
EFFICIENT SIDE-CHANNEL AWARE ELLIPTIC CURVE
CRYPTOSYSTEMS OVER PRIME FIELDS

A Dissertation
Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

by

Deniz Karakoyunlu

August 2010

APPROVED:

Prof. Berk Sunar, Major Advisor Prof. Xinming Huang

Prof. Wenjing Lou Prof. Erkay Savas

Prof. Fred J. Looft, Department Head

To my family

Abstract

Elliptic Curve Cryptosystems (ECCs) are utilized as an alternative to traditional public-

key cryptosystems, and are more suitable for resource limited environments due to smaller

parameter size. In this dissertation we carry out a thoroughinvestigation of side-channel

attack aware ECC implementations over finite fields of prime characteristic including the

recently introduced Edwards formulation of elliptic curves, which have built-in resiliency

against simple side-channel attacks. We implement Joye’s highly regular add-always

scalar multiplication algorithm both with the Weierstrassand Edwards formulation of

elliptic curves. We also propose a technique to apply non-adjacent form (NAF) scalar

multiplication algorithm with side-channel security using the Edwards formulation. Our

results show that the Edwards formulation allows increasedarea-time performance with

projective coordinates. However, the Weierstrass formulation with affine coordinates re-

sults in the simplest architecture, and therefore has the best area-time performance as long

as an efficient modular divider is available.

Acknowledgements

The work presented in this dissertation was supported in part by National Science

Foundation through NSF Cybertrust Grant No. 0831416, NSF-ANI-Career Grant No.

0133297, and in part by Intel Corporation.

I would like to express my utmost gratitude to Professor Berk Sunar for his guidance

and support not only in my research and studies, but also in all matters of life. He has

been a great advisor to assist me in my career path and help me develop my professional

skills, a committed and motivative teacher, a friend, and a role model.

I would also like commend the members of my thesis committee for their valuable

assisitance on my dissertation. I would like to thank to Professor Xinming Huang and

Professor Wenjing Lou for their guidance throughout my studies at WPI, Professor Erkay

Savas for advising me during my undergraduate studies, and during his visit at WPI.

Thanks are also due to Professor Fred J. Looft for his prompt response and actions as the

department head to help me resolve conflicts and accomplish my objectives at WPI.

I would like to extend my appreciation to Professor Yusuf Leblebici for his consul-

tancy to achieve my career endeavours; Dr. Frank K. Gurkaynak, Dr. Marcelo Kaihara

and Professor Arien Lenstra for their support, assistance and inspiration during the im-

plementation period of the work presented in this dissertation.

I am also indebted to my friends and colleagues Ghaith Hammouri, Erdinc Ozturk,

Bradford Carleen, Sena Ada, Izzet Sengel, and especially Kahraman Daglar Akdemir and

Ferit Ozan Akgul for their continuous support and friendship. My sincere thanks are

peculiarly due to Aysegul Gorkem Yalcin for always being there for me.

Finally, I am so proud to be able to have the opportunity to express my respect and

love to my family. My parents and my brother Cengiz have bearedso many difficulties,

and always provided their support and encouragement for me to receive my education and

achive my goals.

i

Contents

Abbreviations and Acronyms vii

1 Introduction 1

2 Background 5

2.1 Weierstrass Formulation for Elliptic Curves 6

2.2 Edwards Formulation for Elliptic Curves 7

2.3 Projective Coordinate Systems .. 9

3 Side-Channel Information Leakage 12

3.1 SCA Countermeasures . 13

3.1.1 Countermeasures for Different Point Operations 15

3.1.2 Countermeasures for Unified Point Operations 16

3.2 DCA Countermeasures . 18

4 Efficient Mapping to Hardware 20

4.1 Modular Arithmetic Operations .. . 22

4.1.1 Carry Propagation Free Addition withSD2Representation 22

4.1.2 Radix-4 Montgomery Multiplication23

4.1.3 Extended Binary GCD Modular Division 25

4.1.4 Modular Addition and Subtraction28

ii

4.1.5 Combined Modular Arithmetic Units 28

4.2 Point Addition and Doubling Operations 30

4.2.1 Weierstrass Affine Point Addition and Doubling 33

4.2.2 Weierstrass Jacobian Point Addition and Doubling 37

4.2.3 Edwards Affine Point Addition and Doubling 43

4.2.4 Edwards Projective Point Addition and Doubling 47

4.2.5 Summary of Point Addition ad Doubling Operations 51

4.3 Point Multiplication Operations 51

5 Results and Performance Comparison 54

5.1 ECC Processor . 57

6 Conclusion 61

iii

List of Algorithms

1 Add-Always Scalar Multiplication Algorithm 17

2 Side-Channel Attack Aware NAF Scalar Multiplication Algorithm 18

3 Radix-4 Montgomery Multiplication Algorithm 23

4 Extended Binary GCD Modular Division Algorithm [49] 26

5 Modular Addition and Subtraction Algorithm 28

iv

List of Figures

4.1 Addition ofSD2Digits Using Carry-Save Adders 23

4.2 Radix-4 Montgomery Multiplier .24

4.3 Extended Binary GCD Modular Divider 27

4.4 Modular Adder & Subtractor . 29

4.5 Block Diagram of Point Addition & Doubling Unit 32

4.6 Dataflow for Weierstrass Affine Point Addition 33

4.7 Dataflow for Weierstrass Affine Point Doubling 35

4.8 Dataflow for Weierstrass Jacobian Point Addition 37

4.9 Dataflow for Weierstrass Jacobian Point Doubling 40

4.10 Dataflow for Edwards Affine Unified Point Addition & Doubling 43

4.11 Dataflow for Edwards Affine Optimized Point Doubling 45

4.12 Dataflow for Edwards Projective Unified Point Addition &Doubling . . . 47

4.13 Dataflow for Edwards Projective Optimized Point Doubling 49

4.14 Block Diagram of Point Multiplication Units 53

5.1 Time-Area Space of Point Multiplication 55

5.2 Block Diagram of Elliptic Curve Processor 59

5.3 Elliptic Curve Processor Realized on a Single Chip 60

v

List of Tables

4.1 Clock Cycles for Modular Arithmetic Operations 30

4.2 Operation Order for Weierstrass Affine Point Addition 34

4.3 Operation Order for Weierstrass Affine Point Doubling 36

4.4 Operation Order for Weierstrass Jacobian Point Addition 38

4.5 Operation Order for Weierstrass Jacobian-Affine Point Addition 39

4.6 Operation Order for Weierstrass Jacobian Point Doubling 41

4.7 Operation Order for Edwards Affine Unified Point Addition& Doubling . 44

4.8 Operation Order for Edwards Affine Optimized Point Doubling 46

4.9 Operation Order for Edwards Projective Unified Point Addition & Doubling 48

4.10 Operation Order for Edwards Projective Optimized Point Doubling 50

4.11 Number of Modular Operations for Point Addition and Doubling Units . . 51

4.12 Number of Arithmetic Operations for Point Multiplication Units 52

5.1 Comparison of Synthesis Results for Point Multiplication[GF (p) 192−bit] 56

5.2 P&R Results for the ECC Processor . 59

5.3 P&R Results for Point Multiplication 60

vi

Abbreviations and Acronyms

ASIC Application-Specific Integrated Circuit

CMOS Complementary Metal-Oxide Semiconductor

DCA Differential Side Channel Analysis

ECC Elliptic Curve Cryptosystem

ECDLP Elliptic Curve Discrete Logarithm Problem

FPGA Field Programmable Gate Array

GCD Greatest Common Divisor

IC Integrated Circuit

LSD Least Significant Digit

MAU Modular Arithmetic Unit

MCML Metal-Oxide Semiconductor Current-Mode Differential Logic

MMU Modular Multiplication Unit

MOS Metal-Oxide Semiconductor

NAF Non-Adjacent Form

P&R Placement and Routing

RBA Redundant Binary Adder

RSA Public-Key Cryptography Algorithm of Rivest, Shamir and Adleman

SCA Simple Side Channel Analysis

SD2 Radix-2 Signed Digit

vii

Chapter 1

Introduction

Modern society largely rely on digital information systemsand information storage that

depend on cryptographic services to function properly. A variety of cryptographic al-

gorithms are used to implement common cryptographic services such as: confidential-

ity, integrity, authenticity, access control and non-repudiation. Providing suitable imple-

mentation of cryptographic algorithms both in hardware andin software has become an

increasingly challenging task. There are two main forms of cryptographic algorithms.

Private key algorithms assume that the secret key is (somehow) available to legitimate

participants, while public key algorithms allow two (or more) communicating parties to

negotiate a secret key on demand. Traditionally, public keycryptographic algorithms are

known to have higher computation demands, which reduce their throughput and make

them difficult to implement in hardware. However, due to the key distribution problem

with private-key algorithms, there is an increasing trend of implementing public-key al-

gorithms in hardware.

In the mid-eighties Neal Koblitz [1] and Victor Miller [2] independently proposed us-

ing elliptic curves for public key cryptosystems. Since then, ECC has been intensively

studied, and became popular among other common public-key cryptosystems such as

1

RSA, Diffie-Hellman and ElGamal. In [3], Lenstra and Verheul reported that ECC using

a 130-bit key offers comparable security as RSA with a key length of 1024 bits. The

shorter parameter size makes ECC especially attractive for embedded applications. How-

ever, such devices are more prone to side-channel attacks, since the attacker can procure,

isolate, and test such a system without being detected [4–8]. Therefore security against

side-channel attacks is considered to be vital for ECC deployed in embedded systems,

even though it leads to degradation in performance. Severaltechniques were proposed

for efficient and side-channel attack aware hardware implementation of ECC [9–12]. Un-

fortunately, these techniques use either specialized fields or specifically chosen elliptic

curves. On the other hand, more generic side-channel attackaware implementations in-

volve more complicated equations [13], demand more hardware [14], or leave the system

vulnerable to other types of attacks [15–17]. Hence, providing a high performance non-

specialized implementation, while retaining a degree of side-channel resiliency remains a

challenge.

In 2007, Edwards proposed a novel formulation of elliptic curves and associated point

arithmetic operations defined over all non-binary fields [18]. Bernstein and Lange ana-

lyzed and compared the complexity (in number of elementary field operations) of basic

group operations for different forms of elliptic curves in various coordinate systems [19].

They suggest that the Edwards elliptic curve formulation has superior performance than

the fastest known ECC algorithms. Binary Edwards curves also exist [20], but they are

not in the scope of this work.

Contributions and Outline

This dissertation presents a comprehensive overview and comparison of parameter agnos-

tic hardware implementations of ECC over finite fields of primecharacteristics. In par-

2

ticular we present optimized hardware realizations of ECC inWeierstrass and Edwards

formulations using affine and projective coordinates. We compare these implementations

in terms of their area and throughput performance. We also realize them in a ECC pro-

cessor both with CMOS technology, and power balanced MOS Current-Mode Differential

Logic (MCML) technology [21] that provides resiliency against differential side-channel

analysis (DCA).

Furthermore, we introduce techniques for improving the performance at various im-

plementation levels without undermining side-channel awareness. In most ASIC arith-

metic units, carry chains cause bottlenecks. Our systematic use of redundant digits for

all modular arithmetic operations is a significant advantage for reaching higher operat-

ing frequencies, therefore we are setting ASIC speed records for prime-field ECC. We

implement Marc Joye’s recently introduced highly regular Add-Always scalar multipli-

cation algorithm, which is proven to be secure against SCA-type attacks and safe-error

attacks [22]. Finally, we introduce a side-channel aware version of NAF scalar multipli-

cation algorithm for Edwards formulation in Algorithm 2.

The organization of this dissertation is as follows. Chapter2 provides a prelimi-

nary introduction to ECC, defines the main parameters, and introduces the new Edwards

formulation for ECC. Chapter 3 investigates design of ECC building blocks with side-

channel attack precautions. The details for efficient mapping of elliptic curve cryptosys-

tems to hardware are explained in Chapter 4. In Chapter 5, the implementation results are

presented. Finally Chapter 6 concludes the dissertation.

Publications relevant to this dissertation:

• D. Karakoyunlu, F. K. Gurkaynak, B. Sunar, Y. Leblebici, ”Efficient and Side Chan-

nel Aware Implementations of ECC over Prime Fields”, IET Information Security,

Volume 4, Issue 1, Pages 30-43, 2010.

3

• S. K. Yoo, D. Karakoyunlu, B. Birand, B. Sunar, ”Improving the Robustness of

Ring Oscillator TRNGs”, ACM Transactions on Reconfigurable Technology and

Systems, Volume 3, No 2, Article 9, 2010.

