
Optimal Bid Pacing for Online Ad

Impression Vickrey Auction Markets

A Major Qualifying Project Report:

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Youwei Hu

Jeremy Macaluso

Advisors:

Marcel Blais

William Martin

Stephan Sturm

Sponsor:

Chitika, Inc.

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program

at WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

Abstract

The purpose of this MQP is to develop a model to predict costs and construct a bidding

strategy for Cidewalk, an online advertisement platform for mobile marketing developed by

Chitika, Inc.. We create algorithms to minimize the total cost of a set of Vickrey auctions

for ad impressions. We develop an equation to calculate the estimated total cost of winning

a set of auctions and from that we are able to obtain an optimal bidding price for the next

auction.

1

Acknowledgements

First, we would like to thank Professor Marcel Blais, Professor William Martin, and Professor

Stephan Sturm for advising our project and providing us with guidance and encouragement

each week.

We would also like to thank our project sponsor, Chitika, Inc, for all the support throughout

the Project. In particular, Venkat Kolluri, Joseph Regan, Stijn Peeters, and Zachary Hueras

were all instrumental for this project.

2

Authorship

Section 6, General Distributions was authored by Jeremy Macaluso with editorial help by

Youwei Hu. Section 7, Implementation, and sections related to Computer Science were

authored by Youwei Hu with editorial help by Jeremy Macaluso. All other sections were

authored and edited by both Jeremy Macaluso and Youwei Hu.

3

Contents

1 Introduction 8

2 Background 9

2.1 Ad Impressions . 9

2.2 Vickrey Auctions . 9

2.3 Cidewalk . 10

3 Mathematical & Computer Science Background 10

3.1 The Central Limit Theorem . 10

3.2 Order Statistics . 11

3.3 Big-Oh notation . 11

3.4 Data Structures . 12

3.5 Hash Table . 12

3.6 Numerical Methods . 13

3.6.1 Trapezoidal Rule . 13

3.6.2 Composite Simpson Rule . 13

3.6.3 Romberg Integration . 14

3.6.4 Gaussian Quadrature . 14

3.7 Programming Languages . 15

3.7.1 Erlang . 15

3.7.2 MATLAB . 15

4

4 Pacing and Minimizing Costs 15

5 Modeling for Specific Distributions of Next Highest Bidders 18

5.1 The Uniform Distribution . 18

5.2 The Binomial Distribution Case . 19

5.3 Multinomial Distributions . 23

6 General Distributions 25

6.1 Optimal Bids . 25

6.2 Estimated Costs and the Recursive Algorithm 25

6.3 The Faster Algorithm . 26

7 Implementation 28

7.1 Principles of Computer Science Used . 28

7.1.1 Programming Language concepts . 28

7.1.2 Documentation . 28

7.1.3 Testing . 29

7.1.4 Software Engineering Principles . 29

7.2 Computational Efficiency . 30

7.2.1 The Case of Uniform Distribution . 30

7.2.2 The Binomial Distribution . 30

7.2.3 Using Order Statistics . 31

7.3 Ideas for Implementation . 31

5

7.4 Feasibility . 32

7.5 Actual Implementation & Results . 33

7.5.1 Estimating the Number of Available Auctions to Bid 33

8 Result 33

9 Conclusions 34

10 Further Work 35

Appendices 38

A Related Terminologies 38

B Sample simulation codes 38

B.1 Unifor Distribution Simulation . 38

B.2 Order Statistics Simulation . 40

C Numerical Methods to Approximate Integral 41

C.1 Composite Trapezoidal Rule . 41

C.2 Composite Simpson Rule . 42

C.3 Romberg Integration . 43

C.4 Gaussian Quadrature . 44

D Run Time Check 46

D.1 Erlang Part . 46

6

D.2 C part . 48

7

1 Introduction

Cidewalk is a Mobile application made by Chitika, Inc. for small business owners to quickly

and easily create a localized ad campaign. When a customer purchases a $1 service, they

will get 1000 advertisement (ad) impressions in one city in one day. Cidewalk uses an ad

market to purchase ad space to fulfill the request. On this market, space for an ad can be

purchased, one at a time, by winning a Vickrey Auction.

Let’s say Mike owns a pizza restaurant in Worcester, and he has ingredients to make far

more pizzas than what the customers have been actually ordering. He decides it is more

profitable to make a special offer to customers and sell them all rather than just throwing

the perishable ingredients away. He decides to use Cidewalk to advertise the great deal

locally. He enters the content of the advertisement he wants to make, and he chooses the

service that 1000 ad impressions will be delivered at the cost of $1. Soon Bill, who is playing

a game on his iPhone at his home in Worcester, sees an advertisement saying the pizza place

half a mile away has a discount of 50% today. He thinks that this is a good deal, clicks on

the advertisement, and calls the pizza place for the delivery of a pizza. Right before Bill

actually sees the advertisement, there was something more going on. The game application

Bill was using had space for an ad. This game uses an ad market to find the most valuable

ad it can show. When Bill opens the application, the ad market sends a message to many

companies like Chitika that this space is available for purchase. Any number of companies

can bid on this space, and as a Vickrey auction, whoever bids the highest wins and pays the

amount that the second highest bidder bids. For example, if the highest value offered by

competitors of Chitika was $0.0012 and Chitika offered $0.0017, according to the rules of a

Vickrey Auction, Chitika won this bid and only has to pay $0.0012. This is how Cidewalk

works, but Bill is only one impression delivered out of 1000.

In this paper we present the background necessary for an understanding of online advertise-

ment impressions and Vickrey Auctions. We develop models by assuming other competitors

bid randomly uniformly, randomly binomially, and randomly multinomially. We also discuss

a faster algorithm to estimate the total paid price for a set of auctions to win and from that

to obtain the optimal bidding price for the next auction. We discuss comparisons of com-

plexity and errors of different methods we develop, and at last we discuss ideas and issues

regarding implementation of the method.

8

2 Background

This section introduces relevant background material related to advertising and Chitika.

2.1 Ad Impressions

An impression (in the context of online advertising) is a measure of the number of times an

ad is seen. Clicking or not is not taken into account. Each time an ad displays it is counted

as one impression. ‘Impression’ is a measurement of responses from a Web server to a page

request from the user browser, which is filtered from robotic activity and error codes, and is

recorded at a point as close as possible to opportunity to see the page by the user. Counting

impressions is the method by which most Web advertising is accounted and paid for, and

the cost is quoted in CPI (cost per impression). (Contrast CPC, which is the cost per click

and not impression-based).

For example, if you go to the internet to look for a recipe for frittatas, and go to a web

page with the recipe and see several advertisements, each of those advertisements gets one

impression. It does not matter if you do not click on the advertisement, or even if it is too

far down the page for you to see it, it counts as one impression.

2.2 Vickrey Auctions

A Vickrey auction is an auction where each participant silently bids a certain amount. The

winner is the highest bidder, and they pay an amount equal to the second-highest bid. This

is a commonly used auction style for ad impression markets for several reasons. First, it

is a blind auction, so bidders only need the information about the impression and do not

need information about other bidders. This makes the process much faster than relying on

auctions with several rounds. Second, because the winner pays the bid of the second highest

bidder, increasing or decreasing their bid does not change the amount they end up paying.

