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Abstract

Elliptic Curve Cryptosystems (ECCs) are utilized as an alter@ab traditional public-
key cryptosystems, and are more suitable for resourcegthaibvironments due to smaller
parameter size. In this dissertation we carry out a thoromggstigation of side-channel
attack aware ECC implementations over finite fields of primeratteristic including the
recently introduced Edwards formulation of elliptic cusyghich have built-in resiliency
against simple side-channel attacks. We implement Joyghdyhregular add-always
scalar multiplication algorithm both with the Weierstrassd Edwards formulation of
elliptic curves. We also propose a technique to apply nqaeaat form (NAF) scalar
multiplication algorithm with side-channel security ugithe Edwards formulation. Our
results show that the Edwards formulation allows increased-time performance with
projective coordinates. However, the Weierstrass fortiariawith affine coordinates re-
sults in the simplest architecture, and therefore has tbedoea-time performance as long

as an efficient modular divider is available.
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Chapter 1

Introduction

Modern society largely rely on digital information systearsl information storage that
depend on cryptographic services to function properly. Aegg of cryptographic al-
gorithms are used to implement common cryptographic sesvstich as: confidential-
ity, integrity, authenticity, access control and non-réigtion. Providing suitable imple-
mentation of cryptographic algorithms both in hardware ensoftware has become an
increasingly challenging task. There are two main formsrgptographic algorithms.
Private key algorithms assume that the secret key is (sowjetnailable to legitimate
participants, while public key algorithms allow two (or ,dicommunicating parties to
negotiate a secret key on demand. Traditionally, publicdtgptographic algorithms are
known to have higher computation demands, which reduce theughput and make
them difficult to implement in hardware. However, due to tleg Kistribution problem
with private-key algorithms, there is an increasing trehargplementing public-key al-
gorithms in hardware.

In the mid-eighties Neal Koblitz [1] and Victor Miller [2] ohependently proposed us-
ing elliptic curves for public key cryptosystems. SincerthECC has been intensively

studied, and became popular among other common public4kgtosystems such as



RSA, Diffie-Hellman and ElIGamal. In [3], Lenstra and Verhezported that ECC using
a 130-bit key offers comparable security as RSA with a keytlemd 1024 bits. The
shorter parameter size makes ECC especially attractiverfbedded applications. How-
ever, such devices are more prone to side-channel attacks,the attacker can procure,
isolate, and test such a system without being detected .[4H8refore security against
side-channel attacks is considered to be vital for ECC deplog embedded systems,
even though it leads to degradation in performance. Setechhiques were proposed
for efficient and side-channel attack aware hardware imefeation of ECC [9-12]. Un-
fortunately, these techniques use either specializedsfi@dspecifically chosen elliptic
curves. On the other hand, more generic side-channel ataake implementations in-
volve more complicated equations [13], demand more hareljla], or leave the system
vulnerable to other types of attacks [15—-17]. Hence, ptiagié high performance non-
specialized implementation, while retaining a degreedé-sihannel resiliency remains a
challenge.

In 2007, Edwards proposed a novel formulation of elliptio/ets and associated point
arithmetic operations defined over all non-binary fields|[1Bernstein and Lange ana-
lyzed and compared the complexity (in number of elementatd foperations) of basic
group operations for different forms of elliptic curves iarious coordinate systems [19].
They suggest that the Edwards elliptic curve formulatios sigperior performance than
the fastest known ECC algorithms. Binary Edwards curves alsb 0], but they are

not in the scope of this work.

Contributions and Outline

This dissertation presents a comprehensive overview amgaogson of parameter agnos-

tic hardware implementations of ECC over finite fields of pricharacteristics. In par-



ticular we present optimized hardware realizations of EC@ve&ierstrass and Edwards
formulations using affine and projective coordinates. Wagare these implementations
in terms of their area and throughput performance. We alslizeethem in a ECC pro-
cessor both with CMOS technology, and power balanced MOS GtukMede Differential
Logic (MCML) technology [21] that provides resiliency agsiidifferential side-channel
analysis (DCA).

Furthermore, we introduce techniques for improving théqrarance at various im-
plementation levels without undermining side-channelrawass. In most ASIC arith-
metic units, carry chains cause bottlenecks. Our systemag of redundant digits for
all modular arithmetic operations is a significant advaettay reaching higher operat-
ing frequencies, therefore we are setting ASIC speed redordprime-field ECC. We
implement Marc Joye’s recently introduced highly regulaidAAlways scalar multipli-
cation algorithm, which is proven to be secure against S(o&-gttacks and safe-error
attacks [22]. Finally, we introduce a side-channel awarsiga of NAF scalar multipli-
cation algorithm for Edwards formulation in Algorithm 2.

The organization of this dissertation is as follows. Chagqrovides a prelimi-
nary introduction to ECC, defines the main parameters, anodates the new Edwards
formulation for ECC. Chapter 3 investigates design of ECC hogidilocks with side-
channel attack precautions. The details for efficient magppf elliptic curve cryptosys-
tems to hardware are explained in Chapter 4. In Chapter 5, thlementation results are
presented. Finally Chapter 6 concludes the dissertation.

Publications relevant to this dissertation:

e D. Karakoyunlu, F. K. Gurkaynak, B. Sunar, Y. Leblebici, "Efént and Side Chan-
nel Aware Implementations of ECC over Prime Fields”, IET hnfiation Security,

Volume 4, Issue 1, Pages 30-43, 2010.



e S. K. Yoo, D. Karakoyunlu, B. Birand, B. Sunar, "Improving the Retness of
Ring Oscillator TRNGs”, ACM Transactions on Reconfigurable Textbgy and
Systems, Volume 3, No 2, Article 9, 2010.

e D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, B. Sunar,djan Detection
using IC Fingerprinting”, Proceedings of the 2007 IEEE Sgsipm on Security
and Privacy, Oakland, CA, USA, 2007.



Chapter 2

Background

In this chapter, we briefly present the ECC formulations ovetdifields of prime char-
acteristics. We first describe the elliptic curve discretgakithm problem, which assures
the computational security of elliptic curve cryptosysgenthen in the first section, we
present the Weierstrass formulation for elliptic curves] provide the equations for point
addition and point doubling on Weierstrass elliptic curdeshe next section, we present
the Edwards formulation for elliptic curves, and provide #guations for point addition
and point doubling on Edwards elliptic curves. Finally, thed section introduces the
projective coordinates, and provides the point additioth @oubling equations with pro-
jective coordinates both on Weierstrass and Edwardsieléptves. The reader is referred
to [23], for a more detailed treatment of ECC.

In order to construct a cryptographic system, we first neatikfme a suitable elliptic
curve E defined over a prime fiell, [24]. A cyclic subgroup of£'(F,) can be generated

by selecting a poinP of order n, and computing its multiples:

(P) ={oc0, P,2P, 3P, ..., (#n—1)P}

The elliptic curve discrete logarithm problem (ECDLP) is defl as determining the



valuek € [1,#n — 1], given a pointP € E(F,) of order#n, and a point) = kP € (P).
ECDLP is the underlying number theoretical problem used by B&@e cryptosystem,
the private key is obtained by selecting an integeandomly from the intervall, #n—1].
The corresponding public key will k@ = kP, and needs to be calculated by scalar point

multiplication.

2.1 Weierstrass Formulation for Elliptic Curves

An elliptic curve E defined over a prime fiel#, (with p > 3) can be written in the

simplified Weierstrass form as:

E(F,) : y¥*=2"+ax+b (2.1)

wherea,b € F,, and the discriminant of the cune = —16(4a® + 27b%) # 0. A point
addition operation is defined as adding two poifts= (z1,y;) and @ = (z2,y2) in
E(F,) resulting in a third point® + @ = (z3,ys) in E(F,) with the point atso serving
as identity element® + oo = P). Assuming that? # +Q), the pointP + Q = (x3,y3)

can be calculated as:

T3 = (yQ — yl) —z1 —x9  (mod p) (2.2)

Lo — X1

wo= (E22) ma - odp)

Lo — X1

For P = () the operation is called doubling, and the calculatio” Bf= (x3,y3) is

slightly different:



312 2
r3 = ( il a) —2x;  (mod p) (2.3)
2
3x2 +a
Ys = ( 21 )(951—333)—91 (modp)
U1

Finally, if P = —(@ the operation results in point at infinity, and it should bediad

separately.