• D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, B. Sunar, ”Trojan Detection

using IC Fingerprinting”, Proceedings of the 2007 IEEE Symposium on Security

and Privacy, Oakland, CA, USA, 2007.

4

Chapter 2

Background

In this chapter, we briefly present the ECC formulations over finite fields of prime char-

acteristics. We first describe the elliptic curve discrete logarithm problem, which assures

the computational security of elliptic curve cryptosystems. Then in the first section, we

present the Weierstrass formulation for elliptic curves, and provide the equations for point

addition and point doubling on Weierstrass elliptic curves. In the next section, we present

the Edwards formulation for elliptic curves, and provide the equations for point addition

and point doubling on Edwards elliptic curves. Finally, thethird section introduces the

projective coordinates, and provides the point addition and doubling equations with pro-

jective coordinates both on Weierstrass and Edwards elliptic curves. The reader is referred

to [23], for a more detailed treatment of ECC.

In order to construct a cryptographic system, we first need todefine a suitable elliptic

curveE defined over a prime fieldFp [24]. A cyclic subgroup ofE(Fp) can be generated

by selecting a pointP of order n, and computing its multiples:

〈P 〉 = {∞, P, 2P, 3P, . . . , (#n − 1)P}

The elliptic curve discrete logarithm problem (ECDLP) is defined as determining the

5

valuek ∈ [1, #n−1], given a pointP ∈ E(Fp) of order#n, and a pointQ = kP ∈ 〈P 〉.

ECDLP is the underlying number theoretical problem used by ECC.In the cryptosystem,

the private key is obtained by selecting an integerk randomly from the interval[1, #n−1].

The corresponding public key will beQ = kP , and needs to be calculated by scalar point

multiplication.

2.1 Weierstrass Formulation for Elliptic Curves

An elliptic curveE defined over a prime fieldFp (with p > 3) can be written in the

simplified Weierstrass form as:

E(Fp) : y2 = x3 + ax + b (2.1)

wherea, b ∈ Fp, and the discriminant of the curve∆ = −16(4a3 + 27b2) 6= 0. A point

addition operation is defined as adding two pointsP = (x1, y1) andQ = (x2, y2) in

E(Fp) resulting in a third pointP + Q = (x3, y3) in E(Fp) with the point at∞ serving

as identity element (P + ∞ = P). Assuming thatP 6= ±Q, the pointP + Q = (x3, y3)

can be calculated as:

x3 =

(

y2 − y1

x2 − x1

)2

− x1 − x2 (mod p) (2.2)

y3 =

(

y2 − y1

x2 − x1

)

(x1 − x3) − y1 (mod p)

For P = Q the operation is called doubling, and the calculation of2P = (x3, y3) is

slightly different:

6

x3 =

(

3x2
1 + a

2y1

)2

− 2x1 (mod p) (2.3)

y3 =

(

3x2
1 + a

2y1

)

(x1 − x3) − y1 (mod p)

Finally, if P = −Q the operation results in point at infinity, and it should be handled

separately.

2.2 Edwards Formulation for Elliptic Curves

In [18], Edwards showed that elliptic curves over a prime field Fp (with p > 3) in the

normal form:

E(Fp) : x2 + y2 = c2(1 + dx2y2) (2.4)

are bi-rationally equivalent to Weierstrass elliptic curves, and can be efficiently trans-

formed from the short Weierstrass form given in Equation (2.1). The parameterc can be

chosen as 1 without loss of generality. Therefore, it will beassumed to be 1 in subsequent

chapters. Bernstein and Lange introduced explicit equations for performing the transfor-

mation of the ECC coordinates from Weierstrass to Edwards as well as for performing the

group operations on an Edwards curve [19]. The most attractive property of the Edwards

formulation is that the same point addition operation can beused even if the two points

on the curve are equal:

7

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

(mod p) (2.5)

y3 =
y1y2 − x1x2

1 − dx1x2y1y2

(mod p)

Whereas, in the Weierstrass elliptic curve formulation a separate doubling operation

as shown in Equation (2.3) is needed whenP = Q, and special handling of point at infin-

ity is needed whenP = −Q. Since only a single type of operation is used, it is reasonable

to expect a higher performance from side-channel attack aware ECC implementations us-

ing the Edwards formulation when compared to those using theWeierstrass formulation.

In addition, in the Edwards formulation, there is no specialpoint at∞, removing another

special case that has to be handled by implementations. The Edwards doubling formu-

lation can also be further simplified by using the Edwards elliptic curve definition and

rewriting dx2y2 asx2 + y2 − 1 as suggested by Marc Joye to Bernstein et al. in [19].

This optimization makes the point addition and doubling asymmetric, taking away the

side-channel resiliency advantage of unified addition and doubling operations. Never-

theless, Edwards formulation with optimized doubling operations may be utilized with a

side-channel aware multiplication algorithm as in the caseof Weierstrass formulation:

x3 =
2x1y1

x2
1 + y2

1

(mod p) (2.6)

y3 =
x2

1 − y2
1

x2
1 + y2

1 − 2
(mod p)

8

2.3 Projective Coordinate Systems

ECC implementations may be viewed at several layers. At the point level the main op-

eration is the scalar-point multiplication, which is realized with multiple point additions

and point doubling operations. Each point addition and doubling involves a number of el-

ementary modular arithmetic operations. Modular additionand subtraction are relatively

straightforward to implement. Modular multiplication is areasonably costly operation.

At the arithmetic level the implementation of the modular inversion is the most costly

operation . The high cost of modular inversion has motivatedthe investigation of alterna-

tive coordinate representations, which avoid the inversion operation at a cost of increased

number of field multiplications and additions. The classical formulation where a pointP

on an elliptic curveE is represented by a pair of elements(x, y) is known as the affine

coordinate representation. The affine coordinates can be transformed into projective co-

ordinates that use three elements to represent a point(X,Y, Z), allowing the numerator

and the denominator to be calculated separately.

A number of projective coordinate transformations have been proposed in the litera-

ture: homogeneous projective, Jacobian, Chudnovsky Jacobian [25], Lopez-Dahab [26],

and mixed coordinates [27]. Homogeneous projective coordinates are rarely used in

Weierstrass formulation, since the number of multiplications required in exchange for

avoiding the inversion is too high. However, Jacobian projective coordinates turn out to

be more efficient and most commonly applied either as is, or ina mixed form with affine

coordinates. On the other hand, due to the balanced form of equations, homogeneous

projective coordinate work well on Edwards elliptic curves.

A Weierstrass elliptic curve defined in Equation (2.1) is converted to Jacobian coordi-

nates as follows:

E(Fp) : Y 2 = X3 + aXZ4 + bZ6

9

whereX = xZ2, Y = yZ3. Then the point addition (Equation 2.7) and doubling (Equa-

tion 2.8) formulations with Jacobian coordinates become [25]:

X3 = (Y2Z
3
1 − Y1Z

3
2)2 − (X2Z

2
1 − X1Z

2
2)2(X2Z

2
1 + X1Z

2
2) (mod p) (2.7)

2Y3 = (Y2Z
3
1 − Y1Z

3
2)[(X2Z

2
1 − X1Z

2
2)2(X2Z

2
1 + X1Z

2
2) − 2X3]

−(X2Z
2
1 − X1Z

2
2)3(Y2Z

3
1 + Y1Z

3
2) (mod p)

Z3 = (X2Z
2
1 − X1Z

2
2)Z1Z2 (mod p)

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1 (mod p) (2.8)

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 − X3) − 8Y 4

1 (mod p)

Z3 = 2Y1Z1 (mod p)

The addition formulation can be optimized by removingZ2 values, if one of the points

is affine (i.e.Z2 = 1), resulting in so-called mixed point addition. An Edwards elliptic

curve defined in Equation (2.4) is converted to homogeneous projective coordinates as

follows:

E(Fp) : X2 + Y 2 = Z4 + dX2Y 2

whereX = xZ, Y = yZ. The following formulas compute the unified point addition

and doubling (Equation 2.9), and optimized doubling (Equation 2.10) operations with

projective coordinates [19]. Similar to Jacobian coordinates, addition can be optimized in

the case of mixed coordinates.

10

X3 = Z1Z2(X1Y2 + Y1X2)(Z
2
1Z

2
2 − dX1X2Y1Y2) (mod p) (2.9)

Y3 = Z1Z2(Y1Y2 − X1X2)(Z
2
1Z

2
2 + dX1X2Y1Y2) (mod p)

Z3 = (Z2
1Z

2
2 − dX1X2Y1Y2)(Z

2
1Z

2
2 + dX1X2Y1Y2) (mod p)

X3 = 2X1Y1(X
2
1 + Y 2

1 − 2Z2
1) (mod p) (2.10)

Y3 = (X2
1 − Y 2

1)(X2
1 + Y 2

1) (mod p)

Z3 = (X2
1 + Y 2

1)(X2
1 + Y 2

1 − 2Z2
1) (mod p)

11

Chapter 3

Side-Channel Information Leakage

In this chapter, we explain the sources of side-channel information leakage, classify the

side-channel attacks, and provide algorithmic and implementation countermeasures. In

the first section, we point out how data dependency and conditional executions play a fac-

tor in side-channel information leakage. We discuss the methods to uniformly order the

distinguishable point operations for achieving a scalar point multiplication that withstands

the simple side-channel attacks. We introduce a secure version of NAF algorithm to work

with unified point addition and doubling operations of Edwards elliptic curves. The NAF

algorithm improves the run time of scalar point multiplication by 25%, while our con-

tribution allows it to retain resiliency against simple side-channel attacks. In the second

section, we talk about the countermeasures against differential side channel attacks.

The security of an algorithm is measured in terms of the effort required by the attacker

to extract the secret information. Good cryptographic algorithms are based on number

theoretic problems that have a well studied computational complexity, hence the effort to

break the algorithm is well-known. Algorithm parameters are chosen so that practical at-

tacks are rendered infeasible. However, once an algorithm is implemented in hardware or

in software, the implementation acquires physical properties such as power consumption,

12

electromagnetic radiation, surface temperature, or time required to complete an opera-

tion. All these properties that can be observed to vary whilecryptograpic operations are

processed, are side channel information sources, which canpotentially be used by an ad-

versary to reveal parts of the secret key. Side-channel attacks can be classified into simple

side-channel attacks (SCA), which directly interpret data characteristics that are visible in

a single or a few measurement traces, and differential side-channel attacks (DCA), which

interpret the side-channel differences of correlated measurements. Side-channel attacks

can be further enhanced by applying statistical methods over a template of measurement

traces [28]. While it seems impossible to foresee all possible side-channel attacks that

might emerge in the future, we believe that cryptographic architectures should be de-

signed to withstand side-channel leakage. We call such architectures side-channel aware.

3.1 SCA Countermeasures

Side-channel awareness starts with preventing SCA, which requires avoiding conditional

executions and data-dependent run times in all levels of an implementation. An elliptic

curve cryptosystem is based on multiplying a point on the elliptic curve with ann-bit

scalar. The scalar point multiplication is realized by point addition and doubling oper-

ations, which involve a number of elementary modular arithmetic operations. The first

step of side-channel awareness is developing constant run-time modular arithmetic op-

erations. This requires removing data dependent optimizations, and achieving constant

run-time operations regardless of the inputs. In Section 4.1, we present our implementa-

tions of modular mutliplication, division, addition and subraction operations.

The next step is to design side-channel aware point additionand doubling units that

realize the formulations in Equations (2.2), (2.3), (2.5),(2.6), (2.7), (2.8), (2.9), and

(2.10). The side-channel aware modular arithmetic units allow each point operation to

13

be constant-time regardless of the input point coordinates. However, the different formu-

lations of Weierstrass point addition and doubling operations make the side channel char-

acteristics of point addition and doubling distinguishable, which requires the point mul-

tiplication algorithm to uniformly order the additions anddoublings in order to achieve

side-channel awareness (i.e. regular point multiplication algorithm). This requirement

also applies to optimized doublings for Edwards formulation, since the optimized point

doubling is also different from point addition. On the otherhand, Edwards formulation

allows using a unified point operation both for addition and doubling. In this case, the

point multiplication algorithm does not need to be regular,and therefore a faster irregular

multiplication algorithm can be utilized. The hardware implementation details of point

addition and doubling units are further investigated in Section 4.2.

