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Abstract

Using audio and text data from multiple sources, we evaluated the
viability of using machine and deep learning to identify depression and
anxiety. Machine learning methods using sub-clip boosting achieved
an F1 score of 0.81 for depression and 0.83 for anxiety. Our convo-
lutional neural networks and long-term short term memory models
achieved F1 scores of 0.55 and 0.68 respectively for depression. As
feature engineering, we used topological data analysis to create Betti
curves in our machine learning pipeline. Furthermore, we developed
a pipeline to generate text messages with deep learning models, for
data augmentation purposes.
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1 Introduction

Depression is one of the most common mental disorders in the world, ef-
fecting over 300 million people worldwide (Marcus et al., 2012). Beyond just
shorter-term emotional effects, long term moderate or severe depression can
cause decreased function and impairment. At its very worst, depression can
lead to suicide, one of the leading causes of death among 15-29 year-olds
(WHO, 2018). There exists a range of effective treatments for depression,
such as therapy and antidepressants, but due to stigmatization of mental
disorders and a lack of resources, these are underutilized. Inaccurate assess-
ment is another barrier to treatment, as people who are depressed are not
always correctly diagnosed, and people who are not depressed are frequently
misdiagnosed (WHO, 2018).

According to a 2019 survey by the Pew Research Center, 81% of adult
Americans own a smartphone (Anderson, 2019). Modern smartphones carry
a wide range of sensors that can be used for gathering data, which could aid
in the diagnosis of depression. Furthermore, the enormous amounts of data
gathered by social media platforms could be used to assist the diagnosis of
depression. We used both data collected from smartphones from the EMU
and Moodable data sets for our experimentation, as well as data from the
Distress Analysis Interview Corpus (DAIC) for our research.

Diagnosis of depression is a very challenging problem, and we strove to
solve this using both well established and novel machine learning methods.
Our machine learning methods included Support Vector Machine, Random
Forest, XGBoost, AdaptiveBoosting, k-Nearest Neighbours, and Multilayer
Perceptron. The novel methods included Convolutional Neural Networks
(CNN), and Long Short-Term Memory (LSTM). We also experimented with
novel feature extraction techniques like topological data analysis (TDA) to
see if the shape of data may provide indicators for depression. We hypoth-
esises that we will be able to use these methods to predict mental health
issues such as depression or anxiety.

1.1 Related Works

There exists a range of studies before us that use machine learning or deep
learning to identify depression. A review (Guntuku et al., 2017) concisely

1



shows the various methods used to identify depression using data from various
social media platforms. Figure 1 shows the findings of this review, including
the sources of the data, the types of models used, and the performance of
those models. One very important thing to note about this study is that it

Figure 1: Results of the 2017 Review (Guntuku et al., 2017)

only uses text data from larger social networks. Another important finding
corroborated by this study is the distinction between self-declared depression
versus diagnosing with a survey: the machine learning models were able to
more accurately identify depression when it was self-identified by each poster,
as opposed to diagnosed with a survey. This study concludes by saying that
the most potential in this field could be in diagnosing depression, which is
where our particular research fits into the big picture.

Another study (Al Hanai et al., 2018) used voice and text data from a
database related to the one we are using: DAIC. This study performed three
different experiments, using both the text data and voice data independently,
as well as together. The LSTM model that used both the text and audio
performed much better than the other approaches, suggesting a potential
way forward for our model, which only uses audio. This study is also one of

2



very few which actually use voice data, as text-based data sets from social
media platforms are far more accessible.

Also in the area of Deep Learning, one study by (Ma et al., 2016) used
DepAudioNet with its main components as CNN and LSTM to detect de-
pression on DAIC-WOZ data set. This study showed that DepAudioNet
could perform better than the previous averaging baseline in terms of F1
score. This study used both Mel-scale filter bank and spectrograms but not
in conjunction.

There exists a much wider field of studies that attempted to diagnose de-
pression from text-based posts on social media platforms. One particularly
interesting Japanese study (Tsugawa et al., 2015) gathered data using the
CES-D (Center for Epidemiological Studies Depression Scale) survey, an-
swered by Japanese-speaking Twitter users. Furthermore, other posts by
those users were also used, and had features extracted such as words, post
topics, post frequency, post length. All of this data together were used to
train a support-vector machine, which was able to get an accuracy of up
to 69%. Furthermore, this study also found that it took approximately two
months of observation to make an accurate prediction of depression, and that
collecting data for longer than that did not improve the accuracy at all.

Other studies approach text-based depression diagnosis from other angles.
One study (Resnik et al., 2015) experimented with new modeling techniques
on both stream-of-consciousness essays and twitter posts, identifying indi-
vidual words which were more or less likely to indicate depression. This
study found that the accuracy of their models depended more on how data
was aggregated, taking in post data from each user chronologically, to track
emotional trends over time.

1.2 Our Approach

In this study, we attempted to improve on the detection of depression and
anxiety using audio. We also explored how text messages and transcript data
can be paired with audio data to improve detection. Machine learning was
implemented for regression and classification, for both depression and anx-
iety. Convolutional and sequential deep learning models were both utilized
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for depression classification.

1.2.1 Machine Learning

Much research involved with depression and emotional detection have used
Machine Learning methods with relatively positive outcomes (Valstar et al.,
2016). As a result, we opted to experiment with different machine learning
models for classifying audio features and transcript features for our research.
Specifically, we experimented with ADABoost, XGBoost, Random Forest,
K-Nearest Neighbors, Multilayer Perceptron, and Support Vector Machine
models. In addition to classification analysis, we used these models for re-
gression analysis, tuning model parameters to maximize performance. We
set up a pipeline to run our experiments throughout the research.

1.2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) has been widely used as a deep learn-
ing method for image classification. Since the data set we are going to use
consists of large number of audio clips, CNN is one of the crucial methods
for classifying spectrograms derived from those audio clips. Previous studies
such as (Ma et al., 2016) involve using CNN in comparison to other methods
such as LSTM and Machine Learning techniques to predict depression from
audio sources. Therefore, in this research we will set up a baseline CNN
model and continually improve our model to find efficient parameters which
will help us predict depression.

1.2.3 Sequential Deep Learning Model

Sequence modelling, and long short-term memory (LSTM) models specifi-
cally, have shown promising results for diagnosing depression. Voice record-
ings can also be easily treated as sequential data in a variety of ways. We
created an LSTM-based model to further explore optimal architectures and
attempt to improve on previous LSTMs used to predict depression from voice
audio. We compare our results with other deep learning and machine learn-
ing techniques to find the best solution for depression classification. We
also researched and outlined possible avenues of future improvement for our
sequence models.
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1.2.4 GANs

SMS text messages have a very promising modality for detecting depres-
sion, but previous studies have shown that only 33% of participants are
willing to have their SMS data collected (Dogrucu et al., 2018). This makes
it difficult for enough data to be collected for use in deep learning. Fortu-
nately, generative adversarial networks (GANs) look like a very promising
way to artificially expand sets of text data (Yu et al., 2016). Thus, we set
up a framework to efficiently run GAN experiments to test the feasibility of
using GANs to expand existing text message data sets.

1.2.5 Topological Data Analysis

Our main motivation for using topological data analysis is to see how it
may compare to other forms of feature extraction on audio waves. TDA has
not been used much for analysing audio data, and very few studies in recent
memory has used TDA to analyze time series. One study used TDA with
Betti curves (see section 2.10.5) to categorize and find heart arrhythmias
based upon heart beats (Dindin et al., 2019). As seen by Figure 2, this
study has relatively good results compared to not using TDA. However, this
study also used TDA as part of a multi-modal approach which used TDA
as another feature set to consider. Because this study has good results, and
because both sound and heart beats are represented by waves, this lead us
to see if this method would also be applicable to classifying audio data.

Figure 2: Results of Arrhythmia Study (Dindin et al., 2019)
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2 Background

2.1 Previous MQPs

2.1.1 2018 MQP summary

The 2018 MQP started out by doing a study on how willing users would be
to share their data. The research showed that people would be most willing
to share audio and camera data.

Using the study, the team proceeded to build and deploy an application
on Amazon’s Mechanical Turk (MTurk), called Moodable. The purpose of
Moodable was to collect user data two weeks prior to when the application
was downloaded. The application collected the users’ texts, social media
data, geospatial data, and voice samples. The users also filled out a Patient
Health Questionnaire-9 (PHQ-9), a standard 9 question survey used to assist
medical professionals in depression diagnosis. The team used 85 percent of
their data to train the models and the remaining 15 percent to test them.
They were able to achieve “an average test set root mean square error of 5.67
across all modalities in the task of PHQ-9 score predictions” (Dogrucu et al.,
2018).

2.1.2 2019 MQP summary

The 2019 MQP deployed an application on AmazonTurk called EMU,
which: “... collect[ed] demographic information, PHQ-9, GAD-7, basic phone
data (which includes text messages, call logs, calendar, and contacts), Google
Maps location data, voice recordings, Instagram posts and tweets from Twit-
ter” (Resom et al., 2019). From these, the team focused on the “audio, text
messages, social media data, as well as GPS modalities” (Resom et al., 2019).

For their text data, they extracted features using Empath, Linguistic In-
quiry and Word Count, Textblob, and using manual extraction methods.
The highest F1 score they attained using these features was 0.83. For their
GPS data, they got features based on activity data and raw GPS data and
were able to get an F1 score of 0.63. For their audio data, they extracted
pause time features using a Pratt script and the signal based features using
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openSMILE. They found that they got the best results by using the XG-
Boost algorithms, “50 features for feature selection, and using the data set
from openSMILE”(Resom et al., 2019).

2.2 Depression Statistics

Mental health is an ever evolving field, where methods for defining depres-
sion are frequently refined. Because of this, older studies tend to not have
information that is as reliable and up-to-date as more recent ones. Self iden-
tified depression versus tested depression also tends to lead to wildly different
results. For example, in 2001 a study was performed where 1433 students
were asked if they had depression, and the severity of the depression was not
measured (Furr et al., 2001). In contrast, a 2010 study found that 17% of
students were depressed and 9% were depressed via using the Patient Health
Questionnaire with 9 questions, or PHQ-9 (Hunt and Eisenberg, 2010). This
was up from 10% depressed in a previous study from 2000, which also used
the PHQ-9 test. Notably, only 24% of the students diagnosed with depression
in the 2010 study were receiving any treatment. From this data, it is easy
to see that depression is a major problem in colleges that seems to only be
getting more prevalent. Since self diagnosis seems to be unreliable compared
to actual tests, it would be useful to have a way to automatically determine
if someone was depressed using a framework like PHQ-9.

2.2.1 Patient Health Questionnaire

The Patient Health Questionnaire, or the PHQ, is a test to determine
is somebody is depressed based on a series of questions, ranked 0-3. The
answers are then added up to give a PHQ score. The most common test
had nine questions, and is thus known as the PHQ-9. From these questions,
a level of depression can be determined. This test has been shown to be
relatively accurate in categorizing if people have depression or not, as shown
in Figure 3. For some of the data sets used in our project, the PHQ-8 is used
instead of the PHQ-9. The PHQ-8 is identical to the PHQ-9, with the same
ranges of score, but with the question about suicidal ideation omitted. This
questionnaire is sometimes used instead of the PHQ-9, as if a participant in
a study says that they have suicidal thoughts, one is often required to report
it, so the question is thus omitted for legal and ethical reasons.
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Figure 3: PHQ-9 Accuracy from 2009 study (Kroenke et al., 2009)

2.2.2 General Anxiety Disorder

Like the PHQ, the General Anxiety Disorder (GAD) is a questionnaire
based rating system; it ranks every response from 0 to 3. However, it is used
as a screening tool and severity measure for generalised anxiety disorder
rather than depression. The response ratings are summed to determine a
GAD-7 score which ranges from 0 to 21. Scores of 5, 10, and 15 represent
cut-points for mild, moderate, and severe anxiety, respectively (Spitzer et al.,
2006). When used as a screening tool, further evaluation is recommended
when the score is 10 or greater (Spitzer et al., 2006).

2.3 Data Sources

For our project, we are looking at using multiple data sets for training
different models. These include DAIC-WOZ, EMU and Moodable. As part
of our research, we looked at what is contained in these data sets, and how
they have been used in the past.
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2.3.1 DAIC-WOZ

DAIC-WOZ stands for Distress Analysis Interview Corpus, Wizard of Oz.
DAIC is a series of clinical interviews which served to diagnose depression,
anxiety, PTSD, and other disorders. DAIC-WOZ is a subset of this data set
in which a virtual interviewer named Ellie is used to ask questions, hence the
name Wizard of Oz. These interviews each are given a PHQ-8 score based
on answers to the interviewer’s questions. The publicly available portion of
the data set contains 189 interviews. This contains audio of the interviews,
associated transcripts, and facial data.

A recent use for the DAIC-WOZ data set was with the Audio/Visual Emo-
tion Challenge and Workshop (AVEC). Specifcally, AVEC had a challenge for
2016 and 2017 to detect depression via training on the DAIC-WOZ data set
(Ringeval et al., 2017). For teams participating in this challenge, COVAREP,
a speech analysis program, was used to extract audio features for input into
a model. AVEC also provided a histogram of the DAIC-WOZ data, showing
the average scores across the data set (Figure 4). The average PHQ-8 score
was 6.67 for this data set. DAIC also provides baseline performance metrics
for classifying depression using their data. Using a Support Vector Machine
model for binary classification, they list an F1 score of 0.46, a precision of
0.32 and a recall of 0.86 (Valstar et al., 2016).

Many studies using DAIC-WOZ are part of the AVEC challenge, either
2016 or 2017. One such study, DepAudioNet, used an approach with Deep
Convolutional Neural Networks (DCNN), and Long Short-Term Memory
(LSTM) (These are explained in more detail in Section 2.8). This was done
with the goal of producing a more comprehensive audio representation within
the model (Ma et al., 2016). For this study, only the audio was used, using
a mel-spectrogram input for the model. The model used in this study had
a binary output, with an F1 score of 0.52, a precision of 0.35 and a recall
of 1. In 2017, a team also used a DCNN in a multimodal approach which
took into account both audio, video, and text data sets in separate mod-
els, before combining the results into a central model (Yang et al., 2017).
This model outputted a PHQ-8 score, instead of a binary output, and had
a RMSE of 5.974 on the testing set. Another 2017 study used a support
vector machine for AVEC, using audio, video, and text data (Dham et al.,
2017). Also outputting a PHQ-8 score, this model had a RMSE of 5.3586.

9



Figure 4: Histogram of PHQ-8 scores from AVEC data set (Ringeval et al.,
2017)

Lastly, the paper by Al Hanai et al. (2018) in Interspeech has shown what
appear to be the best results so far for sequence modelling on DAIC audio
features. Their audio-based LSTM model showed an F1 of 0.63, a precision
of 0.71, and a recall of 0.56. We use these numbers as the main comparison
for our sequence model. With multi-modal input of both audio features and
transcripts, their sequence model acheived an F1 of 0.77, a 0.71 precision,
0.83 recall, an MAE score of 5.10 and an RMSE score of 6.37.

2.3.2 Moodable

The 2018 Major Qualifying Project team, Sensing Depression, deployed
the application Moodable on Amazon Turk. Moodable collected “user data
(texts, social media content, geospatial data, and voice samples that are two
weeks prior to the point when they give consent to the application) on the
spot”(Dogrucu et al., 2018).
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For audio data gathering, the team had users read out the phrase “the
quick brown fox jumps over the lazy dog.” After the responses were filtered,
and those deemed as unusable were removed, there remained 230 recordings.

They collected the PHQ-9 scores of the users, so the data set has the
corresponding PHQ-9 score of the users in the recordings.

2.3.3 EMU

The EMU data set refers to the data set collected by the 2019 Major
Qualifying Project: Machine Learning for Mental Health Detection. They
deployed the application EMU on Amazon Mechanical Turk and collected
audio, text messages, social media and GPS data from the user.

For the audio data, the team had users read out the phrase “that which
we call a rose by any other word would smell as sweet” (Resom et al., 2019).
They also had users respond to the open-ended question “Describe a good
friend” and restricted the response to 15-30 seconds. In total, after removing
the unusable responses, the team has 60 responses for the EMU audio data
set.

Like the 2018 team, they collected the PHQ-9 scores of the users, so the
data set has the corresponding PHQ-9 score of the users in the recordings.