2.2 Edwards Formulation for Elliptic Curves

In [18], Edwards showed that elliptic curves over a primedfi} (with p > 3) in the

normal form:

E(F,) : 2°+y* = A(1 + dx*y?) (2.4)

are bi-rationally equivalent to Weierstrass elliptic @sy and can be efficiently trans-
formed from the short Weierstrass form given in Equatiod)2The parameter can be
chosen as 1 without loss of generality. Therefore, it willlssumed to be 1 in subsequent
chapters. Bernstein and Lange introduced explicit equstimnperforming the transfor-
mation of the ECC coordinates from Weierstrass to Edwardstigw/for performing the
group operations on an Edwards curve [19]. The most attaptioperty of the Edwards
formulation is that the same point addition operation camised even if the two points

on the curve are equal:



T1Y2 + Y122
Ty = —= 7 mod 2.5
’ 1 + dz122y1 Y2 ( P) (2:3)

Y1Y2 — T1X2

L2 22 (mod p
1 —dx1z21192 ( )

Y3

Whereas, in the Weierstrass elliptic curve formulation sas&je doubling operation
as shown in Equation (2.3) is needed wheg- (9, and special handling of point at infin-
ity is needed whe® = —(). Since only a single type of operation is used, it is reaskenab
to expect a higher performance from side-channel attackeal#@C implementations us-
ing the Edwards formulation when compared to those usini\thierstrass formulation.
In addition, in the Edwards formulation, there is no spepa@ht atoo, removing another
special case that has to be handled by implementations. ditvards doubling formu-
lation can also be further simplified by using the Edwardgptd! curve definition and
rewriting dz?y? asz? + y? — 1 as suggested by Marc Joye to Bernstein et al. in [19].
This optimization makes the point addition and doublingnasyetric, taking away the
side-channel resiliency advantage of unified addition amabting operations. Never-
theless, Edwards formulation with optimized doubling @pens may be utilized with a

side-channel aware multiplication algorithm as in the cs&/eierstrass formulation:

2111
r3 = mod p (2.6)
EE A
2 2
Ty — U
= mod
Y3 l’% + y% —9 ( p)



2.3 Projective Coordinate Systems

ECC implementations may be viewed at several layers. At tivet pevel the main op-
eration is the scalar-point multiplication, which is reald with multiple point additions
and point doubling operations. Each point addition and toglinvolves a number of el-
ementary modular arithmetic operations. Modular addifiod subtraction are relatively
straightforward to implement. Modular multiplication is@asonably costly operation.
At the arithmetic level the implementation of the modularersion is the most costly
operation . The high cost of modular inversion has motivétednvestigation of alterna-
tive coordinate representations, which avoid the inversiogeration at a cost of increased
number of field multiplications and additions. The classicemulation where a poinf
on an elliptic curveFE is represented by a pair of elemeiisy) is known as the affine
coordinate representation. The affine coordinates carabsformed into projective co-
ordinates that use three elements to represent a Q&irit, 2 ), allowing the numerator
and the denominator to be calculated separately.

A number of projective coordinate transformations havenljgeposed in the litera-
ture: homogeneous projective, Jacobian, Chudnovsky Jac¢®b], Lopez-Dahab [26],
and mixed coordinates [27]. Homogeneous projective coatds are rarely used in
Weierstrass formulation, since the number of multiplieasi required in exchange for
avoiding the inversion is too high. However, Jacobian poibje coordinates turn out to
be more efficient and most commonly applied either as is, arrmxed form with affine
coordinates. On the other hand, due to the balanced formuaties, homogeneous
projective coordinate work well on Edwards elliptic curves

A Weierstrass elliptic curve defined in Equation (2.1) isvarted to Jacobian coordi-
nates as follows:

E(F,) : Y2 =X+ aXZ*+bZ°



whereX = 2272, Y = yZ3. Then the point addition (Equation 2.7) and doubling (Equa-

tion 2.8) formulations with Jacobian coordinates becon®: [2

X3 = NWZP-NZ3H? — (X 27 — X1 Z2)(X,Z2 + X1Z2)  (mod p) (2.7)
Vs = (NLZP —NZH[(XoZF — X1 ZD)*(XoZE + X1 Z2) — 2X]
—(XoZ% — X\ 22 (Yo Z3 + Y1 Z3)  (mod p)

Z3 = <X2Z12 — X1Z22)leg (HlOd p)

X; = (3X7+aZ})*-8X 1YY (mod p) (2.8)
Yy = (3X7+aZ))(4X\Y{ — X3) —8Y]'  (mod p)

Zy = 2Y1Z; (mod p)

The addition formulation can be optimized by removingvalues, if one of the points
is affine (i.e. Z, = 1), resulting in so-called mixed point addition. An Edwardlig&c
curve defined in Equation (2.4) is converted to homogeneoniegiive coordinates as

follows:

E(F,) : X?+Y?=2*4+dX?*Y?

whereX = 27, Y = yZ. The following formulas compute the unified point addition
and doubling (Equation 2.9), and optimized doubling (EmqumeR.10) operations with
projective coordinates [19]. Similar to Jacobian coortBsaaddition can be optimized in

the case of mixed coordinates.

10



Z1Z5(X1Ys + V1. X0) (27 Z5 — dX1 X,Y1Y2)  (mod p) (2.9)
71 Zy(V1Ys — X1 X0)(Z2 72 +dX 1 X,Y1Y,)  (mod p)

(2173 — dX, XoV1Yo)(Z7 25 + dXi XoY1Ys)  (mod p)
2X1Y1(X7 + Y —277)  (mod p) (2.10)

(X7 = Y?)(XT+YY)  (mod p)

(X7 +Y)(XT+Y? —2Z77)  (mod p)

11



Chapter 3

Side-Channel Information Leakage

In this chapter, we explain the sources of side-channetimdtion leakage, classify the
side-channel attacks, and provide algorithmic and impheate®n countermeasures. In
the first section, we point out how data dependency and donditexecutions play a fac-
tor in side-channel information leakage. We discuss théau= to uniformly order the
distinguishable point operations for achieving a scalamntpaultiplication that withstands
the simple side-channel attacks. We introduce a secursueyENAF algorithm to work
with unified point addition and doubling operations of Eddselliptic curves. The NAF
algorithm improves the run time of scalar point multiplicat by 25%, while our con-
tribution allows it to retain resiliency against simpleesichannel attacks. In the second
section, we talk about the countermeasures against diffalside channel attacks.

The security of an algorithm is measured in terms of the efémuired by the attacker
to extract the secret information. Good cryptographic algms are based on number
theoretic problems that have a well studied computatiooaptexity, hence the effort to
break the algorithm is well-known. Algorithm parametenrs enosen so that practical at-
tacks are rendered infeasible. However, once an algorghmplemented in hardware or

in software, the implementation acquires physical propgeguch as power consumption,

12



electromagnetic radiation, surface temperature, or tieggiired to complete an opera-
tion. All these properties that can be observed to vary wdrigtograpic operations are
processed, are side channel information sources, whicpat@ntially be used by an ad-
versary to reveal parts of the secret key. Side-channelksttzan be classified into simple
side-channel attacks (SCA), which directly interpret d&i@acteristics that are visible in
a single or a few measurement traces, and differentialchdenel attacks (DCA), which
interpret the side-channel differences of correlated oremsents. Side-channel attacks
can be further enhanced by applying statistical methodsatemplate of measurement
traces [28]. While it seems impossible to foresee all posssile-channel attacks that
might emerge in the future, we believe that cryptographahigectures should be de-

signed to withstand side-channel leakage. We call suchtacttres side-channel aware.

3.1 SCA Countermeasures

Side-channel awareness starts with preventing SCA, whiphines avoiding conditional
executions and data-dependent run times in all levels ofmgateimentation. An elliptic
curve cryptosystem is based on multiplying a point on thpt@l curve with ann-bit
scalar. The scalar point multiplication is realized by paddition and doubling oper-
ations, which involve a number of elementary modular aréghicoperations. The first
step of side-channel awareness is developing constarttmenmodular arithmetic op-
erations. This requires removing data dependent optiiizstand achieving constant
run-time operations regardless of the inputs. In Sectidnwe present our implementa-
tions of modular mutliplication, division, addition andsaction operations.

The next step is to design side-channel aware point addatahdoubling units that
realize the formulations in Equations (2.2), (2.3), (28.6), (2.7), (2.8), (2.9), and

(2.10). The side-channel aware modular arithmetic unltsvakach point operation to

13



be constant-time regardless of the input point coordindiesvever, the different formu-
lations of Weierstrass point addition and doubling operetimake the side channel char-
acteristics of point addition and doubling distinguisteghthich requires the point mul-
tiplication algorithm to uniformly order the additions addublings in order to achieve
side-channel awareness (i.e. regular point multiplicatitgorithm). This requirement
also applies to optimized doublings for Edwards formulatisince the optimized point
doubling is also different from point addition. On the otlrand, Edwards formulation
allows using a unified point operation both for addition amdlaling. In this case, the
point multiplication algorithm does not need to be reguda therefore a faster irregular
multiplication algorithm can be utilized. The hardware Ierpentation details of point
addition and doubling units are further investigated int®ecs.2.