The so-called binary multiplication methods provide a systematic way of ordering the

addition and doubling operations. In a typical binary multiplication scheme, as the bits

of the multiplicand are processed sequentially, a point doubling is performed for each bit,

and a point addition is performed if the current bit is equal to one. Hence, the run time

of the binary multiplication scheme depends on the number ofnon-zero bits of the multi-

plicand. On average, for a multiplicand of bit lengthn, the point multiplication requires

n doubling operations andn
2

point additions. A more advanced binary multiplication

method requires the scalar multiplicand to be recorded intothe non-adjacent signed digit

form (NAF) [29]. A NAF binary number will not have two consecutive non-zero digits (1

or -1 in signed digit form), reducing the number of point additions to less thann
2

through-

out an-bit scalar point multiplication (n
3

point additions on average). While the number

of doublings remains constant, the NAF method leads to a modest linear improvement in

the number of point additions.

Both the standard binary multiplication scheme and the NAF scheme conditionally

perform a point addition (or subtraction) driven by the binary digit values of the secret

14

multiplicand. Side-channel characteristics of distinguishable point addition and doubling

operations can be observed to vary while a point multiplication is carried out, which can

potentially be used by an adversary to reveal parts of the secret key [30, 31]. More-

over, even if the point addition and doubling operations areindistinguishable as in unified

Edwards formulation, the total run time of the point multiplication still depends on the

number of non-zero binary digits of the multiplicand, sincepoint addition is only carried

out when a digit is non-zero. In this case, an attacker observing the run time, could de-

termine the Hamming weight of the multiplicand, reducing the possible solution space

significantly. In the following subsections, we present appropriate point multiplication

methods for different and unified point addition and doubling operations.

3.1.1 Countermeasures for Different Point Operations

When the point addition and doubling operations are different, the only way to make a

point multiplication side-channel attack aware is to use a uniform sequence of point oper-

ations that do not depend on the value of the multiplicand. A method proposed by Moller

performs point multiplication with fixed pattern of doublings and additions with less than

2n point operations in total [17], but it involves a fixed look-up table that makes the system

susceptible to statistical attacks described in [32]. Recognizing this problem, he proposes

a new method to avoid a fixed table [14], employing a randomized initialization stage to

achieve resistance against side-channel attacks. However, when a random number gen-

erator is not incorporated, one has to use a regular multiplication algorithm that involves

one point addition and one point doubling for each binary digit of the multiplicand to

avoid revealing the order and number of the non-zero digits.

One solution to achieve a regular multiplication algorithmis to introduce point addi-

tion operations when the binary digit is zero [15, 16], or inserting dummy atomic oper-

ations to achieve side-channel atomicity [33]. However, this is not always a trivial task.

15

If the operations are dummy, they are vulnerable to fault insertion attacks, where the at-

tacker deliberately introduces a fault during an operationand monitors the output for a

change. If the correct output is produced in the presence of faults, the attacker will be

able to conclude that the operation, where the fault was introduced, was a dummy opera-

tion [34,35].

The so-called Montgomery binary ladder [36] protects against SCA and fault insertion

attacks, since it is highly regular and does not involve dummy operations. Recent studies

has shown that processing the bits of multiplicand from left-to-right, as in Montgomery

ladder, are also vulnerable to certain attacks [37, 38]. In 2007, Joye introduced the add-

always1 binary scalar multiplication algorithm [22]. This new algorithm (Algorithm 1)

is highly regular, processed from right-to-left, and it requires no precomputation or prior

recoding. Add-always multiplication algorithm always requiresn point doublings and

n point additions regardless of the value of the scalar multiplicand, and two temporary

registers are needed to store the results of each iteration.We have utilized the Add-

always algorithm in our implementations where point addition and doubling operations

are different. It should be noted that the standard left-to-right algorithm with dummy

operations allows accumulating the multiplication resultin only one register, and using

mixed-coordinates since the coordinates of the input pointis kept intact (Z-coordinate of

the input point will be 1). Nevertheless, dummy operations and left-to-right processing

should be avoided, due to the vulnerabilities described above.

3.1.2 Countermeasures for Unified Point Operations

In the case of distinguishable point addition and doubling operations, a side-channel at-

tack aware point multiplication requires using a regular point multiplication algorithm that

1Also referred as: always add-and-double algorithm.

16

Algorithm 1 Add-Always Scalar Multiplication Algorithm
Inputs: P ∈ Fp andk = (kn−1, . . . , k0)2 ∈ N
Output: Q = kP ∈ Fp

1: R0 := 0; R1 := P ;
2: for j = 0 to n − 1 do
3: b := 1 − kj ; Rb := 2Rb;
4: Rb := Rb + Rkj

;
5: end for
6: return R0

consists ofn doubling operations andn point additions for a multiplicand of bit lengthn.

On the other hand, the Edwards formulation allows unified point addition and doubling

without requiring specialized elliptic curves, or any randomization or initialization stage.

When the point addition and doubling operations are unified, even if the scalar-point mul-

tiplication algorithm is irregular it will not cause simpleside-channel leakage as long as

the total number of operations is constant. As it is mentioned in the beginning of this sec-

tion, the NAF point multiplication algorithm always requires fewer thann
2

point additions.

By carrying out necessary number of extra operations after finishing the point multiplica-

tion, the total run-time could be set to the worst case in order to prevent the dependency on

the multiplicand value. However, if these extra operationsdo not update the value of the

result, the system will be vulnerable to fault-insertion attacks as explained in Subsection

3.1.1. In Algorithm 2, we propose a method that computes the extra operations at the end

of a NAF multiplication, where the additional operations doaffect the computed result.

Therefore, the algorithm is also robust against fault insertion attacks. The first 7 lines of

the algorithm compute the NAF point multiplication, with the result stored inR0. Note

that the addition and subtraction operations in lines 4 and 5are virtually the same oper-

ations on elliptic curves. Moreover, our implementation uses radix-2 signed-digit (SD2)

redundant representation, which makes it trivial to achieve indistinguishable addition and

subtraction operations. All we need to is to swap the wiring of SD2representation of the

17

second operand digits in the case of point subtraction. In line 8, the number of necessary

extra operations is calculated and stored inr, and the registerR0 is updated by the sum

of R0 andR1. After this addition, the result can be expressed as:result = R0 − R1.

Throughout thefor-loop in lines 9-12, bothR0 andR1 are continuously updated forr
2

it-

erations, so that2
⌊

r
2

⌋

extra operations are carried out, whileresult = R0−R1 still holds.

Finally in line 12, the result is recomputed by the subtraction: R0 − R1. The addition in

line 13 is conditionally performed in order to achiever + 2 extra point additions in total

regardless ofr being odd or even. Hence, the computations will end after3n
2

+ 2 unified

point operations.

Algorithm 2 Side-Channel Attack Aware NAF Scalar Multiplication Algorithm
Inputs: P ∈ Fp andk = (kn−1, . . . , k0)2 ∈ N
Output: Q = kP ∈ Fp

1: R0 := 0; R1 := P ; a := 0; r := 0;
2: for j = 0 to n − 1 do
3: Recodekj on the fly into non-adjacent signed-digit form with Reitwiener’s method [29].
4: if (kj = 1) then R0 := R0 + R1; a := a + 1; end if
5: if (kj = −1) then R0 := R0 − R1; a := a + 1; end if
6: R1 := R1 + R1;
7: end for
8: R0 := R0 + R1; r := n

2 − a;
9: for j = 0 to r

2 do
10: R0 := R0 + R1; R1 := R1 + R1;
11: end for
12: R0 := R0 − R1;
13: if r is odd then R1 := R1 + R1; end if
14: return R0

3.2 DCA Countermeasures

Differential side-channel analysis allows more powerful attacks that succeed even in the

presence of SCA countermeasures [39]. Comprehensive information about performing

18

differential side-channel analysis can be found in [40]. Several classes of countermea-

sures were proposed against DCA, e.g. using noise generatorsto confuse attackers by

adding random noise to the power signature [41], feeding idle datapath units with random

data to provide a more uniform data profile [42], using masking techniques [43, 44], and

finally using power balanced IC libraries that have data independent power consumption

characteristics [45–47]. For enhanced robustness againstside-channel attacks, the design

may be synthesized with such precautions at the circuit level. We synthesized our design

both with standard CMOS technology, and with the power balanced MOS Current-Mode

Differential Logic (MCML) technology [21].

At the algorithm level, DCA resiliency can be achieved by multiplying the point by

a random number prior to each point addition or doubling withprojective coordinates.

In Section 2.3, we have stated that homogeneous projective coordinates(xZ, yZ, Z)

are more suitable for the Edwards formulation, whereas the Jacobian coordinates, i.e.

(xZ2, yZ3, Z) are more suitable for the Weierstrass formulation. Prior toeach point op-

eration, randomization can be carried out by replacing the point coordinates(X,Y, Z)

with (λX : λY : λZ) in the case of homogeneous projective coordinates, and with

(λ2X : λ3Y : λZ) in the case of the Jacobian coordinates, whereλ 6= 0 is a random

number [15]. Hence, if projective randomization is utilized, the Edwards formulation has

further performance benefit of requiring fewer field multiplications, since there is no need

for computing the square and cube of the random number prior to each point addition or

doubling. We do not apply projective randomization, since we do not want to incorporate

a random number generator in our hardware implementation.

19

Chapter 4

Efficient Mapping to Hardware

This chapter provides the details for efficient mapping of elliptic curve cryptosystems to

hardware. The mapping process involves a bottom-up methodology. We first design the

modular arithmetic units. Later, we design elliptic curve point addition and doubling units

utilizing the modular arithmetic units. Then, we design elliptic curve point multiplication

units on top of the point addition and doubling units. The organization of this chapter is

as follows:

We first present methods for efficient modular arithmetic in Section 4.1. Our goal is to

achieve the lowest possible area-time product by careful selection and implementation of

modular arithmetic algorithms, while making sure that the arithmetic operations always

have constant run-time independent of the data being processed. Since we are dealing

with large operand sizes, our first goal is to reduce the carrypropagation in additions. Our

choice of using redundant binary adder, which utilizes carry save adders with operands in

radix-2 signed digit (SD2) representation, allows us to completely avoid the carry propa-

gation. Therefore, we are able to achieve single clock cycleaddition regardless of the size

or value of the operands. Hence, both the side-channel leakage is avoided, and a very fast

addition operation is achieved at the cost of doubling the area in comparison with the area

20

of a ripple-carry adder. For multiplication, we employ radix-4 Montgomery multiplica-

tion that processes 2 digits in each iteration, and completes in n
2

+ 2 iterations regardless

of the lengthn of the operands. For modular division, we employ two different methods.

The first division method computes the division with exponentiation using Fermat’s the-

orem:Z−1 = Zp−2 (mod p), wheregcd(Z, p) = 1 [48]. In this method, the division is

very costly in terms of time (3n2

4
+ 3n iterations on average), but there is no additional

area cost. The second division method computes the divisionusing extended binary GCD

algorithm, and completes in only2n+4 iterations at the cost of 50% increase in area. Our

implementation of modular division with binary GCD algorithm continues to iterate until

the control register is fully processed as suggested in [49], hence it has constant run-time

regardless of the input data. For modular addition and subtraction, we modify the mod-

ular addition method described in [50] to work with the redundant binary adders, and to

have compatible operand range with the modular multiplication and division algorithms.

In Section 4.2, we present the implementation details of ECC point addition and dou-

bling operations for Weierstrass elliptic curves and Edwards elliptic curves both with

affine coordinates and projective coordinates. The point addition and doubling equations

were presented in Chapter 2. In this chapter, we map these equations to hardware, which

requires careful scheduling of modular arithmetic operations in order to complete the

point operation in least possible number of iterations and with smallest possible number

of temporary storage registers.

Section 4.3 gives the details of ECC point multiplication operations. Based on the

side channel leakage properties of binary multiplication methods that were examined

in Chapter 3, we apply the add-always algorithm for all different ECC configurations

(Weierstrass affine point multiplication, Weierstrass Jacobian point multiplication, Ed-

wards affine point multiplication with unified point operations, Edwards affine point mul-

tiplication with optimized point doublings, Edwards projective point multiplication with

21

unified point operations, Edwards projective point multiplication with optimized point

doublings), and we apply our enhancement to NAF algorithm for Edwards affine and

projective point multiplications with unified point operations.

4.1 Modular Arithmetic Operations

Modular arithmetic operations are the core operations of ECC.In order to improve the

performance of the overall system, it is crucial to optimizethe modular arithmetic opera-

tions. Moreover, in order to avoid side-channel information leakage, operation run times

should not be data dependent. As the first step of ECC implementation, we have designed

the following modular arithmetic components.

