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Abstract

We have considered the problem in which a biased sample is selected from a finite

population, and this finite population itself is a random sample from an infinitely large

population, called the superpopulation. The parameters of the superpopulation and the

finite population are of interest. There is some information about the selection mechanism

in that the selection probabilities are linearly related to the measurements. This is typical

of establishment surveys where the selection probabilities are taken to be proportional to

the previous year’s characteristics. When all the selection probabilities are known, as in

our problem, inference about the finite population can be made, but inference about the

distribution is not so clear. For continuous measurements, one might assume that the the

values are normally distributed, but as a practical issue normality can be tenuous. In

such a situation a transformation to normality may be useful, but this transformation will

destroy the linearity between the selection probabilities and the values. The purpose of this

work is to address this issue. In this light we have constructed two models, an ignorable

selection model and a nonignorable selection model. We use the Gibbs sampler and the

sample importance re-sampling algorithm to fit the nonignorable selection model. We have

emphasized estimation of the finite population parameters, although within this framework

other quantities can be estimated easily. We have found that our nonignorable selection

model can correct the bias due to unequal selection probabilities, and it provides improved

precision over the estimates from the ignorable selection model.

In addition, we have described the case in which all the selection probabilities are un-

known. This is useful because many agencies (e.g., government) tend to hide these selection

probabilities when public-used data are constructed. Also, we have given an extensive

theoretical discussion on Poisson sampling, an underlying sampling scheme in our models

especially useful in the case in which the selection probabilities are unknown.
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Chapter 1

INTRODUCTION

Inference of quantities, that determine the distribution from which a finite population

is generated, can usually be made with a random sample from that finite population. For

example, if a random sample is drawn from the finite population, and the sample values

come from a normal distribution, it is easy to make inference about the parameters of the

distribution or the finite population parameters. However, if individuals in the population

have unequal probabilities to be sampled, purposively or not, then a biased inference of

the quantities may thus result. This problem is usually referred to as selection bias. The

problem is more complex, if the sample values do not follow a simple normal distribution.

In practice, the selection probability πi for each individual in a finite population often

has the folowing structure,

πi = β0 + β1yi + ei, i = 1, . . . , N

where yi, i = 1, . . . , N comprise the finite population from an unknown distribution; β0, β1

are unknown regression coefficients; ei, i = 1, . . . , N are the errors, a random sample from

a normal distribution with mean 0 and variance σ2
e . If, in addition, one can assume that the

yi come form a normal distribution with mean µ and variance σ2, inference can be made

about µ and the finite population mean. However, this approach has the problem that the

πi are not random variables (i.e., they are pure numbers specified by the design). Thus,

this approach introduces an undesirable source of variation.

An alternative procedure is to take

yi = β0 + β1πi + ei, i = 1, . . . , N.

Using the sampled yi, one can easily make inference about the finite population. However,
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this approach can not be used to make inference about the parameters of the superpopula-

tion because we can not model the yi in two different ways. Also, inference about the finite

population mean may require a transformation to normality.

In addition to these problems, in sample surveys the yi are typically not normally dis-

tributed. The question then arises, “What procedure can be used to obtain inference for

both the finite population mean and the superpopulation mean when there is selection bias

and the data are not normally distributed?”

There are two general approaches to inference about the superpopulation parameters

when there is informative sampling; i.e., use either an ignorable or a nonignorable model.

In the nonignorable model the selection probabilities are related to the responses, and in the

ignorable model they are not; see Sugden and Smith (1984), or for a brief discussion, Krieger

and Pfeffermann (1992). We have used a nonignorable model. Referring to the ignorable

model Pfeffermann, Krieger and Rinott (1998) state that “A different approach in wide use

to deal with the effects of informative sampling is to replace the ordinary sample estimates or

estimating equations by weighted analogies obtained by weighting the sample observations

inversely proportional to the sample selection probabilities. The use of this approach is

restricted in general to point estimation and does not permit the use of standard inference

tools such as likelihood based inference or residual analysis. Probabilistic statements require

large sample normality assumptions.”

As noted in the quotation from Pfeffermann et al. (1998), the ignorable model uses

weighted sample quantities or estimating equations to estimate superpopulation parameters.

For example, Pfeffermann, Skinner, Holmes, Goldstein and Rasbash (1998) use probability-

weighted iterative generalized least squares (PWIGLS) with a scaling technique starting

with the “census” likelihood. You and Rao (2002) use a two-step approach to obtain design-

consistent small area estimates utilizing survey weights.

For the estimation of a finite population quantity, the problem is more complex than

inference for the superpopulation parameters because if there is a bias which tends to make

the sampled values “large”, the nonsampled values will tend to be “small” (e.g., Patil and

Rao 1978, Krieger and Pfeffermann 1992). Such an adjustment could be carried out using

our approach, but is very difficult to do using the other nonignorable methodologies that
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have been proposed.

Recent research on inference using samples from finite populations has tackled several

difficult problems, including the presence of a selection bias and the availability of only a

limited amount of information about the sample design. Chambers, Dorfman and Wang

(1998), henceforth CDW, assume that one wishes to model the population process that yields

the finite population of survey variables. They assume that the only information about the

survey design available to the survey analyst is the set of first-order inclusion probabilities for

the sampled units. While CDW provide a brief theoretical framework for their (maximum

likelihood) procedure, they note that “it is almost impossible to proceed without fixing ideas

on an example.” The example that they use is a generalization of one presented by Krieger

and Pfeffermann (1992) whose objective is to investigate inferential methods when there is

a selection bias. Thus, CDW analyze a situation where there is limited information about

the survey design and there is a selection bias. While the model that CDW examine is of

interest because it permits a theoretical investigation of this complicated situation, it is of

somewhat limited practical value because it assumes that the finite population is generated

as a random sample from a normal distribution.

Nandram and Sedransk (2004) relax this assumption by requiring only a transformation

to normality. The purpose of their paper is to demonstrate, by examples, the value of using

Bayesian methods in complicated sample survey situations such as this one; i.e., where

there is selection bias and limited sample information. While completely general solutions

to such problems are not available because of marked differences in the assumptions, their

specification should be close to those seen in many surveys. For example, in establishment

surveys the selection probability is often proportional to a measure of size which is linearly

related to the variable of interest.

Pfeffermann, Krieger and Rinott (1998) consider problems similar to the one investigated

in Nandram and Sedransk (2004) in that they assume that the first-order selection proba-

bilities are related to the response variables and these probabilities are known only for the

sampled units. To make inference for the superpopulation parameters they derive marginal

likelihoods using weighted distributions in the spirit of Patil and Rao (1978). However,

to obtain the joint likelihood they have to use asymptotic arguments to justify combining



4

the marginal likelihoods. Moreover, their methodology permits inference only for the su-

perpopulation parameters. In their framework, extension to inference for finite population

parameters is difficult; See Krieger and Pfeffermann (1992) and Pfeffermann and Sverchkov

(1999) for related work. To incorporate selection bias, Malec, Davis, and Cao (1999) use a

hierarchical Bayesian method to estimate a finite population mean when there are binary

data. Difficulty in including the selection probabilities directly in the model forces them to

make an ad hoc adjustment to the likelihood function and to use a Bayes empirical Bayes

(i.e., not a full Bayesian) approach.

Burgos and Nandram (2003) discussed a situation with selection bias where inclusion

probabilities of all individuals in the population are known. By introducing exterior variables

φi, i = 1, . . . , N into the model and then setting all the φi to be 0 except φN , they successfully

included the selection bias in the model. In Chapter 2 of this paper, we discuss the same

situation by a slight different approach. We also introduce in the exterior variables φi, i =

1, . . . , N − 1 to include the selection bias. Using a non one-to-one transformation and

some complex algebraic operations, we successfully exclude all the exogenerous variables

in the model (i.e., our method does not include φN ). Besides, we do not restrict the

topic only in the case where the finite population is generated as a random sample from

a normal distribution. In chapter 3, we extend our topic to a generalized case where only

a transformation to normality is required. In chapter 4, we present a real case where our

generalized model discussed in chapter 3 is appropriate and applicable.

For data simulation of the models, we devised two sampling methods in our paper for

a situation where individuals in the population are sampled with unequal inclusion prob-

abilities and without replacement. One is called PPS sampling, that is first we calculated

the cumulative first-order inclusion probabilities for each individual in the population, not-

ing that sum of these probabilities should be equal to the sample size n. Then we draw

a random number u from Uniform(0, 1) and calculate u + (k − 1), k = 1, . . . , n; we pick

up the individuals whose cumulative first-order inclusion probabilities interval includes a

u + (k − 1). Note that because the first order inclusion probability is supposed to be no

greater than 1, thus there are no replicates in a sample. The other one is called Poisson

sampling. That is for each individual, we draw a random number u from Uniform(0, 1). If u
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is less than the individual’s inclusion probability, then the individual will be included in the

sample, otherwise excluded. This procedure is run for all the individuals, keeping a sample

only when the number of individuals included in the sample is exactly the desired sample

size n; otherwise the procedure is restarted for all the individuals in the population. As the

expectation of the number of individuals to be included is exactly n, we may expect high

efficiency of this sampling method.

The plan of this thesis is as follows. In Chapter 2 we discuss the situation in which

the selection probabilities are “proportional” to the population values which are assumed

to be normally distributed. In Chapter 3 we discuss the more important and practical

situation in which the selection probabilities are “proportional” to to the population values

which are transformed to satisfy this linearity assumption. Also, in this situation under

a further transformation, the transformed population values, are assumed to be normally

distributed. We use the Gibbs sampler and the SIR algorithm to perform the computations.

In Chapter 4, we present an illustration using an example on natural gas production. In

Appendix A, we show how to estimate the selection probabilities when they are all assumed

to be unknown, but where our linearity assumption is expected to hold. In Appendix B, we

present a theoretical discussion on modified Poisson sampling.
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Chapter 2

MODEL WITH ALL INCLUSION PROBABILITIES KNOWN

2.1 Model Assumption

We consider a situation in which there is a selection bias when a sample is drawn from a

finite population. Let πi, i = 1, . . . , N denote the set of selection probabilities, 0 ≤ πi ≤ 1

and πi are all known. Let yi denote the corresponding response variable, i = 1, . . . , N . Then

we assume that

πi ∝ β0 + yi + ei, i = 1, . . . , N

where ei are errors. That is, the sample design is informative, and the πi are “proportional”

to the β0 + yi with noise in the proportionality. Now any sample design must satisfy∑N
i=1 πi = n, the sample size. Thus,

πi =
n(β0 + yi + ei)
N(β0 + y + e)

, i = 1, . . . , N

where y =
∑N

i=1yi

N and e =
∑N

i=1ei

N .

Now let νi = β0 + yi + ei, i = 1, . . . , N where νi is a latent variable, we have

πi =
nνi

Nν
, i = 1, . . . , N.

Note that because 0 ≤ πi ≤ 1, the νi must all be non-negative or non-positive. We take

νi ≥ 0, i = 1, . . . , N . We also take ci = N
n πi, i = 1, . . . , N , thus

∑N
i=1 ci = N .

