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EXECUTIVE SUMMARY

As robotics and augmented reality research continue to advance, a common problem that
appears is that of global localization for each components in the system. One solution for this is
to use a motion capture room to track all of these components. This is done by marking objects
with reflective fiducials that are very visible to infra-red (IR) cameras, which then work together
to track the 6 degree of freedom (DoF) poses of these objects. An inherit problem with motion
capture rooms is that the space in which you can track objects is limited to only a single room.
To increase the capture volume, additional cameras could be purchased and placed more sparsely.
This is not a practical solution as it takes about a dozen cameras to cover a single room and each
standard camera costs over one thousand dollars; the cost to increase space adds up very quickly.
Even more, it is difficult and often impractical to move or expand an existing system to other spaces
due to the lengthy calibration process.

This project’s goal was to create a mobile motion capture system that would use a single
device as opposed to having multiple static cameras, allowing for theoretically infinite capture
volume. The mobile motion capture system we developed is capable of tracking the same reflective
fiducials as a normal motion capture system, but is limited to simple planar objects that must be
completely in the field of view of the device; what we gained in mobility and low cost was traded
off with with the ability to track more complex objects. An example of a trackable plane in our
system is in Figure 1. The configuration of points which are called constellations, contain 4 lines;
each line is a unique configuration of 4 points which we call sub constellations.

Figure 1. A planar constellation that our system tracks, which is composed of 4 unique lines

The device we are using which enabled our project is the Google Project Tango, a project
currently being developed by the Advanced Technologies And Project team at Google, or ATAP
for short. The Tango device uses visual odometry to estimate its own 6DoF pose relative to where
the device was turned on. This grants us a global reference frame just like using a motion capture
room provides. In addition to estimating its pose, the Tango has an IR camera that it uses for
sensing depth. Instead, we use the same IR camera in order to sense the reflective fiducials on our
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planar constellation. With the pose of the Tango and IR image data, and by calculating the pose
of the planar constellation with relation to the phone, we now know where the planar constellation
is relative to our global reference frame.

The system we built focuses on tracking the planar object and estimating its pose using only
the IR image stream. We accomplished this by developing the system as shown in our software ar-
chitecture diagram, Figure 2. The software for our system is broken down into 3 major components.
The first is to search our IR images for the reflective fiducials, and get the 2D image coordinates
of them. The next stage in our system takes these image coordinates and then attempts to match
them to known constellation and then identifies it as such. Once it’s identify is known the pose of
the constellation can then be estimated.

Figure 2. System overview of the major components in the Mobile Motion Capture pipeline.

In order to search the IR images for fiducials and the 2D coordinates of each, the images
were first converted into binary image by applying a threshold filter where pixels brighter than the
threshold are turned white, and lower are turned black. To actually search the binary image, an
image processing technique known as connected components region searching is performed. The
connected components search scans the entire binary image looking for connected white pixels. If
pixels are connected it means the entire region of pixels is a single fiducial, so the centroids of these
regions are the 2D pixel coordinate of the fiducials in the scene.
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The next step in our system is to identify the specific constellation, if any, that is currently in
front of the camera. A constellation is made of 4 uniquely configured lines, called sub-constellations.
Each of these sub-constellations has to be identified in order to determine the identify of the entire
constellation plane. Before this can be done, all of the lines in the image have to extracted.
Research on line identification was conducted, leading us to implement our own version of the
RANSAC algorithm that fits all fiducials to lines that lie within a defined tolerance of the line.

We chose to use lines of 4 uniquely spaced points as our sub-constellation due to the ease
in distingushing them from eachother. By making use of the cross-ratio, we could measure the
relative distances of each of the points in our lines, and compute the same cross-ratio value no
matter how that line is projected into 2D image space. The cross-ratio is defined in eq. (1). With
each sub-constellation identified, identifying the entire constellation plane involves checking if there
is a constellation that exists that is made up of these sub-constellations.

R(A,C;B,D) = (AC/BC)/(AD/DB) (1)

Knowing which constellation is in the image means we can proceed to estimate the pose of
that constellation. Since our constellations are limited to planar surfaces, we used a method called
Perspective-n-point, or PNP for short. PNP pose estimation works by knowing the local positions
of points on the the plane, relative to its centroid. With this information, PNP can compare the
found points to the known points, which we stored in a database, in order to give an estimate of
its 6DOF pose.

Once implemented and tested, it was determined that there was about 3 cm in positional
accuracy, with the object being tracked 90% of the time. The target plane could be tracked up to
+/- 35 degrees in skew, and identified at any roll rotation. It could also track our object in the
range of 0.5 - 3.5 meters. The entire system runs at about 10 Hz live, as this is the rate the Tango
can output images; our tracking software can actually run closer to 80Hz. With these results we
believe the system we developed is a great success, capable of being a great tool for tracking and
localization.

To demonstrate the capabilities of this system, we developed a simple mobile robotic appli-
cation that uses the systems ability to track objects. We put the the Tango device on a pan and
tilt turret, which was mounted on a mobile robot. The idea was to have the mobile robot follow a
tracked object. This application is split into two main components: the pan and tilt turret control,
and the driving behavior.

The pan and tilt controller was in charge of ensuring that the tracked object is always in view
of the Tango device. This means moving the servos to keep the object in the center of the Tango’s
camera frame. This was done by calculating the angular displacement between the object pose to
a static reference frame in front of the the Tango.

The turtlebot driving is independent of the pan and tilt controller, and defines how the mobile
robot should move in relation to the tracked object. The goal of the driving controller is to make
sure the mobile robot stays at a goal position 1.5 meters in front of the object at all times. Two
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basic rules define the driving behavior; drive towards the goal in an arc and rotate to face the
constellation once at the goal.
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1. INTRODUCTION

This Major Qualifying Projects (MQP) seeks to develop a solution to the localization problem
in augmented reality applications by providing the ability to track moving objects relative to a global
reference frame, but with the added benefit of being a completely mobile system.

The introduction to this project is broken up into multiple sections, because our project
spans many different areas. Section 1.1 introduces the concept of motion tracking and Section 1.2
describes some of the basics of localization. Augmented reality, which will be supported by our
mobile motion capture system, is defined in Section 1.3. Finally, two of the tools we will be using,
Project Tango and Robot Operating System, are briefly described in Sections 1.4 and 1.5.

The rest of this paper is broken up into seven sections. Sections 2 and 3 provide insight
into why we worked on this project and some other projects similar to ours. Section 4 states the
problem we worked to solve and the goals we set for ourselves. Our methods for implementation
and results are in Sections 5 and 6. Finally, we discuss our results and observations and provide
insight for future work in Section 7.

1.1 MOTION TRACKING

The main interest of this Major Qualifying Project is motion tracking or motion capture
(mocap). Motion capture is the ability to track and record an object’s motion in three dimensional
space. One popular way of doing this is by using a large number of cameras around the perimeter
of a room, and having them work together to triangulate the positions of objects in the scene.
Specifically, high quality infrared (IR) cameras like the one in Figure 3 are used. Figure 4 shows a
retro-reflective fiducial marker which can be seen very clearly by the IR cameras since each camera
has a ring of IR-LEDs that floods the room with IR light.

Figure 3. Motion Capture camera used as one of many in a typical motion capture system.

1



Figure 4. retro-reflective fiducial marker reflects infrared light, making them very visible to IR cameras

One widely used application for motion capture is in the film industry, namely for animation
purposes. An actor would wear a suit with these reflective fiducials placed on known joints. Through
motion capture the motion of the actor, which can then be used as a model for the movement of a
digital character [1].

Figure 5. A typical motion capture system showing how actors motions can be tracked.

Another use for motion capture that is of more interest to this MQP is its ability to give six
degree of freedom (DoF) pose estimates for pre-defined constellations, or configurations, of these
markers. These constellations of markers can also be referred to as “rigid bodies”. Knowing the 6
DoF pose of any rigid object of interest is very important in the field of robotics and Augmented
reality as it solves the localization problem which is discussed in Section 1.3.

1.2 TECHNIQUES FOR SOLVING REFERENCE FRAMES

The end goal of localization is to calculate a homogeneous transformation matrix that specifies
the rotation and translation of each object from some global reference frame. Equation (2) shows
the transformation from a reference frame to an object as a matrix containing R and T, where R
is the 3x3 rotation matrix and T is the 3x1 position or translation vector of the object from the
reference frame.

T objref =

[
R t
0 1

]
(2)
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Figure 6 shows a tree representation of known transformations. Each node is an object or the
global reference frame. Each arrow is a known transformation, which could either be calculated by
a motion capture lab, a robot’s odometry, or calculated in advance with known measurements to a
stationary object. Here “global” is the global reference frame that all objects measure their global
positions with respect to.

Figure 6. Transformation tree used to show the how known positions of objects relate to each other in a
global frame.

Equation (3) illustrates the calculation of T 1
5 , which is the position of the Packbot with ref-

erence to the augmented reality display. This is useful when trying to display or highlight the
Packbot on the augmented reality display. The final transformation can be calculated by multi-
plying intermediate transformations in the correct order, starting with the desired reference frame
and ending with the object of interest. Note that the inverse is taken of the first transformation
because its original direction was in the opposite direction that is desired, shown by the arrow in
Figure 6 pointing from “global” to “Augmented Reality Display”.

T 2
5 = T 5

0
−1 ∗ T 1

0 ∗ T 2
1 (3)

This system is robust in that it can accept transformations from multiple sources at varying
rates and be calculated in different ways. Multiple transformation trees can even be connected to
form an even more global reference frame containing all the nodes beneath. A limitation is that no
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loops or redundancy may be used with this system. To assist with managing these transformations,
Robot Operating System (ROS) provides an extensive library to handle all transformation math
and management automatically. [2]

1.3 AUGMENTED REALITY

The purpose of augmented reality (AR) is to augment the user’s existing vision and view
of the world with additional information and added visuals in a way that makes contextual sense.
Emphasis is put on the existing view, as without this it not AR, but mixed reality or virtual reality.
Paul Milgram describes AR as “Augmenting natural feedback to the operator with simulated cues”,
meaning whatever simulation is displayed to the user feels natural to them [3]. In another word,
AR shows the “invisible” world in the context of the visible world.

Examples of typical “invisible” worlds that can be shown, or reality shifts, are: temporal,
spectral, semantic, additive, and subtractive. A temporal shift is showing the visible world at a
different point in time. More simply, it shows a history of what has happened. A spectral shift
is showing a spectrum that is otherwise outside of a human’s visible spectrum, such as a thermal,
infrared, or ultra-violet shift. A semantic shift is providing additional information about what is
currently viewable, usually in the form of informative labels, with an example shown in Figure 7.

An additive shift is like a semantic shift which adds information to the scene. Unlike a
semantic shift, an additive shift does not have to add value to the scene; the scene could be altered
to change an objects color, or some 3D model could be added to make it look like its there in the
real world. Conversely, a subtractive shift is the removal of parts of the real world. This could be
as simple as removing an object on a table. This shift is more typically used to remove something
or part of something from the real world, like a wall or the side of a box, in order to show what
would normally be hidden by these objects.

Figure 7. A mobile phone being used as an AR display to provide semantic labels about buildings
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In order to perform any of these visual shifts on an augmented reality display, the position
of everything in the scene must be known. In order to add a label above a building as in Figure 7,
the display must know where that building is located. To be accepted as correct and natural to a
user, [4] says the tracked locations of these objects must be within a few milimeters and fractions
of a degree. This is a tall order but is necessary when overlaying information and graphics onto a
real scene. Section 3 will look into this problem in more detail.

1.4 ROBOT OPERATING SYSTEM

To facilitate our research, we decided to use the Robot Operating System (ROS) framework.
ROS is a large set of software libraries and tools that assist with programming robots and other areas
of research, particularly computer vision. Because ROS is a large open source project, anybody
can contribute useful tools and packages and anybody can use their software for free. ROS also
provides a developing environment, automatic message passing between networked machines, can
be used in C++, Python, or Java, and has many other features that will be introduced in this
section. [5]

The first feature that ROS provides is a developing environment, with the current version
named catkin. A typical workspace when using Linux consists of a root directory and a src directory
that will contain packages for developing. Catkin provides commands for building part or all of the
workspace and placing built executables in specified folders that will be automatically generated
in the root of the workspace. All the user has to deal with are the packages in the src directory.
A package is an organization of code or files that serve a common purpose, generally a single
component or feature of a robotic system. These packages have files that specify build and export
instructions. Using this system allows for efficiently organizing code by functionality.

Another important feature that ROS provides is a common messaging system that allows
networked programs to communicate in a uniform way. ROS defines many standard messages that
are commonly used, but also supports the generation of custom messages. Using this system, robots
and computers using different operating systems can send messages to each other and understand
them, and all of this is fully handled by ROS. The networking API allows messages to be sent over
topics, which are name-spaces describing a channel to send messages over. These channels can have
many publishers and many subscribers, allowing for a scalable networking framework.

Programs written for ROS are known as nodes, where each node generally handles a single
task. A node can subscribe to data to use as input and publish data that it generates using the
networking API mentioned previously. Nodes can interact with each other from a single machine
or many machines, which is particularly useful in multi-robot or multi-device systems. There are
also variants to nodes that serve more specific purposes. A common variant is nodelets, which are
run on the same machine and avoid wasting network traffic by passing pointers instead of entire
messages.

Finally, ROS provides many tools for analyzing and processing data. Rviz is a commonly
used visualization tool that can show image streams, depth data, relational positioning of robots
and much more. Rqt provides similar visualizations, as well as tools for monitoring network traffic,
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including the rates that messages are published at and where exactly that data is going. There is
even a data recording tool called rosbag, which can subscribe to a set of topics and record all of
the messages sent on that topic with the time sent, along with a few other features. All of these
messages go into a bag file that can be used to playback the data at any time, creating a very useful
and realistic simulation environment.

There is also an implementation of the transformation tree described in Section 1.2 [2]. This
implementation comes as a common library that is easy to use for both putting information on the
tree and reading from it. It is also used by visualization tools like rviz to assist with placing objects
correctly in the virtual environment.

1.5 GOOGLE PROJECT TANGO

The Google Project Tango is a new prototype smart-phone that has an array of cameras and
sensors and does a lot of data processing that we will be utilizing in this project. The device contains
a fisheye camera, an RGB-IR camera, an IR projector for depth sensing, and has 2 dedicated
graphics processors to perform complex image processing. The Tango device and all of its sensors
are shown and labeled in Figure 8.

Figure 8. Google Project Tango sensors on the smartphone device.

1.5.1 Tango Pose Estimation

What makes the Tango unique and of great interest to us is its ability to track it’s own 6DoF
pose, using only its on-board cameras and IMU’s. This pose is relative to the point in space where
the device was launched. Since the device knows its pose in global space relative to a fixed starting
position, it helps with the localization problem discussed in Section 1.3 and Section 1.2.

The Tango is able to to track its own pose by tracking natural features in a scene, and is
discussed in more depth in Section 2.1. Specifically, the Tango is performing what is known as
visual odometry. In it’s most basic form, visual odometry utilizes natural feature tracking to look
for very specific and unique features in a scene. The Tango records these natural features over
time, and based on how these features move around frame to frame the Tango can make a guess
as to what its own pose is in the scene. To get as many features for tracking as it can, the Tango
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uses its fisheye lens for feature tracking which gives it a 120 degree field of view. The prototype
Tango device is reported to have only 1% of drift error over length of path driven, providing a very
strong camera localization solution.

1.5.2 Tango Global Coordinate Frame

The Tango device defines its global coordinate frame to be the position when the Tango
application is first launched, with the device oriented in landscape mode. It uses the IMU to
position its positive Z axis to be pointing up against gravity, leaving the X and Y axis to be
perpendicular to the ground plane in right handed fashion. The positive Y axis is facing in front
of the tango device itself and the X axis to the right of the phone. This is different from the
convention that ROS uses as its world frame in the RViz visualization tool, where ROS uses x as
being forward.