4.1.1 Carry Propagation Free Addition with SD2 Representation

Addition is the primary building block in implementing arithmetic operations. If addi-

tion is slow or area-expensive, all other operations sufferfrom this. In order to achieve

parallel addition of twon-digit redundant binary numbers in constant time without carry

propagation, we used the radix-2 signed digit (SD2) representation that uses the digit

set{-1,0,1} [51], and carry propagation free addition as proposed in [52]. Figure 4.1

shows addition of 2 consecutive SD2 digits using carry save adders. It can be observed

that, signals do not propagate through more than 2 full adders. Then-digit redundant

binary adders (RBAs) are realized by cascading 4-to-2 signed-digit carry-save adders as

presented in [53], which allowed us to keep the critical delay path of computingn-digit

addition within the delay of two full-adders. The RBA is used as the primary building

block in the implementation of the modular arithmetic operations.

22

Full Adder Full Adder

Full AdderFull Adder

co_l co_l

x_h x_hx_l x_ly_h y_hy_l y_l

z_h z_h

ci_h ci_hco_h co_h

z_l z_l

ci_l ci_l

CSA CSA

A

CO

CI

A

CO

B CI

B

S

A

SCO

CI

A

CO

B CI

B

S

S

Figure 4.1: Addition ofSD2Digits Using Carry-Save Adders

4.1.2 Radix-4 Montgomery Multiplication

A constant run-time radix-2 Montgomery modular multiplierthat uses redundant repre-

sentation is presented in [49]. We have modified this algorithm to perform multiplication

in radix-4, reducing the run time by a factor of 2. This multiplier works by computing

5 steps for each radix-4 digit as presented in Algorithm 3, where LSD stands for least

significant digit.

Algorithm 3 Radix-4 Montgomery Multiplication Algorithm
Inputs: X:= Multiplier, Y:= Multiplicand, M:= Modulus
Output: Z:= Result

Z:= 0;
for i = 1 to n

2
Step 1: a:= LSD(X), X≫ 2;
Step 2: P:= a∗Y; (where: a∈ {−2,−1, 0, 1, 2})
Step 3: Z:= Z+P;
Step 4: Z:= Z+q∗M; (where: q∈ {−2,−1, 0, 1, 2}, so that LSD(Z)= 0)
Step 5: Z≫ 2;

end for
return Z;

Step 2 requires only a single or double left shift ofSD2digits, whereas Step 3 and

Step 4 requiren-digit redundant binary addition operations. The modular multiplier com-

23

>
>

>
>

 FA

 FA

co_l

x_h x_ly_h y_l

z_h

ci_h

co_hz_l

ci_l

CSA

A B CI

 S CO

 S CO

A B CI

>>

>
>

CSACSACSACSA CSA CSACSA

CSACSACSACSA CSA CSACSA

Yh Xh Xl>>>>>> M

RBA 2

RBA 1

> Zh > Zl

X −X 2X −2X 0

M −M 2M 0

Yl

Montgomery Multiplier

MUX 2

MUX 1

R
E

C
 1

R
E

C
 2

Figure 4.2: Radix-4 Montgomery Multiplier

24

pletes then-bit multiplication in n
2

+ 1 iterations through 2 RBA stages. Obviously, the

multiplication result will be in Montgomery residue form (divided by2n+2). A side-effect

of using a radix-4 multiplier is that the range of operand values has increased from (−M ,

M) of original algorithm in [49] to (−2M , 2M), whereM is the prime modulus. Figure

4.2 shows the block diagram of the radix-4 Montgomery multiplier.

4.1.3 Extended Binary GCD Modular Division

Modular division is the most costly operation in ECC operations, which is usually avoided

by using projective coordinates to trade several additional multiplications with division

at every point addition cycle. If an efficient division unit could be implemented, the ad-

ditional complexity incurred due to projective coordinates can be avoided. In order to

achieve a high-performance divider, we implemented the modular division presented in

Algorithm 4. This algorithm computes the GCD of the divisor and the prime modulus,

which is equal to 1. Meanwhile, the same operations are applied to the dividend in par-

allel with a modulus reduction after each iteration. When thealgorithm terminates by

computing the GCD of the divisor and prime modulus as 1, the same operations applied

to the dividend effectively computes the quotient of the modular division. The binary

GCD algorithm is further optimized by observing the facts that the prime modulus is al-

ways an odd number; and when both numbers are odd, either their sum or their difference

is a multiple of 4. Hence it reduces to following two cases, where Y is the divisor and M

is the prime modulus:

If Y is even, M is odd: GCD(Y,M) := GCD(Y/2,M)
If Y is odd, M is odd: GCD(Y,M) := GCD([Y±M]/4,M)

25

Algorithm 4 Extended Binary GCD Modular Division Algorithm [49]
Inputs: X:= Dividend, Y:= Divisor, M:= Modulus
Output: Z:= Result

p:= n; d:= 0; Z:= 0;
while p6= 0 do

while Y is evendo
Y:=Y/2; X:=X/2 mod M;
p:=p−1; d:=d−1;

end while
if d< 0 then

swap(Y,M); swap(X,Z); d:= −d;
end if
Y:=(Y+k∗M)/4; X:=(X+k∗Z)/4 mod M; (where: k∈ {−1, 1})
p:=p−1; d:=d−1;

end while
if M= −1 then Z:=M−Z; end if
return Z;

The modular divider completesn-bit division in only 2n + 4 iterations in (−2M ,

2M) range. Constant run-time for side-channel awareness is achieved by continuing the

iterations until the control register fully processed as suggested in [49]. For each iteration,

an adder is required for computing the GCD of the divisor and the prime modulus, and

a modular adder is required for applying the same operation to the dividend in parallel

together with modulus reduction. Therefore, a total of 3 RBA stages are necessary (1

RBA for regular addition and 2 RBAs for modular addition). It should also be noted that

the arithmetic operations are carried out in the Montgomeryresidue format, and division

does not preserve the Montgomery residue form of the operands. Therefore, a division

should be followed by a multiplication to transform the result back into Montgomery

residue form, which increases the effective division time to 5n
2

+ 6 clock cycles. Figure

4.3 shows the block diagram of the extended binary GCD modulardivider.

26

Ah> Al>

 FA

 FA

co_l

x_h x_ly_h y_l

z_h

ci_h

co_hz_l

ci_l

CSA

A B CI

 S CO

 S CO

A B CI

>>

>
>

>>

CTL

0

R
E

C

CTL CTL CTL

Xh>

CSACSACSACSA CSA CSACSA

RBA 2

M −M 2M 0

CSACSACSACSA CSA CSACSA

RBA 3

Uh> Ul>

CSACSACSACSA CSA CSACSA

RBA 1

>
Bh Bl>> Vh> Vl>

Yh>

VB −B

MUX MUX

MUX MUXMUX

MUX MUX
−V

>

0

MUX

R
E

C

M
U

X

M
U

X

Xl>> Yl M

M
odular D

ivider ZlZh

F
igure

4.3:
E

xtended
B

inary
G

C
D

M
odular

D
ivider

27

4.1.4 Modular Addition and Subtraction

The modular addition method described in [50] allows computing then-bit modular ad-

dition or subtraction via a regular addition followed by a modular correction step that

depends on checking only the most significant 3 digits of the intermediate result. Hence,

modular addition and subtraction can be computed in a singleiteration through 2 RBA

stages. This method was also modified to work for (−2M , 2M) range instead of (−M ,

M) range of the original algorithm, in order to achieve consistency with the multiplication

and division. The3M value used in the algorithm is calculated by putting4M in the low

register, andM in the high register ofSD2 representation. Figure 4.4 shows the block

diagram of the modular adder & subtractor.

Algorithm 5 Modular Addition and Subtraction Algorithm
Inputs: X:=1st Term, Y:=2nd Term, M:= Modulus
Output: Z:= Result

Step 1: T := X ∓ Y ;
Step 2: if ([Tn+1TnTn−1] ≥ 4) then Z := T − 3M ;

elseif(3 ≥ [Tn+1TnTn−1] ≥ 2) then Z := T − 2M ;
elseif(1 ≥ [Tn+1TnTn−1] ≥ −1) then Z := T ;
elseif(−2 ≥ [Tn+1TnTn−1] ≥ −3) then Z := T + 2M ;
elseif(−4 ≥ [Tn+1TnTn−1]) then Z := T + 3M ; endif

4.1.5 Combined Modular Arithmetic Units

The modular arithmetic units described above (Figures 4.2,4.3, and 4.4) are all based on

RBAs, and therefore efficient resource sharing is possible. We have implemented two dif-

ferent arithmetic units. The first arithmetic unit (mmu) is capable of modular multiplica-

tion, addition and subtraction; and it is intended to be usedin projective point operations.

The second unit (mau) is additionally capable of modular division; and it is intended to

be used in affine point operations. The first arithmetic unit (mmu) requires 2 RBA stages,

28

 FA

 FA

co_l

x_h x_ly_h y_l

z_h

ci_h

co_hz_l

ci_l

CSA

S CO

COS

CIBA

A B CI

CSACSACSACSA CSA CSACSA

CSACSACSACSA CSA CSACSA

Zh Zl

Yh Xh XlM

RBA 2

RBA 1

>

3M−2M−3M 2M0

Yl

Modular Adder&Subtractor

MUX 2 R
E

C

Figure 4.4: Modular Adder & Subtractor

whereas the second unit (mau) requires 3 RBA stages in order toaccommodate for divi-

sion.

When the point multiplication operation is carried out with projective coordinates, a

final division is necessary to have the resulting point in affine coordinates. We realized

this operation by taking the modular inverse of the Z-coordinate using multiplications ac-

cording to Fermat’s theorem:Z−1 = Zp−2 (mod p), if gcd(Z, p) = 1 [48]. Although

this inversion takes much longer (3n2

4
+ 3n on average) than the extended binary GCD

division algorithm, it is carried out only once at the end of apoint multiplication. There-

fore, the performance gain in terms of area is more than the performance loss in terms

of time, and it turns out to be more area-time efficient. The number of clock cycles for

different modular operations and the hardware resources ineach modular arithmetic unit

are shown in Table 4.1.

29

Unit Multiplication Addition & Subtraction Division Resources

mmu n
2 + 2 1 3n2

4 + 3n 2 RBAs
mau n

2 + 2 1 5n
2 + 6 3 RBAs

Table 4.1: Clock Cycles for Modular Arithmetic Operations

4.2 Point Addition and Doubling Operations

The next step in the design process is implementing ellipticcurve point addition and dou-

bling units. Point addition and doubling can be carried out either with affine coordinates

or projective coordinates. Operations with projective coordinates do not involve divi-

sions at the cost of a number of extra multiplications; therefore, they can be implemented

without a modular divider. However, more storage space is needed due to the increased

complexity of the operations, and an additional coordinatefor representing a point.

We have designed four different point addition and doublingunits (Weierstrass affine,

Weierstrass projective, Edwards affine, Edwards projective), which implement the addi-

tion and doubling formulations in Equations (2.2), (2.3), (2.5), (2.6), (2.7), (2.8), (2.9),

(2.10). In addition to point operations, each unit is also capable of necessary initial and fi-

nal transformations. The initial transform computes the Montgomery residue forms of the

point coordinates. The final transform computes the inverseMontgomery transformation

and projective-to-affine transformation for projective coordinates. We also take advantage

of the homogeneity in Edwards projective operations by avoiding Montgomery transfor-

mations. This is possible since the Montgomery modular multiplications in non-residue

form do not affect theX
Z

and Y
Z

ratios at the end of a point addition or doubling.

For Weierstrass affine unit, we cannot utilize more than one arithmetic unit, due to

the data dependence in point operations. For the others, having multiple units in parallel

is possible. The single unit case always has the best area-time product, since all parallel

units may not be utilized with the same type of operations in all stages of the dataflow.

30

Having a single arithmetic unit is also preferable due to thelimited area resources of

ECC applications. The Weierstrass implementations requirespecial handling of point at

infinity. During each Weierstrass point operation, a check for whether the resulting point

will be the point at infinity is performed as well. This check is carried out offline (off

the critical path delay) through an
4
-bit comparator without stalling the point operation.

Selecting the comparator size asn
4
-bit also allows keeping the area overhead low. For bit

values less than 256, the comparator will require 3-levels of (1 + 4 + 16 = 21) 4-input

XOR gates.

