
Worcester Polytechnic Institute

MIRA
Modular Interchangeable Robotic Arm

Submitted on
April 25, 2018

Submitted by
Chris O’Shea, RBE

Alex Taglieri, RBE/CS
Ben Titus, RBE/ECE

Advised by
Susan Jarvis

Craig Putnam

A major qualifying project report submitted to the faculty of Worcester Polytechnic Institute
in partial fulfillment of the requirements for the Degree of Bachelor of Science
This report represents the work of one or more WPI undergraduate students submitted to
the faculty as evidence of completion of a degree requirement. WPI routinely publishes these
reports on its web site without editorial or peer review

Abstract

Low-cost robotic arms are becoming much more popular in educational settings. The goal of
this project is to create a proof of concept for a modular robotic arm. To accomplish this, we
have modified an existing arm to use our own modular control system, created a removable
joint that can be connected to the end of the arm, and created an end-user interface which
allows visualization of the arms movement in real time. Creating this arm will make robotics
education accessible to a larger number of people, without compromising the potential for
each person to gain a high quality understanding of the way robotic arms behave.

i

Acknowledgments

We would like to thank our project advisors Profs. Putnam and Jarvis for their guidance
and support throughout this year. We would like to thank Kevin Harrington for each of his
important contributions to our project such as hardware and software libraries as well as
guidance with engineering decisions. Additionally, we would like to thank Profs. Bogdanov
and Wyglinski for their help in debugging the CAN bus code. Finally, we would like to thank
Kyle Sposato for his last minute help in implementing multithreading in our Java project.

ii

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Goal Statement . 1

1.3 Objectives . 1

1.4 Constraints . 2

1.5 Summary . 2

2 Background 3

2.1 Introduction . 3

2.2 Examples of Robot Arms . 3

2.2.1 ABB Robotics . 3

2.2.2 Universal Robots . 4

2.2.3 KUKA AG . 4

2.2.4 Small Industrial Robotic Arm Comparison 4

2.3 Modular Arms . 5

2.3.1 igus Robolink . 5

2.3.2 Reconfigurable Modular Manipulator 6

2.3.3 Modular Robotic Arm . 6

2.4 Our Robotic Arm System . 6

2.5 Technology . 6

2.6 Joint Control board . 7

2.6.1 Joint Position Detection . 7

2.6.2 Current Sensing . 8

iii

2.6.3 Off-Board Communication . 10

3 Methodology 12

3.1 System Design . 12

3.2 Fourth Joint and Existing Arm . 13

3.2.1 Fourth Joint Design . 13

3.2.2 Fourth Joint Prototyping . 14

3.2.3 3-D Printing . 16

3.2.4 Motor Selection . 16

3.2.5 Arm Base . 18

3.3 Joint Control Board . 19

3.3.1 Overview of Design . 20

3.3.2 Joint Angle Sensor . 20

3.3.3 Motor Current Sensor . 21

3.3.4 Inter-board Communication . 22

3.3.5 Preliminary Joint Control Board Designs 22

3.3.6 ADC Selection . 25

3.3.7 Preliminary Price Breakdown . 25

3.3.8 Motor Driver . 26

3.3.9 Demultiplexer . 28

3.3.10 INA332 . 29

3.3.11 Hall Effect Encoder . 30

3.3.12 TM4C123GXL Launchpad . 34

3.3.13 Printed Circuit Boards . 35

3.3.14 Joint Control Board Code . 37

iv

3.4 CAN Bus . 38

3.4.1 Determining Joint Placement with Message ID 38

3.4.2 Implementing a Simple CAN Bus . 39

3.4.3 CAN Termination . 41

3.4.4 Position Updates . 42

3.5 Base Module . 44

3.5.1 Overview of Base Module Design . 44

3.5.2 Base Module Code . 44

3.5.3 Power Rails . 45

3.6 Arm Structure . 46

3.7 Software Application . 46

3.7.1 Maven . 46

3.7.2 Program flow . 47

3.7.3 Serial Communication . 48

3.7.4 Mutltithreading . 48

3.7.5 Saving of Configuration . 49

4 Testing 51

4.1 Acceptance Criteria . 51

4.1.1 Joint Board . 51

4.1.2 Modify RBE3001 Arm . 51

4.1.3 End Effector . 51

4.1.4 Base . 52

4.1.5 Software Application . 52

4.1.6 Code Library . 52

v

4.2 Motor Driver . 53

5 Conclusion 54

5.1 Future Work . 54

Appendix A Early Project Iteration A2

A.1 Introduction . A2

A.2 Modular Robotic Arm . A2

A.2.1 Our Robotic Arm System . A3

A.2.2 Control board . A3

A.2.2.1 Joint Position Detection . A3

A.2.2.2 Current Sensing . A4

A.2.2.3 Off-Board Communication A5

A.3 Description of Work . A7

A.4 Methodology . A8

A.4.1 Kit Components . A8

A.4.2 Connectors . A8

A.4.2.1 Connector Position on Joints A8

A.4.2.2 Securing the Connection . A9

A.4.2.3 Keying the Connector . A9

A.4.2.4 Passing Signals . A10

A.4.3 Sticks . A11

A.4.4 Motor Selection . A13

A.4.5 Control Board Part selection . A14

A.4.5.1 Joint Angle Sensor . A14

A.4.5.2 Motor Current Sensor . A14

vi

A.4.5.3 Off-board Communication A15

A.4.6 Arm Structure . A15

A.4.7 Arm Base . A16

A.4.8 End-of-Arm Tooling . A16

A.5 Constraints . A16

A.6 Project Goals . A16

A.6.1 Sticks . A16

A.6.2 Joints . A16

A.6.3 End Effector . A17

A.6.4 Base . A17

A.6.5 Software Application . A18

A.6.6 Code Library . A18

A.7 Kit Components . A18

Appendix B Solidworks Drawings B1

Appendix C Motor Driver C1

Appendix D Motor Driver with Current Sensor D1

Appendix E Load Cell Amplifier E1

Appendix F CAN Transceiver F1

Appendix G Joint Board Boosterpack G1

Appendix H TM4C123GH6PM Dev Board H1

Appendix I Code Repositories I1

vii

List of Figures

1 ABB IRB 120 arm [1] . 4

2 Block diagram of the entire modular arm system 12

3 Joint 4 CAD Model . 13

4 Cutout View of Bearing Mount . 13

5 Side View of Final Removable Joint . 14

6 Current Arm End Effector Mount . 15

7 Joint 4 on End Effector . 15

8 CAD Model of 3D-printable Pulley . 16

9 HV5923MG Servo Motor . 17

10 TM4C123G to arm mount . 18

11 Mounting holes on arm and mounted TM4C123G 19

12 Block diagram of the joint control board . 20

13 First draft of the complete joint board block diagram 23

14 Iteration of preliminary joint board block diagram 24

15 Mostly complete preliminary joint board block diagram 24

16 INA332 Test Circuit . 29

17 First Iteration of Encoder Test Rig . 30

18 Second Iteration of Encoder Test Rig, Side View 31

19 Second Iteration of Encoder Test Rig, Magnet View 31

20 Behavior of the encoder value with alpha of 0.5 32

21 Behavior of the encoder value with alpha of 0.6 32

22 Behavior of the encoder value with alpha of 0.7 33

23 Behavior of the encoder value with alpha of 0.8 33

viii

24 Behavior of the encoder value with alpha of 0.9 34

25 Assembled PCBs of each major subsystem including motor driver with current
sensor (right), CAN transceiver (bottom), load cell amplifier (left), and joint
control board Boosterpack (top) . 36

26 Joint control board Boosterpack on the TM4C123GXL Launchpad 36

27 Joint control board code flowchart . 37

28 8-channel DIP Switch . 38

29 CAN bus as viewed in the logic analyzer software 40

30 CAN TXD (channel 0) and RXD (channel 2) in the logic analyzer software . 41

31 CAN bus auto-terminate circuit . 42

32 Position update from the base module . 43

33 Position update from the base module with response from a joint 43

34 Block diagram of the base module . 44

35 Base module code flowchart . 45

36 Modular power rail for motor power . 45

37 UML Diagram showing different classes and their relations 47

38 Image of the GUI tab which adjusts the setpoint for joints 49

39 GUI config tab with save and loading . 50

B.1 D shaft receiver . B1

B.2 End effector mount . B2

B.3 End of Arm . B3

B.4 Idler shaft . B4

B.5 Main shaft . B5

B.6 Servo horn connector . B6

B.7 Sidewall . B7

B.8 Top plate . B8

ix

B.9 Bottom plate . B9

B.10 Bottom plate cradle . B10

C.1 Circuit diagram for motor driver PCB . C1

C.2 PCB composite for the motor driver PCB C2

C.3 Bill of materials for the motor driver PCB C2

D.1 Circuit diagram for motor driver with current sensor PCB D1

D.2 PCB composite for the motor driver with current sensor PCB D2

D.3 Bill of materials for the motor driver with current sensor PCB D2

E.1 Circuit diagram for load cell amplifier PCB E1

E.2 PCB composite for the load cell amplifier PCB E2

E.3 Bill of materials for the load cell amplifier PCB E2

F.1 Circuit diagram for CAN transceiver PCB F1

F.2 PCB composite for the CAN transceiver PCB F2

F.3 Bill of materials for the CAN transceiver PCB F2

G.1 Circuit diagram for joint board Boosterpack PCB G1

G.2 Circuit diagram for joint board Boosterpack PCB G2

G.3 Circuit diagram for joint board Boosterpack PCB G3

G.4 Circuit diagram for joint board Boosterpack PCB G4

G.5 Circuit diagram for joint board Boosterpack PCB G5

G.6 PCB composite for the joint board Boosterpack PCB G6

G.7 Bill of materials for the joint board Boosterpack PCB G7

H.1 Circuit diagram for tm4c123 dev board PCB H1

H.2 PCB composite for the load cell amplifier PCB H2

H.3 Bill of materials for the load cell amplifier PCB H3

x

List of Tables

1 Comparison of <1000mm reach industrial robot arms 5

2 Comparison of different angular position sensors 8

3 Comparison of off-board communication protocol performance 11

4 HV5923MG Motor Curve Data from laboratory testing 17

5 Current Sense IC Comparison . 21

6 ADC Selection . 25

7 Summary of Parts Selection . 26

8 DRV8872 truth table . 26

9 Motor Driver Comparison . 27

10 SN74LVC1G18 truth table . 28

11 CAN message ID breakdown . 39

12 PWM frequency input at 50% duty cycle vs motor speed 53

13 Comparison of different angular position sensors A4

14 Comparison of off-board communication protocol performance A7

15 Comparison of materials to construct sticks A12

16 Comparison of Possible Motors . A13

xi

1 Introduction

1.1 Problem Statement

Currently, it is difficult for users to fully understand the motion of robotic arms and the
kinematics that control them. This understanding is a crucial step in working with robotic
arms safely and efficiently, but is often lacking due to the inability of diagrams and descrip-
tions to fully convey what makes one arm operate differently than another. With the use of
robotic arms becoming more common and the many different kinds of arms available, it is
important to have a prototyping platform that can emulate many different kinds of arms so
that the user can gain a better grasp of what components make up a robotic arm why one
arm is better suited for a particular use case than another.

1.2 Goal Statement

The goal of this project is to create a proof of concept of an arm that can be reconfigured
by end users such that they can create many different types of functionality from one set of
principal components. To accomplish this, we need to break the arm down into modularized
joints that can be rearranged to show how the combination of different kinds of joints can
lead to a specific end result. We also need to create an adaptable electrical system that
is able to modularly control each joint by having the capability to interface with multiple
types of sensors and actuators. By doing so, we hope to take the first step into creating a
standardized kit of parts and the software accompanying it to prototype almost any type of
arm that is currently used.

1.3 Objectives

In order to measure our progress, we define a set of objectives that we need to accomplish
in order to meet our goals outlined above. To create a proof of concept of a modular robotic
arm prototyping platform, we set the following objectives:

• Research commonly used robotic arms and their uses.

• Understand the variety of different joints and what sensors and actuators are used to
control them.

• Understand how the combinations of different joints affects the kinematics of the arm.

• Classify several different standardized joints and what sensors/actuators make them
work.

1

• Create a control bus made up of connected joints with a node at each joint capable of
controlling any single joint.

• Create a joint that can be added and removed from an existing arm in order to modify
the arm’s functionality.

• Create an arm control board which functions as an interface between a computer and
our arm’s control bus allowing for users to interact with the arm through a software
interface.

• Create a software application which displays information about the arm in real time
and allows users to easily set up their arm and send it commands.

1.4 Constraints

In order to complete this project in the alloted time, we had to place limits on our goals
for the project. One such constraint was taking into account the time it would take to
prototype, design and assemble a fully modular arm from scratch. Changes in the project’s
organizational structure led us to revise our goals (the original ones of which are reflected in
Appendix A) Our solution was to create a smaller-scale example of modularity by modifying
an existing arm by adding a joint that can be easily removed. By fully creating our own link
that can be attached to the arm to increase utility, we proved that the idea of a modular
joint is feasible and therefore those joints can be combined to create a modular arm. We also
had to impose another constraint to ensure proper functionality of the arm which is that
the arm can have at maximum six joints controlled at once. This constraint was decided
based upon examples of other robotic arms as well as a way to make sure that the arm is
structurally sound and within weight tolerances.

1.5 Summary

Once we outlined our goals and constraints for the project, we had a clear idea of where
to start researching. Knowing what we had to accomplish as well as knowing the obstacles
standing in our way, we were able to approach the project piece by piece, working towards
our goals as well as keeping a solid perspective about the entire scope of the project. When
we ran into design decisions that were not foreseeable before we got working, we referred
back to our original goals and based our decisions off of these initial measures of project
progress. Moving forward after defining the problem fully and how we wanted to accomplish
it, we proceeded to conduct research on current robotic arm technology that we used as a
reference for our arm.

2

2 Background

2.1 Introduction

In this section we begin with an overview of some existing robotic arms that are currently
in industry use in order to gain a high level understanding of what different kinds of arms
are out there. Researching the various use cases of existing robotic arms can help us define
use cases for our arm. Next, we discuss modular arm technology that is in development in
order to have a measure of our progress versus their projects. After examining these arms,
we highlight how our project is different from the previously discussed examples and why
this is important. Finally, we discuss some of the technology that had to be researched in
order to inform our decision on how to design our arm and choose components.

2.2 Examples of Robot Arms

There are a few different types of robot arms available on the market today. Industrial robotic
arms, several of the most common type of arms currently in use are defined as robotic systems
used for manufacturing by means of an end effector. Since our arm is relatively small and
is intended for handling lighter payloads compared to most industrial arms, we will begin
with an overview of existing ”desktop” industrial arms. Arms that fit this description have
a reach of less than one meter. Such Industrial robot arms typically cost between $50,000 to
$80,000 new and $25,000 to $40,000 used [2]. Some manufacturers of these industrial arms
include ABB Robotics, Universal Robots, and KUKA Robotics. It’s important to note that
none of these arms are modular - in fact, they can’t be changed at all!