Figure 9. The global coordinate frame of the tango, with respect to gravity

1.5.3 Tango Depth Readings

The Tango also comes with an IR-RGB camera and IR projector which allow it to measure
depth in a scene. Using the same concept as the Microsoft Kinect sensor, the Tango projects an IR
dot pattern over everything in front of it and then uses the IR-RGB camera to see this dot pattern.
It can then determine how far away objects are based on how the dots lie on surfaces in a scene.
An example of the dot pattern projected on a persons hand is shown in Figure 10.

1.5.4 Tango Limitations

The Tango is still in the early prototype stage and has a number of limitations in terms of
usability. The major downfall of the device is its battery life and overheating problems. The battery
itself will last for about an hour or two at most. This is not terrible for all the computations it is
doing on the GPU, but is not ideal for a marketable and potentially consumer device.

The real problem is that Tango has a tendency to fail and crash the application after heavy
extended use of the pose estimator, and overheats the device. This requires a lengthy cool down
time where the Tango can not be used because it will either give inaccurate estimations or continue
to fail and crash the application again. In extreme cases of overheating, the device will actually
shut down completely and must be rebooted in addition to waiting for it to cool off.
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Figure 10. IR dot pattern projected onto a scene of a body and hand

All of this is currently understandable since the device is still a work in progress at Google
and will continue to improve until its final release. The final version will be in a tablet form factor,
and will have great improvements to power consumption and pose quality.

1.5.5 Our Use for the Tango

As described, the Tango is an amazingly capable device that gives access to a multitude of
useful data streams that is not available in any other single compact device. With that being said,
it is the perfect sensor package for the needs of this project. Namely, we will be using the tango
device to pull 2 data sources for processing. The first is its own 6DOF pose that is relative to its
starting point, which gives us a global root frame. The second piece of data we need is the image
data coming from the IR-RGB camera. This will be the image stream we use heavily for image
processing in this project.

1.5.6 Intrinsic Parameters of the Tango Cameras

Camera intrinsic parameters are used to describe the relation between individual pixels from
a camera imager and real space. They also describe the focal length of the lens as well as distortion
coefficients, all of which are used during the image rectification process which simply straightens
out a scene making it easier for computer vision algorithms. We use these to estimate 3D positions
of objects found in images.

Having high quality intrinsic parameters is essential when relating image space to 3D space.
These parameters can be calculated from information in the data sheet for the camera, but this
was not available to us. Our next option is to use a calibration tool in ROS that has us hold a
checkerboard of known dimensions in front of the camera while the software estimates the intrinsic
parameters. In our past experience, the results of this tool have not been very good. We chose
the final option, which is to use the intrinsic parameters provided with the Tango from the factory,
despite warnings that the intrinsic parameters from device to device may be different.
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2. BACKGROUND

The main problem addressed by this is estimating the poses of objects in 3D space. [6]
discusses the significance of properly tracking people when trying to duplicate human motion. The
motions of over 100 joints need to be tracked in order to create a realistic model. [7] demonstrates
the importance of having accurate pose estimates when creating an augmented reality display. The
spatial relationship from the display to the object must be correct in order for anything on the
display to correctly correspond to real world objects.

In Sections 2.1 and 2.2 we discuss different methods of tracking objects. Section 2.3 illustrates
ways of estimating the pose of a camera for the purpose of assisting an augmented reality display.
Finally, we considered the connections between object tracking, augmented reality, and human
robot interaction, discussed in Section 2.4.

2.1 NATURAL FEATURE TRACKING

Knowing the positions and orientations of objects is a common problem in many different
fields, most commonly in robotics and augmented reality. Common implementations of object
tracking are done by looking for fiducial markers that can be easily seen in an image and are
placed on the object itself, which is further discussed in Section 2.2. A much harder method still
being researched is tracking the natural features of objects. The theory is that any object could be
tracked with no prior knowledge, or additional markers, based on features it already has.

One of the simpler implementations uses the edges of objects as track-able features. Edge-
based detection methods are great because they are generally easy to implement, are computa-
tionally efficient, and can handle changing lighting conditions [8]. When the lighting changes, the
images captured by a camera will look different, even if nothing in the scene moved. Therefore,
it is critical for vision based trackers to handle changing lighting conditions because they require
light in order to function. If a system is tuned to a particular amount of ambient light, it will
not function properly when that amount of light changes. Properties like color or reflectance can
change slightly with lighting conditions. They handle this by searching for high contrast features
in an image, which show up well whether there is a little or a lot of light.

When performing edge tracking, an accurate 3D model of the object is needed beforehand [8,
9]. One implementation of this method is to search the 3D model for similar edges to those detected
in an image. This technique is usually limited to simplistic shapes with many straight lines. With
this constraint, the complexity can be reduced, allowing for easier matching of similarities. This
solution does not work well with occlusion, which occurs when parts of an object are hidden from
a camera [9].

The previous methods are subject to problems like occlusion, which occur when only a portion
of a tracked object can be seen because another object is in the way. Complex objects often have this
problem because they cannot be completely seen from any point of view. An alternative tracking
method was proposed by [9] that allows both for occlusion and the tracking of more complex objects.
Any object can be tracked, assuming a 3D model is present and an initial guess in pose is given. In
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this case, they used their previous work [10], which does not work under occlusion, for the initial
guess. Once an initial guess is made, [9] uses a particle filter to render different projections of where
the object could be, and performs an edge filter to produce an image of just the edges. The same
edge filter is done on the real input image. Instead of using the lines to match, they instead take
each edge filtered image from the particle filter, and perform a bitwise AND on the input image to
find overlap in the pixels from each image.

This method does however require a priori knowledge of the shape of the object, namely an
entire 3D model of the object. This limits the system as it must keep a database of every object
that it wants to track. Edge based methods are also greatly susceptible to cluttered backgrounds
and noise [8].

Non-edge and non-3D model based trackers are much more difficult and complex. This is
typically implemented by extracting features from the scene. These are features the system finds
unique and can find again when looking at the history of where that feature is [8,11]. Optical flow
can then be used to calculate the velocity of each feature. This method is also known as visual
odometry and is discussed in more detail in section 2.3

2.2 FIDUCIAL TRACKING

When working with objects that that do not deform, it is often simpler to place fiducial
markers onto that object to assist with tracking than it is to develop a new tracking algorithm.
These fiducials can be optimized for tracking, like the IR reflective markers used in motion capture
rooms, Figure 4, or like the AR tags in Figure 11. Instead of having to track any number of objects
in a large database of 3D models, a much simpler tracking algorithm may be written to only search
for reflective fiducials, which ideally show up as small white dots on gray-scale or IR images. AR
tags may be tracked as a rigid set of lines and intersections on a single plane. While they contain
natural features, AR tags are considered fiducials because they are added to a scene to provide
additional localization references.

When tracking reflective fiducials, there are two additional steps in the process after finding
them; identifying groups that make up objects and estimating the poses of those objects. It can be
a difficult process matching a large set of tracked fiducials to one or more objects that could appear
in a scene. Libraries like OpenCV [12] and PointCloudLibrary (PCL) [13] provide implementations
of PnP, RANSAC and many more algorithms, which can be used to solve for sets of fiducials.

In robotics research, needing to know the pose of objects is a common problem, especially in
the realm of manipulation. [14] utilizes a well known AR tag tracking package, AR Toolkit [15], to
do their tracking so that they may move their robotic arm to follow the movements of their tracked
object. They started by placing AR tags on each side of a cube to provide the pose of the cube
relative to the camera. As long as the camera is pointed at the cube, ARToolkit will be able to
calculate the pose of the cube based which AR tag is visible and what its orientation is. Because
of its ease of use, ARToolkit has become widely used for tracking purposes [8].

Sometimes reflective markers or AR tags are not well suited for a particular application
because of constraints like lighting or changing nature of objects that need to be tracked. In these

10



Figure 11. AR tags that look and work similar to Quick Response Codes (QR codes).

cases, simple colored fiducials may be used to identify objects. [16] uses red and blue tape on
the user’s index finger and thumb respectively to assist with tracking. Their algorithm searches
for portions of the image that contain large enough chunks of red and blue pixels, calculates the
centroids of these areas and uses those as centroids for gesture recognition. Normal hand tracking,
which searches for the shape or color of a typical hand, was not used because the goal was to
track a surgeon’s hand over a patient’s abdomen while planning for surgery. The red and blue
tape provided fiducials that contrasted the background in nearly all cases and will also work with
different hand sizes, as long as enough tape is used.

2.3 TRACKING CAMERA POSE

Section 2.1 describes methods of tracking natural features to find objects in a scene to estimate
their poses. Sets of natural features typically make up objects. When tracked in consecutive image
frames, these sets can used to estimate camera movement with relation to previous frames.

Similar features can be found in AR tags or other fiducials placed in a scene for visual
localization purposes. [17] elaborates on an algorithm used to solve for the pose of a camera based
on 4 points found on a planar object in a known geometry. Such a process can solve the camera
localization problem in a global frame if the location of the object is known in advance using the
technique in Section 1.2. If the object’s location is not known in advance, but is tracked over time,
the camera’s relative pose can be tracked instead.

A method for tracking the camera’s pose using only images is described in [11]. Here natural
features are tracked from frame to frame and referenced against two spatially separated reference
images taken at known locations. The pose of the camera is estimated based on the displacement of
natural features from the current frame against the natural features in the reference frames. This
process yields a camera pose relative to those reference frames. A major advantage of this system is
there is very little drift because all poses are calculated directly from fixed reference points, so the
pose does not accumulate error over time. [11] reports success within a small area and constrained
range of motion as well as the possibility for scaling to large environments by adding reference
images with known displacements between the camera positions. Unfortunately, this will not work
with changing environments nor is it possible to have reference images for all possible environments.
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In [18], multiple means of estimating the pose of the camera are considered, but ultimately
GPS localization is chosen because the application in mind is used to show AR over entire buildings.
Pose data is supplemented using a digital compass and gyroscopic sensor present in modern mobile
tablet and smart phone devices. While the solution proposed in [18] is well suited for large scale
environments, GPS measurements will typically have 3 or more meters of error, which is unaccept-
able for interactions with robots, dynamic environments or any environment with objects smaller
than buildings.

2.4 HUMAN ROBOT INTERACTION

An increasingly popular application for AR technologies and devices is in the robotics field.
AR research is being done to look at how humans can best collaborate with robots through hu-
man robot interaction (HRI). Instead of robots being used solely in closed industrial settings and
programmed by experts, they are now being used as companions to the human workers.

In order for robots and humans to collaborate more, there are more demands on the robotic
and AR systems. Companion robots must be easy to understand and control, as well as being safe
to work with [19]. An untrained human operator must be able to see and understand the robot’s
data, and communicate his or her input back to the robot. Robot data is inherently difficult to
understand, and the best way to understand it is to present it to the user in a way that is visual
and more importantly contextual [14,19]. Augmented reality devices can be used to bridge the gap
between robot data and human understanding by visualizing that robot data in a way that makes
spatial contextual sense to the human user.

Typical AR devices used for visualizing robot data can range from projectors on the robot
itself, mobile monitors such as smartphones, or head mounted displays that have semi-transparent
displays. With these devices, additional virtual information can be rendered on the scene such that
the virtual information and physical scene co-exist [19].

One use for these AR devices in robotics is visualizing a robot’s path. This is a heavily
researched topic in HRI, as a human would want to be able see what path a robot plans on taking
and then be able to modify the path. By using a monitor based display, the 3D path and other
virtual additions can be visualized by correctly registering the path in 3D over the scene taken
from a camera [14,20]. [19] implemented a similar setup with a projector mounted on a robot’s end
effector, which is used to visualize the robot’s 2D path across a surface without the human having
to wear or hold additional devices.

After a path is visualized in the correct spatial context to the user, the user must be able to
intervene and correct the path. The solution of [14] is to use a hand held cube with an AR marker
on each side which can be tracked in 3D space. With this, the user can point the cube at points
in the path, which is being overlaid onto their AR screen. This will allow them to delete or move
the points in the path. In the case of the 2D path across a surface in [19], a tracked pen is used to
redraw the path on top of the surface that is being projected on. The user drawn path is then the
path that the robot will now take.
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3. MOTIVATION

Section 3.1 illustrates the need for a localization solution with augmented reality devices.
Section 3.2 shows how our current motion capture lab is not sufficient for ideal use.

3.1 AUGMENTED REALITY AND LOCALIZATION

Augmented Reality is rapidly growing in research due to the many applications it could
potentially be used for. In most applications of AR, the purpose is to provide the user with some
more information about what they are currently looking at with their device; this could be a phone,
tablet, head mounted display, or even a watch. One major concern with augmented reality displays
is where this extra information comes from.

One large source of information can be and all of their sensors. Robots have a lot of raw
and registered data that makes sense to a robot but does not necessarily translate well into what a
human can understand. The motivation behind AR technologies for us is to take in these raw data
sources from robots, make further sense of that information, and then finally present it to the user
in a way that makes visual and contextual sense through an AR device.

The scenario that we wanted to look into specifically can be best illustrated by Figure 12. In
this figure there is human user holding an AR tablet display, with a companion robot on the other
side of a wall. Under normal circumstances the user has no way of knowing what is on the opposite
side of the wall, but the robot on the other side is equipped with many cameras and sensors. All of
these sensor streams can be fed back to the user so they can see what the robot is seeing. In this
case, they could see that a person exists behind the wall.

Figure 12. An augmented reality system showing the user an object on the other side of a wall.
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For this data to make the most sense to the user, it should only ever be displayed when it
makes sense to. When it does make sense to display it, it must be positioned where it would be
spatially expected. If the AR tablet is thought of as a window and is held up while looking at the
wall, only then should information about what is behind the wall be presented. This is an example
of a subtractive shift that was discussed in Section 1.3.

In order for this data to be presented spatially and contextually correct, the 6 DoF pose of
every object has to be tracked. This includes the robot itself, the tablet display, and ideally the
gaze of the user. The extra information must be rendered on the tablet or any AR device as if it
co-existed in the physical world. The accuracy of each tracked object must be high enough so the
information is exactly where it should be, within a few millimeters and fractions of a degree [4].
The gaze of the user helps to enhance this effect even more so they are projected information in
exactly the direction and angle they are looking at the display.

3.2 PROBLEM WITH CURRENT MOTION CAPTURE

The current solution for localization used by MITLL is a motion capture lab. Currently, the
system is calibrated to produce pose estimates with about 1 mm of error in position. This is an
excellent solution to our localization problems when we are towards the center of our 37 square
meter capture area, which also reaches up about 3.25 meters.

Unfortunately, coverage is very poor close to any of the walls or the entrance, which is a large
opening in a hanging net. Moving tracked objects towards these areas gives intermittent readings
if the object isn’t lost completely. This is due to the reflective markers on the object leaving the
capture volume, being occluded from cameras, or in some cases being behind them.

Because the motion capture system was not designed to continue tracking objects that move
behind cameras or are fully occluded, we will only consider the possibility of expanding size of the
capture space. The first consideration is the space itself; our room is too small for the number of
cameras in it. We are currently using 20 cameras, which could cover over 80 square meters if spaced
out optimally. To set aside this much space for a permanent motion capture lab is not currently
feasible.

