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Abstract

Semantic segmentation methods using deep neural networks typically require huge volumes of annotated data to

train properly. Due to the expense of collecting these pixel-level dataset annotations, the problem of semantic

segmentation without ground-truth labels has been recently proposed. Many current approaches to unsupervised

semantic segmentation frame the problem as a pixel clustering task, and in particular focus heavily on color

differences between image regions. In this paper, we explore a weakness to this approach: By focusing on color,

these approaches do not adequately capture relationships between similar objects across images. We present a

new approach to the problem, and propose a novel architecture that captures the characteristic similarities of

objects between images directly. We design a synthetic dataset to illustrate this flaw in an existing model. Ex-

periments on this synthetic dataset show that our method can succeed where the pixel color clustering approach

fails. Further, we show that plain autoencoder models can implicitly capture these cross-instance object rela-

tionships. This suggests that some generative model architectures may be viable candidates for unsupervised

semantic segmentation even with no additional loss terms.

1Worcester Polytechnic Institute. Correspondence to: Griffin Bishop <grbishop@wpi.edu>.
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1. Introduction

In recent years, improvements to perception tasks such as object detection and classification in images ([31], [19], [28],

[13]) have enabled many real-world computer vision applications. However, in other instances, the information afforded

by these solutions alone is not sufficient; many applications require a fine-grained understanding of the spatial layout

of images. Notable examples of these domains include perception in autonomous vehicles and medical imaging, where

segmentation information is necessary. In semantic segmentation, the objective is to create a machine that consumes an

image and for each pixel, predicts the object class to which that pixel belongs.

Although a great deal of excitement about the problem has developed in recent years with the prevalence of deep

learning methods, early research on semantic segmentation is still relevant and inspires current methods. Researchers

before the deep learning era characterized the problem as discovering image regions that are ”uniform and homogeneous

with respect to some characteristic” [12]. Broadly, research on semantic segmentation focused on techniques such as

histogram thresholding [6], region growing [1], edge detection ([3], [35]), and graph-based segmentation [10]. With the

advent of deep learning, many have taken inspiration from these techniques.

Deep learning approaches to the problem can be broadly categorized as either supervised, wherein the model is supplied

with images and pixel-level labels during training; weakly-supervised, wherein the model is supplied with images and

image-level labels during training; and unsupervised, where the model is supplied with only images and no ground-truth

annotations during training. Relevant prior research on each of these methods is described in detail in section 2.

While recent progress in segmentation models has resulted in useful, high-fidelity outputs in some domains ([20], [30],

[29], [14], [33]), these deep neural network models rely on large-scale datasets with pixel-level annotations. These types

of annotations are expensive to collect, because a human must attend to many different parts of the image and consider

small, complicated regions. Figure 1 shows an example image paired with its ground-truth segmentation in the domain of

perception in autonomous vehicles. Notice that in the portion of the image that is farther away from the camera, the scene

becomes is complicated; very small regions can be composed of many different objects. Although there are tools which

can speed up the annotation process, this inherent complexity makes collection segmentation annotations like the one in

Figure 1 time consuming and expensive to collect.

The problem of perception in autonomous vehicles demonstrates this in particular because it has an exceptionally long-

tailed event distribution. This represents a problem for scaling these models to work in real-world domains, because

exceptionally large datasets are required to capture a workable portion of the event distribution. With autonomous vehicles,

large volumes of raw images are available, yet resources allow for only a small portion of this to be labeled and used.

The expense of label collection has led many to consider approaches to the segmentation problem that require fewer

annotations, or ones that are easier to collect. This is the goal of weakly supervised segmentation: to reduce this expense

by requiring only image-level labels relating to the presence or absence of a given object. During training time, weakly-
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(a) (b)

Figure 1: Image of a road scene (a) and its corresponding segmentation map (b) from the Cityscapes dataset [7].

supervised models are given access only to images and image-level object labels. For example, the left image in Figure

1 may be given, but instead of the segmentation map being given, the binary presence of each object would be given. In

this example, the following objects would be given as present for the label: car, street, sidewalk, sign, pole, building, tree,

sky, but the object ”person” would not be given. The advantage of weakly-supervised segmentation is the ease of label

collection, because during inference, the model still produces pixel-level labels. One of the drawbacks of the weakly-

supervised paradigm is that it becomes much harder if a large portion of the same objects are present in most of the dataset

images.

The paradigm of deep unsupervised segmentation has also recently been proposed [36] to reduce the expense of an-

notations and increase scalability. In the unsupervised paradigm, models are trained only on raw images, not requiring

ground-truth annotations. Note that during evaluation, annotations are used to produce a performance metric. A viable

unsupervised model would make segmentation models much more scalable in real-world environments. However, in the

context of deep learning, this task has only recently been researched, and there is possibly a large amount of improvement

even in the foundational assumptions of this version of the problem.

In terms of large, real-world datasets, the current state of the art method for unsupervised segmentation [16] reports a

27.7% pixel accuracy on COCO-stuff. Not surprisingly, supervised segmentation models generally outperform weakly-

supervised models, which in turn outperform unsupervised ones. With this in mind, rather than aiming to immediately

improve upon existing methods on real world datasets, we took the perspective of analysing the current research for

possible weaknesses in direction. In this paper, our goal is to approach the problem from a first principles perspective,

and challenge some of the assumptions of existing methods. We discuss these foundational assumptions at a high level in

section 3, and show the theoretical implications of these assumptions with a low-dimensional example in section 4.

In section 5, we expand the objective formulated in section 4 to apply to high-dimensional data with occlusion. We

call this the Cross-Instance Representation Similarity(CIRS) objective. With this reformulated objective, we propose a

novel neural network architecture in section 6. In section 7, we describe a phenomenon present in some unsupervised deep

neural network models and propose a training procedure to reduce these unwanted effects. We evaluate the CIRS model
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trained on this procedure. In section 8, we compare the performance of our proposed model to an existing model reflecting

the color contiguity focused approach. In section 9, we investigate the ability for plain autoencoder models to implicitly

capture the cross-instance object relationships specified by the CIRS loss. Using the results from the previous section,

we then formulate an alternative model design based on the bottleneck autoencoder architecture: the Argmax Individual

Reconstruction (AIR) model. In section 11, we conclude with a discussion of our results and implications for future work.
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2. Prior Work

There exist several main supervision paradigms for semantic segmentation: supervised, weakly-supervised, and unsu-

pervised. In the supervised problem, the model has access to both images and their pixel-level annotations for training. In

the weakly supervised problem, the model has access to images and object labels on the image-level. No labels are given

on a per-pixel basis. In the unsupervised version of the problem, no ground-truth labels are given during training at all;

only image data is provided.

2.1. Supervised

Broadly, supervised methods for semantic segmentation can be seen as being based on the following different methods.

The first is fully convolutional networks (as in [20] or [30]) where an image is fed into a convolutional neural network

(CNN), and the pixel-wise predictions are directly computed in the CNN. The model is trained with a loss function that

minimizes the difference between the predicted segmentation maps and the ground-truth ones.

One such model, “U-Net” features an architecture with a contracting path followed by an expanding path [30]. On the

contracting path, spatial resolution is down-scaled, while the number of filters is increased. The authors claim that this

gradually increases the “what” information, while decreasing the “where” information. This is similar to the concept of

the “bottleneck” of an autoencoder, which forces the model to learn important instance details while discarding common

features. Next, on the expanding path, this trend is reversed, and the number of filters are decreased while the spatial

resolution is increased until the result is produced with the same number of channels as classes. Skip-connections are

used; the output of each module on the contracting path is copied to the input of each module on the expanding path.