Each unit is implemented with a datapath that consists of an appropriate modular

arithmetic unit, a set of input selection multiplexers and temporary registers, and a control

unit as shown in Figure 4.5. The control units for each point operation are designed with

finite state machine strategy, where each state correspondsto an arithmetic operation

through register-to-register dataflow. For each point operation, the arithmetic operations

are scheduled to require minimum number of temporary storage registers after a careful

data dependence analysis. The following subsections detail the implementation process

of point addition and doubling units, and summarize the timeand area results for each

unit.

31

P1 P2 a or d

>

>

Point Addition & Doubling
Datatpath

Multiplexer

mmu or mau

Registers

Control Unit

Point Addition & Doubling

Point Addition & Doubling UnitP1+P2

Figure 4.5: Block Diagram of Point Addition & Doubling Unit

32

4.2.1 Weierstrass Affine Point Addition and Doubling

Point Addition

x̃3 = [(ỹ2−ỹ1

x̃2−x̃1

)2 − x̃1 − x̃2] mod M

ỹ3 = [(ỹ2−ỹ1

x̃2−x̃1

)(x̃1 − x̃3) − ỹ1] mod M

x3
~

1

y3
~

y2 ~x1x2~y1~~

Figure 4.6: Dataflow for Weierstrass Affine Point Addition

33

RESULT OP CYCLES

0 SET 1

ỹ2 − ỹ1 SUB 1

x̃2 − x̃1 SUB 1

x2 − x1 MUL n
2 + 2

ỹ2−ỹ1

x̃2−x̃1
DIV 5n

2 + 6

(ỹ2−ỹ1

x̃2−x̃1
)2 MUL n

2 + 2

(ỹ2−ỹ1

x̃2−x̃1
)2 − x̃1 SUB 1

x̃3 SUB 1

x̃1 − x̃3 SUB 1

(ỹ2−ỹ1

x̃2−x̃1
)(x̃1 − x̃3) MUL n

2 + 2

ỹ3 SUB 1

x̃3 SUB 1

Table 4.2: Operation Order for Weierstrass Affine Point Addition

34

Point Doubling

x̃3 = [(
3x̃2

1
+ã

2ỹ1

)2 − 2x̃1] mod M

ỹ3 = [(
3x̃2

1
+ã

2ỹ1

)(x̃1 − x̃3) − ỹ1] mod M

~x1 y1~

1

x3
~

y3
~

a~

Figure 4.7: Dataflow for Weierstrass Affine Point Doubling

35

RESULT OP CYCLES

0 SET 1

x̃2
1 MUL n

2 + 2

2x̃2
1 ADD 1

3x̃2
1 ADD 1

3x̃2
1 + ã ADD 1

2ỹ1 ADD 1

2y1 MUL n
2 + 2

3x̃2

1
+ã

2ỹ1
DIV 5n

2 + 6

(
3x̃2

1
+ã

2ỹ1
)2 MUL n

2 + 2

(
3x̃2

1
+ã

2ỹ1
)2 − x̃1 SUB 1

x̃3 SUB 1

x̃1 − x̃3 SUB 1

(
3x̃2

1
+ã

2ỹ1
)(x̃1 − x̃3) MUL n

2 + 2

ỹ3 SUB 1

x̃3 SUB 1

Table 4.3: Operation Order for Weierstrass Affine Point Doubling

Resource Usage and Operation Counts of Weierstrass Affine Unit

Resources: 2 mux, 1 mau, 1 reg

Initial Montgomery Transform 2 MUL

Addition Time with Affine Coordinates 1 DIV, 3 MUL, 7 ADD/SUB

Doubling Time with Affine Coordinates 1 DIV, 4 MUL, 9 ADD/SUB

Final Inverse Montgomery Transform 2 MUL

36

4.2.2 Weierstrass Jacobian Point Addition and Doubling

Point Addition

X̃3 = (Ỹ2Z̃
3
1 − Ỹ1Z̃

3
2)2 − (X̃2Z̃

2
1 − X̃1Z̃

2
2)2(X̃2Z̃

2
1 + X̃1Z̃

2
2) mod M

Ỹ3 =
(Ỹ2Z̃3

1
−Ỹ1Z̃3

2
)[(X̃2Z̃2

1
−X̃1Z̃2

2
)2(X̃2Z̃2

1
+X̃1Z̃2

2
)−2X̃3]−(X̃2Z̃2

1
−X̃1Z̃2

2
)3(Ỹ2Z̃3

1
+Ỹ1Z̃3

2
)

2
mod M

Z̃3 = (X̃2Z̃
2
1 − X̃1Z̃

2
2)Z̃1Z̃2 mod M

X1
~~

X2Z2
~

Z1
~

Y2
~ ~

Y1

~
Z3Y3

~
X3
~

Figure 4.8: Dataflow for Weierstrass Jacobian Point Addition

37

RESULT OP CYCLES

0 SET 1

Z̃2
1 MUL n

2 + 2

Ỹ2Z̃1 MUL n
2 + 2

Ỹ2Z̃
3
1 MUL n

2 + 2

X̃2Z̃
2
1 MUL n

2 + 2

Z̃2
2 MUL n

2 + 2

Ỹ1Z̃2 MUL n
2 + 2

Ỹ1Z̃
3
2 MUL n

2 + 2

X̃1Z̃
2
2 MUL n

2 + 2

Z̃1Z̃2R MUL n
2 + 2

(X̃2Z̃
2
1 − X̃1Z̃

2
2) SUB 1

(X̃2Z̃
2
1 + X̃1Z̃

2
2) ADD 1

(Ỹ2Z̃
3
1 − Ỹ1Z̃

3
2) SUB 1

(Ỹ2Z̃
3
1 + Ỹ1Z̃

3
2) ADD 1

Z̃3 MUL n
2 + 2

(X̃2Z̃
2
1 − X̃1Z̃

2
2)2 MUL n

2 + 2

(X̃2Z̃
2
1 − X̃1Z̃

2
2)2(X̃2Z̃

2
1 + X̃1Z̃

2
2) MUL n

2 + 2

(X̃2Z̃
2
1 − X̃1Z̃

2
2)2(Ỹ2Z̃

3
1 + Ỹ1Z̃

3
2) MUL n

2 + 2

(X̃2Z̃
2
1 − X̃1Z̃

2
2)3(Ỹ2Z̃

3
1 + Ỹ1Z̃

3
2) MUL n

2 + 2

(Ỹ2Z̃
3
1 − Ỹ1Z̃

3
2)2 MUL n

2 + 2

X̃3 SUB 1

(X̃2Z̃
2
1 − X̃1Z̃

2
2)2(X̃2Z̃

2
1 + X̃1Z̃

2
2) − X̃3 SUB 1

(X̃2Z̃
2
1 − X̃1Z̃

2
2)2(X̃2Z̃

2
1 + X̃1Z̃

2
2) − 2X̃3 SUB 1

(Ỹ2Z̃
3
1 − Ỹ1Z̃

3
2)[(X̃2Z̃

2
1 − X̃1Z̃

2
2)2(X̃2Z̃

2
1 + X̃1Z̃

2
2) − 2X̃3] MUL n

2 + 2

2Ỹ3 SUB 1

Ỹ3 SHIFT 1

Table 4.4: Operation Order for Weierstrass Jacobian Point Addition
38

Mixed Point Addition (Z 2 = 1)

X̃3 = (Ỹ2Z̃
3
1 − Ỹ1)

2 − (X̃2Z̃
2
1 − X̃1)

2(X̃2Z̃
2
1 + X̃1) mod M

Ỹ3 =
(Ỹ2Z̃3

1
−Ỹ1)[(X̃2Z̃2

1
−X̃1)2(X̃2Z̃2

1
+X̃1)−2X̃3]−(X̃2Z̃2

1
−X̃1)3(Ỹ2Z̃3

1
+Ỹ1)

2 mod M

Z̃3 = (X̃2Z̃
2
1 − X̃1)Z̃1 mod M

RESULT OP CYCLES

0 SET 1

Z̃2
1 MUL n

2 + 2

Ỹ2Z̃1 MUL n
2 + 2

Ỹ2Z̃
3
1 MUL n

2 + 2

X̃1Z̃
2
2 MUL n

2 + 2

(X̃2Z̃
2
1 − X̃1) SUB 1

(X̃2Z̃
2
1 + X̃1) ADD 1

(Ỹ2Z̃
3
1 − Ỹ1) SUB 1

(Ỹ2Z̃
3
1 + Ỹ1) ADD 1

Z̃3 MUL n
2 + 2

(X̃2Z̃
2
1 − X̃1)

2 MUL n
2 + 2

(X̃2Z̃
2
1 − X̃1)

2(X̃2Z̃
2
1 + X̃1) MUL n

2 + 2

(X̃2Z̃
2
1 − X̃1)

2(Ỹ2Z̃
3
1 + Ỹ1) MUL n

2 + 2

(X̃2Z̃
2
1 − X̃1)

3(Ỹ2Z̃
3
1 + Ỹ1) MUL n

2 + 2

(Ỹ2Z̃
3
1 − Ỹ1)

2 MUL n
2 + 2

X̃3 SUB 1

(X̃2Z̃
2
1 − X̃1)

2(X̃2Z̃
2
1 + X̃1) − X̃3 SUB 1

(X̃2Z̃
2
1 − X̃1)

2(X̃2Z̃
2
1 + X̃1) − 2X̃3 SUB 1

(Ỹ2Z̃
3
1 − Ỹ1)[(X̃2Z̃

2
1 − X̃1)

2(X̃2Z̃
2
1 + X̃1) − 2X̃3] MUL n

2 + 2

2Ỹ3 SUB 1

Ỹ3 SHIFT 1

Table 4.5: Operation Order for Weierstrass Jacobian-AffinePoint Addition
39

Point Doubling

X̃3 = (3X̃2
1 + aZ̃4

1)2 − 8X̃1Ỹ
2
1 mod M

Ỹ3 = (3X̃2
1 + aZ̃4

1)(4X̃1Ỹ
2
1 − X̃3) − 8Ỹ 4

1 mod M

Z̃3 = 2Ỹ1Z̃1 mod M

X1
~

Y3
~

X3
~ Z3

~

~
Y1Z1

~
a~

Figure 4.9: Dataflow for Weierstrass Jacobian Point Doubling

40

RESULT OP CYCLES

0 SET 1

Ỹ 2
1 MUL n

2 + 2

Z̃2
1 MUL n

2 + 2

Z̃4
1 MUL n

2 + 2

ãZ̃4
1 MUL n

2 + 2

X̃2
1 MUL n

2 + 2

2X̃2
1 ADD 1

3X̃2
1 ADD 1

(3X̃2
1 + ãZ̃4

1) ADD 1

(3X̃2
1 + ãZ̃4

1)2 MUL n
2 + 2

Ỹ1Z̃1 MUL n
2 + 2

Z̃3 ADD 1

X̃1Ỹ
2
1 MUL n

2 + 2

2X̃1Ỹ
2
1 ADD 1

4X̃1Ỹ
2
1 ADD 1

8X̃1Ỹ
2
1 ADD 1

X̃3 SUB 1

(4X̃1Ỹ
2
1 − X̃3) SUB 1

(3X̃2
1 + ãZ̃4

1)(4X̃1Ỹ
2
1 − X̃3)R MUL n

2 + 2

Ỹ 4
1 MUL n

2 + 2

2Ỹ 4
1 ADD 1

4Ỹ 4
1 ADD 1

8Ỹ 4
1 ADD 1

Ỹ3 SUB 1

Table 4.6: Operation Order for Weierstrass Jacobian Point Doubling

41

Final Inversion:

x = X̃ · (Z̃)2(M−2) mod M

y = Ỹ · (Z̃)3(M−2) mod M

Resource Usage and Operation Counts of Weierstrass Jacobian Unit

Resources: 2 mux, 1 mmu, 5 reg

Initial Montgomery Transform 2 MUL, 2 ADD

Addition Time with Jacobian Coordinates 16 MUL, 9 ADD/SUB

Addition Time with Jacobian-Affine Coordinates11 MUL, 9 ADD/SUB

Doubling Time with Jacobian Coordinates 10 MUL, 13 ADD/SUB

Final Inversion 3n
2

+ 3 MUL (Average)