It only changes whether they win or not. This makes it more difficult to game the system.[2]

〈 Redacted by sponsor 〉

9

2.3 Cidewalk

Cidewalk is a Mobile application for small business owners to quickly and easily create a

localized ad campaign. It gives the customer the ability to easily create an ad that for one

dollar will acquire one thousand impressions in one city in one day. After a customer submits

their request, Cidewalk uses an ad market to purchase ad space to fulfill the request. On

this market, space for an ad can be purchased, one at a time, by winning a Vickrey Auction.

For each customer, Cidewalk needs to win one thousand of those auctions, from the ones

which are accptable in the correct city, in one day.

If the grocery store from the previous example were using Cidewalk, they would have paid

Chitika a dollar earlier that day. Over the course of the day, Chitika bids on many ad spaces

and would win some and lose some. By the end of the day, Chitika will win at least a

thousand auctions. The ad will receive a thousand impressions, many of which will lead to

further interest from the users. Chitika’s profit from the purchase will depend on the total

amount paid for the ad spaces.

3 Mathematical & Computer Science Background

This section provides a short introduction to several important mathematical concepts which

will be used in the paper.

3.1 The Central Limit Theorem

The Central Limit Theorem (CLT) states that the distribution of the scaled and normalized

sum of n independent and identically distributed random variables converges to the standard

normal distribution as n goes to infinity. As the sum of n independent Bernoulli random

variables is binomially distributed, this can in particular be used to approximate a binomial

distribution with large enough n by a normal distribution.

Let X be a binomial random variable based on n trials with success probability p. Then

X has approximately a normal distribution with µ = np and σ =
√
npq. In particular, for

x ∈ {0, 1, ..n},

10

P(X ≤ x) = B(x;n, p) ≈ (area under the normal curve to the left of x+ .5)

=

∫ x+.5

z=−∞

1√
npq2π

e
(z−np)2

2npq dz
(1)

.

In practice, the approximation is adequate provided that both np ≥ 10 and nq ≥ 10. [6,

section 3.3.5]

This result is useful for us because it is much faster to calculate an approximation of a normal

distribution than to calculate an approximation of a binomial distribution.

3.2 Order Statistics

Denote X a real-valued variable for a set of trials, and let x = (x1, x2, ..., xn), the observed

values of a sample of size n corresponding to this variable. The order statistic of rank k is

the kth smallest value in the data set, and is usually denoted x(k).

The distribution for the kth order statistic can be calculated using the following formula [3],

P(X(r) ≤ x) = P(there are at most n− k observations greater than x out of n trials)

=
n−k∑
j=0

(
n

j

)
P(X > x)jP(X ≤ x)n−j

(2)

Order statistics are useful as a way to find an optimal bid.

3.3 Big-Oh notation

Big-Oh notation , also known as one of Landau’s symbol, is a efficient way to describe how

fast a function grows or declines.

We say that f(n) = O(g(n)) if there exist N and c > 0 such that, for n > N

11

f(n) ≤ c · g(n). [9] (3)

3.4 Data Structures

Tree A tree is a hierarchical data structure made up of nodes and branches without any

cycles. A tree consists root, nodes, edge, leaf.

Root A root node is the top node of a tree. A root node does not have parent node.

Node A node is a data structure which contains a value. Child nodes are one or more

nodes that follow a node which is called parent node. All nodes have a parent except root

node.

Edge An edge is the connection between nodes.

Leaf Leaves are the nodes without child node. [8][10]

3.5 Hash Table

A hash table is data structure to implement dictionaries efficiently. Hash table allows us to

directly access an ordinary array and examine it in O(1) time. Therefore hash tables are a

lot efficient than any other table look up structures or search trees. [8]

12

3.6 Numerical Methods

3.6.1 Trapezoidal Rule

Assume that the interval [a, b] is divided into N intervals and denote the nodes as [xk, xk+1]

with step size h = (b−a)
N

. Use equally spaced nodes xk = a + kh, for k = 0, 1, ..., N. The

composite trapezoidal rule for N intervals can be expressed as

T (f, h) =
h

2

N∑
k=1

[f(xk−1) + f(xk)]. (4)

This is an approximation to the integral of f over [a, b], and we write∫ b

a

f(x)dx ≈ T (f, h). [11] (5)

3.6.2 Composite Simpson Rule

Assume that [a, b] is divided into 2N intervals and denote the nodes as [xk, xk+1] with step

size h = (b−a)
2N

. Use equally spaced nodes xk = a + kh for k = 0, 1, ..., 2M. The composite

Simpson rule for 2N intervals can be expressed as:

S(f, h) =
h

3

N∑
k=1

(f(x2k−2) + 4f(x2k−1) + f(x2k)). (6)

This is an approximation to the integral of f over [a, b], and we write∫ b

a

f(x)dx ≈ S(f, h). [11] (7)

13

3.6.3 Romberg Integration

We first obtain approximations by applying trapezoidal rule repeatedly with n = 1, 2, 4, 8, 16, ...,.

And we denote the result as R1,1, R2,1, R3,1, etc. Then we obtain approximations of R2,2,

R3,2, R4,2, etc. using extrapolation by,

Rk,2 = Rk,1 +
1

3
(Rk,1 −Rk−1,1), for k = 2,3,.... (8)

Then obtain approximations R3,3, R4,3, R5,3, etc., by

Rk,3 = Rk,2 +
1

15
(Rk,2 −Rk−1,2), for k = 3,4,.... (9)

In general, after we obtain the appropriate Rk,j1 approximation, we obtain the approxima-

tions from

Rk,j = Rk,j−1 +
1

4j−1 − 1
(Rk,j−1 −Rk−1,j−1), for k = j, j+1,.... [12] (10)

3.6.4 Gaussian Quadrature

Gaussian quadrature chooses the points to evaluate instead of equal spaced intervals. Gaus-

sian Quadrature method is based on Newton-Cotes formula that for the n nodes x1, x2, ..., xn

on the interval [a, b] and coefficients w1, w2, ..., wn is∫ 1

−1
f(x)dx ≈

n∑
i=1

wif(xi).x ∈ [−1, 1] (11)

Gaussian quadrature chooses xi and wi to minimize error. This choice of xi is made by

finding the roots of an nth-order Legendre polynomial Pn(x). [12][23]

14

3.7 Programming Languages

3.7.1 Erlang

Erlang is a functional language and has concurrency at the programming language level

instead of in the operating system. It is easy to conduct parallel programming. Also Erlang

does not encounter problems like shared memory corruption because there is no shared

memory. Finally, Erlang can be run on not only a single processor, but also multi-core

processor and network processors. [13]

3.7.2 MATLAB

There are millions of engineers and scientists using MATLAB, which is a high-level language

and interactive environment. Scientists and engineers use MATLAB to perform computa-

tional tasks in high level mathematics. In particular for numerical computation, MATLAB

makes it possible to analyze data, create models, and develop algorithms using a range of

methods. “Core math functions use processor-optimized libraries to provide fast execution

of vector and matrix calculations.”[18]

4 Pacing and Minimizing Costs

Since Chitika already has a business model which includes a Vickrey auction bidding price

for Cidewalk, the best way to increase profit is to minimize costs. Through the course of the

day, there are many auctions, and Cidewalk needs to win a certain number of those auctions.