We assume that the response variables

yi|µ, σ2 iid∼ Normal(µ, σ2), i = 1, . . . , N.

This is a standard assumption for a random sample drawn from the population also. How-

ever, because of the selection bias, this assumption fails for both the sampled individuals
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and the non-sampled individuals. Let y
˜

s denote the vector of sampled values, and y
˜

ns the

vector of non-sampled values. Then the vector of all population values is y
˜

= (y
˜
′
s, y

˜
′
ns)

′.

2.2 Main Results

Given β0, µ, σ2, σ2
e , (νi, yi) are independent with joint density function, it follows that

f(νi, yi|β0, µ, σ2, σ2
e) =

1√
2πσ2

e

e
− 1

2σ2
e
(νi−β0−yi)

2
1√

2πσ2
e−

1
2σ2 (yi−µ)2

Φ
(

β0+µ√
σ2+σ2

e

) ,

i = 1, . . . , N, νi > 0, −∞ < yi < ∞

where Φ(t) =
∫ t
∞

1√
2π

e−
1
2
z2

dz, −∞ < t < ∞, the standard normal cumulative distribution

function. Thus, the joint density function

f(ν
˜
, y
˜
|β0, µ, σ2, σ2

e) =

∏N
i=1

{
1√
2πσ2

e

e
− 1

2σ2
e
(νi−β0−yi)

2

× 1√
2πσ2

e−
1

2σ2 (yi−µ)2
}

{
Φ
(

β0+µ√
σ2+σ2

e

)}N
,

νi > 0, −∞ < yi < ∞, i = 1, . . . , N.

Next we incorporate the restriction that πi = nνi
Nν , i = 1, . . . , N . We consider the trans-

formed variable φi = νi − ciν, i = 1, . . . , N − 1. Note that because the πi sum to n, we

have N − 1 degrees of freedom. This is different from Burgos and Nandram (2003). So

that our transformation is from a N -dimension space to a (N − 1)-dimension space. Let

φ
˜
′
(N) = (φ1, . . . , φN−1), C

˜
′
(N) = (c1, . . . , cN−1). Then,

φ
˜

(N) = B′ν
˜

where B′ =
(

IN−1 −
C
˜

(N)1
˜
′
N−1

N , − C
˜

(N)

N

)
, the N−1×N transformation matrix. It follows

that,

f(φ
˜

(N), y
˜
|β0, µ, σ2, σ2

e) =
1

|2πσ2
eB

′B|
1
2

×

∏N
i=1

1√
2πσ2

e−
1

2σ2 (yi−µ)2{
Φ
(

β0+µ√
σ2+σ2

e

)}N

× e−
1
2(φ(N)−B′(y

˜
+β01

˜
))′(B′Bσ2

e)
−1(φ(N)−B′(y

˜
+β01

˜
)).
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We incorporate the restrictions by taking φ
˜

(N) = 0
˜
. That is,

f(φ
˜

(N) = 0
˜
, y

˜
|β0, µ, σ2, σ2

e) =
1

|2πσ2
eB

′B|
1
2

e
− 1

2σ2
e
(y
˜
+β01

˜
)′B(B′B)−1B′(y

˜
+β01

˜
)

×

∏N
i=1

1√
2πσ2

e−
1

2σ2 (yi−µ)2{
Φ
(

β0+µ√
σ2+σ2

e

)}N
.

It is convenient to make the re-parameterization, ρ = σ2

σ2+σ2
e
, so that σ2

e = 1−ρ
ρ σ2. Thus our

new parameters are β0, µ, σ2, ρ and note that 0 < ρ < 1. It is interesting that we now have

ρ bounded. Before we had β0, µ, σ2, σ2
e all unbounded. Thus we have

f(φ
˜

(N) = 0
˜
, y

˜
|β0, µ, σ2, ρ) =

(
ρ

1− ρ

)N−1
2
(

1
2πσ2

) 2N−1
2 1

|B′B|
1
2

×e
− 1

2σ2

{
ρ

1−ρ
(y
˜
+β01

˜
)′B(B′B)−1B′(y

˜
+β01

˜
)+

∑N
i=1(yi−µ)2

}
{

Φ
(

(β0+µ)
√

ρ
σ

)}N
. (2.1)

Note that B is a matrix of constants (i.e., it does not depend on y
˜
, β0, µ, σ2, ρ).

Let Ii denote the selection indicators, i = 1, . . . , N , and I
˜

the vector of selection indicators.

Thus,

P
(
I
˜
, φ
˜

(N), y
˜
|β0, µ, σ2, ρ

)
= P

(
I
˜
|φ
˜

(N), y
˜
, β0, µ, σ2, ρ

)
×P

(
φ
˜

(N),y
˜
|β0, µ, σ2, ρ

)
where P

(
I
˜
|φ
˜

(N), y
˜
, β0, µ, σ2, ρ

)
=
∏N

i=1

{
πIi

i (1− πi)1−Ii

}
under Poisson sampling. Because

the πi are all known and indicators Ii are all observed, the term P
(
I
˜
|φ
˜

(N), y
˜
, β0, µ, σ2, ρ

)
is

a constant. For a full Bayesian analysis, we take β0, µ, σ2, ρ independent with

P (β0) = 1, −∞ < β0 < ∞,

P (µ) = 1, −∞ < µ < ∞,

σ−2 ∼ Gamma
(

a

2
,
b

2

)
, a = .002, b = .002

and

ρ ∼ Uniform(0, 1).
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Thus, the joint prior density is

π(β0, µ, σ2, ρ) ∝
(

1
σ2

)a
2
+1

e−
b

2σ2 , −∞ < β0, µ < ∞, 0 < ρ < 1, σ2 > 0.

Note that this is a proper prior in σ2 and ρ but not in β0, µ. Thus, by Bayes’ theorem the

joint posterior density of (y
˜

ns, β0, µ, σ2, ρ) is

π
(
φ
˜

(N), y
˜

ns, β0, µ, σ2, ρ|I
˜
, y
˜

s

)
∝ P

(
I
˜
, φ
˜

(N), y
˜
, β0, µ, σ2, ρ

)
= P

(
I
˜
, φ
˜

(N), y
˜
|β0, µ, σ2, ρ

)
π(β0, µ, σ2, ρ).

Now, incorporating the constraints we have

π
(
φ
˜

(N) = 0
˜
, y
˜

ns, β0, µ, σ2, ρ|I
˜
, y
˜

s

)
∝ P

(
I
˜
, φ
˜

(N) = 0
˜
, y
˜
|β0, µ, σ2, ρ

)
π(β0, µ, σ2, ρ).

Thus, posterior inference about y
˜

ns, β0, µ, σ2, ρ is based on π
(
φ
˜

(N) = 0
˜
, y
˜

ns, β0, µ, σ2, ρ|I
˜
, y
˜

s

)
,

where

π(φ
˜

(N) = 0
˜
, y

˜
, β0, µ, σ2, ρ|I

˜
, y
˜

s) ∝
(

1
σ2

)a
2
+1

e−
b

2σ2

(
ρ

1− ρ

)N−1
2
(

1
σ2

) 2N−1
2

× e
− 1

2σ2

{
ρ

1−ρ
(y
˜
+β01

˜
)′B(B′B)−1B′(y

˜
+β01

˜
)+

∑N
i=1(yi−µ)2

}
{

Φ
(

(β0+µ)
√

ρ
σ

)}N
.

Because the joint posterior density function is complex, we use Markov chain Monte Carlo

method to draw a “random” sample from it. We will show how to use the Gibbs sampler

and the sample importance re-sampling (SIR) algorithm to get the sample.

It is convenient to transform ρ to τ = ρ
1−ρ keeping y

˜
ns, β0, µ, σ2 untransformed. Thus,

π
(
φ
˜

(N) = 0
˜
, y
˜

ns, β0, µ, σ2, τ |I
˜
, y
˜

s

)
∝

(
1
σ2

)a
2
+1

e−
b

2σ2
1

(1 + τ)2
τ

N−1
2

(
1
σ2

) 2N−1
2

× e−
1

2σ2 {τ(y
˜
+β01

˜
)′B(B′B)−1B′(y

˜
+β01

˜
)+

∑N
i=1(yi−µ)2}{

Φ
(

(β0+µ)
√

ρ
σ

)}N
,

where 1
(1+τ)2

is the Jacobian of the transformation.
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2.3 Computation

To perform the computation, we write

π
(
φ
˜

(N) = 0
˜
, y
˜

ns, β0, µ, σ2, τ |I
˜
, y
˜

s

)
= KR(β0, µ, σ, τ)πa

(
y
˜

ns, β0, µ, σ2, τ |I
˜
, y
˜

s

)
(2.2)

where K is the normalization constant,

R(β0, µ, σ, τ) =

{
(1 + τ)2

[
Φ
(

(β0 + µ)
σ

√
τ

1 + τ

)]N
}−1

and

πa

(
y
˜

ns, β0, µ, σ2, τ |I
˜
, y
˜

s

)
∝ τ

N−1
2

(
1
σ2

) 2N+a+1
2

×e−
1

2σ2

{
τ(y

˜
+β01

˜
)′B(B′B)−1B′(y

˜
+β01

˜
)+

∑N
i=1(yi−µ)2+b

}
. (2.3)

Thus, we may use the Gibbs sampler to draw a sample from πa

(
y
˜

ns, β0, µ, σ2, τ |I
˜
, y
˜

s

)
and the

SIR algorithm to “convert” this sample to the one from π
(
y
˜

ns, β0, µ, σ2, τ |I
˜
, y
˜

s

)
. To perform

the Gibbs sampler under πa

(
y
˜

ns, β0, µ, σ2, τ |I
˜
, y
˜

s

)
, we need the conditional posterior density

of each parameter given all the others. First we note that

y
˜
|β0, µ, σ2, τ ∼ Normal

{
[I + τB(B′B)−1B′]−1(β0 + µ)1

˜
− β01

˜
, σ2[I + τB(B′B)−1B′]−1

}
and

(I + τB(B′B)−1B′)−1 = I − ρc(c′c)−1c′.

So

y
˜
|β0, µ, σ2, τ ∼ Normal

{
[I − ρB(B′B)−1B′](β0 + µ)1

˜
− β01

˜
, σ2[I − ρB(B′B)−1B′]

}
.

Further, we note that

B(B′B)−1B′ = I − c(c′c)−1c′ ,

where c′ = (c1, . . . , cN ) and I is the N×N identity matrix; see Appendix B. So,

y
˜
|β0, µ, σ2, τ ∼ Normal

{[
(1− ρ)I + ρ

cc′

c′c

]
(β0 + µ)1

˜
− β01

˜
, σ2

[
(1− ρ)I + ρ

cc′

c′c

]}
.
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Hence,

y
˜

ns|y
˜

s, β0, µ, σ2, τ ∼ Normal

{
µ1
˜

ns +
cs
˜
′(y
˜

s − µ1
˜

s)
τ−1c

˜
′c
˜

+ c
˜
′
sc
˜
s
c
˜
ns

+
(β0 + µ)τ

1 + τ

[
τ−1c

˜
′1
˜

+ c
˜
′
s1
˜

s

τ−1c
˜
′c
˜

+ c
˜
′
sc
˜
s
c
˜
ns − 1

˜
ns

]
,

σ2

1 + τ

[
I +

c
˜
nsc

˜
′
ns

τ−1c
˜
′c
˜

+ c
˜
′
sc
˜
s

]}
.