The so-called binary multiplication methods provide asysdtic way of ordering the
addition and doubling operations. In a typical binary nplitiation scheme, as the bits
of the multiplicand are processed sequentially, a poinbting is performed for each bit,
and a point addition is performed if the current bit is equabhe. Hence, the run time
of the binary multiplication scheme depends on the numbaoafzero bits of the multi-
plicand. On average, for a multiplicand of bit lengththe point multiplication requires
n doubling operations an¢g point additions. A more advanced binary multiplication
method requires the scalar multiplicand to be recordedtioon-adjacent signed digit
form (NAF) [29]. A NAF binary number will not have two consdme non-zero digits (1
or -1 in signed digit form), reducing the number of point didutis to less thag through-
out an-bit scalar point multiplication§ point additions on average). While the number
of doublings remains constant, the NAF method leads to a siddear improvement in
the number of point additions.

Both the standard binary multiplication scheme and the NAtese conditionally

perform a point addition (or subtraction) driven by the lyndigit values of the secret

14



multiplicand. Side-channel characteristics of distirstpaible point addition and doubling
operations can be observed to vary while a point multipleeis carried out, which can
potentially be used by an adversary to reveal parts of thees&ey [30, 31]. More-
over, even if the point addition and doubling operationsrgestinguishable as in unified
Edwards formulation, the total run time of the point mulgation still depends on the
number of non-zero binary digits of the multiplicand, sipoent addition is only carried
out when a digit is non-zero. In this case, an attacker obsgithe run time, could de-
termine the Hamming weight of the multiplicand, reducing ffossible solution space
significantly. In the following subsections, we presentrappiate point multiplication

methods for different and unified point addition and doulploperations.

3.1.1 Countermeasures for Different Point Operations

When the point addition and doubling operations are differgre only way to make a
point multiplication side-channel attack aware is to useifoum sequence of point oper-
ations that do not depend on the value of the multiplicand.etod proposed by Moller
performs point multiplication with fixed pattern of douldimand additions with less than
2n point operations in total [17], but it involves a fixed loog-table that makes the system
susceptible to statistical attacks described in [32]. Reizngg this problem, he proposes
a new method to avoid a fixed table [14], employing a randodhiagialization stage to
achieve resistance against side-channel attacks. Howekien a random number gen-
erator is not incorporated, one has to use a regular mekifpdin algorithm that involves
one point addition and one point doubling for each binaryitdh§ the multiplicand to
avoid revealing the order and number of the non-zero digits.

One solution to achieve a regular multiplication algoritisnto introduce point addi-
tion operations when the binary digit is zero [15, 16], oreinig dummy atomic oper-

ations to achieve side-channel atomicity [33]. Howeves thnot always a trivial task.

15



If the operations are dummy, they are vulnerable to faukrinsn attacks, where the at-
tacker deliberately introduces a fault during an operatiod monitors the output for a
change. If the correct output is produced in the presencaudfsf the attacker will be
able to conclude that the operation, where the fault waedinired, was a dummy opera-
tion [34, 35].

The so-called Montgomery binary ladder [36] protects agfeCA and fault insertion
attacks, since it is highly regular and does not involve dynoperations. Recent studies
has shown that processing the bits of multiplicand fromtedftight, as in Montgomery
ladder, are also vulnerable to certain attacks [37, 38].0@72 Joye introduced the add-
always! binary scalar multiplication algorithm [22]. This new atgbm (Algorithm 1)
is highly regular, processed from right-to-left, and itue&gs no precomputation or prior
recoding. Add-always multiplication algorithm always végsn point doublings and
n point additions regardless of the value of the scalar nliddpd, and two temporary
registers are needed to store the results of each iteraiiém.have utilized the Add-
always algorithm in our implementations where point additand doubling operations
are different. It should be noted that the standard lefigbt algorithm with dummy
operations allows accumulating the multiplication resulonly one register, and using
mixed-coordinates since the coordinates of the input psikept intact (Z-coordinate of
the input point will be 1). Nevertheless, dummy operationd keft-to-right processing

should be avoided, due to the vulnerabilities describede&bo

3.1.2 Countermeasures for Unified Point Operations

In the case of distinguishable point addition and doublipgrations, a side-channel at-

tack aware point multiplication requires using a regulanpmultiplication algorithm that

1Also referred as: always add-and-double algorithm.
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Algorithm 1 Add-Always Scalar Multiplication Algorithm

Inputs: P € F,andk = (ky—1,...,ko)2 € N
Output: Q =kP € F),

1. Ry:=0; R;:=P;
2: for j=0ton —1do
3: b:=1—Fk;; Rp:=2Ry;
4. Ry := Ry + Ry
5: end for

6: return Ry

consists ofx doubling operations and point additions for a multiplicand of bit lengti
On the other hand, the Edwards formulation allows unifiechipaddition and doubling
without requiring specialized elliptic curves, or any randzation or initialization stage.
When the point addition and doubling operations are unifieel & the scalar-point mul-
tiplication algorithm is irregular it will not cause simpétde-channel leakage as long as
the total number of operations is constant. As it is mentidnehe beginning of this sec-
tion, the NAF point multiplication algorithm always reqesfewer thar§ point additions.
By carrying out necessary number of extra operations aftishiimg the point multiplica-
tion, the total run-time could be set to the worst case inmt@prevent the dependency on
the multiplicand value. However, if these extra operatidasiot update the value of the
result, the system will be vulnerable to fault-insertiotaeks as explained in Subsection
3.1.1. In Algorithm 2, we propose a method that computesxtra eperations at the end
of a NAF multiplication, where the additional operationsaftect the computed result.
Therefore, the algorithm is also robust against fault iserattacks. The first 7 lines of
the algorithm compute the NAF point multiplication, withetihesult stored iR,. Note
that the addition and subtraction operations in lines 4 aadte5virtually the same oper-
ations on elliptic curves. Moreover, our implementatiorsusadix-2 signed-digit3D2
redundant representation, which makes it trivial to aahiedistinguishable addition and

subtraction operations. All we need to is to swap the wirih§D2representation of the
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second operand digits in the case of point subtractionnn@i, the number of necessary
extra operations is calculated and stored,iand the registeR, is updated by the sum
of Ry and R,. After this addition, the result can be expressedrasult = Ry — R;.
Throughout thdor-loopin lines 9-12, both?, and 1z, are continuously updated fgrit-
erations, so that ng extra operations are carried out, whilssult = Ry — R; still holds.
Finally in line 12, the result is recomputed by the subt@ttiR, — R;. The addition in
line 13 is conditionally performed in order to achieve- 2 extra point additions in total
regardless of being odd or even. Hence, the computations will end after 2 unified

point operations.

Algorithm 2 Side-Channel Attack Aware NAF Scalar Multiplication Algibnn

Inputs: P € F, andk = (ky—1,...,ko)2 € N
Output: @ =kP c F,

Ry:=Ro+ Ry; 7:i=5 —a

for j=0to 5 do

10: Ry := Ry+ Ry1; Ry:= R1+ Ry;
11: end for

12: Ry := Ry — Ry;

13: if risodd then Ry := R1 + Ry; end if
14: return Ry

1: Ry:=0; Ri:=P; a:=0; r:=0;

2. forj=0ton—1do

3: Recodé:; on the fly into non-adjacent signed-digit form with Reitwiener's method.[29]
4: if (kj = 1)thenRy:= Ry+ R1; a:=a+1;endif

5: if (k’j :—1> then Ry := Ry — Ry; a::a+1;end if

6: Ry .= R1+ Ry;

7: end for

8:

9:

3.2 DCA Countermeasures

Differential side-channel analysis allows more powerttheks that succeed even in the

presence of SCA countermeasures [39]. Comprehensive infiommabout performing
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differential side-channel analysis can be found in [40]veBal classes of countermea-
sures were proposed against DCA, e.g. using noise genetatoonfuse attackers by
adding random noise to the power signature [41], feedirggddtapath units with random
data to provide a more uniform data profile [42], using magkecthniques [43, 44], and
finally using power balanced IC libraries that have data jpretelent power consumption
characteristics [45—-47]. For enhanced robustness agadlesthannel attacks, the design
may be synthesized with such precautions at the circuit.l&Ve synthesized our design
both with standard CMOS technology, and with the power badMOS Current-Mode
Differential Logic (MCML) technology [21].