Because Cidewalk has a promise of impressions, rather than a price per click, the value of the

space cannot be determined by the click rate. In some of those auctions, the competitors’

bids will be higher, and in some the competitors’ bids will be lower. If we win the auctions

where the other bidders are bidding higher, it will cost more than if we win auctions where

they bid lower.

We examine some data that has been collected. Table 4.1 depicts auction data from a 6

minute period durring which Chitika bid completely random amounts.

15

Table 4.1

16

The data only exists for auctions where Chitika won, and for each of those the amount

which Chitika paid has been recorded. This amount is the second highest bid because the

auction is a Vickrey auction. There are many data points clustered in horizontal lines in the

data. This is because many companies decide whether or not to bid a fixed price, instead of

deciding how much to bid. Thus such an auction participant bids either their fixed price or

not at all.[5]

For the problem of minimizing costs, Chitika wants to win auctions for acceptable ad spaces

over the entire day in cases where the amount they have to pay is smallest. From previous

bids they can see how often they win at any given price, and how much it costs when they

win. This cannot say very much about individual bidders, but it can be used to estimate the

distribution of the highest other bidder as a whole. Fortunately only a distribution for the

highest other bidder is needed to find an optimal bid because of the Vickrey style auction.

Let n acceptable ad requests arrive sequentially by an index i with a total requirement of r

ads to show. Denote our bidding price by xi and let ci denote the second highest bid (our

winning price). For a set of requests an optimization problem is

min
n∑

i=1

{ci : ci < xi} (12)

s.t.
n∑

i=1

{1 : ci < xi} > r (13)

.

We assume that all of the highest other bids, the ci are identically independently distributed

according to a fixed distribution. We use the notation, {ci : ci < xi} to return ci when

ci < xi, and 0 otherwise. Similarly, {1 : ci < xi} is 1 when ci < xi, and is 0 otherwise. This

is known as Iverson Notation.

17

5 Modeling for Specific Distributions of Next Highest

Bidders

We begin by trying to find a general solution by simplifying the problem. We look at the

solutions to several specific distributions of second highest bidders to see if those solutions

lead to a solution for a general distribution.

5.1 The Uniform Distribution

We first considered a uniform distribution of second highest bidders. This simplifies several

equations in predictable ways.

Assume the second highest bid is randomly uniformly distributed between 0 and 10. Let n

be the number of ads we can bid on. Let r be the number of ads we have to win. Let x be the

amount we are bidding. For the case n = 2 and r = 1 we have 2 ads to bid on, and we have

to win 1 of them. We now have to find out how much we should bid. Because we only have

to win one auction, if we win the first auction, we do not have to bid in the second auction,

and have to pay the amount of the second highest bidder in the first auction. Because we

must win one auction, if we lose the first auction, we must win the second auction, and pay

the amount of the second highest bidder in the second auction.

Because we assume that the bids of the second highest bidder are independently identically

distributed, the costs of winning the right number of auctions after we win or lose is inde-

pendent of our first bid. Because we know the distribution, for any bid x, we can find the

estimated cost for winning at that bid. Because the distribution of second highest bidders

is independently identically distributed, the total cost, based on the first bid is

min
(

(chance to win)× (average cost to win) + (chance to lose)× (average cost to lose)
)
.

(14)

The probability of winning for a bid x is x
10

. The cost when you win is the average cost,

less than the bid, or x
2
. The probability of losing is 10−x

10
. When you lose, you must win the

second auction. Therefore you must bid 10, and the average cost when you bid 10 is 5. We

18

compute the estimated cost by minimizing the following quadratic,

min
x∈[0,10]

(x
10
× x

2
+

10− x
10

× 5
)

(15)

. We can easily get an estimated cost of 3.75 at an optimal first bid of 5.

Next, we expand the equation for a more general case of r out of n bids to win. Denote the

expected cost to win all r out of n auctions as E(r, n).

We can never win more auctions than the number remaining, so n ≥ r. If n = r, then we

need to win all remaining auctions, so E(n, n) = 5n. If we do not need to win anything, we

can bid 0, so E(0, n) = 0.

By (14) we get

min
x∈[0,10]

x

10

(x
2

+ E(r − 1, n− 1)
)

+
10− x

10
E(r, n− 1). (16)

Therefore, because this is quadratic,

E(r, n) =
−1

20

(
E(r − 1, n− 1)− E(r, n− 1)

)2
+ E(r, n− 1). (17)

We notice that this is a recursive formula, which is computationally expensive but mathe-

matically accurate.

5.2 The Binomial Distribution Case

We consider next the binomial case, when the highest other bids either 0 or 1, each in 50%

of all cases. In this case there are only two possible bids: bidding to win everything, or

bidding to only win when the cost is zero. Because it is always possible to have at least r

of the remaining highest other bids be zero, we always bid to only win when the cost is zero

until we must win everything else.

19

We calculate the estimated cost to win r out of n auctions using the formula (14) above. It

is useful to arrange these values in a triangle, in the same shape as Pascal’s triangle. Denote

the estimated cost to win r out of n auctions E(r, n). Arrange the triangle of numbers with

E(r, n) in the nth row, rth from the right.

0 /1

1 0 /2

4 1 0 /4

12 5 1 0 /8

32 17 6 1 0 /16

80 49 23 7 1 0 /32

Subtract each value from the value to the right of it, effectively calculating

E(r, n)− E(r − 1, n). (18)

1 /2

3 1 /4

7 4 1 /8

15 11 5 1 /16

31 26 16 6 1 /32

Subtract each value from the value to the right of it again, effectively calculating

(
E(r, n)− E(r − 1, n)

)
−
(
E(r − 1, n)− E(r − 2, n)

)
. (19)

2 /4

3 3 /8

4 6 4 /16

5 10 10 5 /32

20

If this pattern continues, then we can build the following equation:

(
E(r, n)− E(r − 1, n)

)
−
(
E(r − 1, n)− E(r − 2, n)

)
=

(
n

r − 1

)
/2n

(
E(r, n)− 2E(r − 1, n) + E(r − 2, n)

)
=

(
n

r − 1

)
/2n

E(r, n) =

(
n

r − 1

)
/2n + 2E(r − 1, n)− E(r − 2, n).

(20)

By using substitution,

E(r, n) =

(
n

r − 1

)
/2n + 2E(r − 1, n)− E(r − 2, n)

=

(
n

r − 1

)
/2n +

(
2

(
n

r − 2

)
/2n + 2E(r − 2, n)− E(r − 3, n)

)
− E(r − 2, n)

=

(
n

r − 1

)
/2n + 2

(
n

r − 2

)
/2n + 3E(r − 2, n)− 2E(r − 3, n)

...

=
r−1∑
i=1

[
(r − i)

(
n

i

)
/2n
]

+ (r)E(1, n)− (r − 1)E(0, n).