It is easy to show that

y
˜

ns|y
˜

s, β0, µ, σ2, τ ∼ Normal

{( µ

1 + τ
− β0

)
1
˜

ns + [λg(µ) + (1− λ)yws]C
˜

ns,

σ2

1 + τ

[
I +

τλ∑N
i=1 c2

i

C
˜

nsC
˜
′
ns

]}

where λ =
∑N

i=1 c2i∑N
i=1 c2i +τ

∑
i∈s c2 i

, g(µ) = τ(N−
∑

i∈s ci)

(1+τ)
∑N

i=1 c2i
µ and yws =

∑
i∈s ci(β0+yi)∑

i∈s c 2
i

. This form

is useful because one can deduce various scenarios about selection bias. For example, if σ2
e

is small, there is a tight linear relation between the πi and the yi. Then, if the yi are very

variable, there is selection bias, and the model can adjust for it.

The conditional posterior densities of µ, σ2, τ under πa

(
y
˜

ns, µ, σ2, τ |I
˜
, y
˜

s

)
are

β0|y
˜
, µ, σ2, τ ∼ Normal

(
yw − y

1− N
C′C

,
σ2

τN
(
1− N

C′C

)) ,

µ|y
˜
, β0, σ

2, τ ∼ Normal
(

y,
σ2

N

)
,

σ−2|y
˜
, β0, µ, τ ∼ Gamma

(
2N + a− 1

2
,

τA + H + b

2

)
,

τ |y
˜
, β0, µ, σ2 ∼ Gamma

(
N + 1

2
,

A

2σ2

)
,

where yw =
∑N

i=1 ciyi∑N
i=1 c2i

, y =
∑N

i=1 yi

N , A =
∑N

i=1(β0 + yi)2 −
[
∑N

i=1 ci(β0+yi)]2∑N
i=1 c2i

and H =∑N
i=1(yi − µ)2.

Finally, we note that we can draw y
˜

ns|β0, µ, σ2, τ, y
˜

s using the product rule. It is easy
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to show that

yn+k+1|y
˜

n+k, β0, µ, σ2, ρ ∼ Normal

{
µ +

cs
˜
′(y
˜

s − µ1
˜

s)
τ−1c

˜
′c
˜

+ c
˜
′
sc
˜
s
cn+k+1

+
(β0 + µ)τ

1 + τ

[
τ−1c

˜
′1
˜

+ c
˜
′
s1
˜

s

τ−1c
˜
′c
˜

+ c
˜
′
sc
˜
s
cn+k+1 − 1

]
,

σ2

1 + τ

[
1 +

c2
n+k+1

τ−1c
˜
′c
˜

+ c
˜
′
sc
˜
s

]}
.

Thus by the product rule,

f(y
˜

ns|y
˜

s, β0, µ, σ2, τ) =
N∏

k=n+1

f(yk|y
˜
(k), β0, µ, σ2, τ)

where y
˜
′
(k) = (y1, . . . , yk−1), k = n + 1, . . . , N .

The Gibbs sampler provides a sample Ω(h), h = 1, . . . ,M from the joint posterior density,

where Ω(h) = (y
˜

ns, β0, µ, σ2, τ). We perform the SIR algorithm by sub-sampling the Ω(h)

with weights

Wh =
R(Ω(h))∑M

h=1 R(Ω(h))
, h = 1, . . . ,M.

Then, we draw a sample from the discrete probability mass function {(Ω(h),Wh),

h = 1, . . . ,M} with replacement.

2.4 Data Simulation

For data simulation of a case where big selection bias exists, we follow the procedure as

follows:

(1) Set β0 = 0, µ = 2, σ2 = 0.2375, σ2
e = 0.0125, then ρ = .95

(2) Generate y from Normal(µ, σ2).

(3) Generate ν from Normal(β0 + y, σ2
e) using one-one sampling to get ν > 0.
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(4) Repeat step (1)− (4) until we have 100 y and ν.

(5) Calculate selection probabilities πi, i = 1, . . . , 100 for each yi using πi = νi
100ν .

(6) Draw a sample of 25 y without replacement from the population of 100y using Poisson

sampling.

(7) Pretending we don’t know the 75 non-sampled y, draw a sample of size 75 from the

joint posterior distribution as obtained in the model.

(8) Make inference about quantities we are interested in, like µ and the finite population

mean, from the sample we got in step(8)

(9) Repeat step(2)− (9) for 1000 times.

Now we may compare these inferences of the quantities with the “true” values.

Table1: Comparison of the ignorable model (IG) and the nonignorable model (NIG) in

inference of the parameter µ in the case where big the selection bias exists:

Coverage by 95% Interval

IG NIG RAVG RSTD IG NIG

1.058 0.992 0.534 0.070 0.803 0.943

Table2: Comparison of the ignorable model (IG) and the nonignorable model (NIG) in

inference of the finite population mean y in the case where big the selection bias exists:

Coverage by 95% Interval

IG NIG RAVG RSTD IG NIG

1.058 0.992 0.225 0.051 0.742 0.855



14

From the table, one can easily see that in the situation where big selection bias exists, average

estimates of µ and y by the ignorable model (IG) is 5.8% away from the true values, while

that by nonignorable is only 0.8% away from the “true” value; The average ratio of standard

deviation (RAVG) of the estimate of µ by nonignorable model to that by ignorable model is

only 0.534, which means the precision of the estimate of µ by nonignorable model is almost

as twice as the ignorable model. More precision is gained by the nonignorable model in

estimate of population mean compared with the ignorable model, (0.225). The standard

deviation of this average ratio (RSTD) is very small, say 0.070 for µ and 0.051 for y. As for

the 95% creditable interval coverage, nonignorable is much better than ignorable model for

both estimates of µ and y, say 0.943 vs 0.803 and .855 vs 0.742.

We may also reset the parameters β0 = 0, µ = 2, σ2 = 0.0095, σ2
e = 0.0005 and repeat

the procedures described as above for data simulation of a case where small selection bias

exists. Here is the result.

Table3: Comparison of the ignorable model (IG) and the nonignorable model (NIG) in

inference of the parameter µ in the case where small the selection bias exists:

Coverage by 95% Interval

IG NIG RAVG RSTD IG NIG

1.0026 0.9996 0.5327 0.069 0.938 0.949

Table4: Comparison of the ignorable model (IG) and the nonignorable model (NIG) in

inference of the finite population mean y in the case where small the selection bias exists:

Coverage by 95% Interval

IG NIG RAVG RSTD IG NIG

1.0026 0.9995 0.232 0.050 0.933 0.941
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From the table above, one can easily see that in the situation where only small selection

bias exists, ignorable model works almost as well as our nonignorable model, except that

nonignorable model attains much precision in the inference.

2.5 Appendix

2.5.1 A: Ignorable Model

The ignorable selection bias model is

yi|µ, σ ∼ N(µ, σ2), i = 1, 2, . . . , N

with prior

P (µ, σ2) ∝ 1
σ2

.

It can be shown that the 100(1−α)% highest posterior density(HPD) intervals for µ and ȳ

are

ys ±
s√
n
× tn−1,1−α/2

and

ys ±
√

1− f × s√
n
× tn−1,1−α/2

respectively, where ȳs is the sample mean, s is the sample standard deviation, f = n
N is the

sample fraction, and tn−1,1−α/2 is the 100(1− α/2)% percentile of t distribution with n− 1

degrees of freedom.

2.5.2 B: Related Facts of Matrix Operation

We present some quantities needed to evaluate the conditional posterior density of y
˜

ns.

First we note that

B′B = IN−1 −
JN−1

N
+

(1
˜

N−1 − c
˜
(N))(1

˜
N−1 − c

˜
(N))′

N
,
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so

(B′B)−1 = IN−1 + JN−1 −
(cN1

˜
N−1 − c

˜
(N))(cN1

˜
N−1 − c

˜
(N))′

c′c

where, IN−1 is the (N − 1)× (N − 1) identity matrix, JN−1 is the (N − 1)× (N − 1) matrix

of ones, 1
˜

N−1 is the (N − 1)× 1 vector of ones, and c′(N) = (c1, . . . , cN−1). It follows that

B(B′B)−1B′ = IN − c(c′c)−1c′

where c′ = (c1, . . . , cN ), and IN is the N×N identity matrix. Also,

∣∣B′B
∣∣ = 1

N

∣∣∣∣IN−1 −
JN−1

N

∣∣∣∣
{

N + (1
˜
− c

˜
(N))

′
(

IN−1 −
JN−1

N

)−1

(1
˜
− c

˜
(N))

}

But because
∣∣∣IN−1 − JN−1

N

∣∣∣ = 1
N and

(
IN−1 − JN−1

N

)−1
= IN−1 + JN−1, so

∣∣B′B
∣∣ = c′c

N2
.
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Chapter 3

GENERALIZED MODEL WITH ALL INCLUSION PROBABILITIES

KNOWN

We call our model with transformation of the measurements a generalized model.

3.1 Model Assumption

We consider a situation in which there is a selection bias when a sample is drawn from a

finite population. Let πi, i = 1, . . . , N denote the set of selection probabilities, 0 ≤ πi ≤ 1

and πi are all known. Let yi denote the corresponding response variable, i = 1, . . . , N . Then

we assume that

πi ∝ β0 + yi + ei, i = 1, . . . , N

where ei are errors. That is, the sample design is informative, and the πi are “proportional”

to the β0 + yi with noise in the proportionality. Now any sample design must satisfy∑N
i=1 πi = n, the sample size. Thus,

πi =
n(β0 + yi + ei)
N(β0 + y + e)

, i = 1, . . . , N

where y =
∑N

i=1yi

N and e =
∑N

i=1ei

N .

Now let νi = β0 + yi + ei, i = 1, . . . , N where νi is a latent variable, we have

πi =
nνi

Nν
, i = 1, . . . , N.

Note that because 0 ≤ πi ≤ 1, the νi must all be non-negative or non-positive. We take

νi ≥ 0, i = 1, . . . , N . We also take ci = N
n πi, i = 1, . . . , N , thus

∑N
i=1 ci = N .
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In practice, we may need to make transformation to bring the response variables to a

normal distribution. Here, we assume that

g(yi)|θi, σ
2 ind∼ Normal(θi, σ

2), i = 1, . . . , N.

This is a standard assumption for a random sample drawn from the population also. How-

ever, because of the selection bias, this assumption fails for both the sampled individuals

and the non-sampled individuals. Let y
˜

s denote the vector of sampled values, and y
˜

ns the

vector of non-sampled values. Then the vector of all population values is y
˜

= (y
˜
′
s, y

˜
′
ns)

′.

