was in capturing the 4D

volumes themselves, using the tools that were available during the clinical scanning

phase of this research.

An advanced scanner built on top of the Philips iU22 ultrasound system can

utilize the X6-1 4D probe, however one wasn’t available to us at the University of

Massachusetts Medical School (UMMS). Even if the obstetrics department had such

a system there would still likely be issues. The problem is that the raw 4D image

data isn’t usually accessible to the user because the clinical software on the system is

designed for sonographers and not researchers like ourselves. Also, since this system

would housed in a hospital and certified for use on patients, the software could not be

modified to allow acquisition of raw 4D data. Constructing a 4D volume would have

to be done using 2D slices acquired during a freehand sweep over the fetal heart.

8.2 Constructing the 4D volume

This section will describe how a 4D volume of the heart can be constructed using

swept 2D ultrasound. All data was acquired at UMMS, from the same patients whose

primary scans were used to produced the training volumes described in Chapter 7.

The hardware configuration used for the generation of 3D training volumes was also

used to collect data for the fetal heart; This system was also introduced in Chapter

7. When acquiring frames to build 3D volumes from swept ultrasound, Stradwin [78]

is configured to only store the images if the transducer has moved a certain distance.

This results in evenly spaced frames (usually 5 mm spacing) and prevents collection

of redundant data if the sonographer pauses during the sweep. While the hardware

is unchanged when transitioning from 3D to 4D collection, the video rate parameter

is changed to continuously capture 25 frames per second (FPS). This is the only way
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for Stradwin to collect enough data to construct a 4D volume, as it no longer depends

on transducer displacement.

The idea is to acquire ultrasound images, coupled with position/orientation infor-

mation, at 25 FPS while slowly moving the transducer’s image plane across the fetal

heart. Since the cardiac cycle is periodic and the heart rate can be measured in beats

per minute, we can use the fact that the capture rate is 25 FPS to group the acquired

frames into sets, each corresponding to a particular point in the cycle. After this has

been done, it is easy to generate a 3D volume for each of these sets using the available

techniques described in Chapter 1. The individual 3D volumes, each corresponding

to a different point in the cardiac cycle, are concatenated to form the 4D fetal heart

dataset. The groups are formed by calculating the offset between frames that belong

to the same point in the cycle. This is equivalent to finding the frames per beat and

is done using the equation below,

Frame offset =

(
25

frames

sec

)(
60

sec

min

)( 1

β

min

beat

)
(8.1)

where β is the fetal heart rate in beats per minute. In one experiment the fetal heart

rate was measured by the sonographer to be around 125 beats per minute, making

the frame offset equal to 12 using 8.1. Using this offset, Figure 8-1 demonstrates

how the individual frames of this sweep can be grouped into sets, which are used

to generate the 3D volumes corresponding to unique points in the cycle. Let Tcycle

be the time since the most recent cardiac cycle started. Because we know that a

new cycle starts every 12 frames according to 8.1, every 12th frame corresponds to

the same point in the periodic cycle. Even though we are grouping slices together

from different cardiac cycles the image data should be the same since heart motion

is periodic. This is shown for 3 volumes in Figure 8-1, where every 4th ultrasound

frame is illustrated to make the diagram less cumbersome.
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Figure 8-1: Construction of 4D fetal heart volume from 2D sweep. Ultrasound images
were acquired at a constant 25 frames/second while the transducer was slowly moved
across the fetus’s heart.
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8.3 Results

The results of this procedure can be seen in Figure 8-2, which shows time slices from a

4D fetal heart volume. This method was very sensitive to fetal movement during the

scan and it was difficult for the sonographer to acquire such a small volume; however,

the intention was to add realism to the simulator experience and not to capture a

completely accurate fetal heart volume. The results were considered adequate for our

purposes. In the future the fetal heart should be acquired using a true 4D ultrasound

system, which would enable the development of a fetal heart training module.
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Figure 8-2: Slices from 4D fetal heart show progression through cardiac cycle
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Chapter 9

Conclusions

In this work we have presented a novel method to mosaic many (≥ 3) partially

overlapping ultrasound volumes collected in a clinical setting. Chapter 1 introduced

the simulator design as well as the image processing pipeline which was used in the

mosaicing process. Following the introduction, subsequent chapters concentrated on

developing the theory for each individual step in the pipeline. In Chapter 2 a rigid

registration algorithm, which accounts for shadowing, was developed to aid in the

global alignment of image volumes. The bulk of our work was presented in Chapters 3

and 4, where a group-wise non-rigid registration algorithm based on Markov Random

Fields was developed and evaluated. Chapter 3 explained the registration theory

while Chapter 4 presented experimental results for a number of different scenarios.

Chapter 5 discussed the optimization of spline surfaces using particle swarm methods,

which was an early attempt at seam selection that was later dropped. A blending

algorithm, adapted from Poisson image processing theory, and capable of producing

seamless 3D mosaics, was presented in Chapter 6. The complete mosaicing pipeline

was tested on image volumes collected from pregnant subjects at the University of

Massachusetts Medical School (UMMS). The mosaiced volumes generated with the

UMMS clinical data form the foundation of the simulator’s obstetrics training modules

and are presented in Chapter 8. Finally, the fetal heart was reconstructed from swept

2D ultrasound in order to make the simulator more realistic.

There are a number of directions for future work to take. With the advent of real-
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time 4D probes, the individual volume creation process could be greatly improved. As

described in Chapter 1, we are using swept 3D ultrasound to generate the individual

volumes that are stitched together using the process developed in this dissertation.

This poses a significant problem in our fetal ultrasound application because the baby

often moves during the sweep, thus ruining that particular volume. Our algorithm

corrects for inter-sweep movement, which occurs between the partially overlapping

volumes, but fetal motion can’t be corrected during the sweep, before creation of the

individual 3D volumes, when only 2D images are acquired. Due to fetal/maternal

movement, many redundant volumes had to be collected from each patient so that

a final composite training volume could be produced. Combining a 4D probe with

a position sensor and an advanced motion tracking/registration algorithm could po-

tentially correct fetal movement during a sweep, eliminating the need for so many

redundant datasets. Since the position of the transducer is known and we are collect-

ing 3D volumes, instead of 2D slices, as the transducer is moved along the abdomen

it is possible to track fetal movement from one 3D volume to another and potentially

undue it before generating a complete volume from the sweep.

Another direction could be to improve the calculation of the mosaicing function.

Currently we use a discrete energy functional, which is optimized using alpha expan-

sion. Due to the nature of the optimization there are no topology constraints, which

means that it is possible for two disjoint regions of the final composite volume to

be designated the same source ID. This result isn’t intuitive, as one would expect

all source volumes to be limited to one continuous region each in the final mosaic.

Although this type of behavior hasn’t posed a problem in our application it would be

nice to have a mathematical solution guaranteeing certain topological properties of

the mosaicing function. Another interesting direction for this work would be to com-

bine the seam calculation with the registration optimization to produce an iterative

joint solution. This might look similar to joint registration/segmentation algorithms.

If access to a true 4D probe and its accompanying data stream can be attained,

the fetal heart should be re-imaged to provide a more realistic volume. A fetal heart

learning module could then be created based on this newly improved dataset. Since a
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sonographic examination of the fetal heart needs to be conducted during the second-

trimester in order to maximize the detection of heart anomalies [15], this would be a

noteworthy addition to the simulator.

Finally, an ultrasound mosaicing toolbox could be created for 3D Slicer [22], which

is an open source software package for visualization and medical image computing.

This platform allows for easy integration of addition software modules using the

Python programming interface provided to the user.
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