(21)

We know that E(0, n) is zero for all n. We also know that E(1, n) = 1
2n

for all n, because if

any of them are zero, then from our bidding strategy we pay zero, and there is a 1
2n

chance

of them all being 1. Therefore, r × E(1, n) = r
2n

=
(r−0)(n

0)
2n

. We know that (r − i)
(
n
i

)
/2n is

zero when i = r Therefore, if our earlier assumption that the pattern would hold is true,

E(r, n) =
r∑

i=0

(r − i)
(
n

i

)
/2n. (22)

We now want to show that this holds true. First we generalize to an arbitrary probability

that the second highest bidder bids 1, denoted by p. Rather than p = 1
2
, the highest other

bidder has a p chance to bid 1, and a 1− p chance to bid 0. Based on similarities with the

binomial choice probability, we assume the following equation.

21

E(r, n) =
r∑

i=0

(r − i)
(
n

i

)
pn−i(1− p)i. (23)

We now want to recursively show that this correctly estimates the total cost based on the

bidding strategy we know to be correct. Fitting the formula at r = 0 and r = n is trivial.

At 0 < r < n, we want to recursively show, based on (14) that

E(r, n) = p× E(r, n− 1) + (1− p)× E(r − 1, n− 1) (24)

=p× E(r, n− 1) + (1− p) ∗ E(r − 1, n− 1)

=p×
r∑

i=0

(r − i)
(
n− 1

i

)
pn−i−1(1− p)i + (1− p)

r−1∑
i=0

(r − i− 1)

(
n− 1

i

)
pn−i−1(1− p)i

=p×
r∑

i=0

(r − i)
(
n− 1

i

)
pn−i−1(1− p)i + (1− p)

r∑
i=1

(r − i)
(
n− 1

i− 1

)
pn−i(1− p)i−1

=
r∑

i=0

(r − i)
(
n− 1

i

)
pn−i(1− p)i +

r∑
i=1

(r − i)
(
n− 1

i− 1

)
pn−i(1− p)i

=r

(
n− 1

0

)
pn(1− p)0 +

r∑
i=1

(r − i)(
(
n− 1

i− 1

)
+

(
n− 1

i

)
)pn−i(1− p)i

=r × 1× pn +
r∑

i=1

(r − i)
(
n

i

)
pn−i(1− p)i

=
r∑

i=0

(r − i)
(
n

i

)
pn−i(1− p)i

=E(r, n)

(25)

Thus the equation correctly predicts the estimated total cost to win r out of n auctions.

22

5.3 Multinomial Distributions

In the binomial case, r− i is the minimum cost when there are i auctions where the highest

other bidder bids less than zero.
(
n
i

)
pn−i(1− p)i is the probability that there are i auctions

where the highest other bidder bids zero. We can calculate those values for multinomial

distributions similarly. However, when the probability is not binomial, the minimum cost is

different from the expected cost.

In the trinomial case, there is a p1 chance that the cost is α1, a p2 chance that the cost is

α2, and a p3 chance that the cost is α3. Without loss of generality, assume α1 < α2 < α3.

The cost when there are i auctions where the next highest bidder bids α1 is i× αi plus the

cost needing to win r− i of the remaining n− i auctions, for none of which the next highest

bid is α1. That cost can be determined the same way, by summing all the probabilities and

costs of having j auctions with the next highest bid α2.

The probabilities are simple binomial probabilities, though the probability that i = r is the

binomial probability that i ≥ r. Therefore the expected cost is

r−1∑
i=0

(
n

i

)
pi1(1− p1)n−i

[
α1i+

r−i−1∑
j=0

(
n− i
j

)(p2
1− p1

)j(
1− p2

1− p1

)n−i−j
(α2j + α3(r − i− j))

+
n−i∑

j=r−i

(
n− i
j

)(p2
1− p1

)j(
1− p2

1− p1

)n−i−j
(α2(r − i))

]
+

n∑
i=r

(
n

i

)
(pi1(1− p1)n−i)(α1r).

(26)

23

We were also able to show that for arbitrary p1, p2, p3, r, n

r∑
i=0

r−i∑
j=0

n!

i!j!(n− i− j)!
(p1)

i(p2)
j(p3)

n−i−j

=
r∑

k=0

k∑
l=0

n!

l!(k − l)!(n− k)!
(p1)

l(p2)
k−l(p3)

n−k

=
r∑

k=0

k∑
l=0

n!k!

l!k!(k − l)!(n− k)!
(p1)

l(p2)
k−l(p3)

n−k

=
r∑

k=0

n!

k!(n− k)!
(p3)

n−k
k∑

l=0

k!

l!(k − l)!
(p1)

l(p2)
k−l

=
r∑

k=0

n!

k!(n− k)!
(p3)

n−k(p1 + p2)
k.

(27)

Using equation (27) to simplify expression (26), we get that the expected cost is

α1np1

r−1∑
i=0

(n− 1)!

(i− 1)!(n− i)!
pi−11 (1− p1)n−i

+α2np2

r−1∑
i=0

r−i−1∑
j=1

(n− 1)!

i!(j − 1)!(n− i− j)!
(p1)

i(p2)
j−1(1− p1 − p2)n−i−j

+α3n(1− p1 − p2)
r−1∑
i=0

r−i−1∑
j=0

(n− 1)!

i!j!(n− i− j − 1)!
(p1)

i(p2)
j(1− p1 − p2)n−i−j−1

+α3(r − n)
r−1∑
i=0

r−i−1∑
j=0

n!

i!j!(n− i− j)!
(p1)

i(p2)
j(1− p1 − p2)n−i−j

+α2r
r−1∑
i=0

n−i∑
j=r−i

n!

i!j!(n− i− j)!
(p1)

i(p2)
j(1− p1 − p2)n−i−j

−α2np1

r−1∑
i=1

n−i∑
j=r−i

(n− 1)!

(i− 1)!j!(n− i− j)!
(p1)

i−1(p2)
j(1− p1 − p2)n−i−j

+α1r

n∑
i=r

n!

i!(n− i)!
pi1(1− p1)n−i.

(28)

24

Continuing on this path did not lead to any simpler or easier to calculate results, so we

moved on to other approaches.

6 General Distributions

We consider using a general distribution, P (x) as the distribution of highest other bidders.

6.1 Optimal Bids

We show that that for all probability distributions, the bid, X(r, n) that minimizes E(r, n)

equals E(r, n− 1)− E(r − 1, n− 1). Let C(n) be the highest bid which is not ours when n

auctions remain. Consider the costs, knowing C(n). If we lose the first auction the cost is

E(r, n−1). If we win, the cost is E(r−1, n−1)+C(n). If C(n) < E(r, n−1)−E(r−1, n−1),

then winning costs less than losing. If C(n) > E(r, n − 1) − E(r − 1, n − 1), then winning

costs more than losing. If C(n) = E(r, n− 1)−E(r− 1, n− 1), then the costs are the same.

A bid of E(r, n−1)−E(r−1, n−1) means that we will always win when it is less expensive

to win, and always lose when it is less expensive to lose. This is ideal because bidding at

this value always leads to the result which causes us to bid less. All we need to do is find it.