Note that the model implies νi ∝ ci, so there must exist a constant k such that νi = kci

for all i = 1, . . . , N . Also note that the model assumes νi = β0 + yi + ei. Thus, intuitively,

one may think about using regression method to figure out non-sampled yi, i /∈ s. That is,

with

yi = −β0 + k1ci + ei, i ∈ s

we may determine least square estimates of −β0 and k1 by regressing yi over ci for all

i ∈ s. Then we may use the obtained estimates of −β0, k1 and the given ci, i /∈ s to

determine yi, for all i /∈ s. Though, regression method can give a point estimate ai to each

yi, i = 1, . . . , N , it doesn’t take into consideration the distribution of y. However, we may

borrow the strength from regression method. We can use these point estimates ai as an

approximation to the corresponding yi, i = 1, . . . , N . Specifically, we will use a first order

Taylor’s series expansion on g(yi) at yi = ai for all i = 1, . . . , N in our model as follows.

3.2 Main Results

Given β0, θi, σ
2, σ2

e , (νi, yi) are independent with joint density function, it follows that

f(νi, yi|β0, θi, σ
2, σ2

e) =

1√
2πσ2

e

e
− 1

2σ2
e
(νi−β0−yi)

2

× |g′(yi)|√
2πσ2

e−
1

2σ2 [g(yi)−θi]
2

K(β0, θi, σ2, σ2
e)

,

i = 1, . . . , N, νi > 0, −∞ < yi < ∞

where

K(β0, θi, σ
2, σ2

e) =
∫ +∞

0

∫ +∞

−∞

1√
2πσ2

e

e
− 1

2σ2
e
(νi−β0−yi)

2

× |g′(yi)|√
2πσ2

e−
1

2σ2 [g(yi)−θi]
2

dyidνi .
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Let g(yi) = g(ai) + g′(ai)(yi − ai) + ∆i , where ai is an approximation of yi by regression

method and ∆i = g(yi)− g(ai)− g′(ai)(yi − ai) = o(yi − ai), then

f(νi, yi|β0, θi, σ
2, σ2

e) =
1√
2πσ2

e

e
− 1

2σ2
e
(νi−β0−yi)

2 1√
2πσ2

e
− (g′(ai))

2

2σ2

[
yi−

(
ai+

θi−g(ai)

g′(ai)

)]2

× |g′(yi)| e−
∆i
2σ2 {∆i+2[g(ai)−θi+g′(ai)(yi−ai)]}

K(β0, θi, σ2, σ2
e)

.

Thus, the joint density function

f(ν
˜
, y
˜
|β0, θ

˜
, σ2, σ2

e) =

{
N∏

i=1

1√
2πσ2

e

e
− 1

2σ2
e
(νi−β0−yi)

2 1√
2πσ2

e
− (g′(ai))

2

2σ2

[
yi−

(
ai+

θi−g(ai)

g′(ai)

)]2
}

×
N∏

i=1

|g′(yi)| e−
∆i
2σ2 {∆i+2[g(ai)−θi+g′(ai)(yi−ai)]}

K(β0, θi, σ2, σ2
e)

,

νi > 0, −∞ < yi < ∞, i = 1, . . . , N.

Next we incorporate the restriction that πi = nνi
Nν , i = 1, . . . , N . We consider the trans-

formed variable φi = νi− ciν, i = 1, . . . , N − 1. Note that because the πi sum to n, we have

N − 1 degrees of freedom. So that our transformation is from an N -dimension space to an

(N − 1)-dimension space. Let φ
˜
′
(N) = (φ1, . . . , φN−1), c

˜
′
(N) = (c1, . . . , cN−1). Then,

φ
˜

(N) = B′ν
˜

where B′ =
(

IN−1 −
c
˜

(N)1
˜
′
N−1

N , − c
˜

(N)

N

)
, the N − 1×N transformation matrix. It follows

that,

f(φ
˜

(N), y
˜
|β0, θ

˜
, σ2, σ2

e) =
1

|2πσ2
eB

′B|
1
2

×
(

1
2πσ2

)N
2

e−
1

2σ2 (y
˜
−e
˜
)′D(y

˜
−e
˜
)

× e−
1
2(φ

˜
(N)−B′(y

˜
+β01

˜
))′(B′Bσ2

e)
−1(φ

˜
(N)−B′(y

˜
+β01

˜
))

×
N∏

i=1

|g′(yi)| e−
∆i
2σ2 {∆i+2[g(ai)−θi+g′(ai)(yi−ai)]}

(K(β0, θi, σ2, σ2
e))

,

where, D is a diagonal matrix, D = diag[(g′(a1))
2, . . . , (g′(aN ))2] and e is column vector,

e = (a1+
θ1−g(a1)

g′(a1) , . . . , aN+θN−g(aN )
g′(aN ) )′.
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We incorporate the restrictions by taking φ
˜

(N) = 0
˜
. That is,

f(φ
˜

(N) = 0
˜
, y

˜
|β0, θ

˜
, σ2, σ2

e) =
1

|2πσ2
eB

′B|
1
2

e
− 1

2σ2
e
(y
˜
+β01

˜
)′B(B′B)−1B′(y

˜
+β01

˜
)

×
(

1
2πσ2

)N
2

e−
1

2σ2 (y
˜
−e
˜
)′D(y

˜
−e
˜
)

×
N∏

i=1

|g′(yi)| e−
∆i
2σ2 {∆i+2[g(ai)−θi+g′(ai)(yi−ai)]}

(K(β0, θi, σ2, σ2
e))

.

It is convenient to make the re-parameterization, ρ = σ2

σ2+σ2
e
, so that σ2

e = 1−ρ
ρ σ2. Thus our

new parameters are β0, θ
˜
, σ2, ρ and note that 0 < ρ < 1. It is interesting that we now have

ρ bounded. Before we had β0, θ
˜
, σ2, σ2

e all unbounded. Thus we have

f
(
φ
˜

(N) = 0
˜
, y

˜
|β0, θ

˜
, σ2, ρ

)
=
(

ρ

1− ρ

)N−1
2
(

1
2πσ2

) 2N−1
2 1

|B′B|
1
2

×
N∏

i=1

|g′(yi)| exp
{
− ∆i

2σ2 {∆i + 2 [g(ai)− θi + g′(ai)(yi − ai)]}
}

(K(β0, θi, σ2, (1− ρ)σ2/ρ))

× exp

{
− 1

2σ2

[
ρ

1− ρ
(y
˜

+ β01
˜
)′B(B′B)−1B′(y

˜
+ β01

˜
)

+ (y
˜
− e

˜
)′D(y

˜
− e

˜
)

]}
.

Note that B is a matrix of constants (i.e., it does not depend on y
˜
, β0, θ

˜
, σ2, ρ).

Let Ii denote the selection indicators, i = 1, . . . , N , and I
˜

is the vector of selection indicators.

Thus,

P
(
I
˜
, φ
˜

(N), y
˜
|β0, θ

˜
, σ2, ρ

)
= P

(
I
˜
|φ
˜

(N), y
˜
, β0, θ

˜
, σ2, ρ

)
×P

(
φ
˜

(N), y
˜
|β0, θ

˜
, σ2, ρ

)
where P

(
I
˜
|φ
˜

(N), y
˜
, β0, θ

˜
, σ2, ρ

)
=
∏N

i=1

{
πIi

i (1− πi)1−Ii

}
under Poisson sampling. Because

the πi are all known and indicators Ii are all observed, the term P
(
I
˜
|φ
˜

(N), y
˜
, β0, θ

˜
, σ2, ρ

)
is

a constant. For a full Bayesian analysis, we take β0, θi, σ
2, ρ independent with

P (β0) = 1, −∞ < β0 < ∞,

P (θi) = 1, −∞ < θi < ∞,
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σ−2 ∼ Gamma
(

a

2
,
b

2

)
, a = .002, b = .002

and

ρ ∼ Uniform(0, 1).

Thus, the joint prior density is

π(β0, θ
˜
, σ2, ρ) ∝

(
1
σ2

)a
2
+1

e−
b

2σ2 , −∞ < β0, θi < ∞, 0 < ρ < 1, σ2 > 0

Note that this is a proper prior in σ2 and ρ but not in β0, θ. Thus, by Bayes’ theorem the

joint posterior density of (y
˜

ns, β0, θ, σ
2, ρ) is

π
(
φ
˜

(N), y
˜

ns, β0, θ
˜
, σ2, ρ|I

˜
, y
˜

s

)
∝ P

(
I
˜
, φ
˜

(N), y
˜
, β0, θ

˜
, σ2, ρ

)
= P

(
I
˜
, φ
˜

(N), y
˜
|β0, θ

˜
, σ2, ρ

)
π(β0, θ

˜
, σ2, ρ).

Now, incorporating the constraints we have

π
(
φ
˜

(N) = 0
˜
, y
˜

ns, β0, θ, σ
2, ρ|I

˜
, y
˜

s

)
∝ P

(
I
˜
, φ
˜

(N) = 0
˜
, y
˜
|β0, θ

˜
, σ2, ρ

)
π(β0, θ

˜
, σ2, ρ).

Thus, posterior inference about y
˜

ns, β0, θ
˜
, σ2, ρ is based on π

(
φ
˜

(N) = 0
˜
, y
˜

ns, β0, θ
˜
, σ2, ρ|I

˜
, y
˜

s

)
,

where

π(φ
˜

(N) = 0
˜
, y

˜
, β0, θ

˜
, σ2, ρ|I

˜
, y
˜

s) ∝
(

1
σ2

)a
2
+1

e−
b

2σ2

(
ρ

1− ρ

)N−1
2
(

1
σ2

) 2N−1
2

×
N∏

i=1

|g′(yi)| exp
{
− ∆i

2σ2 {∆i + 2 [g(ai)− θi + g′(ai)(yi − ai)]}
}

(K(β0, θi, σ2, (1− ρ)σ2/ρ))

× exp

{
− 1

2σ2

[
ρ

1− ρ
(y
˜

+ β01
˜
)′B(B′B)−1B′(y

˜
+ β01

˜
)

+ (y
˜
− e

˜
)′D(y

˜
− e

˜
)

]}
.

Because the joint posterior density function is complex, we use Markov chain Monte Carlo

method to draw a “random” sample from it. We will show how to use the Gibbs sampler

and the sample importance re-sampling (SIR) algorithm to get the sample.
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It is convenient to transform ρ to τ = ρ
1−ρ keeping y

˜
ns, β0, θ

˜
, σ2 untransformed. Thus,

π
(
φ
˜

(N) = 0
˜
, y
˜

ns, β0, θ, σ
2, τ |I

˜
, y
˜

s

)
∝
(

1
σ2

)a
2
+1

e−
b

2σ2
1

(1 + τ)2
τ

N−1
2

(
1
σ2

) 2N−1
2

×
N∏

i=1

|g′(yi)| exp
{
− ∆i

2σ2 {∆i + 2 [g(ai)− θi + g′(ai)(yi − ai)]}
}

(K(β0, θi, σ2, σ2/τ))

× exp

{
− 1

2σ2

[
τ(y

˜
′ + β01

˜
′)B(B′B)−1B′(y

˜
+ β01

˜
)

+ (y
˜
′ − e

˜
′)D(y

˜
− e

˜
)

]}

where 1
(1+τ)2

is the Jacobian of the transformation.