2.4 Dimensionality Reduction Techniques

Dimensionality reduction techniques provide ways to reduce the size and
complexity of data while retaining the most important parts of them. This
is especially important with machine learning or deep learning, as having a
feature set that is too large may lead to a model running for too long to
get useful results. The primary methods we have looked at are Principle
Component Analysis (PCA) and Non-negative Matrix Factorization. Both
these methods are based in mathematics and provide different ways to reduce
the dimension of data for use.
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2.4.1 Principle Component Analysis (PCA)

Principle Component Analysis (PCA) is a dimensionality reduction tech-
nique based around performing an orthogonal transformation to align data
with a covariance matrix. An example of this can be seen with Figure 5. The
covariance matrix shows which parts of the data have the most variance, and
from this the principle components of the data can be found. To then reduce
the dimension the data, the components with the least variance are dropped.
One place where PCA is used in our project is with reducing the dimension of
the openSMILE feature set (Section 3.2.2). Since this data set is very large,
it is necessary to use this technique to be able to use the data efficiently.

Figure 5: PCA on a small data set (Brems, 2019)

2.4.2 Non-Negative Matrix Factorization (NMF)

Non-Negative Matrix Factorization is a dimensionality reduction technique
based around data which can be represented as a matrix. A matrix of data
is factored into two discrete matrices, which isolate characteristics of the
data into two disjoint sets. These two matrices are known as a features
(or components) matrix and a coefficients (or activations) matrix, and when
combined provide a very good approximation for the original data. Because
these matrices are factors of the original data, the dimension of each is much
smaller than the original data. Usually, when using NMF, only the features
matrix is kept.
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Figure 6: NMF on an audio spectrogram (Librosa Development Team, 2019)

One good use for NMF is dimensional reduction on audio spectrograms.
This would be very useful to use in our project in the future to reduce the size
of the spectrograms we use, while retaining the majority of the information.
This can be done easily through using librosa.decompose.decompose (Librosa
Development Team, 2019).

2.5 Data Balancing

Most real world data are rarely perfectly balanced. In fact, usually when
collecting data, there should be a certain level of class imbalance expected.
These inconsistencies with the number of instances available for classes are
the result of the difficulties posed for gathering data for events that have rare
occurrence patterns. For example, in data sets which are used to characterize
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fraudulent transactions, there will likely be imbalanced as most transactions
will naturally swing towards being non-fraudulent transactions. This leads
to class imbalance problem (Batista et al., 2004), which is the challenge of
learning from a class which has fewer instances. Imbalanced data compromise
most machine learning algorithm’s effectiveness as these models generally
expect to inherit balanced class distribution (Guillaume Lemaˆıtre, 2017).
Some common approaches to balancing our data include under sampling,
oversampling, and synthetic sampling.

2.5.1 Under sampling

Under sampling is a type of data re-sampling technique where the instances
of majority classes are reduced through random selection. Under sampling
has shown to be a powerful performance booster if there the class imbal-
ance within the data set. Compared with over-sampling, one advantage is
that under-sampling generates a smaller balanced training sample thereby
reducing the training time (ZhiYong Lin, 2009).

Drawbacks to this approach are the possibility that the reduced data set
could be a biased one. This approach is also susceptible to loosing relevant
data. However, through combining undersampling with methods like ensem-
ble learning, the degradation of the classifier’s performance can be mitigated
(ZhiYong Lin, 2009).

2.5.2 Oversampling

Oversampling is an approach used to expand data set available to our
minority class through random duplication. Contrary to undersampling, all
original data set is retained which prevents important data from being lost.
Though the retention of all original data set, when oversampling the danger
arises with the possibility that the data could be overfit (Mart́ınez-Trinidad,
2013).
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Figure 7: Resampling of data set
(Darji, 2019)

2.5.3 Synthetic Minority Oversampling Technique

Synthetic Minority Oversampling Technique, commonly known as SMOTE,
is a technique based on nearest neighbors judged by Euclidean Distance be-
tween data points in feature space. The minority class is over-sampled by
taking each minority class sample and introducing synthetic examples along
the line segments joining any/all of the k minority class nearest neighbors.

Synthetic samples are generated in the following way: Take the difference
between the feature vector and its nearest neighbor. Multiply this difference
by a random number between 0 and 1, and add it to the feature vector. This
causes the selection of a random point along the line segment between two
specific features. This approach effectively forces the decision region of the
minority class to become more general (Chawla, 2002).

2.6 Evaluation Metrics

We can classify data into multiple types of classification: binary, multi-
class (categorical), and numerical. To evaluate the effectiveness of our mod-
els’ predictions, we use evaluation metrics. Evaluation metrics are measure-
ment tools that gauge the performance of our models. These metrics are
used both in the training phase and testing phase.

2.6.1 Confusion Matrix

Confusion Matrices are tables constructed with the intersection of the pre-
dicted and actual values, used to visualize the performance of a model. When
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the model predicts an instance accurately we nominate that prediction as
true. Similarly, we nominate incorrect predictions as false.

Depending on the actual value of the instance that was predicted by mod-
els, we label the predicted values as positives and negatives. In most cases,
the positive class is the area of interest in our problem. For instance, in this
research project we would label actual depressed participants as positive,
and non depressed participants as negative. Accordingly, the True Positives
(TP) and False Positives (FP) would represent the accurate and incorrect
predictions of a depressed (positive class) instances, respectively. While the
True Negative (TN) and False Negative (FN) are the accurate and incorrect
predictions of a non-depressed (negative class) instances, respectively. The
counts of TP, TN, FP and FN within our confusion matrix are used to derive
many important evaluation metrics (Hossin and Sulaiman, 2015).

Figure 8: Confusion Matrix

2.6.2 Accuracy

Accuracy is the ratio correct predictions to the total predictions made. It
is the sum of the TP and TN divided by the sum of the TP, TN, FP, and
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FN. Although accuracy can often hide details of our models’ performance
and might not be a good indicator of efficient model. Accuracy becomes
insufficient when dealing with imbalanced classes. For instance, You may
achieve accuracy of 0.9 or more, but this is not a good score if 90 records
for every 100 belong to one class and you can achieve this score by always
predicting the most common class value (Hossin and Sulaiman, 2015).

2.6.3 Precision

Precision is a measurement that indicates how many of the predictions for
the positive class instances were correct. In Mathematical terms, it is the
division of TP by the sum of TP and FP (Hossin and Sulaiman, 2015).

2.6.4 Sensitivity

Sensitivity is the positive rate. Also referred to as recall, sensitivity rep-
resents the measure of the proportion of actual positives that are correctly
identified as such. For instance, in this case study, sensitivity would show the
percentage of depressed participants from the population that are correctly
predicted. It is the division of TP by the sum of TP and FN (Hossin and
Sulaiman, 2015).

2.6.5 Specificity

Specificity is the negative rate. It is the complementary metric to sensitiv-
ity. Specificity measures the proportion of actual negatives that are correctly
identified as such. In this case study, it would represent the percentage of
non depressed participants from the population that are correctly predicted
as non depressed. It is the division of TN by the sum of TN and FP (Hossin
and Sulaiman, 2015).

2.6.6 F1-Score

F1-Score represents the harmonic mean between recall and precision val-
ues. It gives a better measure of the incorrectly classified cases when com-
pared to Accuracy values. They are better evaluation metrics in cases where
the data set has imbalanced classes. In addition, F1-score outperforms accu-
racy metric when the False Negatives and False Positives are costly (Hossin
and Sulaiman, 2015).
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F1 =

(
recall−1 + precision−1

2

)−1

= 2 · precision · recall

precision + recall

Figure 9: F1-Score

2.6.7 Area under the ROC Curve (AUC)

AUC - ROC curve is a performance measurement for classification problem
at various thresholds settings. ROC is a probability curve and AUC repre-
sents degree or measure of separability. It tells how much model is capable
of distinguishing between classes. The closer AUC for a model comes to 1,
the better it is. So models with higher AUCs are preferred over those with
lower AUCs (Flach, 2003).

Figure 10: AUC-ROC graph

As shown in the figure above, we use Sensitivity as our Y-axis, and Speci-
ficity as our X-axis.
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2.6.8 Mean Squared Error (MSE)

MSE measures average squared error of predictions. For each point, it
calculates square difference between the predictions and the target and then
average those values. MSE are useful in evaluating regression models, as the
higher this value, the worse the model is. It is never negative, and would be
zero for a perfect model (Drakos, 2018).

MSE generally should be supplemented with other metrics. MSE tends
to penalize the model harshly for incorrect classification of noisy data, and
leads to high overemphasis of the model’s mistake. Likewise, it can make a
model underestimate a model’s mistake if all the errors are small (Drakos,
2018).

MSE =
1

N

N∑
i=0

(yi − ŷi)2

Figure 11: Mean Square Error Formula

In the figure above, the y is the actual value of our target while ŷ represents
the predicted values.

2.6.9 Root Mean Squared Error (RMSE)

RMSE is simply the square root of MSE. The square root is introduced
to make scale of the errors to be the same as the scale of targets (Drakos,
2018).
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RMSE =

√√√√ 1

N

N∑
i=0

(yi − ŷi)2

Figure 12: Root Mean Square Error Formula

In the figure above, the y is the actual value of our target while ŷ repre-
sents the predicted values.

2.6.10 Mean Absolute Error (MAE)

Mean Absolute Error or MAE is the average of the absolute value differ-
ence between the actual target values and the predicted values. This metric
is helpful in evaluating regression models. It is a linear score, since all the
individual differences are weighted equally. Compared to MSE, MAE penal-
izes huge errors less significantly as a result it’s less sensitive to outliers. In
general, we should favor MAE instead of MSE for data sets with outliers,
however, if those are actually unexpected values that are relevant it is better
to use MSE (Drakos, 2018).

MAE =
1

N

N∑
i=0

|yi − ŷi|

Figure 13: Root Mean Absolute Error Formula

In the figure above, the y is the actual value of our target while ŷ represents
the predicted values.

2.6.11 R-Squared

The coefficient of determination, or R2, is another metric used to evaluate
regression models, It is built on the MSE metric. It’s has the advantage of
being scale free, as R2 is always going to be between negative infinity and a
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negative R2 score signifies that our model is worse than predicting the mean
(Drakos, 2018).

R2 = 1− MSE(model)

MSE(baseline)

Figure 14: R2

In the figure, we have two variations of the MSE metric. The MSE model
version is the MSE metric as described in the previous section. However, the
MSE baseline differs as it uses the mean of the observed targets instead of
the prediction from a model. In other words, ŷ would represent the observed
mean of the data.

2.7 Machine Learning

In this project, numerous machine learning models are utilized. These are
kNN (K-nearest neighbors, XGB (XGBoost), RF (Random Forest), ADA
(ADABoost), MLP (Multilayer Perceptron), and SVM (Support Vector Ma-
chines).

2.7.1 K-Nearest Neighbors

K-nearest neighbors is a supervised machine learning algorithms that works
for both classification and regression problems. The principle of this algo-
rithm is that it classifies data based on the values of the closest k-neighbors.
For classification, it uses the most frequent value from the k nearest neigh-
bors. For regression, it averages the values from the k nearest neighbors
(Harrison, 2018).

The value of k is determined by the user. For example, in the image below,
we are trying to determine whether the new piece is a square or triangle . If
K was set to 1, the program would see that the closest neighbor is a square
and the new example would set as such. If K was 3, then it would be set to
triangle since from the three closest neighbors, two are triangles.
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Figure 15: K Nearest Neighbors Diagram (Ali, 2018)

2.7.2 Support Vector Machines

Support Vector Machine is a algorithm that finds a hyper plane in an ”N-
dimensional space (N — the number of features) that distinctly classifies the
data points” (Gandhi, 2018). In two dimensions, this is done using a line,
while higher dimensions require hyper planes (Gandhi, 2018).

Figure 16: SVC Diagram (Gandhi, 2018)
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2.7.3 Logistic Regression

Logistic Regression is an algorithm used for classification. It is used to
frame a binary output (Varghese, 2018). There are three types of logistic
regression: binary, multi and ordinal. Binary logistic regression refers to
having two possible outputs, such as pass or fail. Multi logistic regression
refers to having multiple outputs such as cats, dogs, sheep. Ordinal logistic
regression refers to having multiple outputs with order like low,medium, and
high (Fortuner, 2017).

2.7.4 Artificial Neural Network

Artificial Neural Networks are, in their simplest form, imitations of the
human brain’s processing mechanisms. Like the human brain, these models
are adaptive learners that provide the framework for different algorithms
to collaborate and process complex data. These systems learn from the
examples they process in order to perform in their required tasks instead of
being programmed with specific instructions (Ahire, 2018).

ANNs consist of neurons, which are slightly based on neurons within the
human brain, that can transmit signals amongst each other. In most im-
plementations, the signal at a connection between artificial neurons is a real
number, and the output of each artificial neuron is computed by some non-
linear function of the sum of its inputs. The link between these neurons are
called edges. These edges have scores assigned to them which are dynamically
adjusted as the system keeps learning (Ahire, 2018).

ANNs work in parallel, unlike most computer programs that typically run
serially. These complex systems can be used for pattern recognition, data
classification and even for applications where data is unclear. In addition,
they can process fuzzy, noisy and incomplete data. ANN can create its own
organization while learning. A normal program is fixed for its task and will
not do anything other than what it is intended to do (Shiruru, 2016).
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Figure 17: Artificial Neural Network Diagram

2.7.5 Random Forest and Decision Trees

Random Forests and Decision are similar algorithms, where the former
builds upon the latter. As the name would suggest, Random Forests are
congregations of Decision Trees. Decision Trees are tree-like graph structures,
where each internal node represents a ”test” on a attribute, each branch
represents the outcomes of the test, and each leaf node represents a class label
(Bhumika Gupta, 2017). Random Forests are efficient at solving regression or
classification problems. The figure below shows a basic Decision Tree model.
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Figure 18: Simple Decision Tree

Common terms used with decision trees: Root Node: It represents
entire population or sample and this further gets divided into two or more
homogeneous sets. Splitting: It is a process of dividing a node into two or
more sub-nodes. Decision Node: When a sub-node splits into further sub-
nodes, then it is called decision node. Leaf/ Terminal Node: Nodes do
not split is called Leaf or Terminal node. Pruning: When we remove sub-
nodes of a decision node, this process is called pruning. You can say opposite
process of splitting. Branch / Sub-Tree: A sub section of entire tree is
called branch or sub-tree. Parent and Child Node: A node, which is
divided into sub-nodes is called parent node of sub-nodes whereas sub-nodes
are the child of parent node. (Brid, 2018)
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Figure 19: Random Forest vs Decision Tree

Random Forests, are congregations of decision trees. Each tree within
the Random Forest(RF) outputs a class prediction, and the class with most
predictions will be the model’s prediction. The belief with RF is that the
collection of trees will outperform an individual one. However, ensuring low
correlation between aggregated models is vital. This aids in minimizing er-
rors as all trees won’t vote in very similar outcomes. To implement RF, there
needs to be indicators in our features so that models built using those fea-
tures outperform random guessing. In addition, like mentioned earlier, the
predictions made by the individual trees need to have low correlations. In
general, Random Forests are algorithms that use bagging and feature ran-
domness when building each individual tree to try to create an uncorrelated
forest of trees whose prediction by committee is more accurate than that of
any individual tree (Yiu, 2018).
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Figure 20: Random Forest Classifier

2.7.6 XGBoost

XGBoost is an ensemble learning technique like Random Forest. However,
it is a boosting method unlike Random Forest - which is a bagging approach.
In contrast to bagging techniques like Random Forest, in which trees are
grown to their maximum extent, boosting makes use of trees with fewer
splits (Abu-Rmileh, 2019).

XGBoost has three options for measuring features importance: Weight,
Coverage, Gain. Coverage represents the amount of times a feature is used to
split all the data across the set of tree weighted by amount of training data
points that pass through those splits. Next, weight represents how many
times a specific feature was used to split data across all trees. Lastly, gain
represents the average training loss reduction gained when using a feature
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for splitting. XGBoost is a system that is favorable for system optimization,
as it helps alleviate computational limits to provide a scalable mechanism
(Abu-Rmileh, 2019).

Figure 21: XGBoost Plot of Single Decision Tree

2.7.7 Voting

Voting is another type of ensemble learning method, used primarily for
regression, which is are further split into types of voting techniques: majority
voting and weighted voting.

Majority voting is an approach where every model makes a prediction
for each test instance and the final prediction will be determined based on
which instance receives more than half the votes. In cases where model can’t
have a prediction that gets more than half the votes, we conclude that the
ensemble method wasn’t able to make a stable prediction (Demir, 2015).
Weighted voting differs from majority voting in that all models don’t get
same voting privileges. Some models will have a vote that weighs more, which
is implemented by counting the predictions of the better models numerous
times. Determining a reasonable set of weights is usually the challenge with
this approach (Demir, 2015).
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2.8 Deep Learning

We explored an array of different types of neural networks to find the ones
best suited to test our hypothesis. Convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and long short term memory models
(LSTMs) all showed the most promise. CNNs are best at assigning learnable
weights and biases to various aspects of the input, and being able to differen-
tiate one from another. RNNs excel when understanding the context of the
input is critical. Taking a sequence of inputs, each computation is dependent
on the computations that came before it. RNNs have frequently been used
before for analyzing sound. As a special type of RNN, LSTMs can process
data when there is a significant time gap in the data. Using recurrent gates,
LSTMs manage their remembered information by determining which data
should be remembered or forgotten at each step.