Additionally, U-Net takes in a larger region than the segmentation it produces, so that predictions for the inner region can

be informed by the outer one. This overlapping tile method allows U-Net to process arbitrarily large images.

Supervised models are usually end-to-end, meaning that the segmentation is directly computed by the model, and no

post-processing needs to be applied to the output in order to produce workable segmentations. In contrast, much of the work

in unsupervised semantic segmentation requires post-processing steps (e.g. CRF smoothing) to achieve segmentations that

match expectations of connectedness and smoothness, as in [34] and [16]. The method we propose is end-to-end and would

not require hand-tailored post-processing methods.

2.2. Weakly Supervised

Weakly supervised methods also attempt to circumvent the high cost of obtaining segmentation labels. Instead of having

to tediously attend to each pixel, weakly supervised methods allow one work with image-level labels. Given just the

image-level labels on the training set, the goal is to train a machine that can estimate the class of every pixel in a test image.

The main category of weakly supervised methods can be seen as correlating features of image regions to the given image-

level labels, as done in “From Image-level to Pixel-level Labeling with Convolutional Networks” ([26] and [17]). This

process can be viewed as a refinement of the class activation maps [38] of networks pre-trained on an image classification
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dataset. By augmenting a standard multi-class image classification model, it is possible to visualize how much each image

pixel is used to calculate the final prediction. These activation maps usually do not overlay the object in fine detail,

so several methods have been put forward to refine the map, including “adversarial erasing” of image regions [33], and

post-processing smoothing techniques [17].

2.3. Unsupervised

Prior to the recent adoption of deep learning techniques, there were many attempts at segmentation without labels

involving non-deep methods such as histogram thresholding, pixel-color based region growing, graph-cuts, and superpixels

([6],[2],[8],[9]). Deep learning methods have made great progress in this task, and many prevalent model concepts and

post-processing methods are derived from this earlier work.

2.3.1. CLUSTERING

One class of deep methods for unsupervised semantic segmentation views the task as an extension of clustering. These

methods work by dividing the image into small, square samples that are individually fed into the model to generate a cluster

label. This cluster label can be applied to all pixels within the patch, and this prediction can be refined by information from

overlapping patch-level predictions. Some unsupervised clustering methods include autoencoders, principal component

analysis, k-means [24], DeepCluster [4], and “Adversarial Autoencoders” [22]. At a high level, the goal is to find a

representation that preserves salient information while discarding non instance specific details such that data of the same

label share important characteristics.

One recent method in this category is “Invariant Information Clustering” (IIC) [16], which currently holds the state of the

art for unsupervised image clustering and segmentation. IIC learns these important details shared between images of the

same object by applying a label-preserving (cluster-preserving) transformation to the original image. The approach uses a

loss based on mutual information between the predicted one-hot cluster labels which encourages the model to classify both

the original image and its transformation into the same category. For the segmentation task specifically, the assumption is

made that neighboring patches likely belong to the same object.

While the method works well for segmenting regions of uniform colors and textures, it relies on these lower level details;

it has trouble interpreting complicated regions of different colors. This can be seen in IIC’s performance difference between

different variations of the COCO dataset. On the COCO-stuff-3 dataset, which considers only sky, ground, and vegetation

regions, IIC achieves a 72.3% per-pixel accuracy. In contrast, on the more complicated COCO-stuff dataset, featuring

complex regions of high color variance, the model achieves a 27.7% accuracy.

2.3.2. AUTOENCODERS

The autoencoder architecture is another basis for unsupervised learning. Many approaches in the literature for unsu-

pervised semantic segmentation build off of an encoder-decoder base model. One approach, called W-Net [34] took an
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architecture which worked well for supervised learning, U-Net [30], and formed it into an encoder-decoder model, where

the hidden representation between the encoder and decoder is the intended segmentation map. W-Net has an added loss

term to encourage color contiguity in segmented regions. Post-processing techniques are used to transform the resulting

hidden representation into a workable segmentation map. The cardiac image segmentation model [18], along with the

CycleGAN model [39] can also be considered autoencoder architectures for self-supervised learning. The cardiac model

is unique in that it uses adversarial learning to enforce that the distribution of predicted segmentations is indistinguishable

from the distribution of true segmentations, similar to the CycleGAN technique.

2.3.3. GENERATIVE ADVERSARIAL NETWORKS

Adversarial learning [11] is an unsupervised technique that has been found to discover interesting feature representations

in an unsupervised manner. The Deep Convolutional GAN paper ([27]) shows how adversarial models have a capacity for

unsupervised representation learning: in the process of learning to generate novel samples from the dataset distribution,

the generator captures hierarchical representations of objects that can be used for downstream tasks.

Adversarial learning can also be used to directly improve segmentations in the supervised paradigm; the authors of

[21] claim that their added adversarial loss can detect and correct higher order inconsistencies in the outputs. In the

technique, a discriminator is trained simultaneously with a conventional supervised segmentation model. The segmentation

model is trained using loss on the pixel labels for each image. Additionally, discriminator loss is computed to update

the segmentation model. The discriminator ensures that the distribution of predicted segmentations is indistinguishable

from the distribution of ground-truth segmentations. A variation of this method is applied in [18] and [39] as mentioned

previously.
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Figure 2: Image with tree, sky, and moon object classes from the Berkeley Segmentation Dataset [23].

3. Object Priors in Current Methods

Unsupervised semantic segmentation is a task where, given an image (without labels), the objective is to group the

pixels into discrete, semantically meaningful sets, often corresponding to natural objects. This is quite different from the

supervised version of the problem, where a label is given for each pixel. In the unsupervised case, not only does the model

have to classify pixels, but it must also simultaneously discover the classes into which it will classify them. There are

several different existing approaches to the unsupervised semantic segmentation task. Each method either explicitly or

implicitly relies on a prior belief about the nature of objects.

One such method is W-Net. W-Net is an autoencoder model where dataset images are processed by one U-Net model

(the encoder) to predict a segmentation, then this prediction is fed into a second U-Net model (the decoder). As mentioned

in section 2.1, U-Net is a commonly used architecture for supervised object segmentation. A per-pixel reconstruction loss

is used between the output of the decoder and the original image. Additionally, W-Net introduces a soft-normalized cut

loss objective which encourages segmented regions to be uniform in color, while encouraging spatial contiguity. Figure 2

shows an image from the BSDS300 [23] dataset for which it makes sense to segment in this fashion.

The image will be adequately segmented into intuitive object regions by the color clustering method. In this image, one

would recognize the sky, moon, and trees as the objects present. The high uniformity of color within these objects, and

sharp contrast in color at object borders makes it a great candidate for color-based segmentation.

This objective illustrates a particular prior belief about the nature of objects: intuitively, one does expect objects to be

spatially contiguous and relatively uniform in color. However, despite many existing approaches explicitly or implicitly

privileging these priors, they are not necessarily sufficient. The purpose of these experiments is to show that these color-

based priors are sub-optimal, and in fact unworkable in some important cases.