The second option is to place cameras elsewhere in the lab without dedicating space, some
static to mount on other walls and some on stands so that they can be reconfigured when space is
needed. This can cost from $1000 to $2000 per camera in addition to having a host computer capable
of handling all the processing. Covering hundreds or even thousands of square meters would be very
expensive. The reconfigurable space would cost less, but a 30 to 60 minute calibration procedure
must be performed when any camera is moved. Again, this does not scale well when considering
large changing environments.
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4. PROBLEM STATEMENT & GOALS

A reasonable solution to overcome the spatial constraints of our current motion capture
system, described in Section 3.2, would be a mobile system that could be started up with minimal
calibration. An ideal mobile system would consist of just one camera, or sensor package, which
would do the sensing of a typical motion capture system. Total capture volume at any point in
time could be traded for a smaller sensor package that might not have a wide field of view. With
these constraints so far, the new system would be limited in how many objects it can track at once,
how occluded those objects may be, and how accurate pose estimates will be.

A simple robotic application is also presented, with the idea of demonstrating how this track-
ing system could be used in practice. We looked to use a Turtlebot mobile robot as our robotic
platform, with a pan and tilt turret that would hold our mobile motion capture system. With the
Turtlebot and turret, we present a mobile robot capable of following a tracked object using only
our motion tracking system for sensing.

4.1 PERFORMANCE METRICS AND GOALS

Table 1 shows all of our minimum system specifications as well as reach goals. These goals
are based on what is necessary for a good AR device as well as specifications for our current motion
capture system. The items in this table are ordered by importance, with the most important at
the top. Testing procedures and calculations will be explained Sections 5.4 and 5.5.

TABLE 1

Minimum expectations and reach goals in various categories.

Category Minimum Reach Goal

Position Accuracy 1.00 cm of error 0.50 cm of error

Orientation Accuracy 5 degrees of error 2.5 degrees of error

Moving Objects Tango & tracked object moving Tango mounted on a robot

Frames Tracked 90% 97%

Operating Speed 10 Hz 30 Hz

Object Distance 0.5 to 2 meters 0.5 to 3 meters

Object Rotation 15 degrees 60 degrees

Number of Object 1 4

Values for the minimum orientation and position accuracy are roughly 1/10th the accuracy of
our current motion capture system. The minimum operating speed of 10 Hz is also close to 1/10th
of the maximum operating speed, 120 Hz, of our current system. The actual operating speed of our
system will be somewhat dependent on the percentage of the frames tracked because our system
has to be able to process its data and track any objects for a high percentage of the frames to
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earn and operating speed of 10 or 30 Hz. These are the most important specifications because we
intent to use our system with an AR display, which requires a generally high accuracy in its pose
estimates at a high enough rate to make visualizations that move slowly.

The most important quality that cannot be measured with numbers is the ability to have
the device and tracked objects moving simultaneously and not necessarily synchronously. This
goal can by broken into many small goals, like performing the tracking with all objects stationary,
perform the tracking with a consistent background, etc. Fortunately, having either the Tango device
or the tracked object moving are very similar problems, so there may be shortcuts in our list of
intermediate steps. However, mobility is our solution to the limitations of current motion capture
technology as well as our major addition to the AR display. Therefore, we must achieve a fully
mobile system.

While it is paramount that our system is fully mobile, we have roughly defined reasonable
motion so that we may guarantee our final product works under certain conditions. Reasonable
movement shall be slow to regular walking pace for a human, without jumping or erratic twisting
of the body. This will allow us to track an AR display or from an AR display without any trouble,
but would rule out tracking quad rotors or other small unmanned aerial vehicles reliably. Robots
in our lab that could be used in such a system are the Kobuki Turtlebot or iRobot Packbot, which
move at speeds fairly close to a person’s walking pace.

The object distance ranges are estimated with respect to typical industry depth sensors, like
the Xbox Kinect, which have been thoroughly characterized to have an effective range of 0.8m to
4.0m [21]. While the depth sensor on our Tango device has not been fully characterized and studied,
we performed a basic test to estimate the distance error. After these tests we decided to not use the
depth data from the Tango, but still to maintain the same expectations effective distance from the
sensor. Our depth sensor characterization strategy is defined in Section 5.4.5 and our additional
findings are in Section 6.5.

The final categories are object rotation and number of objects. These are a measure of
usefulness based on our experience with the AR display. The object rotation is measured with
respect to the Tango device and the minimum is quite small because we expect that this will be
a difficult challenge to solve using one camera as we intend to. Similarly, the number of objects
to track is low for the same reason. However, with these minimum goals reached, our system will
fulfill its purpose of expanding our motion capture space and assist the AR display.
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5. METHODOLOGY

The following section is our design, implementation, experimentation and testing method-
ology. Here we highlight the important theory for the various components of our mobile motion
capture system as well as major concerns that arose during implementation.

For all of our development, we started with a general plan then implemented the bare mini-
mum of each component in the system for an initial proof of concept. When necessary, we revisited
components to iteratively improve them to what they needed to be. All of our code is currently
written in Python, making what we consider to be the prototype version of our system.

Sections 5.1 and 5.2 describe some of the planning we did before diving into the implemen-
tation of our mobile motion capture software described in Sections 5.6 to 5.10. Sections 5.3 to 5.5
describe the hardware and software used for experimentation and testing of our system as well as
the procedures followed. Section 5.11 describes the extension to our project that demonstrates how
the mobile motion capture system can be used in a robotic application, where we have a mobile
robot follow a tracked object.

5.1 SYSTEM ARCHITECTURE

Based on the system requirements defined in Section 4.1, we designed a minimalistic system
architecture and data flow to accomplish our goals, provided each individual component adheres
to overall system constraints. Figure 13 shows this system as a simple pipeline from one major
process to the next.

The first block at the top is the Google Project Tango device, which outputs a luminosity
image and its own pose, see Section 5.6. All of this data is sent into the ROS environment where
it can be accessed by the software we implement as well as visualization and data logging tools.
Specifically, we intend to collect this data using rosbag, a ROS data recording and playback tool [22].
Through the ROS environment, either rosbag or the Tango device can be the source of data for our
software, allowing us to perform on-line and off-line system tests.

The yellow block is the fiducial tracking system, which will be explained more in Section 5.7.
It takes in luminosity images, filters them and searches for fiducial markers. These markers will
show up as bright white dots. For each image searched, a FiducialArray message will be sent to the
next major system, which is the Pose Estimation system, explained fully in Section 5.10. In this sub-
system, constellations are identified from arbitrary points, then their poses are estimated and piped
out as Poses using the ROS TF library. An additional component to the pose estimation system
is an external database of known constellations used as reference when searching for constellations
and estimating poses.

5.2 DATA TYPE DEFINITIONS

In order to organize our data and provide common data structures for the various parts of our
system, we created the data types defined in Sections 5.2.1 to 5.2.4. Having these data types allowed
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Figure 13. System overview of the major components in the Mobile Motion Capture pipeline.
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us to write separate nodes for each part of our system with a common means of communication. All
of these message definitions are located in the mobile mocap messages package and are compiled
using the ROS message generation tools introduced in Section 1.4.

5.2.1 Fiducial Message

In order to represent fiducials, we created this Fiducial message with the data listed in Table 2.
The x, y and z fields are used to represent the 3D coordinates of a fiducial that is either known
or being tracked. We also use these fields to represent a 2D image coordinate coordinate, with
the z field set to a default value that represents that the point is on an image plane instead of in
3D space. The assumed coordinate system for these points is as follows: z is the distance from
the sensor, the positive x axis goes right and the positive y axis goes down when looking from the
sensor.

TABLE 2

Fields in a Fiducial message.

Type Field Name

float32 x
float32 y
float32 z
float32 size
float32 uncertainty

The size and uncertainty are extra fields used to hold extra data calculated during the fiducial
tracking process. The size field typically represents the size of the fiducials in pixels, which will
vary at different distances, fiducial types and noise. The uncertainty field can also be set during
the fiducial tracking process and can show how much error may be associated with a particular
fiducial.

This message definition was chosen instead of the existing Point message because we wanted
to be able to add extra fields as needed without having to modify code that depended on receiving
a particular message type. Standard ROS messages would not give us that flexibility because we
cannot modify them.

5.2.2 SubConstellation Message

SubConstellation messages are nearly identical to Fiducial messages because they each are
capable of representing 2D or 3D points along with uncertainty. The main reason for creating this
message is what it represents; this message holds the centroid of a sub-constellation, which is a
linear group of fiducials. The name field is used to identify the sub-constellation once identified.
In addition to the centroid and name, a SubConstellation also holds all of the Fiducials as a Fidu-
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cialArray that make up the sub-constellation. Table 3 below shows the fields in a SubConstellation
message.

TABLE 3

Fields in a SubConstellation message.

Type Field Name

string name
float32 Cx
float32 Cy
float32 Cz
float32 uncertainty
FiducialArray fiducial array

5.2.3 Constellation Message

For representing groups of fiducials as constellations, we made the Constellation message with
the fields listed in Table 4. A Constellation also as a unique name identifying it, point names and
sub constellations that make up the constellation, as well as some tolerance values. For example,
xyz tol specifies the tolerance in measurement that any fiducial can have in each dimension. Other
possible fields could provide similar tolerance information useful when trying to fit a constellation
that may be need a high tolerance in order to be detected.

TABLE 4

Fields in a Constellation message.

Type Field Name

string name
string[] point names
SubConstellation[] sub constellations
float32 xyz tol

This message format was chosen instead of the existing ROS PointCloud2 message because
we wanted to have the same level of control over our messages discussed in Section 5.2.1. We also
wanted to have an easier format to work with than PointCloud2 messages, which have to be parsed
in application specific ways from a byte array, which is not an issue with the Constellation message
because the fields are clearly labeled.

20



5.2.4 Array Messages

We defined the FiducialArray and the ConstellationArray messages for sending groups of
fiducials and constellations respectively. This is used for grouping messages common to a particular
sensor frame at a specific point in time. An example would be the group of all fiducials found in
a single image frame. In this case, the header from that Image message would be copied into the
FiducialArray to preserve the time stamp and frame id that identify the time of the reading and
sensor origin.

Table 5 shows the fields for a FiducialArray and Table 6 shows the fields for a Constellation-
Array. The fiducials field is an unordered, variable length list of Fiducial messages representing
fiducials found at the time specified in the header. The constellations field is the same as the
fiducials field, except it holds Constellations.

TABLE 5

Fields for a message used to send groups of fiducials common to a particular time
and sensor origin.

Type Field Name

Header header
Fiducial[] fiducials

TABLE 6

Fields for a message used to send groups of Constellations common to a particular
time and sensor origin.

Type Field Name

Header header
Constellation[] constellations

5.3 HARDWARE

In this section we discuss the various forms of hardware we utilized and designed to work
alongside the software we developed. The Tango device on its own has an RGB-IR camera, and
we discuss our addition of an IR flood light and IR filter in Section 5.3.1. The most important
hardware is the mounting equipment developed described in section 5.3.2, which allows for tripod
use, and more importantly a consistent and repeatable data collection procedure.

21



In addition to the mounting hardware, we utilized the motion capture lab, described in
Section 1.1, as well test constellations, and an additional computer. Section 5.3.3 describes these
test constellations, and the computer we used for off board and post-processing is detailed in
Section 5.3.4. Sections 5.3.5 and 5.3.6 list the parts used in our robot following application.

5.3.1 Infrared Hardware

The Tango device has an RGB-IR camera, which means it works 2-fold as an RGB and an IR
camera, where a fraction of the pixels are dedicated for IR light. In order see the reflective fiducials
well, an IR flood light was purchased to be used alongside the Tango in order to flood the scene in
front of it with IR light; this bounces the IR light off the fiducials into the camera. A small IR filter
was also purchased in order to be placed in front of the Tango’s RGB-IR camera so as to block all
visible light from reaching the sensor, since the RGB portion of the image is of no use to us.

5.3.2 Tango Mount

In order to have controlled experiments, we needed to not only keep our Tango device and
test constellations stationary, but also have accurate pose estimates of each for verification against
our system later. We used the motion capture lab for all measurements and Section 5.3.3 describes
specifically how we tracked the constellations. Because having a person simply hold the smart
phone cannot keep it perfectly still with an additional IR light on the side, we constructed a rigid
frame to hold all of these components.

Figure 14. The original 3D printed Tango holder designed by [23].

We started with a 3D printed handle from [23] for holding our Tango device, shown printed
in red in Figures 14 and 20. This was a great starting point because the very first print was able to
hold the Tango smart phone snug and secure without any modifications. Unfortunately, this part
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didn’t have any means of mounting other things, like the IR light or a tripod. Our solution was
to copy the geometries from the existing Tango handle, remove the handle portion, and add a hot
shoe mount at the bottom. Before deciding to use hot shoe mount, we considered having a tapped
hole for a screw or inserting and gluing a bolt into a hole in the bottom to mount the device on
other standard camera related mounting equipment. We decided on the hot shoe mount instead
because it could be used more easily with the mounting equipment described later in this section
and the simplicity of fabrication.

Figure 14 shows the start of our design and Figure 15 shows the final version of the printed
portion. Because of imperfections in our first prints, we had to revise the model a few times to
reduce the amount of overhang in the portion that actually wraps around the smart phone. This
part was designed in SolidWorks and the final version was printed using ABS plastic on a MakerBot
3D printer. See Figure A.1 for the final dimensions of the tango holder.

Figure 15. The final version of the 3D printed Tango holder.

The next thing to mount was an extra IR light source, whose necessity is explained in Sec-
tion 5.3.1. In order to suit our needs, this light had to provide light at about 850 nm, which is in the
near infrared spectrum, have its own power source, be small enough to carry with the phone and
big enough to provide enough light. For this we considered wiring our own IR LEDs, but could not
make such custom electronics due to time constraints. Current products on the market that could
suit our needs fell into two categories: closed circuit television (CCTV) night vision illuminators
and IR night lights for digital cameras and camcorders. While the CCTV illuminators were close,
they actually required large power sources that would not be practical, so we decided on a IR night
light for cameras. Because these are designed for cameras, they already have hot shoe mounts, are
light weight and are powered by batteries. The exact IR light that we used was a Sima SL-100IR
Infrared LED Light for camcorders with night vision.

For tracking the Tango device, we used reflective fiducial balls, which work best in the motion
capture lab. We attached them by cutting two plastic fiducial mounts to fit in the extra hot shoe
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mounts on our IR light and one final marker with velcro on part of the 3D printed part that
wouldn’t obscure the Tango device’s cameras.

The rest of the mount consists of purchased parts, listed in Table 7. The Tango holder is the
only part that we printed and the rest of the items were acquired through Lincoln Labs. All parts
have 1/4-20 UNC threads, hot shoe male or female mounts, or both for mounting to any other
part. A late addition to the mount is the Thorlabs IR filter that only lets IR light through. It is
one half inch in diameter to fit exactly over the RBG-IR camera on the Tango smart phone. It is
held in place in a hole in the 3D printed holder with a small dot of glue.

TABLE 7

Components of the Tango holder and mounting system

Item Description

Tango Holder 3D printed Tango phone holder

Rotolight Foam Hand Grip A handle with standard camera mounting studs

Sima SL-100IR Infrared LED Light Projects additional IR light for the tango

Tripod Standard camera tripod

Revo Hot Shoe Adapters Hot shoe to 1/4”-20 stud adapters

Thorlabs IR Filter An optical filter for 850nm light

Assorted Reflective Fiducials Motion capture lab reflective fiducials

Our final version is shown in Figure 16 with most of the parts from Table 7. In grey is the 3D
printed Tango holder, which was printed in grey ABS plastic. The fiducials are circled in red and
were placed in these locations so that they will be visible as much as possible when in the motion
capture lab. The blue arrow points to the assorted camera mounting hardware. The green arrow
points to the IR light, the purple arrow points to the Tango and the yellow arrow points to the IR
filter.

This Tango mount, handle and IR light source are intended to be the final version of the
mobile motion capture system, unless a Tango tablet arrives. A new 3D mount would need to be
designed for the Tango tablet, possibly without the handle and with an entirely different array of
IR LEDs due to the different shape of the tablet.