2.2.1 ABB Robotics

ABB Robotics makes many small industrial arms. The ABB IRB 120 boasts a 580mm reach,
3kg payload, and 25kg weight. It has 6 degrees of freedom and can be mounted at any angle.
The ABB IRB 1200 comes in two varieties, one with a 703mm reach and 7kg payload, and
one with a 901mm reach and 5kg payload. Both of these arms have 6 degrees of freedom.
The weights are similar at 52kg and 54kg respectively [2].

3

Figure 1: ABB IRB 120 arm [1]

2.2.2 Universal Robots

Universal Robots makes two robot arms in this size range. The UR3 is the smaller of the
two with a reach of 500mm, payload of 3kg, and 11kg weight. A step up is the UR5 which
has a 850mm reach, 5kg payload, and 18.1kg weight. Both of these arms have 6 degrees of
freedom. Universal boasts that these arms are easy to implement and re-implement due to
compact and lightweight construction, and simple programming interface [2].

2.2.3 KUKA AG

KUKA makes two robot arms in this size range. The KR3 R540 has a reach of 541mm,
payload of 3kg, and weight of 26kg. It can be mounted on the floor, wall, or ceiling for
added utility. The KR 5 sixx R650 is larger with a reach of 650mm, payload of 5kg, and
weight of 127kg. It can only be mounted on the floor or ceiling. Both of these arms have 6
degrees of freedom [2].

2.2.4 Small Industrial Robotic Arm Comparison

Table 1 shows a comparison of all the robotic arms discussed in this section.

4

Table 1: Comparison of <1000mm reach industrial robot arms

Name Reach (mm) Payload (kg) Weight (kg) Axes

IRB120 580 3 25 6

IRB1200-7/0.7 703 7 52 6

IRB1200-5/0.9 901 5 54 6

UR3 500 3 11 6

UR5 850 5 18.1 6

KR3 R540 541 3 26 6

K5 sixx R650 650 5 127 6

2.3 Modular Arms

While there are many industrial arms in production, there are very few modular robotic
arms. There is one commercially available robotic arm, the Robolink, made by igus. A few
modular robot arms have been developed, including the reconfigurable modular manipulator
(RMM), made by TRACLabs [3], and a single joint for the Modular Robotic Arm project
MQP at WPI [4].

2.3.1 igus Robolink

Robolink is a modular robotic arm kit produced by the plastics manufacturing company
igus. The kit contains parts to make an arm that is up to 6 Degrees of Freedom (DOF),
with belt driven linkages powered by stepper motors that reside in the base of the robot.
Robolink offers 7 individual links, ranging from 1-2 DOF and differing based upon their
kind of motion (pivoting, rotating, swiveling). Each link is made of a lightweight and strong
plastic or carbon fiber with cables inlaid in them, resulting in a low cost and weight arm.
The cables used to control these links are made of a high strength synthetic fiber with has
a tensile strength of 4,000N. Separating the actuation of each link from the joint allows the
arms to be easily maneuverable with its lightweight and strong joints.

Purchasers of the kit are able to combine the links in different ways, allowing for a flexible,
modular solution to robotic arms. Igus also offers their Robolink software for programming
articulated arms that facilitates the programming of individual arms through the use of a
simple, intuitive control software. The total cost of a kit to make a 6 DOF arm is $6000,
and buying individual links will cost anywhere from $370 to $750 per link. While this price
may be low cost compared to other arms such as the ABB robotic arm which can cost up to
$200,000 in total, it is still not low enough for either hobbyists or people interested in learn-
ing about robotic arms who are prevented from doing so by the high entry cost. In addition
to this, the belt system actuating each link requires the user to thread belts attached to the

5

actuators to each link in order to set up the robot. The long assembly time and intricacy also
detracts from the idea of modularity because the time involved in switching configurations
can inhibit users from really exploring the different workspaces and combinations this kit
can create [5].

2.3.2 Reconfigurable Modular Manipulator

The reconfigurable modular manipulator developed by TRACLabs for NASA is a fully mod-
ular 7-DOF robot arm. Each joint and end effector have the same connector that provides
power and control lines throughout the arm. Internal power and control circuitry take in
these lines and convert them into movement. Joints can be swapped out by hand in a matter
of seconds. Joints accept position or velocity data from the central communication lines and
store physical characteristics about the joints in memory. This robot arm is not commercially
available [3].

2.3.3 Modular Robotic Arm

This project aimed to close the market gap between inexpensive toy robot arms and expensive
professional grade industrial arms. The group aimed to do this by designing a single joint
that could be used to assemble a robot arm. Ultimately, a single DOF joint that was heavy,
difficult to manufacture, and expensive to produce was designed and constructed. In their
future recommendations section, the group stated that the goal of designing a modular robot
arm was possible but their design was not the solution [4].

2.4 Our Robotic Arm System

Our modular robotic arm aims to offer a completely different use case compared to existing
products. The system maintains a low cost while providing a versatile platform for anyone
from novice engineers to rapid prototyping professionals. We accomplished this by avoiding
expensive proprietary software and subtractive manufacturing; favoring off-the-shelf parts,
3D-printed structures, and freely available/open source software. Providing custom-built
software for controlling the arm creates a plug-and-play environment suitable for most any
skill level.

2.5 Technology

After examining all of these different robot arms accomplished their respective tasks, it was
important to go a little more in-depth on how some very crucial components of any robotic
arm are chosen and what that means for our project. Some of the most important ideas

6

of an arm are: where does the central processing happen? How can we tell what both the
position of and the force on each joint are? It is questions like these that led us to research
these key functionalities so that we could make the right choice when we design our arm.

2.6 Joint Control board

The control board is meant to be implemented as an independent module that interfaces with
a main controller module. Its tasks are to send and receive data from the base controller
and control the position of a single motor. As such, the factors that must be taken into
account when designing the control board are methods of measuring joint position and
motor torque, as well as ways to communicate with an off-board controller. Motor torque is
proportional to motor current, and motor torque lets the controller know how hard the arm
is pushing something. Therefore, the motor torque will be calculated from the measured
current through the motor.

2.6.1 Joint Position Detection

Angular position sensing must be used to determine the joint angle of the motor. There are
several commonly used methods of determining angular position, including potentiometers,
optical encoders, and Hall effect sensors [6–8]. A comparison of the different angular sensors
can be seen in Table 2.

Potentiometers are very commonly used to measure angular position due to their simple
implementation and low cost. In addition to being low cost, potentiometers provide high
linearity and accuracy [8]. Although generally robust, these sensors do not lend themselves
well to many, rapid adjustments or mechanical vibrations. Both of these significantly reduce
the lifespan of the sensor [6,8]. The situations potentiometers excel in are those that require
an easily adjustable voltage at low to medium adjustment frequencies, such as settings knobs
on control panels or analog reference voltages as trim potentiometers [6].

Hall Effect sensors are less commonly used, and consist of a bipolar magnet rotating above
a Hall effect sensor with the axis of rotation perpendicular to the plane of the sensor. Since
there is no contact between the rotation and the sensor, these types of sensors have very long
lifespans [6]. Unfortunately, these sensors do not provide high resolution since they are sus-
ceptible to electromagnetic interference and temperature, and also have some hysteresis [8].

Optical encoders are another method of measuring angular position. These sensors consist
of a beam of light that shines on a slotted disk so that as the disk rotates, the slots break
the light beam. These sensors can have very high resolutions and are resistant to shock and
vibrations [7]. Like magnetic sensors, these sensors have very long lifespans since there is no
mechanical connection on the sensor [6]. Unfortunately, these sensors are susceptible to for-
eign particles blocking the light beam from sensing the slots and causing incorrect readings.

7

The most common kind of optical encoder, the Quadrature encoder, does not sense absolute
position; it can only read relative position, meaning that a quadrature encoder would need
to be combined with some other sensor in order for the robot to be able to sense its joint
angles correctly. Other encoders called Absolute Optical Encoders are capable of reading
absolute position, but they are prohibitively expensive. [8].

It’s worth noting that limit switches can be used to provide information about the location
of a joint. Limit switches give a different voltage depending on whether they are pressed or
not. When a limit switch is placed at the edge of a particular mechanism’s travel range, it
becomes possible to determine when the mechanism has reached one of its limits of travel.

Limit switches can be used in conjunction with quadrature encoders (which only provide
relative, rather than absolute, position) to create a system which is capable of determining
its absolute position. The system would need to go through a homing process at startup
whereby the mechanism travels until the limit switch is pressed, at which point the encoders
treat their current position as ”home”.

Table 2: Comparison of different angular position sensors

Sensor Cost Linearity Accuracy Lifespan Notes

Potentiometer $ Depends
on ADC

Moderate Short Repeated
motion at the
same angle
can lead to
failure

Encoder $$$ Very
High

Very High Long Inexpensive
encoders
can’t sense
absolute
position

Hall Effect
Sensor

$$ High High Very Long Requires spe-
cial attention
to surround-
ing magnetic
fields when
mounting

2.6.2 Current Sensing

Current sensing allows us to implement another kind of control that is common on robotic
arms. It allows the robot to see the current at that the motor is drawing, allowing for force
to be calculated using the constant resistance of the motor and Ohm’s law. Current sensing

8

can be done in many ways. The most common way is by using a shunt resistor and an
amplifier. A variant of this method is to use the resistance inherent in the wires or traces as
a shunt resistor. Another common method of current sensing is to use a Hall effect sensor [9].

Shunt resistors are used in either high side or low side configuration. They are simple
to integrate, low cost, and capable of measuring both AC and DC currents. The downsides
to this method are relatively large insertion loss that increase exponentially with current,
large thermal drift that must be compensated for, as well as large system noise from am-
plification. There are two main implementations of shunt resistors, high side and low side [9].

Low side current sensing means that the shunt resistor is placed in the return current path.
This method is simpler to implement since the voltage on the shunt resistor is with respect
to ground, so it can simply be amplified. Some problems exist with this, however, since the
resistor separates the current path from ground. In this configuration, the circuitry used to
measure the voltage on the shunt resistor will not report a fault if the system experiences a
short circuit [9].

High side current sensing means that the shunt resistor is placed on the forward current
path. This configuration is able to detect short circuit faults, an advantage to using this
configuration over low side current sensing. An additional advantage is that the return cur-
rent path is directly connected to ground. The downside to high side current sensing is that
it requires a differential amplifier since the voltage across the shunt resistor is very close to
supply voltage. [9].

Trace resistance sensing is very similar to using a shunt resistor, but there are some slight
differences. Since there isn’t a way to control the resistance of a copper trace, the system
must be calibrated after being assembled. Another key difference is the amount of amplifi-
cation needed. Copper traces have very low inherent resistance, so a very large amplification
must be used. This large gain imposes a limitation on the maximum measurable bandwidth
set by the gain bandwidth product of the amplifier [?].

Hall effect sensors are commonly used to measure current as well. These sensors can measure
current intrusively or non-intrusively, as well as in open loop or closed loop configurations.
Non-intrusive devices measure current by wrapping wire around a toroid that focuses the
magnetic field on a sensor in a break in the ring of the toroid, or placing the Hall effect sensor
on top of the current to be measured. These work fairly well, but are very susceptible to
noise from magnetic fields upwards of 10cm away. Methods of shielding these sensors exist,
but are complicated and expensive to implement. Intrusive sensors route current through
the device and measure the generated magnetic field with a Hall effect device near the cur-
rent path. Open loop applications take the voltage generated on the Hall effect sensor and
condition it to whatever output is needed. Closed loop sensors reroute the sensed current
to a secondary coil that is used to generate a proportional current to the measured current.
This proportional current is then used as feedback to reduce error [9].

Insertion loss caused by these sensors is very small. Since these sensors measure current

9

by induction, they can only measure current in a specific frequency band, and high currents
at high frequencies can cause these devices to overheat. Most of these frequencies are DC
to some upper limit determined by the physical characteristics of the sensor, usually around
100kHz. These sensors cannot be used on their own, since they have an inherent voltage
offset, called misalignment voltage, and suffer from high thermal drift. Integrated ICs that
compensate for these factors are fairly widespread, allowing for very easy integration [9].

2.6.3 Off-Board Communication

There are many types of communication protocols that could be used to communicate with
the main controller. Common protocols include SPI, I2C, RS232, RS485, and CAN. Of
these, SPI and I2C are meant mostly for chip to chip communication while RS232, RS485,
and CAN are all meant for module to module communication [10]. A comparison of these
protocols can be seen in Table 3.

SPI is a full duplex, synchronous serial link consisting of 3 lines, SCLK, MOSI, MISO,
and an additional line for every peripheral, CS. Data rates of up to 10MHz or more are
possible due to the elimination of addressing with the CS lines and dedicated clock line [10].
Using SPI for controller-to-controller communication presents a problem, however. Since the
data transfer rate is controller by the master, the slave could fall behind on processing data.
This can be avoided by only transmitting data one direction at a time. Typically, SPI is
limited to onboard communications since its signal degrades fairly quickly over distance [11].

I2C is a half duplex, synchronous, multi-master bus consisting of a clock and data line.
Data rates of up to 3.4MHz can be reached, and each device has a unique address or mul-
tiple addresses to avoid overlap. An interesting aspect of I2C is clock stretching. Clock
stretching is when a slave pulls the clock low to stall the master until it has enough time
to process information. Typically, I2C is limited to onboard communication since its signal
degrades fairly quickly over distance [10].

RS232 is a common full duplex interface that consists of two transmitter/receiver pairs.
The protocol limits communication to 1 sender and 1 receiver per line. Data rates of up to
115.2KHz are possible at a range of up to 200ft. Data is typically sent in 8N1 format with 8
data bits, no parity bit, and 1 stop bit or 7E1 format with 7 data bits, even parity bit, and
1 stop bit [10].

RS485 is a full duplex multi-master protocol that consists of up to 32 transceivers on the
bus. Data transmission rates of up to 10Mbps and distances of up to 4000ft are possible.
Transmission can be reduced to half duplex by removing one transceiver at each node. Data
is sent much the same as in RS232 with either 8N1 or 7E1 being common formats [10].

CAN is a half duplex multi-master bus protocol that allows for many nodes to connect
and send data on the two transmission lines. Messages are sent with unique addresses that

10

also act as arbitration for bus priority. Packets are fully defined with 11 or 29 bit addresses,
0-8 bytes of data, and some additional control and verification bits [12,13]. Data rates of up
to 1MHz and distances of up to 3000ft are possible. Multiple error checks are implemented
at the hardware level since packets are predefined, allowing the controller to load a transmit
buffer and let the transceiver send a message or wait until a receive buffer is full before
reading the message [11].

HID (Human Interface Device) is a communications protocol [14] that defines two enti-
ties: the host and the device. It works by having devices define a data packet and a HID
descriptor for the specific device. The host can then receive interrupts from the device during
which the pre-defined data packet is transmitted from device to host.

Table 3: Comparison of off-board communication protocol performance

Protocol Max Distance Max Speed Wires needed Notes

SPI Within circuit board 10MHz SCLK,
MOSI, MISO,
+ 1 CS for
each node

No addresses
needed

I2C Within circuit board 3.4MHz 2 Address in-
cluded in
message

RS232 200 feet 115.2KHz 4 Can include
parity bit

RS485 4000 feet 10Mbps 4 Can transmit
fast or far but
not at same
time

CAN 3000 feet 1MHz 2 Resilient sig-
nal

11

3 Methodology

Many engineering decisions were made during the course of this project. Decisions as large
as how any joints the arm would support, and as small as which type would be fitting for
a certain variable. These decisions were all made in order to uphold the design goals of our
project.