At the algorithm level, DCA resiliency can be achieved by fiplying the point by
a random number prior to each point addition or doubling witbjective coordinates.
In Section 2.3, we have stated that homogeneous projeativedinates(zZ, yZ, Z)
are more suitable for the Edwards formulation, whereas #iteklan coordinates, i.e.
(xZ% yZ3,Z) are more suitable for the Weierstrass formulation. Priagaoh point op-
eration, randomization can be carried out by replacing thatgoordinateg X, Y, 7)
with (AX : AY : A7) in the case of homogeneous projective coordinates, and with
(A2X : MY : \Z) in the case of the Jacobian coordinates, wherg 0 is a random
number [15]. Hence, if projective randomization is utitizéhe Edwards formulation has
further performance benefit of requiring fewer field muitptions, since there is no need
for computing the square and cube of the random number griea¢h point addition or
doubling. We do not apply projective randomization, sineede not want to incorporate

a random number generator in our hardware implementation.
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Chapter 4

Efficient Mapping to Hardware

This chapter provides the details for efficient mapping bptt curve cryptosystems to
hardware. The mapping process involves a bottom-up melbggoWe first design the
modular arithmetic units. Later, we design elliptic cunggnt addition and doubling units
utilizing the modular arithmetic units. Then, we desigmpgit curve point multiplication
units on top of the point addition and doubling units. Theamigation of this chapter is
as follows:

We first present methods for efficient modular arithmeticect®n 4.1. Our goal is to
achieve the lowest possible area-time product by carefetsen and implementation of
modular arithmetic algorithms, while making sure that théhenetic operations always
have constant run-time independent of the data being pedesSince we are dealing
with large operand sizes, our first goal is to reduce the gaogagation in additions. Our
choice of using redundant binary adder, which utilizesycaave adders with operands in
radix-2 signed digit (SD2) representation, allows us to plately avoid the carry propa-
gation. Therefore, we are able to achieve single clock aadtbtion regardless of the size
or value of the operands. Hence, both the side-channeldeakavoided, and a very fast

addition operation is achieved at the cost of doubling tlea &r comparison with the area
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of a ripple-carry adder. For multiplication, we employ radi Montgomery multiplica-
tion that processes 2 digits in each iteration, and comgplatg + 2 iterations regardless
of the lengthn of the operands. For modular division, we employ two diffémaethods.
The first division method computes the division with expdiaion using Fermat’s the-
orem: Z~' = ZP=2 (mod p), whereged(Z, p) = 1 [48]. In this method, the division is
very costly in terms of time%2 + 3n iterations on average), but there is no additional
area cost. The second division method computes the divisimg extended binary GCD
algorithm, and completes in ondy: + 4 iterations at the cost of 50% increase in area. Our
implementation of modular division with binary GCD algontltontinues to iterate until
the control register is fully processed as suggested in fjce it has constant run-time
regardless of the input data. For modular addition and aatim, we modify the mod-
ular addition method described in [50] to work with the redant binary adders, and to
have compatible operand range with the modular multipbceand division algorithms.

In Section 4.2, we present the implementation details of EQiGt@ddition and dou-
bling operations for Weierstrass elliptic curves and Edisaglliptic curves both with
affine coordinates and projective coordinates. The poiditiath and doubling equations
were presented in Chapter 2. In this chapter, we map thesé@ugito hardware, which
requires careful scheduling of modular arithmetic operegiin order to complete the
point operation in least possible number of iterations aitd smallest possible number
of temporary storage registers.

Section 4.3 gives the details of ECC point multiplication gpens. Based on the
side channel leakage properties of binary multiplicatiogthrods that were examined
in Chapter 3, we apply the add-always algorithm for all défer ECC configurations
(Weierstrass affine point multiplication, Weierstrassobg&n point multiplication, Ed-
wards affine point multiplication with unified point opexats, Edwards affine point mul-

tiplication with optimized point doublings, Edwards projge point multiplication with

21



unified point operations, Edwards projective point muitialion with optimized point
doublings), and we apply our enhancement to NAF algorithmBdwards affine and

projective point multiplications with unified point opei@is.

4.1 Modular Arithmetic Operations

Modular arithmetic operations are the core operations of BE®rder to improve the

performance of the overall system, it is crucial to optintize modular arithmetic opera-
tions. Moreover, in order to avoid side-channel informati@akage, operation run times
should not be data dependent. As the first step of ECC implextient we have designed

the following modular arithmetic components.

4.1.1 Carry Propagation Free Addition with SD2 Representation

Addition is the primary building block in implementing drihetic operations. If addi-
tion is slow or area-expensive, all other operations suffan this. In order to achieve
parallel addition of twa-digit redundant binary numbers in constant time withoutyca
propagation, we used the radix-2 signed digit (SD2) remtasien that uses the digit
set{-1,0,1} [51], and carry propagation free addition as proposed if. [$2gure 4.1
shows addition of 2 consecutive SD2 digits using carry saiees. It can be observed
that, signals do not propagate through more than 2 full add&hen-digit redundant
binary adders (RBASs) are realized by cascading 4-to-2 sigiigiticarry-save adders as
presented in [53], which allowed us to keep the critical ggdath of computing:-digit
addition within the delay of two full-adders. The RBA is usesdthe primary building

block in the implementation of the modular arithmetic opierzs.
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Figure 4.1: Addition ofSD2Digits Using Carry-Save Adders

4.1.2 Radix-4 Montgomery Multiplication

A constant run-time radix-2 Montgomery modular multiplteat uses redundant repre-
sentation is presented in [49]. We have modified this algorito perform multiplication
in radix-4, reducing the run time by a factor of 2. This mulgp works by computing
5 steps for each radix-4 digit as presented in Algorithm 3emehLSD stands for least

significant digit.

Algorithm 3 Radix-4 Montgomery Multiplication Algorithm

Inputs:  X:= Multiplier, Y:= Multiplicand, M:= Modulus
Output: Z:= Result

Z:=0;
fori=1to 5
Step 1: a= LSD(X), X> 2;
Step 2: P:= &Y, (where: ac {—2,-1,0,1,2})
Step 3: Z:= Z+-P;
Step 4: Z:= Z+qg«M; (where: ge {—2,—1,0, 1,2}, so that LSD(Z}- 0)
Step 5: Z>> 2;
end for
return Z;

Step 2 requires only a single or double left shiftD2 digits, whereas Step 3 and

Step 4 requirer-digit redundant binary addition operations. The modulaltiplier com-

23



Montgomery Multiplier

Figure 4.2: Radix-4 Montgomery Multiplier
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pletes then-bit multiplication in 5 + 1 iterations through 2 RBA stages. Obviously, the
multiplication result will be in Montgomery residue formigitled by27+2). A side-effect

of using a radix-4 multiplier is that the range of operandiealhas increased from (/,
M) of original algorithm in [49] to ¢2M, 2M), whereM is the prime modulus. Figure

4.2 shows the block diagram of the radix-4 Montgomery mliip

4.1.3 Extended Binary GCD Modular Division

Modular division is the most costly operation in ECC openagiovhich is usually avoided
by using projective coordinates to trade several additiondtiplications with division
at every point addition cycle. If an efficient division undgudd be implemented, the ad-
ditional complexity incurred due to projective coordiratan be avoided. In order to
achieve a high-performance divider, we implemented theutaodlivision presented in
Algorithm 4. This algorithm computes the GCD of the divisodahe prime modulus,
which is equal to 1. Meanwhile, the same operations are egphpdi the dividend in par-
allel with a modulus reduction after each iteration. Whenadlgorithm terminates by
computing the GCD of the divisor and prime modulus as 1, theesgperations applied
to the dividend effectively computes the quotient of the maddivision. The binary
GCD algorithm is further optimized by observing the factd tha prime modulus is al-
ways an odd number; and when both numbers are odd, eithesthmior their difference
is a multiple of 4. Hence it reduces to following two casesemhyY is the divisor and M

is the prime modulus:

If Yis even, Mis odd: GCD(Y,M
If Yis odd, Mis odd: GCDXY, M

(Y 2, M
GCD([ YEM / 4, M)
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Algorithm 4 Extended Binary GCD Modular Division Algorithm [49]
Inputs:  X:= Dividend, Y:= Divisor, M:= Modulus
Output: Z:= Result

p:=n; d:=0; Z:= 0;
while p# 0 do
while Y is evendo
Y:=Y/2; X:=X/2mod M,
p:=p—1; d:=d-1;
end while
if d< 0then
swap(Y,M); swap(X,2); &= —d;
end if
Y:=(Y+k«M)/4; X:=(X+k*Z)/4 mod M; (where: ke {—1,1})
p:=p—1; d:=d-1;
end while
if M= —1thenZ:=M—-Z; end if
return Z,