3.1. The Nature of Objects

As discussed above, current methods can be seen as implying a view about the nature of objects. The spatial contiguity

and segment color uniformity objectives imply another more subtle view. They work on the image-level, meaning that
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(a) (b)

Figure 3: Humans with colored clothing (a). Two flowers with distinctly colored regions (b). Images shown are from the
Berkeley Segmentation Dataset [23].

patterns across the dataset are not explicitly taken into account. Intuitively, this implies that an object’s identity is defined

by its color. Consider a scenario in which an object always has two regions of distinct color across the dataset, e.g. a dataset

of humans wearing red shirts. The spatial contiguity and color uniformity priors would encourage the segmenting of the

face into a different region than the shirt, despite the shirt pattern only ever appearing coincident with the face pattern. This

example is also a significant problem in supervised semantic segmentation. Two example images illustrating this from the

BSDS300 dataset are shown in Figure 3a.

As one can see in the images, there is a sharp contrast in color between the borders of the humans and their surroundings,

which supports the color prior. However, there are also sharp differences in color within regions of the humans: the shirt

region is quite different from the face region. One could argue that the shirt should be segmented into a separate region,

but this causes another problem. In the image on the right, having the shirt as a separate object would disconnect the face

from the hands, which is a conflict with the spatial contiguity prior. This illustrates a problem with segmentation methods

based on color contiguity: they cannot capture these higher-order, non-color based relationships.

An alternative prior can be described as segmenting by cross-instance object similarity. Rather than privileging color

differences in individual images, we seek to discover segments that feature the most frequent object patterns present across

the entire dataset.

Consider an example of a dataset of flower images similar to the one in Figure 3b. In this example, one would discover

a single frequent pattern in the dataset: the flower as a whole, because the outer petals always appear coincident with

the inner petals. The fact that the two major regions are very different in color is irrelevant. Instead of implying that

an object’s color distribution is paramount to its identity, we imply that an object’s identity is defined in relation to the

common characteristics of that object across all appearances.

In the next section, we present a concrete example in one dimension that illustrates the differences in these two paradigms

and their implications.
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4. One-Dimensional Proof

4.1. Color Clustering Approach

Here we imagine an example in the one-dimensional case. Our pixels are integers, and we work with images of L = 6

cells. In order to allow for objects to be separable in one-dimension, we allow for a background segment which is already

known, and may be occluded by objects. Take “0” as this background symbol. Our example will feature k non-occluded

objects, with every object present in each image exactly once.

Let O = {11, 22} be a set of k = 2 objects from which we can generate the following dataset of n = 5 possible images

(an exhaustive list is not necessary):

D = [
[(0, 1), (1, 1), (2, 0), (3, 0), (4, 2), (5, 2)],
[(0, 0), (1, 1), (2, 1), (3, 2), (4, 2), (5, 0)],
[(0, 0), (1, 0), (2, 2), (3, 2), (4, 1), (5, 1)],
[(0, 0), (1, 2), (2, 2), (3, 1), (4, 1), (5, 0)],
[(0, 2), (1, 2), (2, 0), (3, 0), (4, 1), (5, 1)]

]

We represent an image as a list of pixels, where each pixel is a (location, value) tuple. For simplicity of notation, the

above can be written with the location index of each pixel below the value, as follows:

D =
[110022, 011220, 002211, 022110, 220011]
012345, 012345, 012345, 012345, 012345

We represent a dataset segmentation as a list of image segmentations, where an image segmentation is a list of segments.

A segment is a list of pixels sorted by location. The index of each segment within an image can be thought of as a unique

identifier that is assigned to each object and persists across images. Segments with the same index correspond to the same

object. The following segmentation example shows this correspondence:

S(D) = [
[[11], [00], [22]],
01 23 45

[[11], [00], [22]],
12 05 34

[[11], [00], [22]],
45 01 34

[[11], [00], [22]],
34 05 12

[[11], [00], [22]]
45 23 01

]
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We seek to find the segmentation S(D) which minimizes the following quantity:

minS(D)

[
α1

∑
i

Ki−1∑
k=0

var(S(D)ik)− α2

∑
i

Ki−1∑
k=0

Ji(k)

Ki

]

Where:

• S is a function that maps a dataset D to a segmentation S(D)

• S(D)ik(j) denotes the value of the jth pixel in the kth segment of the ith image

• S(D)ik =

∑Ji(k)−1

j=0
S(D)ik(j)

Ji(k)
is the mean pixel value of the kth segment of the ith image

• var(S(D)ik) =
∑Ji(k)−1

j=0 (S(D)ik(j)− S(D)ik)
2, the variance of colors in the kth segment of the ith image

• α1 and α2 are hyperparameters weighing the importance of the variance objective against the size of segments dis-

covered. α1, α2 = 1 is satisfactory for the purposes of the example shown.

Note that the sizes of segments may not be uniform (there may be a size 4 segment and a size 2 segment in each image).

We use the following to denote these differences:

• Ji(k) is the number of pixels in the kth segment of the ith image

• Ki is the number of segments in the ith image

In the color clustering paradigm, we seek to discover the largest segments in which (non-background) pixels are spatially

connected, while minimizing the variance of color within segments. For example, according to the objective, the optimal

segmentation for the image 110022 is [[11], [00], [22]], because the variance within each segment is zero, and no larger

segment has zero variance. For simplicity in these examples, we enforce the hard constraint that the color variance is

exactly zero, but this could be extended to weigh color variance vs segment size.

Another candidate segmentation is [[1], [1002], [2]], but the variance within the segment 1002 is nonzero, so it is not

optimal.

Another candidate segmentation is each pixel individually: [[1], [1], [0], [0], [2], [2]]. The variance within each segment

is also exactly zero, but the average segment size is less than 2 (as in the segmentation above), so it is not optimal.
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4.1.1. EXAMPLE: COLOR CLUSTERING FAILURE

Given the object “1122”, one can generate the following dataset of images of 6 cells:

D = [[112200], [011220], [001122]]

As this is the color clustering paradigm, we will discover the largest segments in which pixels are spatially connected,

while minimizing the variance of color values within those segments. The optimal segmentation based on this objective

groups [00], [11], [22] together, and is then [[11], [22], [00]] for the first image.

The actual solution is [[1122], [00]] because we generated images containing the exact object [1122]. However, this

is suboptimal by the color objective because the variance within the [1122] segment makes the average variance greater

than the [[11], [22], [00]] solution, which has zero average variance. Despite the pattern “1122” only ever appearing as one

connected object, the best way to segment by color divides the object. This is analogous to the human/shirt situation; “11”

could be the head/face in this case, and “22” could represent the red shirt.

4.2. Cross-Instance Representation Similarity Approach

To correctly segment the “1122” object example, we need a method that is based on the frequency of the component

patterns in the dataset. Whereas the above objective can be calculated locally for each image, we propose the cross-instance

representation similarity objective, which takes into account variance across the dataset. From all possible segmentations

with spatially contiguous object segments, we find the partition which optimizes the following quantity:

minS(D)

α1

Ki−1∑
k=0

Ji(k)−1∑
j=0

vark[S(D)(j)]− α2

∑
i

Ki−1∑
k=0

Ji(k)

Ki


Where

• vark[S(D)(j)] =
∑

i(S(D)ik(j) − S(D)k(j))2 is the sum of variances of the pixel in the jth location of the kth

segment for the matched segments across the whole dataset

• S(D)k(j) =

∑
i
S(D)ik(j)

I is the mean value of the jth pixel in the kth segment across all images

• α1 and α2 are hyperparameters weighing the importance of the variance objective against the size of segments dis-

covered. α1, α2 = 1 is satisfactory for the purposes of the example shown.