5.3.3 Test Constellations

In order to test different fiducials in varying configurations, we placed reflective stickers on a
few poster boards in both linear and non-linear test patterns. We started with linear test patterns
to satisfy our initial implementation described in Section 5.9. To make these patterns, we used a
straight edge to draw a straight line on the poster board, measured out distances between stickers,
then placed and labeled them. To correct for human error in measurement, we used the motion
capture lab to give more precise measurements of the distances between fiducials. We used these

24



tango.jpg

Figure 16. The final version of the Tango holder with components annotated.

poster boards to test our systems ability to tell linear constellations apart, identify constellations
at different distances and orientations, as well as test our fiducial tracking system against noise,
distance, movement and different types of fiducials. Figure 17 shows a single simple constellation
of circular stickers on a poster board.

Figure 17. A simple linear constellation of circular fiducials.

Table 8 shows the linear constellations that we placed on poster boards for testing. Patterns
A and B were chosen for the initial testing of fiducial tracking. These, and patterns C through
F were used for comparing how well we could tell constellations apart because of how small their
differences in measurements are.
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TABLE 8

Description of each linear test pattern used during testing. The 2nd, 3rd and 4th
sticker values are distances in mm from the first sticker along the same straight line.

ID Sticker Type 2nd Sticker 3rd Sticker 4th Sticker

A Square 83.07 136.91 219.27

B Square 65 155 235

C Circle 25 50 75

D Circle 50 90 150

E Circle 35 81 121

F Circle 65 98 148

5.3.4 Additional Computing Power

In order to handle the image processing software used in Sections 5.7, 5.9 and 5.10 as well as
data logging, we used an additional laptop computer to handle all of this. The operating system
is Ubuntu 12.04 with ROS Hydro installed, both are long term support versions. The CPU is an
Intel Core i7 and the GPU is an NVIDIA GeForce 610M, providing plenty of computing power for
handling the ROS environment, communication with the Tango smart phone, and additional tools
for monitoring the program state.

5.3.5 Mobile Robot

For the purposes of mobilizing our mobile motion capture system, we chose the Kobuki
Turtlebot 2, Figure 18 as our robotic platform. This simple robot has two motorized wheels for
driving as well as casters for balance allowing it three degrees of freedom. In general, turtlebots
are capabale of driving straight forward or backwards, rotating in place or driving in arcs.

The turtlebot is a complete robot that only needs assembling. To actually run it, there are
many ROS [5] programs specifically written for handling the sensors and motors on the robot. With
all of this provided for us, we just have to send specific ROS messages describing the velocity that
we want the robot to move, and the provided programs will handle that for us.

Additionally, the base of the Kobuki Turtlebot 2 provides multiple 12v and 5v power sources,
some of which will be needed by the servos described in Section 5.3.6.

5.3.6 Pan & Tilt Mechanism

In order to allow really precise tracking from a mobile robot, we decided to install a pan and
tilt mechanism to orient the Tango sensor on top of a mobile robot. Because we planned for this
implementation to be a prototype, the only requirements we had for this device were the following:

1. Must be strong enough to move the Tango device

26



Figure 18. Kobuki Turtlebot 2.

2. Must have reasonable precision

3. Must have large range of operation

4. Must be able to construct the hardware quickly.

Because of these requirements, we decided to purchase a mechanism rather than design our own.
Our main concern was getting a system with servos strong enough to move the Tango and other
hardware from Section 5.3.2, which has a mass of roughly 0.5kg. We estimated that the center of
this mass is 5cm from the mounting screw and that the mounting screw would be withing 10cm
of the center of rotation for a given servo used for tilting. With these estimates, the minimum
approximate torque we would need is as follows: (0.5kg) ∗ (5cm + 10cm) = 7.5kg ∗ cm. Through
the Trossen Robotics website [24], we found a pan and tilt servo kit that used Dynamixel AX-12A
servos, which provide 15.3kg ∗ cm of stall torque, which provides a good safety margin for our
purposes. Additionally, these servos have a 300 degree range of motion and 0.29 degree resolution,
meeting all of the first three requirements. The final requirement was met by the kit itself, which
we purchased and assembled without any difficulty.

We also purchased the parts described in Table 9 to assist with the wiring and interfacing
with the servos. The T connector was chosen as the common connector between all power sources
and adapters. An additonal wire was made to provide power from the Turtlebot and interface via
a T connector.

Figure 19 shows a high level diagram of how to wiring multiple servos. Even though these ser-
vos are connected sequentially, they can be controlled independently as described in Section 5.11.1.
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TABLE 9

Parts for the pan & tilt mechanism purchased from Trossen Robotics.

Item # Name Description

KIT-PANTILT-AX PhantomX Pan Tilt Pan and Tilt Servo Kit

RO-902-0032-000 Robotis USB2Dynamixel Adapter Adapter for USB to servo control

POW-12v5a Power Supply 12V - 5A Wall outlet power adapter

C-200-925 T Connector Male-Female Pair T connectors

Figure 19. Control circuit for Dynamixel servos [24].

5.4 EXPERIMENTATION

For our experiments with tracking different constellations, we had two major setups: static
and dynamic. The static tests involved having the Tango device and constellations stationary in
the motion capture lab, described in Section 5.4.1. Section 5.4.2 describes our dynamic tests where
we would move the constellation, the phone, or both. The data recording procedure was the same
for each test, explained fully in Section 5.4.3. Section 5.4.4 details a node we used for measuring the
positions of constellations before we actually collected our data. Sections 5.4.5 and 5.4.6 explain
how we characterized the depth sensor on the Tango smart phone and our truth model. Finally,
Section 5.4.7 describes the experiment that we conducted to estimate the maximum operating speed
of our fiducial tracking system.

5.4.1 Static Experiment Setup

Our full static experiment requires many steps, listed below. More detailed explanations are
offered in the referenced sections where applicable.

1. Arrange a test constellation of fiducial stickers on a poster board, see Section 5.3.3

2. Place the test constellation in the motion capture lab

3. Set up the Tango device in its holder on the tripod, see Section 5.3.2

4. Start a roscore on the data logging laptop
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5. Track the Tango device and constellation(s) using the motion capture system

6. On the laptop, run the measuring tape node and record the pose, see Section 5.4.4

7. Turn off the motion capture system to remove extra IR light

8. Turn on the Tango data streamer application and IR light, see Section 5.6

9. Pick a Test ID string that very briefly and uniquely describes the test

10. Record all variables for the test in the variables spread sheet, see Section 5.4.3

11. On the laptop, record a few seconds of data data using rosbag, see Section 5.4.3

12. Name the bagged data with the Test ID

While each step contributes to validating the final calculations of our system, most compo-
nents can be skipped when creating data for a specific quick test. An example of this is short tests
where we only recorded a few images of very similar fiducial constellations purely for attempting
constellation identification. The only data that needs recording is the images and knowledge of
which constellation is within view. Takings steps like this helped us to save time as we implemented
various parts of our final system. Figure 20 shows a basic test where we used only the Tango sensors
to determine if there was enough ambient IR light to track fiducials.

Figure 20. Basic experiment setup with just the Tango pointed at a poster board of constellations. Picture
to be updated.

For the static experiments, we varied the distance and orientation of the target constellation
with relation to the Tango device. The distances varied from 1 meter to 3 meters in increments
of approximately 0.5 meters. We performed all of these tests with the IR filter over the RGB-IR
camera, which did not allow us to put the test constellation anywhere other than the center of the
cameras field of view due to the vignetting described in Section 7. At each distance we turned and
tilted the constellation by approximately 0, 15 and 30 degrees. We used the motion capture lab
to take these measurements, and rather than go for specific locations and orientations, we simply
recorded the positions we did get with high precision. Table A.1 summarizes all the combinations
of distance and orientation that we captured with the static tests.
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5.4.2 Dynamic Experiment Setup

While it is very similar to the static experiment described in Section 5.4.1, the dynamic
tests are actually much harder because the motion capture system has to stay on during the test.
The motion capture system is great because we can get the 6 DoF poses of objects over time for
validation purposes, but those cameras also emit a lot of extra IR light. This IR light illuminates
additional fiducials or noise, but also directly interferes with our Tango device because they are
strobing out of sync with the Tango cameras. Otherwise, the dynamic test is setup the same as
static test, with the steps listed below.

1. Arrange a test constellation of fiducial stickers on a poster board, see Section 5.3.3

2. Set up the Tango device in its holder on the tripod, see Section 5.3.2

3. Start a roscore on the data logging laptop

4. Track the Tango device and constellation(s) using the motion capture system

5. Turn on the Tango data streamer application and IR light, see Section 5.6

6. Pick a Test ID string that very briefly and uniquely describes the test

7. Record all variables for the test in the variables spread sheet, see Section 5.4.3

8. On the laptop, record a few seconds of data data using rosbag, see Section 5.4.3

9. Move the constellation around while recording data

10. Name the bagged data with the Test ID

It is important to note that the movement of the constellation was done by one of us in
motion capture lab. We decided to have a person do it instead of some mechanical system that
would be perfectly consistent because we have extremely high quality pose verification from the
motion capture lab and our final goal is to track a person or have a person walking and using it
to track other objects. Therefore, the movement in the tests should involve a person moving in
reasonable ways, and capturing a very wide range of motion, angles, and distances. In the future, it
may turn out to be beneficial to place the constellations on a turtlebot and automate the movement
part of the test and have a person hold the Tango phone as it tracks.

5.4.3 Data Recording

For our experiments we have a two step data recording process. The first step is picking a
Test ID to identify the test and record that along with all testing variables in a spreadsheet. This
spreadsheet is saved in comma separated variable (csv) format so that Python scripts in Section 5.5
can read them when conducting and reporting tests. The csv format was chosen because the
input is human readable and output is also easy to work with in Python scripts. Some of the
variables include: the date, lighting and noise conditions, distance of the poster board to the Tango
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device, data streaming settings, constellations and their poses and the fiducials that make them up.
Through the pose and constellation information, the 3D locations of the fiducials or expected 2D
image coordinates can be calculated for the static tests, giving a set of truth data for validation.
There is also a notes section for describing motion during a test or any possible problems.

The second step is launching rosbag to record the ROS messages on specific topics being
streamed from the Tango device. Rosbag allows us to record and playback ROS messages with the
same timing as they were originally published, along with looping and many more options. The main
topic we recorded is \camera\luminance\image raw, which contains the luminance image explained
in Section 5.6. For dynamic tests we also recorded the poses of the constellations published on the
\tf, short for transform, topic. We picked only these topics to keep the rosbags small and only
have what is necessary for testing our system. The launch file that has these settings automated is
located in the mobilep mocap launch package and is titled record tango.launch.

5.4.4 Measuring Tape Node

To assist with setting up static tests, we developed a ROS measuring tape node that would
read in data from the motion capture system, then calculate and print the poses of constellations
with relation to the Tango device. These values are recorded by hand into the csv file mentioned in
Section 5.4.3. Figure 21 shows the transformations involved and that we can calculate the relative
pose as described in Section 1.2. Because objects don’t move during the static test, this node only
has to be run while setting up a specific configuration, at which point the values can be copied into
the variables spreadsheet described in Section 5.4.3.

Figure 21. Measuring tape transformations given by the motion capture system during experimentation.

5.4.5 Depth Sensor Characterization

One of our original plans for implementing this mobile motion capture system was to utilize
the depth sensor on the Tango device to get the 3D positions of fiducials and constellations. Before
doing so, we prepared a small experiment to get a better idea for the quality of the depth readings.
The experiment was to run the Tango data streaming application from Section 5.6 and have a new
test node calculate the average depth value from the published depth images. We set up the our
Tango smart phone holder from Section 5.3.2 on a tripod and pointed it at a flat wall. Using a
level and measuring tape to measure the actual distance, we repeated the test a few times from 0.5
meters to 3 meters in half meter increments. See Section 6.5 for the results of this experiment.
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5.4.6 Characterizing our Truth Model

In order to approximate the quality of measurements given by the motion capture system,
which we generally used as truth data, we placed fiducial stickers on a poster board and measured
their distances by hand and with the motion capture system. Because the motion capture software
the provides the distances of each fiducial from the centroid of the grouping, we transformed
the distances we measured by hand to also be with relation to the centroid, with the resulting
measurements shown in Table A.2. These measurements are compared in Section 6.1.

5.4.7 Testing Operating Speed

In order to determine the operating speed of our system, we collected some data that would
represent different usage scenarios and wrote a ROS node to publish that data at a fix speed. The
different data scenarios are described in Table 10, with each row representing a different image.
These different data sets provide varying noise scenarios, with the first case having noise without a
constellation, the second two having constellations only, and the rest having constellations as well
as extra points. The number of sub-constellations is provided because a great deal of our algorithms
deal with finding and identifying lines as sub-constellations. While most of our system will mostly
run in noiseless environments, we collected these bags to estimate the performance in the presence
of minor noise.

TABLE 10

The various tests, by row, used to stress test our system operating speed. Each
column indicates the contents of a test image in terms of fiducials and constellations.

Fiducials Constellations Sub-Constellations

6 0 0

12 1 4

16 1 4

20 1 5

22 1 5

22 1 5

26 2 5

32 2 8

38 2 9

The node we developed for this experiment utilizes the Python API provided for use with
rosbag to pull an image out of a bag, which it then publishes at the requested speed [22]. We send
the same image repeatedly to control the experiment better. These images are subscribed to by
our fiducial tracking and pose estimation system as if it were live data. The tracking system was
modified to attempt to find a constellation and estimate its pose for every image received and also
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publish a message upon completion, whether successful or not. Also, all debugging messages and
visualization features were disabled for the purposes of this test.

For the actual experiment, we ran the image publishing along side our pose tracking node.
To double check the publishing rate of our node, we would use the ROS command rostopic hz

TOPIC NAME, which calculates an average rate that messages are being sent on a ROS topic as well as
the standard deviation. The same command was used to determine the output rate of our tracking
node. As we ran each test image, we tried multiple increasing publishing rates until the tracking
system could not keep up with its input. These maximum operating speeds were recorded and are
shown in Section 6.4.

5.5 AUTOMATED TESTING

In order to validate our implementation and ensure correct algorithm implementations, we
utilized unittest, which is a Python framework for unit testing [25]. This framework allows for
repeatable tests that run our code, check the outputs for specific values, and report failures. These
failures include additional output that allows us to pinpoint parts of our implementations that need
attention. By writing tests, we were able to confirm correctness and continue developing additional
software and optimizations without breaking previously written code and features.

To perform system level tests, we utilized the rostest framework which is built on top of
unittest [26]. This process is similar to the regular unit tests previously mentioned, but involves
making ROS nodes out of those tests capable of subscribing to topics from live nodes and analyzing
their output as they run. The test nodes run with nodes from our mobile motion capture system
fueled by image and pose data from the data collected with rosbag, see Section 5.4.3. Typically,
we wrote these nodes to wait for a given amount of time to collect a series of messages published
across various topics, then examine the series of messages as a whole.

In addition to tests of correctness, we also used these tests to help with analytics. While
system performance may pass tests by achieving a minimum error, we have the testing framework
automatically log that error, and other calculations, so that we may examine the results between
multiple tests and determine what variables are causing what irregularities may occur in our results.
Truth data is read in from the csv file of test variables or from data recorded using rosbag. A Python
shelve db is used to store the test results [27]. Every test run automatically updates its results in
this database, which is also version controlled through the use of git, allowing us to retrieve specific
data about any test at any point in time.

5.6 TANGO DATA APPLICATION

The Google Project Tango device was built running the Android mobile operating system.
With that in mind, the easiest way to get the data we need off of the device was to create an
Android Java application. The Tango has API’s for accessing most of the data necessary. In order
to stream that data in a way we can easily use, we used the ROS environment. ROSJava and
ROSAndroid are both experimental ROS systems but are stable enough for our purposes.
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OLogic, a robotics company in California, has recently been working on adding ROS support
for to the Tango. Their git repository [28] has Android apps that get data off the device, and
then publish the data as appropriate ROS messages. Specifically Ologic has extracted the depth
and pose data. This gives us a great starting point, as this leaves us with finding the IR data and
unifying this into a single application that publishes all the data at the same time.