42

4.2.3 Edwards Affine Point Addition and Doubling

Unified Point Addition & Doubling

x̃3 = (x̃1ỹ2+ỹ1x̃2)
1+dx̃1x̃2ỹ1ỹ2

mod M

ỹ3 = (ỹ1ỹ2−x̃1x̃2)
1−dx̃1x̃2ỹ1ỹ2

mod M

x2x1 y1 y2

y3 x3

~ ~ ~ ~

~ ~

d

11

Figure 4.10: Dataflow for Edwards Affine Unified Point Addition & Doubling

43

RESULT OP CYCLES

0 SET 1

ỹ1ỹ2 MUL n
2 + 2

x̃1x̃2 MUL n
2 + 2

(x̃1 + ỹ1) ADD 1

(x̃2 + ỹ2) ADD 1

(x̃1 + ỹ1)(x̃2 + ỹ2) MUL n
2 + 2

[(x̃1 + ỹ1)(x̃2 + ỹ2) − x̃1x̃2] SUB 1

(x̃1ỹ2 + ỹ1x̃2) SUB 1

(ỹ1ỹ2 − x̃1x̃2) SUB 1

x̃1x̃2ỹ1ỹ2 MUL n
2 + 2

dx1x2y1y2 MUL n
2 + 2

1 − dx1x2y1y2 SUB 1

1 + dx1x2y1y2 ADD 1

ỹ3 DIV 5n
2 + 6

x̃3 DIV 5n
2 + 6

Table 4.7: Operation Order for Edwards Affine Unified Point Addition & Doubling

44

Optimized Point Doubling

x̃3 = 2x̃1ỹ1

x̃2

1
+ỹ2

1

mod M

ỹ3 =
x̃2

1
−ỹ2

1

x̃2

1
+ỹ2

1
−2

mod M

y1x1

y3 x3
~ ~

~~

2

1

Figure 4.11: Dataflow for Edwards Affine Optimized Point Doubling

45

RESULT OP CYCLES

0 SET 1

ỹ2
1 MUL n

2 + 2

x̃2
1 MUL n

2 + 2

x̃1ỹ1 MUL n
2 + 2

2x̃1ỹ1 ADD 1

(̃x
2

1 − ỹ2
1) SUB 1

(x̃2
1 + ỹ2

1) ADD 1

(x2
1 + y2

1) MUL n
2 + 2

(x2
1 + y2

1 − 2) SUB 1

ỹ3 DIV 5n
2 + 6

x̃3 DIV 5n
2 + 6

Table 4.8: Operation Order for Edwards Affine Optimized Point Doubling

Resource Usage and Operation Counts of Edwards Affine Unit

Resources: 2 mux, 1 mau, 3 reg

Initial Montgomery Transform 2 MUL

Unified Addition Time with Affine Coordinates 2 DIV, 5 MUL, 7 ADD/SUB

Optimized Doubling Time with Affine Coordinates2 DIV, 4 MUL, 4 ADD/SUB

Final Inverse Montgomery Transform 2 MUL

46

4.2.4 Edwards Projective Point Addition and Doubling

Unified Point Addition/Doubling

X3 = Z1Z2(X1Y2 + Y1X2)(Z
2
1Z

2
2 − dX1X2Y1Y2) mod M

Y3 = Z1Z2(Y1Y2 − X1X2)(Z
2
1Z

2
2 + dX1X2Y1Y2) mod M

Z3 = (Z2
1Z

2
2 − dX1X2Y1Y2)(Z

2
1Z

2
2 + dX1X2Y1Y2) mod M

Y3 X3 Z3

X2X1 Y1 Y2 Z1 Z2d
~

Figure 4.12: Dataflow for Edwards Projective Unified Point Addition & Doubling

47

RESULT OP CYCLES

0 SET 1

Z1Z2R MUL n
2 + 2

Y1Y2R MUL n
2 + 2

X1X2R MUL n
2 + 2

(X1 + Y1)R ADD 1

(X2 + Y2)R ADD 1

(X1 + Y1)(X2 + Y2)R MUL n
2 + 2

(X1Y2 + Y1X2 + Y1Y2)R SUB 1

(X1Y2 + Y1X2)R SUB 1

Z1Z2(X1Y2 + Y1X2)R MUL n
2 + 2

(Y1Y2 − X1X2)R SUB 1

Z1Z2(Y1Y2 − X1X2)R MUL n
2 + 2

X1X2Y1Y2R MUL n
2 + 2

dX1X2Y1Y2R MUL n
2 + 2

(Z1Z2)
2R MUL n

2 + 2

[(Z1Z2)
2 + dX1X2Y1Y2]R ADD 1

[(Z1Z2)
2 − dX1X2Y1Y2]R SUB 1

Y3R MUL n
2 + 2

Z3R MUL n
2 + 2

X3R MUL n
2 + 2

Table 4.9: Operation Order for Edwards Projective Unified Point Addition & Doubling

48

Optimized Point Doubling

X3 = 2X1Y1(X
2
1 + Y 2

1 − 2Z2
1) mod M

Y3 = (X2
1 − Y 2

1)(X2
1 + Y 2

1) mod M

Z3 = (X2
1 + Y 2

1)(X2
1 + Y 2

1 − 2Z2
1) mod M

Y3 X3 Z3

Z1X1 Y1

Figure 4.13: Dataflow for Edwards Projective Optimized Point Doubling

49

RESULT OP CYCLES

0 SET 1

Z2
1R MUL n

2 + 2

2Z2
1R ADD 1

Y 2
1 R MUL n

2 + 2

X2
1R MUL n

2 + 2

X1Y1R MUL n
2 + 2

2X1Y1R ADD 1

(X2
1 − Y 2

1)R SUB 1

(X2
1 + Y 2

1)R ADD 1

(X2
1 + Y 2

1 − 2Z2
1)R SUB 1

Z3R MUL n
2 + 2

Y3R MUL n
2 + 2

X3R MUL n
2 + 2

Table 4.10: Operation Order for Edwards Projective Optimized Point Doubling

Final Inversion:

x = X · ZM−2 mod M

y = Y · ZM−2 mod M

Resource Usage and Operation Counts of Edwards Projective Unit

Resources: 2 mux, 1 mmu, 4 reg

Initial Montgomery Transform NOP

Unified Addition Time with Projective Coordinates 12 MUL, 7 ADD/SUB

Optimized Doubling Time with Projective Coordinates7 MUL, 5 ADD/SUB

Final Inversion 3n
2

+ 1 MUL (Average)

50

Unit
Weierstrass Weierstrass Edwards Edwards

Affine Jacobian Affine Projective

Resources 1 mau,1 reg 1 mmu,5 regs 1 mau,3 regs 1 mmu,4 regs
Addition 1CD + 2M + 7A 16M + 9A 2CD + 5M + 7A 12M + 7A

Mixed Addition Not Applicable 11M + 9A Not Applicable 11M + 7A
Doubling 1CD + 3M + 9A 10M + 13A 2CD + 3M + 4A 7M + 5A

Initial Transform 2M 2M + 2A 2M No Operation
Final Transform 2M 1ED + 4M 2M 1ED + 2M

(M: Multiplication, A: Addition & Subtraction,CD: Cheap Division,ED: Expensive Division)

Table 4.11: Number of Modular Operations for Point Additionand Doubling Units

4.2.5 Summary of Point Addition ad Doubling Operations

Table 4.11 shows the hardware resources, and the cost of point operations in terms of mod-

ular arithmetic operations for each unit. Looking at the operation counts, we observe that

operations with projective coordinates have better performance in the Edwards formula-

tion; whereas, operations with affine coordinates have better performance in the Weier-

strass formulation. Meanwhile, the comparison between Weierstrass affine and Edwards

projective operations depend on the performance ratio of division and multiplication. In

terms of area, the projective units have the advantage of using smaller arithmetic units.

However, they need more registers due to the increased complexity of the point operations

with projective coordinates, and additional storage requirement forZ-coordinates.

4.3 Point Multiplication Operations

After the implementation of point addition and doubling units, the final step is to imple-

ment multiplication of a point on the elliptic curve with a scalar in order to realize the

elliptic curve cryptosystem. We have introduced the binarymultiplication methods, and

examined their side channel leakage properties in Chapter 3.To have a complete design

51

space, we have implemented the add-always algorithm for alldifferent ECC configura-

tions. In addition, the secure NAF algorithm presented in Algorithm 2 was implemented

for the Edwards formulation with unified addition and doubling operations. Table 4.12

shows the run times of the multiplication algorithms with the modular arithmetic opera-

tion costs of point additions and doublings taken from Table4.11. Figure 4.14 shows the

generic block diagram of a point multiplication unit. Each individual system consists of

optimized datapath and control units to implement the pointmultiplication operations.

Algorithm: Add-Always Secure NAF

Number of Operations: n additions,n doublings 3n/2 unified additions

Weierstrass Affine
2nCD + (5n+4)M + 16nA Not Safe

Weierstrass Jacobian
1ED + (26n+6)M + (22n+2)A Not Safe

Edwards Affine
4nCD + (10n+4)M + 14nA 3nCD + (15n

2 +4)M + 21n
2 A

with Unified Doublings

Edwards Affine
4nCD + (8n+4)M + 11nA Not Safe

with Optimized Doublings

Edwards Projective
1ED + (24n+2)M + 14nA 1ED + (18n+2)M + 21n

2 A
with Unified Doublings

Edwards Projective
1ED + (19n+2)M + 12nA Not Safe

with Optimized Doublings

(M: Multiplication, A: Addition & Subtraction,CD: Cheap Division,ED: Expensive Division)

Table 4.12: Number of Arithmetic Operations for Point Multiplication Units

52

> mmu or mau
Addition

and
Doubling

Point

Control Unit

Multiplication
Point

Control Unit

a or d pP k

Multiplexer

Registers>

kP (mod p)

Registers>

Point Addition & Doubling Unit

Point Multiplication Unit

Figure 4.14: Block Diagram of Point Multiplication Units

53

Chapter 5

Results and Performance Comparison

In this chapter, we analyze the hardware implementation results, compare the time and

area performance of our 8 different ECC configurations, and compare our results with

other hardware implementations in the literature. We startby presenting the synthesis re-

sults in terms of maximum frequency, computation time, area, and time-area product. In

Section 5.1, we explain the procedure of combining all ECC configurations and realizing

them as an ECC processor on a single chip. Then, we present the placement and routing

results of the ECC processor both with0.18 µm CMOS technology and0.18 µm MOS

Current-Mode Differential Logic (MCML) technology [21]. Finally we list the maximum

frequency, computation time and area values of our two best ECC implementations real-

ized with0.18 µm CMOS technology for bit lengths ofn = 160 andn = 192, together

with 4 other ECC implementations realized on FPGA.

Most ECC hardware implementations in the literature have been realized over binary

fields. There are only a small number of hardware implementations targeting prime fields,

mostly implemented in FPGA. We found two comparable ASIC implementations that

were recently published. Both implementations were realized using0.13 µm CMOS

technology for bit length ofn = 192 with no wireload model included. Moreover, they do

54

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
80

85

90

95

100

105

110

115

120

Total Computation Time [ms]

A
re

a
[K

ga
te

s]

Time vs Area of ECC Point Multiplication

Weierstrass Proj. − AA

Edwards Proj. − NAF

Edwards Proj. − AAU

Edwards Proj. − AAO

Weierstrass Aff. − AA

Edwards Aff. − NAF

Edwards Aff. − AAU

Edwards Aff. − AAO

AA: Add-Always, AAO: Add-Always with Optimized Doublings, AAU: Add-Always with Unified Doublings

Figure 5.1: Time-Area Space of Point Multiplication

not address side-channel security. To be able to make fair comparison with our work, we

synthesized our design for bit length ofn = 192. Our implementations were synthesized

using UMC0.18 µm CMOS technology with a target clock of3 ns, and with no wireload

model.

The overall gate count percentages of the arithmetic units for each ECC point mul-

tiplication system are provided in Table 5.1. Since the number of flip-flops in state ma-

chine registers are much less than storage registers, the area percentage of control units

are negligible in size. Therefore, the remaining area percentage is allocated mostly for

the storage registers. Figure 5.1 plots the time-area spaceof point multiplication. Both

Table 5.1 and Figure 5.1 show that the Weierstrass affine system has the best area-time

performance among our implementations, whereas the Weierstrass projective system has

the worst area-time performance. In comparison to other implementations, 7 out of our

8 implementations have less area, and 4 out of our 8 implementations have better timing,

although we use a slower technology, and address side-channel security as well.