The modular divider completes-bit division in only 2n + 4 iterations in 2M,
2M) range. Constant run-time for side-channel awareness is\achby continuing the
iterations until the control register fully processed aggmsted in [49]. For each iteration,
an adder is required for computing the GCD of the divisor ardphime modulus, and
a modular adder is required for applying the same operatidhd dividend in parallel
together with modulus reduction. Therefore, a total of 3 RBAges are necessary (1
RBA for regular addition and 2 RBAs for modular addition). losifd also be noted that
the arithmetic operations are carried out in the Montgomesjdue format, and division
does not preserve the Montgomery residue form of the operanderefore, a division
should be followed by a multiplication to transform the fedack into Montgomery
residue form, which increases the effective division timézi‘t + 6 clock cycles. Figure

4.3 shows the block diagram of the extended binary GCD modiiater.
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4.1.4 Modular Addition and Subtraction

The modular addition method described in [50] allows conmguthe n-bit modular ad-
dition or subtraction via a regular addition followed by aduatar correction step that
depends on checking only the most significant 3 digits of tibermediate result. Hence,
modular addition and subtraction can be computed in a sitgflation through 2 RBA
stages. This method was also modified to work fe2{/, 2M) range instead of{ M/,

M) range of the original algorithm, in order to achieve cotesisy with the multiplication
and division. The3M value used in the algorithm is calculated by putting in the low
register, andV/ in the high register o5D2representation. Figure 4.4 shows the block

diagram of the modular adder & subtractor.

Algorithm 5 Modular Addition and Subtraction Algorithm
Inputs:  X:=15¢ Term, Y:=2"d Term, M:= Modulus
Output: Z:= Result

Stepl: T:=XFY;

Step2: if ([ThTnTh—1] > 4)thenZ :=T — 3M;
elseif( 3> [T, 1T, Tn-1] > 2)thenZ :=T — 2M,
elseif( 1> [T,41T,T—1] > —1) then Z := T,
elseif(—=2 > [T, +1T,,T\,—1] > —3) then Z := T + 2 M,
elseif(—4 > [T,+1 T, T—1]) then Z := T + 3M; endif

4.1.5 Combined Modular Arithmetic Units

The modular arithmetic units described above (Figures#43,and 4.4) are all based on
RBAs, and therefore efficient resource sharing is possib&eh&ve implemented two dif-
ferent arithmetic units. The first arithmetic unit (mmu) &peable of modular multiplica-
tion, addition and subtraction; and it is intended to be usgutojective point operations.
The second unit (mau) is additionally capable of modulaiséiw; and it is intended to

be used in affine point operations. The first arithmetic unih{s) requires 2 RBA stages,
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whereas the second unit (mau) requires 3 RBA stages in ordactammodate for divi-
sion.

When the point multiplication operation is carried out wittojective coordinates, a
final division is necessary to have the resulting point imafftoordinates. We realized
this operation by taking the modular inverse of the Z-cawaitk using multiplications ac-
cording to Fermat's theoren”Z ! = ZP~2 (mod p), if gcd(Z,p) = 1 [48]. Although
this inversion takes much Ionge%% + 3n on average) than the extended binary GCD
division algorithm, it is carried out only once at the end gfaant multiplication. There-
fore, the performance gain in terms of area is more than thfenpeance loss in terms
of time, and it turns out to be more area-time efficient. Thember of clock cycles for
different modular operations and the hardware resourceach modular arithmetic unit

are shown in Table 4.1.
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| Unit | Multiplication | Addition & Subtraction| Division | Resources

mmu %+2 1 %4—371 2 RBAs
mau 242 1 216 3 RBAs

Table 4.1: Clock Cycles for Modular Arithmetic Operations

4.2 Point Addition and Doubling Operations

The next step in the design process is implementing ellqtrge point addition and dou-
bling units. Point addition and doubling can be carried dtltez with affine coordinates
or projective coordinates. Operations with projective rdomates do not involve divi-
sions at the cost of a number of extra multiplications; tfaee they can be implemented
without a modular divider. However, more storage space éslee due to the increased
complexity of the operations, and an additional coordifi@teepresenting a point.

We have designed four different point addition and doublings (Weierstrass affine,
Weierstrass projective, Edwards affine, Edwards projegtiwhich implement the addi-
tion and doubling formulations in Equations (2.2), (2.2.50, (2.6), (2.7), (2.8), (2.9),
(2.10). In addition to point operations, each unit is alsoatde of necessary initial and fi-
nal transformations. The initial transform computes thenbdomery residue forms of the
point coordinates. The final transform computes the invislsetgomery transformation
and projective-to-affine transformation for projective@mtinates. We also take advantage
of the homogeneity in Edwards projective operations by@wgi Montgomery transfor-
mations. This is possible since the Montgomery modular ipiidations in non-residue
form do not affect thel: and¥ ratios at the end of a point addition or doubling.

For Weierstrass affine unit, we cannot utilize more than ottBraetic unit, due to
the data dependence in point operations. For the othersdhawltiple units in parallel
is possible. The single unit case always has the best aneggtioduct, since all parallel

units may not be utilized with the same type of operationdllistages of the dataflow.
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Having a single arithmetic unit is also preferable due tolilmited area resources of
ECC applications. The Weierstrass implementations regieeial handling of point at
infinity. During each Weierstrass point operation, a chexkihether the resulting point
will be the point at infinity is performed as well. This checkdarried out offline (off
the critical path delay) through @-bit comparator without stalling the point operation.
Selecting the comparator size git also allows keeping the area overhead low. For bit
values less than 256, the comparator will require 3-leveld & 4 + 16 = 21) 4-input
XOR gates.

Each unit is implemented with a datapath that consists ofpgmogriate modular
arithmetic unit, a set of input selection multiplexers amporary registers, and a control
unit as shown in Figure 4.5. The control units for each poperation are designed with
finite state machine strategy, where each state corresgonats arithmetic operation
through register-to-register dataflow. For each point afp@n, the arithmetic operations
are scheduled to require minimum number of temporary séoragisters after a careful
data dependence analysis. The following subsectionsl de¢aimplementation process
of point addition and doubling units, and summarize the tand area results for each

unit.
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4.2.1 Weierstrass Affine Point Addition and Doubling

Point Addition
.%3 = [(%)2 — 531 — i’Q] mod M

s = [(&=L)(%1 — %3) — §1] mod M

To—T1

Figure 4.6: Dataflow for Weierstrass Affine Point Addition
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RESULT OP | CYCLES
0 SET 1
Y2 — 1 SuUB 1
Ty — Ty SuUB 1
T2 — T1 MUL 2+2
7= DIV | 2 +6
(%)2 MUL 242
(gi%%)? — I SUB 1
Z3 SUB 1
1 — T3 SUB 1
(%)(9}1 —Z3) |MUL | 242
U3 SUB 1
T3 SUB 1

Table 4.2: Operation Order for Weierstrass Affine Point Addi
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Point Doubling
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Figure 4.7: Dataflow for Weierstrass Affine Point Doubling
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RESULT OP | CYCLES
0 SET 1
i3 MUL | 5+2
272 ADD 1
372 ADD 1
37 +a ADD 1
20, ADD 1
2y1 MUL 5 +2
Zitd DIV | 5246
(HLrey MUL | 242
(B2 g | suB 1
i3 SUB 1
i — i3 SuB 1
(So) (@ — #5) | MUL | 542
s SUB 1
i3 SUB 1

Table 4.3: Operation Order for Weierstrass Affine Point Dimgp

Resource Usage and Operation Counts of Weierstrass Affine ltn

Resources:

2 mux, 1 mau, 1 reg

Initial Montgomery Transform

Addition Time with Affine Coordinates
Doubling Time with Affine Coordinate

Final Inverse Montgomery Transform
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4.2.2 Weierstrass Jacobian Point Addition and Doubling

Point Addition
Xy = (Va2 — WZ3)2 — (X022 — X\ 222 (KXo 22 + X1 22) mod M

o (YaZ3-YAZ3)[(X2Z2—X123)2 (X2 224 X173)—2X3]— (X222 —X123)3 (Y2 Z3+Y1 Z3) d M
3 = B mo