4.2.1. EXAMPLE: CROSS-INSTANCE REPRESENTATION SIMILARITY SUCCESS

Using the example the color clustering objective failed on, we start with the object “1122” and generate a dataset of

images of 6 cells:
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D = [[112200], [011220], [001122]]
012345, 012345, 012345

Intuitively, the objective is to find the largest segments in which the variance of aligned pixels is zero. Following this,

one can see that the optimal segmentation would be

D∗ = [ [[1122], [00]], [[1122], [00]], [[1122], [00]] ]
0123 45 1234 05 2345 01

because the variances of aligned pixels in corresponding segments is exactly 0. Other segmentations are possible with

zero variance, such as the following:

D∗ = [[[11], [22], [00]], [[11], [22], [00]], [[11], [22], [00]]
01 23 45 12 34 05 23 45 01

However, the average segment size is smaller (2) than for the above (3). Note that this solution is exactly the failed

solution from the color clustering objective. An explicit procedure for discovering segments with this method is given in

appendix section 12.1.
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5. Extension to Natural Images

In the one-dimensional example, one was able to compare pixel locations directly across images because no occlusion

was allowed; the pixel positions were fixed relative to the location of the object. In natural images, however, objects occlude

not only other objects, but themselves as well, due to rotation in 3D space. In this scenario, no such pixel alignment is

possible, because the same or similar objects may appear in a variety of different orientations across images. Moreover,

a single object may appear in a variable number of pixels in different images, depending on orientation and occlusion.

Instead of discovering patterns exactly equal across images, one must discover probabilistically similar patterns throughout

the dataset.

To be able to compare patterns across images in this case, we require fixed-length feature representations of objects.

We find a function g which transforms some subset of image pixels (containing an object) I ′ into a fixed-length feature

representation vector g(I ′). In our experiments, we learn function g as part of a larger deep neural network, trained

end-to-end with mini-batch stochastic gradient descent.

Another consideration in the extension beyond the one-dimensional, non-occluding case is the number of objects K one

intends to discover. In the 1-d example, this number was discovered as part of the objective. However, in our model, the

number of segments implies the dimensions of convolutional layers. It must be known at run-time, so we manually specify

K as a hyperparameter, instead of including it as part of the optimization problem. After considering the stated differences,

one can write the new objective, extended for use on object feature representations in natural images, as follows:

minS(D)

(∑K−1
k=0 vark[S(D)]

K

)

Where

• vark(S(D)) =
∑I−1

i=0 (g[S(D)ik] − g[S(D)k])
2 is the variance of feature representations in segment k across all

images in the dataset

• g[S(D)k] =

∑I−1

i=0
g
(
S(D)ik

)
I is the mean feature representation of the kth segment across all images in the dataset

• g is a function that maps sets of pixels(segments) to feature representations. Note that each set of pixels passed to g

belongs to exactly 1 predicted object.

• S(D)ik is the set of pixels in the kth segment of the ith image produced by segmentation function S

For the previously described one-dimensional example, this objective was sufficient. However, when dealing with high

dimensional data with occlusion, this objective by itself is not sufficient. To deal with the issues arising from comparison
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objects in natural images, we instituted a representation function g. We want to use g to be useful to minimize the loss,

but also to be useful as an object representation. In addition to the extension below, we discuss further implications of

this design in section 7. If the objective is for g to minimize the variance of object representations in each object class

separately, g could trivially map every object to zero regardless of object class. This would perfectly minimize the loss, but

would completely discard the function’s usefulness as an object representation. This was not a problem in the 1-d example

because the object representations were the exact candidate objects themselves, and every possible partition of pixels was

evaluated.

As this is not computationally feasible in the high dimensional case, we prevent this degenerate minimization of to-

tal variance by adding that the variance of mean object representations should be maximized. The final cross-instance

representation similarity objective is shown below:

minS(D)

α1

(
K−1∑
k=0

vark(S(D))

)
1

K
− α2

K−1∑
k=0

(
g(S(D)k)−

[
K−1∑
k=0

g(S(D)k)

]
1

K

)2


Where

• α1 is a hyperparameter weighing the term to minimize the mean variance of segment feature representations of the

same class

• α2 is a hyperparameter weighing the term to maximize the variance between mean feature representations of different

classes

5.1. Experimental Design

The paradigm of unsupervised semantic segmentation is unique in its requirements for evaluation, and is an extremely

challenging task on large, real-world image datasets (one state-of-the-art model reports 27.7% per-pixel segmentation

accuracy on the COCO-stuff dataset [16]). With the current state of performance on real world data, it would be difficult

to clearly illustrate the difference in consequence of the two approaches. Instead, we opted to design a synthetic dataset to

concretely show a comparison of the theoretical differences in approach.

5.1.1. SYNTHETIC DATASET

We design a simple synthetic dataset to concretely illustrate the differences in approach. We have 4 different objects

(sky, lemon, apple, blueberry).
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Figure 4: Example generated images from the synthetic dataset.

This dataset is intended to show a failing of the color-clustering based approach in a simple case, much like the one-

dimensional example. The sky object has high internal color variance, so despite it appearing cohesively in every image,

one would expect color clustering methods to produce an oversegmentation of the sky into multiple segments, each with

low internal color variance. For a model built on the cross-instance object representation similarity approach, one would

expect a segmentation into the classes as given, because the appearances of these objects have minimal variance over the

dataset, despite occlusion and augmentation.

We generate 64x64 pixel images with the object images placed at a random position and a random rotation on top of the

background image. The fruit objects occlude the sky object. We generate 10000 training images, 1500 validation images,

and 1500 test images. For the validation and test images, we also compute the ground-truth segmentations during image

generation. Some example images generated for the dataset are shown in Figure 4.

5.1.2. EVALUATION

With supervised semantic segmentation, performance is evaluated either using per-pixel accuracy, or by computing the

mean intersection over union (mIoU) of predicted segment pixels.

Given an image, the segmentation model produces a segment mask for each class in the image. The segment mask is

1 for every pixel part of the object in question, and 0 otherwise. The intersection is computed by taking the area (sum)

of the element-wise product of the predicted segment mask and the ground-truth segment mask. The union is computed

by taking the sum of both masks, and subtracting the intersection. Therefore, the quotient of these values will be 1 if the

segmentation masks are exactly equal, and zero if no pixels are shared. A formula for the mIoU metric on binary segment

masks for a single image is given below:

mIoU
(
S(D)

)
=

K−1∑
k=0

 ∑J−1
j=0 S(D)kj ∗ ̂S(D)kj∑J−1

j=0

([
S(D)kj + ̂S(D)kj

]
−
[
S(D)kj ∗ ̂S(D)kj

])
 1

K
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Where

• S(D)jk = {1 if pixel j of segment k is predicted to belong to object k, 0 otherwise}

• ̂
S(D)jk = {1 if pixel j of segment k belongs to ground-truth object k, 0 otherwise}

• K is the number of ground-truth segments

• J is the number of pixels in the image

The advantage of the mIoU metric is if one of the masks completely covers the other, but contains additional pixels, it

will be penalized. In contrast, per-pixel accuracy allows for degenerate solutions where one segment covers everything. In

the dataset presented above, a solution like this could be imagined; if all pixels were predicted as part of the sky object,

this would result in a very high per pixel accuracy because the sky takes up the majority of the pixels, despite incorrectly

labeling 100% of the other three object’s pixels.