6.2 Estimated Costs and the Recursive Algorithm

Because we can find the optimal bid based on the estimated costs of future auctions, and we

can find the estimated costs based on the optimal bid, we can create a recursive algorithm

to determine the optimal bid. Let P (x) be the probability that the highest other bidder bids

less than x, and let µC|C<x be the mean bid for the highest other bidder when he bids less

than x. We have

25

X(r, n) =


0 r = 0

∞ r = n

E(r, n− 1)− E(r − 1, n− 1) else

.

E(r, n) = min
(

chance to win× average cost to win + chance to lose× average cost to lose
)

E(r, n) = P (X(r, n))× [µC|C<X(r,n) + E(r − 1, n− 1)] +
(
1− P (X(r, n))

)
× E(r, n− 1),

(29)

therefore, given P (x), we can recursively find the estimated costs for all r and n, and can

also find the optimal bid for all r and n.

6.3 The Faster Algorithm

When we are calculating the amount to bid, we do not necessarily need to calculate the full

estimated cost for every auction. The amount we need to bid is E(r, n−1)−E(r−1, n−1).

Using the previous estimation method, we expect E(r, n−1) to be the sum of the r smallest

values of n − 1 samples. We expect E(r − 1, n − 1) to be the sum of the r − 1 smallest

values of n− 1 samples. The difference, therefore, is the rth lowest value, or the mean of the

r order-statistic of n− 1 trials. Therefore X(r, n) = E[X(r)].

This is much simpler to calculate than what is done in previous algorithms. Note that when

r = n we must win everything, and must bid higher than the maximum of the distribution.

We start by calculating the cumulitive distribution function (cdf) for the r order-statistic,

X(r).

P[X(r) ≤ x] = P[there are at most n− 1− r observations greater than x out of n− 1 trials]

=
n−1−r∑
j=0

(
n− 1

j

)
P[X > x]jP[X ≤ x]n−1−j.

(30)

From the cdf of the order statistic, we can calculate its mean, which is the amount we want

to bid, because we know that for a random variable Y , E[Y] =
∫∞
0

P[Y > x]dx. Thus,

26

E[X(r)] =

∫ ∞
0

1−
n−1−r∑
j=0

(
n− 1

j

)
P[X > x]jP[X ≤ x]n−1−jdx. (31)

Since r is often significantly smaller than n, it can be faster to calculate 1-cdf directly as

P[X(r) > x],

E[X(r)] =

∫ ∞
0

r∑
j=0

(
n− 1

j

)
P[X ≤ x]jP[X > x]n−1−jdx. (32)

Let N (µ, σ, x) be the probability that a normal distribution with mean µ, and standard

deviation σ is less than x, the cdf of the normal distribution. Let P (x) be the probability

for a single sample to be less than or equal to x, the cdf of the distribution of second highest

bids. Then we have

E[X(r)] =

∫ ∞
0

r∑
j=0

(
n− 1

j

)
P[X ≤ x]jP[X > x]n−1−jdx

=

∫ ∞
0

r∑
j=0

(
n− 1

j

)
P (x)j(1− P (x))n−1−jdx

≈
∫ ∞
0

N ((n− 1)P (x), (n− 1)P (x)(1− P (x)), r)dx.

(33)

This formula gives us a very close approximation of the optimal bid in any scenario. This

is also much faster to calculate than the recursive algorithm. This is the formula that we

reccomend to Chitika for use for bidding for Cidewalk. By using this formula at every

iteration, they will always be able to fulfill the customer’s request, and will spend less money

over time to fill those requests.

27

7 Implementation

7.1 Principles of Computer Science Used

In this section, we explain basic computer science terminology and technique used in the

implementation of our model.

7.1.1 Programming Language concepts

Programming Language Used We use MATLAB for each case’s simulations. We also

use MATLAB to determine which numerical method is best for our model in production.

For the code embedded into Cidewalk’s existing module, we use Erlang and C.

Fundamental Concepts Throughout the simulation and implementation stage, we fol-

low fundamental concepts in writing code. These include commands, definitions, values,

names, evaluations, structures, conditional expressions, parameter calling modes, functions

and routines.

It is also important to be familiar with following basic concepts and be able to apply them

in code: data types, control structures, data structures, syntax, and tools.

7.1.2 Documentation

We documented our code to satisfy following expectations:

To identify attributes, characteristics, capabilities, and qualities of a system. This is to

explain well what has been implemented.

To overview software, to check relations to an environment and construction principles to be

used in design of software components

To document actual code, interface, and algorithms.

28

7.1.3 Testing

Testing is an important part of software development. We test software to find errors by

executing a program. By testing we can improve the quality of the code and validate our

software.

The techniques we use to test our implementation are:

We use unit testing to determine whether usage procedures, operating procedures, source

code units, and modules together with associated control data are appropriate for use.

We also test the function of the code by conducting functional testing, which is done by

feeding input and checking output.

We test compatibility of code embedded to Cidewalk’s Campaign module. [14][15]

7.1.4 Software Engineering Principles

Separation of concerns Is it a principle for separating a computer program into different

units, such that each unit is given a separate concern. By following this principle, we are

able to deal with two crucial concerns of data structure: basic functionality and support for

data integrity.

Modularity We separate our model into components based on functionality and respon-

sibility by following the principle of modularity.

Abstraction We separate the behavior of software components from their implementation

by following the principle of abstraction by examine what the codes does, and how it does

it.[21][22]

29

7.2 Computational Efficiency

7.2.1 The Case of Uniform Distribution

In the case of the uniform distribution, we have equation

E(r, n) =
−1

20

(
E(r − 1, n− 1)− E(r, n− 1)

)2
+ E(r, n− 1). (34)

Here the base case is E(0, 0), and E(r, 0) is a linear recursion with E(0, 0) and r > n.

Imagine that we form a recursion tree. Each level would have the same n, since the function

always calls itself with n − 1. Now analysing the tree and separating it, we obtain a triple

recursion. After n = 0 we get a branches of linear recursion.

By analyzing the triple recursion, we can find the complexity by using a simple method.

Assume that each node uses one time unit. Since each level has 3 times the nodes’ times

of the level before, that the first level has one node and the tree has n levels. The total

time is the summation of all nodes. Thus we get the totaltime = Summ(0, n) of 3k. This

can be given by the closed formula for a geometric progression, so the complexity should be

O((1−3
n+1)
−2) which is O(3n).

7.2.2 The Binomial Distribution

In the case of the binomial distribution, we have equation

E(r, n) =
r∑

i=0

(r − i)
(
n

i

)
pn−i(1− p)i. (35)

We extract terms that do not have O(1), then we have the term

r∑
i=0

(
n

i

)
. (36)

n! can be computed in O(n).

30

r∑
i=0

can be computed in O(r). We know that r < n, so this is O(n).

Therefore, the total computation cost is O(n2).