3.1 System Design

The essential design of our project involved breaking a robot arm into modular joints and
connecting each one to a CAN Bus. The CAN Bus is a very good communication protocol for
implementation of multiple modular devices into one system. All of the joints would connect
via the CAN Bus to one base module as picture in the figure below. This base acts as a
translator, scheduler and power distribution system for the arm. It receives messages from
the computer, translates them into CAN messages and sends them out at predefined times
during the arm’s configuration period and runtime. Finally, the base take in motor power,
logic power and ground and connects each board so that it gets the power it needs. The
computer is the main interface that our end user will interact with. It contains a GUI which
takes input from the user, formulates packets and sends them to the base. The computer
also has to read in data from the base to receive updates from the joints of the arm. In order
to make sure that we were always dealing with the most up to date information, we decided
that it would be best to store information about how each different joint is configured and its
current status in a data container that gets accessed from both the communications side and
the user interface. Because we have information about each joint stored on the computer, we
are able to offload calculations from the joint board to the computer which would otherwise
take up more processing power from the joint board’s embedded microprocessor.

Figure 2: Block diagram of the entire modular arm system

12

3.2 Fourth Joint and Existing Arm

In order to show that our control system can be integrated with other arms, we designed a
fourth joint to connect to an existing arm. By showing that we can add a newly designed
joint to our existing arm, we are creating a proof-of-concept that shows the versatility of our
control system. The design of the fourth joint was done in Solidworks, a software that allows
users to design objects in a 3-D space [15]. Once we had designed the fourth link, we moved
forward to the rapid-prototyping stage where we took our parts designed in Solidworks and
converted them to 3-D printable models. We then used the software Cura [16] and the
Lulzbot Taz 6 3-D printer [17] to fabricate a first iteration of our fourth joint. From here
we continued to refine our parts and re-print pieces with tighter tolerances until they came
together to make a fourth joint that interfaces with our control system. To find drawings of
our Solidworks parts, please refer to Appendix H A.7

3.2.1 Fourth Joint Design

Figure 3: Joint 4 CAD Model

The fourth joint features a shaft which is supported by both a thrust bearing and a radial
bearing. It can therefore tolerate loads that are parallel to the shaft, which the arm would
encounter when picking objects straight up, as well as loads that are perpendicular to the
shaft - forces that generate torques about the base of the motor.

Figure 4: Cutout View of Bearing Mount

Our decision to create a joint that is actuated using a brushed DC motor was undertaken
in order to prove that we can control DC motors in addition to the servos that already exist

13

on the arm. Next, we decided that since most of the joints currently on the arm provide
rotation that results in the end effector moving vertically, we wanted a joint that provides
parallel rotation.

To accomplish this we removed the control logic from a servo that already was used
on the arm, converting it into a brushed DC motor. Next, we designed a direct-drive mount
for the motor we fabricated so that the output shaft would rotate along the motor’s axis of
rotation. We built a mount for the motor and a structure to provide support for both radial
and axial load on the shaft. This structure made use of multiple radial bearings, placed to
keep the shaft in line and eliminate any friction between moving and static pieces of the
joint. We also included a thrust bearing on the main shaft in order to stop thrust loads
from being placed directly on the servo. Finally, we designed an idler-shaft that sits in two
bearings so that it can freely rotate with negligible friction. The purpose of this idler shaft
is to rotate in a 1:1 gear ratio with the main shaft using a timing belt to connect the two
shafts. At the bottom of the idler shaft there is a magnet whose changing magnetic field
is read by a Hall effect sensor mounted onto the bottom of the fourth joint so that it sits
exactly 1mm from the magnet, allowing for optimal position reading.

Figure 5: Side View of Final Removable Joint

3.2.2 Fourth Joint Prototyping

The process of prototyping our fourth joint started with creating an interface so that we
can connect it to the already existing arm. We decided for the sake of simplicity and
modularity to attach our fourth joint where the current end-of-arm-tooling would normally
connect. The original end-of-arm mount can be seen in Figure 6. Keeping the mounting
method standardized is important to maintaining modularity. A prototype of a joint that
implements the standard can be found in Figure 7.

14

Figure 6: Current Arm End Effector Mount

Figure 7: Joint 4 on End Effector

To create a prototype of our fourth joint, we determined the mechanical requirements of our
arm and worked backwards to create a rapid prototyping model (RPM). RPMs are usually
CAD models which are able to be turned into a functional model using a 3-D printer or
other method. Once the functional model was 3-D printed, we would assemble the parts and
test how they all fit together. With each new functional model we revised our RPM and
printed a new functional model in order to meet the requirements for our fourth joint. This
process of building, revising based on testing a physical prototype was only made possible
due to the advances in recent years in 3-D printing technology making it feasible to create
these prototypes so quickly while still having them be robust.

15

3.2.3 3-D Printing

3-D printing is convenient because it allows the user to manufacture parts in a novel way.
Overall, we chose to 3-D print our fourth joint because it was what we were most familiar
with and we had easy access to multiple 3-D printers. While the process of 3-D printing a
part might not be as accurate as other more conventional methods of machining parts, it is
a much easier method to learn and has a much quicker turnaround time. For our choice of
3-D printer, we used the LulzBot Taz 6 [17] with a single extruder head (Version 2.1) and
2.65mm filament. This printer is readily available to us through the Undergraduate Robotics
Lab. The resolution of the printer was fine enough that it was easily able to achieve the
tight tolerances needed to print parts such as the timing belt teeth.

Figure 8: CAD Model of 3D-printable Pulley

3.2.4 Motor Selection

The performance of a DC motor can be characterized by measuring several key values: the
stall torque, the stall current, the free running RPM, and the free running current. It’s
important that all the values be measured when the motor is given the same input voltage.

Specifications:
Input Voltage: 8.4V
Stall torque: 32.3 kg cm stall
Stall current: 5.25 A stall
Free running RPM: 0.1 seconds/60 degrees (100 rpm)
Free running current: 0.23 A

16

Table 4: HV5923MG Motor Curve Data from laboratory testing

Speed
(RPM)

Torque
(N-m)

Torque
(in-lbf)

Current
(A)

Pout

(W)
Efficiency
(%)

Pin

(W)
Heat
(W)

back-
EMF
(V)

0 3.16 27.98 5.25 0 0 44.1 44.1 0

7 2.94 26.02 4.9 2.15 5.24 41.15 38.99 0.56

13 2.75 24.34 4.6 3.74 9.69 38.62 34.87 1.04

20 2.53 22.38 4.25 5.3 14.85 35.67 30.37 1.61

27 2.31 20.42 3.89 6.52 19.94 32.71 26.19 2.17

33 2.12 18.74 3.59 7.32 24.24 30.18 22.87 2.65

40 1.9 16.79 3.24 7.94 29.17 27.23 19.29 3.21

47 1.68 14.83 2.89 8.24 33.96 24.28 16.04 3.78

53 1.49 13.15 2.59 8.24 37.9 21.75 13.51 4.26

60 1.26 11.19 2.24 7.94 42.25 18.8 10.86 4.82

67 1.04 9.23 1.89 7.32 46.18 15.85 8.53 5.38

73 0.85 7.55 1.59 6.52 48.99 13.32 6.79 5.86

80 0.63 5.6 1.23 5.3 51.09 10.37 5.07 6.43

87 0.41 3.64 0.88 3.74 50.49 7.41 3.67 6.99

93 0.22 1.96 0.58 2.15 44.12 4.88 2.73 7.47

100 0 0 0.23 0 0 1.93 1.93 8.03

Figure 9: HV5923MG Servo Motor

17

3.2.5 Arm Base

The mechanical side of the base module is relatively simple because the physical structure
comes from the pre-existing arm. In order to make this compatible with our controls system,
all we have to do is mount our joint and encoder boards to it. This is fairly simple since
we use a slightly modified version of the encoder board on the existing arm with the same
mounting scheme. Our joint board mounting scheme focused around mounting each board
in a place where it would not be impeded by the movement of the arm during runtime.

Figure 10: TM4C123G to arm mount

18

Figure 11: Mounting holes on arm and mounted TM4C123G

We have not only made sure that none of the mechanical components of the arm would
come into contact with the board but also that none of the wiring between boards would
be unplugged. This meant that we had to mount the boards far enough away from moving
parts while still keeping it close enough to the sensors and motors that needed to interface
with it. We decided to mount it in the same position for each category of joint type to keeps
these needs consistent. Making use of an already existing area used to mount the cabling
for the previous iteration of the arm seemed like the most efficient way to go about this. We
designed a mechanical interface that was able to press-fit into our joint board and connect
to the previous mounting solution.

3.3 Joint Control Board

The joint control board sits at the heart of the entire functionality of the project. Without
a robust and capable design, any arm constructed would not function properly. Selecting
the types of sensors to use for the control board was a very important step of the joint
control board design. The role of the joint board is a very flexible one. It is able to handle
multiple different kinds of joints and integrate with the sensors on each joint. Therefore, it
has to accommodate multiple different combinations of sensors and use them to control the
arm. By making the joint board so robust, it is able to accomplish many different functions,
making it perfect for our modular control system.

19

3.3.1 Overview of Design

The joint board underwent significant revisions, outlined in Section 3.3.5, but the depth
of revision significantly dropped after the decision was made to use the TM4C123GH6PM
32-bit ARM processor. This processor had many peripherals internally [18] that simplified
the joint board design significantly. A block diagram of the final joint control board can be
seen in Figure 12.

Figure 12: Block diagram of the joint control board

3.3.2 Joint Angle Sensor

As mentioned in Section 2.6, joint angle sensing is one of the main tasks needed in order
to control a robot arm. Without this key sensor, the robot arm controller has no way of
knowing where its links actually are in space. The type of sensor is very important since
each has different design considerations that need to be taken into account.

Potentiometers seem like a good choice due to their simplicity and high accuracy capabilities.
However, they do not lend themselves well to this application because of how quickly they
wear out. Over time, as the joints move to different positions, the potentiometers will wear
out quickly and cause inaccurate readings. Additionally, long lifespan and high resolution
potentiometers can be very expensive. Furthermore, potentiometers are large and can be
difficult to mount. Finally, the hard stop on the potentiometer means the joint angles will
be limited to a certain range (typically about 270 °for single turn potentiometers).

The next obvious solution is to use optical encoders because they will not wear out and
offer very high resolution capabilities. These sensors are not well suited for this application,
however, since they are typically expensive, especially for high resolution encoders - and
ones that are capable of reading absolute position. Additionally these sensors are somewhat
bulky and would take up too much space in the closed environment of a joint.

20

This leaves us with Hall effect sensors. These sensors are very small and moderately high
resolution while also being a contact-free sensor, so wearing them out will not be a concern.
A main concern with Hall effect sensors is that the magnets need to be mounted to a non-
metallic material in a precise manner. Traditional machining methods make this difficult to
accomplish, but 3D printing allows us to easily overcome this challenge. Another concern
is external electromagnetic interference, but with somewhat careful circuit board design, we
should be able to minimize this issue.

3.3.3 Motor Current Sensor

As mentioned in Section 2.6, the motor current is another important factor in controlling a
robot arm. Since motor current is proportional to motor torque, knowing the current lets
the controller know how much force the arm is putting on a load, to give an example. There
are a few different technologies that can sense the current through a motor, each with their
own design considerations that must be taken into account.

A shunt resistor seems practical due to the simplicity of the design, but careful tuning must
be done in order to get the noise levels down to a reasonable amount. In addition to this,
the power loss when using a shunt resistor could cause the arm to stall before anticipated
at the low voltages being used in this project. When the shunt resistor takes power from
the motor, the whole motor curve slides inward, decreasing the maximum power output.
Trace resistance would be a good alternative, but requires calibration after the circuit is
constructed.

Instead of these, we decided to use a Hall effect current sensor. Hall effect current sensors are
ready-made sensors that give low noise, properly calibrated outputs, are not very expensive,
and are easy to integrate into a circuit design. These sensors have extremely small power
losses to the motor. The main drawback of these sensors is that they have a low bandwidth,
but we are using DC motors so this should not be a problem. Some care will need to
be taken when placing these on the circuit, however, since they are sensitive to external
magnetic fields. The hall effect current sensor chosen for this design was the ACS722 [19].
This device was selected by using Table 5.

Table 5: Current Sense IC Comparison

Part name Supply
Voltage
(V)

Current
Range (A)

Sensitivity
(mV/A)

Output Built in
filter?

ACS722LLCTR-05AB 3.3 -5 to +5 264 Analog y

ACS723LLCTR-05AB 5 -5 to +5 400 Analog y

ACS724LLCTR-10AB 5 -10 to +10 200 Analog n

ACS725LLCTR-10AU 3.3 0 to +10 264 Analog n

21

3.3.4 Inter-board Communication

Inter-board communication is the heart of any arm. Without this, the joints of an arm would
not know where how to move. A good, robust communication protocol that allows for simple
transactions between boards is favorable for this application.

SPI and I2C are mostly used for on-board, controller-to-peripheral communications and
therefore are not a good choice for the base to control board communication. RS232 is not
a good solution for this problem either because it is a single transmitter and single receiver
per line, meaning a new wire needs to be run for each additional link. (Daisy-chaining the
joints would work, but doing this would increase the computational overhead on the joint
boards.) This leaves RS485 and CAN.

RS485 and CAN are similar in many ways, but with a few key differences that separate them.
RS485 is very fast to transmit and simple to implement, but takes a lot of the controller’s
time to send packets. CAN has the advantage because the controller and transceiver control
the transmission independent of the controller so the controller has more free time to process
data. Another advantage CAN has over RS485 is the amount of error checking that goes
on to ensure proper message transmission. For these reasons, we decided to use CAN to
communicate between the base and control boards.

3.3.5 Preliminary Joint Control Board Designs

Preliminary joint control board design was done very early on in the project. Unfortunately,
the majority of this work was done before much of the necessary research for part selection,
leading to many revisions and re-designs, though the main concepts stayed in place. This
section outlines the preliminary designs and revisions of those up until the selection of the
TM4C123GH6PM microcontroller, at which point the design solidified and forward progress
began.

22

Figure 13: First draft of the complete joint board block diagram

The first complete block diagram of the joint control board Figure 13. This diagram was cen-
tered around a MSP430G series microcontroller, and focused on keeping the cost of the board
down. Some component selection was solidified , including the following: MSP430G2553 (mi-
crocontroller), MCP3202 (ADC), DRV8872 (motor driver), LS7366R (quadrature counter),
MCP2515 (CAN controller), and MCP2561 (CAN transceiver).

The decision to replace the potentiometer with an absolute hall effect encoder was made to
lengthen the lifespan of the device. Greater detail about this decision is presented in Section
3.3.2. This change resulted in the diagram shown in Figure 14. Certain components, such as
the CAN controller and transceiver, operated at 5V while others, such as the microcontroller
and absolute hall effect encoder, required 3.3V. Most other components could function at
either voltage, and were placed on either side of the level shifter for other reasons. The ADC,
for example had a supply-voltage-dependent maximum SCLK frequency.