3.3 Computation

To perform the computation, we write

π
(
φ
˜

(N) = 0
˜
, y
˜

ns, β0, θ
˜
, σ2, τ |I

˜
, y
˜

s

)
= KR(β0, θ

˜
, σ, τ)πa

(
y
˜

ns, β0, θ
˜
, σ2, τ |I

˜
, y
˜

s

)
where K is the normalization constant,

R(β0, θ
˜
, σ2, τ) =

1
(1 + τ)2

N∏
i=1

|g′(yi)| exp
{
− ∆i

2σ2 {∆i + 2 [g(ai)− θi + g′(ai)(yi − ai)]}
}

(K(β0, θi, σ2, σ2/τ))

and

πa

(
y
˜

ns, β0, θ
˜
, σ2, τ |I

˜
, y
˜

s

)
∝ τ

N−1
2

(
1
σ2

) 2N+a+1
2

× exp

{
− 1

2σ2

[
τ(y

˜
′ + β01

˜
′)B(B′B)−1B′(y

˜
+ β01

˜
)

+ (y
˜
′ − e

˜
′)D(y

˜
− e

˜
) + b

]}
.

Note that

B(B′B)−1B′ = I − c
˜
(c
˜
′c
˜
)−1c

˜
′
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where c
˜
′ = (c1, . . . , cN ) and I is the N×N identity matrix. Thus

πa

(
y
˜

ns, β0, θ
˜
, σ2, τ |I

˜
, y
˜

s

)
∝ τ

N−1
2

(
1
σ2

) 2N+a+1
2

× exp

{
− 1

2σ2

[
τ(y

˜
′ + β01

˜
′)(I − c

˜
(c
˜
′c
˜
)−1c

˜
)(y

˜
+ β01

˜
)

+ (y
˜
′ − e

˜
′)D(y

˜
− e

˜
) + b

]}
.

Now we may use the Gibbs sampler to draw a sample from πa

(
y
˜

ns, β0, θ
˜
, σ2, τ |I

˜
, y
˜

s

)
and the

SIR algorithm to “convert” this sample to the one from π
(
y
˜

ns, β0, θ
˜
, σ2, τ |I

˜
, y
˜

s

)
. To perform

the Gibbs sampler under πa

(
y
˜

ns, β0, θ
˜
, σ2, τ |I

˜
, y
˜

s

)
, we need the conditional posterior density

of each parameter given all the others. First we note that

y
˜
|β0, θ

˜
, σ2, τ ∼ Normal

{
ΣDe

˜
+ (ΣD − I)β01

˜
, σ2Σ

}
where

Σ =
[
(τI + D)−τc

˜
(c
˜
′c
˜
)−1c

˜

]−1

= (τI + D)−1+
1
k

(c
˜
∗)(c

˜
∗)′

c
˜
∗ = (τI + D)−1c

˜
k = c

˜
′ (τ−1c

˜
− c

˜
∗) > 0

(τI + D)−1 = diag
[

1
τ + (g′(a1))

2 , . . . ,
1

τ + (g′(aN ))2

]
.

Hence,

y
˜

ns|y
˜

s, β0, θ
˜
, σ2, τ ∼ Normal

{
e
˜
ns+

c
˜
′
s(y

˜
s − e

˜
s)

k1
c
˜
∗
ns+τ

[
τ−1e

˜
′c
˜
− e

˜
′c
˜
∗ + e

˜
′
sc
˜
∗
s

τ−1c
˜
′c
˜
− c

˜
′c
˜
∗ + c

˜
′
sc
˜
∗
s

c
˜
∗
ns − e

˜
∗
ns

]
+β0τ

[
τ−11

˜
′c
˜
− 1

˜
′c
˜
∗ + 1

˜
′
sc
˜
∗
s

τ−1c
˜
′c
˜
− c

˜
′c
˜
∗ + c

˜
′
sc
˜
∗
s

c
˜
∗
ns − 1

˜
∗
ns

]
,

σ2

(
(τIns + Dns)

−1+
1
k1

(c
˜
∗
ns) (c

˜
∗
ns)

′
)}
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where

k1 = k + c
˜
′
sc
˜
∗
s = τ−1c

˜
′c
˜
− c

˜
′c
˜
∗ + c

˜
′
sc
˜
∗
s

c
˜
∗
s = (τIs + Ds)

−1c
˜
s

c
˜
∗
ns = (τIns + Dns)

−1c
˜
ns

e
˜
∗
s = (τIs + Ds)

−1e
˜
s

e
˜
∗
ns = (τIns + Dns)

−1e
˜
ns

1
˜
∗
s = (τIs + Ds)

−11
˜

s

1
˜
∗
ns = (τIns + Dns)

−11
˜

ns

(τIns + Dns)
−1 = diag

[
1

τ + (g′(an+1))
2 , . . . ,

1
τ + (g′(aN ))2

]
.

However, if we can assume

θi = α0 + α1xi, i = 1, . . . , N

where xi are known and α0, α1 are the covariates of our interest, then the conditional

marginal density

f(y
˜

ns|y
˜

s, β0, α
˜
, σ2, τ) = f(y

˜
ns|y

˜
s, β0, θ

˜
, σ2, τ),

where α
˜

= (α0, α1)
′. The conditional posterior densities of β0, α

˜
, σ2, τ under πa

(
y
˜

ns, β0, α
˜
, σ2, τ |I

˜
, y
˜

s

)
are

β0|y
˜
, α
˜
, σ2, τ ∼ Normal

(
yw − y

1− N
c
˜
′c
˜

,
σ2

τN
(
1− N

c
˜
′c
˜

)) ,

α
˜
|y
˜
, β0, σ

2, τ ∼ Normal
(
(x
˜
′x
˜
)−1

x
˜
′g
˜
, σ2(x

˜
′x
˜
)−1
)

,

σ−2|y
˜
, β0, α

˜
, τ ∼ Gamma

(
2N + a− 1

2
,

τA + G + b

2

)
,

τ |y
˜
, β0, α

˜
, σ2 ∼ Gamma

(
N + 1

2
,

A

2σ2

)
,

where yw =
∑N

i=1 ciyi∑N
i=1 c2i

, y =
∑N

i=1 yi

N , x
˜
′ =

 1 . . . 1

x1 . . . xN


g
˜

=
(
g(a1)+g′(a1)(y1 − a1) , . . . , g(aN )+g′(aN )(yN − aN )

)′,
A =

∑N
i=1(β0 + yi)2 −

[
∑N

i=1 ci(β0+yi)]2∑N
i=1 c2i

, G =
∑N

i=1 [g′(ai)(yi − ei)]
2.
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Finally, we note that we can draw y
˜

ns|β0, α
˜
, σ2, τ, y

˜
s using the product rule. It is easy

to show that

yn+k+1|y
˜

n+k, β0, α
˜
, σ2, τ ∼ Normal

{
en+k+1+

c
˜
′
n+k(y˜

n+k − e
˜
n+k)

k
(n+k)
1

c∗n+k+1+

τ

[
τ−1e

˜
′c
˜
− e

˜
′c
˜
∗ + e

˜
′
n+kc˜

∗
n+k

k
(n+k)
1

c∗n+k+1 − e∗n+k+1

]
+

β0τ

[
τ−11

˜
′c
˜
− 1

˜
′c
˜
∗ + 1

˜
′
n+kc˜

∗
n+k

k
(n+k)
1

c∗n+k+1 − 1∗
]

,

σ2

[
1∗ +

(
c∗n+k+1

)2
k

(n+k)
1

]}

where, c∗n+k+1 = cn+k+1

τ+(g′(an+k+1))2
, e∗n+k+1 = en+k+1

τ+(g′(an+k+1))2
, 1∗ = 1

τ+(g′(an+k+1))2
, and k

(n+k)
1 =

τ−1c
˜
′c
˜
− c

˜
′c
˜
∗ + c

˜
′
n+kc˜

∗
n+k . Thus by the product rule,

f(y
˜

ns|y
˜

s, β0, α
˜
, σ2, τ) =

N∏
k=n+1

f(yk|y
˜
(k), β0, α

˜
, σ2, τ)

where y
˜
′
(k) = (y1, . . . , yk−1), k = n + 1, . . . , N .

The Gibbs sampler provides a sample Ω(h), h = 1, . . . ,M from the joint posterior density,

where Ω(h) = (y
˜

ns, β0, α
˜
, σ2, τ). We perform the SIR algorithm by sub-sampling the Ω(h)

with weights

Wh =
R(Ω(h))∑M

h=1 R(Ω(h))
, h = 1, . . . ,M.

Then, we draw a sample from the discrete probability mass function {(Ω(h),Wh),

h = 1, . . . ,M} with replacement.

3.4 Discussion

Our model can be easily extended to a more generalized model. That is, in the model

assumption, instead of assuming πi ∝ β0 + yi + ei, i = 1, . . . , N , we may assume

πi ∝ β0 + h(yi) + ei, i = 1, . . . , N
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where h(yi) is a function of yi. Obviously, this is a more generalized assumption. To handle

this more generalized model, we may transform yi into zi, where zi = h(yi). Hence,

πi ∝ β0 + zi + ei, i = 1, . . . , N.

Now, instead of having g(yi)|θi, σ
2 iid∼ Normal(θi, σ

2), i = 1, . . . , N , we will have a function

g∗ such that

g∗(zi)|θ∗i , (σ∗)
2 iid∼ Normal(θ∗i , (σ

∗)2), i = 1, . . . , N.

Thus, we can use our model above over zi to make inference. It will be interesting to see

how well our model works in the situation where traditional regression method are not

appropriate, i.e. we want to determine parameters β0, β1 in a linear relation

νi = β0 + β1yi + ei

given νi and yi, i = 1, . . . , N . Where, ei ∼ Normal(0, σ2
e) and σ2

e is known, but yi ∼

Normal(µ, σ2). This situation can not be well addressed by traditional regression method

because it treats yi as constants. However, in fact, the yi, i = 1, . . . , N , are observed

with unequal probabilities. Hence, the traditional regression method may give some biased

estimates for β0, β1. Our model may address the situation of this kind very well.

3.5 Data Simulation

For data simulation, we set g(y) = ln y. Then we use both the ignorable and nonignorable

models and follow the same procedure of data simulation as described in Chapter 2. Also,

1000 datasets are generated. For abbreviation, we only list the result with regard to the

inference by the two models of population mean y in the table as below.
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Table 5: Comparison of the ignorable model with transformation (IGT) and the nonignor-

able model with transformation (NIGT) in case where small selection bias exists.

Coverage by 95% Interval

IG NIG RAVG RSTD IG NIG

1.0107 1.0013 0.1052 0.0265 0.902 0.939

Table 6: Comparison of the ignorable model with transformation (IGT) and the nonignor-

able model with transformation (NIGT) in case where big selection bias exists.