55

ECC Multiplication Platform Max Time Area Area×
System Algorithm f Time

Weierstrass
Add-Always

0.18 µm 333.3 0.86 91K gates 78.26
Affine CMOS MHz ms (mau:55.0%) gates×s
Weierstrass

Add-Always
0.18 µm 333.3 1.59 110K gates 174.90

Projective CMOS MHz ms (mmu:28.4%) gates×s
Edwards Add-Always with 0.18 µm 333.3 1.48 94K gates 139.12
Affine Unif. Doublings CMOS MHz ms (mau:53.9%) gates×s
Edwards Add-Always with 0.18 µm 333.3 1.42 94K gates 133.48
Affine Opt. Doublings CMOS MHz ms (mau:53.9%) gates×s
Edwards

Secure NAF
0.18 µm 333.3 1.12 93K gates 104.16

Affine CMOS MHz ms (mau:54.5%) gates×s
Edwards Add-Always with 0.18 µm 333.3 1.47 92K gates 135.24
Projective Unif. Doublings CMOS MHz ms (mmu:34.3%) gates×s
Edwards Add-Always with 0.18 µm 333.3 1.18 92K gates 108.56
Projective Opt. Doublings CMOS MHz ms (mmu:34.3%) gates×s
Edwards

Secure NAF
0.18 µm 333.3 1.13 92K gates 103.96

Projective CMOS MHz ms (mmu:34.3%) gates×s

Satoh et al.
NAF

0.13 µm 137.7 1.44
110K gates

158.40
2003 [54] CMOS MHz ms gates×s
Sozzani et al.

Add-Double
0.13 µm 294.0 1.33

108K gates
143.64

2005 [55] CMOS MHz ms gates×s

Table 5.1: Comparison of Synthesis Results for Point Multiplication [GF (p) 192 − bit]

56

5.1 ECC Processor

To be able to make a performance comparison among our 8 individual implementations

as well as with other ASIC implementations, we used post-synthesis results. Our next

step is to realize all implementations on a single chip. In this case, it does not make sense

to implement very similar but locally optimized units as seperate entities. We combined

all our implementations as an ECC processor that is capable ofall different versions of

point multiplication algorithms, and realized it on a single chip. The point addition and

doubling units, detailed in Section 4.2, all have similar datapaths. But the datapaths are

optimized together with the addition & doubling control unit to obtain the best perfor-

mance out of an application, as if it would be used for the cryptosystem. We tried to

achive least possible register usage and combinational logic complexity for each differ-

ent point addition and doubling unit. For example Weierstrass affine point addition and

doubling operations need only a single temporary register;whereas, Weierstrass Jacobian

point addition and doubling operations need 5 temporary registers and a larger multiplexer

to be able to select form each register. Similarly, the pointmultiplication units are also

optimized for each specific case. For example 2 coordinates are used with affine opera-

tions; whereas, 3 coordinates are used projective operations. We merged all entities on a

single datapath, going through the following steps:

1. The first step was to merge all 4 different point addition and doubling units (Weier-

strass affine, Weierstrass Jacobian, Edwards affine, and Edwards projective) on a

single datapath. Among these units, Weierstrass Jacobian needs the most number

of registers and a multiplexer capable of selecting from each register. Therefore,

we used the datapath of Weierstrass Jacobian unit, althoughnot all registers are

necessarily needed by other addition and doubling units.

57

2. As the second step, we replaced the mmu (modular multiplication, addition and

subtraction unit) in the projective implementations with mau (modular multiplica-

tion, division, addition and subtraction unit), although these implementations never

use the division operation in mau.

3. After having the same multiplexer, arithmetic unit and register number in all point

addition and doubling units, as the third step, we clearly seperated the state ma-

chines and datapaths in each unit. Therefore, we were able tohave a single datapath

unit, and 4 different point addition and doubling control units.

4. Next, we merged the datapath parts of the 2 different multiplication algorithms

(add-always, secure NAF) in a single datapath. We also merged the multiplication

control units in a single state machine.

5. Finally, we added serial input reading and output writingfunctionality in this com-

bined multiplication state machine, so that it can interface with the limited number

of IO pads of the chip.

Eventually all components are put together as shown in Figure 5.2, and the ECC pro-

cessor was realized both with0.18 µm CMOS technology, and0.18 µm MOS Current-

Mode Differential Logic (MCML) technology [21]1 as shown in Figure 5.3. Table 5.2

presents the time and area values after placement and routing. Finally, we are also pre-

senting the P&R results of our 2 best implementations for bitlengths ofn = 160 and

n = 192, together with several FPGA implementation results in Table 5.3.

1MCML technology has a power balanced IC library, and provides DCA resiliency as mentioned in
Section 3.2.

58

Shift Registers

Point Multiplication

and IO Interface

Control Unit

>

Point Addition & Doubling
Datatpath

Multiplexer

Registers

Multiplexer

Control Unit

Point Addition & Doubling

Conventional Affine

Control Unit

Point Addition & Doubling

Control Unit

Point Addition & Doubling

Control Unit

Point Addition & Doubling

M
ultiplexer

Edwards Projective

Conventional Projective

Edwards Affine

>

ECC Processor

kP k

mau

P, M, a or d, Rsquare Alg. & Imp. Select

Figure 5.2: Block Diagram of Elliptic Curve Processor

Technology Critical Path Delay Cell Area

UMC CMOS 0.18µm 6.8 ns 1.29 mm2

LAUREL MCML 0.18 µm 15 ns 6.99 mm2

Table 5.2: P&R Results for the ECC Processor

59

Figure 5.3: Elliptic Curve Processor Realized on a Single Chip

ECC GF(p) Platform Max Time Area
System Field f

Weierstrass
160

0.18 µm 147 1.37
86K gates

Affine CMOS MHz ms
Edwards

160
0.18 µm 147 1.80

86K gates
Projective CMOS MHz ms
Weierstrass

192
0.18 µm 147 1.95

100K gates
Affine CMOS MHz ms
Edwards

192
0.18 µm 147 2.56

101K gates
Projective CMOS MHz ms

Ors et al.
160

XILINX 91.3 14.4
115.5K gates

2003 [56] XCV1000E-8 MHz ms
Mentens et al.

160
XILINX 66 26.8 4826 slices,

2007 [57] XC3S5000-5 MHz ms 66 RAMs, 66 mults
Mcivor et al.

256
XILINX 34.46 3.86 15755 slices,

2006 [58] XC2VP125-7 MHz ms 256 mults
Sakiyama et al.

256
XILINX 40 17.7

27597 slices
2007 [59] XC3S5000-5 MHz ms

Table 5.3: P&R Results for Point Multiplication

60

Chapter 6

Conclusion

In this dissertation, we addressed the design and implementation of high performance

non-specialized elliptic curve cryptosystems over finite fields of prime characteristics,

while retaining side-channel awareness. Our investigation also included the recently in-

troduced Edwards elliptic curves with built-in resiliencyagainst simple side-channel at-

tacks.

We presented methods to improve the performance of ECC building blocks with side-

channel attack precautions, and explained the details for efficient mapping to hardware.

Many optimizations had been previously proposed for the Weierstrass formulation, aimed

at reducing the cost of point addition and doubling operations, as well as decreasing the

number of point additions and doublings. Unfortunately, most of these optimizations

made the systems prone to side-channel attacks. We avoided reducing the number of point

additions, and discussed methods to uniformly order the distinguishable point operations

of Weierstrass elliptic curves for achieving a scalar pointmultiplication resistant against

simple side-channel attacks. We also introduced our secureversion of NAF multiplication

algorithm to work with unified point addition and doubling operations of Edwards elliptic

curves.

61

We implemented 8 different ECC point multiplication systems, and synthesized each

configuration with UMC0.18 µm CMOS technology:

1. Weierstrass affine using add-always algorithm,

2. Weierstrass projective using add-always algorithm,

3. Edwards affine with unified doublings using add-always algorithm,

4. Edwards affine with optimized doublings using add-alwaysalgorithm,

5. Edwards affine with unified doublings using secure NAF algorithm,

6. Edwards projective with unified doublings using add-always algorithm,

7. Edwards projective with optimized doublings using add-always algorithm,

8. Edwards projective with unified doublings using secure NAF algorithm.

Then, we combined all ECC configurations as an ECC processor, and realized it on a

single chip with0.18 µm CMOS technology, and also with0.18 µm MOS Current-Mode

Differential Logic (MCML) technology [21] to provide resiliency against differential side

channel attacks.

Edwards elliptic curves were shown to be faster than previous elliptic curve formu-

lations [19] in addition to their advantages for side-channel security. However, due to

more complicated point operations of Edwards affine formulation, the performance bene-

fits were only applicable for projective coordinates. Therefore, with the availability of an

efficient divider, Weierstrass affine formulation still offered the best performance. Using

projective coordinates had both positive and negative effects on the total cell area. Avoid-

ing the implementation of a divider allowed reducing the area. However, more compli-

cated point addition and doubling operations required using more temporary registers.

Moreover, using 3 instead of 2 coordinates to represent a point increased the area to store

62

the temporary points during point multiplication. The adverse effects of all these addi-

tional register requirements were exacerbated when each binary digit was stored in 2 bits

due to our choice of using the redundant binary representation to implement fast modular

operations. Finally, with the use of efficient resource sharing between divider and mul-

tiplier, the area cost of implementing the divider was reduced. Indeed, we observed that

the area cost of additional register usage canceled out the area gain of not implementing

a divider. Thus, the areas of affine and projective systems had almost same values that

were in the range 91K-94K, except the Weierstrass Projective implementation. The com-

plicated formulations of Weierstrass Projective system consumed an area of 110K even

without a divider. Having lost the advantage of area reduction, the only attraction to use

projective coordinates would have been timing optimization by avoiding divisions. How-

ever, in our implementation the division/multiplication timing ratio was only 4, and was

not enough to make the projective operations significantly faster. Therefore, we obtained

the time costs presented in Table 5.1 and Figure 5.1.

We showed that, in an efficient hardware implementation, Weierstrass formulation

with affine coordinates offered the best performance due to its simplicity, and Edwards

superseded Weierstrass formulation only when projective coordinates were used. The

fact that affine systems would offer better performance thanprojective systems was also

pointed out in [60–62], which demonstrated that it would be profitable to investigate effi-

cient inversion architectures to be able to use the simpler formulations with affine coordi-

nates.

63

Bibliography

[1] N. Koblitz, “Elliptic Curve Cryptosystems,”Mathematics of Computation, vol. 48,
no. 177, pp. 203–209, 1987.

[2] V. Miller, “Use of Elliptic Curves in Cryptography,”Advances in Cryptology
(CRYPTO 1985), Santa Barbara, CA, USA, vol. 218, pp. 417–426, 1985.

[3] A. Lenstra and E. Verheul, “Selecting Cryptographic Key Sizes,” Journal of Cryp-
tology, vol. 14, pp. 255–293, 2001.

[4] J. Quisquater and D. Samyde, “ElectroMagnetic Analysis(EMA): Measures and
Counter-Measures for Smart Cards,”Smart Card Programming and Security, Inter-
national Conference on Research in Smart Cards (E-smart 2001), Cannes, France,
vol. 2140, pp. 200–210, 2001.

[5] K. Gandolfi, C. Mourtel, and F. Olivier, “ElectromagneticAnalysis: Concrete Re-
sults,”Workshop on Cryptographic Hardware and Embedded Systems (CHES2001),
Paris, France, vol. 2162, pp. 251–261, 2001.

[6] J. Lee, S. Jung, and J. Lim, “Detecting Trapdoors in SmartCards Using Timing
and Power Analysis,”IFIP TC6/WG 6.1 International Conference: Testing of Com-
municating Systems (TestCom 2005), Montreal, Canada, vol. 3502, pp. 275–288,
2005.

[7] R. Anderson and M. Kuhn, “Tamper Resistance–a Cautionary Note,” The Second
USENIX Workshop on Electronic Commerce, Oakland, CA, USA, vol. 2, pp. 1–11,
1996.

[8] R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,”In-
ternational Workshop on Security Protocols, Paris, France, vol. 1361, pp. 125–136,
1997.

[9] P. Liardet and N. Smart, “Preventing SPA/DPA in ECC Systems Using the Ja-
cobi Form,”Workshop on Cryptographic Hardware and Embedded Systems (CHES
2001), Paris, France, vol. 2162, pp. 391–401, 2001.

64

[10] M. Joye and J. Quisquater, “Hessian Elliptic Curves and Side-Channel Attacks,”
Workshop on Cryptographic Hardware and Embedded Systems (CHES2001), Paris,
France, vol. 2162, pp. 402–410, 2001.