23

Figure 14: Iteration of preliminary joint board block diagram

Some planning was done to coordinate communication between the components, including
placement of a 3.3V to 5V level shifter. This planning led to the block diagram shown in
Figure 15. This diagram requires many lines to pass through the level shifter, which is not
ideal and led to the decision to revise component selection.

Figure 15: Mostly complete preliminary joint board block diagram

24

3.3.6 ADC Selection

The first design of the joint control board used a potentiometer to detect the joint angle
and a current sense amplifier to detect the motor current. Both of these signals require an
ADC to process, and the original microcontroller did not have a high resolution ADC on
board, so an off board ADC was needed. Table 6 highlights the different ADCs that were
evaluated before selecting one. The MCP3202, while not necessarily the best option from
the chart, was selected since it has a very easy to use interface and was available in DIP
package for easy testing. With the switch from the MSP430G2553 to the TM4C123GH6PM,
the external ADC was no longer needed.

Table 6: ADC Selection
Supply Sampling SCLK

Part name Voltage (V) rate (MHz) Freq (MHz) Price ($)

ADS7042 3.3 1 16 2.65

ADS7043 3.3 1 16 2.65

ADS7044 3.3 1 16 2.65

ADC121S021 3.3, 5 0.2 4 2.85

ADC121S051 3.3, 5 0.5 4 3.31

ADC121S101 3.3, 5 1 4 3.39

ADC7476 3.3, 5 1 20 3.41

MCP3202 3.3, 5 0.1 1.6 2.31

MAX11665 3.3 0.5 8 2.73

3.3.7 Preliminary Price Breakdown

Initially, one of the goals of this project was to produce a very low cost joint board. An
estimate that matches the joint board block diagram from Figure 14 can be seen in Table 7.

25

Table 7: Summary of Parts Selection

Function Part name Price (qty: 1) Price (qty: 1k)

CAN Controller MCP2515 $1.87 $1.42

CAN Transceiver MCP2561 $0.90 $0.68

ADC MCP3202 $2.61 $1.98

MCU MSP430G2553 $2.41 $1.18

Motor Controller DRV8872 $2.17 $1.06

3.3V Voltage Regulator LP2950-33 $0.47 $0.13

Current Sensor ACS723LLC10AB $5.53 $2.36

Encoder AS5055a $8.07 $5.48

Price (qty: 1) $24.03

Price (qty: 1k) $14.30

3.3.8 Motor Driver

The DC motor driver selected was the DRV8872. This driver takes in two inputs [20], in1
and in2, which affect the output much like inputs to an H-bridge.The exception is when both
inputs are high. In this case, the inputs are pulled together as a motor brake. A truth table
can be seen in Table 8.

Table 8: DRV8872 truth table
IN1 IN2 OUT1 OUT2 Description

0 0 Z Z Coast

0 1 L H Reverse

1 0 H L Forward

1 1 L L Brake

This motor driver was chosen because is provided high enough current limit for the selected
motors to operate normally and low on resistance to provide more power to the motors and
not generate excess heat. Another benefit of the DRV8872 is that it has a simple interface
of 2 PWM inputs which is relatively easy to interface with from our microcontroller.

26

Table 9: Motor Driver Comparison

Peak Continuous

Part name Current (A) current (A) Control method

LMD18245 6 3 direction, brake

DRV8842 6 3.5 PWM

DRV8829 5 3.5 Phase, enable

L298 3 2 in1, in2, en

DRV8872 3.6 3.5 in1, in2

To measure the speed of the motor, a servo horn with 6 spokes was attached and a beam break
sensor was mounted on the motor with the spoke traveling through the beam. The signal
line of the beam break sensor was connected to an Arduino that measured the frequency by
incrementing a count in an interrupt triggered on a pin change. The ISR just incremented
a count that was printed out and reset every 5 seconds. Some issues arose with this system,
however, since there was a small amount of bouncing on the rising and falling edges, leading
to multiple readings for each beam break. This was solved by placing a 10nF capacitor from
the signal line to ground. Since the line went high 12 times per revolution and the value
was printed out every 5 seconds, the actual printed value happened to be in revolutions per
minute, as shown in 1.

rpm =
1rev

12ticks
∗ 1

5
∗ 60seconds

1minute
(1)

During initial testing, the motor driver was wired up with Vm of 8.4V, logic voltage of 5V, a
10kΩ pull up resistor on nFault, Isen grounded, and the motor outputs connected to a DC
motor (See datasheet [20]). During this test, one of the inputs was connected to an Arduino
Uno, outputting a constant PWM wave using the analogWrite() function with a duty cycle
of approximately 50% at 490Hz. The motor turned, but very slowly and with a high pitched
whine. When a 100µF capacitor was placed from Vm to ground, the motor spun up to full
speed and the whining sound went away.

Further testing revealed a strange behavior when increasing the frequency of the input PWM
signal. The motor spun normally at low frequencies of around 500Hz, but at around 1kHz
the motor started slowing down and making a whining sound. The problem worsened with
increasing frequency. Eventually, this problem was fixed by using a power supply that could
output 3A and adding capacitors from in1 and in2 to ground. With these additions, the
motor driver functioned as expected.

27

3.3.9 Demultiplexer

A demultiplexer was not necessary for the operation of the joint board. However, it simplifies
the motor control signal from two PWM lines to one PWM line and a digital output, speed
and direction. Since it was fairly simple to implement, the additional complexity in the
circuit was added and the software was simplified by only needing to set up a single channel
on the PWM controller.

The original demultiplexer selected for the joint board (SN74LVC1G19) did not output the
correct values to drive the motor driver (DRV8872). The demultiplexer output can be seen
in Table 10 and the motor driver inputs can be seen in Table 8. When the EN pin was
pulled high, both outputs would also be driven high. This effect is undesirable since, when
given a PWM signal, this would cause the motor driver to turn then brake then turn again
as opposed to the desired turn then coast then turn. To solve this problem, a different chip
(SN74LVC1G18 [21]) was selected. The truth table for this chip can be seen in Table 10.

Table 10: SN74LVC1G18 truth table
Inputs Outputs

S A Y0 Y1

0 0 L Z

0 1 H Z

1 0 Z L

1 1 Z H

28

3.3.10 INA332

Figure 16: INA332 Test Circuit

The INA332 instrumentation amplifier is used to measure the force applied to a load cell.
The amplification of this amplifier is given from the datasheet [22] as Equation 2. Since
the load cell needed an amplification of at least 100 to amplify the .03V signal to 3V, the
calculated resistances were R1 = 10kΩ and R2 = 195kΩ. The actual values selected for R1

and R2 were 10kΩ and 200kΩ, respectively. This gives the amplifier an expected gain of 105
V/V. See Figure 16 for the circuit diagram.

G = 5 + 5(
R1

R2

) (2)

The INA332 needs a voltage reference to use as the 0V differential output. Initially, two
1kΩ resistors were used to apply this voltage. This caused the output to change nonlinearly
with the input voltage. The resistors were replaced with a LM358 dual operational amplifier,
configured as a voltage buffer with the input connected to a potentiometer. The INA332

29

inputs were connected to ground and the LM358 buffer potentiometer was adjusted to set
the 0V output to 1

2
Vcc. This voltage was 1.846V. Instead of a potentiometer, two resistors

were used to create this 1.846V offset.

3.3.11 Hall Effect Encoder

An Arduino Uno was used to ensure that the AS5055a absolute Hall effect encoder was
functioning as we intended. Arduino makes rapid prototyping very easy by providing many
libraries and a simple interface to quickly test a device without worrying about the board
not functioning. Using the Arduino SPI library, the correct packets to send to the AS5055a
were verified, along with the correct speed of both the SCLK and CS lines. The AS5055a
datasheet specifies [23] that the chip needs to receive a joint angle request at least every
0.6ms in order for the device to not go into low power mode. With this in mind, a sampling
speed of 1kHz was selected.

In addition to the Arduino testing, tests were run with the TM4C123GH6PM and a test rig.
The encoder test rig underwent significant revision to improve its reliability and accuracy in
position the magnet above the hall effect sensor. The first iteration can be seen in Figure
17 and the second iteration can be seen in Figures 19 and 18.

Figure 17: First Iteration of Encoder Test Rig

30

Figure 18: Second Iteration of Encoder Test Rig, Side View

Figure 19: Second Iteration of Encoder Test Rig, Magnet View

One major problem encountered with the hall effect encoder was very noisy signals. Every
so often, the encoder would read a value that was around 100 counts off of all the other
values read in. This is most likely either an issue with magnet alignment or a noisy SPI line.
In either case, this was largely solved in code with an 8-item circular buffer and exponential
filter with alpha of 0.85. Using these two in conjunction with one another, these sporadic
errors were largely evened out. The value 0.85 was decided on by testing the various values.

An alpha of 0.8 would very occasionally have erroneous readings and an alpha of 0.9 was
very steady, but had a slightly delayed reaction time compared to an alpha of 0.8. An alpha
of 0.85 was a compromise between steadiness and reaction time. All of the data was plotted
and can be seen in Figures 20, 21, 22, 23, and 24.

31

Figure 20: Behavior of the encoder value with alpha of 0.5

Figure 21: Behavior of the encoder value with alpha of 0.6

32

Figure 22: Behavior of the encoder value with alpha of 0.7

Figure 23: Behavior of the encoder value with alpha of 0.8

33

Figure 24: Behavior of the encoder value with alpha of 0.9

3.3.12 TM4C123GXL Launchpad

Selecting a microcontroller was a key part of making the joint control board. Without a
capable MCU, the joint board would not be able to function as we want it to, but buying
the best microcontroller on the market can be costly. The EK-TM4C123GXL [24] is an ARM
Coretex M4f-based microcontroller evaluation kit from TI that has many peripherals to allow
us to control the joint board without buying many external peripherals. The peripherals [25]
on this chip that we will need include a CAN controller, 12-bit ADC, USB controller [26], SSI
controller, PWM controller, and many GPIO. These peripherals were implemented separately
with a test circuit configured to verify that each peripheral was functioning correctly.

Several peripherals were needed to achieve the desired functionality from our microcontroller.
The test board consisted of a potentiometer connected to an ADC pin, an SPI controlled
ADC (MCP3202), the 1:2 demultiplexer (SN74LVC1G18), CAN transceiver (TC332), and
some LEDs.

As a temporary stand in for the AS5055 absolute Hall effect encoder to test the SSI peripheral
(used to verify the functionality of the rest of the system), a MCP3202 12-bit, 2 channel ADC
was used. Both devices use SPI to communicate their sensor data back to the MCU, and the
packets are similar in structure. Some differences between the two that can be changed are
a maximum sample rate for the AS5055 of 1ms as opposed to the few SCLK cycle delays for
the MCP3202. The AS5055 has a maximum SCLK frequency of up to 10MHz at 3.3V [27]
while the MCP3202 has a limit of 900kHz at 3.3V.

The potentiometer was connected to PE0 which was enabled at AIN3. The ADC was set to

34

sample at 1kHz with hardware oversampling 16x enabled. A timer was configured to start
an ADC conversion every millisecond, and a GPIO pin was set to 0 every time the ADC
finished a conversion and set to 1 when the ADC conversion began. The time necessary to
sample once at 16x hardware oversampling was around 5µs.

3.3.13 Printed Circuit Boards

A PCB was made [28] for each of the major subsystems as a more final test. The subsystems
for which a PCB was designed include the motor driver (both with and without a current
sensor), load cell amplifier, CAN transceiver, and TM4C123GH6PM microcontroller. After
these were verified to be working, a Boosterpack compatible design of the whole joint control
board.

The motor driver PCB can be seen in Appendix A.7 and has the demultiplexer and a shunt
resistor for triggering the automatic internal shutoff if the current gets too high. The motor
driver with current sensor has a current sensor integrated in the board and can be seen
in Appendix A.7. The load cell amplifier has the LM358 op amp as well as the INA332
instrumentation amplifier and can be seen in Appendix A.7. The CAN transceiver PCB was
designed that contains the 6 necessary DIP switches, CAN transceiver, and auto-terminate
circuit and can be seen in Appendix A.7. The joint control board Boosterpack has all of
these components in a single PCB that mounts on top of the TM4C123GXL Launchpad and
can be seen in Appendix A.7. All of these PCBs can be seen in Figure 25. A closeup of the
joint control board Boosterpack attached to a Launchpad can be seen in Figure 26.

35

Figure 25: Assembled PCBs of each major subsystem including motor driver with current
sensor (right), CAN transceiver (bottom), load cell amplifier (left), and joint control board
Boosterpack (top)

Figure 26: Joint control board Boosterpack on the TM4C123GXL Launchpad

Small problems existed in some of the PCBs during the first revision. The CAN transceiver
PCB has the VCC and GND pins swapped. Once this problem was identified, the traces were
cut, wire soldered, and the schematic altered for another revision. The load cell amplifier
PCB has a GND pin that was not connected to anything. The GND pin on the INA332

36

amplifier had an unconnected ground pin. This pin was connected with wire, and the PCB
worked as expected.

The joint control board Boosterpack had the CAN transceiver VCC and GND pins swapped
as well as needing the motor direction pin to be moved from one pin to another. This
change came about due to the Launchpad construction. Two of the pins were connected
internally but labeled differently, so the motor direction pin was swapped in code, the trace
was cut, and wire was soldered to the new pin. These changes can be seen in Figure 26.
Another revision of the joint control board Boosterpack was made but not ordered due to
time constraints. A repository containing all of the altium files for these PCBs can be found
in Appendix A.7.

3.3.14 Joint Control Board Code

The joint control board code uses TI’s RTOS for TivaWare [29]. The main reason for
this decision was to gain access to the task synchronization that the RTOS provides to
compartmentalize the code into different threads. A code flowchart can be seen in Figure
27. There are many threads running alongside one another, but they are all fairly separated
in terms of their functionality. Each thread handles a single function, for example there is a
thread for processing encoder data. This thread is released on a 1kHz software timer. The
code repository can containing this code as well as a repository containing testing code can
be found in Appendix A.7.

Figure 27: Joint control board code flowchart

37

3.4 CAN Bus

The CAN bus is the spine of the control system, carrying messages from the base to each
joint and back from each of the joints to the base. Unit tests and careful integration were
done to ensure that this tricky protocol was implemented properly and robustly while leaving
room for future implementation of additional message types.

3.4.1 Determining Joint Placement with Message ID

CAN bus will be used to communicate between the base and joints. A limitation of CAN is
that there is no way of determining the position of a module on the bus. This is important
for controlling a robot arm since joint 1 is controlled differently from joint 2, etc. In order
to determine the position of a joint board on the bus, another method is needed.

The CAN message ID contains 11 bits in the standard frame. We decided to use the upper
6 bits as a joint board number identifier, a number unique to that specific joint board, and
the lower 5 bits as a message type. By doing this, we can tell the base the joint identifier
number and position on the arm to route position update messages to the correct joint on
the arm.