2.8.1 Convolutional Neural Network (CNN)

Figure 22: Convolutional Neural Network (Saha, 2018)

A Convolutional Neural Network or CNN is a deep learning algorithm
which processes on an input image, assigns biases and weights to various
features in the image, and classifies one from another. The role of a CNN is
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to transform the images into a convoluted form to avoid the loss of impor-
tant features. As a result, CNNs can give good predictions on test images
(Saha, 2018). They also act as extensions to multilayer perceptrons, but the
difference is that CNNs consist of convolution layers and pooling layers in
addition to multilayer perceptrons (Piczak, 2015).

A convolutional layer is responsible for extracting features such as edges,
shapes and colors from an input image. Usually the first convolutional layer
will start by extracting low-level features. Gradually, the high-level features
will be captured by the following convolutional layers. This convolutional
layer works by maintaining hidden units. Each hidden unit processes only
a tiny part of the complete two-dimensional input image data. The weights
of each hidden unit create a convolutional kernel or filter, resulting in a
convoluted form or a feature map (Piczak, 2015).

Figure 23: Operation of a Convolutional Layer (Saha, 2018)

A pooling layer is responsible for decreasing the dimensions of the feature
maps obtained from the convolutional layer. This layer also reduces the
computational power required to process the data (Saha, 2018). There are
two types of pooling commonly used: max pooling and average pooling. Max
pooling only picks up a maximum value from each feature map, while average
pooling obtains a value by calculating the mean of each feature map.
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Figure 24: Operation of Max Pooling and Average Pooling Layers (Saha,
2018)

Finally, after pooling, the resulting output is flattened and sent into a
fully-connected multilayered perceptron with feed-forward neural network
and back-propagation. After training for a certain number of epochs, the
model will be able to perform classification.

2.8.2 Sequence Modelling: Recurrent Neural Networks (RNN)

Sequence modelling is a type of data modelling that gives a computer
the ability to predict or generate any type of sequential data. Typically,
this includes text, speech or other audio, and video. Sequence modelling
can be extremely powerful at predicting or generating complex sequences
and has been applied to a wide variety of problem areas, including: mu-
sic/text/image/speech generation, language translation, image captioning,
stock trading, chatbots, sentiment analysis, and many others. Most modern
sequence modelling techniques utilize deep learning. A common implemen-
tation of sequential modelling using deep learning is the Recurrent Neural
Network (RNN).
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Figure 25: Topologies of RNN, LSTM, and GRU (van Veen, 2017)

RNN’s are differentiated from regular neural networks because of their
ability to store persistent information. Using this information as a sort of
”context,” RNN’s can use the computations done on a previous element to
influence the computations they preform on the current element (Banerjee,
2018).

Figure 26: An unrolled RNN (Banerjee, 2018)

As shown in Figure 26, an RNN can be represented by a loop that takes
some input. The loop allows for data to be passed from one step to the next
(Banerjee, 2018). By examining the unrolled RNN, it can be shown how each
segment of the network, represented by A, takes one input element, outputs
a result ht, then passes relevant information on to the next segment of the
network (Banerjee, 2018).

Each cell in an RNN is connected not only through layers, but also time
(van Veen, 2017). They store their previous values, and contain an extra
weight connected by the previous values of the cells (van Veen, 2017). These
weights between current and previous values have a certain ”state” and can
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vanish if not ”fed” with new information after some time (van Veen, 2017).
By working in this loop architecture, an RNN can operate over a sequence of
input vectors, and output a sequence of vectors (Banerjee, 2018). This is a
critical difference between RNN’s and CNN’s, which accept only a fixed size
vector and output a fixed size vector.

In theory, an RNN should be able to remember context over any desired
gap of time. However, in practice, this is not the case. Because the previous
values are passed through an activation function, each updates passes this
activated value through the activation function again (van Veen, 2017). This
causes continuous information loss, and often times all the information can
be lost after just four to five iterations (van Veen, 2017). This necessitates
the use of other kinds of neural networks.

2.8.3 Sequence Modelling: Long Short Term Memory (LSTM)
Models and Gated Recurrent Units (GRU)

Long short term memory models are a type of RNN that can remember
relevant information longer than a regular RNN (Olah, 2015). As an example,
while trying to predict the last word in the sentence “The clouds are in the
sky,” an RNN would be able to remember adequate context to predict “sky.”
However, predicting the last word of the sentence “I grew up in France, I
speak fluent French,” requires remembering context across a larger gap in
time (or input) (Olah, 2015) which a vanilla RNN can struggle with. This is
where LSTMs excel.
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Figure 27: Inside an LSTM cell (van Veen, 2017)

LSTM cells are modelled after computer memory cells. A cell state runs
through the entire LSTM chain, carrying information along (Olah, 2015).
LSTM cell gates can let information through to the cell state. An LSTM
cell has three gates: input, output, and forget (van Veen, 2017). These gates
are composed of a sigmoid neural net layer and a pointwise multiplication
operation (Olah, 2015). The sigmoid layer outputs a value from 0 to 1, deter-
mining how much information should be let through (Olah, 2015). Incoming
information is multiplied by this value, and the input gate determines how
much of the input will be let through (van Veen, 2017). The output gate
determines how much of the output value can be seen by the rest of the net-
work, and the forget gate determines how much of the last memory cell state
to retain (van Veen, 2017). The forget gate is not connected to the output,
and therefor far less information loss occurs than with an RNN (van Veen,
2017).

Gated recurrent units (GRU) are a form of LSTM cells. Using only an
update and a reset gate, GRUs trade expressiveness with speed (van Veen,
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Figure 28: An LSTM cell (Ma et al., 2016)

2017). By abandoning the protected cell state and combining LSTM input
and forget gates into the update gate, GRUs offer a slightly faster alternative
to LSTMs (van Veen, 2017). LSTMs and GRUs are both valid options in
most cases, and choosing between the two is often on a case-by-case scenario
(Nguyen, 2018).

2.8.4 Feeding Audio Data into Neural Networks

The kinds of neural networks we considered using are clear, but we also
needed to consider how to feed audio data into those neural networks. Con-
volutional neural networks are primarily used for processing images, but
the study by Karol Piczak showed that CNNs can be used for audio clas-
sification purposes. In that study, the audio data were fed into neural
network by means converting them into log-scaled mel-spectrogram. The
mel-spectrogram is a spectrogram with Mel scale applied to its vertical axis
(Piczak, 2015). However, using mel-spectrograms are not the only technique
and, it was worth exploring other techniques that might have been useful.

The simplest way to feed audio data into neural networks is by transform-
ing the raw wave form of an image into a one-dimensional array and utilizing
that array for one-dimensional convolution. One drawback from using this
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technique is that concepts of features such as edges and shapes are not present
in this raw wave form. The study by Yuan Gong and Christian Poellabauer
mentioned that it is unclear how neural networks learn by using raw audio
wave (Gong and Poellabauer, 2018). Figure 29 shows how raw audio waves
are processed by convolutional neural networks.

Figure 29: Processing raw audio wave (Mansar, 2018)

Another method of feeding audio data into neural networks is by using
spectrograms. Spectrograms are visual representations of the spectrum of
frequencies within signals, as they vary with time. Unlike raw audio waves,
spectrograms can capture features such as edges and shapes. They can be
fed into neural networks by representing them as a two-dimensional image.
Log-scaled mel-spectrograms, as used in the study by Karol Piczak, are an
advanced form of spectrogram, meant to simulate the capabilities of the
human auditory system (Piczak, 2015). The main way it differs from normal
or linear spectrograms are that they produce images within the range of
frequencies that human ear can hear thereby eliminating noises present in
the audio data. Figure 30 explains how mel-spectrograms can be used for
deep learning models.
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Figure 30: Processing mel-spectrogram (Mansar, 2018)

2.9 Machine Learning and Deep Learning Frameworks

Since our hypothesis involves using machine learning and deep learning
techniques to classify depression, it was necessary for us to understand which
machine learning frameworks were available, to aid us in implementation
and experimentation. Our team consisted of undergraduate students who
were proficient in coding Python, so we decided to explore top deep learning
frameworks that use mainly Python. According to the article by (Sayantini,
2019), among such frameworks, Keras, TensorFlow and PyTorch are most
preferred by data scientists and students working in the fields of machine
learning and artificial intelligence. Figure 31 compares Keras, TensorFlow,
and Pytorch based on their popularity.

2.9.1 Pytorch

Pytorch is an open-source deep learning framework backed by Facebook,
inspired by Torch, another deep learning framework based on Lua (Vu, 2019).
Pytorch offers fast runtimes and high performance, as it runs on Python
without using high level application interfaces. Furthermore, researchers can
debug training models with existing Python debuggers such as PyCharm,

37



pdb, ipdb and even conventional “print()” statement according to the article
by (Vu, 2019). Pytorch can handle large data sets and it is customizable along
the implementation of training models. Despite its advantages, Pytorch is a
very young framework compared to TensorFlow. As such, it has a smaller
community than Tensorflow.

2.9.2 TensorFlow

TensorFlow is backed by Google. As a mature framework, it offers a
stronger community than Pytorch. Unlike Pytorch, TensorFlow has both
high level and low level programmable interfaces. It also offers high perfor-
mance with superior tensor visualization. One thing that TensorFlow fails to
provide is debugging. The article by (Sayantini, 2019) also mentioned that
many programmers found Tensorflow to be difficult to debug as they trained
the models.

2.9.3 Keras

Keras is a high-level programmable interface which simplifies the complex
architecture of low-level deep learning frameworks. It also runs on top of
other frameworks such as TensorFlow, Microsoft CNTK and Theano accord-
ing to the article by Kevin Vu (Vu, 2019). As it provides simple architecture
with which to build a model, it is used primarily for educational and rapid-
prototyping purposes. As simple as it is to use, Keras lacks the capability of
handling large data sets, and has considerably slower performance than the
other two deep learning frameworks mentioned above (Sayantini, 2019).
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Figure 31: Popularity of three frameworks among researchers (Sayantini,
2019)

2.10 Topological Data Analysis

2.10.1 Definition

Topological Data Analysis, also know as TDA, is the practice of looking
at topological features such as holes of a data set to help analyze the data.
This is done by using persistent homology (see section 2.10.3) to extract and
categorize these features. Categorization is done via transforming data into
simplicial complexes, then finding the persistence of topological features via
filtration. This has mostly been used for analyzing three dimensional sets of
data, but has in recent years been used to analyze time series (Meryll, 2018).

2.10.2 Simplicial Complex

A simplicial complex is defined by a pair K(V, S) where V is a finite set
of points called vertices of K, and S is a set of non-empty subsets of V that
satisfy the following conditions (Boissonnat and Maria, 2014):

1. p ∈ V ⇒ {p} ∈ S

2. σ ∈ S, τ ⊂ σ ⇒ τ ∈ S

Each σ ∈ S is known as a simplex of K, thus the entire structure being
known as a simplicial complex. A polytope is a generalized term for a n-
dimensional shape. A simplex is a general term for the smallest regular
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polytope in a given dimension, such as a triangle or a regular tetrahedron. For
simplicial complexes, we look at the connections between these simplicies. An
example of a simplicial complex can be seen in Figure 32, in which simplicies
are created via considering the intersections of circles around each point. In
this particular example, each circle has the same radius, however this is not
required to form a simplicial complex.

Figure 32: Example of constructing a simplicial complex (Meryll, 2018)

Filtered Simplicial Complex A filtered simplicial complex, or filtered
complex, is a nested sequence of simplicial complexes such that

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn

For any Ki, i is known as the filtration level of Ki. Notably, a subset of
a simplicial complex can contain the same number of points as the original
complex, but different connections between points. An example of a filtered
complex can be seen in Figure 33.

Figure 33: Example of a Filtered Complex (Bubenik, 2017)
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2.10.3 Persistent Homology

Persistent homology observes how the topological features appear and dis-
appear over a filtered complex. The persistence of a feature is defined by a
pair (i, j) such that i is the filtration level at which the feature appears and
j is the filtration level at which the feature disappears. These are referred
to as the birth time and death time of the feature respectively. An example
of a feature that could be tracked is whether a component in the complex
is connected to the rest of the components in a complex. In this case, a
feature would start when a component is added, and end when the compo-
nent is connected to another component. This type of feature is known as a
0-dimensional hole.

2.10.4 Persistence Barcodes And Persistence Diagram

Figure 34: Example of a Persistence Barcode of a Filtered Complex. H0 is
0-d holes, as explained in the above paragraph. Multiple steps of a filtered
complex are show, and at each picture the number of lines in the barcode is
equal to the number of 0-d holes in the shown complex (Ghrist, 2008)

The persistent homology of a filtered complex can be represented as either
a persistence barcode or a persistence diagram. Both consider the ”birth”
and ”death” date of the topological features tracked. A persistence barcode
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(Figure 34) represents the distance between a birth and death time as a line
between filtration levels. This represents the persistence of each feature as
a distinct interval over filtration levels, after which each interval is displayed
over filtration levels.

Figure 35: Persistence Diagram of a Filtered Complex Formed from a Sound
Clip. This particular clip was from the DAIC-WOZ data set (see section
2.3.1. Each point corresponds to the birth and death date of a feature in the
sound clip

A persistence diagram represents a birth date as a x coordinate and the
death date as a y coordinate on a graph (Figure 35). Both persistence bar-
codes and diagrams of these provide useful information on the shape of the
data, however this information is much more useful to a human than a ma-
chine. Disjoint intervals or points representing the persistence of features do
not provide much information on how these features interact or compare to
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one another, but as humans we can discern this information visually. Thus,
we strive to combine all of these features into a single data source, so it can
easily be interpreted by a machine.

2.10.5 Interpreting Topological Data

To interpret the persistence of features as useful data, we used Betti
Curves. This method transforms the persistence barcode of a filtered com-
plex into a single line, which can easily be represented as a 1-dimensional
array in data, thus easily forming a feature set for machine learning.

Figure 36: Example of constructing a Betti curve with 100 components from
a persistence barcode. Unlike Figure 34, the features tracked have varying
birth dates

A Betti curve represents the sum of lines in a persistence barcode over
filtration levels. To do this, each line in the barcode is considered as a one
if active or a zero if not. Then, the barcode is sampled over the filtration
levels at n equally spaced points. At each point, the number of active lines
in the barcode is totaled, and added to the curve. This n defines the number
of components in the Betti curve. This leads to a curve which provides a
good linear representation for the original barcode, which has the distinct
advantage of being easier to construct compared to other methods. These
curves were first defined in a 2017 paper which explored classifying time
series using TDA (Umeda, 2017). In 2019, another group used Betti curves
for classification of arrhythmias from heartbeats, and found favorable results
as mentioned in Section 1.2.5. Because we will be using TDA to classify
sound, which is a form of time series, we decided to use this method.
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2.11 Generative Adversarial Networks

Figure 37: Diagram of GAN Process (Goodfellow et al., 2014)

Generative Adversarial Networks (GANs) are generative machine learning
systems. GANs work by training two distinct networks, generator G, which
learns to generate samples from a given data set, and discriminator D, which
tries to discern fake samples generated by G from real samples. Fundamen-
tally, the two are playing a minimax game, where G is trying to maximize
the number of generated samples that D thinks is real, while D is trying to
minimize the number of generated samples that are chosen. Figure 37 shows
the general flow of how GANs work. With enough iterations, G will eventu-
ally converge and produce samples that D cannot distinguish from the real
samples.

2.11.1 Sequence GAN
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Figure 38: Sequence GAN Diagram (Yu et al., 2016)

GANs are designed specifically for real, continuous data sets, but are
not optimal for generating sequences of discrete tokens like texts. One of the
main reasons why is because normal GAN methods have no way of evaluating
partially generated sequences, allowing the generator to estimate how well a
partially complete sequence will end up. Sequence GAN, or SeqGAN, is a
framework that allows for the generation of sequences using GAN techniques.
The generator is able to use feedback from the discriminator to evaluate
partially generated sequences, avoiding the issue that GANs normally have
with discrete sequences. SeqGAN uses a RNN for generation, and a CNN
for discrimination, as these neural network types have been shown to be the
most optimal for text generation and text classification, respectively. Figure
38 shows the training process of generative net G and discriminator net
D in SeqGAN. Before running adversarial training, however, SeqGAN uses
maximum-likelihood estimation (MLE) to pre-train the generative network
for a number of epochs, to accelerate the generation of more meaningful
samples (Yu et al., 2016).

2.11.2 Sequence GAN Variants

Variations of SeqGAN exist that use different techniques to improve text
generation capabilities. One such variation is RankGAN, which uses a very
different discrimination method to provide better feedback to the generator.
Instead of using a binary discriminator, where samples are identified as real
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or fake, RankGAN gives the discriminator a list of samples, which the dis-
criminator then ranks. This feedback contains considerably more information
to learn from, allowing the generator to learn more from fewer epochs (Lin
et al., 2017).