7.2.3 Using Order Statistics

In the case of order statistics, we have,

E[X(r)] ≈
∫ ∞
0

N [(n− 1)P (x), (n− 1)P (x)(1− P (x)), r]dx. (37)

To calculate the cdf of the normal distribution, we can use erf functions built in most of

the programming languages. The complexity of erf function is O(1), and we use numerical

methods to approximate an integral whose complexity is O(1) as well. Therefore, for the

order statistics method, the complexity is O(1).

7.3 Ideas for Implementation

Since the order statistics method has the complexity of a constant, it is reasonable to use

this method for implementation. We use the built-in function erf in Erlang to calculate the

cdf of the normal distribution, and we use numerical methods that have the smallest error

for a cdf function to approximate the actual integral.

In order to find out which numerical method is best suited for our model based on the use

of order statistics, we ran MATLAB code to see which approximation method is the best fit

to the model.

Let n = 100, 000, r = 1, 000, and P (x) = 1− e−x2
. We choose this formula for P (x) because

it is an increasing function from 0 to infinity, and it is bounded by 0 and 1. However, this is

a very naive choice of P (x), and we will discuss about a better way to estimate P (x) later.

Therefore

E[X(r)] ≈
∫ ∞
0

N [(n− 1)P (x), (n− 1)P (x)(1− P (x)), r]dx

=

∫ ∞
0

1

2

[
1 + erf(

r − (n− 1)P (x)

(n− 1)P (x)
√

2
)
]
.

(38)

31

In order to approximate the integral, we test 4 numerical methods for integration and choose

one that best fits this method. Table 7.3 gives the comparison of our results using Trapezoidal

rule, composite Simpson rule, Romberg integration, and Gaussian quadrature for different

value of step size m. The value of E[X(r)] in each case is displayed in each cell in Table 7.3.

See the appendix for the code.

In the table m represents the step size for Trapezoidal rule and composite Simpson rule. d

represents the steps for Romberg integration, and k represents the Gaussian quadrature at

k, (k = 2, . . . , 5) points.

Table 7.3

We choose to implement using trapezoidal rule because it is converge to desired result fastest.

7.4 Feasibility

We test the run-time of the calculation of the formula in Erlang language which is used

by Chitika primarily for its campaign module. See the appendix for the code. In the code

32

first we calculate the cdf using the built in erf function, and then we get the approximation

of the integral of the cdf using Trapezoidal rule with 150 steps. The total run time was

250 microseconds. We have 80 milliseconds in total between receiving the request and the

deadline to bid on an auction. Therefore this algorithm is completely feasible.

7.5 Actual Implementation & Results

〈 Redacted by sponsor 〉

7.5.1 Estimating the Number of Available Auctions to Bid

As discussed in chapter 4, we use n to denote the umber of acceptable ad request arrivals

sequentially, which gives the number of auctions available for us to bid on. We create a look

up table for the value of n using the number of requests we have received in the past. The

keys are zip code, time interval, and date of the week. To provide an illustrative example, if

we need a value of n on Wednesday from 9am to 10am, it is easy and quick to obtain that

desired value of n because we only need to search through hash table.

8 Result

We implemented our method with Chitika, and ran it live in a real world setting. We did not

yet have a method to estimate P (x), so we created a naive guess on a similar scale to previous

data. We created two campaigns to each run for an hour, one in Boston and one in New

York City. Each of these had a target of 15000 impressions. We also ran identical campaigns

in the same places as control groups. One of those used the algorithm they currently used

(Default). The other used an algorithm which had been developed by a Chitika employee

recently (PS).

33

Unfortunately, we guessed a P (x), and the P (x) we used causes the module to bid very

low. For the campaign in Boston, it worked well and we believe if we could obtain a better

estimation of P (x) the result can be substantially improved. However, for the campaign in

New York, the module bid too low, therefore only 0.5%, or 88 impressions, are met.

9 Conclusions

Based on the work we have done, we have found a fast algorithm for estimating the optimal

bids in the situation that Cidewalk is in. When we need to win r out of n remaining

auctions, all with an independent identically distributed random highest other bid, with bid

distribution cdf P (x), the algorithm tells us that the amount we want to bid is

∫ ∞
0

N
[
(n− 1)P (x), (n− 1)P (x)(1− P (x)), r

]
dx. (39)

We also found an algorithm for that situation which would give a more accurate optimal bid,

much more slowly. This mutually recursive algorithm calculates the optimal bid, X(r, n),

and the estimated cost E(r, n) at all smaller values to get its answer,

34

X(r, n) =


0 r = 0

∞ r = n

E(r, n− 1)− E(r − 1, n− 1) else

E(r, n) = P (X(r, n))× (µCi|Ci<X(r,n) + E(r − 1, n− 1)) + P (X(r, n))× E(r, n− 1).

(40)

10 Further Work

Moving forward, there are several issues the model does not address. When the number of

auctions that need to be won is close to the number of auctions available to win (i.e, r ≈ n),

the model assumes that it must win the remaining auctions at any cost. Another model

which considers the value of meeting the customer’s goals would help keep high bids from

that scenario in check.

Our model also assumes that the bids of the competitors are independent from our bid.

If anyone else wants to win a certain number of auctions, then our bids will influence the

market. Looking into how we influence the market and how that should change our bidding

strategy may help save money. Also our model assumes an exact value for n, when in reality

we will only have an approximation. Finding a way to model that could also save money.

Finally when we used a guessed formula for P (x) it did not work well for a campaign in New

York City. Therefore it is very important to have an accurate estimate of P (x) to obtain an

optimal prediction of the price we want to bid.

35

References

[1] Robert J. Vanderbei. Linear Programming: Foundations and Extensions, Springer, 2007.

[2] Kuang-Chih Lee, Ali Jalali, and Ali Dasdan, Real Time Bid Optimization with Smooth

Budget Delivery in Online Advertising. Arxiv Preprint, 2013.

http://arxiv.org/abs/1305.3011

[3] Herbert A. David. Order Statistics, Wiley, 1981.

[4] Zvi Drezner. Computation of the Trivariate Normal Integral, Mathmatics of Computation

62 (1994), 289-294 American Mathematical Society, 1994.

[5] Daniel Ralph and Steven Searby (Ed.). Location and Personalisation: Delivering Online

and Mobility Services, Te Institution of Engineering and Technology, 2004.

[6] Matthew A. Carlton and Jay L. Devore. Probability with Applications in Engineering,

Science, and Technology, Springer, 2014.

[7] Lan V. Truong. A Novel Time-Varying Coding Scheme for the Gaussian Broadcast Chan-

nel with Feedback, Arxiv Preprint, 2014.

http://arxiv.org/abs/1404.2520

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2009.

[9] William J. Martin, MA533/CS525M: Hardness vs. Randomness, 2003. Lecture Notes.

http://users.wpi.edu/~martin/TEACHING/533/2003/notes/notes.pdf

[10] Donald Knuth. The Art of Computer Programming: Fundamental Algorithms, Third

Edition. Addison-Wesley, 1997.

[11] J.H. Matthews. Numerical Methods. 2nd ed. United States of America: Prentice Hall.

1992

[12] Richard L. Burden and J.Douglas Fairs. Numerical Analysis, 9th Edition. Richard Strat-

ton, 2010.