There were a few ways of accomplishing this. One would be to program each joint board with
a different identifier number. This could get very tedious and confusing for having many joint
boards, since we would have to change and track identifier numbers for each unique joint
board. Another option was to use EEPROM to automatically store the identifier number and
upload it via the USB cable used for programming the board. This could get complicated
since we would have to write code to not only read in the identifier properly, but also store
it in EEPROM properly. Instead, we decided to use DIP switches. DIP switches allow us to
input the identifier number in binary and update them on the fly without reprogramming
the board.

Figure 28: 8-channel DIP Switch

On startup, the joint board reads in the identifier bits and stores them in a variable. The

38

Table 11: CAN message ID breakdown

CAN ID Message type

000000XXXXX Reserved

XXXXXX00000 Init Encoder

XXXXXX00001 Init PID P constant

XXXXXX00010 Init PID I constant

XXXXXX00011 Init PID D constant

XXXXXX00100 Position update to joint

XXXXXX10000 Position update to base

identifier is then used as a mask for the CAN message receive IDs. The CAN controller
compares incoming message IDs to the ID mask and ID value set when initializing the
message receive object. When setting the message receive object, we can set the message ID
to the joint board identifier, shifted up by 5 bits, and set the mask to only listen for messages
that match the upper 6 bits. We can set the message receive object to receive messages with
the joint board ID in the upper 6 bits, regardless of message type. Since there are 32 message
objects available on the CAN controller of the TM4C123GH6PM microcontroller, we have
a great amount of flexibility for listening to different types of messages.

3.4.2 Implementing a Simple CAN Bus

The preliminary CAN setup consisted of two TM4C Launchpads, one with transmit code
and one with receive code. The transmitting board was set up for 1Mbps transmission with
message ID = 2, and message length = 1 byte. The message data was a 4-bit value that
incremented every time the message was successfully transmitted. A software delay was used
to slow the transmission rate down to about every second. The receive board was set up
for 1Mbps transmission with message ID = 0, message ID mask = 0, and message length
= 1 byte. Setting both the message ID and mask to 0 signals the controller to accept any
message. 4 LEDs were set up to see the CAN message data visually.

We had several problems getting this simple example to work. Initially, one of the jumper
wires used for the CAN bus was broken, causing the CAN Hi lines on the transceivers to
not be connected. The next problem was that the sample code provided by TI was not
correct. When the CAN controller receives a valid message, it signals the processor with an
interrupt. When a receive interrupt is processed by the example code, the interrupt flag is
cleared and then the message data is read in. The problem is that when the interrupt flag
is cleared, the new data bit that signals that there is valid data available is cleared. To fix
this, the operations must be switched so that message data is read in before the interrupt
flag is cleared. Once this fix was applied, CAN communications were functional.

During the debugging process, a logic analyzer (Saleae 8-channel logic analyzer) was used

39

to verify correct transmission of CAN packets. The logic analyzer software can be seen in
Figure 29 decoding a packet with ID 2, data length 1, data byte equaling 7, and a proper
ACK signal. The x marks a bit that was inserted to keep the timing consistent among the
transceivers. Additionally, Figure 30 shows the ACK bit on the RXD line (channel 2) and
no ACK bit on the TXD line (channel 0).

Figure 29: CAN bus as viewed in the logic analyzer software

40

Figure 30: CAN TXD (channel 0) and RXD (channel 2) in the logic analyzer software

3.4.3 CAN Termination

CAN specification states that the CAN bus needs to be terminated on both ends by 120Ω
resistors. The purpose of these resistors is to help mitigate signal reflections as well as
pull the CAN Hi and CAN Lo lines together when the bus state is recessive. Since the
resistors need to be at either end of the CAN bus, using normal resistors requires a static
bus configuration. Our system will not necessarily have a fixed configuration, though, so a
different solution was needed.

One method was to require the end user to attach a unique component, such as an end
effector, at either end of the bus. This would effectively mean that an arm would always
need a base module and an end effector to function properly. This rigid definition was
not something we wanted to enforce on the end user, so instead we came up with a auto-
disconnect circuit to disconnect the terminating resistor if another joint is added to the
arm.

The way this works is through a MOSFET switch, seen in Figure 31. The MOSFET (part
number BS170) drain and source connect the CAN Hi and CAN Lo lines through a 120Ω
resistor and the gate is pulled up to VDD through a 1lΩ resistor. When the next joint is
connected, the gate is connected to ground and the MOSFET is opened, disconnecting the
CAN Hi and CAN Lo lines. When there is no joint connected, the MOSFET is closed,
effectively acting as a 5Ω resistor in series with the 120Ω resistor. Two of these new 125Ω
resistances in parallel would lead to a resistance of 1

1
125

+ 1
125

= 62.5Ω is within the tolerance

41

of the CAN specifications which states that the resistance must be between 50Ω and 70Ω.

Figure 31: CAN bus auto-terminate circuit

3.4.4 Position Updates

The control system supports up to 6 joints at a time. In order to have a constant transmission
speed for every combination of joints up to and including 6 joints, 6 joint update packets are
sent every update. When fewer than 6 joints are used, the remaining packets are transmitted
but never received. This is one place where using the CAN bus helps, since these messages
don’t need to be received by a specific receiver. Only the ACK bit needs to be sent when no
errors are detected with packet structure, but this can be sent by any received.

Since all 6 joints were being updated every time, the minimum update time is the time
it takes to transmit 6 CAN packets. This time was measured to be about 0.8ms with a
transmission speed of 500kHz using the logic analyzer and can be seen in Figure 32. The
joint update and response were both sent at a rate of 20Hz, 50ms apart, and can be seen in
figure 33.

42

Figure 32: Position update from the base module

Figure 33: Position update from the base module with response from a joint

43

3.5 Base Module

The base module serves two main purposes. The first is to translate serial UART packets
from the computer to the CAN packets for the joints. The second is to provide power and
communication buses for the entire system. These two parts are crucial to the functionality
of the arm.

3.5.1 Overview of Base Module Design

The base module is pretty simple from a hardware standpoint. It mostly consists of two
parts, the microcontroller and the power supply. A CAN transceiver is needed, in addition
to the microcontroller, but after that there is no more hardware except connectors. A block
diagram can be seen in Figure 34.

Figure 34: Block diagram of the base module

3.5.2 Base Module Code

The base module is also running TI RTOS for TivaWare boards. The main reason for this
was to multithread the code to simplify programming [30]. By having multiple threads, the
code can be compartmentalized into sections that handle different parts. Figure 35 shows the
code flowchart. There are two main states, initialization and runtime. During initialization,
all of the constants for each joint are loaded in. These include CAN ID, encoder offset, and
PID constants. Once all 6 joints have been initialized, the code transmits that information
on the CAN bus and switches into the runtime state.

In the runtime state, the base module reads in joint angle updates from the computer,
then sends them along to the corresponding joint. The joints then send back their actual
joint angle, which is parsed back into serial and sent to the computer. The code repository
containing all of this code can be found in Appendix A.7.

44

Figure 35: Base module code flowchart

3.5.3 Power Rails

Since the arm is of a variable size, the power rail must also be modular enough to accom-
modate this. To solve this issue, a modular power rail was designed, and a diagram can be
seen in Figure 36. The main rail is made up of 16 AWG wire and the connectors are rated
for 15A continuous current draw. The power rail and CAN bus are very similar, but with
smaller amperage JST connectors and thinner, 22 AWG wire.

Figure 36: Modular power rail for motor power

45

3.6 Arm Structure

Arm structure is not something we wanted to fully define, since the end user is supposed to
create their own arms, but there were some basic components that needed clarification. The
first of these is that every arm must begin with a base module and have some combination
of up to five additional joints connected. This allows the end-user flexibility in how they
want to construct the arm without allowing them to add too many joints.

3.7 Software Application

The code library is another important part of what we did to make our arm work. It controls
all of the electrical components via the sending of packets out to the base module over a
Serial UART line. It handle a lot of the more involved calculations for controlling the arm
like the forward and inverse kinematics. The repository containing all of the software code
can be found in Appendix A.7.

3.7.1 Maven

Maven is a utility for Java-based projects that seeks to provide a uniform build system for the
project. It accomplishes this by defining a project object model and a set of plugins that each
Maven project shares. Therefore, Maven can provide a streamlined build environment for
every instance of the project, allowing users to have the same build process across multiple
different devices and environments. Maven could be compared to a flexible template for how
a project should be arranged and what files should be included. We chose Maven for our
Java project because it makes it much easier for our team to collaborate on the front-end
side of the code. It also allows us to package into our program libraries that we used in our
project so that there are fewer dependencies that the end-user must download in order to
use our software [31].

46

3.7.2 Program flow

Figure 37: UML Diagram showing different classes and their relations

The front-end program running on the PC is written in Java. We used JavaFX to make the
GUI. We chose to write this part of the program in Java because of the speed and reliability
of a language that has many libraries and excellent Interactive Development Environments.

The main class starts the JavaFX Project. The JavaFX Project holds an list of joints which
lists all the joints, which contains data about how the arm is configured. Each Joint object
makes sure to tell the Comms object that it’s time to send a message to the actual joint
whenever new information about itself comes in. When the user enters new information about
the arm into the GUI, the GUI’s controller tells the joint object to change that information
about itself. For example, if the user changes the setpoint of Joint 2 from 90 degrees to 112
degrees, the GUI will tell Joint 2 that its position has been updated to 112. Joint 2 will,
upon seeing that its position has been updated, ask the Comms object to convey the new
position information to the arm’s base board.

The Joint object does not contain a Comms object inside itself. Rather, there is a single
Comms object for the entire program to use. The Comms object follows the Singleton design
pattern. A singleton is a class which can only ever be instantiated one time. Singletons are
often used to hold configuration information about a program because they guarantee that if

47

one object makes changes to the singleton’s settings then any other object that subsequently
asks for those settings will get back the most up-to-date version.

In this case, it makes sense to use a singleton because we want to guarantee that there’s only
a single place in the code which tries to access the serial port at any given time. Another way
to accomplish this same goal would have been to move all of Comms’s functions to inside
the JavaFX controller. There is only one controller object. Arranging the program this way
would have violated Java’s design principles and would have made writing the code a battle
rather than an art form.

Each joint would need to hold a reference to the JavaFX controller inside itself. Referencing
such an architecture-specific piece of the program within the core of the program’s logic
would be bad for future portability of the code.

3.7.3 Serial Communication

Serial communication is a very common protocol used to transmit data between a maximum
of two devices over two lines, Rx and Tx. Serial communication is already available on
our microcontroller through its universal asynchronous receiver/transmitter (UART). This
device translates the Tx and Rx line into a parallel data bus that can interface with our
microcontroller autonomously. The Java code interfaces directly with this UART over a
USB line connected to both the Tiva board and the computer. The Java code holds a class
called Comms which opens a specified serial port upon instantiation. This is implemented
through the use of NRJavaSerial [32], a library created by Kevin Harrington used for serial
communications over USB. Upon instantiation of the Comms singleton, we open the specified
serial port on the computer and begin polling it at a baud rate of 115200 bits/second. The
enables the port to send and receive data so that the computer can send and receive packets
from our base board. The Java code holds a buffer which acts as a First in First Out (FIFO)
queue that is constantly updated when new data is received so that we can read in data
that is on the serial line [33]. Since we are only able to send individual bits at a time across
the serial line, we need to encode and decode the data that we send. We have to encode
the data from ASCII strings into their decimal equivalents before sending them out over the
serial line. Then upon receipt of data we must decode the data before it is able to be built
into a string which represents one packet. Once we have individual packets available to us as
strings, we can easily use Java’s string comprehension functionality to update the necessary
parts of the code and properly encode data for sending [33].

3.7.4 Mutltithreading

Multithreading is the process of creating new threads in order to run code in parallel. Cre-
ating a new thread in Java involves instantiating a new thread object from Java’s standard
libraries and passing in the relevant information to the Thread through the constructor [34].

48

The reason that we needed to use a thread is the need for a mode where the computer
communicates over Serial, writing out and reading in data that it receives at a constant rate.
The problem with this style of coding is that it requires a while loop which continuously
executes code that would normally block all other pieces of code from running. Since we need
to concurrently run our GUI and modify the values that we are sending to the arm based on
GUI inputs, we cannot have the processor locked up all the time sending and receiving serial
communications. Therefore, we created a new thread where serial communications could
be handled on an entirely separate process than the GUI. We create this thread after the
initialization of our arm has been completed and start it when the arm has acknowledged
that it is ready to begin communications. Therefore, we are able to uphold constant serial
communications without causing our GUI to crash mid-operation. Doing this allows us to
move the joint sliders pictured below and have them constantly send out new messages to
the arm telling the selected joint to turn to the new position.

Figure 38: Image of the GUI tab which adjusts the setpoint for joints

3.7.5 Saving of Configuration

In order to store the information that we need to be persistent between different instances of
the application, we used a library called Gson made by Google [35]. This library’s primary
use is to take data and store it in a .json file, a kind of simplistic database. We used this
library to save the joint object which were the data containers about the configuration of
the arm. All of the saving and loading is done via the GUI so that the user can either load
information about an arm themselves, or they can change the values using the GUI text fields

49

and save a new configuration when it needs updating. Doing so allows the user to always be
able to either modify and update the constants inside the data container that is the Joint
object and have those objects be saved and loaded during each runtime of the application.
Pictured below is the GUI tab which stores all of the constants for the arm such as encoder
home values and PID constants, as well as has buttons to interface with the saving, loading
and startup of our program.

Figure 39: GUI config tab with save and loading

50

4 Testing

4.1 Acceptance Criteria

Acceptance criteria for this project will be broken into 5 major categories: Joints, End
effector, Base, Software application, Code library

4.1.1 Joint Board

• Receive initialization information and joint angles from base

• Moves joint to angles

• Send position updates back to base

• Pass power and signal buses

• Capable of powering logic without powering motors

• Control board is the same for each joint

• Has CAN Auto-Terminate Circuit

4.1.2 Modify RBE3001 Arm

• Remove control system and replace with our own

• Add a link to the existing arm

• Replace currently implemented servo motors with brushed DC motors

4.1.3 End Effector

• Receives power and signal buses

• Keyed connection

• One input connector

• Terminate CAN bus

• Uses a joint board

51

4.1.4 Base

• Sends and receives joint angles to/from Personal Computer (PC)

• Receives initialization information from PC, then sends it to all joints on signal bus

• Outputs power and signal buses

• Converts AC wall power to system power bus

• Power supply and arm on/off switch

• Capable of powering logic without powering motors

• Array of indicator LEDs

• Terminate CAN Bus

4.1.5 Software Application

• Sends configuration information to the Code Library

• Sends individual joint angles or pose commands to robot through the Code Library

• GUI to adjust current arm configuration parameters

• Record and play back sequence of poses

• Acts as a front-end for code library

• Stretch goal: 3D model of arm moving in real-time

4.1.6 Code Library

• Receive configuration information from user, selects control constants, sends to base

• Able to control the robot: Receive joint status, send joint angles

• Calculate joint angles using kinematics

• Stretch Goal: Written so that it can interface with multiple languages

52

4.2 Motor Driver

In order to determine whether the performance of the motor driver was dependent on input
frequency or other factors, the input frequency was increased again from 200Hz to 10kHz.
This time, the motor performed much better than previous times where it stayed at a
constant RPM at different frequencies. The RPM actually increased with an increase in
frequency, as can be seen in Table 12. With this in mind, we decided to use a PWM
frequency of 1KHz as a compromise between the higher resolution that comes about from
lower frequencies (there are more timer counts between periods) and the higher rotation
speed that would come from a high-frequency PWM system according Table 12.