Another variation is LeakGAN, designed specifically to work with longer
texts. In normal SeqGAN, the discriminator only provides binary feedback
after the entire sample has been generated. LeakGAN allows the discrimi-
nator to leak the kinds of features it looks for to the generator, which the
generator uses at all steps of generation to produce better, longer samples.
Figure 39 shows the flow of LeakGAN, showing how the discriminator shows
its internal state to the generator (Guo et al., 2017).

Figure 39: LeakGAN Flow Diagram (Guo et al., 2017)
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RelGAN is a recently-developed sequence GAN method that builds upon
the work of previous previous sequence GAN studies. RelGAN uses rela-
tional memory in the generator, instead of the traditional RNN or LSTM, to
allow for a more expressive text generator. Additionally, RelGAN uses less
demanding reinforcement learning heuristics for training, and multiple rep-
resentations for each generated sequence in the discriminator. All of this has
shown that RelGAN outperforms other sequence GAN methods consistently
(Nie et al., 2019).

2.11.3 Sequence GAN Evaluation Metrics

Different metrics are used to evaluate the performance of sequence GANs.
One metric specifically developed in the SeqGAN paper is NLL-oracle loss
(Negative Log Likeliness). NLL-oracle loss randomly initializes an LSTM to
be treated as the oracle, which is compared with the generator to produce
a value that the GAN minimizes as it runs through multiple epochs. Figure
40 shows the NLL metric, where G(theta) is the generator, and G(oracle)
indicates the oracle model. For NLL, lower values are considered better, as
NLL represents the entropy to be minimized in the model (Yu et al., 2016).

NLLoracle = −EY1:T∼Gθ
[

T∑
t=1

log(Goracle(yt|Y1:t−1))]

Figure 40: NLL-Loss (Yu et al., 2016)

BLEU (Bilingual Evaluation Understudy) score is another metric that can
be used, specifically used for evaluating texts generated by SeqGAN variants.
BLEU score was originally developed as a metric for evaluating machine
translation, but has become the standard metric for evaluating all machine-
generated text. BLEU is a ”translation closeness” metric, which compares
a generated sample to a corpus of group of good samples. For machine
learning purposes, this corpus is usually the training data. BLEU scores
range from 1.0, which means that the generated sample exactly resembles
one of the samples in the corpus, to 0.0, which means that the generated
sample does not resemble one of the original samples at all. Since a score of
1.0 indicates that the neural network has just replicated one of the given real
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samples, BLEU scores in the 0.6-0.9 range are considered better (Papineni
et al., 2002).

3 Feature Extraction

3.1 Text Feature Extraction for Machine Learning

To extract features, we started from a script that was made for the paper
”Screening for depression with retrospectively harvested private versus public
text”. This script made use of ”word category frequencies, part of speech tag
frequencies, sentiment, and volume” (Monica Tlachac, 2020) features. This
script generated features using the tools: Empath and Textblob. The script
makes use of TextBlob’s Part of Speech tags, as well as custom sentiment
features from the TextBlob output. We modified the provided script to make
it to work for the DAIC-WOZ data.

The script reads in a file with three columns: ID, which contains the
participant ID, and question number, Content, which contains what the par-
ticipant replied, and PHQ-8 Score, which is simply the participant’s PHQ-8
score. The script produces a .csv file with a numbered first column, a sec-
ond column with ID(participant ID and question number), score(the PHQ-8
score), followed by 245 columns of features that were extracted.

3.2 Audio Feature Extraction for Machine Learning

3.2.1 Pratt

To extract the audio features from DAIC-WOZ, we decided to use the
Pratt script from the 2019 Major Qualifying Project to extract pause time
features. We realized that some of the clips from our processed DAIC-WOZ
data set included numerous empty clips, So we modified the script to prevent
if from if there was no audio in the clip.

On each run through a directory, the script uses for parameters that de-
termine how the features are extracted. The first is silence threshold, which
relates to the dB value needed for the program to classify the clip as a pause
in the conversation. The second parameter is minimum dip between peaks.
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The third parameter is minimum pause duration, which refers to how long
there has to be silence at the silence threshold for it to be considered a pause.

The program outputs the file ID, the number of syllables, the number of
pauses, the duration of the audio file (in seconds), the vocalization time (in
seconds), the pause time (in seconds), the speech rate (number of syllables
divided by the duration of the audio clip), the articulation rate (the number
of syllables divided by the vocalization time), and the speaking time, divided
by the number of syllables. The program outputs it to the Pratt interface,
which is then copied into a .csv file.

For the first trial, we run the Pratt script on 2-5 second audio clips from
DAIC-WOZ. We set the parameters as follows: silence threshold of -25dB,
minimum dip between peaks of 2dB and minimum pause duration of 0.3 secs.

Due to the high volume of data that it would need Praat feature extraction,
we modified it to work on the cluster.

3.2.2 openSMILE

openSMILE is an audio extraction software used for signal-based features,
unlike Pratt which is used for pause-time features. The feature extraction on
openSMILE is done using the 2010 Embrosa configuration and is being used
to generate 1600 features per audio clip.

3.3 Topological Data Analysis

To use data in topological data analysis, it much first be transformed into a
filtered simplicial complex (see section 2.10.2). To do this, we use the Gudhi
python library2 using simplicial trees. Simplicial trees are a data structure
that efficiently represents simplicial complexes in data using a tree structure,
and is what Gudhi uses to represent simplicial complexes (Boissonnat and
Maria, 2014). Gudhi is a python library dedicated to performing topological
data analysis, and was the most simple to use due to being used in previous
efforts in implementing Betti curves.

2https://gudhi.inria.fr/python/latest/
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3.3.1 Constructing Filtered Complex From Sound Waves

To construct a filtered complex from sound waves, we consider each segment
of the wave as a path between two vertices, then link these paths together
to create the full wave. Then we assign filtration levels to each segment such
that where 0-d holes appear and disappear are at local maxima and minima
of the wave. This is done by considering the magnitude of the sound wave at
a particular point as its filtration level. Thus, the holes appear and disappear
at minima and maxima. This can be seen by observing the following series
of diagrams:

First, we can see the wave as a hole, before filtration is applied.

Filtration Level

Magnitude

Figure 41: A Simplicial complex from a simplified sound wave

Next, the smallest values are added.
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Filtration Level

Magnitude

X0

Figure 42: First Filtration Level of Wave Filtered Complex, X0. Each seg-
ment with a filtration level less than X0 is added

Then, the first segment on the left is created, making the first hole.

Filtration Level

Magnitude

X0

X1

Figure 43: Second Filtration Level of Wave Filtered Complex, X1. Each
segment with a filtration level less than X1 is added
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Filtration Level

Magnitude

X2

X0

X1

Figure 44: Third Filtration Level of Wave Filtered Complex, X2. Each
segment with a filtration level less than X2 is added

Filtration Level

Magnitude

X3

X2

X0

X1

Figure 45: Fourth Filtration Level of Wave Filtered Complex, X3. Each
segment with a filtration level less than X3 is added

This hole is continued over several filtration levels, until finally closed
when the maxima is added at X4.
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Filtration Level

Magnitude

X4
X3

X2

X0

X1

Figure 46: Fifth Filtration Level of Wave Filtered Complex, X4. Each seg-
ment with a filtration level less than X4 is added

This is how our filtered complexes were constructed, insuring that per-
sistent homology captures the critical points of the sound wave. We also
consider filtration from maximum value to minimum value, and differentiate
the two by calling minimum to maximum ”upper level” and maximum to
minimum ”sub level”. We do both of these as the persistence captured can
vary slightly based on when features appear and disappear. Next, we convert
these into barcodes, followed by Betti curves, whose construction is covered
in Section 2.10.5. This is the final state of our topological features extracted
from sound waves, after which they can be inserted into a machine learning
model.

Figure 47: TDA Feature Extraction Pipeline
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Figure 48: All combinations of method, data set, feature type, goal, and
prediction type in this paper
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3.4 Generative Adversarial Networks

The SeqGAN variants used only raw text data from EMU and Moodable,
without extracting specific features, as the goal was to expand that data set
and extract features from the texts generated by it.

4 Methods

4.1 Machine Learning

In this project, we implemented regression and classification methods for
six models: Support Vector Machine, Random Forest, XGBoost, Adaptive
Boosting, k-Nearest Neighbours, and Multilayer Perceptron. We conducted
various tests for each method and model variation to find best performing
ones. Through out the project, we were able to build an Machine Learning
efficient pipeline to conduct experiments on three different data sets: EMU,
Moodable, and DAIC-WOZ. Although most of our experiments were tar-
geted at predicting PHQ-8 labels, we had experiments that predicted GAD-
7 Labels for EMU data set. Overall, our goals within this sub project were
comparing Machine Learning method performances across different datasets’
Experimentation.

4.1.1 Machine Learning Pipeline

For our Machine Learning methods, we first sliced the audio data into
sub-clips. Further, we supplemented the audio clips with Sub-Clip Boost-
ing (which was shown to improve scores (Toto et al., 2019)) implementing
overlaps between the sub clips. After successfully slicing our audio data,
we generated features using openSMILE and Praat tools. Resulting feature
files were cleaned and labelled with corresponding labels: PHQ-8 or GAD-
7. After generating fully labelled clean feature files, we performed feature
selection to get the optimal number of features for our experiments. Next,
we split feature files into their respective folds. Splitting is done by using
a json file that contains participant IDs used to determine whether partic-
ipants are allocated in either train or test sets. These splits were kept the
same throughout all experiments. After participants within feature files were
split into train/test sets, we used a grid search to tune optimal parameters for
the models. Some models didn’t compute grid search within computational
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time thus random set of parameters were tested on and the best performing
ones were selected. Next, using parameters generated from grid search, we
fit classifier and regressor models. After models are fitted with training data
set, we use these fitted models to predict our testing data set to get our
results. The generated results contain binary classifications and regression
predictions. In addition, they contain prediction probabilities.

Figure 49: Machine Learning Pipeline

Figure 49 illustrates our pipeline process. Bold and underlined steps
represent main processes, while the boxes below main processes represent
sub processes.

4.1.2 Machine Learning Method Configurations

Data Processing: DAIC-WOZ Audio For DAIC-WOZ audio, we first
split participant audio data into question segments. We further broke the
question splits into Sub-Clips based on clip duration. Intervals of 3, 4, 5, 6,
7, 8, 9, and, 10 seconds were used. Once data were split into sub clips, we
implemented SCB (Toto et al., 2019) to enhance our experiment scope. For
SCB, overlapping of 0%, 25%, 50%, and 75% were used to boost clips.

Data Processing: DAIC-WOZ Transcript+ Audio For DAIC-WOZ
audio, we first split participant audio data into question segments. We then
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organized the transcripts into question segments and made sure the same
naming conventions as the audio data were used.

Data Processing: EMU For EMU data, we split participant audio data
into Sub-Clip splits. Sub-Clips with 2,3,4,5,6,7 segment splits were used.
Once data were split into sub clips, we implemented SCB to enhance our
experiment scope. For SCB, we used the standard overlapping intervals as
the DAIC-WOZ processing technique.

Data Processing: Moodable We used the exact same technique used to
process EMU data for processing Moodable data.

Feature Selection: openSMILE Feature selection was implemented for
openSMILE features due to large number of features. Firstly, we used Extra
Trees to determine the features’ importance. Next, we kept features that had
feature importance higher than the mean feature importance. We used sci-
kit libary’s ((Buitinck et al., 2013) ExtraTreesClassifier() tool. We invoked
the resultsing model’s attribute feature importance to get feature importance
values. Resulting dataset had a reduced set of 176 features.

Participant Splits Participant splits were mainly done using a script that
generates 5 folds and randomly allocating participants within those folds.
These folds were stored in a json file and maintained throughout experi-
ments. For example, a fold split for EMU GAD-7 dataset would be used
across all EMU GAD-7 experiments. This approach was done for Mood-
able, DAIC-WOZ and EMU PHQ-8 experiments. However, we added two
extra folds for DAIC-WOZ dataset. This was done to enable result com-
parisons with other researches using DAIC-WOZ dataset and amongst our
Deep Learning and LSTM experiment results. The particiapnts were split
into train and test splits for this part instead of maintaining cross validation
approach mentioned earlier. For comparing with other researches we used
the DAIC-WOZ official splits: train split and dev splits. Dev splits were
interpreted as our testing set and train split was used as training set. To
compare with our Deep Learning and LSTM models, we used a train and
testing split determined randomly. Data set was split into 70 to 30 ratio in
favor of training set. In addition the Depressed and Non-Depressed partic-
ipants had same ratio in both splits. We used a standard cutoff of 10 as a
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binary cutoff.

Training We fitted the data on the Machine Learning methods mentioned
earlier. We used grid search to determine optimal parameters for our models
when possible. However, since this was computationaly expensive we opted to
select optimal parameters out of a random set of parameters for our models.

For Random Forest, we found the best parameter selections to be: 400
estimators, maximum depth of 7 for the trees, minimum samples split of 5,
minimum sample leaf of 1. These parameters were used in both regressors
and classifier models.

For K-Nearest Neighbours, we found best parameter selections for number
of neighbours and leaf size to be 9 and 1 respectively.

For XGBoost, we selected inputs for the parameters learning rate, gamma,
maximum depth of tree, minimum child weight, subsample, colsample by
tree; Values for these parameters were 0.01, 5, 4, 1, 0.7, 0.6 respectively.

For Support Vector Machines, we were only able to use linear kernels due
to computational issues. Thus, we weren’t attain optimal parameters for the
model.

For Adaptive Boosting, we used a Random Forest with the previously
mentioned parameters as a base estimator. In addition, we used 400 trees as
estimators.

For Multilayer Perceptron model, we used an L2 penalty of 1, maximum
number of iterations of 50, solver was stochastic gradient descent, a learning
rate that is adaptive (keeps the learning rate constant to initial learning rate
as long as training loss keeps decreasing), initial learning rate.

Predictions Our Machine Learning experiment framework outputs test
predictions in a csv file format. The files contain binary predictions, bi-
nary prediction probablities, and regression predictions for each participant
Sub-Clip features. These are later aggregated to have predictions for partic-
ipants. Note, in the case of DAIC-WOZ dataset experiments aggregations
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were done based on questions as well. Once aggregated we evaluate pre-
dictions by computing TN, TP, FP, FN, accuracy, sensitivity, precision, F1
score, specificity, MAE, RMSE, R2, MSE. We also determined a cutoff for
our regression predictions in order to compute F1 score and compare with a
classification approach. Grouping of predictions were done based on different
aggregating methods: median, mean, max and voting. We also used a weight
that was altered during experiments. The participant was elected to be de-
pressed if the binary prediction probability of one (Depressed) multiplied by
the determined weight was higher than the binary prediction probability of
zero (Non-Depressed). In addition, we used F1 score as the standard metric
to compare different experiments.

4.2 Deep Learning

In order to use Deep Learning for mental health sensing, we first needed
to implement data-preprocessing on our available data set. We primarily
intended to use DAIC-WOZ data set so that we could produce results com-
parable to other techniques like machine learning and DepAudioNet. For
the purpose of building and debugging our first deep learning pipeline, we
started with combined EMU and Moodable data set since testing on them
is less resource-expensive than DAIC-WOZ data set. At the same time, we
also built data-preprocessing on DAIC-WOZ data set. Once we made sure
our deep learning pipeline is free of syntax and compilation error, we began
finding an efficient model by gradually testing out various hyperparameters
such as number of layers, learning rate and kernel sizes. Then, we analyzed
each of our deep learning models by confusion matrix, convergence of train
loss and test loss curves, F1 score and accuracy.

4.2.1 CNN Experimental Setup

Our goal here was to see if we could build our own convolutional neu-
ral network that was able to train on one of the available data sets. For
the EMU/Moodable data set, data preprocessing was already done prior to
working with those data sets, so we were able to begin by start by defining
configurations and laying out python source code to fit our new model. The
setup we built here is similar the one in Figure 22, except that we tweaked
the parameters to suit our data. We started with minimal amount of config-
urations to see the changes and compare them as we tune them.

59



• Hyper parameters: Batch-size was set to 1 and would gradually increase
up to 16. Number of epochs was kept at 60 since more would take a
longer time to finish. The optimizer used here is Adam with learning
rate set up to 1.5e-7.

• CNN structure: Input was a 2D array of spectrogram data with re-
spective labels of PHQ-8 scores. These PHQ-8 scores were taken in as
non-depressed with scores below 10 and depressed with scores between
10 and 24. The output in this case was binary classification with de-
pressed as 1 and non-depressed as 0. Therefore the loss function used
here was cross entropy loss for binary classification. The model had
two two-dimensional convolutional layers and two max pooling layers.
The first convolutional layer had (3x3) kernel, and step size or stride
of 1. The first max pooling layer used (4x3) kernel, and with a stride
of 3. The second convolutional layer had (1x3) kernel, and stride of 1.
The second max pooling layer uses (1x3) kernel, and stride of 3. The
test data set of 30 percent was from the original data sets.