Coverage by 95% Interval

IG NIG RAVG RSTD IG NIG

1.0156 1.0020 0.1049 0.0313 0.885 0.918

Thus, the results are similar to those in the untransformed case.
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Chapter 4

EXAMPLE ON NATURAL GAS PRODUCTION

4.1 Data description

In this chapter, we will apply our generalized model to a real problem to illustrate the

potential of our model. Because the data are confidential, we have to hide its source; we

will refer to the agency that provides the data as the source. We were told to consider

a set of 492 natural gas companies as the population; the response was the average daily

natural gas production for each of these 492 companies in 2002. We were provided with all

492 selection probabilities but only 31 companies were sampled using PPS sampling. The

probabilities of selection are proportional to the average daily gas production in 2000. We

were also told that the average daily production of these 492 companies is 518 million cubic

feet.

In the table below we provide the names of the 31 sampled operators, together with the

sample probabilities and the 2002 natural gas production in millions of cubic feet. We note

that

(a) The 2002 daily Natural Gas Production, yi, by each of the 492 US operators.

(b) The selection probability πi for each of the 492 US operators in a sample survey for

year 2002, which is proportional to the corresponding 2001 production.

(c) In this case, we are informed of the 31 sampled operators out of the total 492 US

operators. For convenience, we labled the sampled operators as i = 1, . . . , 31 and

nonsampled operators as i = 32, . . . , 492.

We want to make inference about the average daily gas production of these 492 companies

using the biased sample of 31 companies. Specifically, we will consider point and interval

estimation of the finite population mean as we obtained in Chapter 3.
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Table 4.1: Average daily natural gas production (millions of cubic feet) for a sample of 31
operators in 2002 and the selection probabilities

Operator Selection probability Production

AMERADA HESS CORP 0.0592 455
ANADARKO PETROLEUM CORP 0.1721 1567
APACHE CORP 0.0630 1258
BP AMOCO PLC 0.5634 5090
BURLINGTON RESOURCES OIL, GAS CO 0.1700 2241
CABOT OIL, GAS CORP 0.0296 228
CHESAPEAKE OPERATING INC 0.0667 502
CHEVRON USA PRODUCTION CO 0.4182 3715
CONOCO INC 0.2972 2539
DEVON ENERGY CORP 0.2419 1525
EL PASO PRODUCTION CO 0.2177 1941
EQUITABLE PRODUCTION CO 0.0394 309
EXXON MOBIL PRODUCTION CO 0.4005 3712
FOREST OIL CORP 0.0339 295
HUNT OIL CO 0.0330 180
KAISER-FRANCIS OIL CO 0.0238 192
KERR MCGEE, OG CORP 0.1421 463
MARATHON OIL CO 0.1034 905
MERIT ENERGY CO 0.0182 337
NEWFIELD EXPLORATION CO 0.0715 449
OCEAN ENERGY INC 0.0554 505
PIONEER NATURAL RESOURCES USA 0.0468 395
QUESTAR EXPLORATION AND PRODUCTION 0.0345 183
SAMSON RESOURCES CO 0.0552 421
SHELL OIL CO 0.2876 2596
STONE ENERGY CORPORTATION 0.0355 273
THE HOUSTON EXPLORATION 0.0378 264
TOM BROWN INC 0.0200 202
TOTAL FINA ELF S.A 0.0446 222
UNOCAL CORP 0.1361 1251
WALTER OIL, GAS CORP 0.0316 294

NOTE: A PPS sample of 31 natural gas operators was taken from a popultaion of 492. The
data are confidential, and we are not allowed to discuss the source of the data.
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4.2 Simple Model Checking

Before applying our model, we have to check that the assumptions of our model are satisfied

by the real data.

(a) Normality of the Data.

The sampled yi, i = 1, . . . , 31 shows a dramatic right skewed pattern, which says

they are not normal at all. Thus, first we need a transformation to bring the samples

back to a normal distribution. We have tried many transformations with the Box-Cox

family, but all of them fail the test of normality. After a time-consuming search we

have found the transformation

g(y) = ln (
√

y −
√

120).

As y in our data are all well above 120, this transformation will pose virtually no

problem. In accordance with the variable names of our generalized model, we refer

g(yi) as zi here. The Shapiro-Wilk normality test for the transformed samples gives

p-value 0.1180 and Kolmogorov-Smirnov test gives p-value 0.7022. Thus, for this

transformation we do not reject the normality of the transformed samples. The Normal

QQ plot also shows normality holds in the transformed sampled data zi, i = 1, . . . , 31.



31

The source has generously provided an overall information of all 492 gas production. It

checked the normality of the transformed 2002 production data of the 492 US operators

under the same transformation. The Shapiro-Wilk normality test for the transformed

data gives p-value 0.653 and Kolmogorov-Smirnov test gives p-value 0.8966. The QQ

plot of the source also shows normality of the transformed data zi, i = 1, . . . , 492.

(b) Linear Relation between h(yi) and πi.

The source has also checked the relation between yi and πi according to our generalized

model. It comes out that it is simply

h(y) = y.

The linear relation holds between yi and πi for all the 492 US operators. That is

πi = 0.0064681 + 0.0001092yi + ei

where, ei is the residual, conforming to a normal distribution.

(c) Normality of the residues ei

Finally, the source also checked the normality of the ei. The Shapiro-Wilk normality

test for the transformed samples gives p-value 0.7476 and Kolmogorov-Smirnov test
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gives p-value 0.9973, which strongly suggest the normality of the residues. The Nor-

mal QQ plot below also shows that normality holds in the residuals zi, i = 1, . . . , 492.

Now, since all the conditions of our generalized model are satisfied, we may apply it

to the real data.

4.3 Computational Issues

We first regress yi over ci where, ci = 492
31 πi for all i = 1, . . . , 31, it turns out to be yi =

576.64ci − 52.93, i = 1, . . . , 31; then we plug the given ci, i = 1, . . . , 495 in the formula

ai = 576.64ci − 52.93, i = 1, . . . , 495 to determine ai, i = 1, . . . , 495. We will use the ai as

approximation to yi in our model in the Taylor expansion of g(y). For your reference, here

we give the derivative of the transformation function as required in using the generalized

model,

g′(y) =
1

2
√

y(
√

y −
√

120)
.
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4.4 Result

Table 7: Comparison of Ignorable Model and Nonignorable Model on Rescaled Real Data

in inference of population mean z, where z = y/120.

Statistical Fact of Rescaled Real Data (z = y/120)

N n zs S2
zs

z S2
z

492 31 9.2766 111.1827 4.3166 18.0322

Model ẑ σẑ 95% interval for z

NIG 5.1483 0.0190 5.1359 5.1766

IG 15.3664 12.3576 6.2080 38.5749

Note that the nonignorable model gives a point estimate of population mean z of 5.1483.

This is much closer to the true population mean 4.31655 (communicated to us by the source)

than 15.3664 by ignorable model. The standard deviation for the estimate by nonignorable

model is 0.0190 much smaller than that by ignorable model. However, the 95% interval for

z by both models doesn’t contain the true value. This is because the selection bias is so

large that the models can not correct the bias very well.
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Appendix A

MODEL WITH ALL INCLUSION PROBABILITIES UNKNOWN

A.1 Model Assumption

Let πi, i = 1, . . . , N denote the set of selection probabilities, 0 ≤ πi ≤ 1. Here we assume

that the πi are all unknown. Let yi denote the corresponding response variable, i = 1, . . . , N .

Then we assume that

πi ∝ β0 + yi + ei, i = 1, . . . , N

where ei are errors. This assumption is reasonable for establishment survey. That is, the

sample design is informative, and the πi are “proportional” to the β0 + yi with noise in the

proportionality. Now any sample design must satisfy
∑N

i=1 πi = n, the sample size. Thus,

πi =
n(β0 + yi + ei)
N(β0 + y + e)

, i = 1, . . . , N

where y =
∑N

i=1yi

N and e =
∑N

i=1ei

N .

Now letting νi = β0 + yi + ei, i = 1, . . . , N where νi is a latent variable, we have

πi =
nνi

Nν
, i = 1, . . . , N.

Note that because πi ≥ 0, the νi must all be non-negative or non-positive. We take νi ≥

0, i = 1, . . . , N . Because 0≤πi≤1, it follows that,

0 ≤ νi ≤
1

n− 1

∑
j 6=i

νj .

Note that the selection indicator Ii are all observable, Ii = 1 if i ∈ s and Ii = 0 if i /∈ s.

We also assume that the response variables

yi|µ, σ2 iid∼ Normal(µ, σ2), i = 1, . . . , N.
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This is a standard assumption for a random sample drawn from the population also. How-

ever, because of the selection bias, this assumption fails for both the sampled individuals

and the non-sampled individuals. Let y
˜

s denote the vector of sampled values, and y
˜

ns the

vector of non-sampled values. Then the vector of all population values is y
˜

= (y
˜
′
s, y

˜
′
ns)

′.

A.2 Main Results

Given β0, µ, σ2, σ2
e , (Ii, νi, yi) are independent with joint density function, it follows that

P
(
I
˜
, ν
˜
, y
˜
|β0, µ, σ2, σ2

e

)
= P

(
I
˜
| ν
˜
, y
˜
, β0, µ, σ2, σ2

e

)
× P

(
ν
˜
| y
˜
, β0, µ, σ2, σ2

e

)
P
(
y
˜
| β0, µ, σ2, σ2

e

)
=

{
N∏

i=1

(nνi

Nν

)Ii
(
1− nνi

Nν

)1−Ii

}
N∏

i=1

1√
2πσ

e−
1

2σ2 (yi−µ)2

×

∏N
i=1

1√
2πσe

e
− 1

2σ2
e
(νi−β0−yi)

2

∫
V (n)

∏N
i=1

1√
2πσe

e
− 1

2σ2
e
(νi−β0−yi)2

dν
˜

,

where

ν
˜

= (ν1, ν2, . . . , νN ), V (N) = {ν
˜
| 0 ≤ νi ≤

1
n− 1

∑
j 6=i

νj , i = 1, . . . , N}.

It is convenient to do a re-parameterization. We take ρ = σ2

σ2+σ2
e
, so that σ2

e = 1−ρ
ρ σ2. Thus

our new parameters are β0, µ, σ2, ρ and note that 0 < ρ < 1. It is interesting that we now

have ρ bounded. Before we had β0, µ, σ2, σ2
e all unbounded. Thus we have

P
(
I
˜
, ν
˜
, y
˜
|β0, µ, σ2, ρ

)
=

{
N∏

i=1

(nνi

Nν

)Ii
(
1− nνi

Nν

)1−Ii

}
×

N∏
i=1

1√
2πσ

e−
1

2σ2 (yi−µ)2

×

∏N
i=1

(
ρ

1−ρ

) 1
2 1√

2πσ
e
− 1

2σ2

(
ρ

1−ρ

)
(νi−β0−yi)

2

∫
V (n)

∏N
i=1

(
ρ

1−ρ

) 1
2 1√

2πσ
e
− 1

2σ2

(
ρ

1−ρ

)
(νi−β0−yi)2dν

˜

.