Z3 = (X2Z12 — Xlzg)zlzg mod M

oo e 3

XX XX
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Figure 4.8: Dataflow for Weierstrass Jacobian Point Additio
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RESULT OP | CYCLES
0 SET 1
7? MUL | % +2
Yo7, MUL | 2+2
Yo Z3 MUL | 242
XoZ3 MUL | 2+2
Z2 MUL | 2+2
Y125 MUL | 2+2
Vi Z3 MUL | 2+2
X173 MUL | %+2
Z1ZoR MUL | % +2
(X277 — X123) SUB 1
(X222 + X122) ADD 1
(227 -1 23) SUB 1
(YoZ3 + Y1 Z3) ADD 1
Zs MUL | 2+2
(XoZ? — X123)? MUL | 242
(XoZ2 — X1 Z3)X( X222 + X1 Z3) MUL | 2+2
(XoZ2 — X\ Z2)2(Ya 23 + Y1 Z3) MUL | 2+2
(XoZ2 — X1 Z22)3 (Yo Z3 4+ Y1 Z3) MUL | 2+2
(YaZ3 — Y1 Z3)? MUL | 2+2
X3 SUB 1
(XoZ} — X1Z3)%(Xo 23 + X173) — X suB 1
(XoZ} — X1 Z3)X (X223 + X1 Z3) — 2X3 SuB 1
(Y22} —V1Z3)[(X2Z} — X123)2( X223 + X1Z3) —2X3] | MUL | 242
2Y3 suB 1
Y3 SHIFT 1

Table 4.4: Operation Order for Weierstrass Jacobian Padaitéon
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Mixed Point Addition (Z , = 1)

Xg = (Y/QZ% — }71)2 — (XQZ% — Xl)Q(XQZIQ + Xl) mod M

Y, — (1?2213_?1)[()QZ%_)21)2(X22§+5§1)—25(3]_(XQZf_Xl)S(?QZ§+?1) mod M
Zs = (XQZ% - Xl)Zl mod M
RESULT OP | CYCLES
0 SET 1
Z? MUL | 2+2
YoZy MUL | 2+2
Yo Z3 MUL | 2+2
X173 MUL | % +2
(X277 — X1) SUB 1
(X9 Z% + X1) ADD 1
(YaZ? — Y1) SUB 1
(Yo Z3 + Y1) ADD 1
Zs MUL | 2+2
(XoZ? — X1)? MUL | 242
(XoZ2 — X1)2(X2Z2 + X)) MUL | 2+2
(XoZ2 — X1)2(YaZ3 + Y1) MUL | 2+2
(X222 — X)) (YaZ3 + Y1) MUL | 2+2
(YaZ3 — Y7)? MUL | 242
X SUB 1
(X227 — X1)2( X 2% + X1) — X3 SUB 1
(XoZ7 — X1)2(X2Z7 + X)) — 2X3 SUB 1
(YoZ3 —V1)[(XoZ? — X1)2(X2Z2 + X1) —2X3] | MUL | 2 +2
2Y3 SUB 1
Y3 SHIFT 1

Table 4.5: Operation Order for Weierstrass Jacobian-Afiait Addition
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)2 — 8X,Y? mod M

4
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X3 = (3X12+(l

Vs = (3X2 4+ aZb)(4X, Y — X3) — 8V mod M
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Figure 4.9: Dataflow for Weierstrass Jacobian Point Dogpblin
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RESULT OP | CYCLES
0 SET 1
V7 MUL | 242
72 MUL | 2 +2
zt MUL | 2 +2
aZi MUL | 2 +2
X? MUL | 2 +2
2X? ADD 1
3X? ADD 1
(3X%+azt) ADD 1
(3X? +azt)? MUL | 2+2
ViZy MUL | 242
73 ADD 1
X1Y? MUL | 242
2X,Y7? ADD 1
4X,Y?2 ADD 1
8X Y2 ADD 1
X; SUB 1
(4X,Y2 — X3) SUB 1
(3X?+aZ{)(4X1Y2 — X3)R | MUL | 242
v MUL | 242
2v ADD 1
4V, ADD 1
8y ADD 1
Y3 suB 1

Table 4.6: Operation Order for Weierstrass Jacobian Panbng
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Final Inversion:

X - (2)*M=2) mod M

X

Y - (Z2)3M=2) mod M

Y

Resource Usage and Operation Counts of Weierstrass Jacobi&nit

Resources: 2 mux, 1 mmu, 5 reg

Initial Montgomery Transform 2 MUL, 2 ADD
Addition Time with Jacobian Coordinates 16 MUL, 9 ADD/SUB
Addition Time with Jacobian-Affine Coordinatesl1 MUL, 9 ADD/SUB
Doubling Time with Jacobian Coordinates 10 MUL, 13 ADD/SUB

Final Inversion 3+ 3 MUL (Average)
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4.2.3 Edwards Affine Point Addition and Doubling

Unified Point Addition & Doubling
By = BEE 1od 1t
3 = WD) g0 £

1-dz1Z27192

A 4 l A 4 A 4
[ ) [ )
[ ] [ ]
_____________ V34 ____ X34 .

Figure 4.10: Dataflow for Edwards Affine Unified Point Additi& Doubling
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RESULT OP | CYCLES
0 SET 1
Y192 MUL | Z2+2
122 MUL | 242
(Z1+71) ADD 1
(%2 + 72) ADD 1
(T1+51)(Z2 + §2) MUL | 2+2
[(Z1 + §1)(Z2 + §2) — T122) | SUB 1
(Z172 + T172) SUB 1
(9102 — 122) SUB 1
T1T271Y2 MUL | %2+2
dz172Y1Y2 MUL | Z+2
1 — dz1m2y1y2 SUB 1
1+ dxixoy1ye ADD 1
o DIV | 246
Z3 DIV 57" +6

Table 4.7: Operation Order for Edwards Affine Unified Poindimn & Doubling
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Optimized Point Doubling

~ 2%
T3 = i mod M

js = <40 mod M
CER i

-l

[ ] [ ]
[ ] [ ]
_________ B Be_

Figure 4.11: Dataflow for Edwards Affine Optimized Point Dbuog
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RESULT OP | CYCLES
0 SET 1
0k MUL | %+2
i? MUL | 2+2

T191 MUL | 2+2
2%171 ADD 1

(e, —9%) |SuB| 1

(z3+93) | ADD 1

(22 +y?) | MUL | 2+2

(z2+y? —2) | SUB 1
i3 DIV | 2+6
iy DIV | %+6

Table 4.8: Operation Order for Edwards Affine Optimized P&aubling

Resource Usage and Operation Counts of Edwards Affine Unit

Resources: 2 mux, 1 mau, 3 reg

Initial Montgomery Transform 2 MUL
Unified Addition Time with Affine Coordinates | 2 DIV, 5 MUL, 7 ADD/SUB
Optimized Doubling Time with Affine Coordinates2 DIV, 4 MUL, 4 ADD/SUB

Final Inverse Montgomery Transform 2 MUL
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4.2.4 Edwards Projective Point Addition and Doubling

Unified Point Addition/Doubling
X3 = 21 75( X1 Yo + Y1 X0) (23 722 — dX, X5Y1Ys) mod M
Yy = 21 Zo(Y1Ys — X1 Xo) (2222 + dX1 X,Y1Ys) mod M
Zs = (2375 — dX, XoY1Ya)(Z7 Z35 4 d X, XoY1Ys) mod M

dlxa] Ixeva| [v2 z1| [z2
‘ l .
XX+ X
]

—
x| X H =
L I . 1
X X X

______________ Y3, X3y 73, .

Figure 4.12: Dataflow for Edwards Projective Unified Poinditbn & Doubling
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RESULT OP | CYCLES

0 SET 1
Z1Z3R MUL | 242
YiYaR MUL | 242
X1 XoR MUL | 242

(X1 +Y1)R ADD 1
(X2 + Y2)R ADD 1

(Xl +Y1)(X2+Y2)R MUL %4‘2

(X1Y2+Y1X2+Y1}/§)R SUB 1

(X1Ya + Y1 X0)R SUB 1

leg(X1Y2 —|—Y1X2)R MUL % + 2

(Y1Ys — X1 X5)R SUB 1

Z1Z5(V1Ys — X1X2)R | MUL | 2 42

X1 X,V YR MUL | Z+2

dX1X2Y1Y2R MUL | 2+2

(Z125)°R MUL | 542
[(Z1Z2)* + dX1 X2Y1Y2]R | ADD 1
[(Z125)% — dX1X5Y1Ys]R | SUB 1

Y3R MUL | 2+2

Z3R MUL | 2+2

X3R MUL | 2+2

Table 4.9: Operation Order for Edwards Projective UnifiethPAddition & Doubling
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Optimized Point Doubling
X3 =2X V(X2 + Y2 —2Z%) mod M
Yy = (X7 = Y2) (X} + Y2) mod M
Zy = (XP+YP)(X? + Y2 —2Z%) mod M