Table 12: PWM frequency input at 50% duty cycle vs motor speed

PWM Frequency (Hz) Motor RPM (rpm)

200 80

400 79

1k 81

2k 82

5k 86

10k 90

53

5 Conclusion

The goal of this project was to create a proof of concept for a platform that can prototype
multiple different robot arms. We feel that we accomplished the most of the goals defined
in the Project Deliverables section through our proof of concept. This project spanned a
broad swathe of engineering disciplines and as such required lots of work in each of the three
”pillars of robotics”. Mechanical engineering, electrical engineering and computer science
all played important roles in the design and implementation of our robotic arm. We made
use of our respective backgrounds in this area in addition to a large amount of self-study
required to fully realize our goal.

From the start of this project, we knew that it would not be a trivial accomplishment to
make a modularly reconfigurable robot arm. We defined the goals that we wanted to achieve
and tried to clearly lay them out in the Project Deliverables section. Very few of our ideas
came from external sources because we wanted to create something novel. It was clear to us
at the beginning of the project that if we were to meet this goal, we would have to approach
many complex engineering problems and solve them using innovative and creative methods.
In the end, we were able to reach most of our goals, but not without running into many
errors which can be expected with a project of this scope. There were a few roadblocks
which impeded progress and led to executive decisions to change how we approached certain
problems. Principal amongst these was a project redesign in response to a change in project
administration early B term. This redesign was not just a test of our dedication to the
project but our dedication to our goals. It turned out that due to the shortened time span
which we had to complete this project, we had to reevaluate some goals and scale others
back so that they were achievable.

5.1 Future Work

In possible future iterations of this project, we urge teams who decide to take up this project
to follow our goals outlined in the Project Deliverables section. We put great thought into
these goals in order to make them fully encapsulate what we want as an end-deliverable
for the project. All of this careful planning gave us a good outline for what we should
be accomplishing in the project and therefore should be utilized by subsequent iterations to
begin working more quickly. Overall, we would urge teams to expand more in the mechanical
aspect of the arm. We believe it would be more beneficial to future projects to use the
current electrical system or complete the design and fully integrate the TM4C123GH6PM
microcontroller with the joint board, rather than start over with a new control system.
There is also quite a bit of room to expand in the software application area, implementing
more types of controls and making the GUI more intuitive and easy to use. Additionally,
integrating inverse kinematics with the software would be good. By avoiding our mistake of
spending so much time defining what we wanted out of the project, subsequent teams should
be able to make use of the work we did over this past year.

54

References

[1] . F. STU, “Robotick rameno abb irb 120,” February 8, 2016.

[2] RobotWorx, “Robotworx: Expert industrial robot integrator.” www.robots.com. Ac-
cessed on September 11, 2017.

[3] Traclabs, “Reconfigurable modular manipulator (rmm).”
https://traclabs.com/projects/rmm/. Accessed on Sep 11, 2017.

[4] D. Calzada-mariaca, M. Preston, and Y. Zhou, “Modular robotic arm,” tech. rep., April
26, 2015.

[5] igus, “robolink robot components.” www.igus.com/robolink/robot. Accessed on
September 6, 2017.

[6] P. Cain, “Pot vs. sensor,” Electronic Products, pp. 44,46, 2010.

[7] B. Sensors, “Choosing the right sensor technology.”
http://www.beisensors.com/customer-resources/bei-choosing-the-right-sensor-
technology.html. Accessed on October 13, 2017.

[8] M. Howard, “Choosing the right position sensor.”
http://www.zettlex.com/articles/choosing-right-position-sensor. Accessed on Septem-
ber 17, 2017.

[9] S. Ziegler, R. C. Woodward, H. H. C. Iu, and L. J. Borle, “Current sensing techniques:
A review,” IEEE Sensors Journal, vol. 9, no. 4, pp. 354–376, 2009.

[10] J. Patrick, “Serial protocols compared,” Embedded Systems Programming, 2002.

[11] N. Murphy, “Can we talk?,” Embedded Systems Programming, 2003.

[12] C. Watterson, “Controller area network (can) implementation guide,” tech. rep., Analog
Devices, February, 2012.

[13] S. Corrigan, “Controller area network physical layer requirements,” tech. rep., Texas
Instruments, January 2008.

[14]

[15] D. Systems, “Solidworks.” https://www.solidworks.com/.

[16] Ultimaker, “Ultimaker cura software.” https://ultimaker.com/en/products/ultimaker-
cura-software.

[17] Lulzbot, “Lulzbot taz 6.” https://www.lulzbot.com/store/printers/lulzbot-taz-6.

[18] Texas Instruments, Tiva TM4C123GH6PM Microcontroller Data Sheet, 2014.
SPMS376E.

55

[19] Allegro Microsystems, High Accuracy, Galvanically Isolated Current Sensor IC, 2015.
Rev. 2.

[20] Texas Instruments, DRV8872 3.6-A Brushed DC Motor Driver With Fault Reporting, 7
2016. Rev. SLVSCZ0C.

[21] Texas Instruments, 1-OF-2 NONINVERTING DEMULTIPLEXER WITH 3-STATE
DESELECTED OUTPUT, 7 2012. SCES406K.

[22] Burr-Brown Products from Texas Instruments, Low-Power, Single-Supply, CMOSIN-
STRUMENTATION AMPLIFIERS, 9 2001. SBOS216B.

[23] austria micro systems, AS5055A Low Power 12-Bit Magnetic Position Sensor, 10 2014.
Rev. v2-06.

[24] Texas Instruments, Tiva C Series TM4C123G LaunchPad Evaluation Board User’s
Guide, 4 2013. SPMU296.

[25] Texas Instruments, TivaWare Peripheral Driver Library, 7 2016. SPMU298D.

[26] Texas Instruments, TivaWare USB Library User’s Guide, 7 2016. SPMU297D.

[27]

[28] Purdue University, PCB Design Specifications, 7 2011. Rev. 1.0.

[29] Texas Instruments, SYS/BIOS (TI-RTOS Kernel) User’s Guide, 5 2017. SPRUEX3T.

[30] Texas Instruments, TI-RTOS 2.16 for TivaC Getting Started Guide, 2 2016.
SPRUHU5D.

[31] A. M. Project, “Maven.” https://maven.apache.org/what-is-maven.html. Accessed on
March 15, 2018.

[32] NeuronRobotics, “Nrjavaserial.” https://github.com/NeuronRobotics/nrjavaserial. Ac-
cessed on April 20, 2018.

[33] Sparkfun, “Serial communication.” https://learn.sparkfun.com/tutorials/serial-
communication/all. Accessed on April 16, 2018.

[34] GeeksforGeeks, “Multithreading in java.” https://www.geeksforgeeks.org/multithreading-
in-java/. Accessed on April 15, 2018.

[35] Alphabet, “Gson.” https://github.com/google/gson. Accessed on April 15, 2018.

A1

Appendix A Early Project Iteration

A.1 Introduction

The goal of this project is to create a cost-effective, modular kit of parts that can be used
to create a robotic arm. In this paper, we will be using the word ”Joint” to refer to a piece
of the arm that has a motor, and we will use ”Stick” to refer to the part of an arm that
connects two joints. The joints provide degrees of freedom for the arm while the sticks space
out the joints. Joints can connect to joints and sticks, but sticks can only connect to joints.
End-of-arm tools can be swapped out, but not during operation. In addition to a physical
kit, we will create a GUI for easy configuration and basic control of the arm. The base will
communicate with a computer running control code either through the software application
or code library.

We aim to construct our kit with smart joints and dumb sticks. This will be
accomplished by designing a controller board that has all the necessary components to control
one motor. This controller board will be placed on each joint and connected to a main
processing unit in the base that handles control for the entire arm. The full set of components
for this kit are outlined in Appendix A.7.

We will create a software application to interface with a constructed arm. The user
will input how they have constructed their arm into this application and then be able to
do some simple control. Another feature of this application will be the ability to record a
series of poses for the arm to perform. In addition to this software, we will also create some
programming libraries to allow users to control the arm with an actual program.

In this document, we will outline some existing robot arms and highlight the differences
between these arms and our arm kit. Next, we discuss what work there is to be done on
this project. After discussing the work to be done, we will state how this work will satisfy
the capstone design requirements for each of the three disciplines represented by our group
members. Then, we state the constraints we expect going forward with this project. Next,
the acceptance criteria for any deliverables at the end of this project will be outlined. Finally,
we will state an estimated timeline for this project.

A.2 Modular Robotic Arm

This project aimed to close the market gap between inexpensive toy robot arms and expensive
professional grade industrial arms. The group aimed to do this by designing a single joint
that could be used to assemble a robot arm. Ultimately, a single DOF joint that was heavy,
difficult to manufacture, and expensive to produce was designed and constructed. In their
future recommendations section, the group stated that the goal of designing a modular robot
arm was possible but their design was not the solution [4].

A2

A.2.1 Our Robotic Arm System

Our modular robotic arm kit aims to offer a completely different experience compared to
existing products and projects. The system maintains a low cost while providing a versatile
platform for beginner engineers or rapid prototyping professionals. This is achieved by
avoiding expensive proprietary software and subtractive manufacturing; favoring off-the-shelf
parts, 3D-printed structures, and freely available software. Providing custom-built software
for controlling the arm creates a plug-and-play environment suitable for most any skill level.

A.2.2 Control board

The control board is meant to be implemented as an independent module that interfaces with
a main controller module. Its tasks are to send and receive data from the main controller
and control the position of a single motor. As such, the main factors that must be taken into
account when designing the control board are methods of measuring joint position and motor
torque, as well as communicate with an off-board controller. Motor torque is proportional
to motor current. Therefore, the motor torque will be calculated from the measured current
through the motor.

A.2.2.1 Joint Position Detection
Angular position sensing must be used to determine the joint angle of the motor. There are
several commonly used methods of determining angular position, including potentiometers,
optical encoders, and Hall effect sensors [6–8]. A comparison of the different angular sensors
can be seen in Table 13.

Potentiometers are very commonly used to measure angular position due to their simple
implementation and low cost. In addition to being low cost, potentiometers provide high
linearity and accuracy [8]. Although generall robust, these sensors do not lend themselves
well to many, rapid adjustments or mechanical vibrations. Both of these significantly reduce
the lifespan of the sensor [6,8]. The situations potentiometers excel in are those that require
an easily adjustble voltage at low to medium adjustment frequencies, such as settings nobs
on control panels or analog reference voltages as trim potentiometers [6].

Hall Effect sensors are less commonly used, and consist of a bipolar magnet rotating above
a Hall effect sensor with the axis of rotation perpendicular to the plane of the sensor. Since
there is no contact between the rotation and the sensor, these types of sensors have very long
lifespans [6]. Unfortunately, these sensors do not provide high resolution since they are sus-
ceptible to electromagnetic interference and temperature, and also have some hysteresis [8].

Optical encoders are another method of measuring angular position. These sensors con-
sist of a beam of light that shines on a slotted disk so that as the disk rotates, the slots
break the light beam. These sensors can have very high resolutions and are resistant to

A3

shock and vibrations [7]. Like magnetic sensors, these sensors have very long lifespans since
there is no mechanical connection on the sensor [6]. Unfortunately, these sensors are suscep-
tible to foreign particles blocking the light beam from sensing the slots and causing incorrect
readings. The most common kind of optical encoder, the Quadrature encoder, does not
sense absolute position; it can only read relative position, meaning that a quadrature en-
coder would need to be combined with some other sensor in order for the robot to be able to
sense its joint angles correctly. Other encoders called Absolute Encoders do not have trouble
reading absolute position, but they are prohibitively expensive. [8].

Table 13: Comparison of different angular position sensors

Sensor Cost Linearity Accuracy Lifespan Notes

Potentiometer $ Depends
on ADC

Moderate Short Repeated
motion at the
same angle
can lead to
failure

Encoder $$$ Very
High

Very High Long Cheap ones
can’t sense
absolute
position

Hall Effect
Sensor

$$ High High Very Long Requires spe-
cial attention
to surround-
ing magnetic
fields when
mounting

A.2.2.2 Current Sensing
Current sensing can be done in many ways. The most common way is by using a shunt
resistor and an amplifier. A variant of this method is to use the resistance inherent in the
wires or traces as a shunt resistor. Another common method of current sensing is to use a
Hall effect sensor [9].

Shunt resistors are used in either high side or low side configuration. They are simple
to integrate, low cost, and capable of measuring both AC and DC currents. The downsides
to this method are relatively large insertion loss that increase exponentially with current,
large thermal drift that must be compensated for, as well as large system noise from am-
plification. There are two main implementations of shunt resistors, high side and low side [9].

Low side current sensing means that the shunt resistor is placed in the return current path.
This method is simpler to implement since the voltage on the shunt resistor is with respect

A4

to ground, so it can simply be amplified. Some problems exist with this, however, since the
resistor separates the current path from ground. In this configuration, the circuitry used to
measure the voltage on the shunt resistor will not report a fault if the system experiences a
short circuit [9].

High side current sensing means that the shunt resistor is placed on the forward current
path. This configuration is able to detect short circuit faults, an advantage to using this
configuration over low side current sensing. An additional advantage is that the return cur-
rent path is directly connected to ground. The downside to high side current sensing is that
it requires a differential amplifier since the voltage across the shunt resistor is very close to
supply voltage. [9].

Trace resistance sensing is very similar to using a shunt resistor, but there are some slight
differences. Since there isn’t a way to control the resistance of a copper trace, the system
must be calibrated after being assembled. Another key difference is the amount of amplifi-
cation needed. Copper traces have very low inherent resistance, so a very large amplification
must be used. This large gain imposes a limitation on the maximum measurable bandwidth
set by the gain bandwidth product of the amplifier [9].

Hall effect sensors are commonly used to measure current as well. These sensors can measure
current intrusively or non-intrusively, as well as in open loop or closed loop configurations.
Non-intrusive devices measure current by wrapping wire around a toroid that focuses the
magnetic field on a sensor in a break in the ring of the toroid, or placing the Hall effect sensor
on top of the current to be measured. These work fairly well, but are very susceptible to
noise from magnetic fields upwards of 10cm away. Methods of shielding these sensors exist,
but are complicated and expensive to implement. Intrusive sensors route current through
the device and measure the generated magnetic field with a Hall effect device near the cur-
rent path. Open loop applications take the voltage generated on the Hall effect sensor and
condition it to whatever output is needed. Closed loop sensors reroute the sensed current
to a secondary coil that is used to generate a proportional current to the measured current.
This proportional current is then used as feedback to reduce error [9].