• Feed-Forward network: the output we have from CNN was flattened as
a one-dimensional array and then fed into this multilayered perceptron.
Here we had two more hidden layers: one with flattened array size and
another with 512 nodes. The drop out layer with 0.15 was added to
reduce over-fitting. The output layer matched two number of classes
which were depressed and non-depressed.

4.2.2 LSTM Experimental Setup

The goal of our sequence-based model was to exploit the ability of an
LSTM network to remember information and use context. There are a few
different ways in which our data can be treated sequentially. We briefly
explored inputting spectrogram images of DAIC-WOZ data, before focusing
on features generated with openSMILE. Our first batch of experiments was
using a set of 25 openSMILE (os25) features, selected as the most impactful.
After getting better results using a more verbose set of 176 features (os176)
we ran the rest of the experiments on this set. The final model was built
using PyTorch.

• Structure: The data was first fed through an LSTM layer, the output
of which was then passed through a linear layer and finally through
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a sigmoid output layer. The loss function was binary cross-entropy,
and we experimented between AdaDelta, RMSProp, and Adam for
optimizers.

• Data: The openSMILE features were stored in a .csv file. Each row
represented the features for one sound clip. We used 3 second clips
with 0.75 overlap between clips. The data was grouped by question
and given a label, meaning that each time step was a sound clip for the
question. Predicting label for an entire question gave the best results.
The model predicted binary label, giving a cutoff of 11 and above as
depressed, below as non-depressed. During experiments, the original
data (in order by participant and question) was split at 70% for the
training set, and the remaining 30% as validation. To compare results
with other models in this project, the best models were re-trained with
the same split as the rest of the deep learning and machine learning
solutions.

• Hyperparameters and settings: Learning rate was {1e-5, 1e-6, 5e-7, 1e-
7, 1e-8, 1e-9}, hidden nodes were {50, 100, 150, 250}, and number of
layers was {1, 2, 4, 6}. Dropout rate was {0, 0.1, 0.2, 0.5, 0.8, 0.9}.

4.2.3 Deep Learning Pipelines

CNN The first thing that needed to be done before other steps was data
processing. This step included collecting audio files, limiting question num-
bers per participant, and extracting PHQ scores and gender labels. After
that, the whole data set was divided into training set and testing set. While
splitting into two separate data sets, data balancing was also performed on
the training set to avoid failing to recognize the minority class. The training
process began when we had balanced training set and testing set. During
the training process, we started off with CNN layer configurations as stated
above in Experimental Setup. However, hyper parameters such as kernel
sizes and number of dense layers were subject to changed as we were trying
to find a decent model through multiple experiments. Gender label were
also added into fully connected network after receiving feature map through
convolutional process. Once the training process was done, the model was
predicted with testing set and the confusion matrix was collected.
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Figure 50: Convolutional Neural Network pipeline

LSTM As with the CNN, data preprocessing was done first as described in
Section 4.3. The LSTM model mostly used the 3 second clip length with 75%
overlap. openSMILE was used to extract features for each clip. At this point,
the fill data set was a .csv file with each row containing the feature set for
one clip. Here, the data was split into a train and a test set. Then, the clips
were grouped by individual question response and paired with the depression
label of the participant answering (for the sequence model we used a PHQ-8
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score of equal to or less than 10 to mean non-depressed, and higher than 10
as depressed). We then trained our model on this data, validating at the end
of each epoch with the test set. After every epoch we collected metrics about
the performance. These included the hyperparameters and settings used, the
loss and accuracy of the train and test sets, and the confusion matrix values
for the test set which was used to calculate precision, recall and F1 score.
Both in real-time and after training has completed, these metrics could be
passed to a custom performance analytics and visualization tool in a Jupyter
notebook to examine how the model was doing.

Figure 51: Sequence Model (LSTM) pipeline

4.2.4 Experimental Planning
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Figure 52: Workflow between Image Caching and without Caching

Reducing Training Time The difference in size of EMU+Moodable data
sets and DAIC-WOZ data set is vast. While the combined EMU and Mood-
able only has 290 audio files, DAIC-WOZ contains 10570 audio files. The
current setup we have would work on EMU and Moodable for a consider-
able amount of time, it could take over a week to process and train raw
audio files from DAIC-WOZ data sets. One way was to implement a caching
system that would boost up the speed of the experiments using the same
configurations for generating the spectrograms. For example, if we decided
the spectrogram to have one dimensional tensor of 256 by 64, 1024 slices
and 1000 overlaps, the other experiments that used the same spectrogram
configurations would not need to generate extra cache. This would allow us
to train the DAIC-WOZ data sets over a day with more epochs.
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One promising way to reduce training time for both CNN and LSTM
models is node or weight pruning. The concept here is that by ordering
neurons or weights by how much they contribute, the lowest-ranking can be
removed (Le Cun et al., 1990). The paper by (Molchanov et al., 2016) details
an iterative process for pruning CNNs by ordering nodes, removing the last,
testing the affects, then continuing on to the next if needed. There are also
methods of removing entire filters from the CNN instead of single weights
or nodes (Li et al., 2016). Similar concepts can be applied to LSTM-based
models, to see similar results.

LSTM Workflow Running experiments, changing parameters, generating
and comparing results, and editing code can all make developing deep learn-
ing models very time-consuming. We have created some tools to automate
this process. For the LSTM model, hyperparameters and other options like
the optimizer, learning rate, number of hidden nodes and layers, and dropout
rate are passed from the command line. Metrics such as loss and true and
false negatives and positives, are collected after each epoch and saved to a
file. When running a test, a bash script is run to submit the job to the job
management system on our research cluster, Slurm. In this way, when we
have an experiment to run, we can write a script to submit all the related
jobs with their individual hyperparameters in parallel. Once the experiment
has finished, we can pass the directory where we saved the metrics for each
run to a metrics utility. This utility graphs the loss over time, as well as
accuracy, precision, recall, and F1. It also displays the confusion matrix for
the last epoch. This same file doubles as a log of experiments, keeping track
of their hyperparameters, settings, Slurm job ID’s, and additional notes.

In addition to saving metrics, the states of the model and optimizer after
each epoch (weights and parameters) were saved to disk as a .pt file with
PyTorch’s built-in method. If a model showed that loss, accuracy, or F1 has
not yet stabilized, we could submit a new job that would load the model
back in and continue training from where we left off. Some later experiments
were run up to 800 epochs in 200 epoch chunks until metrics stabilized, or
it became apparent that the model was overfitting. This was only necessary
due to the computation time limit on the research cluster.

CNN Since we could not know which CNN model was going to perform
best for detecting depression, we needed additional planning and multiple ex-
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periments to compare the results. Here, we could proceed in two approaches.
One was to simplify the CNN structure to 1 convolution and 1 max pool
layer and figure out the number of layers and kernel sizes that might work
for our data sets. The advantage of this plan was that once we figured out
the right setup, we could continue training and predicting other data sets
which are similar to DAIC-WOZ or EMU and Moodable data sets. The
downside was that we would have to continue testing each setup until we
find out a proper model. Another one was to test with other features such as
openSMILE along with convoluted features. With this approach, we could
tune the feed forward network properly and observe if openSMILE improved
model learning or not.

Convolution & openSMILE Experimenting with CNN alone on DAIC-
WOZ data sets was quite challenging and unpredictable. Since convolution
layers filtered out the features from each spectrogram by kernels and max
pooling, the feature set we could get from convolution may not be as distin-
guished as other feature sets such as openSMILE. Thus, we could also speed
up our experiments by combining CNN with other feature set. For example,
we could determine if a model improved predicting by combining feature set
generated from Convolution layers and respective OpenSmile Features and
then fed them together into the same Feed Forward Network.
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Figure 53: Combining Convolution and openSMILE

openSMILE From the above premise, we could also derive experiments
to test openSMILE features and Feed Forward Network only. By doing so,
we could find significant parameters which would substantially impact our
models inside Feed Forward Network. Since these experiments would not
consist of Convolution layers, another advantage was that they would require
less computational resources and could complete in a shorter amount of times
compared to CNN experiments.

Parameter tuning Parameter tuning would be done in all experiments
but there were specific parameters we considered might have big impact in
improving our learning models. Besides from convolution and feed forward
layers, parameters such as learning rates and decays played a huge part in
improving our models. Learning rate referred to the amount at which the
weights were updated every epoch. Learning rate that was too large could
lead the gradient descent to step over the global minimum and too small
could make it stick at the local minimum (Brownlee, 2019). Decay rate as
a multiplicative factor would be applied to learning rate. The reason using
decay rate was that we wanted to allow the model to converge faster at the
earlier epochs and slower towards the end so that it would avoid local min-
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ima and had a better chance of finding a global minimum. Mathematically,
learning rate at every epoch is as follow with ”t” being the current epoch.

LearningRatet = LearningRatet−1 ∗DecayRate (1)

4.3 Tests Run on Audio Data

We divided the DAIC-WOZ audio files by question response, with a folder
containing the response for each question by each participant. We then
proceeded to divide each file by three seconds. When the split was done, any
response less than three seconds was disregarded. Audio files that were more
than three seconds were split into full three second clips and the reminder was
also disregarded. This was then repeated for four,five,six and seven seconds.
All splitting and processing was done by scripts on the cluster.

4.4 Tests Run on Transcript

DAIC-WOZ came in two parts: audio data and the transcript data. We
processed the transcript data to organize replies by participant and questions.
We extracted features from this using Textblob and Empath.

Figure 54: Frequency Graph for Transcript Data (Ali, 2018)
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Figure 55: Histogram of Transcript Data (Ali, 2018)

As you can see in the above figures, the number of words in a question
response varied. The number of words ranged from one, all the way up to
120 words. We set up a script to feed the pre-processed transcript data(a .csv
file) and number for the minimum number of words allowed. For example,
when we fed it the file and the number four, it made sure all responses
that were under four words was filtered out. This is good because responses
with few words would give less features and yield lower lower results. We
experimented with 4,7,and 10 word minimums.

4.4.1 Tests Run on Audio and Transcript

The next step was to combine both audio and transcripts to attempt to
get the best results. It was unrealistic to combine the sliced audio and get
the transcript for that without doing it manually for tens of thousands of
clips. So, the reasonable process was to do it question by question. So, we
ran the pipeline through each question response audio clip. We then selected
the text features for the transcript data and used a script with the merge
command to merge the two. The result was that each row would contain
both the audio features and transcript features for a question reply.
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4.5 Topological Data Analysis

To test the viability of Betti curves (see section 2.10.5), we used ma-
chine learning methods similar to that of Section 4.1. Our data sets used
all stemmed from five second DAIC-WOZ clips with no overlap, with differ-
ent selections from these clips being used in training. To prepare, upper level
and sub level Betti curves for each participant were extracted into separate
folders, then several data sets were constructed by pulling specific curves
from each participant. These included random 5 curves, the first curve for
each question, and the first 5 curves. Another data set was also made which
combined the openSMILE features of the first 5 clips from each participant
with the first 5 curves from each participant. This is done using a truncated
version of openSMILE with only 176 features. For each data set, both a
upper level and sub level set is formed separately. In total, this leaves us
with 8 unique data sets. After each data set is formed, they are fed through
dimensionality reduction using PCA, kPCA, and Chi2 (see section 2.4). Chi2

chooses up to the total number of features, leaving at least one data set with
all features. kPCA and PCA both choose up to 15 features. After this is
complete, each data set is fed through a series of machine learning mod-
els: Naive Bayes, Linear Regression, k Nearest Neighbor with 3 neighbors
(kNN3), k Nearest Neighbor with 5 neighbors, Support Vector Classification,
XGBoost with 2 levels, XGBoost with 3 levels, XGBoost with 4 levels, and
ADABoost. In total, we end up with 216 separate combinations of data set,
dimensionality reduction, and machine learning model. The overview of the
TDA machine learning pipeline can be seen in Figure 56.
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Figure 56: Pipeline for Machine Learning Using Betti Curves

4.6 Generative Adversarial Networks

We used a number of methods for generating text based on our existing
data set. We first focused on using the Moodable data set to generate new
texts using Texygen, an open source framework designed for easily running
and comparing text generation methods (Zhu et al., 2018). We created a
pipeline for running sequence GAN tests. Two sets of experiments were
run: one on the ACE cluster, and one on the Turing cluster, as it had more
resources available for experiments.
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4.6.1 ACE Experiments

Figure 57: Moodable: Ten Most Frequent Words

Before the text generation methods could be run, the text messages had to
be pre-processed appropriately. Text message data was provided in a CSV
file, which indicated the user ID the text was from, and the text itself. This
CSV was loaded using a python package called Pandas, which allowed for
easier handling and visualization of data. Some statistics were gathered on
the data set, before breaking it into subsections based on user ID. Figure 57
shows the top ten words that occur most frequently in the Moodable data
set, while Figure 58 shows the participants with the ten highest text counts
in the Moodable data set.
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Figure 58: Moodable: Ten Participants with the Most Texts

Texygen requires input files that have a single text on each line, with
all of the relevant data for each run in a single file. To simplify the data
that the text generation techniques would have to learn from, the natural
language toolkit (NLTK) was used to find the frequencies of each word within
data subsets, and replace words that occurred less frequently than a given
threshold with < UNK >. For the tests we ran this time, the frequency
threshold was 5.

The first experiment was run using SeqGAN, using every text from Mood-
able as training data. This experiment ran out of time after twelve hours,
the maximum amount of time allowed by the ACE cluster we were working
on. The data set was then simplified, using only ten-thousand texts from a
single participant, instead of using every text, but this also ran out of time.
The number of epochs was then reduced from Texygen’s default number of
80 pre-training epochs and 100 adversarial training epochs to only 20 pre-
training epochs and 30 adversarial training epochs. The data set was further
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simplified, only using 1074 texts from a single participant. With these pa-
rameters, the experiment successfully finished within the time limit. Further
experiments were run using these values, for MLE training on its own (as
a control group), RankGAN (as an improvement over SeqGAN), and Leak-
GAN (as it performed better with longer texts). As a result of the CPU
specific requirements, GPU acceleration was not possible on the cluster at
this point.

After running these experiments, we used matplotlib to derive and plot
the NLL-Loss and BLEU scores. Other statistics were automatically gener-
ated by Texygen itself, such as NLL-loss, but these were somewhat problem-
atic to use, as the output CSVs generated by each text generation method
were formatted inconsistently.

4.6.2 Turing Experiments

After ACE proved not to be optimal for running Tensorflow and RelGAN,
we gained access to the Turing cluster, which allowed for far more epochs to
be run using GPU acceleration. Some further improvements were made on
the experimental process, after the rests run on ACE.

Figure 59: Text Generation Pipeline

Process Improvements The overall process was improved by modifying
the existing frameworks. Texygen was forked and modified to accept a range
of new command line arguments to facilitate much faster iteration of ex-
periments. Arguments were added to control output file path, pre-training
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epochs, adversarial training epochs, and CSV output path.3 Furthermore, we
developed a script that would automatically generate batch files for submit-
ting new jobs to the Turing cluster. The pipeline created for text processing
during this stage can be seen in Figure 59.

RelGAN Additionally, RelGAN, which was not included in Texygen, was
set up to run with our data set. RelGAN does not accept most data sets by
default, so it was also expanded to accept multiple data sets.4 Due to the
different requirements needed to run RelGAN, a separate batch file generator
was created for RelGAN jobs.

5 Results

5.1 Machine Learning

5.1.1 GAD-7 Experiments on EMU

Although most experiments we did throughout this project used PHQ labels,
this sub-project used GAD-7 labels to make predictions. GAD-7 have shown
to be reliable predictors for anxiety, which is generally easier to predict than
depression and have more consistent symptoms (?). Generally, in our GAD-7
experiments we found that tree based models and cutoff performed better.
In addition, there were better results when using up-sampling compared to
down-sampling. Tree based models have been shown to perform better in
previous studies as well (Yang et al., 2016). We attribute the experiment
results being skewed towards binary cutoff of 5 due to the EMU dataset’s
dispersion; most participants have a GAD-7 score of less than 10. The best
performing test runs for our GAD-7 Experiments can be seen in Figure 60.
As mentioned earlier, the top 5 test runs used either XGB or ADA methods.
In addition, all top test runs used a binary cutoff of 5. Models also performed
best when using our up-sampling technique; it is also evident that SCB works
best for these experiments.