The unsupervised case presents an additional challenge to evaluation. The model is given no labels, so it outputs

segments with no predetermined order. The challenge therefore arises because one does not know which predicted segment

corresponds to which ground-truth segment in each image. To account for this, it is possible to simply compute mIoU

values for all potential bipartite mappings, and take the maximum. For larger values of K, there are other methods which

are computationally feasible [5]. Though labels are used, the consequence of the procedure is solely to provide invariance

to the order of the labels, so it does not comprise supervision.
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Figure 5: Diagram of the CIRS loss model

6. Cross-Instance Representation Similarity loss model (CIRS)

Di →S S(Di) →g g[(S(Di)]

The goal of the training procedure is to learn a function S which consumes an image Di and produces a segmentation

S(Di) that is as close as possible to the ground-truth segmentation. However, we do not have access to the ground-

truth segmentation labels, so we instead learn the segmentation function S(Di) as part of a larger neural network with

an alternative objective. We use the cross-instance representation similarity loss by simultaneously training the required

segment feature representation network g with the segmentation network S.

Each image is passed forward through the segmentation subnetwork S, which produces an output of size (K,W,H).

We use the U-Net architecture, described previously in section 2.1. A softmax function is applied along the first dimension

of this output. This output can then be interpreted intuitively as a vector of length K probabilities that each pixel in the

image belongs to each of the K segments. We then apply the argmax-in-place function: for each pixel, we set the largest

value to 1, and set the otherK−1 values in the dimension to 0. This results inK segmentation masks (one for each object)

of size (W,H). Next, we compute the element-wise product of every mask with the original image. Each of these K

masked object images is concatenated with its segment number k and passed forward through the fully connected feature

representation subnetwork g. This produces the feature vectors upon which the cross-instance representation similarity

loss can be calculated. One could use a convolutional g subnetwork, but we found that a fully connected network was more
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Figure 6: Pytorch autograd code for the argmax gradient approximation

workable for our experiments on small images.

6.1. Argmax-in-place Gradient Approximation

The whole model is trained end-to-end with backpropagation. Note that the argmax operation that takes place between

the S and g subnetworks is crucial to the training procedure so that discrete separation of predicted segments can take

place, but introduces a discontinuity in the neural network. To make it differentiable, we approximate the gradient on the

backward pass by directly copying the gradients over the discontinuity. This is workable because of the softmax function

directly before the discontinuity, which approximates the argmax-in-place function in a useful way: softmax converts the

range of values to (0, 1) with a sum of 1. The largest argument value becomes the closest to 1. In the argmax-in-place

function, the result is analogous, but the largest argument value becomes exactly 1, and all others exactly 0. In this fashion,

during backpropagation, the hard function is differentiated as if it were a softmax function.

To our knowledge, the argmax-in-place gradient approximation is novel to unsupervised methods, and believe that the

approximation could be useful to future semantic segmentation models, especially in those which are unsupervised or

where it is useful to perform a segmentation in the middle of the network as opposed to the end. There are times in both the

supervised and the unsupervised case where one would like to use a loss function that is not trivially made differentiable.

The approximation could be used in these cases. The approximation is simple to implement in the Pytorch framework by

defining a new autograd function, as shown in Figure 6.
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6.2. CIRS Model Experiment

We run the model on the synthetic dataset (section 5.1.1) for 170 epochs, calculating the mIoU metric after every epoch

on the validation set. Training hyperparameter details are given in appendix section 12.2. We save the model with the best

performance over all epochs, and finally compute the mIoU metric for this model on the test set.

6.2.1. RESULTS

The best performance achieved was a mean intersection over union (mIoU) of 45.81%. Four example images and their

segmentations predicted by the model are shown in Figure 7.

Figure 7: Output of the cross-instance representation similarity loss model

Table 1: Performance of initial CIRS model.

Cross-Instance Representation Similarity (CIRS) Loss Model
45.81%
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7. The Representation Overfitting Problem

From this experiment, we discover a problem in unsupervised models which to our knowledge has not been previously

described in the literature. We call this problem “representation overfitting,” because it is analogous to overfitting in

supervised learning. However, it is important to realize that conventional overfitting can occur in the unsupervised setting

as well, and can occur alongside with representation distribution overfitting. For the purposes of this section, we will call

conventional overfitting “label overfitting,” and the presented phenomenon as “representation overfitting.”

7.1. Supervised Paradigm Overfitting

In deep neural network models, one or more optimization objectives are specified on the output representations of

one or more layers. In other words, one identifies some goal for the characteristics of the layer distributions. In these

terms, it is useful to imagine a neural network as computing two discrete functions in series; first, it computes a feature

representation on the input, then it predicts a label given this feature representation. In actuality, these functions are not

neatly separable. Multiple layers work in concert to both learn intermediate feature representations and to transform them

into label predictions. However, a difference exists conceptually, and we identify the two separate conceptual objectives in

deep neural network models below:

1. Feature Representation Objective: Encourage the output distribution (and implicitly, the feature representation

distribution) to match a prior distribution

2. Label Correspondence Objective: Encourage the input of the model to correspond with its output label

In supervised learning, the label correspondence objective is explicit, and the representation objective is implicit. Hu-

mans have a general prior distribution in mind for the feature representation when they annotate the dataset. For example,

consider a task to train a model to determine whether a cat is in the given image or not. For ideal generality, the feature

representation would learn the characteristics of a cat relative to any other object typically encountered by humans. How-

ever, given a dataset of finite size, the model objective is instead only to learn a feature representation sufficiently adequate

to distinguish features present in the cat images from all other instances of objects present in the dataset. Because of this,

it may be sufficient for the model to only attend to a small portion of the cat; perhaps the ears are all that is required to

distinguish the cat object from any other object in the dataset. Or maybe, every cat image, by chance, has some other

feature which no non-cat image has present. A model that uses these features instead of what one would see intuitively as

“cat” features is described as “overfitting,” because the model will not generalize to images where the presence of the cat

object is not correlated with this feature.

In this way, the term “overfitting” as conventionally used in the supervised setting describes a scenario in which the

model learns an exact correspondence between the input labels and output labels, but in doing so fails to learn a model

with a feature representation matching the intuitive prior distribution. Of the objectives shown above, it fully achieves the
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label correspondence objective, yet ignores the representation objective completely.

7.2. Unsupervised Paradigm

In the supervised paradigm above, the label objective is explicit, while feature distribution objective is often implicit,

and ignored in the case of label overfitting. In unsupervised deep learning, however, no labels are available, so a common

approach is to explicitly describe the desired representation distribution. Note that nothing prevents one from explicitly

defining a desired distribution in supervised learning; in fact, some recent research on domain generalization has focused

on doing this ([32], [15]).

If we only provide an objective that describes a goal representation distribution (as we do in the CIRS model above),

the model can learn the distribution, but would be able to minimize the loss even in a case where inputs were mapped to

outputs arbitrarily. The goal is to design the architecture and training procedure such that this correspondence has a high

likelihood to match human intuition (ground-truth) without using a signal from annotations.