Insertion loss caused by these sensors is very small. Since these sensors measure current
by induction, they can only measure current in a specific frequency band, and high currents
at high frequencies can cause these devices to overheat. Most of these frequencies are DC
to some upper limit determined by the physical characteristics of the sensor, usually around
100kHz. These sensors cannot be used on their own, since they have an inherent voltage
offset, called misalignment voltage, and suffer from high thermal drift. Integrated ICs that
compensate for these factors are fairly widespread, allowing for very easy integration [9].

A.2.2.3 Off-Board Communication
There are many types of communication protocols that could be used to communicate with
the main controller. Common protocols include SPI, I2C, RS232, RS485, and CAN. Of
these, SPI and I2C are meant mostly for chip to chip communication while RS232, RS485,

A5

and CAN are all meant for module to module communication [10]. A comparison of these
protocols can be seen in Table 14.

SPI is a full duplex, synchronous serial link consisting of 3 lines, SCLK, MOSI, MISO,
and an additional line for every peripheral, CS. Data rates of up to 10MHz or more are
possible due to the elimination of addressing with the CS lines and dedicated clock line [10].
Using SPI for controller-to-controller communication presents a problem, however. Since the
data transfer rate is controller by the master, the slave could fall behind on processing data.
This can be avoided by only transmitting data one direction at a time. Typically, SPI is
limited to onboard communications since its signal degrades fairly quickly over distance [11].

I2C is a half duplex, synchronous, multi-master bus consisting of a clock and data line.
Data rates of up to 3.4MHz can be reached, and each device has a unique address or mul-
tiple addresses to avoid overlap. An interesting aspect of I2C is clock stretching. Clock
stretching is when a slave pulls the clock low to stall the master until it has enough time
to process information. Typically, I2C is limited to onboard communication since its signal
degrades fairly quickly over distance [10].

RS232 is a common full duplex interface that consists of two transmitter/receiver pairs.
The protocol limits communication to 1 sender and 1 receiver per line. Data rates of up to
115.2KHz are possible at a range of up to 200ft. Data is typically sent in 8N1 format with 8
data bits, no parity bit, and 1 stop bit or 7E1 format with 7 data bits, even parity bit, and
1 stop bit [10].

RS485 is a full duplex multi-master protocol that consists of up to 32 transceivers on the
bus. Data transmission rates of up to 10Mbps and distances of up to 4000ft are possible.
Transmission can be reduced to half duplex by removing one transceiver at each node. Data
is sent much the same as in RS232 with either 8N1 or 7E1 being common formats [10].

CAN is a half duplex multi-master bus protocol that allows for many nodes to connect
and send data on the two transmission lines. Messages are sent with unique addresses that
also act as arbitration for bus priority. Packets are fully defined with 11 or 29 bit addresses,
0-8 bytes of data, and some additional control and verification bits [12,13]. Data rates of up
to 1MHz and distances of up to 3000ft are possible. Multiple error checks are implemented
at the hardware level since packets are predefined, allowing the controller to load a transmit
buffer and let the transceiver send a message or wait until a receive buffer is full before
reading the message [11].

A6

Protocol Max Distance Max Speed Wires needed Notes

SPI Within circuit board 10MHz SCLK,
MOSI, MISO,
+ 1 CS for
each node

No addresses
needed

I2C Within circuit board 3.4MHz 2 Address in-
cluded in
message

RS232 200 feet 115.2KHz 4 Can include
parity bit

RS485 4000 feet 10Mbps 4 Can transmit
fast or far but
not at same
time

CAN 3000 feet 1MHz 2 Resilient sig-
nal

Table 14: Comparison of off-board communication protocol performance

A.3 Description of Work

There are many different ways to accomplish the goals we set. We decided to design sev-
eral ”smart” joints, ”dumb” sticks of various lengths that passes signals through from joint
to joint, changeable end of arm tools, a base for routing messages to each joint as well as
providing power to the entire system, and a computer for performing complex real-time cal-
culations. We plan to design every component listed in the kit of parts found in Appendix
A.7.

We decided on designing two different joints (twist and rotation), with keyed connectors
so they can connect in one of four orientations. Two kinds (straight and right angle) and
three different lengths (75mm, 150mm, 225mm) of sticks will be designed as well. Joints can
connect to sticks and joints, but sticks can only connect to joints. As such, the connectors
will have to be designed with this in mind. Each connector will have to make a strong
physical connection as well as a solid electrical connection to send power and data through
to each Joint.

Each joint will have a control board that allows it to connect to the main communica-
tions line running through the system and control the motor on the joint. This board will
have all of the necessary components for controlling one motor and communicating with the
base. The base will act as an interface between the computer that is performing all of the
complex calculations and the joints that are controlling their positions. The computer will

A7

need to have a USB port and be able to run Python programs.

We will develop some software for controlling the arm with a GUI that will run on the
user’s computer. This software will have a simple control interface for moving the arm, and
some configurable settings to act as inputs for the kinematics equations. In addition to this
we will develop a code library for end users to interface with in their own code.

A.4 Methodology

A.4.1 Kit Components

We decided to break a robot arm down into its component parts. We came up with the main
parts of our kit: sticks, joints, a base, and end of arm tools. This breakdown was to try
to maximize modularity while keeping the pieces relatively simple. By separating the joint
from the stick, we can have multiple sticks, which are easy to manufacture, of different types
and lengths to offset a few types of joints, which are difficult to manufacture. The base is
necessary to send and receive computation control from a computer. Multiple end of arm
tools are needed to provide functionality to the arm besides movement.

A.4.2 Connectors

The connectors are vitally important to the functionality of this project. A good connector
will need to make solid mechanical and electrical connection between parts while also provid-
ing the ability to quickly connect and disconnect parts. In addition, the type of connection
we choose will affect the modularity of the system as a whole. The important things to note
while deciding on criteria for the connector are how/if they will be keyed, how they will pass
electrical signals, where exactly the connector will be on the joints, and how the connector
will be secured.

A.4.2.1 Connector Position on Joints
Connector position is the first major design choice we had to make. They can be positioned
either on the axis of rotation of the joint or off the axis of rotation of the joint, and selecting
one method versus the other vastly changes the way that the connector would work. Putting
the connector ON the axis of rotation means that the connector would connect to the joint
axis directly, while putting it OFF the axis of rotation means the connector would connect
to a piece that is connected to the joint axis.

The advantage that placing the connector off the axis of rotation has over placing the con-
nector on the axis of rotation is that the joint will be a solid unit. Having the joint be a solid
unit seems a better design choice than splitting it in half, so we decided to go with putting

A8

connectors off the axis of rotation.

A.4.2.2 Securing the Connection
One of the important aspects of a modular system is how easy it is to connect or disconnect
parts to or from that system. The main options for quick connections are requiring no ad-
ditional hardware, requiring a single screw, and requiring slots and pins.

The most obvious solution is to connect parts with no additional hardware required. This
creates a very complicated design challenge since using no tools means the user would have
to secure any connection with just their hands. This can weaken the joint mechanically. The
advantage to this method has is that it is fairly quick.

A step down in the simplicity solution is to require a single screw to join two pieces to-
gether. This is still simple and pieces can be connected somewhat quickly, but does require
a tool to connect pieces. The main advantage is that screws hold parts together very well
and the mechanical integrity of the connection should be held.

Another option is to design the joints and sticks in such a way that they slot together
and are held in place with pins. This requires additional hardware, but no tools. This
should keep pieces together fairly well while still allowing connections to be made quickly
and easily.

A.4.2.3 Keying the Connector
Keying the mechanical connection between joints, sticks, and the base changes how modular
the system is overall as well as how many unique components will be needed in each kit. Not
keying the connection is not an option since this would allow the user to connect the pieces
together in any orientation and the orientation needs to be known in order to accurately
control the arm. This leaves two main options for the connections: keying for 1 orientation
and keying for 4 orientations.

Keying the connectors for 1 orientation means that three different kinds of revolute joint
must be design to fully represent the ways a revolute joint can move in 3D space. Essen-
tially, this would mean each different joint would rotate about a different axis relative to the
connector axis. The modularity of the kit is impacted quite negatively by doing this, since
each joint can only connect in one way and therefore cannot be used where another type of
rotation is needed. This design is quite simple, however, since the connectors don’t need to
be rotationally symmetric about any axis.

Keying the connectors for 4 orientations presents a slightly more challenging design problem,
however. The connectors would need to be evenly rotationally symmetric 4 ways about the
axis of connection in order for this design to work. 4-way keyed connectors will bring the

A9

number of unique joints down from 3 to 2. Doing this does help with the modularity of
the design, though, since the rotational joint can be implemented to rotate in either axis
perpendicular to the connector axis. A disadvantage of this configuration is an increase in
complexity.

Since additional complexity when designing is less important that the overall modularity, we
decided to go with a 4-position keyed connection. This allows a single rotational joint and
only 1 right angle stick design so that the user can construct many different kinds of arms
from these simple parts.

A.4.2.4 Passing Signals
Connectors also need to pass the power and signal buses through from joint to stick or joint.
This can be done in one of a few ways, including: rigid mechanical connectors, loose wires
running along the outside of parts, wires running inside of parts, and wires connecting in-
ternal bus bars.

Rigid mechanical connectors for passing signals would make connection when parts are con-
nected together. These connections would have to be evenly rotationally symmetric 4 ways
about the axis of rotation since the mechanical connectors are. A disadvantage of these
connectors is that they rely on the integrity of the mechanical connection to pass electrical
signals properly. If the connection flexes or bends too much then the electrical connection
could break even though the mechanical connection is still mostly intact. Another disadvan-
tage is that this is the most costly option for passing electrical signals, requiring 4 connectors
per connection.

Loose wires along the outside of the parts have several advantages over rigid mechanical
connectors. The first of which is that they only require one set of connections per connector.
This reduces the cost of each connector significantly. The main disadvantage of this kind
of electrical connection is that the wires could get snagged on something since the system
is supposed to be active and moving. Another disadvantage is that the wires need to have
enough slack to move with the arm without limiting the arm’s movement.

Wires running through the parts that pop out at the connectors is another option or passing
signals along the system. This option is practically the same cost as external wires, but
doesn’t have the problem of wires snagging on the environment. Unfortunately this doesn’t
solve the problem of wires needing lots of slack to allow for movement of the whole system.

Short wires that connect some internal bus bars provide a more expensive solution to this
problem. This would remove the problem of wires needing slack for the entire system.
Instead, wires would only have enough slack for one joint. Doing this does bring some com-
plexity issues, however, since the bars would have to be designed into the system and not
added on at the end.

For our design we decided to use internal wires running the length of the system. The

A10

low cost and simplicity of this solution outweighs the negatives of having to add lots of extra
wire to account for movement of the system.

A.4.3 Sticks

Sticks are the things that connect joints together and space joints out. They do not have
any electronics on board; they simply pass power and communication wires along to the rest
of the arm. They need to be strong, light weight, and inexpensive.

Sticks have an input side and an output side. Two kinds of sticks will need to be created:
one will be straight, and one will have a right angle at the input side.

A11

Table 15: Comparison of materials to construct sticks

Stick Material Cost/kg Cost/
20mm

Rigidity Complexity Weight

3D-printed PLA1 $20/kg $3 Might break Low: Very
few con-
straints on
possible
designs

150g 1

PVC2 $7 $0.70 Bends over
time

Connect/
Disconnect
easily

106g

Carbon Fiber3 $66 $6 Strong, but
possibly too
thin

58g

80/204 $2.46 $2 Not going
anywhere

Nice connect-
ing options

154g

We choose to use 3D-printed PLA. While it’s not the lowest cost option, nor is it
the lightest one, its high configurability makes it the ideal material for our needs - especially
given its availability for potential customers; anybody with a 3D-printer would be able to
make one of our arms. Also, while aesthetic concerns should not be the only factor, we’re
allowed to consider the way the final product would look. An arm made from PVC would
reflect poorly on all the involved parties.

1This number assumes 100% infill. The actual number will almost certainly be lower.
2http://www.homedepot.com/p/Formufit-1-in-x-5-ft-Furniture-Grade-Sch-40-PVC-Pipe-in-White-P001FGP-WH-5/

205171542?cm_mmc=Shopping%7cTHD%7cG%7c0%7cG-BASE-PLA-D26P-Plumbing%7c&gclid=

Cj0KCQjwx8fOBRD7ARIsAPVq-Nlw_xbuCOf-QHORvUW4gQ4Dx7SiZt_vqQ3OvxBdTW-eckQhdp5WWFYaAs9DEALw_

wcB&gclsrc=aw.ds&dclid=CIagtKLB09YCFUuraQodN_MAOQ
3https://www.rockwestcomposites.com/45552?gclid=Cj0KCQjwx8fOBRD7ARIsAPVq-NmCNUg6ULxgd9udG-xSuPtJuHKgCLjUSgX_

zXPDgRr2CmKU0tSXX-waAgb9EALw_wcB
4https://8020.net/1010.html

A12

http://www.homedepot.com/p/Formufit-1-in-x-5-ft-Furniture-Grade-Sch-40-PVC-Pipe-in-White-P001FGP-WH-5/205171542?cm_mmc=Shopping%7cTHD%7cG%7c0%7cG-BASE-PLA-D26P-Plumbing%7c&gclid=Cj0KCQjwx8fOBRD7ARIsAPVq-Nlw_xbuCOf-QHORvUW4gQ4Dx7SiZt_vqQ3OvxBdTW-eckQhdp5WWFYaAs9DEALw_wcB&gclsrc=aw.ds&dclid=CIagtKLB09YCFUuraQodN_MAOQ
http://www.homedepot.com/p/Formufit-1-in-x-5-ft-Furniture-Grade-Sch-40-PVC-Pipe-in-White-P001FGP-WH-5/205171542?cm_mmc=Shopping%7cTHD%7cG%7c0%7cG-BASE-PLA-D26P-Plumbing%7c&gclid=Cj0KCQjwx8fOBRD7ARIsAPVq-Nlw_xbuCOf-QHORvUW4gQ4Dx7SiZt_vqQ3OvxBdTW-eckQhdp5WWFYaAs9DEALw_wcB&gclsrc=aw.ds&dclid=CIagtKLB09YCFUuraQodN_MAOQ
http://www.homedepot.com/p/Formufit-1-in-x-5-ft-Furniture-Grade-Sch-40-PVC-Pipe-in-White-P001FGP-WH-5/205171542?cm_mmc=Shopping%7cTHD%7cG%7c0%7cG-BASE-PLA-D26P-Plumbing%7c&gclid=Cj0KCQjwx8fOBRD7ARIsAPVq-Nlw_xbuCOf-QHORvUW4gQ4Dx7SiZt_vqQ3OvxBdTW-eckQhdp5WWFYaAs9DEALw_wcB&gclsrc=aw.ds&dclid=CIagtKLB09YCFUuraQodN_MAOQ
http://www.homedepot.com/p/Formufit-1-in-x-5-ft-Furniture-Grade-Sch-40-PVC-Pipe-in-White-P001FGP-WH-5/205171542?cm_mmc=Shopping%7cTHD%7cG%7c0%7cG-BASE-PLA-D26P-Plumbing%7c&gclid=Cj0KCQjwx8fOBRD7ARIsAPVq-Nlw_xbuCOf-QHORvUW4gQ4Dx7SiZt_vqQ3OvxBdTW-eckQhdp5WWFYaAs9DEALw_wcB&gclsrc=aw.ds&dclid=CIagtKLB09YCFUuraQodN_MAOQ
https://www.rockwestcomposites.com/45552?gclid=Cj0KCQjwx8fOBRD7ARIsAPVq-NmCNUg6ULxgd9udG-xSuPtJuHKgCLjUSgX_zXPDgRr2CmKU0tSXX-waAgb9EALw_wcB
https://www.rockwestcomposites.com/45552?gclid=Cj0KCQjwx8fOBRD7ARIsAPVq-NmCNUg6ULxgd9udG-xSuPtJuHKgCLjUSgX_zXPDgRr2CmKU0tSXX-waAgb9EALw_wcB
https://8020.net/1010.html

A.4.4 Motor Selection

Table 16: Comparison of Possible Motors

To choose our motors, we looked for high-torque, low-cost DC motors. We chose to go with
DC Brushed motors to control our arm because they are quiet, low-cost, vibration free and
fairly efficient. We also considered using Dc Brushless motors as well as Stepper Motors,
but each had their own pros and cons. Brushless motors cost much more than compara-
ble brushed motors, and require complicated control logic to operate. Stepper motors were
a good option due to their ability to be backdriven and their built in discrete steps for
controlling. But, they do not operate well under conditions where the load changes signifi-
cantly in a short period of time and also require external control to keep track of the position.