[13] Franceso Cesarini and Simon Thompson. Erlang Programming. O’Reilly. 2009.

36

[14] Michael Johnson. Application Management: What you Need to Know For IT Operations

Management, 2011

[15] Khalid A. Buragga and Noor Zaman. Software Development Techniques for Constructive

Information Systems Design. 2013.

[16] Joan Van Tassel and Lisa Poe-Hofield. Managing Electronic Media: Making, Moving

and Marketing Digital Content. Focal Press, 2010

[17] Ariel Ortiz. Teaching concurrency-oriented programming with Erlang, SIGCSE ’11 Pro-

ceedings of the 42nd ACM technical symposium on Computer science education, Pages

195-200, 2011.

[18] MathWorks. Features of MATLAB. Last time checked the website: 04-30-2015.

http://www.mathworks.com/products/matlab/features.html

[19] Bruce Cameron Brown. How to Use the Internet to Advertise, Promote and Market

Your Business Or Web Site. Atlantic Publishing Group, 2006.

[20] Roger S. Pressman. Software Engineering. A Practioner’s approach, 6th Edition,

McGraw-Hill, 2007

[21] Ian Sommerville. Software Engineering, 6th Edition, Pearson, 2000

[22] Vadim Yakovlev. Numerical Methods for Calculus & DE. Course Web page. Last time

checked: 4-30-2015.

http://users.wpi.edu/~vadim/NM_I/MATLAB/B14_M-Scripts.html

[23] Justin Boyer. Gaussian Quadrature. 2012. Lecture Notes.

http://www.math.utah.edu/~gustafso/s2012/2270/web-projects/

LAGaussianQuadrature.pdf

37

Appendices

A Related Terminologies

Here we explain some important advertising terminologies.

CPM : CPM represents cost per thousand advertisement impressions. To say an ad was

purchased at 1 CPM means that if one thousand spaces at the same price would cost $1.

Therefore the space cost $0.001.

Click : A click means a vistor interacts with an advertisement. This means the visitor actually

clicks on an ad and goes to the advertiser’s destination.

Targeting : “Targeting is purchasing ad space on Web sites that match audience and campaign

objective requirements. ” Brown (2006, p.82) [19]

Visit : A visit means a Web user with a unique address opening a Web site for the first time

that day. “The number of visits is roughly equivalent to the number of different people that

visit a site. ” Brown (2006, p.329) [19]

B Sample simulation codes

B.1 Unifor Distribution Simulation

We use MATLAB to run simulation because it is intended primarily for numerical computing,

and it is very easy for fast prototyping.

% x is our bid price for each auction

function x = x_test(r,n)

if r >= n

x=2.5;

elseif r > 0

38

x=1.5;

else

x=0.5;

end

end

% p is randomly generated highest bid other than us

function p = p_uniform()

p = rand()*10;

end

% [Won, Cost] will output auctions we won and the total cost

function [Won,Cost] = A(r,n,p,x)

Won = 0;

Cost = 0;

while n > 0

pt = p_test();

xt = x_test(r,n);

if pt <= xt

Won = Won +1;

r = r-1;

n = n-1;

Cost = Cost + pt;

else

n = n-1;

end

end

39

B.2 Order Statistics Simulation

% x is our bid price for each auction

function y = x_UniformOrderstats(r,n)

f = @(x) normcdf(r,n.*(x./10),n.*(x./10).*(1 - x./10));

y= integral(f,0,10);

end

end

% p is randomly generated highest bid other than us

function p = p_test()

p=floor(rand()+1.5);

end

% [Won, Cost] will output auctions we won and the total cost

function [Won,Cost] = A(r,n,p,x)

Won = 0;

Cost = 0;

while n > 0

pt = p_test();

xt = x_test(r,n);

if pt <= xt

Won = Won +1;

r = r-1;

n = n-1;

Cost = Cost + pt;

else

n = n-1;

40

end

end

C Numerical Methods to Approximate Integral

C.1 Composite Trapezoidal Rule

% [Won, Cost] will output auctions we won and the total cost

function I = trap(f,a,b,m,n,r)

% f is the function to be integrated

% a is lower bound

% b is upper bound

% m is the step size

% n is bids left

% r is bids we have to win

% p is the pdf, here we chose pdf to be 1-exp(-x^2),

% However, in order to change the interval of the integration from 0 to

% infinity, we need to change interval based on Monte Carlo methods, and

% original p(x) equals to:

p = @(x) 1-exp(-x^2/(x-1)^2);

% f is the cdf of normal distribution we get using central limit theorem

f = @(x) ((1/2).*(1+(erf((r-(n-1).*p(x))/((n-1).*p(x).*sqrt(2)))))).*(1/1-x^2);

%

% The function finds integral of f using composite trapezoid rule

%

h = (b-a)/m; S = feval(f,a);

%

41

for i = 1 : m-1

x(i) = a + h*i

S = S + 2*feval(f,x(i));

end

%

S = S + feval(f,b); I = h*S/2

C.2 Composite Simpson Rule

function I = Simp(f,a,b,m,n,r)

% f is the function to be integrated

% a is lower bound

% b is upper bound

% m is the step size

% n is bids left

% r is bids we have to win

% p is the pdf, here we chose pdf to be 1-exp(-x^2),

% However, in order to change the interval of the integration from 0 to

% infinity, we need to change interval based on Monte Carlo methods, and

% original p(x) equals to:

p = @(x) 1-exp(-x^2);

% f is the cdf of normal distribution we get using central limit theorem

f = @(x) ((1/2).*(1+(erf((r-(n-1).*p(x))/((n-1).*p(x).*sqrt(2))))));

%

% The function finds integral of f using composite simpson rule

%

h = (b-a)/m; S = feval(f,a);

%

for i = 1 : 2 : m-1

x(i) = a + h*i

42

S = S + 4*feval(f,x(i))

end

for i = 2 : 2 : m-1

x(i) = a + h*i

S = S + 2*feval(f,x(i))

end

%

S = S + feval(f,b); I = h*S/3

C.3 Romberg Integration

function [W] = Romb(f,a,b,d,n,r)

% f is the function to be integrated

% a is lower bound

% b is upper bound

% m is the step size

% n is bids left

% r is bids we have to win

% p is the pdf, here we chose pdf to be 1-exp(-x^2),

% However, in order to change the interval of the integration from 0 to

% infinity, we need to change interval based on Monte Carlo methods, and

% original p(x) equals to:

p = @(x) 1-exp(-x^2);

% f is the cdf of normal distribution we get using central limit theorem

f = @(x) ((1/2).*(1+(erf((r-(n-1).*p(x))/((n-1).*p(x).*sqrt(2))))));

%

%The function finds the integral of f on the interval [a,b] using

%d steps of Romberg integration (or accelerated Simpson’s Rule).