For a full Bayesian analysis, we take β0, µ, σ2, ρ to be independent with

P (β0) = 1, −∞ < β0 < ∞,
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P (µ) = 1, −∞ < µ < ∞,

σ−2 ∼ Gamma
(

a

2
,
b

2

)
, a = .002, b = .002,

and

ρ ∼ Uniform(0, 1).

Thus, the joint prior density is

π(β0, µ, σ2, ρ) ∝
(

1
σ2

)a
2
+1

e−
b

2σ2 , −∞ < β0, µ < ∞, 0 < ρ < 1, σ2 > 0 .

Note that this is a proper prior in σ2 and ρ but not in β0, µ. Thus, by Bayes’ theorem the

joint posterior density of (ν
˜
, y
˜

ns, β0, µ, σ2, ρ) is

P (ν
˜
, y
˜

ns, β0, µ, σ2, ρ | I
˜
, ys
˜

) ∝ P (I
˜
, ν
˜
, y
˜
, β0, µ, σ2, ρ)

= P (I
˜
, ν
˜
, y
˜
|β0, µ, σ2, ρ)π(β0, µ, σ2, ρ)

=

{
N∏

i=1

(nνi

Nν

)Ii
(
1− nνi

Nν

)1−Ii

} ∏N
i=1

(
ρ

1−ρ

) 1
2 1√

2πσ
e
− 1

2σ2

(
ρ

1−ρ

)
(νi−β0−yi)

2

∫
V (n)

∏N
i=1

(
ρ

1−ρ

) 1
2 1√

2πσ
e
− 1

2σ2

(
ρ

1−ρ

)
(νi−β0−yi)2dν

˜

×
N∏

i=1

1√
2πσ

e−
1

2σ2 (yi−µ)2
(

1
σ2

)a
2
+1

e−
b

2σ2 .

It is convenient to transform ρ to τ = ρ
1−ρ keeping ν

˜
, y
˜

ns, β0, µ, σ2 untransformed. Thus,

P (ν
˜
, y
˜

ns, β0, µ, σ2, τ | I
˜
, ys
˜

) ∝
∏N

i=1

(
τ

2πσ2

) 1
2 e−

τ
2σ2 (νi−β0−yi)

2∫
V (n)

∏N
i=1

(
τ

2πσ2

) 1
2 e−

τ
2σ2 (νi−β0−yi)2dν

˜

×

{
N∏

i=1

(nνi

Nν

)Ii
(
1− nνi

Nν

)1−Ii

}
N∏

i=1

1√
2πσ

e−
1

2σ2 (yi−µ)2
(

1
σ2

)a
2
+1

e−
b

2σ2

(
1

1 + τ

)2

,

where
(

1
1+τ

)2
is the Jacobian of the transformation.
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A.3 Computation

To perform the computation, we write

P
(
ν
˜
, y
˜
, β0, µ, σ2, σ2

e , I
˜

)
= R

(
ν
˜
, y
˜
, β0, µ, σ2, σ2

e , I
˜

)
Pa

(
ν
˜
, y
˜
, β0, µ, σ2, σ2

e

)
where

Pa

(
ν
˜
, y
˜
, β0, µ, σ2, σ2

e

)
=

N∏
i=1

(( τ

2πσ2

) 1
2
e−

τ
2σ2 (νi−β0−yi)

2
(

1
2πσ2

) 1
2

e−
1

2σ2 (yi−µ)2

)

×
(

1
σ2

)a
2
+1

e−
b

2σ2

(
1
σ2

e

)a
2
+1

e
− b

2σ2
e ,

R
(
ν
˜
, y
˜
, β0, µ, σ2, σ2

e , I
˜

)
=

{∏N
i=1

(
nνi
Nν

)Ii
(
1− nνi

Nν

)1−Ii
}(

τ
1+τ

)2

∫
V (n)

∏N
i=1

1√
2πσe

e
− 1

2σ2
e
(νi−β0−yi)2

dν
˜

.

Thus, we may use Gibbs sampler to generate sample of (ν
˜
, y
˜

ns, β0, µ, σ2, τ) from

Pa(ν
˜
, y
˜
, β0, µ, σ2, τ). To do this, we need conditional posterior density of each parame-

ter given all the others. The conditional posterior densities of ν
˜
, y
˜

ns, β0, µ, σ2, τ under

Pa(ν
˜
, y
˜
, β0, µ, σ2, τ) are

ν
˜
|y
˜
, β0, µ, σ2, τ ∼ Normal

(
β01

˜
+ y

˜
,

σ2

τ
I

)
,

y
˜

ns|ν
˜
, y
˜

s, β0, µ, σ2, τ ∼ Normal
(

τ

1 + τ
(ν
˜

ns − β01
˜

ns) +
µ

1 + τ
1
˜

ns ,
σ2

1 + τ
I

)
,

β0|ν
˜
, y
˜
, µ, σ2, τ ∼ Normal

(
ν − y ,

σ2

τN

)
,

µ|ν
˜
, y
˜
, β0, σ

2, τ ∼ Normal
(

y ,
σ2

N

)
,

and, letting A =
∑N

i=1(νi − β0 − yi)2,

σ−2|ν
˜
, y
˜
, β0, µ, τ ∼ Gamma

(
2N + a

2
,

τA +
∑N

i=1(yi − µ)2 + b

2

)
,

τ |ν
˜
, y
˜
, β0, µ, σ2 ∼ Gamma

(
N + 2

2
,

A

2σ2

)
.

The Gibbs sampler provides a sample Ω(h), h = 1, . . . ,M from the joint posterior density,

where Ω(h) = (y
˜

ns, β0, µ, σ2, τ). We perform the SIR algorithm by sub-sampling the Ω(h)
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with weights.

Wh =
R(Ω(h))∑M

h=1 R(Ω(h))
, h = 1, . . . ,M.

Then, we draw a sample from the discrete probability mass function {(Ω(h),Wh),

h = 1, . . . ,M} with replacement.
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Appendix B

MODIFIED POISSON SAMPLING

B.1 Background

Suppose we have a population of N units, namely A1, . . . , AN . Each unit Ai has an

inclusion probability πi, i = 1, . . . , N . We intend to draw random sample of n units from

the population. (Here, we consider cases where n ≥ 2.) We assume
∑N

i=1 πi = n. We hope

that the sample obtained can numerically represent those inclusion probabilities. To solve

this problem, we introduce a sampling method, referred as “Modified Poisson Sampling

Method”.

Let Xi be the indicator of unit Ai being chosen, i = 1, . . . , N . Specifically, for each

Xi, we draw a number ui from Uniform(0, 1). If ui≤πi, then Xi = 1, otherwise Xi = 0.

Obviously, in this way each Ai has the probability πi to be chosen, i = 1, . . . , N and for any

i6=j, Ai to be chosen is independent of Aj to be chosen. Running from i = 1 to i = N , we

can obtain a sample in which each unit Ai has inclusion probability πi. But the problem

for this sampling method is that we may NOT get a sample of size n. To ensure we obtain

sample of size n, we may drop off a sample if its size not equal to n. However, this will re-

sult in conditional probability and the final inclusion probability for each Ai may NOT be πi.

This problem has been considered by others. Ghosh and Vogt (1998) provide a solution

that is closest in spirit to ours. But their Poisson sampling is for small populations. Aires

(2000) has looked at comparisons between Poisson sampling and Pareto PPS sampling.

Some computational algorithms are available for Poisson sampling (see Aries 2003 a, b).

Again these algorithms are limited to draws from small populations. Our methodology

covers any population.
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B.2 Existence of selection probabilities

As we retain samples only of size n and want inclusion probability for each unit Ai still

being πi, this actually is equivalent to require

P (Xi = 1|
N∑

j=1

Xj = n) = πi

where,

P (Xi = 1|
N∑

j=1

Xj = n) =
P (Xi = 1)P (

∑
j 6=i Xj = n− 1)

P (
∑N

j=1 Xj = n)
, i = 1, . . . , N. (B.1)

Note that, if now we set the prior P (Xi = 1) = πi, then the relation will not be automati-

cally guaranteed. So we need to figure out the selection probabilities P (Xi = 1) properly

such that P (Xi|
∑N

j=1) = πi are satisfied.

Let P (Xi = 1) = Pi, i = 1, . . . , N , then

P (
N∑

j=1

Xj = n) =
∑

1≤j1<...<jn≤N

P (Xj1 = 1, . . . , Xjn = 1, Xjn+1 = 0, . . . , XjN = 0)

=
∑

1≤j1<...<jn≤N

.

(
n∏

k=1

Pjk

)(
N∏

k=n+1

(1− Pjk
)

)
For abbreviation, we denote

n∏
k=1

Pjk
=

∏
j∈S(n)

Pj ,
n∏

k=1

(1− Pjk
) =

∏
j /∈S(n)

(1− Pj)

where S(n) = {(j1, . . . , jn)| 1≤j1 < . . . < jn≤N}.

So,

P (
N∑

j=1

Xj = n) =
∑
S(n)

 ∏
j∈S(n)

Pj

∏
j /∈S(n)

(1− Pj)


=

 N∏
j=1

(1− Pj)

∑
S(n)

∏
j∈S(n)

(
Pj

1− Pj

) .
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Similarly,

P (
∑
j 6=i

Xj = n− 1) =
∑

Si(n−1)

 ∏
j∈Si(n−1)

Pj

∏
j /∈Si(n−1)

(1− Pj)


=

 N∏
j 6=i

(1− Pj)

 ∑
Si(n−1)

∏
j∈Si(n−1)

(
Pj

1− Pj

)
where Si(n− 1) = {(j1, . . . , jn−1)| 1≤j1 < . . . < jn−1≤N, j1, . . . , jn−1 6=i}.

Then, (??) becomes

Pi

1− Pi

 ∑
Si(n−1)

∏
j∈Si(n−1)

Pj

1− Pj

/

∑
Si(n)

∏
j∈Si(n)

Pj

1− Pj

 = πi ,

i = 1, . . . , N.

Let the odds Pi
1−Pi

= qi, i = 1, . . . , N. Then,

qi

 ∑
Si(n−1)

∏
j∈Si(n−1)

qj

/

∑
Si(n)

∏
j∈Si(n)

qj

 = πi ,

i = 1, . . . , N.

Now, to figure out the selection probabilities (P1, . . . , PN )′ is equivalent to solve the N -

equation group of (q1, . . . , qN )′ as above. Obviously, if the solution to this equation group

exists, then the solution is not unique. That is, if q
˜

= (q1, . . . , qN )′ is a solution, then for

any k ∈ R+, kq
˜

is also a solution to the equation group. However, first of all, we need to

ensure the solution to this equation group exists.

For convenience, let us define

q
˜

= (q1, . . . , qN )′,

f
˜
(q
˜
) = (f1(q

˜
), . . . , fN (q

˜
))′ (B.2)

where,

fi(q
˜
) = πi

∑
Si(n)

∏
j∈Si(n)

qj

/

 ∑
Si(n−1)

∏
j∈Si(n−1)

qj

 , (B.3)
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i = 1, . . . , N.