This pattern is present in one previously mentioned model [18], where the goal is to predict segmentations of cardiac

images using unpaired data. To clarify, in this formulation of the problem, the model is given access to a set of unlabeled

cardiac images, and a set of cardiac segmentations that do not correspond to the cardiac images. The model can be thought

of as unsupervised in the sense that it is not given labels for each pixel during training, but it still requires a collection

of example segmentations for training. It accomplishes the task with a neural network architecture with several different

modules; a segmentor module, a discriminator module, and a reconstructor module. The segmentor module maps the input

image to a predicted segmentation. The distribution of outputs from this module is encouraged to be indistinguishable

from the distribution of real segmentations by the discriminator module, which is trained adversarially. This technique is

described in [22]. The reconstructor module maps the predicted segmentation back to match the input image through L2

loss.

The discriminator module specifies the goal representation distribution. If this was the only objective, then representation

overfitting would occur – the discriminator objective ensures that the output of the first module will look like a segmenta-

tion, but does not directly enforce that the segmentation should match the input image. Here, an arbitrary mapping may be

just as good as the ground-truth in terms of loss.

This is addressed with an auxiliary reconstruction objective which has the effect of encouraging the intermediate distri-

bution (the segmentation) to maintain an intuitive correspondence to the output. In this case, an arbitrary mapping would

not be as likely as a mapping to the ground-truth, since reconstruction would be more difficult with an arbitrary mapping.

In other words, the original model without reconstruction produces a mapping between images and segmentations that is

under-constrained. By adding the inverse mapping back to the input image (the reconstruction objective), we may suf-

ficiently constrain the mapping. This idea is discussed in detail with respect to adversarially learned distributions in the

CycleGAN paper [39].
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However, it is important to note that the auxiliary reconstruction object does not completely preclude the issue. The rep-

resentation can still be overfit to the additional reconstruction objective if the model learns an arbitrary invertible mapping.

We hypothesize that conventional techniques used to combat label overfitting in supervised models, such as dropout and

regularization, could also be used to reduce representation overfitting when the problem is sufficiently constrained.

With the added auxiliary objective, the model not only has the goal distribution specified, but also increases the prob-

ability of an intuitive correspondence between inputs and outputs. The model’s results on the multi-modal whole heart

segmentation challenge dataset are very compelling, but since it requires unpaired segmentation data, it is not useful for

cases where the goal is to eliminate the need to collect a large set of segmentation annotations [18].

In conclusion, oftentimes in unsupervised learning, one is able to explicitly describe the desired representation distri-

bution or the output distribution, but not the exact correspondence between inputs and output labels. The training and

generalization problems arising from this are analogous to those arising from overfitting in the supervised case, and may

be mitigated through use of an auxiliary self-supervised loss.
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Figure 8: Segmentation output of CIRS model as representation overfitting progresses.

7.3. Reducing representation distribution overfitting in CIRS model

As one can see from the results of the previous section in Figure 7, it is possible to achieve a better than chance

result without considering representation overfitting or instituting an auxiliary (reconstruction) objective. We explore the

interaction between a reconstruction objective and the CIRS model in section 9. Below, we present another technique that

can reduce representation overfitting which we call imbalanced mini-batch training.

In the CIRS neural network model, there are two subnetworks, S and g. The purpose of S is to compute a segmentation,

but it relies on g for a loss signal which evaluates how good the segmentation is. The purpose of g is to evaluate the

segmentation, but it relies on the output distribution of S to to perform this evaluation. If one already had a feature

representation function g which had the property of producing feature vectors of high variance between different ground-

truth objects, then the training would be trivial. However, because the problem is unsupervised, we must simultaneously

learn the feature representation g and use it to improve the segmentation.

The consequence is that training trajectories are biased by initial conditions and small changes: if g does not initially

cluster the representations well, then S will adjust the segmentation to improve it according to a slightly bad representation.

This process may cycle and the segmentation will then reflect an amplification of an initially small perturbation. This

phenomenon is shown more explicitly in the training progression in Figure 8, where we train S for 100 mini-batches for

every 5 batches that we train g (so that any small change in g is immediately reflected in S).

As one can see in the figure above, epoch 11 shows a segmentation where most foreground object pixels belong to the

same segment in yellow. However, there is a bit of noise; there are yellow segment pixels in the middle of the image (not

part of any foreground object). Since we train S on 100 mini-batches in a row for every 3 g mini-batches, one can think

of this as overfitting S to the current state of g. For instance, it is possible that the segmentation shown above in epoch

11 has only slightly better loss than a segmentation with no yellow pixels not in the center. When g is next trained, it will



24

Figure 9: Segmentation result from original CIRS model (left). Segmentation result from CIRS model with imbalanced
mini-batch turn-based training procedure (right).

update the loss to accommodate these noise pixels. As the epochs progress, one can see that this initial imperfection in g is

amplified.

7.4. Imbalanced Training Procedure Experiment

In an attempt to preserve the g subnetwork’s usefulness as a feature representation and prevent subnetwork drift, we

apply the reverse training procedure of the above example. We train the S and g subnetworks in turns, but train S for 5

mini-batches for every 100 mini-batches of g.

7.4.1. RESULTS

This procedure achieves a mIoU of 64.07%. A comparison of the CIRS model with uneven training and without are

shown in Figure 9.

Table 2: Comparison of CIRS training procedures.

CIRS Model CIRS Model with imbalanced training
45.81% 64.07%
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Figure 10: Left: segmentation result from the W-Net architecture (without post-processing). Right: segmentation result
from the CIRS model with imbalanced mini-batch turn-based training.

8. Color Clustering versus Cross-Instance Representation Similarity Comparison Experiment

The color clustering approach privileges the contiguity of color within segments of an image. Given a large object with

multiple different colors, one would expect this method to produce multiple segments, one for each color range. In contrast,

the cross-instance representation similarity approach focuses on finding similar features between images. Given this same

object over multiple instances, one would expect this method to produce a single segment for this object. To illustrate the

differences of the two approaches, we train a model representing each and compare the results.

Much like the one-dimensional example where the “1122” object was divided, we show that with the color clustering

approach, the sky object is divided into 2 segments due to having high internal color variance, despite the object appearing

in every image in the same position and orientation. In Figure 10, we show several example segmentation predictions from

the validation set for each model.

8.1. Results

We train both the W-Net model (color clustering) and the cross-instance representation similarity model for 170 epochs.

We calculate the mean intersection over union (mIoU) on the validation set after every epoch, and save the model if the

mIoU is maximal. We set the number of segmentation channels to be K = 4 (one for each object as described above).

Table 3: mIoU comparison of W-Net versus proposed model

Color Clustering Cross-Instance Similarity
31.64% 64.07%
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The significant difference in mIoU illustrates the advantage of the cross-instance representation similarity approach.

One can see from the examples shown that this method learns that the background is a cohesive object because its features

are highly correlated across the dataset images: the white and the blue always appear together, so they are a single object.

In contrast, the color clustering approach views the sky as multiple objects because of the high interval color variance.

From this experiment, we notice that despite acting on an intermediate representation, W-Net’s soft normalized cut

objective does not suffer from the problem of representation overfitting. We theorize that this may be due to the auxiliary

reconstruction objective. In the next section, we explore how a model that uses reconstruction loss could effectively

perform the CIRS loss across images while avoiding representation overfitting.