5.6.1 Tango Superframe Access

All of the relevant image data taken from the Tango’s cameras is stored in one large YUV
formatted image known as the Superframe. This is also where calculated depth readings are stored.
To get the specific images or data that you want, careful indexing and copying must be done.

Before the Superframe can be parsed, it has to first be retrieved. There are two methods for
this that each have their advantages and disadvantages. The first method involves simply opening
the device’s default camera. On a normal Android device this would just open the back-facing
camera. The Tango, of course, has many back-facing cameras, so by opening the default camera it
actually is triggering all of the back-facing cameras to be open and combine them into this single
Superframe. By setting the PreviewCallback of the opened camera to your own PreviewCallback
class, every time the Superframe is updated it will make a call to that callback class to alert it of
the update and pass the Superframe data.

The biggest benefit to opening the camera and setting up a custom PreviewCallback is that
you have control over the regular android camera parameters. The settings of interest to us are the
auto exposure settings, exposure compensation, and most importantly the Superframe “mode”.
This mode lets us choose what image to use for the large 4 Mega Pixel (MP) portion of the
Superframe. Options are the RGB image or the raw IR image. The camera object also has a
method for Previewing, which is a convenient and easy way to display the image on the tango
device itself.

The problem with obtaining the Superframe this way is that, to our knowledge, we have no
way of obtaining the pose information the Tango is calculating at the same time. Normally, to
obtain the pose a VIOservice object, which is a Tango API feature that lets us query data from
the Tango, is created. When attempting to include this with existing code involving opening the
camera, the app would fail. With little documentation and the lower level source code being hidden
it is hard to say exactly why this is the case. We have hypothesized that the VIOService is trying
to get the data from the Tango the same way we are, and needs to gain access to the open camera
streams. If we open them ourselves, the pose estimator can not.

Fortunately, the Superframe can also be obtained through the VIOService with a simple
call to getCurrentSuperframe(). The downside here is that we lose the ability to set the camera
parameters ourselves. This means that we can not tell the Superframe which mode to be in, RGB
or IR. The Superframe from the Java pose API defaults to using the 4MP RGB image. Since the
true IR cannot be accessed in this fashion, it means we have to make due with the RGB image
which is only partially IR information. We explain our process of dealing with this problem in
Section 5.6.4 and Section 5.7.1.
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5.6.2 Tango Superframe Format

As mentioned previously, the Superframe is formatted as a single YUV image. Specifically
this is YUV420SP NV21 format, which is the format used across all Android device camera images.
A YUV image contains 3 planes of data. The Y plane contains the intensity of each pixel in the
image, or the luminosity. The U and V planes are each a quarter the size of the Y plane, and
together can be combined with the Y plane to produce the color R, G, and B values for each pixel.

Figure 22. YUV420sp NV21 format reference, the image format used by Android camera images

As shown in Figure 22, the Y plane is contained in the first half of the image. In YUV420SP
NV21, the U and V planes are in the second half of the image and are actually inter-weaved in
VUVU ordering, so the first value from each plane come after the other, and then the second, etc.
until the end of the image. The color coding in Figure 22 illustrates how the UV values pair with
the Y values. As you can see the four top left pixels are colored gray, and the first two UV values
are also gray. For every four pixel block in the Y plane there is an equivalent U and V value.

To convert a Y value intensity back to R, G, and B the following conversions can be done
with it’s corresponding U and V pair.

float r = y + 1.772 * v ;

float g = y - 0.344 * v + 0.714 * u;

float b = y + 1.402 * u;
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The final step is simply to make sure that the values can fit into an 8 bit value. If any of the
color values end up being above 255 or below 0, force them them to be 255 or 0.

Not every piece of data in the YUV formatted Superframe uses the UV plane, since not
everything actually has color information. This is the case for the fish-eye image, the depth image,
as well as random bits of header information. In these cases the UV plane data is filled with
placeholder values and is ignored. Since the UV planes are preserved when not needed, it is
possible to access desired pieces with or without color. With known offsets of the data given in a
Superframe class, indexing into these pieces and pulling out what is needed is straightforward, and
is discussed in the next three sections.

5.6.3 Depth Image Parsing

The depth image, as previously mentioned, does not contain any color data with it; all of the
information we need is inside of the Y Plane. When the depth data is calculated by the Tango, it is
stored as a 320 x 180 pixel image. Each pixel in this case is actually a two byte integer representing
the distance away in millimeters that xy pixel position is away from the camera.

To extract the data, we begin by getting the starting index of the depth data in the Y plane
which is stored as a constant in the Superframe class. We can then begin to iterate through the Y
plane byte by byte. On every iteration we pull out the 2 next bytes from the Y plane and convert
them to Integers which represent millimeters and save them in a new integer array. To do the
conversion, the bytes must be combined to make one word by shifting the first byte to the left by
8 bits and performing a logical OR.

int msb = (int) data[YPlaneIndex + 1];

int lsb = (int) data[YPlaneIndex];

int pixDepthMm = ((msb << 8) & 0xff00) | (lsb & 0x00ff);

With an Integer array representing the depth image, we publish the data as an Image message
in ROS.

5.6.4 4MP RGB-IR Image Parsing

In the Superframe, the last piece of data contained in the Y-Plane is the 4 MP image from
the RGB-IR camera. Since color information is contained in this image, we have to pull data from
the Y-Plane and the UV-Plane. Essentially, we want to construct a smaller YUV formatted image.
This means slicing out the Y and UV plane separately and combining them back into one array.
The Y-Plane data is between starting index defined in the Superframe class and the same value
plus the size of the image, which in this case is 1280x720. Since the UV plane is half the size of the
Y plane, the UV plane starting index can be calculated by calculating EndY + 1 +OtherY Size/2.

OtherYSize in this case is the size of the Y plane without the 4MP RGB-IR image we are
trying to extract. The ending UV index is the starting UV index plus half the size of RGB-IR
image.
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In our case we are not very interested in the color data since we are only looking for intensity
of IR light. This means we can pull out just the Y plane data to get a luminance only image. The
luminance image can then be sent as is in a ROS Image message with the encoding of MONO8.

5.6.5 Tango Pose Access

The Tango’s pose is very easy to retrieve when using the Java Tango API. Specifically, the
API gives us a class called VinsServiceHelper. The function for getting the Pose information is
getStateInFullStateFormat(). This means if we want to stream the pose data we need to constantly
make a call for the pose in loop. For this to be safe and easy in Android, ROSJava has a class
called CancellableLoop which allows it to be interrupted if something goes wrong. By overriding
the loop() method we can call all the updates we need in order to stream the most up to date data.
With the Pose data we are then able to publish this as both a transform in the TF Tree, as well as
a ROS Pose message.

5.7 FIDUCIAL TRACKING

The Fiducial Tracker System must be able to take in a raw ROS Image stream from the Tango
and be able to identify fiducial markers in the scene In order to do this there are four major steps
that have to be addressed. Figure 23 outlines these steps. We must first be able to convert the
black and white image from the Tango into a binary image in order to only focus on the brightest
areas in the scene, which are the fiducial markers, described in Section 5.7.1. The binary image
then has to be searched and group the white areas into clusters representing a possible marker,
which is explained in depth in Section 5.7.2. Section 5.7.3 elaborates on how these pixels can
then be averaged per cluster to obtain the centroid of each marker, then eliminated entirely if it is
determined to be noise.

Figure 23. Fiducial tracking system overview.
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5.7.1 Binary Image Filtering

A really simple way to produce a binary image from a mono gray-scale picture is to check
each pixel against a threshold. OpenCV provides a method for this filter, which is appropriately
named threshold(). This takes the image to filter, a threshold, the maximum value the image could
have, and the mode to filter by. For our case we want a binary filter. This method works by simply
checking if each pixel is above or below the given threshold. If a pixel is below the threshold, then
it is assigned a value of 0, or black. If it is above the threshold then it is assigned a value of 1,
or white. Through observation during testing, a good threshold for extracting only the reflective
fiducials is about 75% of the brightest pixel in the image. This threshold can be increased when
the entire scene is particularly bright which would lead to noise in the form of extra areas being
passed through the filter. Increasing the threshold much more begins to make the fiducials smaller
by cutting out the less bright edges.

Figure 24. Raw luminance image on the left, filtered binary image on the right with only fiducials present.

As shown in Figure 24, the threshold filter works fairly well when the scene is has low intensity
light and the fiducials are much brighter than everything else. A lot of noise can enter the scene
when the lights are more intense, most notably when they reflect off of white walls, creating large
bright spots getting through the threshold filter. We implemented noise removal techniques in
Section 5.7.3, but found this is not always good enough for large blotches and fuzzy edges. To
remove any possibility of these bright spots a 850nm IR filter was purchased and put over the
RGB-IR image to filter out all visible light, leaving only the IR light that is reflected off our
fiducials and possibly other reflective surfaces as shown in Figure 25. This is much easier to deal
with than the possible hundreds of extra points when no IR filter is used. Even though the image
with IR filter is so noise free, the threshold filter still has to be run to convert the grayscale image
to a binary image since our other algorithms depend on this structure.

5.7.2 Fiducial Marker Searching

Once we have a binary image, we can then search the image for all of the markers which
would show as white in the binary image. To do this, a variation of a connected components search
must be done. The goal of any connected components search is to search over the image for large
groups of pixels that are connected together. If they are we, can save them in a cluster list to look
at later. At the end of the algorithm we have a list of clusters.
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Figure 25. Raw luminance image with no IR filter on the left, and raw luminance with an 850nm IR filter
on the right

A common implementation of a connected components algorithm is to iterate over the binary
image checking for a white pixel. When a white pixel is found, a breadth or depth first search is
performed in a four or eight connected fashion from the pixel in order to find more white pixels
connected to the initial pixel. Four or eight connected is a way of defining what is considered to be
connected to a pixel, and references how many pixels are connected to any other pixel. In Figure 26
and Figure 27 the bright blue pixel in the middle is the current pixel, and the green pixels around
are the pixels that are considered connected to it and will be searched. The inside search ceases
when no further connected pixels are found, and the process continues to iterate through the rest
of the pixels until it finds a new white pixel it has seen before and can again search for connected
pixels. A psuedo code version of our implementation is described in Algorithm 1

Figure 26. four connected search pattern

Figure 27. eight connected search pattern
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Algorithm 1 Our connected-components implementation

1: clusters← empty dictionary
2: currentCluster ← 1
3: visitedLabels← 2D array of size width by height
4: i, j ← 0
5: for all columns of the image do
6: for all rows of the image do
7: if pixel at position (row,column) is white and is not null in visitedLabels then
8: stack ← initialized with (row, column)
9: visitedLabels[row, column]← marked as currentCluster

10: while stack is not empty do
11: currentP ixel← pop from stack
12: neighbors← get 4 connected pixels of currentP ixel
13: for all neighbors pixel positions (x,y) do
14: if (x,y) position is in range of image then
15: if pixel at position (x,y) is white and is not null in visitedLabels then
16: visitedLabels[x, y]← marked as currentCluster
17: push (x,y) onto stack
18: append (x,y) to cluster[currentCluster]
19: end if
20: end if
21: end for
22: end while
23: increment currentCluster
24: end if
25: end for
26: end for
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We implemented this exact version ourselves, but it was decided that it was running too
slow to be of much use in a real time system. Instead of spending time to rewrite and optimize,
OpenCV again proved to be useful by having a slightly different version known as contour searching
already implemented and optimized for speed. The method findCountours behaves similar to our
implementation, but instead of searching for the contents of entire clusters it searches for just the
contours or edges in the image. This algorithm implements the border following algorithm described
in [29], which looks to classify the topological structure of the binary image by building a tree of
contours where children are contours inside of others, or holes. [29] also provides an alternative
which only searches for exterior contours.

5.7.3 Fiducial Centroid Calculation and Noise Removal

With a list of all the groups of pixels in the image, we are then able to calculate the position
of each fiducial marker. This is done by a simple centroid calculation where the x and y values
of each pixel in a cluster is averaged to sub-pixel precision for a more accurate centroid for the
identification step in Section 5.9.3. Since the OpenCV findCountour function gives only the points
on the edge of a marker, we have fewer values to use in the centroid calculation so the sub-pixel
average is critical.

At this step, we can also take the time to remove noise from the system. If the scene has an
abnormally bright region like a large bright light in the distance, then it will get through the binary
filter as an obviously large portion that is not a real fiducial. In this case we can filter remove it
from our list of clusters based solely on the amount of pixels inside of the returned contour list. If
it is bigger than our largest observed fiducial then it is safe to throw it out.

The next step can be taken to filter out unwanted noise when considering the fact that the
real fiducials will all be circular, and background noise groups will likely not be. By getting the
perimeter and area of each cluster, we can determine its circularity using the metric below, as
described in [30].

circularity =
4 ∗ π ∗ area
perimeter2

(4)

With this metric a value of 1.0 is a perfect circle, and anything else is considered less circular.
When our fiducials are large enough in the picture, their circularity was found to be above .8 and
trailed off to .75 the further away from the camera they got. Setting a circularity threshold to be
.75 removes a large amount of unwanted detections in the scene, further reducing the amount of
searching required, which is explained in Section 5.8

5.8 IMPLEMENTING RANSAC

Given the large number of fiducials found by the fiducial tracker in Section 5.7, we were
in need of an efficient means of searching through those points for our predefined constellations.
To accomplish this, we researched the RANSAC algorithm and implemented our own version.
Sections 5.8.1 and 5.8.2 describes how RANSAC is usually implemented and how we implemented
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it. We only used RANSAC to find groups of collinear points that could be linear constellations, then
used those groups with the actual constellation identification process is described in Section 5.9.

5.8.1 RANSAC

A popular algorithm used for fitting a model to a data or finding a model in a set of data with
noise is the random sample consensus algorithm, or RANSAC. Developed in 1980, RANSAC was
designed to search a set of data and find a reasonably good subset of that data representing some
model quickly by ignoring noisy outliers in the data. The model could be a line of best fit or point
correspondences with another set of data. The basic idea is that the algorithm picks random seed
points from a data set, approximates a model based on those seeds, then searches the rest of the
data set for inliers that fit that model within some given tolerance of error. This process repeats
itself for k iterations, where k is a predefined number, and the best model across those iterations
is recorded. If a particular model has at least n inliers, the algorithm returns that model and exits
early. The goal is to find a model in the given data that is good enough very quickly. Algorithm 2
shows the RANSAC algorithm in its most basic form.

Algorithm 2 The RANSAC algorithm.

1: Initialize best to hold the best match found so far
2: for k iterations do . k is some large number
3: Pick seed points at random
4: Approximate a model based on these points
5: Intialize inliers
6: for all other points do
7: Calculate the error from the point to the model
8: if error is less than tolerance then . error is for tuning
9: inliers← point

10: end if
11: end for
12: if inliers has at least n inliers then . n is for tuning
13: return The approximated model and inliers . Exiting early
14: end if
15: end for
16: return best as the best match found or FAILURE if best sucks

The values for n and tolerance are application specific and describe how tightly fit a model
must be to be considered good enough. While n must be less than or equal to the number of
data points input, it can be very large if a very small amount of noise is expected. Similarly,
the tolerance should be greater than zero unless the typical error per point is zero. An example
described in [31] is searching for the best circle out of a set of 2D points. The process involves
picking three points, which is the minimum number to define a circle, then finding other points
whose distance from the center of that circle are within the given tolerance. A similar process can
be used to find lines, other shapes or more complex models.
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The value for k represents the minimum number of iterations that it should take to find
a reasonable model when searching randomly. [31] provides the equation, k = w−n, relating the
number of iterations to the minimum number of inliers needed for a good model. The value w
represents the probability that any given point will qualify as an inlier and must be estimated for
a given application. Once k is calculated, [31] suggests adding two or three times the standard
deviation of k to give a more reasonable estimate of how many iterations it will actually take.