%

T = zeros(d+1, d+1);

43

%

for k = 1 : d+1

m = 2^k;

T(1,k) = Simp(f,a,b,m,n,r);

end

%

for p = 1 : d

q = 16^p;

for k = 0 : d-p

T(p+1, k+1) = (q*T(p, k+2) - T(p, k+1))/(q-1);

end

end

%

for i = 1 : d+1

table = T(i, 1 : d-i+2);

disp(table)

end

%

W = T(d+1,1);

end

C.4 Gaussian Quadrature

function I = Gauss(f,a,b,k,n,r)

% f is the function to be integrated

% a is lower bound

% b is upper bound

% m is the step size

% n is bids left

% r is bids we have to win

44

% p is the pdf, here we chose pdf to be 1-exp(-x^2),

% However, in order to change the interval of the integration from 0 to

% infinity, we need to change interval based on Monte Carlo methods, and

% original p(x) equals to:

p = @(x) 1-exp(-x.^2);

% f is the cdf of normal distribution we get using central limit theorem

f = @(x) ((1/2).*(1+(erf((r-(n-1).*p(x))/((n-1).*p(x).*sqrt(2))))));

% The function finds integral of f on the interval [a,b] using

% Gaussian quadrature at k (k = 2, ..., 5) points

%

t = [-0.5773502692 -0.7745966692 -0.8611363116 -0.9061798459;

0.5773502692 0.0 -0.3399810436 -0.5384693101;

0.0 0.7745966692 0.3399810436 0.0;

0.0 0.0 0.8611363116 0.5384693101;

0.0 0.0 0.0 0.9061798459]

c = [1.0 0.5555555556 0.3478548451 0.2369268850;

1.0 0.8888888889 0.6521451549 0.4786286705;

0.0 0.5555555556 0.6521451549 0.5688888889;

0.0 0.0 0.3478548451 0.4786286705;

0.0 0.0 0.0 0.2369268850]

%

% Transformation of the interval of integration

x(1 : k) = 0.5*((b-1).*t(1:k,k-1) + b + a);

%

y = feval(f,x);

%

cc(1:k) = c(1:k,k-1);

cd = cc’;

%

int = y*cd;

I = int*(b-1)/2

45

[22]

D Run Time Check

D.1 Erlang Part

-module(wpi).

-export([n/2,n/3,bid/2,bid/3]).

-on_load(init/0).

-define(SQRT2, math:sqrt(2)).

% Trapezoid integration

% Guard statement (when ...) protects against invalid ranges

% F -> Function to integrate

% N -> Number of checks to perform across the range

% A -> Start of the range

% B -> End of the range

integrate(F, N, A, B) when N > 0, A < B ->

% Determine the total range of our integration

Range = B - A,

% Add up the midpoints

Sum = lists:foldl(fun(I, Sum) ->

% X is the point to check in this iteration

X = A + (Range * I / N),

Sum + F(X)

end, 0.0, lists:seq(1, N)),

46

% Now add the endpoints

Sum2 = Sum + (F(A) + F(B)) / 2.0,

Sum2 * Range / N.

% Defines the CDF for a given R and N.

% Note: math:erf/1 is unavailable on Windows platforms

cdf(R, N) ->

fun (X) ->

PX = p(X),

Mu = (N - 1) * PX,

Sigma = (N - 1) * PX * (1 - PX),

0.5 * (1 + math:erf((R - Mu) / (Sigma * ?SQRT2)))

end.

% Basic model for win rate of bids

p(X) ->

fix(1.0 - math:exp(-(X * X))).

% Fix for rounding errors; lim x -> 0; lim x -> infinity

fix(X) when X < 0.00000001 -> 0.00000001;

%fix(X) when X == 1 -> 0.99999999;

fix(X) when X > 0.999999999 -> 0.999999999;

fix(X) when X > 0, X < 1 -> X.

% Integrate CDF(R,N) across X ranging from 0 to R

% This is an improper integral, as I’ve been told the proper integral

% should be from -infinity to R.

n(R, N) ->

n(R, N, trunc(1.5 / 0.01)).

n(R, N, Iterations) ->

integrate(cdf(R, N), Iterations, 0, 1.5).

% These functions lead to the NIF or C++ implementation

% of the above algorithm.

47

bid(R, N) ->

bid(R, N, 1.5 / 0.01).

bid(R, N, It) ->

do_bid(float(R), float(N), float(It)).

do_bid(_R, _N, _It) ->

erlang:nif_error({not_loaded, wpi_nif}).

% Load the NIF library

init() ->

PrivDir = case code:priv_dir(?MODULE) of

{error, bad_name} ->

EbinDir = filename:dirname(code:which(?MODULE)),

AppPath = filename:dirname(EbinDir),

filename:join(AppPath, "priv");

Path ->

Path

end,

erlang:load_nif(filename:join(PrivDir, wpi_nif), 0).

D.2 C part

#include <erl_nif.h>

#include <math.h>

#include <functional>

#define SQRT2 1.4142135623730951

// Erlang NIFs are supposed to use C, so we need

// to build like we’re a C library.

extern "C" {

// We really want to limit x as it approaches 0 and 1,

// but we can only represent so many digits, so let’s

48

// simulate the limit as best we can.

inline double fix(double x) {

if (x < 0.0000000000001f) {

x = 0.0000000000001f;

} else if (x > 0.9999999999999f) {

x = 0.9999999999999f;

}

return x;

}

// Basic win-rate estimation

inline double p(double x) {

return fix(1.0 - exp(-(x * x)));

}

// Integrate with the trapezoidal rule using it iterations

double trapezoid(std::function<double(double)> f, double it, double from, double to) {

double sum = 0.0f,

c = 1.0f,

range = to - from;

// We should really be iterating with an integer, but

// then I would have to explicitly cast it to prevent

// implicit conversion to integer during calculation.

for (; c <= it; c += 1.0f) {

double x = from + (range * c / it);

sum += f(x);

}

sum += (f(from) + f(to)) / 2.0f;

return sum * range / it;

}

49

// Our exported function. Grabs the supplied Erlang terms,

// converts them to our C types, and kicks the whole thing

// off.

static ERL_NIF_TERM wpi_nif_bid(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {

double r = 0,

n = 0,

i = 0;

// If we receive anything but doubles for the arguments,

// return badarg.

if (!enif_get_double(env, argv[0], &r)) return enif_make_badarg(env);

if (!enif_get_double(env, argv[1], &n)) return enif_make_badarg(env);

if (!enif_get_double(env, argv[2], &i)) return enif_make_badarg(env);

// This is our CDF function, implemented as a lambda so

// that we can readily capture the r and n values.

std::function<double(double)> cdf = [r, n] (double x) {

double px = p(x),

mu = (n - 1.0f) * px,

sigma = (n - 1.0f) * px * (1.0f - px),

res = (0.5f * (1.0f + erf((r - mu) / (sigma * SQRT2))));

return res;

};

// Now we convert the result of integration back to an

// Erlang term and return it to the VM.

return enif_make_double(env, trapezoid(cdf, i, 0.0f, 1.5f));

}

// These inform the VM of the module we expect to be tied to

// and which functions in that module we replace.

static ErlNifFunc nif_funcs[] = {

{"do_bid", 3, wpi_nif_bid}

50

};

ERL_NIF_INIT(wpi, nif_funcs, NULL, NULL, NULL, NULL)

}

51