27

9. Cross-Instance Properties of the Bottleneck

Instead of explicitly modeling the cross-instance representation similarity objective in the form of a loss, we theorized

that one could design an autoencoder model to implicitly encourage the CIRS objective as a consequence of the recon-

struction loss. Despite the reconstruction loss being computed on a per-image basis, the presence of a bottleneck layer

causes the model to learn cross instance representations with the desired CIRS property. Since the model must represent

each image with fewer bits than are input, the bottleneck effectively creates a compression objective. Features specific to

individual images must be represented in the encoder output. Since the bottleneck representation capacity is limited, fea-

tures common across multiple images must be omitted, and instead represented in the weights of the decoder. To achieve

a low reconstruction loss on the entire dataset, the bottleneck must therefore learn to discard features common across all

instances while preserving those features specific to each instance. In this way, the reconstruction loss of a bottleneck

autoencoder effectively operates across images despite explicitly acting on each image individually. The following thought

experiment is useful to understand this.

In this scenario, we view a trained autoencoder model as a dictionary: given an image, the encoder “looks up” the code

for the image. The decoder takes the code and looks up the corresponding image. Now, imagine one trains it on a dataset

of only 2 distinct images: a and b. The encoder need only output a single bit for the decoder to determine which image to

produce. In this fashion, one can think of the decoder as “memorizing” the images in its weights, conditioned on the code

supplied.

If the bottleneck is exactly 1 bit, then the above is in fact the only way to minimize the loss. The decoder has therefore

discovered all variation in the dataset. To put this in terms used for the CIRS loss, we imagine that the a images produce

representation 0 and the b images produce representation 1. The variance in representation within each class has been

minimized (it is in fact exactly zero) and the variance in representation between classes is a maximum given the 1 bit

representation space.

However, if the bottleneck is made larger, then this decoder “memorization” of common features does not have to occur

to the same degree; the model can encode some non-instance specific information in the bottleneck representation. This

can result in solutions that do not operate across images or optimize the CIRS objective. For instance, if the bottleneck

is made to be equal in dimensionality to the input image, then both the encoder and decoder can simply form an identity

mapping.

This is why the W-Net model does not operate across images: although W-Net is an autoencoder, it does not have a

bottleneck. If the designated number of segmentsK is greater than 3; the input is of size (3xWxH), while the segmentation

(middle) layer is of size (KxWxH). Therefore the “bottleneck” representation will have more bits than the input or output

of the model.
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9.1. Object Clustering Experiment

The bottleneck architecture causes the model to learn useful representations. Despite having no explicit loss function to

do so, an autoencoder model with a sufficient bottleneck implicitly minimizes the object representation similarity objective.

That is, in order to achieve low reconstruction loss, autoencoder models effectively maximize the variance of object repre-

sentations between dissimilar inputs across the dataset. We show that this is the case with a simple clustering experiment.

Instead of viewing segmentation as an extension of clustering, we view clustering as a special case of segmentation, where

each image contains exactly 1 segment.

We train an autoencoder with 8 fully connected layers (4 encoder layers, 4 decoder layers) on the CIFAR10 dataset. The

CIFAR10 dataset consists of 50,000 training images of size 32 by 32 pixels, in color. It contains 10 object classes like

“airplane”, “automobile”, “bird”, “cat”, etc, with each image containing a single object.

We use dropout with probability p = 0.2 and train for 50 epochs. After each epoch, we calculate the variance of the

mean feature representation between image classes on the 10,000 image test set. Note that the image labels are solely used

for calculation of the metric, and not for training the model. We set the bottleneck layer to have b hidden units, meaning

each (3x32x32) 3072 dimensional image is encoded to b dimensions. We examine the relationship between the number of

hidden units and the lowest value of the α2 term of the CIRS loss. The α1 term is not included because it has no correlation

between different training runs (because the global variance across all representations is different across runs).

9.1.1. RESULTS

Despite the bottleneck model being only trained with a reconstructive objective, one can see that it implicitly maximizes

the variance between the mean feature representations each class.

Table 4: Effect of number of bottleneck units on CIRS metric in autoencoder model.

Number of bottleneck units b 192 96 48 12
α2 term of CIRS 6.5e-4 6.6e-3 0.21 1.39
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Figure 11: Diagram of the Argmax Individual Reconstruction model.

10. Argmax Individual Reconstruction (AIR) Model

In the previous section, we argued that the presence of a bottleneck causes an autoencoder to search for a representation

that discards features common across instances while preserving instance specific details. To extend this to the segmen-

tation case, we develop a new architecture similar to the CIRS model, but take inspiration from split-brain autoencoders

[37]. We employ the same segmentation subnetwork S from the CIRS model with the argmax-in-place gradient approxi-

mation, and we mask the original image with each segment map. In contrast, after this, the masked object images are fed

individually forward through a bottleneck autoencoder specific to that object. This means that if we have K = 4 segments

allowed, we will have 4 separate autoencoders. The individual reconstructions are then combined and L2 reconstruction

loss is computed between the combined reconstruction and the origin input image.

By having a single autoencoder module for each segment, we tie the number of model parameters to the number of

segments K, which is somewhat uncommon. To keep the number of total model parameters the same in models with

varying K, one can simply decrease the number of parameters/ size of the bottleneck representation in each segment

autoencoder as the number of segmentsK increases. For example, if one had a model withK = 10 and with each segment

autoencoder having bottleneck dimensionality 20, in the comparable model withK = 20, each segment autoencoder would

be given bottleneck dimensionality 10. The same must be done with the number of weights in each layer of the encoder

and decoder.

The presence of a separate autoencoder individual to each object is key. The subnetwork S must learn to segment

such that each individual autoencoder gk can reconstruct as well as possible. Since each gk has a bottleneck, this means

that S must learn to partition pixels such that instances of each segment have as many common features as possible (α1

term of CIRS loss). In addition to the individual segment autoencoders, the whole model functions as an autoencoder as

well, where the segmentation layer is itself the bottleneck. This is an effective bottleneck because of the argmax-in-place

operation. Since there is a limited total bottleneck capacity, S must produce segments that are also as different from the
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Figure 12: Segmentation output of the Argmax Individual Reconstruction Model.

other segments as possible (α2 term of CIRS loss).

The model as a whole implicitly optimizes the CIRS objective. Because the representation learned by each individual

segment autoencoder must be useful for reconstruction, the idea is that representation overfitting could be diminished

relative to the model with explicit CIRS loss. A diagram of the model is shown in Figure 11.

The Argmax Individual Reconstruction (AIR) model extends the latter portion of the CIRS model into an autoencoder

architecture, with an added reconstruction loss objective. Apart from this, both models are the same. Subnetwork S predicts

K softmax probabilities for each pixel, of which the argument max (argmax) is taken. This is used with the original image

to compute a masked image for every predicted segment, containing only those pixels belonging to the segment. The

masked object images are then passed forward through subnetwork g and feature representations are output.

In AIR, the subnetwork g functions as the first half of an autoencoder. The output of g can be interpreted as the

“bottleneck” of the autoencoder. We showed in the previous section that bottleneck autoencoders implicitly optimize the

α2 part of the CIRS loss depending on the severity of the bottleneck.