Figure 4.13: Dataflow for Edwards Projective Optimized P8iaubling
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RESULT OP | CYCLES
0 SET 1
ZiR MUL | 5 +2
27%R ADD 1
YR MUL | %2 +2
X{R MUL | 5 +2
X1YiR MUL | 2Z+2
2X1Y1R ADD 1
(X -YPHR SUB 1
(X?+YHR ADD 1
(X2 +Y2%-2Z%)R | SUB 1
Z3R MUL | 2+2
V3R MUL | 2+2
X3R MUL | 2+2

Table 4.10: Operation Order for Edwards Projective OptadiPoint Doubling

Final Inversion:
=X -ZM2 mod M
y=Y - ZM=2 mod M

Resource Usage and Operation Counts of Edwards Projective Uin

Resources:

2 mux, 1 mmu, 4 reg

Initial Montgomery Transform

NOP

Unified Addition Time with Projective Coordinates | 12 MUL, 7 ADD/SUB

Optimized Doubling Time with Projective Coordinateg MUL, 5 ADD/SUB

Final Inversion
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Weierstrass Weierstrass Edwards Edwards

Unit Affine Jacobian Affine Projective
Resources 1 mau,1 reg 1 mmu,5regs| 1mau,3regs | 1 mmu,4regs

Addition 1CD +2M + 7A 16M + 9A 2CD +5M +7A 12M + 7A

Mixed Addition | Not Applicable 11M +9A Not Applicable 11M + 7A

Doubling 1ICD+3M +9A | 10M +13A | 2CD + 3M +4A ™ + 5A

Initial Transform 2M 2M + 2A 2M No Operation

Final Transform 2M 1ED +4M 2M 1ED +2M

(M: Multiplication, A: Addition & SubtractionCD: Cheap DivisionED: Expensive Division)

Table 4.11: Number of Modular Operations for Point Additaord Doubling Units

4.2.5 Summary of Point Addition ad Doubling Operations

Table 4.11 shows the hardware resources, and the cost efopa@rations in terms of mod-
ular arithmetic operations for each unit. Looking at therafien counts, we observe that
operations with projective coordinates have better parémrce in the Edwards formula-
tion; whereas, operations with affine coordinates haveebggrformance in the Weier-
strass formulation. Meanwhile, the comparison betweerek§bass affine and Edwards
projective operations depend on the performance ratiowiidn and multiplication. In
terms of area, the projective units have the advantage nfjusnaller arithmetic units.
However, they need more registers due to the increased eaitypbf the point operations

with projective coordinates, and additional storage nesuent forZ-coordinates.

4.3 Point Multiplication Operations

After the implementation of point addition and doublingtsnihe final step is to imple-
ment multiplication of a point on the elliptic curve with aadar in order to realize the
elliptic curve cryptosystem. We have introduced the bimanitiplication methods, and

examined their side channel leakage properties in Chaptéos Bave a complete design
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space, we have implemented the add-always algorithm fatifééirent ECC configura-

tions. In addition, the secure NAF algorithm presented igohthm 2 was implemented
for the Edwards formulation with unified addition and douoblioperations. Table 4.12
shows the run times of the multiplication algorithms witle tmodular arithmetic opera-
tion costs of point additions and doublings taken from Tabldl. Figure 4.14 shows the
generic block diagram of a point multiplication unit. Eadidividual system consists of

optimized datapath and control units to implement the pmiultiplication operations.

Algorithm: Add-Always Secure NAF
Number of Operations: n additions,;n doublings 3n/2 unified additions
Weierstrass Affine
2nCD + (5n+4)M + 16nA Not Safe
Weierstrass Jacobian
1ED + (26n+6)M + (22n+2)A Not Safe

Edwards Affine
4nCD + (10n+4)M + 14nA | 3nCD + (132+4)M + 2I2A
with Unified Doublings

Edwards Affine

4nCD + (8n+4)M + 11nA Not Safe
with Optimized Doublings

Edwards Projective
1ED + (24n+2)M + 14nA 1ED + (18n+2)M + 2I2A
with Unified Doublings

Edwards Projective

1ED + (19n+2)M + 12nA Not Safe
with Optimized Doublings

(M: Multiplication, A: Addition & SubtractionCD: Cheap DivisionED: Expensive Division)

Table 4.12: Number of Arithmetic Operations for Point Mplication Units
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Point
> Registers | Multiplication

Control Unit

Multiplexer
‘ ‘ Point 1 |
! Addition ! !
: > mmu or mau and ' !
Doubling
: ‘ Control Unitf '
> Registers ||
S Point Addition & Doubling Unit |
,,,,,,,,,,,,,,,,,,,,,, tkP(modp)  Point Multiplication Unit

Figure 4.14: Block Diagram of Point Multiplication Units
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Chapter 5

Results and Performance Comparison

In this chapter, we analyze the hardware implementationltsgscompare the time and
area performance of our 8 different ECC configurations, andpawe our results with
other hardware implementations in the literature. We &tagiresenting the synthesis re-
sults in terms of maximum frequency, computation time, aa@d time-area product. In
Section 5.1, we explain the procedure of combining all ECQigarations and realizing
them as an ECC processor on a single chip. Then, we presenatterent and routing
results of the ECC processor both withi8 pm CMOS technology an@.18 pm MOS
Current-Mode Differential Logic (MCML) technology [21]. Fally we list the maximum
frequency, computation time and area values of our two b€& Enplementations real-
ized with0.18 pum CMOS technology for bit lengths of = 160 andn = 192, together
with 4 other ECC implementations realized on FPGA.

Most ECC hardware implementations in the literature have bbealized over binary
fields. There are only a small number of hardware implemiemtstargeting prime fields,
mostly implemented in FPGA. We found two comparable ASIC lengentations that
were recently published. Both implementations were redlizeing0.13 ym CMOS

technology for bit length of. = 192 with no wireload model included. Moreover, they do
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Time vs Area of ECC Point Multiplication
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AA: Add-Always, AAO: Add-Always with Optimized Doublings, AU: Add-Always with Unified Doublings

Figure 5.1: Time-Area Space of Point Multiplication

not address side-channel security. To be able to make faipaason with our work, we
synthesized our design for bit lengthof= 192. Our implementations were synthesized
using UMCO0.18 pum CMOS technology with a target clock 8fns, and with no wireload
model.

The overall gate count percentages of the arithmetic uaiteéch ECC point mul-
tiplication system are provided in Table 5.1. Since the nainds flip-flops in state ma-
chine registers are much less than storage registers, éhgparcentage of control units
are negligible in size. Therefore, the remaining area peacee is allocated mostly for
the storage registers. Figure 5.1 plots the time-area spgoeint multiplication. Both
Table 5.1 and Figure 5.1 show that the Weierstrass affinesybas the best area-time
performance among our implementations, whereas the Wissgprojective system has
the worst area-time performance. In comparison to othefamentations, 7 out of our
8 implementations have less area, and 4 out of our 8 impleatens have better timing,

although we use a slower technology, and address side-ehserurity as well.
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ECC Multiplication Platform | Max | Time Area Areax

System Algorithm f Time

Weierstrass 0.18 um | 333.3 | 0.86 91K gates 78.26

Affine Add-Always CMOS | MHz | ms | (mau:55.0%) | gatess
Weierstrass Add-Alwavs 0.18 um | 333.3 | 1.59 110K gates | 174.90
Projective y CMOS | MHz | ms | (mmu:28.4%) | gatesxs
Edwards Add-Always with | 0.18 um | 333.3 | 1.48 94K gates 139.12
Affine Unif. Doublings | CMOS | MHz | ms | (mau:53.9%) | gatess
Edwards Add-Always with | 0.18 um | 333.3 | 1.42 94K gates | 133.48
Affine Opt. Doublings CMOS | MHz | ms | (mau:53.9%) | gatexs
Edwards 0.18 um | 333.3 | 1.12 93K gates 104.16
Affine Secure NAF CMOS | MHz | ms | (mau:54.5%) | gatess
Edwards Add-Always with | 0.18 um | 333.3 | 1.47 92K gates 135.24
Projective Unif. Doublings | CMOS | MHz | ms | (mmu:34.3%) | gatess
Edwards Add-Always with | 0.18 um | 333.3 | 1.18 92K gates | 108.56

Projective Opt. Doublings CMOS | MHz | ms | (mmu:34.3%) | gatess
Edwards 0.18 um | 333.3 | 1.13 92K gates 103.96