Then (??) becomes

f
˜
(q
˜
) = q

˜
. (B.4)

Before we prove the existence of the solution to the equation (??), like S(n) and Si(n− 1),

we define

S(n− 1) = {(j1, . . . , jn−1)| 1≤j1 < . . . < jn−1≤N}

and

Si(n) = {(j1, . . . , jn)| 1≤j1 < . . . < jn≤N, j1, . . . , jn 6=i}.

Similarly,

Sij(n) = {(j1, . . . , jn)| 1≤j1 < . . . < jn≤N, j1, . . . , jn 6=i or j}

Sij(n− 1) = {(j1, . . . , jn−1)| 1≤j1 < . . . < jn−1≤N, j1, . . . , jn−1 6=i or j}.

For convenience, we let

G(n, N) =
∑
S(n)

∏
j∈S(n)

qj ,

G(n− 1, N) =
∑

S(n−1)

∏
j∈S(n−1)

qj ,

Gi(n, N − 1) =
∑
Si(n)

∏
j∈Si(n)

qj ,

Gi(n− 1, N − 1) =
∑

Si(n−1)

∏
j∈Si(n−1)

qj

Gij(n, N − 2) =
∑

Sij(n)

∏
k∈Sij(n)

qk ,

Gij(n− 1, N − 2) =
∑

Sij(n−1)

∏
k∈Sij(n−1)

qk.

Obviously, in light of this notation,

N∑
i=1

qi = G(1, N),
N∏

i=1

qi = G(N,N).

To prove the existence of solution for equation (??), we need some lemmas.
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Lemma 1. G(n, N) = qiGi(n− 1, N − 1) + Gi(n, N − 1).

Proof: By definition,

G(n, N) =
∑
S(n)

∏
j∈S(n)

qj

=
∑

Si(n−1)

qi

∏
j∈Si(n−1)

qj

+
∑
Si(n)

∏
j∈Si(n)

qj

= qi

∑
Si(n−1)

∏
j∈Si(n−1)

qj +
∑
Si(n)

∏
j∈Si(n)

qj

= qiGi(n− 1, N − 1) + Gi(n, N − 1).

Lemma 2. Let qi≥0, i = 1, . . . , N. Then

qj≥qi ⇔ Gi(n, N − 1)≥Gj(n, N − 1)

qj≥qi ⇔ qjGj(n− 1, N − 1)≥qiGi(n− 1, N − 1).

Proof: By Lemma 1,

Gi(n, N − 1) = qjGij(n− 1, N − 2) + Gij(n, N − 2)

and Gj(n, N − 1) = qiGij(n− 1, N − 2) + Gij(n, N − 2).

So that Gi(n, N − 1)−Gj(n, N − 1) = (qj − qi)Gij(n− 1, N − 2). Hence,

qj≥qi ⇔ Gi(n, N − 1)≥Gj(n, N − 1).

Also by Lemma 1,

G(n, N) = qiGi(n− 1, N − 1) + Gi(n, N − 1)

and G(n, N) = qjGj(n− 1, N − 1) + Gj(n, N − 1).

So that Gi(n, N)−Gj(n, N) = qjGj(n, N − 1)− qiGi(n, N − 1). Hence,

Gi(n, N)≥Gj(n, N) ⇔ qjGj(n− 1, N − 1)≥qiGi(n− 1, N − 1).

So qj≥qi ⇔ qjGj(n− 1, N − 1)≥qiGi(n− 1, N − 1).
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Lemma 3. Let 0 < πi≤πj , 0 < qi

πi
≤ qj

πj
, ∀ 1≤i < j≤N , then

qiGi(n− 1, N − 1)
πi

≤qjGj(n− 1, N − 1)
πj

.

Proof: For ∀ i < j, let

A = {q∗1, . . . , q∗N} , where q∗k =

 qk if k 6= i , 1≤k≤N

qi

πi
if k = i

B = {q∗∗1 , . . . , q∗∗N } , where q∗∗k =

 qk if k 6= j , 1≤k≤N

qj

πj
if k = j

,

G∗(n, N) =
∑
S(n)

∏
k∈S(n)

q∗k ,

G∗∗(n, N) =
∑
S(n)

∏
k∈S(n)

q∗∗k .

Since qi

πi
≤ qj

πj
, then

G∗(n, N)≤G∗∗(n, N).

By lemma 1,

G∗(n, N) = q∗i G
∗
i (n− 1, N − 1) + G∗

i (n, N − 1) =
qi

πi
Gi(n− 1, N − 1) + Gi(n, N − 1)

and

G∗∗(n, N) = q∗∗j G∗∗
j (n− 1, N − 1) + G∗∗

j (n, N − 1) =
qj

πj
Gj(n− 1, N − 1) + Gj(n, N − 1).

Because 0 < qi

πi
≤ qj

πj
, and 0 < πi≤πj , so qi≤qj . Hence, by Lemma 2

Gj(n, N − 1)≤Gi(n, N − 1).

Note that

qi

πi
Gi(n−1, N−1)− qj

πj
Gj(n−1, N−1) = [G∗(n, N)−G∗∗(n, N)]+[Gj(n, N−1)−Gi(n, N−1)].
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So
qi

πi
Gi(n− 1, N − 1)− qj

πj
Gj(n− 1, N − 1)≤0.

That is,
qiGi(n− 1, N − 1)

πi
≤qjGj(n− 1, N − 1)

πj
.

As a summary, by Lemma 2 and Lemma 3, we have that if qi

qj
≤ πi

πj
≤1 (of course we require

πk and qk be positive numbers, k = 1, . . . , N), then

qi

qj
≤ qiGi(n− 1, N − 1)

qjGj(n− 1, N − 1)
≤πi

πj
≤1≤Gi(n− 1, N − 1)

Gj(n− 1, N − 1)

Lemma 4.
∑N

i=1 qiGi(n− 1, N − 1) = nG(n, N).

Proof: We note the following three points;

a. Any term in
∑N

i=1 qiGi(n− 1, N − 1) must be a term in the expansion of G(n, N).

b. Any term in the expansion of G(n, N) must be a term in
∑N

i=1 qiGi(n−1, N −1), and

each term in the expansion of G(n, N) has n “images” in
∑N

i=1 qiGi(n− 1, N − 1).

c. G(n, N) has N
(
N−1
n−1

)
terms.

∑N
i=1 qiGi(n− 1, N − 1) has

(
N
n

)
terms. And N

(
N−1
n−1

)
=

n
(
N
n

)
.

By a, b, c, we know
∑N

i=1 qiGi(n− 1, N − 1) = nG(n, N).

Now we can proceed to prove our main result. Without loss of generality, we may assume

0 < π1≤ . . .≤πN < 1.

Theorem: Equation f
˜
(q
˜
) = q

˜
has solution on the close domain D, where f

˜
(q
˜
) is as

defined in (??) and (??),

D =

{
(q1, . . . , qN )

∣∣∣∣∣ a≤ q1

π1
≤ . . .≤ qN

πN
≤b

}
,
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a, b are any constants satisfying 0 < a < b .

Proof:

For abbreviation, in our following proof we denote f
˜

i(q
˜
) = fi.

1. Because q
˜
∈ D, so

0 < qi≤qj , ∀ 1≤i < j≤N.

By Lemma 2,

Gi(n, N − 1)≥Gj(n, N − 1) .

Thus
fi

πi
=

G(n, N)
Gi(n− 1, N − 1)

≤ G(n, N)
Gj(n− 1, N − 1)

=
fj

πj
,

That is,
fi

πi
≤ fj

πj
, ∀ 1≤i < j≤N.

2. Because

f1 = π1
G(n, N)

G1(n− 1, N − 1)
,

f1 =
N∑

j=1

π1
qjGj(n− 1, N − 1)
nG1(n− 1, N − 1)

, (lemma 4)

≥
N∑

j=1

πj
q1G1(n− 1, N − 1)
nG1(n− 1, N − 1)

, (lemma 3)

= q1.

Hence,
f1

π1
≥ q1

π1
≥a

Similarly,

fN =
N∑

j=1

πN
qjGj(n− 1, N − 1)
nGN (n− 1, N − 1)

(lemma 4)

≤
N∑

j=1

πj
qNGN (n− 1, N − 1)
nGN (n− 1, N − 1)

(lemma 3)

= qN .
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Hence,
fN

πN
≤ qN

πN
≤b.

By 1 and 2, we have that, if q
˜
∈ D, then fi(q

˜
) ∈ D.

Before we apply the fixed point theorem, we need to check the continuity of f
˜
(q
˜
) on D.

Obviously, continuity of f
˜
(q
˜
) is guaranteed on D. Hence, by the fixed point theorem, there

is a solution to the equation f
˜
(q
˜
) = q

˜
on the close domain D.

Last, we want to point out that, if πi are not all equal, i = 1, . . . , N , then q1

qN
≤ π1

πN
< 1.

Hence

a ≤ q1

π1
<

f1

π1
<

fN

πN
<

qN

πN
≤b

which implies q
˜

= (q1, . . . , qN )′ can not be the solution, where q1

π1
= . . . = qN

πN
. Further, note

that the above inequality also implies

q1

q
(0)
1

<
f1

q
(0)
1

and
fN

q
(0)
N

<
qN

q
(0)
N

where q
(0)
1 = π1

1−π1
, q

(0)
1 = πN

1−πN
. Hence q

˜
= (q1, . . . , qN )′ can not be the solution either,

where q1

q
(0)
1

= . . . = qN

q
(0)
N

. This fact answers the question in the beginning of this section

about why in general the inclusion probabilities can not be used as selection probabilities

for the Poisson Sampling.

B.3 Computation of selection probabilities

We use iteration to seek the solution (q1, . . . , qN )′. That is,

q
˜
(n+1) = f

˜
(q
˜
(n))

where q
˜
(n) is estimation for a solution q

˜
by the nth iteration. Because f

˜
(q
˜
) is continuous on

D, so

lim
n→∞

q
˜
(n+1) = lim

n→∞
f
˜
(q
˜
(n))

which implies,

q
˜

= f
˜
(q
˜
).
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For initial value, we set

q
˜
(0) = (

π1

1− π1
, . . . ,

πN

1− πN
)′.

It is easy to verify that q
˜
(0) ∈ D. Thus the iteration will produce a solution in D. Note

that as we mentioned before, the solution is not unique. But any of them shall be able to

give us answer to the selection probabilities Pi. That is,

Pi =
qi

1 + qi
, i = 1, . . . , N

where (q1, . . . , qN )′ is the solution.

For the calculation of G(n, N) in f
˜
(q
˜
), we define a two-dimension function as follows,

G(j, k) =


0 if j > k

1 if j = 0

qkG(j − 1, k − 1) + G(j, k − 1) else

where j, k are non-negative integers and all the qk are given, k = 1, 2, . . . , N . Obviously,

computation of G(n, N) through G(j, k) is supported by Lemma 1. By a dual iteration on

j and k, we can also easily obtain Gi(n, N). Thus f
˜
(q
˜
) can be calculated easily even when

both the sample size n and population size N are pretty large.