Instead of explicitly computing the CIRS loss objective here, we pass the output features for each predicted segment

to the decoders to reconstruct the segments individually. The output segment reconstructions are then remasked by the

corresponding predicted segmentation mask. Finally, the sum is taken across the K separate segment reconstructions from

the same image, and reconstruction loss is computed. The remasking step is necessary to ensure that the latent feature

representation of each segment is only affected by that segment. Note that we do not backpropagate gradients from this

multiplication back to segmentation mask.
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10.1. Results

We train the model for 170 epochs, and as with the previous procedure, we save the model with the best performance and

evaluate on the test set. We show the resulting segmentation output in Figure 12. The model achieves a mIoU of 51.55%.

While this model did not beat the performance of the previously described CIRS model, we felt it important to mention.

We speculate that, as a generative model, the AIR model may be more difficult to train in practice, but may be less prone

to representation overfitting.

Table 5: AIR Model Performance.

Argmax Individual Reconstruction (AIR) Model
51.55%
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11. Conclusion and Future Work

In this paper, we investigated a possible weakness in the philosophy of current approaches to the problem of unsupervised

semantic segmentation. We compared two different philosophies about the nature of objects and how they influence

segmentation methods. In the first, one views the contiguity of color to be paramount to object identity. We identified

methods privileging this view “color clustering” based methods. We showed that this approach fails in cases where objects

have high internal color variance.

In the second view, an object is defined in relation to how similar or different it is from all other objects. We called

methods inspired by this viewpoint “cross-instance representation similarity” based methods. We showed with a simple

one-dimensional example how this approach succeeds where the other approach fails in clustering objects with high internal

color variance.

We created a synthetic dataset designed to illustrate the effects of different model approaches. We adapted the one-

dimensional objective to work in more complex environments, calling it the “Cross-Instance Representation Similarity”

loss objective. We proposed a novel neural network model architecture based on this CIRS loss, and showed that it

successfully segments objects in the synthetic dataset despite high internal color variance.

There are several key ideas in this project that we think will be useful for designing unsupervised semantic segmentation

models in the future. The first is the principle that loss objectives for segmentation models should effectively operate across

images. We illustrated this with the CIRS loss model, which is computed across all images in the mini-batch. However,

the designation of “effectively” is important here, because some objectives that can be computed on a single image can

still learn a principled representation across images. We illustrated this in our second proposed model, the argmax-in-place

individual reconstruction (AIR) model. Although the L2 reconstruction loss can be computed on a single input, we showed

that the bottlenecks cause the model to learn useful object representations across the whole dataset.

We identified a phenomenon present in unsupervised models which, to our knowledge, has not been previously de-

scribed in the literature, and present mitigation strategies. We called this problem “representation overfitting,” because it is

analogous to conventional “label overfitting” in the supervised case. In general, in deep neural network models, one spec-

ifies one or more optimization objectives on the output representations of one or more layers. In other words, we identify

some goal for the characteristics of the output distribution. In the supervised setting, we know what the output distribution

should look like, and we know the exact correspondence between each input and its output representation, because it is

given explicitly by the labels.

In unsupervised deep learning, however, we know what the output distribution should look like, but we do not know

the correspondence between the inputs and the outputs. The goal is to design the architecture and training procedure

such that this correspondence has a high likelihood to match human intuitive (ground-truth) without using a signal from

annotations. We showed that a correspondence between inputs and outputs could be encouraged through the use of an
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auxiliary self-supervised loss objective such as reconstruction loss.

We showed that this problem could also be mitigated in cases where one would like to design neural network modules

with discrete purposes. For the CIRS model, we wanted to have 2 modules: a segmentation subnetwork, and a feature

representation subnetwork. However, training the network end-to-end caused the distinction between these two purposes

to be lost; the intuitive functions of the networks become intertwined as training progresses. We showed that using a

turn-based, imbalanced training procedure can reduce the representation distribution overfitting effect and result in a more

intuitive outcome.

We believe that the argmax-in-place approximation, as presented in the CIRS model could be useful to future semantic

segmentation research. Conventionally, the softmax function is applied to the output of the segmentation model to produce

a vector of class probabilities for each output pixel. To compute a loss on this output, one must find a soft approximation for

the function in mind. In many supervised models, either the pixel-wise cross entropy loss is used between the ground truth

and the predicted segmentation, or a soft approximation of the mIoU is done. The argmax-in-place gradient approximation

could be used in these cases and others where soft approximations are difficult.

We foresee several ways to build off of this project. One possible extension of the AIR model would be to add the

ability to generate novel images or segments. This could be done by converting the autoencoder model to a variational

autoencoder model by learning the parameters of the bottleneck representation in the individual reconstruction subnetwork.

In this fashion, one could use an existing image segmentation, but sample from the distribution for each segment to generate

an image with similar semantics but different style. This is done in a supervised setting in Nvidia’s SPADE model [25].

Another possible extension of this project would be to find a suitable substitute for the feature representation subnet-

work g. The training procedure for the CIRS model would be much improved if one did not have to simultaneously train

both subnetworks. By first training g on some self-supervised task and freezing its weights, one eliminates the possi-

bility of representation overfitting entirely. However, in our initial attempts with self-supervised training procedures, the

representations learned only enabled the distinction between larger regions of the image.

Another possible extension is to scale up the reconstruction architecture of the AIR model. It is possible that improving

the generational capabilities of the AIR model could result in a better segmentation. We found that the AIR model was more

difficult to train, and theorize that this may be because when the segmentation subnetwork updates, the input distributions

to the individual reconstruction subnetworks change sharply. It is possible that improvements to the architecture of the

reconstruction subnetwork could result in better performance.

Unsupervised semantic segmentation is a very difficult problem, with current state of the art approaches reaching under

30% per-pixel accuracy on complex, real world datasets like COCO [16]. A viable algorithm for this problem on complex,

real world images would allow for the usage of huge amounts of unlabeled data at scale, and would represent a milestone

in machine understanding of images.
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12. Appendices

12.1. One-dimensional Cross-Instance Representation Similarity Segmentation Procedure

1. Generate a set of all possible sizes of connected/adjacent cells, starting from size 1, and going up to the maximum:

Size 1: “1”, “2”, “0”

Size 2: “11”, “12”, “22”, “20”, “00”, “01”

Size 3: “112”, “122”, “220”, “200”, “011”

Size 4: “1122”, “1220”, “2200”, “0112”

Size 5: “11220”, “12200”, “01122”

2. Count the frequency of the patterns above. If a pattern appears at least once in an image, we add 1 to the count.

Size 1: “1”:3, “2”:3, “0”:3

Size 2: “11”:3, “12”:3, “22”:3, “20”:2, “00”:2, “01”:2

Size 3: “112”:3, “122”:3, “220”:2, “200”:1, “011”:2

Size 4: “1122”:3, “1220”:2, “2200”:1, “0112”:1

Size 5: “11220”:2, “12200”:2, “01122”:2

3. Select the most frequent pattern with the largest size. In the example, many patterns are tied for the most frequency

(3) but only one is the largest: “1122.”

4. Match the selected pattern once in every image, replacing matched characters with the background symbol

5. (necessary in datasets with more than 1 object) Repeat steps 1-4 on the new replaced dataset (created in step 4)

12.2. Training/ Hyperparameter Details for CIRS, AIR models

Hyperparameter Value

Epochs 170

Batch Size 40

Dropout % 0.4

Optimizer Adam

Batch Normalization True

Learning Rate 1e-3
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