Projective Secure NAF CMOS | MHz | ms | (mmu:34.3%) | gatess
Satoh et al. 0.13 pm | 137.7 | 1.44 158.40
2003 [54] NAF CMOS | MHz | ms 10K gates gatess
Sozzani et al, 0.13 um | 294.0 | 1.33 143.64
2005 [55] | Add-Double CMOS | MHz | ms | 03K 0S| ess
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5.1 ECC Processor

To be able to make a performance comparison among our 8 dhdivimplementations
as well as with other ASIC implementations, we used posth&gis results. Our next
step is to realize all implementations on a single chip. isthse, it does not make sense
to implement very similar but locally optimized units as segie entities. We combined
all our implementations as an ECC processor that is capalaé different versions of
point multiplication algorithms, and realized it on a seghip. The point addition and
doubling units, detailed in Section 4.2, all have similatagiaths. But the datapaths are
optimized together with the addition & doubling control uto obtain the best perfor-
mance out of an application, as if it would be used for the wyystem. We tried to
achive least possible register usage and combinational tmgnplexity for each differ-
ent point addition and doubling unit. For example Weiessraffine point addition and
doubling operations need only a single temporary registeereas, Weierstrass Jacobian
point addition and doubling operations need 5 temporangtexg and a larger multiplexer
to be able to select form each register. Similarly, the poiattiplication units are also
optimized for each specific case. For example 2 coordinateased with affine opera-
tions; whereas, 3 coordinates are used projective opagti@e merged all entities on a

single datapath, going through the following steps:

1. The first step was to merge all 4 different point additiod daubling units (Weier-
strass affine, Weierstrass Jacobian, Edwards affine, andrddwprojective) on a
single datapath. Among these units, Weierstrass Jacokrasrthe most number
of registers and a multiplexer capable of selecting fromhaagister. Therefore,
we used the datapath of Weierstrass Jacobian unit, althooghll registers are

necessarily needed by other addition and doubling units.
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2. As the second step, we replaced the mmu (modular mulipbic, addition and
subtraction unit) in the projective implementations witaur{modular multiplica-
tion, division, addition and subtraction unit), althouglese implementations never

use the division operation in mau.

3. After having the same multiplexer, arithmetic unit angiseer number in all point
addition and doubling units, as the third step, we clearjyesated the state ma-
chines and datapaths in each unit. Therefore, we were ab/®a single datapath

unit, and 4 different point addition and doubling controltan

4. Next, we merged the datapath parts of the 2 different plidation algorithms
(add-always, secure NAF) in a single datapath. We also rdgtgemultiplication

control units in a single state machine.

5. Finally, we added serial input reading and output wrifungctionality in this com-
bined multiplication state machine, so that it can intezfadth the limited number

of 10 pads of the chip.

Eventually all components are put together as shown in Ei§#, and the ECC pro-
cessor was realized both with18 ym CMOS technology, and.18 ym MOS Current-
Mode Differential Logic (MCML) technology [21} as shown in Figure 5.3. Table 5.2
presents the time and area values after placement andgouinally, we are also pre-
senting the P&R results of our 2 best implementations fotdsgths ofn = 160 and

n = 192, together with several FPGA implementation results in &&bB.

IMCML technology has a power balanced IC library, and prosi@€CA resiliency as mentioned in
Section 3.2.
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Figure 5.2: Block Diagram of Elliptic Curve Processor

Technology Critical Path Delay| Cell Area

UMC CMOS 0.18um 6.8 ns 1.29 mn?

LAUREL MCML 0.18 um 15 ns 6.99 mm?

Table 5.2: P&R Results for the ECC Processor
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Figure 5.3: Elliptic Curve Processor Realized on a Single Chip

ECC GF(p) Platform Max | Time Area
System Field f

Weierstrass 0.18 um 147 | 1.37

Affine 160 CMOS | MHz | ms S6K gates
Edwards 0.18 um 147 | 1.80

Projective 160 CMOS MHz | ms B0K gates
Weierstrass 0.18 um 147 | 1.95

Affine 192 CMOS | MHz | ms 100K gates
Edwards 0.18 um 147 | 2.56

Projective 192 CMOS MHz | ms 101K gates
Orsetal. XILINX 91.3 | 144

2003 [56] 160 | ¥ cV1000E-8| MHz | ms | LP-0f gates
Mentens et al. 160 XILINX 66 26.8 4826 slices,
2007 [57] XC3S5000-5| MHz | ms | 66 RAMSs, 66 mults
Mcivor et al. 956 XILINX 34.46 | 3.86 15755 slices,
2006 [58] XC2VP125-7| MHz | ms 256 mults
Sakiyama et al XILINX 40 17.7 :
2007 [59] 256 | %355000-5| MHz | ms 27597 slices

Table 5.3: P&R Results for Point Multiplication
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Chapter 6

Conclusion

In this dissertation, we addressed the design and impleentof high performance
non-specialized elliptic curve cryptosystems over finigdds of prime characteristics,
while retaining side-channel awareness. Our investigaleo included the recently in-
troduced Edwards elliptic curves with built-in resilienagainst simple side-channel at-
tacks.

We presented methods to improve the performance of ECC hgildocks with side-
channel attack precautions, and explained the detailsfficremt mapping to hardware.
Many optimizations had been previously proposed for theeVgéiass formulation, aimed
at reducing the cost of point addition and doubling operegj@s well as decreasing the
number of point additions and doublings. Unfortunately,sinaf these optimizations
made the systems prone to side-channel attacks. We avadecing the number of point
additions, and discussed methods to uniformly order thiendisishable point operations
of Weierstrass elliptic curves for achieving a scalar pamnttiplication resistant against
simple side-channel attacks. We also introduced our seensen of NAF multiplication
algorithm to work with unified point addition and doublingesptions of Edwards elliptic

curves.
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We implemented 8 different ECC point multiplication systearsd synthesized each

configuration with UMQ0.18 pm CMOS technology:
1. Weierstrass affine using add-always algorithm,
2. Weierstrass projective using add-always algorithm,
3. Edwards affine with unified doublings using add-alwaysalgm,
4. Edwards affine with optimized doublings using add-alwagerithm,
5. Edwards affine with unified doublings using secure NAF algm,
6. Edwards projective with unified doublings using add-agfsvalgorithm,
7. Edwards projective with optimized doublings using atldass algorithm,
8. Edwards projective with unified doublings using securd-Ndgorithm.

Then, we combined all ECC configurations as an ECC processoneatized it on a
single chip with0.18 m CMOS technology, and also with18 pm MOS Current-Mode
Differential Logic (MCML) technology [21] to provide resdncy against differential side
channel attacks.

Edwards elliptic curves were shown to be faster than preveliptic curve formu-
lations [19] in addition to their advantages for side-chelrsecurity. However, due to
more complicated point operations of Edwards affine fortma the performance bene-
fits were only applicable for projective coordinates. Theme, with the availability of an
efficient divider, Weierstrass affine formulation still eféd the best performance. Using
projective coordinates had both positive and negativetfien the total cell area. Avoid-
ing the implementation of a divider allowed reducing theaarelowever, more compli-
cated point addition and doubling operations requiredgisiore temporary registers.

Moreover, using 3 instead of 2 coordinates to representra pareased the area to store
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the temporary points during point multiplication. The acbeseffects of all these addi-
tional register requirements were exacerbated when eaanhiigit was stored in 2 bits
due to our choice of using the redundant binary represent&tiimplement fast modular
operations. Finally, with the use of efficient resource stgabetween divider and mul-
tiplier, the area cost of implementing the divider was remtlidndeed, we observed that
the area cost of additional register usage canceled outdéaegain of not implementing
a divider. Thus, the areas of affine and projective systerdsalraost same values that
were in the range 91K-94K, except the Weierstrass Progatiplementation. The com-
plicated formulations of Weierstrass Projective systemsooed an area of 110K even
without a divider. Having lost the advantage of area reductihe only attraction to use
projective coordinates would have been timing optimizabg avoiding divisions. How-
ever, in our implementation the division/multiplicatiamtng ratio was only 4, and was
not enough to make the projective operations significaattyer. Therefore, we obtained
the time costs presented in Table 5.1 and Figure 5.1.

We showed that, in an efficient hardware implementation,evggiass formulation
with affine coordinates offered the best performance duésteimplicity, and Edwards
superseded Weierstrass formulation only when projectba@dinates were used. The
fact that affine systems would offer better performance thrajective systems was also
pointed out in [60—62], which demonstrated that it would b&fipable to investigate effi-
cient inversion architectures to be able to use the simplendlations with affine coordi-

nates.
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