3This modified code can be found at https://github.com/Nicolas-Pingal/Texygen
4This modified code can be seen at https://github.com/Nicolas-Pingal/RelGAN
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Figure 60: Classification: GAD-7 Experiments Top F1 Scores

As seen in Figure 61, even though the F1 scores were significantly lower,
most assertions about tree based methods performing better still hold true.
However, in this section of test runs, down-sampling performed better. Down-
sampling works better for binary cutoff of 10 as a result of the dataset be-
coming more skewed towards depressed participants when using this cutoff
value. Furthermore, SCB still seemed to improve model’s performance.

Figure 61: Classification: Best Test runs for Cutoff=10

We converted the regression predictions into binary predictions, to com-
pare them with a direct binary prediction. The results were slightly lower,
so it is hard to deduce any meaningful conclusions.

Figure 62: Regression: GAD-7 Experiments Top F1 Scores
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Figure 63: F1 Score distribution across Models

Figure 64: F1 Score distributions among Resampling Techniques
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Figure 65: F1 Score distributions among Binary Cutoffs

Original dataset experiments We were able to do an experiment using
the original data without doing any splits or overlaps. The results were rela-
tively poor compared to SCB and split audio experiment results. The highest
F1 score was 0.528 with RF model and a cutoff of 10 using up sampling.

78



Figure 66: Predictions for un-split and no-overlap

5.1.2 PHQ-8 Experiments with EMU

Our experiments on the EMU dataset using PHQ-8 performed slightly
worse than our experiments using GAD-7. However, compared to previous
MQP’s experiments using audio features from EMU, we found significantly
higher results as depicted in figure 67 and figure 68. Figure 67 shows box-
plots of all model experiments. Highest F1 score across all model tests doesn’t
reach a F1 score higher than 0.7. Result improvements can be mainly at-
tributed to the increase in experiments and incorporation of SCB technique.
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Figure 67: Previous MQP EMU dataset experiment results
(Resom et al., 2019)

Figure 68: EMU PHQ Experiments Best Results
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Figure 69: F1 Score distribution across Models

Figure 70: F1 Score distributions among Resampling Techniques
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Figure 71: F1 Score distributions among Binary Cutoffs

5.1.3 PHQ-8 Experiments with EMU+Moodable

Our Machine Learning experiments have encompassed using Moodable as
well. Specifically, we were able to experiment the effectivness of using the
combined dataset of Moodable and EMU. We completed this phase of the
experiment early on in our research project. Consequently, we used only
three models to experiment with this dataset: kNN, SVM and RF.

As a result of the limited variation test parameters, the combination of
EMU and Moodable has performed below EMU dataset separately.

Figure 72: EMU+Moodable PHQ Experiments Best Results
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Figure 73: F1 Score distributions for EMU+Moodable

5.1.4 DAIC-WOZ Audio Experiments

We used DAIC-WOZ data for the majority of our Machine Learning ex-
periment scope. We used this dataset to predict PHQ-8 labels. Since this
dataset is readily accesible to future researchers, experiment results acquired
using DAIC-WOZ can be compared with other works and aid as building
blocks for future experiments.

Using DAIC-WOZ data, we were able to analyze different factors affecting
a Machine Learning method’s effectiveness in predicting depression from au-
dio features. We also ran the experiments across different participant splits.
For this section of experiments, we were able to run tests for ADA, XGB,
kNN, and RF models. SVM and MLP models weren’t able to ran within our
allocated cluster computing time.

Random Generated Train-Test Split Since both our Deep Learning
sub project and Machine Learning were under performing using official DAIC-
WOZ split, we opted to generate a random split. The random split we used
had a 70/30 ratio in favor of training split. In addition, we maintained the
same distribution of depressed and non-depressed participants across both
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splits. As seen in figure 74, we obtained a F1 score of 0.7.

Figure 74: F1 Score distribution for Participant Grouping
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Figure 75: F1 Score distribution for Participant + Question Grouping

DAIC-WOZ Official Split We run experiments using official DAIC-WOZ
dataset splits: train split.csv, dev split.csv, and test split.csv. However,
since the test split didn’t contain labels we opted to treat dev split as test
set. This left us with 107 participants in train and 35 participants in test
set. In general, results weren’t promising as we didn’t obtain F1 scores that
were better 0.5 range. Since we were able to reach upto a F1 score of 0.7
using our generated splits, this can be attributed to the imbalanced nature
of the given splits.
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Figure 76: F1 Score distribution for Participant Grouping

Figure 77: F1 Score distribution for Participant + Question Grouping
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5.1.5 DAIC-WOZ Transcript+Audio Experiments

DIAC-WOZ came with a transcript that corresponded to the audio files.
We decided to try and attain higher F1 scores for predicting depression by
combining both the text and audio data. We decided to do it based on
question replies, and not clips of a specific duration, as done in our audio-
only experiments.

We extracted openSMILE features for each question reply from the audio
data. We then extracted Textblob and Empath features for each response
from the transcript data and matched them. When we ran the machine
learning models on them, and found that none were able to yield above 0.5
F1 scores. In order to improve the results, we added filters. These filters
would remove all question responses in which the participant has used less
than X words.

5.1.6 Audio vs Transcript + Audio Predictions Analysis

Audio results were based on question responses divided up into clips which
allowed higher precision. On the other hand, transcript + audio predictions
limited us to using only response per question and didn’t allow us to delve
deeper.

Our initial tests with all transcript data yielded low data, with almost all
results below 0.5. Looking at the word count distribution, it shows that there
are a lot of replies with only one or two words. The text extraction feature
would not be able to get a lot of data from one or two word replies, and as
a result, it caused the results to be worse.

Our results for when we did only replies with four or more words, seven
or more words, and ten or more words, yielded better results. Without the
smaller responses messing up the data, the machine learning models were
able to attain higher F1 scores. Surprisingly, the best results were when
replies with four or more words were used. The best result for four or more
word replies was 0.62, while that for seven or more words was 0.602 and for

87



Figure 78: Best Performers: DAIC-WOZ Audio + Transcript

10 or more words was 0.609 Unfortunately, the highest F1 scores from the
combined data were not as good as audio only.

5.2 Deep Learning

5.2.1 EMU/Moodable: CNN

After setting up and laying out the source code to build our model, we
started testing the combined data sets. The experiment on EMU and Mood-
able was carried out during our first term. The results from the test run
show that our model was not learning anything. Figure 79 shows the results
of our trained CNN model. The F1-score plots indicates that the model was
not validating good enough on each epoch and it did not improve over 60
epochs. The accuracy was also fluctuating between 0.3 and 0.5 and it also
did not improve over time. The test loss and the train loss did not converge
at any epoch and the test loss was still higher than train loss. Therefore,
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we concluded that our model was not learning enough. There were more
experiments we could do to find out a better way to fit our model and obtain
good results.

(a) F1-score against epochs
(b) True Positive/True Negative
against epochs

(c) Accuracy against epochs (d) Loss against epochs

Figure 79: Results from running CNN on EMU and Moodable Data

5.2.2 DAIC-WOZ: CNN

We started testing our default CNN models with the DAIC-WOZ data set
in our second term. First of all, we found out that running CNN on the whole
DAIC-WOZ data set was out of our computational limitation. The whole
DAIC-WOZ data set contains total questions counts of 7938 with available
PHQ scores regardless of participants IDs. Training our default CNN model
the first time took more than 12 hours to complete, which exceeded the time
limit of our cluster. Thus, in order to save a significant amount of training
time, image caching was implemented. Even so, the number of epochs we
could set is no higher than 50 depending on other parameters as well. Thus,
for test running, we set the question limits to 20 for each participants and
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used random split ratio of 70 percent train set and 30 percent test set. The
resulting data set then contained question counts of 2840. This regenerated
data set would be used for experimenting until we found a proper learning
CNN model.

Testing number of layers In the first approach we planned to experi-
ment, we started off simplifying model with 1 convolution, 1 max pool, 1
dense and 1 output layer with binary classes. Then, another experiment
would be increased layers in convolution which results in 2 convolutions, 2
max pools, 1 dense and 1 output. These both experiments and the upcoming
experiments also included Gender label. The gender label was added after
convolution and into the fully-connected layers. The parameters that we used
for both experiments are as follow:

• Number of Epochs: 150

• Image size: 256x128

• Image Channel: 1

• Learning rate: 0.0000005

• Dropout: 0.3

• Optimizer: Stochastic Gradient Descent

• Loss function: Cross Entropy

• Train/Test split: 70/30 ratio

After running both experiments, we found out from the table 1 that both
experiments ran poorly. Adding one more layer into convolution did not seem
to improve the model. The table below compares the confusion matrices of
both experiments. The first table shows an experiment with 1 convolution, 1
max pool and the second one shows an experiment with 2 convolutions and
2 max pools.

We can see here that in both experiments only a few people were identified
as being depressed and the F1 score could not achieve beyond 0.2. Thus,
adding more layers did not seem to improve the model.
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Actual—Prediction Depressed Non-depressed
Depressed 27 160

Non-depressed 66 534

F1 score: 0.19285714285714287

Actual—Prediction Depressed Non-depressed
Depressed 17 170

Non-depressed 21 579

F1 score: 0.15111111111111114

Table 1: Confusion Matrix from testing layers

Testing Kernel Sizes The next step we took to improve our model was
to try to find a kernel size that would work well for DAIC-WOZ data. The
kernel size was important for finding features inside the image spectrograms.
If the kernel size was too big, the features would become less distinct, but if
the kernel size was too small, it would lose the bigger picture of the important
features. Thus, to find the features in the image spectrograms, we planned
out multiple experiments with varying kernel sizes. The overall structure of
our model in those experiments was 2 convolutions, 2 max pools, 1 dense
and 1 output. The list below contains the parameters and kernel sizes we
adjusted to run those experiments.

• Number of Epochs: 100

• Image size: 256x128

• Image Channel: 1

• Learning rate: 0.0000005

• Dropout: 0.3

• Optimizer: Stochastic Gradient Descent

• Loss function: Cross Entropy

• Train/Test split: 70/30 ratio

• Convolution kernel size: 3x3 to 10x10

• Max pool kernel size: 3x3 to 6x6
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One set of experiments included testing with varying convolution kernel
sizes from 3x3 to 10x10 with one specific max pool sizes. Since we were
going to test 4 max pool sizes up to 6, we had total of 32 experiments
to find the kernel sizes. After testing all those 32 experiments, the results
were not too impressive but not all of those experiments were performing as
poorly as before. We picked out the best performing model from each set of
experiments. The results are as follow.

Figure 80: The confusion matrix data for four best performing experiments

The two highlighted runs had the best F1 scores out of all our experiments.
The results were still not impressive but we have seen some improvements.
The F1 scores exceeded 0.2 and became almost close to 0.4. After all, we
had not yet seen a single experiment that gave us F1 score which exceeds
0.4. To find out what had happened during the experiment, we visualized
the best performing experiment which was with 7x7 convolution kernel size
and 5x5 max pool kernel size.
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(a) F1-score against epochs
(b) True Positive/True Negative
against epochs

(c) Accuracy against epochs (d) Loss against epochs

Figure 81: Results from running 7x7 convolution and 5x5 max pool

From the figure 81, we can see that F1 score did not exceed 0.4 but the
pattern shows that F1 score becomes more stable towards more epochs. The
True Positive/True Negative plot does not show that the model was learning,
as ideally, the true positive curve should rise and the true negative curve
should drop. Accuracy seemed to rise eventually with more epochs. Train
loss curve eventually dropped but the test loss curve was fluctuating and
could not go down and converge towards train loss.

CNN & openSMILE Another approach we proposed earlier was to com-
bine the convoluted feature set with other distinctive feature sets such as
openSMILE. Continuing with the CNN alone was unpredictable at this point,
since we had other parameters such as learning rates and decays to test, and
the number of experiments we needed to test was exponentially larger if CNN
alone would not predict well after those experiments. Thus, we decided to
see how much F1 and Accuracy we could get by combining convoluted and
openSMILE feature sets. We used the same structure and parameters from
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Model Epochs Accuracy F1
CNN+openSMILE25 100 0.6454 0.4324
CNN+openSMILE176 150 0.7455 0.0094

Table 2: Results from Running CNN and openSMILE

the previous runs.

• Number of Epochs: 100, 150

• Image size: 256x128

• Image Channel: 1

• Learning rate: 0.0000005

• Dropout: 0.3

• Optimizer: Stochastic Gradient Descent

• Loss function: Cross Entropy

• Train/Test split: 70/30 ratio

• Convolution kernel size: 3x3 to 10x10

• Max pool kernel size: 3x3 to 6x6

Table 2 represents the two trial experiments we tested with CNN and
openSMILE together. CNN with openSMILE did not seem to be performing
bad on 25 features of openSMILE, with an F1 score of 0.43, higher than
those we got from previous runs. Another experiment with 176 openSMILE
features showed us a better accuracy of 74%, but had a mediocre F1 score
of 0.0094. From this experiment, we could adjust our feed forward network
and other parameters like optimizer for our final term.
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openSMILE & Neural Net For the next step, we adjusted the layers of
feed forward network. The input data was 176 openSMILE features, from
the entire DAIC-WOZ data set, using both up-sampling and down-sampling.
Up-sampling was usable in this case, due to each experiment only running
for a few hours. At the same time, while we were planning the experiments,
we also tried to determine if different learning rates would give better results.
The following list include the layers and parameters we adjusted.

• Number of Epochs: 50

• Input Layer: 176

• Dense(Hidden) Layer 1: 256

• Dense(Hidden) Layer 2: 128

• Output Layer: 2

• Optimizer: Adam

• Decay Rate: 0.8

• Dropout: 0.3

• Optimizer: Stochastic Gradient Descent

• Loss function: Cross Entropy

• Train/Test split: 70/30 ratio

• Convolution kernel size: 3x3 to 10x10

• Max pool kernel size: 3x3 to 6x6

Optimizing our feed forward network gave us a few good results as shown in
table 3. Most of them could achieve above an 0.6 F1 score, but their accuracy
of below 0.5 left much to be desired. We tested these experiments using the
same decay rate of 0.8. openSMILE with down-sampling and learning rate of
1e-5 already gives us a good result. This model would be used as a base model
for further testing on CNN and openSMILE176 combined experiments.
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Model Sampling Learning Rate Accuracy F1
openSMILE176 Down 1e-5 0.6512 0.6514
openSMILE176 Down 1e-6 0.6112 0.5945

openSMILE176 Down 1e-7 0.5008 0.5228

openSMILE176 Down 1e-8 0.4833 0.6094

openSMILE176 Up 1e-5 0.5000 0.0033

openSMILE176 Up 1e-6 0.5000 0.6654

openSMILE176 Up 1e-7 0.4989 0.6640

openSMILE176 Up 1e-8 0.5003 0.6667

Table 3: Results from testing openSMILE 176 features with different learning
rates

Model Sampling Learning Rate Accuracy F1
openSMILE176 Down 1e-5 0.6572 0.6514

CNN+openSMILE176 Down 1e-5 0.6664 0.6678

Table 4: Comparison with and without CNN

CNN & openSMILE with Adjusted Layers After optimizing our feed
forward network, we tested CNN and openSMILE combined models using
the layers and parameters from the optimized feed forward network, as we
wanted to figure out which part of the CNN, either convolutional part, or feed
forward network part, was performing worse. Table 4 shows the comparison
between an experiment with only the openSMILE feature set, and another
with both the CNN and openSMILE feature sets combined. The results
indicate that optimizing the feed forward network improved our combined
model even more than using the openSMILE feature set alone.