[11] K. Okeya and K. Sakurai, “Power Analysis Breaks EllipticCurve Cryptosystems
even Secure against the Timing Attack,”International Conference in Cryptology in
India (INDOCRYPT 2000), Calcutta, India, vol. 1977, pp. 178–190, 2000.

[12] M. Joye and C. Tymen, “Protections Against DifferentialAnalysis for Elliptic
Curve Cryptography,”Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES 2001), Paris, France, vol. 2162, pp. 377–390, 2001.

[13] E. Brier and M. Joye, “Weierstrass Elliptic Curves and Side-Channel Attacks,”In-
ternational Workshop on Practice and Theory in Public Key Cryptosystems (PKC
2002), Paris, France, vol. 2274, pp. 335–345, 2002.

[14] B. Möller, “Parallelizable Elliptic Curve Point Multiplication Method with Resis-
tance against Side-Channel Attacks,”International Conference on Information Se-
curity (ISC 2002), Sao Paulo, Brazil, vol. 2433, pp. 402–413, 2002.

[15] J. Coron, “Resistance Against Differential Power Analysis for Elliptic Curve Cryp-
tosystems,”Workshop on Cryptographic Hardware and Embedded Systems (CHES
1999), Worcester, MA, USA, vol. 1717, pp. 292–302, 1999.

[16] T. Izu and T. Takagi, “A Fast Parallel Elliptic Curve Multiplication Resistant against
Side Channel Attacks,”International Workshop on Practice and Theory in Public
Key Cryptosystems (PKC 2002), Paris, France, vol. 2274, pp. 280–296, 2002.

[17] B. Möller, “Securing Elliptic Curve Point Multiplication against Side-Channel At-
tacks,” International Conference on Information Security (ISC 2001), Malaga,
Spain, vol. 2200, pp. 324–334, 2001.

[18] H. Edwards, “A Normal Form for Elliptic Curves,”Bulletin of the American Math-
ematical Society, vol. 44, no. 3, pp. 393–422, 2007.

[19] D. Bernstein and T. Lange, “Faster Addition and Doublingon Elliptic Curves,”In-
ternational Conference on the Theory and Applications of Cryptology and Infor-
mation Security: Advances in Cryptology (ASIACRYPT 2007), Kuching, Malaysia,
vol. 4833, pp. 29–50, 2007.

[20] D. Bernstein, T. Lange, and R. Farashahi, “Binary Edwards Curves,” Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2008), Washington, D.C.,
USA, vol. 5154, pp. 244–265, 2008.

[21] S. Badel,MOS Current-Mode Logic Standard Cells for High-Speed Low-NoiseAp-
plications. PhD thesis, Swiss Federal Institute of Technology, Lausanne (EPFL),
2008.

65

[22] M. Joye, “Highly Regular Right-to-Left Algorithms for Scalar Multiplication,”
Workshop on Cryptographic Hardware and Embedded Systems (CHES2007), Vi-
enna, Austria, vol. 4727, pp. 135–147, 2007.

[23] D. Hankerson, S. Vanstone, and A. Menezes,Guide to Elliptic Curve Cryptography.
Springer, 2004.

[24] A. Lenstra, “Cryptosystems with Elliptic Curves Chosen byUsers,” Sept. 3 2002.
US Patent 6,446,205.

[25] D. Chudnovsky and G. Chudnovsky, “Sequences of Numbers Generated by Addition
in Formal Groups and New Primality and Factorization Tests,” Advances in Applied
Mathematics, vol. 7, no. 4, pp. 385–434, 1986.

[26] J. Lopez and R. Dahab, “Fast Multiplication on Elliptic Curves over GF (2m) with-
out Precomputation,”Workshop on Cryptographic Hardware and Embedded Sys-
tems (CHES 1999), Worcester, MA, USA, vol. 1717, pp. 316–327, 1999.

[27] H. Cohen, A. Miyaji, and T. Ono, “Efficient Elliptic Curve Exponentiation Using
Mixed Coordinates,”International Conference on the Theory and Applications of
Cryptology and Information Security: Advances in Cryptology(ASIACRYPT 1998),
Beijing, China, vol. 1514, pp. 51–65, 1998.

[28] S. Chari, J. Rao, and P. Rohatgi, “Template Attacks,”Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2002), Redwood Shores, CA, USA,
vol. 2523, pp. 13–28, 2002.

[29] G. Reitwiesner, “Binary Arithmetic,”Advances in Computers, vol. 1, pp. 231–308,
1960.

[30] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems,”International Cryptology Conference: Advances in Cryptol-
ogy (CRYPTO 1996), Santa Barbara, CA, USA, vol. 1109, pp. 104–113, 1996.

[31] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” International Cryp-
tology Conference: Advances in Cryptology (CRYPTO 1999), Santa Barbara, CA,
USA, vol. 1666, pp. 388–397, 1999.

[32] W. Schindler, “A Combined Timing and Power Attack,”International Workshop
on Practice and Theory in Public Key Cryptosystems (PKC 2002),Paris, France,
vol. 2274, pp. 263–279, 2002.

[33] B. Chevallier-Mames, M. Ciet, and M. Joye, “Low-Cost Solutions for Preventing
Simple Side-Channel Analysis: Side-Channel Atomicity,”IEEE Transactions on
Computers, vol. 53, no. 6, pp. 760–768, 2004.

66

[34] I. Biehl, B. Meyer, and V. Muller, “Differential Fault Attacks on Elliptic Curve
Cryptosystems,”International Cryptology Conference: Advances in Cryptology
(CRYPTO 2000), Santa Barbara, CA, USA, vol. 1880, pp. 131–146, 2000.

[35] S. Yen and M. Joye, “Checking Before Output May Not Be EnoughAgainst Fault-
Based Cryptanalysis,”IEEE Transactions on Computers, vol. 49, no. 9, pp. 967–
970, 2000.

[36] M. Joye and S. Yen, “The Montgomery Powering Ladder,”Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2002), Redwood Shores, CA,
USA, vol. 2523, pp. 291–302, 2002.

[37] P. Fouque and F. Valette, “The Doubling Attack Why Upwards is better than Down-
wards,” Workshop on Cryptographic Hardware and Embedded Systems (CHES
2003), Cologne, Germany, vol. 2779, pp. 269–280, 2003.

[38] C. Walter, “Sliding Windows Succumbs to Big Mac Attack,”Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2001), Paris, France, vol. 2162,
pp. 286–299, 2001.

[39] C. Clavier, J. Coron, and N. Dabbous, “Differential Power Analysis in the Presence
of Hardware Countermeasures,”Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES 2000), Worcester, MA, USA, vol. 1965, pp. 252–263, 2000.

[40] M. Aigner and E. Oswald, “Power Analysis Tutorial,” tech. rep., Graz University of
Technology (TU Graz), 2000.

[41] N. Pramstaller, F. Gurkaynak, S. Haene, H. Kaeslin, N. Felber, and W. Fichtner,
“Towards an AES Crypto-chip Resistant to Differential Power Analysis,”European
Solid-State Circuits Conference (ESSCIRC 2004), Leuven, Belgium, pp. 307–310,
2004.

[42] F. Gürkaynak, S. Oetiker, H. Kaeslin, N. Felber, and W. Fichtner, “Improving DPA
Security by Using Globally-Asynchronous Locally-Synchronous Systems,”Euro-
pean Solid-State Circuits Conference (ESSCIRC 2005), Grenoble, France, pp. 407–
410, 2005.

[43] T. Messerges, “Securing the AES Finalists Against Power Analysis Attacks,”Inter-
national Workshop on Fast Software Encryption (FSE 2000), NewYork, NY, USA,
vol. 1978, pp. 150–164, 2001.

[44] E. Oswald, S. Mangard, and N. Pramstaller, “Secure and Efficient Masking of AES-
A Mission Impossible,” tech. rep., Technical Report IAIK-TR2003/11/1, 2004.
http://eprint.iacr.org/.

67

[45] K. Tiri, M. Akmal, and I. Verbauwhede, “A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power Anal-
ysis on Smart Cards,”European Solid-State Circuits Conference (ESSCIRC 2002),
Florence, Italy, pp. 403–406, 2002.

[46] Z. Toprak and Y. Leblebici, “Low-Power Current Mode Logic for Improved DPA-
Resistance in Embedded Systems,”International Symposium on Circuits and Sys-
tems (ISCAS 2005), Kobe, Japan, vol. 2, pp. 1059–1062, 2005.

[47] F. Regazzoni, S. Badel, T. Eisenbarth, J. Grobschadl, A. Poschmann, Z. Toprak,
M. Macchetti, L. Pozzi, C. Paar, Y. Leblebici,et al., “A Simulation-Based Method-
ology for Evaluating the DPA-Resistance of Cryptographic Functional Units with
Application to CMOS and MCML Technologies,”International Conference on Em-
bedded Computer Systems: Architectures, Modeling and Simulation (IC-SAMOS
2007), Samos, Greece, pp. 209–214, 2007.

[48] S. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardware Implementation of
an Elliptic Curve Processor over GF (p),”14th IEEE International Conference
on Application-Specific Systems, Architectures, and Processors (ASAP 2003), The
Hague, The Netherlands, vol. 0, pp. 433–443, 2003.

[49] M. Kaihara and N. Takagi, “A Hardware Algorithm for Modular Multiplica-
tion/Division,” IEEE Transactions on Computers, vol. 54, no. 1, pp. 12–21, 2005.

[50] N. Takagi and S. Yajima, “Modular Multiplication Hardware Algorithms with a Re-
dundant Representation and their Application to RSA Cryptosystem,” IEEE Trans-
actions on Computers, vol. 41, no. 7, pp. 887–891, 1992.

[51] A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,”IRE
Transactions on Electronic Computers, vol. 10, no. 3, pp. 389–400, 1961.

[52] N. Takagi, H. Yasuura, and S. Yajima, “High-Speed VLSI Multiplication Algorithm
with a Redundant Binary Addition Tree,”IEEE Transactions on Computers, vol. 34,
no. 9, pp. 789–796, 1985.

[53] P. Kornerup, “Reviewing 4-to-2 Adders for Multi-Operand Addition,” The Journal
of VLSI Signal Processing, vol. 40, no. 1, pp. 143–152, 2005.

[54] A. Satoh and K. Takano, “A Scalable Dual-Field EllipticCurve Cryptographic Pro-
cessor,”IEEE Transactions on Computers, vol. 52, no. 4, pp. 449–460, 2003.

[55] F. Sozzani, G. Bertoni, S. Turcato, and L. Breveglieri, “AParallelized Design for
an Elliptic Curve Cryptosystem Coprocessor,”International Symposium on Infor-
mation Technology: Coding and Computing (ITCC 2005), Las Vegas, Nevada, USA,
vol. 1, pp. 626–630, 2005.

68

[56] S. Ors, L. Batina, B. Preneel, and J. Vandewalle, “Hardware implementation of an
elliptic curve processor over gf(p),”IEEE International Conference on Application-
Specific Systems, Architectures, and Processors (ASAP 2003), The Hague, The
Netherlands, pp. 433–443, 2003.

[57] N. Mentens, K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “A side-
channel attack resistant programmable pkc coprocessor forembedded applications,”
International Conference on Embedded Computer Systems: Architectures, Model-
ing and Simulation (IC-SAMOS 2007), Samos, Greece, pp. 194–200, 2007.

[58] C. McIvor, M. McLoone, and J. McCanny, “Hardware ellipticcurve cryptographic
processor over gf (p),”IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, vol. 53, no. 9, pp. 1946–1957, 2006.

[59] K. Sakiyama, N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “Reconfig-
urable modular arithmetic logic unit supporting high-performance rsa and ecc over
gf(p),” International Journal of Electronics, vol. 94, no. 5, pp. 501–514, 2007.

[60] E. Savas and Ç. Koc, “Architectures for Unified Field Inversion with Applications in
Elliptic Curve Cryptography,”9th International Conference on Electronics, Circuits
and Systems (ICECS 2002), Dubrovnik, Croatia, vol. 3, pp. 1155–1158, 2002.

[61] E. Ozturk, B. Sunar, and E. Savas, “Low-Power Elliptic Curve Cryptography Using
Scaled Modular Arithmetic,”Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2004), Boston, MA, USA, vol. 3156, pp. 92–106, 2004.

[62] E. Savas, M. Naseer, A. Gutub, and Ç. Koc, “Efficient Unified Montgomery Inver-
sion with Multibit Shifting,” IEE Proceedings - Computers and Digital Techniques,
vol. 152, no. 4, pp. 489–498, 2005.

69