5.8.2 Our Implementation of RANSAC

In order to find linear sub-constellations, we developed a version of RANSAC specific to our
application. The goal was to find tightly fit lines in an image made of four points quickly and nearly
100% of the time. While considering some features of the original RANSAC algorithm described
in Section 5.8.1, we decided on a few modifications while adhering to the spirit of RANSAC. The
first is that we cache all lines that would normally be considered good enough to quit early because
we want to find multiple lines in an image.

The next modification is that we pick seeds in a deterministic fashion instead of randomly,
meaning we try to use every single combination of points as seeds. This guarantees that we will
find all the lines in an image if they exist. Searching in this manner also sets the value of k to be(
p
2

)
, where p is the number of points being searched at a time.

Our implementation of RANSAC is shown in Algorithm 3 below. The input is the set of all
the 2D image coordinates of fiducials found in a single IR image. The output is groups of collinear
points, where the groups are at least four points and those points are within some maximum
distance from the line that best fits them.

The algorithm begins by creating a record of the results. Next it iterates through every
combination of input fiducials, which will act as an exhaustive search. At each iteration, the two
points are recorded as the inliers. Now the distance between the line connecting these points and
every other point is calculated, explained in Section 5.8.3, and each point that is less than some
tolerance away, measured in pixels, is added to the list of inliers. If the list of inliers has four or
more fiducials, then it is a candidate for being a linear constellation, and gets added to the results
list, which is returned at the end.

While writing this algorithm, we considered some optimizations to allow it to finish faster.
One was to remove points from the data set when they are found to fit a model. We decided
against this because points could be shared between lines in an image, either through noise or an
intentionally created set of constellations. Similarly, we decided not to exit early when four lines
are found because one of them could easily be the result of noise.

5.8.3 Calculating Distances to Inliers

In order to calculate the distance from a point to a line connecting to other points, we utilized
some standard triangle math. We started by rewriting the standard area equation for a triangle as
h = 2 ∗ A/b. Here b is the base of the triangle or the distance between the two points making the
line in question. We solve for the base using the distance equation. We are solving for h, which is
the height of the triangle and also the distance of the third point from the line.
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Algorithm 3 Our RANSAC implementation

1: results← empty list
2: for all pairs of found fiducials do
3: inliers← pair of points
4: Estimate line connecting these points
5: for all other points do
6: calculate distance from the point to the line
7: if distance is less than tolerance then
8: inliers← point
9: end if

10: end for
11: if length of inliers is at least 4 then
12: results← inliers
13: end if
14: end for
15: return results

This just leaves the area, A, which can be calculated as the one half the determinant of
coordinate vertices mentioned previously. Equation (5) shows Dx and Dy which we represent the
X and Y displacements of the two points forming the line in question, a and b. Equation (6) shows
the final equation we used with the area of the triangle defined by the three points divided by
distance between a and b equaling the distance of point c from the line connecting a and b.

Dx = xb − xa, Dy = yb − ya (5)

distance =
|Dyxc −Dxyc − xayb + xbya|√

(Dx)2 + (Dy)2
(6)

5.9 CONSTELLATION IDENTIFICATION

Section 5.7 described how all of the 2D fiducial locations are found, and Section 5.8 searched
through all of these points to determine which sets of points form a line. With this information
we can verify if the points in our scene are actually a constellation that we recognize and have
measured. There are two steps that allow us to do that. The first, described in Section 5.9.3, is to
identify if the lines we have found match any of the linear sub-constellations that are known. After
sub-constellations have been identified in the scene, we can determine if these sub-constellations
make up a complete constellation because we know which sub-constellations each constellation is
made of.
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5.9.1 Our Constellation Description

For us, a constellation is defined by any set of known configurations of lines. These known
configurations of lines are referred to as sub-constellations. These sub-constellations are all uniquely
identifiable, which means different sets of sub-constellations can together define a complete con-
stellation. Figure 28 shows an example of a complete constellation, which is made up for 4 lines
forming a rectangle. In this specific example the 4 lines are sharing points in the corners, but a
constellation can be made up of any coplanar lines. Figure 29 shows a closer example of a line, or
sub-constellation, of points that make up a constellation. The sub-constellations will be discussed
in more detail in Section 5.9.3.

Figure 28. An example of one possible constellation configuration of points.

Figure 29. An example of one possible sub-constellation configuration of points.

5.9.2 Constellation Databases

In order to keep track of all the constellations and sub-constellations that could be found in
the scene, a simple way to record and store them had to be established. A CSV file was determined
to be the easiest input method for recording these constellations. Two separate CSV files, one
for constellations and one for sub-constellations, are used for input into a database. A python
script was made to read the CSV files and then load them into the database for easy access. The
database we are using is called Shelve and is very simple [27]. It allows for us to keep a persistent

45



python dictionary by saving it to a file. We save the constellations and sub-constellations inside of
this database once and then can access the data by interacting with it just like a normal python
dictionary, taking away any complexities from other types of databases.

The sub-constellation CSV file is formatted like in Table 11,with sample data included. The
top row has the labels of each column. The first column is the unique name for the sub constellation,
and the 4 columns after that are the distances in mm from the first point along the same straight
line.

TABLE 11

sub-constellation CSV format

Name pt A pt B pt C pt D

W 0 25 175 200

X 0 25 50 100

Y 0 50 75 150

Z 0 75 100 200

The sub-constellation CSV parser script ignores the first line, and then for every line after
extracts the name and all 4 points. A fiducial array message object, defined in Section 5.2.4, is
created for the line where each fiducial’s x positon is the distance read in for each point, and the y
and z values are left as 0. The fiducial array is inserted into the database, with the key being the
name of the sub-constellation.

A constellation has different requirements in order to define it, so the constellation CSV is a
little more complicated. It is shown in Table 12 with some sample data of a single constellation
included. The first row contains the unique constellationID, with the first column being a label
and the second being the constellation ID value itself. The second row tells exactly which sub-
constellations together make this whole constellation. The third line is a row of labels which define
the columns for the rows thereafter; the name field is the name of the sub-constellation and the
x,y, and z columns identify the position of each of the points of the sub-constellation relative to
the whole constellation’s centroid. The rows after that are the actual point data for each sub-
constellation. Multiple constellations can be put into the CSV by maintaining the same format,
starting with the Constellation ID of the next constellation.

The parsed data from the CSV file is put into the database in a similar way to the sub-
constellations. A constellation message object is created, defined in Section 5.2.3. Contained in this
message is a sub-constellation array where each sub-constellation row is put into a sub-constellation
message object which is defined in Section 5.2.2. The newly created constellation message is stored
in the database with the constellation ID being used as the key.
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TABLE 12

constellation CSV format

Const ID 4

Pts L M N O

Name X coord Y coord Z coord

L 0 0.0993475 0

0 0 0

0 0.04928 0

0 0.14888 0

0 0.19923 0

M 0.30071 0.08729 0

0.30071 0 0

0.30071 0.04959 0

0.30071 0.10034 0

0.30071 0.19923 0

N 0.1365675 0 0

0 0 0

0.09431 0 0

0.15125 0 0

0.30071 0 0

O 0.1508125 0.19923 0

0 0.19923 0

0.05104 0.19923 0

0.2515 0.19923 0

0.30071 0.19923 0

5.9.3 Linear Sub-Constellation Identification

In order to identify and match linear constellations of points to pre-defined configurations,
a mathematical concept known as the cross-ratio is exploited. The cross-ratio looks at different
distances between the 4 points on that line. The distances used are annotated in Figure 30, where
the points are A, B, C, and D, from left to right.

R(A,C;B,D) = (AC/BC)/(AD/DB) (7)

The cross-ratio is a ratio of ratios, and it says that for any 4 collinear points A, B, C, and
D then the ratio defined in Equation (7) is the same for any projection of this line in space. This
means that when the sub-constellation is projected onto the image plane of our camera, the cross-
ratio will be identical no matter the pose of the sub-constellation, including skews, as shown in
Figure 31 [32].
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Figure 30. The 4 distances the cross ratio equation uses, annotated on a sub-constellation.

Figure 31. Different projections of the same line onto the image plane yield the same cross-ratio [32]

If you were to rearrange the ordering of the points used in the calculation, then there should
be 4! = 24 possible cross-ratios. The cross-ratio has a unique property that no matter the ordering
of the 4 points on that line, the cross-ratio will simplify down to being 1 of 6 possible ratios due
to duplication from mirroring. If the cross-ratio R(A,B;C,D) = λ , then the other possible 5
cross-ratios are 1− λ, 1/λ, 1

1−λ , λ−1
λ , λ

λ−1 , as shown in [32].

For our purposes, we do not care about the other possible orderings. Since our lines are
rigid and we are doing a non-random search over the image, we will find the points in the ordering
ABCD, or DCBA when the line is upside down. These orderings are mirrors of each other, which
means that R(A,B;C,D) = R(D,C;B,A) and we will only need to know one of the 6 cross-ratios.

Differently configured sub-constellations will result in a unique cross-ratio value for each sub-
constellation. With the database of known sub-constellation configurations, defined in Section 5.9.2,
the cross-ratio can be used as a very easy means of identifying which sub-constellations are currently
in the image plane. Since there is error when using the found image points, the computed cross-ratio
in image space will end up being slightly different from the truth cross-ratio calculated with real
world measurements. To compensate for this, the percent difference between the image cross-ratio
and the truth cross-ratio is computed, shown in Equation (8). If the percent difference is between
some set threshold, we can classify the sub-constellation as one we know exists in our database.

%difference =

∣∣∣∣Rimage −RtruthRtruth

∣∣∣∣ (8)
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5.9.4 Constellation Identification

Knowing what sub-constellations appear in an image, we can simply match those sub-constellation
to a bigger constellation in the database that has those sub-constellations. If a false positive was
found for a given sub-constellation, it is also possible that a false positive could also be found for
a regular constellation. In this case our system accepts it and treats it as a real identification.
However, given our low noise environments, false positives are extremely unlikely. See Section 7.3.2
for ways to improve our system to help eliminate false positives.

5.10 CONSTELLATION POSE ESTIMATION

While estimating the 6 DoF poses of the constellations we tracked, we needed to take the
image coordinates of our fiducials and estimate a pose in 3D space based on that information.
We also had the real world measurements from the database mentioned in Section 5.9.2 and the
RGB-IR camera’s intrinsic parameters that describe the focal length, image optical center and
distortion coefficients. With all of this information together, we approached our problem as the
Perspective-n-Point (PnP) problem. PnP is often associated with pose estimation, but it is also
used when calibrating cameras [33]. Specifically, the value for n here is 3, so we are working with
the base case of PnP, P3P. This section outlines a general approach described by [33,34]. We chose
the value 3 because the minimum number of points necesessary to describe a plane is 3 points,
which is convenient because we are tracking planar constellations.

The first step is to prepare the found image coordinate vectors by projecting them onto
the unit sphere using camera intrinsic parameters. This is done by subtracting the value for the
optical image center then dividing by the focal length, all expressed as pixel values, in the x and y
dimensions and setting the z dimension of the vector equal to 1. Next the vectors are normalized
to be of unit length. This process will yield unit vectors pointing from the camera origin through
each of the points in image space.

The next step is to build up a system of equations using the law of cosines. Equation (9) is
a sample of that system of equations and is based on Figure 32. AB is a known distance stored in
the database from Section 5.9.2. The result of the angle between image points u and v, cosαu,v,
can be calculated because these points were projected into 3D vectors in the previous step. All
that is left is PA and PB, which are the distances from the camera origin to the tracked fiducials
in 3D space. The same process is used to build up the other equations to fully relate points A, B
and C shown in Figure 33.

PA2 + PB22.PA.PB.cosαu,v = AB2 (9)

Efficient solutions to the system of equations are described in [33, 34]. The objective of this
system of equations is to solve for the pose of a triangle made up by points A, B, and C by solving
for the distances PA, PB, and PC shown in Figure 33. This process can yield up to four unique
possible solutions for the three distances. Multiplying these distances by the unit vectors of the
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Figure 32. Diagram of found image coordinates and constellation points in 3D space related by Equation (9).
This image was taken from [34].

corresponding image coordinates will yield the 3D positions of the fiducials relative to the camera
origin.

Figure 33. Diagram of the projections of image coordinates to 3D space used in the solution of P3P. Points
A, B, C, and D are the centroids of sub-constellations. This image was taken from [34].

Next, each set of 3D positions of fiducials is used in a singular value decomposition to estimate
the pose of the constellation, as described in [35,36]. The result of this calculation is a translation
and rotation from the camera origin into 3D space. Because multiple solutions are used here,
multiple transformations have also been calculated and the best one is chosen by projecting the
fourth point D using the z projection from each solution and the camera intrinsic parameters. The
projection that fits the known geometries of the constellation best is the resulting pose of the found
constellation.

PnP is a heavily studied problem in computer vision as well as many other fields. Know-
ing this, we searched for existing implementations of solutions and found the OpenCV function
solvePnP at [37]. This function takes the known 3D relations of the points in a constellation, their
current image coordinates and camera intrinsic parameters and returns the translation and rotation
from camera origin to the centroid of the input points in 3D space. The use of this function saved
a lot of development time and allowed us to fully prototype our system on time.
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5.11 ROBOT FOLLOWING APPLICATION

For the purposes of demonstrating how our mobile motion capture system could be used on
real robotics systems, we sought to mount the system on a mobile robot in order to have it follow
a user around while staying a fixed distance in front of the user. This also demonstrates its use
in augmented reality scenarios, as the user could be carrying a tracked tablet that can now be
used as a proper AR display with spatial context. There are two main components that had to be
developed for this system to work. Sections 5.11.1 to 5.11.3 discusses the pan and tilt turret for its
use of orienting the Tango to always be pointed at the target. Section 5.11.4 explains the mobile
robot driving behavior we implemented.

5.11.1 Dynamixel Servo Setup

The pan and tilt turret we chose to use was an off the shelf design discussed in Section 5.3,
and uses dynamixel servos. Once the wiring is setup, you can connect the dynamixel servos to a
computer through USB and command these servos to move to certain positions, in radians.

In order to get this working, we used the ROS package named dynamixel controllers [38]
which provides an easy way to get our turret up and running. Specifically, it provides a utility for
bringing up each servo individually, and setting up server controller nodes that listen for control
messages and actually handle talking with the servos. This lets us publish a float message to the
topic pan controller/command or tilt controller/command, which directs the servo to move to the
given angle in radians. Another nice feature about this package is that it is constantly publishing
the status of each of the servos, with their current position, goal position, error, as well as operating
temperature and if its currently moving.

While this package is a great utility for us, there was an extra step that we had to take in
order to get both the pan and tilt servo working together. Out of the box, each servo is assigned an
ID of 1, and in order to talk to multiple chained servos, each must have a unique ID. This involved
using a script to manually connect each servo individually at a time and use the dynamixel driver
command set id, noting which id will later be used for pan and for tilt.

5.11.2 Robot Transform Tree Managing

With the addition of the pan-tilt turret and the turtlebot, there are many more transforma-
tions that have to be kept track of in order to complete the end goal of turtlebot following. In
this system the Tango will be serving as the main sensor, providing a root global transform that
everything else will be transformed under. Since the the Tango will be rotating independently from
the turtlebot in order to keep track of the user, we also must note the current angles that the pan
and tilt servos are at.