Testing Decay Rates It was also essential to test decay rates, after fig-
uring out the proper learning rates for the model. Since decay rate is a
multiplicative factor applied to learning rates at each epoch, higher decay
rates would slowly reduce the learning rate. Table 5 shows how different
decay rates affected our model. By comparing these decay rates, the results
did not show any significant improvement.
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Model Sampling Learning Rate Decay Accuracy F1
CNN+openSMILE176 Down 1e-5 0.6 0.6513 0.6499
CNN+openSMILE176 Down 1e-5 0.7 0.6519 0.6471
CNN+openSMILE176 Down 1e-5 0.8 0.6664 0.6678
CNN+openSMILE176 Down 1e-5 0.9 0.6488 0.6209

Table 5: Comparison of Different Decay Rates

After all of these experiments, we saw a lot of improvements in accuracy
and F1 score. We were able to achieve an accuracy and F1 score of 0.65
above. This can be seen in Figure 82, which shows that accuracy curve
and F1 score curve eventually rose. Train loss and test loss also converged
eventually. The amounts of True Positive went up and True Negative went
down till they converge. These plots indicate that our model was learning
and predicting well, but it was still far from perfect. Moreover, since we had
worked with our own generated folds for experiments, we had yet to see how
our model would perform on official DAIC-WOZ folds.
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(a) F1-score against epochs
(b) True Positive/True Negative
against epochs

(c) Accuracy against epochs (d) Loss against epochs

Figure 82: Best Results from running CNN with openSMILE176

CNN & openSMILE with Adjusted Parameters and DAIC-WOZ
Official Splits Since we had been testing on our own random folds with
70:30 splits, our results were not directly comparable with other researches.
DAIC-WOZ data set had its own official train and test split. Thus, we tested
our adjusted parameters again with the official train and test split. The table
6 shows the results from testing with DAIC-WOZ official splits. As we can
see, the models did not perform as good as they did on random folds. The
highest F1 score we could achieve was 0.5506 with respective accuracy of
0.5811. From the research by Chen et al. (Ma et al., 2016), DepAudioNet
could achieve 0.52 F1 score. One reason why our models did not perform
well on official splits was that, the official splits is grouped by participants
and not by audio clips. Thus, this created a different split ratio when we
re-grouped the official splits by audio clip.
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Model Sampling Learning Rate Decay Accuracy F1
CNN+openSMILE176 Down 1e-5 0.2 0.5488 0.5147
CNN+openSMILE176 Down 1e-5 0.5 0.5149 0.4841
CNN+openSMILE176 Down 1e-5 0.8 0.5041 0.4647
CNN+openSMILE176 Down 1e-6 0.2 0.5811 0.5506
CNN+openSMILE176 Down 1e-6 0.5 0.5232 0.5232
CNN+openSMILE176 Down 1e-6 0.8 0.4909 0.5028

DepAudioNet 0.52

Table 6: Results from testing with DAIC-WOZ official splits

5.2.3 DAIC-WOZ: Sequential Model

Experiments were run on a model made using PyTorch as described in
Sections 4.2.2 and 4.2.3. Batch size and output dimension were 1, while the
optimizer type, learning rate, number of hidden nodes, number of layers, and
dropout rate differed between experiments.

We first compared optimizer performance. We tried AdaDelta, RMSProp,
and Adam with a learning rate of 1e-5, 128 hidden nodes, 1 layer, and no
dropout. With these settings, we found that Adam performed the best, which
was expected (see Figure 83). RMSProp performed slightly worse, however
was able to perform better with a very small learning rate and a small number
of hidden nodes. This will be discussed later. The model using Ada failed
to learn anything with these hyperparamters and classified every example as
non-depressed. We continued to use Adam for the majority of experiments.
Our next experiment was with learning rate. We found that a value of 1e-5
was the most effective given the assumed 128 nodes and 1 layer.
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(a) Adam model (b) Adam model

(c) RMSProp model (d) RMSProp model

(e) Metrics for each model. Actual TP/TN is 437/1632

Figure 83: A comparison of Adam vs RMSProp with a learning rate of 1e-5,
128 nodes, and 1 layer
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Random resampling of just the training set was introduced next. Because
of the complexity of the input, random sampling made more sense than using
SMOTE. As each input was a variable-length sequence of lists, SMOTE was
more difficult to implement. Continuing to use Adam with a learning rate
of 1e-5, we ran a set of experiments on different combinations of {128, 256}
hidden nodes, {0, 0.2, 0.4} dropout, and {1, 2, 3} layers. These models
quickly showed training and testing loss diverging and a very high variance
in accuracy and F1 between epochs. Overfitting increased with an increase
in hidden nodes and layers. Higher dropout values appeared to hinder model
learning and, contrary to expectations, promote overfitting. This may be
explained by the relatively small data set and small majority class within
(21% of the data set). Losing any of the tiny amount information predicting
true positives could have been harmful to the model. Noticing the overfitting
prompted us to experiment next on the number of hidden nodes.

Using Adam with a learning rate of 1e-5 and 1 layer, we tested {10, 30,
50, 75, 100} hidden nodes. The results of these trials are shown in Figure
84. As the number of nodes increased, we saw less divergence in train vs test
loss and accuracy. There was also more variance in the curves. Accuracy
increased significantly, from roughly 0.5 with 10 nodes to around 0.65 with
100 nodes. Loss also improved. However, as the nodes increased the model
became more overfit. With 10 nodes, the true positives were closest to the
actual, but false positives were also the highest.
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(a) 10 hidden nodes (b) 10 hidden nodes

(c) 50 hidden nodes (d) 50 hidden nodes

(e) 100 hidden nodes (f) 100 hidden nodes
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Figure 84: A comparison of different hidden node amounts. Actual TP/TN
is 437/1631.

The next set of experiments was done to determine if it was more effective
to train with both the test and train sets upsampled, instead of just the
training set. We also simultaneously ran experiments using the os25 features
and the os176 features, testing upsampling test on both data sets. We found
that the models performed far better when both test and training sets were
upsampled as shown in Figure 85. Both models were run using Adam with
a 1e-5 learning rate, 128 nodes and 1 layer. Although the models both suffer
from diverging loss and decreasing F1 score, they remain comparable. In Fig-
ures 85c and 85d, the metrics point to worse than random with an accuracy
of 0.45 and an F1 of 0.32. The untouched test set had 437 questions in the
minority class (depressed) and 1631 in the majority. Random resampling of
the minority class up to 1631 examples yielded better results. As seen in 85a
and 85b, the overall fitness is better with an accuracy of 0.52 and an F1 of
0.59. However, the test accuracy shows a decreasing trend, while the model
with the untouched test set shows a fairly constant test accuracy.

Regarding the features, results were unclear at the beginning. We have
no direct comparisons between the os25 and os176 features, although we
witnessed a general trend towards better results and less overfitting in the
confusion matrices of models using the os176 features. We switched to using
those for all remaining experiments.
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(a) Both upsampled (b) Both upsampled

(c) Only test upsampled (d) Only test upsampled

Figure 85: A comparison of upsampling both train and test sets vs. just the
test set

After deciding to continue training models with the os176 feature set, we
ran a range of experiments with different combinations of learning rate and
hidden nodes as shown in Figure 86. All experiments used the Adam op-
timizer. These showed better results with smaller learning rates. Nodes
between 200-250 appeared to perform the best, although the same trends as
seen in the node size experiment were present. More nodes led to higher true
and false positives.

We then decided to test another hypothesis about the features. All previ-
ous experiments has been using 3 second audio clips that overlapped by 75%.
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Figure 86: Hyperparameters and metrics for models trained on os176 features
using Adam. Actual TP/TN is 1631/1631

Our hypothesis was that using the 3 second clips with no overlap could com-
bat the overfitting that had been pervasive throughout our models. Unfortu-
nately, the metrics showed our models performing slightly worse, averaging
lower accuracy and F1. Both of the models in Figure 87 used 250 nodes and
4 layers with a learning rate of 5e-7. One thing to note in the model trained
with the 0 overlap features: Although F1 and recall trend upward and have
not settled, they are still far below that of the model trained on overlapping
features and probably would not have reached such high values regardless of
extra training.
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(a) No overlap (b) No overlap

(c) 0.75 overlap (d) 0.75 overlap

(e)

Figure 87: A comparison of using 3 second Sub-Clips with no overlap and
75% overlap between clips
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In order to generate results comparable with other studies, we switched
over to using the official data splits from DAIC-WOZ. Because we were not
using a three-way split, the ’validation’ set was not used. This resulted in
a training set around 60% instead of the previous 70%. All the data in
the ’validation’ set was not used, reducing the overall total amount of data.
Random resampling was still used to upsample both the train and test sets.

At this point, we had trained most recent models with around 200 hidden
nodes and a learning rate around 1e-6, and between 1 and 4 layers. Given
our past experimentation, these appeared to be close to the optimal hyper-
parameters. We trained models with these settings on the previously defined
split and got a mix of complete overfitting (all examples classified in ma-
jority class) and other odd results that did not show learning. Given that
the size of the data set was significantly smaller, we hypothesized that the
hyperparamters and other settings were no longer optimal.

In response, we decided to test models with a smaller node count and learn-
ing rate. With these hyperparameters, using the Adam optimizer tended to
show less learning, and could even fail to predict anything in the target
class. We had previously noticed that RMSProp performance would slightly
increase with lower node counts and learning rates, so we switched to RM-
SProp for these experiments. Two experiments were run with 75 hidden
nodes, 1 layer and a learning rate of 1e-7, with dropout rates of 0 and 0.5.
Both models showed diverging train and test losses. Although F1 was trend-
ing upwards, precision was constant and only recall was increasing. This is
indicative of overfitting as well, as a higher recall can mean more false pos-
itives. The same model with 75 hidden nodes and 1 layer was run with a
learning rate of 1e-8 and showed very promising metrics. This was one of
the first experiments in which we were able to see both train and test loss
decrease. It is not quite optimal, however, as the loss curves appear rela-
tively linear with different slopes. Although test loss decreases, it will never
converge with the train loss as the difference increases over time. Because
train and test accuracy, as well as both precision and recall, increased over
time and had not yet stabilized, we continued to train the model. Originally
being trained for only 200 epochs, we trained for an additional 400 epochs.
This model was able to achieve an accuracy of 0.51 with an F1 score of 0.56,
recall of 0.63, and precision of 0.51.
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The best sequence models come from a few different areas of experimen-
tation. Our best model trained on the DAIC-WOZ split, although lacking
in numbers compared to some others below, is the best that shows test set
loss decreasing over time. Although all others show a divergence of train
and test loss over time, the models themselves are fit quite well to the data
and can provide classification significantly better than random. All following
models (excluding baselines) were trained on the os176 openSMILE feature
set of the three second 75% overlap clips of DAIC-WOZ audio, using random
resampling to up-sample both train and test sets as described above. In the
“Split” column of Figure 88, “Internal” refers to the sequential 70/30 split
and “ DAIC” refers to the official DAIC-WOZ split, both as described earlier
in this section.

5.3 Topological Data Analysis

Data Set Model DR Features F1 Accuracy AUC
ULBC, First 5 XG3 Chi2 100 0.59 0.60 0.59
SLBC, First 5 NB PCA 13 0.62 0.54 0.55

ULBC, Random 5 XG2 PCA 10 0.59 0.57 0.55
SLBC, Random 5 NB PCA 10 0.60 0.56 0.54
ULBC, First Clip XG4 Chi2 100 0.55 0.55 0.55
SLBC, First Clip NB kPCA 11 0.55 0.53 0.54

OS176 + ULBC First 5 XG3 Chi2 80 0.70 0.69 0.72
OS176 + SLBC First 5 XG3 Chi2 90 0.71 0.71 0.75

OS176 XG4 Chi2 90 0.71 0.70 0.75

Table 7: Results From Best Experiments. A PHQ-8 Score cutoff of 10 was
used for all tests. ULBC stands for Upper Level Betti Curve, SLBC stands
for Lower Level Betti Curve, OS Stands for openSMILE, and DR stands for
Dimensionality Reduction.
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Figure 88: Our best LSTM-based sequence models over the course of this
project, compared to baselines
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For our data sets, we only used 5 second clips with no overlap. Across
the board, we found the best results with Betti curves when using Naive
Bayes or XGBoost for models. These models consistently performed better
than random for the majority of data. Our best results for Betti curves
on their own were found when using the first 5 clips from each participant,
versus random 5 or the first clip from each question. When using the first
clip from each question, our best results actually may be outliers, with most
results lying close to random or worse. This may be due to the fact that the
first couple clips from each participants are generally answering very similar
questions from the interviewer, which may prompt similar responses across
participants. Sub level Betti curves provided better results than upper level
Betti curves in some scenarios, usually with a Naive Bayes model. When
combined with the openSMILE 176 feature set, much better results were
found with both upper level and sub level Betti curves. It is somewhat
doubtful that the Betti curve features are actually being used in these results
however, as PCA was applied and the openSMILE features on their own
performed extremely similarly.

5.4 Generative Adversarial Networks

5.4.1 ACE Experiments

These experiments were run after Texygen was first set up on the ACE
cluster. These are the following parameters for these experiments:

Parameter Value
Total Epochs 50

Pre-Training Epochs 20
Adversarial Training Epochs 30

Input Texts 1074

Though RankGAN had a higher average BLEU score, all of the BLEU
scores from this experiment were exceptionally low. We hypothesise that
this was due to the inconsistent nature of text data, so the GANs were not
able to find consistent patterns from the texts to recreate. The number of
epochs was also reduced, from the 80 pre-training and 100 adversarial training
epochs, used in previous studies, to only 20 pre-training and 30 adversarial
training epochs, due to the limitations of the ACE cluster.
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Figure 89: Comparison of BLEU-4 Scores: ACE Experiments

GAN Method Average BLEU-4 Score
MLE 0.001950947597504571

SeqGAN 0.0015532267864985627
RankGAN 0.0043830571838256085
LeakGAN 0.002125034325184055
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Figure 90: NLL-test Loss Over 50 Epochs

The NLL-test loss in Figure 90 shows that it did not converge, nor did it
go notably low for LeakGAN or RankGAN. Once again, this was expected,
due to the low number of epochs run from this current experiment. Despite
the very low results compared to the studies that implemented these GAN
methods, we can consider this phase of experiments a success, due to showing
that these GAN methods can successfully be run on our SMS message data.

5.4.2 Turing Experiments

The second round of experiments performed on the Turing cluster was
more to prove the functionality of the improved framework than to test the
viability of individual text generation methods. The following parameters
were used for the experiments on Turing:

Parameter Value
Total Epochs 60

Pre-Training Epochs 30
Adversarial Training Epochs 30

Input Texts 2000
Each of these SMS texts was from a single participant, and no word

frequency filtering or filtering by length was done. A distribution of BLEU
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scores among Sequence GAN methods run on Turing can be seen in Figure
92:

Figure 91: Comparison of BLEU-4 Scores: Turing Experiments

GAN Method Average BLEU-4 Score
MLE 4.126752767215812e-156

SeqGAN 0.010481158991399186
RankGAN 0.012939276614873981
LeakGAN 0.09086621413976959

These experiments all finished within twelve hours, despite having more
epochs, due to the increased resources of the Turing cluster. As a result of
the increased number of epochs, methods had average BLEU-4 scores a full
exponent greater than the previous experiments. LeakGAN’s average BLEU
score are considerably worse, due to LeakGAN having a bug and crashing
after fifteen epochs. Unusually, MLE performed considerably worse than the
previous tests, presumably due to running only the thirty pre-training epochs
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instead of the full sixty.

Figure 92: Comparison of NLL-Test Scores: Turing Experiments

Figure 92 shows the NLL-test loss scores over all sixty epochs of this round
of experiments. MLE and LeakGAN NLL-test loss scores are not displayed
here due to output issues with both methods. As seen in the previous round
of experiments, NLL-test loss fell rapidly during pre-training, and slowly rose
back up

6 Conclusion

Overall, we have been able to reliably demonstrate the ability of our im-
plemented machine learning and deep learning methods to detect depression
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and anxiety using voice audio and accompanying transcripts. This technol-
ogy could open new opportunities for how patients of depression or anxiety
are treated. It could also help many who lack access to mental health re-
sources or who are undiagnosed find the help they need. Reliable detection
of depression can also be used in sentiment analysis. The ethical concerns
of this are significant and the technology can easily be abused. All neces-
sary precautions should be taken to ensure that private or government use of
this type of depression detection is monitored and ethical in order to avoid
another study like (Kramer et al., 2014), in which almost 700,000 Facebook
users were emotionally manipulated without consent.

In Machine Learning scope of research, we have seen that SCB has im-
proved our prediction results. Using regression hasn’t altered our results
significantly. We were also able to perform slightly better when detecting
anxiety through GAD-7 labels. In addition, tree based ensemble methods
like XGB and ADA have performed better overall. Future improvements can
be made by adding feature selection methods like PCA, Chi2, etc. SVMs
could also be used with Gaussian kernel, polynomial kernel, and Sigmoid
kernels to improve predictions (Valstar et al., 2016). Using CNN for detect-
ing depression has proven to be effective as we were able to achieve an F1
score close to DepAudioNet’s. Some of the models we tested on random folds
were able to perform better. Another step to continue improving this model
would be adjusting our input to be grouped by participants instead of audio
clips. Using LSTM-based sequence models has also proven effective, reaching
an F1 score of as high as 0.68. Different data processing can be implemented
to improve results further, but training a sequence model with both audio
and the respective transcript is the most promising path forward. A larger
data set would also be impactful. Using Betti Curves with topological data
analysis has been shown to provide better than random results. Sequence
GAN methods have been fully set up to experiment with artificial participant
generation in future studies.

6.1 Machine Learning

We started out this research by experimenting with Machine Learning
methods on DAIC-WOZ data set. Initial phase of experimentation didn’t
include grid search, up-sampling, and ADA method. In addition, we were
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using only Praat features due to computational restrictions - research ex-
periments were mainly conducted locally at this point. No GAD-7 based
experiments were also done during this phase. SCB and Regression weren’t
integrated into our Machine Learning pipeline as well. As a result, our ex-
periments weren’t fruitful and we obtained a highest F1 score of 0.63 and
scores ranged between 0.48 - 0.63.