To accomplish this task the ROS Robot State Publisher utility was utilized. The Robot State
Publisher keeps track of the current state of the robot by keeping its transform tree in check and
constantly up to date. This takes the burden off of us to manually update all of the transform links
we need in our model.
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To model our robot, a Univeral Robot Description Format (URDF) file was constructed. A
URDF file models the robot’s many links and joints, and defines their relationship to one another.
This model can be seen as a tree in Figure 34. With the model complete, the only thing we as a
user of the Robot State Publisher have to do is publish the state of our pan and tilt joints, which
are available from the package described in Section 5.11.1.

Figure 34. The transform tree of our robot.

In Figure 34, the boxes are physical links on our robot and that will have a transform pub-
lished. The blue ovals represent joints on the robot, which may or may not move. The only joints
that are not static are the pan and tilt joints, which represent angular displacement of the servo
motors.

Important links to take note of in this tree are the Tango itself, the TangoCamera, and the
PanTiltReference. The Tango is the root of our robot model, and its transform is not managed by
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the Robot State Publisher. The position of the Tango link comes straight from the Tango itself,
and the Robot State Publisher handles the publishing of all the links underneath the Tango root
link. The TangoCamera is an important link because it defines the camera frame in which our
objects are tracked in relation to. Camera frames use a different convention, with Z being forward.
The Tango itself defines X being forward, so the TangoCamera link takes care of making sure
the tracked objects will be able to be transformed under our Tango root link appropriately. The
PanTiltReference is the frame that is used when we want to actually control the pan and tilt servos.
It provides the zero position reference, where the turret and tango would be pointed straight ahead.

5.11.3 Pan and Tilt Tracking

With the transform tree being managed by the Robot State Publisher, which includes a pan-
tilt reference frame, the task of controlling the servos to follow an object is very straight forward.
The pose estimation part of our software, as described in Section 5.10, publishes a transform from
our planar object to the camera frame itself. With the object now be published under the umbrella
of our robot transform tree, we can now query for the transform from the object to our pan tilt
reference frame. This gives us the ability to calculate the angular displacement of the the object in
the pan and the tilt axis with relation to this reference frame. These angular displacements are the
values that we could now publish directly to the pan and tilt servos. If the object were stationary,
then the turret would move to correct the displacement with the goal being the object centered in
the camera frame.

In order to perform this task live with the Tango, the speeds at which we were able to track
had to be very low. The Tango adds weight to the turret making it more difficult to move, so fast
movements would produce too much jitter and less stabile overall. In addition to having a less
stable system, our ability to track successfully is significantly reduced due to having blurry images.
Setting the speed of the pan servo to be at 0.1 radians per second and the tilt servo to be even less
at 0.05 radians per second gave a fast enough response time to track objects at moderate human
speeds, with enough stability to maintain these tracks.

5.11.4 Robot Driving Behavior

Currently, the turtlebot driving behavior is two basic rules to follow. The goal is to be 1.5
meters straight in front of the tracked constellation and pointed directly at the constellation. This
behavior is accomplished with two rules and a set of tuning constants and error tolerances that
guide that behavior. Since the turtlebot only has two drive wheels, the only commands we can
send it are forward and angular velocity commands, meaning it can only rotate or drive forwards or
backwards. However, both commands can be executed at the same time, resulting in an arc shaped
trajectory. The following behaviors will be described in terms of driving forward or backwards and
having a given angular velocity.

The simpler of the two rules handles the behavior of the robot when it is at or near its goal
position. At this time, the only motion allowed is rotation that has the turtlebot point directly
at the tracked constellation. Currently, this behavior triggers when the turtlebot is a quarter of a
meter from its goal position. By having the turtlebot try to point straight at the constellation, it
is preparing itself to either drive backwards or follow the constellation straight ahead very easily,
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but makes moving side to side very difficult. Figure 35 shows the turtlebot rotating to point at the
constellation once it is already near its goal position.

Figure 35. Illustration of the rotational driving behavior used for turtlebot following.

The second rule gives the driving behavior that causes the turtlebot to move towards the
goal position after making a few decisions. First we calculate the error in the turtlebot’s current
heading, which is the angle between the current heading and the vector from the turtlebot to
the goal. When the magnitude of this error is greater than 90 degrees, the goal is behind the
turtlebot, which means the turtlebot should drive backwards to reach its goal. The next step is to
calculate and send the actual commands for forward and angular velocity, which specify forward
and backwards movement as well as turning clockwise or counterclockwise. We calculate command
velocities by taking the minimum of a preset maximum velocity or the product of the error and a
tuning constant. This allows the turtlebot to drive slower as it reaches a goal to prevent it from
overshooting while still allowing a safe maximum velocity. By using this same process to calculate
the angular velocity, the turtlebot will drive in an arc as it gets closer and closer to pointing at
the goal position. Figure 36 illustrates the path the turtlebot might take as it approaches a goal
position while moving forward.

As a safety feature, the tracking system notifies the driving node when it looses track of a
constellation. As a result, a full stop command is issued, causing the robot to stop, and a beeping
noise is also made from the turtlebot. The reason for these features is to prevent the turtlebot
from driving blind and also to make it obvious to the users that the system has lost track. These
features proved extremely useful while testing the full implementation of the system.

5.11.5 Robot Drive Simulation

In order to prototype driving behaviors in a safe environment, we utilized the ROS turtlesim
package. This package models the same basic physics and movements of a turtlebot in a very easy
to use environment. Figure 37 is a screen shot of how we used the simulator, showing two turtles
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Figure 36. Illustration of the forward arc driving behavior used for turtlebot following.

and the paths they have taken around their environment. The simulation can be interacted with
in the same way as a real turtlebot in terms of driving, and additionally provides the poses of all
turtles currently in the simulation. By treating the green turtle as a tracked constellation and the
other turtle as our mobile robot, we have created a simulated environment in which we can focus
on our driving behavior without any dependence on our tracking system.

Figure 37. The ROS turtlesim program used to prototype turtlebot driving behavior.

The green turtle was manually controlled and the second turtlebot used our prototype driving
code to attempt to get to a goal position directly in front of the manually controlled turtle. Because
of the accuracy of this simulation, our driving algorithms were moved from the virtual world to the
real world quickly and efficiently.
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6. RESULTS

In this section we present the general results of our mobile motion capture system as well as
some basic observations made during implementation.

6.1 CHARACTERIZING OUR TRUTH MODEL

Table 13 shows the distance of each fiducial from the centroid of the group based on the
measurements from table Table A.2. The average difference in measurement between the two
methods is 0.177 millimeters with a standard deviation of 1.334 millimeters.

TABLE 13

Measurements made using the motion capture lab compared to measurements made
by hand.

Fiducial Number 1 2 3 4 5 6

Manual Measurements 66.96 38.35 56.50 60.19 24.69 60.19

Motion Capture Measurements 69.33 37.29 57.02 58.99 24.40 60.92

Because these two methods of measurement are so close to each other, we decided to use the
motion capture lab for all official measurements to compare to.

6.2 POSE ESTIMATION ERROR

After running through all the data collection from the experiments in Section 5.4, we cal-
culated the average error in position and orientation for the pose estimates. Table 14 shows the
average errors with respect to measurements made by the motion capture lab, as well as the range
and standard deviation.

The orientations that we estimated are represented as quaternions, which are unit vectors
that can be written as a + bi + cj + dk. Since quaternions can be tricky to compare, we used
Equation (10) to get a representation of the angle between two quaternions. < q1, q2 > denotes
the inner product of two quaternions, which is a1 ∗ a2 + b1 ∗ b2 + c1 ∗ c2 + d1 ∗ d2. This method was
specifically chosen because orientations in quaternion space are ambiguous, meaning there is more
than one way to represent the same orientation. This equation accounts for that and provides a
single angle from the known orientation to the estimated orientation.

θerror = cos−1(2∗ < q1, q2 >2 −1) (10)
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TABLE 14

Position error in each dimension relative to the camera as well as error in distance
from the camera.

Error
Dimension

(millimeters)
X Y Z Distance

Average -61.514 231.416 -28.449 -30.714

Range 0.722 0.670 13.654 13.657

Standard
Deviation

0.233 0.153 3.424 3.446

After calculating the average error in orientation for all the tests in Section 5.4.1, we calculated an
average error of 3.13 degrees. Additionally, the standard deviation is 0.041 degrees and the range
is 0.19 degrees.

6.3 RESULTS OF THE CROSS RATIO

We wanted to determine how close the computed cross ratio is to what the expected cross
ratio is from our hand measured truth model. To do this, we ran our system several times and
recorded all of the error of every found sub-constellation against its known value in order to see
what the average was. As shown in Figure 38, the average error was just under half a percent.
This histogram also shows that the error never exceeds 5%, even though we defined the tolerance
to be 20% for safety and maximize tracking probability. We believe errors that stretch far beyond
the average are the result of hand measurement errors, as well as pixel error and jitter, which are
both discussed in Section 7.

6.4 MAXIMUM OPERATING SPEED

Using the experiment described in Section 5.4.7, we determined the average operating speed
when in the presence of different amounts of noise. Figure 39 shows the maximum output speed in
the y-axis and number of fiducials in an image in the x-axis. For low noise scenarios, our system
performed well above the reach goal of 30 Hz, marked by the red line. With medium amounts of
noise the system still performed above the minimum goal of 10 Hz.

When each of the frequencies were recorded, the standard deviation was less than one-
hundredth of a second. The complete results for this experiment are in Table A.3.
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Figure 38. Histogram of the error of computed cross ratios of our sub constellation identifier.

Figure 39. Results of operating speed stress tests of our mobile motion capture system against certain bench-
marks.
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6.5 DEPTH SENSOR CHARACTERIZATION RESULTS

After performing the experiment from Section 5.4.5, we decided not to use the Tango’s depth
sensor in our final implementation. At each distance, the average measurement was off by about
10 centimeters or more. During this experiment, we also discovered two common scenarios where
holes appear in the depth image. Holes represent false readings where there should have been
something. The first scenario, shown in Figure 40, is when IR reflective fiducials are in front of the
depth sensor. Because these fiducials are so reflective, the IR light projected from the depth sensor
bounces off and gives a poor reading. The second scenario is when an object is less than two thirds
of a meter away from the depth sensor, causing large hole in the middle of the depth image. These
holes are difficult to discern from actual readings and do not give the us data for the areas we are
interested in. The rest of the time, the depth image didn’t come out exactly flat as it should have
when pointed at a flat wall.

Figure 40. Tango depth sensor with reflective fiducials showing up as holes squared in red.

Other problems with the depth readings result from the Tango API only allowing us to get
them at 5 Hz and at a resolution of 320 by 180 pixels. This is far too slow to work with our
minimum system requirements. Additionally, this resolution is one sixteenth the resolution of the
IR image, meaning we would lose a lot of useful data when upgrading the IR image to 3D space
using this depth data.
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7. DISCUSSION

This discussion will be driven by our system diagram, shown below in Figure 41. First we
will discuss problems and limitations we encountered with the Tango device and the software that
pushes data to the ROS environment. Moving on to our system implementation we will discuss
how well each stage of our system performed. In addition to this, we will explain any sources of
error that may have arisen in these stages as well as note anything we think could be improved in
the future.

Figure 41. System overview of the major components in the Mobile Motion Capture pipeline.

7.1 PROJECT TANGO PROBLEMS AND DISCUSSION

In this section we discuss the problems and concerns we encountered when using the Google
Project Tango device, and how certain parts of it were limiting our system. As a disclaimer, the
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device we used was a prototype development kit from the Tango project, and, as of the time of this
writing, the publicly available Tango device has not been released.

7.1.1 Device Limitations

The Google Project Tango Device is a very impressive piece of hardware and was the main
driving force for our project, by lending us the ability to have a global reference frame from which
we can track objects. The Tango was also one the largest limiting factor of our system. Being
only it’s infant stages, there are a lot of inherent problems with the device that we discovered. The
device would typically last no longer than 10 continuous minutes while running our system before
crashing or overheating, assuming it had not been used recently. This is obviously not practical
when it comes to actually using our system in a real application.

In addition to the overheating problem, the Tango is also a limiting factor in the operating
frequency of our entire system. While we have shown that our system can run quickly, we are still
limited by the 8 Hz frequency that the Tango can output images. This severely limits the motion
that we can capture during operation, and means that only slow movements can be accurately
tracked.

7.1.2 Infrared Camera Problems and Concerns

While it was not a problem in the end, we originally had concerns with the RGB-IR camera
on the Tango, which we planned to use as our main data source. This camera can see both visible
and IR light, and displays both sets of data in one image. This was cause for concern because
it meant that it might be possible that the IR Projector on the Tango could be seen in the RGB
image. This is fortunately not the case. The IR Projector is intentionally operating out of sync with
the RGB image so that the depth sensor can work independently of the RGB image functionality.
Even though they are using the same sensor, the IR image is loaded at a different point in time in
the duty cycle from the RGB image, so we don’t see any of the IR projections.

Although the IR projector does not interfere, the RGB-IR image stream we were using is not
ideal since there is visible light that we do not care about; anything in the visible light spectrum is
noise in our system. To combat this problem we purchased an infrared filter to be placed over the
lens to only let infrared light through. This had the unfortunate side effect of causing a vignette in
our images, which severely limits our field of view. While still usable, the range was limited to the
middle areas of the image. For future work, we recommend that a smaller and case-less IR filter
be purchased. This would allow professional installation of the IR filter at a point which is closer
to the image sensor itself, and would get rid of the vignette. Ideally, a custom filter could be cut
to fit on the Tango as close to the image sensor as possible.

7.2 FIDUCIAL TRACKING PERFORMANCE

The fiducial tracking software is the first main component of our system, and is in charge of
finding the fiducial markers in our input images in order to search and make sense of them later in
the system. In this section we discuss this component’s large issue with noise, examining a source
of error in this component, as well as looking into alternative fiducials.
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7.2.1 Dealing with Noise

Where the fiducial tracking software would encounter the most trouble was when there is a
lot of noise in the scene, which was usually other bright reflective surfaces. This was especially a
problem before using the IR filter. Anything overly bright would show up as overwhelmingly large
noise sources and it would be impossible to only extract the fiducial markers. In attempts to deal
with the noise, several filters were added like circularity metrics and maximum size metrics. These
helped but ultimately proved the IR filter was necessary, which generally resulted in low to zero
noise with the help of our other filters.

7.2.2 Alternate Fiducials

At one point we considered using larger square fiducials instead of the circular ones. The
square fiducials are inherently larger then the circles, which means the squares can be tracked at
a larger range than the smaller circles, and possibly be more accurate due to having more pixels
to average with. While this is a great benefit to using the squares over the circles, they had two
properties that made them less desirable. The first most obvious problem was that our system would
likely classify them as noise with the circularity metric. The circularity metric is very effective tool
in eliminating noise, and thus we decided to keep this metric and use circular fiducial stickers.

Another problem is actually the larger size of the square stickers, which implies the constella-
tions must be bigger to adequately space the fiducials out. This is a concern because fiducials have
to be a minimum distance apart to prevent our fiducial tracking system from treating them as a
single blob. With the smaller circular constellations, we can create more compact constellations or
more unique constellations that are the same size as the smallest constellation using large fiducials.

Due to time constraints, we were unable to use different kinds of fiducials outside of the square
and circular fiducials. In the future, sphere shaped fiducials,like the one in Figure 4, would be ideal
for attempting to track non-planar rigid bodies because the spheres can be seen from more vantage
points than a typical planar fiducial by virtue of being three dimensional.

Another fiducial that we considered was IR LEDs. The advantage of having active fiducials
is that an IR illuminator would be unnecessary because an IR camera would be able to see the
fiducials despite the lack of ambient IR light. We did not use these because of time constraints
and additional complexity involved with wiring LEDs to specifically function as fiducials. However,
the software we implemented would not need any changes if the fiducials were changed, as long as
they still show up brightly and circular in an IR image. Also, it may be advantageous to consider
integrating IR LEDs when designing a custom electronic device intended for tracking, such as a
new robot or custom augmented reality display.