We were able to move our experiments to ACE cluster. This enabled us
to compute more experiments and do computationally expensive tests. We
started using openSMILE features, added regression approach to all methods
we had been using, started sub-clip boosting, expanded dataset. These led to
better overall results. Specifically, up-sampling, SCB, openSMILE features
all improved our model’s performance significantly. We also found our overall
best results when using EMU dataset with GAD-7 labels: highest result was
a test run with an XGB method using a cutoff of 5 which resulted in a F1
score of 0.828. We also outperformed previous MQP’s EMU audio feature test
results; they produced a highest F1 score of 0.7, while we were able to reach
up to a F1 score of 0.813. Our pipeline didn’t perform well with DAIC-WOZ
when using official train and test split. The highest F1 score for this section
of experiments was 0.513. This could be to not using other feature selection
techniques: we used only one type of feature selection approach outlined in
section 4.1.2. In addition, we also weren’t able to use SVM unless we set
the kernel to linear. Other related works have generated higher results using
SVMs with other kernels (Valstar et al., 2016).

6.2 Deep Learning

Since we already have the EMU and Moodable data sets available from
previous MQP, we used it to implement our first deep learning pipeline while
we figured out the data-preprocessing for DAIC-WOZ data set. Running
first on EMU and Moodable data sets was not able to give us good results
but it gave us a foundation of knowledge in deep learning aspect of detecting
depression. When all the data were prepared ready for DAIC-WOZ data set,
we started our process of finding an efficient model which will help predict
depression.
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Neural Networks We started off testing with a base model and changed
one step at a time to see any noticeable difference. Through testing different
layers, kernel sizes, combination of feature sets, learning rates and decays,
our final model was able to achieve a F1 score of above 0.6678 with accuracy
of 0.6664 on random folds. Then, we tested this model with official folds
to compare against DepAudioNet (Ma et al., 2016). With Official folds, our
model barely performs as good as DepAudioNet since our model achieved
a F1 score of 0.5506 whereas the best result of DepAudioNet is 0.52. Test-
ing with random folds and testing with official folds give us a significantly
different F1 scores while the former performs better than the latter. Our
conclusion on this difference of F1 scores is that we were using the splits
which were grouped by audio clips instead of participants although a single
participant was not cross-included in both of train and test set. The official
splits were grouped by participants and when we re-grouped them into audio
clips, we have different ratio splits.

Since the features extracted from audio play a huge part in finding an
efficient model, combining convoluted feature sets with other feature sets
such as PRAAT or Betti curves could produce potential results. Another
approach to improve our model would be using multimodal approach. In
this approach, not only audio data but also other available data such as
text messages and transcripts should be considered for feeding into each sub-
network (which could a be CNN or LSTM).

Sequence Model Using LSTM-based neural networks has proved an effec-
tive method for categorical depression prediction using voice samples alone.
Our best model was able to show an F1 of 0.68, precision of 0.55, recall of
0.91, and accuracy of 0.58. As compared to the best baseline (Al Hanai et al.,
2018), we have +0.05 F1, -0.16 precision, and +0.35 recall. However, there is
still room for improvement. All of our models suffered from overfitting. This
is most likely because of the size of the data set. Sequence models typically
perform better when they are fed a large and diverse data set, and DAIC-
WOZ may simply not be expansive enough. Other studies (Al Hanai et al.,
2018) have addressed this issue by training two parallel sequence models, one
trained on audio data and the other on the transcripts of the same audio.
Combining their output has shown to significantly increase accuracy and F1
score.
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Using larger data set opens up some more possibilities for data prepara-
tion. At one point, we removed all inputs from the LSTM training data that
had a size of 1, i.e. removed all inputs where the question response was only
one clip long. This reduced the data set by too much and exasperated the
issues we experienced that were caused by small data set size. This technique
could be applied to a far larger data set for more accurate results.

Additionally, making the model bidirectional allows it to consider relevant
’memory’ generated from both past and future events in the sequence. This
additional context could reduce the number of false positives. The benefits
of this will be compounded when using a larger data set. Another interesting
possibility is using raw spectrogram data, instead of features, as input for the
LSTM model. Slices of a Sub-Clip’s spectrogram can be treated sequentially.

Compared to other attempts to use sequence modelling with DAIC-WOZ
audio, our models tend to perform as well, if not better in many cases
(Al Hanai et al., 2018). We believe that combining our current model with
a model trained on transcript data would significantly improve performance,
possibly exceeding an F1 score of 0.8. As shown in Al Hanai et al. (2018),
their multimodal model demonstrates an increase of +0.14 in F1 and +0.27
in recall over their model trained on just audio.

Another technique to implement could be the SMOTE algorithm. Ran-
dom resampling had been used to upsample the minority class for many of
the experiments. But it can still promote overfitting with it’s inability to
produce new data. Random resampling could still be used to generate more
instances of the depressed class, but inside each resampled input sequence,
SMOTE can be applied to replace the sequences of features with new gener-
ated arrays. Synthetically expanding the amount of unique data may lead to
improvements on many of the issues outlined with our sequence modelling.

6.3 Topological Data Analysis

Our main goal with using Topological Data Analysis was to determine
if Betti curves generated from sound waves are viable in machine learning.
Betti curves, as stated in Section 2.10.5, are a general method for interpreting
persistence barcodes as data. However, our construction of a filtered complex
was unique (Section 4.5) and was only previously used in a study which used
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Betti curve to analyze heart beats to categorize heart arrhythmias (Dindin
et al., 2019). From our results, we can see that Betti curves were indeed
able to provide useful information, such that our models produced better
than random results. When combined with a known good form of feature
extraction, openSMILE, even better results were found. However, it seems
that the openSMILE features may be responsible for the majority of these
good results. Regardless, our goal was to determine if Betti curves were
viable at all as a form of feature extraction on sound waves, and we conclude
that they are.

Several things can easily be done for future work on this topic. For one,
varying clip lengths and looking at overlapping clips would be a good idea,
as this could determine what length of clips work best with Betti curves.
Overlap on waves was used in a previous study using Betti curves as well
(Dindin et al., 2019), so better results may be found using this method. Using
a larger data set may provide better results as well, as we used a truncated
data set in all of our testing due to the limitations of our cluster computing.
Using Betti curves as a feature in deep learning would be an interesting
avenue to approach as well, as previous studies used this approach (Dindin
et al., 2019).

6.4 Generative Adversarial Networks

The goal of this branch of the project was more to develop an environment for
future studies than to show the feasibility of any particular text generation
method. One clear conclusion that can be drawn, however, is that the data
set we have been using for testing text generation is very inconsistent and dif-
ficult to train a sequence GAN with. Other studies that used sequence GAN
methods filtered their data sets to texts that are all around the same length
(Nie et al., 2019). This allows the GAN to learn a smaller number of extra
features and generate more consistent texts. As a result, we suspect that
text data sets of a more consistent length, such as Twitter messages, would
work considerably better for generating consistent new data with sequence
GANs.

Despite our best efforts, there were some definite limitations of our ex-
periments with sequence GANs. LeakGAN has been problematic since the
very beginning, and despite multiple attempts to debug it, we could not get
it to run more than 15 epochs, so we do not have complete data on it.

120



The framework we have built for testing sequence GAN methods will be
useful for future studies to test the feasibility of artificial participant gener-
ation. This can be proven by selecting SMS messages from real participants
with similar PHQ-8 scores, and generating an artificial participant with their
data. If the deep learning or machine learning method can correctly classify
the new participant, then the feasibility of artificial participant generation
will have been proven. Furthermore, it would be highly beneficial for future
studies to standardize the output files from each GAN method in Texygen, to
allow for much easier comparing of GAN methods. The output files used for
this round of experiments still required manual reformatting to allow them
to be plotted against each other.

A Tables of Accomplishments

A.1 A Term

Name Accomplishments

Nick

Team Leader
Set up communication logistics
Downloaded/Organized DAIC-WOZ
Wrote initial DAIC-WOZ audio processing code
Depression and machine learning lit review
Wrote report outline
Major report editor

Adam

Team Scribe
Literature review on DAIC-WOZ
DAIC-WOZ Audio Processing: Slicing into questions and X-second segments, organization
DAIC-WOZ Audio Processing Statistics
Mental Health + Patient Health Questionnaire Literature Review
Set up LaTex Document and Bibtex Citations
Minor editing in report
Wrote Sections on DAIC-WOZ, Patient Health Questionnaire,
Depression Statistics, and Data Processing

Myo

Deep Learning specifically CNN, and RNN
Set up clusters and Python environments for team members
Researched suitable Frameworks to build Neural Networks
Built and experiment CNN models using Pytorch and Python
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Name Accomplishments

Joe

Set up Git repository
Researched different types of neural networks to determine best fit for our task
Researched different ways to format audio data to feed into a neural net
Researched how to evaluate deep learning models
Learned how to Jupyter and research cluster
Started to experiment with CNN model, testing different hyperparamters with EMU and DAIC
Learned LaTeX, Python, and PyTorch
Lent lots of assistance to group members with Git issues

Yosias

Made the following modifications to analyzer script with Yared:
including regression,
fixing train/test method,
generating predictions,
worked on script to make it run through different parameters,
worked on getting it to run on the cluster.
Did audio slicing for 3-7 seconds on local machine and for overlap.
Did Praat and openSMILE extraction for 3-7 seconds DIAC-WOZ on local machine
Worked with Yared to modify openSMILE to make it work on cluster.
Worked with Joe to make Praat work on cluster.

Yared

DAIC-WOZ slices organization Appended PHQ-8 Scores
Literature Review on Data Balancing and Evaluation Models
Researched Metrics (Confusion Matrix, F1, precision, recall)
Further processed audio slices for pratt extraction compatibility
Run initial experimental tests in Machine Learning models
Analysis of test results
Wrote XGBoost, Random Forest and Decision Tree and Artificial Neural Networks
Wrote Data Balancing Section
Wrote Evaluation Metrics
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A.2 B Term

Name Accomplishments

Nick

Sequence GAN sub-project
Set up Texygen
Debugged Texygen
Processed Moodable text data
Ran SeqGAN experiments
Wrote code to process experiment results
Major editor for the report
Fixed bibliography errors

Adam

Developed code for generating topological data from sound waves
Created data set of DAIC-WOZ 5 second Betti curves
Performed in-depth research on TDA
Research on PCA and NMF
Wrote sections on dimensionality reduction techniques
Wrote TDA background section
Wrote TDA implementation section
Wrote TDA Analysis
Helped debug LaTex code
Added new DAIC-WOZ boxplots

Myo

Deep Learning specifically CNN, and RNN
Set up clusters and Python environments for team members
Researched suitable Frameworks to build Neural Networks
Built and experiment CNN models using Pytorch and Python
Reduced Training time by image caching
Added Up-sampling on DAIC-WOZ data
Implemented experiments regarding to kernel sizes and layers
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Name Accomplishments

Joe

Created and implemented an LSTM model in PyTorch and experimented heavily on
data sources and formats, hyperparameters, internal settings, sampling techniques
Attempted an LSTM model with spectrogram input
Implemented LSTM model in Keras based on paper, experimented
with our data (mostly learning experience, recorded on weekly slides but no results in paper)
Continued experimentation on CNN with DAIC, including learning rate decay
Researched ways to combine audio and text inputs
Initiated and followed through on managing use and access of
large data sets in Git and on the research cluster
Created starter documents for DL and ML testing workflows and Git usage
Wrote script framework for managing LSTM experiment submission and logging
Started an experiments log with a suite of robust performance analysis tools
Modified Praat feature generation script, wrote wrappers for feature extraction job management
Assisted with Praat section in instruction manual
Lent lots of assistance to group members with Git issues

Yosias

Made the following modifications to analayzer script with Yared:
including regression,
fixing train/test method,
generating predictions,
worked on script to make it run through different parameters,
worked on getting it to run on the cluster.
Did audio slicing for 3-7 seconds on local machine and for overlap.
Did Praat and openSMILE extraction for 3-7 seconds DIAC-WOZ on local machine
Worked with Yared to modify openSMILE to make it work on cluster.
Worked with Joe to make Praat work on cluster.

Yared

Organize Test/Train sets and set
Included Regression Models and added model parameter options
Added prediction outputs for sub-clips
Ran experiments for Classification models over multiple variations
Start setting up Machine Learning pipeline on cluster
Wrote Machine learning results and methods (with Yosias)
Worked with Ermal for incorporating Machine Learning process on cluster
openSMILE feature generation for all sub-clip variations on EMU
Set up instruction manual and organized the outline
Was scribe for the term
Upload all data to a workspace on Ace cluster
Wrote script to determine number of features to use
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A.3 C Term

Name Accomplishments

Nick

Sequence GAN Sub-Project
Debugged Texygen
Modified Texygen with parameter arguments
Got RelGAN working
Modified RelGAN to accept other data sets
Made Texygen job file generator
Made RelGAN job file generator
Ran Texygen and RelGAN experiments
Wrote code to process experiment results
Re-organized report
Edited every section in the report
Wrote all Generative Adversarial Network sections

Adam

Rewrote and expanded all TDA sections
In depth research into topology and persistent homology
216+ unique machine learning experiments with Betti curves
Generated all truncated Betti curve data sets
Generated combined openSMILE/Betti curve data sets
Modified code for running batch machine learning experiments
Wrote code for truncated and combined data set generation
Debugged LaTeX
Added design improvements to report

Myo

Deep Learning specifically CNN, and RNN
Team Leader
Built and experiment CNN models using Pytorch and Python
Developed code for multiple deep learning models, and
combining CNN with openSMILE
Tested various hyperparameters for CNN
Added Upsampling and Downsampling on DAIC-WOZ data
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Name Accomplishments

Joe

Continued expansive experimentation on main LSTM model
Brief experimentation on Keras LSTM model for binary classification
Heavily expanded on logging and performance analysis/visualization tools to include more
automated data collection and higher quality/more flexible visualizations
Significant time and effort debugging PyTorch, issues on Ace cluster
Squashed bugs in the Praat feature generation pipeline
Focused lots of work on the final report
Researched adding CNN layers for feature extraction on top of LSTM
Lent lots of assistance to group members with Git issues
Served as scribe for the term

Yosias

Worked on the Transcript component of DAIC-WOZ
Did pre-processing work on transcripts and set up scripts for it
Worked on modifying text extraction code to function for DAIC-WOZ transcripts
Extracted Textblob and Empath features
Worked on doing tests for transcript and audio features combined
worked on setting up pipeline for transcript +audio

Yared

Continue and finalize regression experiments
Finalize EMU, Moodable and DAIC-WOZ dataset experiments
Incorporate GAD into Machine Learning experiment scope
Tested SCB with audio files
Generate Official DAIC-WOZ folds
Generate in-team DAIC WOZ fold
Research GAD-7 anxiety background and related works
Wrote Machine Learning Methods (section 4.1)
Wrote Machine Learning Results (section 5.1.1, 5.1.2, 5.1.3 and, 5.1.4)
GAD-7 vs PHQ-8 analysis
SCB impact analysis
Code debugging and assisting teammates in using Machine Learning pipeline
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B Table of Authorship

Section Primary Author Primary Editor
Abstract Joe, Nicolas Joe
1: Introduction Nicolas, Adam Joe
1.1: Related Works All Joe
1.2 Our Approach All Joe
2.1: Previous MQPs Yosias
2.2: Depression Statistics Adam, Yared
2.3: Data Sources Adam, Yosias
2.4: Dimensionality Reduction Techniques Adam
2.5: Data Balancing Yared
2.6: Evaluation Metrics Yared Joe, Adam
2.7: Machine Learning Yared, Yosias Yared
2.8: Deep Learning Myo, Joe Joe, Adam
2.9: Machine Learning and Deep Learning Frameworks Myo Joe
2.10: Topological Data Analysis Adam Nicolas
2.11: Generative Adversarial Networks Nicolas Adam
3.1: Text Feature Extraction for Machine Learning Yosias
3.2: Audio Feature Extraction for Machine Learning Yosias
3.3: Topological Data Analysis Adam Prof. Paffenroth
3.4: Generative Adversarial Networks Nicolas Adam
4.1: Machine Learning Yared, Yosias
4.2: Deep Learning Myo, Joe Joe
4.3: Tests Run on Audio Data Yosias
4.4: Tests Run on Transcript Yosias
4.5: Topological Data Analysis Adam Nicolas, Prof. Paffenroth
4.6: Generative Adversarial Networks Nicolas Adam
5.1: Machine Learning Yared, Yosias Yared
5.2: Deep Learning Myo, Joe Joe, Adam
5.3: Topological Data Analysis Adam Prof. Paffenroth
5.4: General Adversarial Networks Nicolas Adam
6: Conclusions Joe
6.1: Machine Learning Yared, Yosias
6.2: Deep Learning Myo, Joe Joe
6.3: Topological Data Analysis Adam Nicolas, Prof. Paffenroth
6.4: General Adversarial Networks Nicolas
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