7.3 CONSTELLATION DISCUSSIONS

Here we discuss various aspects of our the constellation identification system that could be
improved, as well as some new features that could be introduced. Also included here is a discussion
on the operating speed of our system because we found that our maximum speed was highly
dependent on the identification algorithms.
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7.3.1 Noise Classification and Operating Speed

To get an idea for how much noise we should expect our system to be able to handle, we walked
around our lab with the Tango device and IR illuminator on and counted every thing showed up in
the IR images. The only normal objects that showed up were particularly shiny whiteboards and
TVs, which each showed up as a single large dot, as well as some backpacks and traffic cones that
happened to have some reflective material. Because we had a motion capture lab, we also saw the
original cameras as well as some random reflective fiducials on various tracked objects from other
lab experiments. With all of these sources of noise, the only time our fiducial tracker registered
more than 5 fiducials was when looking at a particular angle in the motion capture lab to see
multiple cameras or when looking at constellations from past experiments.

With these objects in mind, we defined low noise scenarios as having 5 or fewer objects that
could show up as fiducials in an IR image. In general, we found that we operated with zero noise.
The experiment in Section 5.4.7 was conducted with images representing low noise scenarios as
well as scenarios with even more noise to characterize expected operating speed under normal and
more extreme conditions. Because of the sharp drop in operating speed with increased noise shown
in Figure 39, we added a few basic checks to our algorithms that would allow them to give up
early if too much noise is detected. One check added is to the RANSAC algorithm, causing it to
exit early when too many potential sub-constellations are found. This has the effect of trading the
probability of finding constellations for maintaining a fast operating speed when the noise increases
unexpectedly. Modifying our constellation identification processes like this allows our system to
operate at relatively the same speed even when there is an extreme amount of noise, although it is
unlikely that any constellations will be found.

7.3.2 Eliminating False Positives

The current implementation of our system is susceptible to false positives when identifying
constellations, as described in Section 5.9.4. False positives occur when things like IR lights and
shiny objects show up bright enough to be considered fiducials and in rare circumstances form a
line. Simply working in a place without these objects reduces the noise that our system encounters
to next to nothing, but this isn’t always an option. The following are two software improvements
to reduce the number of false positives that we considered but did not implement.

The first option involves double checking values given from the PnP calculations. Using
the transform and camera intrinsic parameters, the 3D locations of a found constellation can be
transformed back into image coordinates and compared against the image coordinates of the found
constellation in the current frame. If any of the sub-constellations are a false positive, the two sets
of image coordinates will be drastically different and the found constellation should be considered
a false positive and ignored.

Another option is to keep track of found constellation locations in image space and 3D space
over time in an attempt to predict where a constellation will appear in the next image. An extended
Kalman filter may be used for this, but searching a subset of a given image near a previously found
constellation might be more efficient. This can also help to optimize tracking a constellation once it
is found a first time. Here, false positives are detected when a constellation moves too far in a given
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time step. This will not scale to tracking objects that can accelerate quickly and unpredictably
and will not help at all with objects that are frequently lost.

7.3.3 Tracking Multiple Constellations

Due to time constraints and the low priority of this feature, we decided not to support the
functionality to track multiple constellations at the same time. Also, using two constellations with
12 fiducials each would reduce our operating speed to about 20 Hz according to the results in
Section 6.4.

Currently, if multiple constellations are present in a scene, the first constellation to be identi-
fied from the database will be the constellation whose pose is estimated. There is no way to predict
which constellation will be identified first in the current implementation.

To make this system track more constellations, the pose estimation algorithm will have to be
modified to not exit as soon as it finds a full constellation and then the pose estimation system will
have to be modified to estimate multiple poses instead of just one. To make this work well, the
underlying algorithms should be upgraded to get the operating speed back up to 30 Hz.

7.3.4 Cross Shaped Constellations

After implementing our current constellation model made up of four linear sub-constellations,
we considered other constellation types but only one seemed feasible; cross shape constellations.
These patterns would be made up of two perpendicular linear sub-constellations with a single
shared point. Figure 42 is an example of this. The identification process will include finding
the two linear sub-constellations and ensuring that the correct point is shared between them,
requiring modifications to both the constellation database and constellation identification systems
to indicate these properties. Additionally, the individual fiducial locations would have to be used
when estimating the pose, as described in Section 5.10.

Figure 42. An alternate constellation pattern using two sub-constellations in a cross shape.

If properly implemented, the number of fiducials per constellation would be reduced from 12
to 7 fiducial stickers and the number of sub-constellations would be halved. These properties will
allow for simpler constellations and a drastic decrease in processing time per frame. This design
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was not implemented because it was too late in the development process after the entire system
was implemented with the rectangular constellations.

7.4 DISCUSSING POSE ESTIMATION AND THE END RESULT

Here we discuss the results of the pose estimation system. Included are multiple solutions
that can improve the performance of this system.

7.4.1 Pose Measurement Error

Based on the results of the error calculations done in Section 6.2, we did not meet all of our
pose estimate goals in Section 4.1. The error calculated in position estimation is greater than 1.00
cm, which is our minimum goal in all dimensions. The standard deviation of these errors was far
less than a centimeter in all dimensions. This can be visualized as a 1 cm cube that we estimate
the centroid of tracked objects to be in. This cube is somewhere out in front of the Tango device,
and stays the same size independent of how far it is from the device. On the other hand, the
orientation was 3.13 degrees, which is better than the minimum goal of 5 degrees and very close to
the reach goal of 2.5 degrees of error. This means that at any given time, the direction we estimate
the object to be pointing in is about 3 degrees off from reality. This is excellent because three
degrees is generally hard for humans to notice and is within our goals. The standard deviation for
the orientation error was also very low.

Because the standard deviation for all of the position errors is so low, we can assume that
there is a constant offset causing the position error. The simplest solution would be to subtract
these errors values from the poses that we estimate. We have not yet done so because the error
itself is so small and could be caused by multiple different things that we may or may not be able
to control.

The most likely source of this error is that what we consider to be the centroid of a given
constellation may be slightly different from what the motion capture lab decides is the centroid
of the same constellation. This can easily happen for the motion capture lab when using fiducial
stickers because that software tries to treat the stickers as spheres, which can move them from
where they are in reality. If this difference is a few centimeters, the error in our system compared
to the motion capture lab will also be a few centimeters and will be constant. With this assumption,
the error can be tuned out of the system by measuring constellations more precisely and making
sure they are defined identically in both our system and the motion capture lab.

Another way that a constant error could be introduced is through the camera intrinsic pa-
rameters explained in Section 1.5.6. Since these parameters are the values used to relate the image
space of the camera to 3D space, all of our pose estimates depend on them. This means that if
any of the intrinsic parameters are incorrect to any degree, the poses we estimate will be off by a
constant amount. Theoretically, these intrinsic parameters could be tuned to a higher accuracy,
resulting in better pose estimates. In practice, however, this is a very difficult task and it is often
better to just be aware of the error in the system.
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Finally, error could have been introduced by something as simple as human error. For exam-
ple, we measured the constellations by hand before entering them into the database of constella-
tions. If the reference constellation was off by any small amount, every pose estimate of the found
constellation would also be incorrect by some constant error.

7.4.2 Homography

While considering using solutions to perspective-n-point implemented by OpenCV, we also
considered an OpenCV implementation of homography to estimate the 6 DoF pose. Homography
is a similar process to perspective-n-point, but utilizes camera projection principles to calculate a
single solution rather than solving a complex system of equations. In terms of input, the homog-
raphy function takes the same points as input, but transformed to image coordinates first. The
homography function returns a homography matrix, which is a combination of translation, rotation
and other various values. While complicated, the translation and rotation can be extracted from a
homography matrix. Because of the increased complexity and the fact homography will only work
with planar objects, we decided to continue to use the implementation described in Section 5.10
both to save development time and provide extensibility to 3D objects. However, the OpenCV
homography functions could be used to better estimate the poses of planar constellations.

7.4.3 Improve Tracking Robustness

The system pipeline we implemented is currently linear; the input images produce an output
of a 6DoF estimate of the pose of a tracked object. To improve the overall robustness of the tracking
and final pose estimate, a feedback loop could be added. This would involve piping the output of
the pose estimation system back into itself along with the input images. With this extra data, an
Extended Kalman Filter could be used for correlating previous estimates to the current estimate.
This would have the effect of smoothing out noise or bad readings, but would provide additional
overhead in the software. Similarly, the fiducial tracking system could be optimized to search a
subsection of an image where the fiducials are expected to be based on previous images.

7.4.4 Overall Resulting System

Overall, the mobile motion capture system that we implemented meets all of the other min-
imum goals as well as some of the reach goals. For example, we can track a single constellation
anywhere from 0.5 meters to 3.5 meters away at any angle as long as the line of sight from the
camera to the fiducials is not obstructed. We can also track constellations for 100% of the frames
even while the constellation and Tango are both in motion, including when the Tango is mounted on
a mobile robot. However, this motion has to be relatively slow and the tracking success is slightly
dependent on how well we tuned the system. For example, a particular set of tuning parameters
may be perfect for a space inside the lab, but the lighting in the hallways might be so different
that the fiducials cannot be seen. While this is generally not the case due to the IR filter over the
Tango’s camera, there are lighting conditions that need to be tuned for.
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7.5 TURRET CONTROL

The turret following code ended up working very well, but it had some minor limitations.
Because of the weight of the Tango and IR i that went on top of the turret, moving the pan and tilt
servos quickly became impossible without a large amount of jitter and instability. This jitter would
end up bluring the images meaning tracking on the object would ultimately be lost. If we were
able to run the servos at a higher speed and have them still be stable, it means that the response
time would be much higher and more realistic human movements could be tracked.

This slow speed also affected the overall behavior of the driving. Since the turret would move
slowly, the Turtlebot might end up rotating too much and the turret would lose track. This is
partially due to time to tune the driving, but if the turret could move faster reliably this would be
less of an issue, and the whole system could drive faster.

With this limitation in mind, we recommend that larger servos be purchased that can handle
the weight of the Tango device better so that it can move faster with more stability.

7.6 TURTLEBOT DRIVING BEHAVIOR

While the implemented driving behavior used for following worked, it did have some flaws.
The first is that it is running at only 2 Hz and all velocity commands are at a minimum in order to
compensate for when our tracking software loses track when the Tango moves too suddenly. With
a faster camera, we would be able to speed up the control loop for the driving and get smoother
control.

Additionally, we did not fully tune this system because it was implemented outside of MITLL,
where the driving conditions would definitely be different from inside the lab. Given enough time,
the turtlebot driving code can have its speeds and error tolerances tuned to any driving surface,
but those values will be different when moved to a new environment.

A future addition to the driving code would be speed control or incremental speed changes.
This would limit the accelerations on the system and should allow the tracking system to keep up
better because the images from the Tango should be less blurry. The driving itself will also be more
elegant.
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8. CONCLUSION

The goal of this Major Qualifying Project was to make a motion capture system that was
not limited to a confined space like typical motion capture systems that are currently in use. The
ability to track objects with high precision is a difficult task in robotics, and these motion capture
systems provide a great way of solving this localization problem. Unfortunately current systems
are not practical for robotics outside of a single room with tracking equipment.

Our mobile solution was all made possible by the advanced technologies present inside of the
Google Project Tango, which features visual odometry pose estimation of the device itself, as well
as an infra-red camera. When pairing this device with an IR illuminator, the Tango can see the
same exact type of markers typical motion capture systems use.

The system that we implemented was the tracking software that would consume the sensor
data provided by the Tango. The types of objects our system is able to track are planar objects, with
unique configurations of these reflective fiducials. Image processing and computer vision techniques
allowed us to develop a system that filters out only the reflective fiducials from the IR images, fit
lines to these points in the image, and then analyze the lines to see if they are configurations we
recognize. From there, the pose of the plane can actually be estimated by using prior knowledge
of the positions of points on the plane.

Once we had a system capable of tracking these objects, we wanted to demonstrate how a
robotics application could use our system. By mounting the Tango and illuminator on a pan and
tilt turret, which was attached to a mobile robot, we wanted to have the mobile robot always keep
track of the object by following it around.

After undergoing testing, it was determined that in our mobile motion capture system there
was about 3cm in positional accuracy, with the object being tracked 90% of the time. The target
plane could be tracked up to +/- 35 degrees in skew, and identified at any roll rotation. It could
also track our object in the range of 0.5 - 3.5 meters. The entire system runs at about 10 Hz live,
as this is the rate the Tango can output images; Our tracking software can actually run closer to
80Hz. With these results we believe the system we developed is a great success, capable of being
a great tool for tracking and localization. This is further proven by the mobile robotic application
that we implemented that uses our tracking system.
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APPENDIX A: THE FIRST APPENDIX
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TABLE A.1

Details static test experiments describing the various poses used during the test.
The tests are highlighted in groups of 5 to show orientations at each of the distances

from 1 meter to 5 meters in increments of 0.5 meters.

Position (meters) Orientation (degrees)
Test Name

X Y Z Roll Pitch Yaw

PoseTest0 -0.03 0.03 1.08 2 5 90

PoseTest1 -0.01 0.06 1.09 14 4 93

PoseTest2 0.01 0.07 1.09 41 0 89

PoseTest3 -0.02 0.07 1.08 4 19 89

PoseTest4 -0.03 0.06 1.1 4 33 90

PoseTest5 0.11 -0.03 1.50 1 4 90

PoseTest6 -0.01 0.06 1.52 16 10 94

PoseTest7 0.14 -0.01 1.49 29 8 86

PoseTest8 -0.02 0.06 1.51 7 15 92

PoseTest9 -0.02 -0.01 1.52 10 30 94

PoseTest10 -0.08 0.02 2 1 4 91

PoseTest11 -0.08 0.08 2.01 9 8 91

PoseTest12 -0.07 0.1 2.02 27 0 92

PoseTest13 -0.09 0.17 2 4 18 89

PoseTest14 -0.09 0.15 2.02 4 30 90

PoseTest15 0.04 0.22 2.49 2 4 92

PoseTest16 0.04 0.24 2.48 14 6 92

PoseTest17 0.07 0.22 2.49 30 12 88

PoseTest18 0.05 0.2 2.5 0 19 92

PoseTest19 0.05 0.21 2.49 1 31 90

PoseTest20 0.05 0.21 3.01 1 6 90

PoseTest21 0.23 0.18 2.99 15 1 93

PoseTest22 0.24 0.17 2.99 22 19 87

PoseTest23 0.21 0.16 3 0 20 89

PoseTest24 0.22 0.16 3.01 0 32 90
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TABLE A.2

Measurements of the same group of fiducials using two methods: by hand and using
the motion capture system

Hand Measurements Motion Capture Measurements

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

1 55.06 -38.12 0.00 54.64 -42.68 0.04

2 4.24 38.12 0.00 5.80 36.83 -0.80

3 55.06 12.71 0.00 55.98 10.74 -1.44

4 -46.59 38.12 0.00 -43.97 39.32 0.05

5 -21.18 -12.71 0.00 -22.38 -9.60 -1.45

6 -46.59 -38.12 0.00 -50.00 -34.62 3.60

TABLE A.3

The results of stress testing our system.

Fiducials Max Hz

6 120

12 80

16 48

20 36.8

22 26.7

22 24.5

26 15

32 10

38 6
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Figure A.1. Drawing file for the 3D printed Tango holder.
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GLOSSARY

AR Augmented Reality

DoF Degree of Freedom

HRI Human Robot Interaction

IR Infrared

LL Lincoln Laboratory

MIT Massachusetts Institute of Technology

RANSAC Random Sample Consensus

PnP Perspective-n-Point

ROS Robot Operating System [5]

TF Transformation
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