Once we decided to use brushed DC motors, our next step was to find suitable motors
that fit our criteria of high torque and low cost. We found 2 categories of motors that
seemed to fill these requirements, planetary gearbox motors and spur gearbox motors. Plan-
etary gearboxes work by having multiple ”planet” gears revolving around a central ”sun”
gear that rotates in place. They are named for their resemblance of the planets orbiting
around the sun. All of the ”planet” gears are held in place by an outer ”ring” gear that acts
to keep the ”planet” gears in contact with both the ”sun” and the ”ring”. By having these
idler gears rotating around a central axis, you can have torque transferred linearly, without
the need for offset shafts, greatly reducing the total size of the gearbox. With multiple gears
transferring the torque load at one time, the individual load on each tooth is lowered making
these perfect for high torque applications. Spur gearboxes on the other hand use linear offset
shafts that transfer the entire torque from one gear to the next until the output shaft in a
direct chain. This means that they wear out much faster since the torque load is much higher
on individual gears and teeth. Therefore, since we need a reliable high torque motor, we
decided to go with planetary gear motors.

Once we had made the decision to go with a planetary gearbox brushed DC motor, we
made a chart as seen in Table 5 of possible motors that had high stall torques. One final
decision that we had to make was whether or not to purchase a motor with a rotary shaft
encoder. Rotary shaft encoders provide easy control over DC motors by relaying the position
of the shaft before the gearbox on the motor. This allows for high resolution control in the
case of high gear reductions but also costs a fair amount extra to purchase with the motor.
Considering that the motor is just a part of the joint and we care more about the position

A13

of the overall joint rather than the motor itself, we decided to lower cost and go with a less
expensive non-encoder motor. By doing this we are moving the point at which we control
the joint system from the motor to the joint if we use an absolute encoder on the joint shaft.
This results in a closed loop control system which is better suited to controlling the arm in
our situation and is more cost-effective.

A.4.5 Control Board Part selection

Selecting the types of sensors to use for the control board was a very important step of the
control board design. There are many different types of sensors to accomplish each major
goal that the control board must accomplish.

A.4.5.1 Joint Angle Sensor
Potentiometers seem like a good choice due to their simplicity and high accuracy capabili-
ties. However, they do not lend themselves well to this application because of how quickly
they wear out. Over time, as the joints move to different positions, the potentiometers
will wear out quickly and cause inaccurate readings. Additionally, long lifespan and high
resolution potentiometers can be very expensive. Furthermore, potentiometers are large
and can be difficult to mount. Finally, the hard stop on the potentiometer means the joint
angles will be limited to a certain range (typically about 270 °for single turn potentiometers).

The next obvious solution is to use optical encoders because they will not wear out and
offer very high resolution capabilities. These sensors are not well suited for this application,
however, since they are typically expensive, especially for high resolution encoders - and
ones that are capable of reading absolute position. Additionally these sensors are somewhat
bulky and would take up too much space in the closed environment of a joint.

This leaves us with Hall effect sensors. These sensors are very small and moderately high
resolution while also being a contact-free sensor, so wearing them out will not be a con-
cern. A main concern with Hall effect sensors is that they need to be mounted somewhat
precisely and carefully. Traditional machining methods make this difficult to accomplish,
but 3D printing allows us to easily overcome this challenge. Another concern is external
electromagnetic interference, but with somewhat careful circuit board design, we should be
able to minimize this issue.

A.4.5.2 Motor Current Sensor
A shunt resistor seems practical due to the simplicity of the design, but careful designing
must be done in order to get the noise levels down to a reasonable amount. In addition to
this, the power loss when using a shunt resistor could cause the arm to stall before antici-
pated. When the shunt resistor takes power from the motor, the whole motor curve slides
inward, decreasing the maximum power output. Trace resistance would be a good alterna-

A14

tive, but requires calibration after the circuit is constructed.

Instead of these, we decided to use a Hall effect current sensor. Hall effect current sen-
sors are ready-made sensors that give low noise, properly calibrated outputs, are not very
expensive, and are easy to integrate into a circuit design. These sensors have extremely
small power losses to the motor. The main drawback of these sensors is that they have a
low bandwidth, but we are using DC motors so this should not be a problem. Some care
will need to be taken when placing these on the circuit, however, since they are sensitive to
external magnetic fields.

A.4.5.3 Off-board Communication
SPI and I2C are mostly used for on-board, controller-to-peripheral communications and
therefore are not a good choice for the base to control board communication. RS232 is not
a good solution for this problem either because it is a single transmitter and single receiver
per line. This leaves RS485 and CAN.

RS485 and CAN are similar in many ways, but with a few key differences that separate
them. RS485 is very fast to transmit and simple to implement, but takes a lot of the con-
troller’s time to send packets. CAN has the advantage because the controller and transceiver
control the transmission independent of the controller so the controller has more free time
to process data. Another advantage CAN has over RS485 is the amount of error checking
that goes on to ensure proper message transmission. For these reasons, we decided to use
CAN to communicate between the base and control boards.

A.4.6 Arm Structure

Arm structure is not something we wanted to define, since the end user is supposed to create
their own arms, but there were some basic things we needed to define. The first of these is
that every arm must begin with a base and end with an end effector. This is because the
central CAN bus must be terminated with resistors at both ends. An alternative to this is to
have every piece terminate the CAN bus if it is the last piece in the chain, but this creates
unnecessary complexity in each piece. The second constraint placed on arm construction
is that sticks cannot connect to other sticks. This is because we didn’t want the user to
construct an arm with ridiculous length that would be impossible to lift.

A15

A.4.7 Arm Base

A.4.8 End-of-Arm Tooling

A.5 Constraints

Budget will likely be the biggest constraint with this project. The stipend given to students
by WPI may not cover all of the costs incurred when constructing this robot, and the rest
will be paid out of pocket by the student team. Another large constraint will be access to a
3D printer for prototyping. It will be crucial to start prototyping early to accomplish all of
the design goals. Time will also be a major concern, since there are many time consuming
aspects to this project.

A.6 Project Goals

The end deliverables for this project will be broken into 5 major categories: Sticks, Joints,
End effector, Base, Software application, Code library

A.6.1 Sticks

• Pass power and signal buses

• Strong mechanical connection

• 4-position keyed connection

• 1 input and 1 output connector

• Two kinds of sticks: Straight and Right Angle

• Quick to connect and disconnect

• Connect to joints but not sticks

• Limits exposed wires

A.6.2 Joints

• Receive initialization information and joint angles from base

• Moves to joint angles

A16

• Send position updates back to base

• Pass power and signal buses

• Capable of powering logic without powering motors

• Control board is the same for each joint (address is selected with DIP switch or in
firmware)

• 4 position keyed connection

• 1 input and 1 output connector

• Quick to connect and disconnect

• Connects to joints and sticks

• Limits exposed wires

A.6.3 End Effector

• Receives power and signal buses

• 4 position keyed connection

• 1 input connector

• Quick to connect and disconnect

• Connects to joints but not sticks

• Limited exposed wires

A.6.4 Base

• Sends and receives joint angles to/from personal computer

• Receives initialization information from computer, then sends it to all joints on signal
bus

• Outputs power and signal buses

• Converts AC wall power to system power bus

• Power supply and arm on/off switch

• Capable of powering logic without powering motors

A17

• Array of indicator LEDs

• 4 position keyed connection

• 1 output connector

• Quick to connect and disconnect

• Connects to joints and sticks

• Limits exposed wires

A.6.5 Software Application

• Sends configuration information to Code Library

• Sends individual joint angles or pose commands to robot through Code Library

• GUI to adjust current arm configuration parameters

• Record and play back sequence of poses

• Acts as a front-end for code library

• Stretch goal: 3D model of arm moving in real-time

A.6.6 Code Library

• Written so that it can interface with multiple languages

• Receive configuration information from user, selects control constants, sends to base

• Able to control the robot: Receive joint status, send joint angles

• Calculate joint angles using kinematics

A.7 Kit Components

• 3x Twist Joints (axis of rotation parallel to input Stick)

• 6x Rotational Joints (axis of rotation perpendicular to input Stick)

• 3x 75mm Straight Sticks

• 3x 150mm Straight Sticks

A18

• 3x 225mm Straight Sticks

• 3x 75mm Right Angle Sticks

• 3x 150mm Right Angle Sticks

• 3x 225mm Right Angle Sticks

• 1x Claw Gripper End-of-Arm Tool

• 1x Hook End-of-Arm Tool

• 1x Capacitive Stylus/Pointer End-of-Arm Tool

• 1x Arm Base

• Stretch Goals:

– Prismatic Joint(s)

– 1x Universal Gripper End-of-Arm Tool

A19

Appendix B Solidworks Drawings

Figure B.1: D shaft receiver

B1

Figure B.2: End effector mount

B2

Figure B.3: End of Arm

B3

Figure B.4: Idler shaft

B4

Figure B.5: Main shaft

B5

Figure B.6: Servo horn connector

B6

Figure B.7: Sidewall

B7

Figure B.8: Top plate

B8

Figure B.9: Bottom plate

B9

Figure B.10: Bottom plate cradle

B10

Appendix C Motor Driver

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/12/2018
Sheet of

File:
C

:\U
sers\..\m

otor_driver.SchD
oc

D
raw

n B
y:

G
N

D
1

IN
2

2

IN
1

3

FA
U

LT_N
4

V
M

5

O
U

T1
6

ISEN
7

O
U

T2
8

PA
D

9

U
1

D
RV

8872D
D

A
R

1234

P1H
eader 4

1234

P2H
eader 4

R
2

0.1 Shunt R
esistor

G
N

D

G
N

D

G
N

D
G

N
D

V
C

C

V
C

C

V
C

C

+12

+12

S_D
em

ux
A

_D
em

ux

S_D
em

ux

A
_D

em
ux

IN
1

IN
2

IN
1

IN
2

C
3

10nF
C

2
10nF

G
N

D

S
1

G
N

D
2

A
3

Y
1

4

V
C

C
5

Y
0

6
U

2

SN
74LV

C
1G

18D
B

V
R

C
1

100uF

R
1

10k

D
RV

8872 M
otor D

river

B
en Titus

1
1 1.0

PIC101 PIC102
COC1

PIC201 PIC202
COC2

PIC301 PIC302
COC3

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4
 COP1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4
 COP2

PIR101
PIR102

COR1

PIR201 PIR202 COR2
P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

COU1

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

COU2

PIC101

P
I
P
2
0
3

P
I
U
1
0
5

PIC202

P
I
P
1
0
3

P
I
U
2
0
3

NLA0Demux

PIC102

PIC201
PIC301

P
I
P
2
0
4

PIR201

P
I
U
1
0
1

P
I
U
1
0
9

P
I
U
2
0
2

P
I
U
1
0
3

P
I
U
2
0
6

NLIN1

P
I
U
1
0
2

P
I
U
2
0
4

NLIN2

P
I
P
1
0
4

PIR202

P
I
U
1
0
7

P
I
P
2
0
1

P
I
U
1
0
8

P
I
P
2
0
2

P
I
U
1
0
6

PIR102
P
I
U
1
0
4

PIC302

P
I
P
1
0
2

P
I
U
2
0
1

NLS0Demux

P
I
P
1
0
1

PIR101

P
I
U
2
0
5

Figure C.1: Circuit diagram for motor driver PCB

C1

Figure C.2: PCB composite for the motor driver PCB

Comment Description Designator Footprint LibRef Quantity

100uF Capacitor C1 CAPR5-4X5 Cap2 1

CAP0805
0805 (2012 Metric)
Chip Capacitor C2, C3

CAPC0805(2012)145
_L CMP-1590-00003-1 2

Header 4 Header, 4-Pin P1, P2 HDR1X4 Header 4 2

RES0805
0805 (2012 Metric)
Chip Resistor R1 RESC0805(2012)_L CMP-1591-00002-1 1

RES2512
2512 (6432 Metric)
Chip Resistor R2 RESC2512(6432)_L CMP-1591-00007-1 1

DRV8872DDAR Imported U1 DDA0008H_N DRV8872DDAR 1

SN74LVC1G18DBVR

One of Two
Noninverting
Demultiplexer with 3-
State Deselected
Output, DBV0006A,
LARGE T&R U2 DBV0006A_L CMP-0859-00184-3 1

Figure C.3: Bill of materials for the motor driver PCB

C2

Appendix D Motor Driver with Current Sensor

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/21/2018
Sheet of

File:
C

:\U
sers\..\m

otor_driver_current_sensor.SchD
oc

D
raw

n B
y:

IP+
1

IP+
2

IP-
3

IP-
4

G
N

D
5

B
W

_SEL
6

V
IO

U
T

7

V
C

C
8

U
3

A
C

S722LLC
TR

-05A
B

-T

G
N

D
1

IN
2

2

IN
1

3

FA
U

LT_N
4

V
M

5

O
U

T1
6

ISEN
7

O
U

T2
8

PA
D

9

U
1

D
RV

8872D
D

A
R

1234

P1H
eader 4

1234

P2H
eader 4

R
2

0.1 Shunt R
esistor

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

V
C

C

V
C

C

V
C

C

V
C

C

+12

S_D
em

ux
A

_D
em

ux

S_D
em

ux

A
_D

em
ux

IN
2

IN
1

IN
1

IN
2

P2_2

O
U

T1

P2_2

C
3

10nF
C

2
10nF

G
N

D

C
1

100uF

R
1

10k

+12

C
5

0.1uF

C
4

0.1uF

S
1

G
N

D
2

A
3

Y
1

4

V
C

C
5

Y
0

6
U

2

SN
74LV

C
1G

18D
B

V
R

O
U

T1

M
otor D

river w
ith C

urrent Sensor
1.0

1
1

B
en Titus

PIC101 PIC102
COC1

PIC201 PIC202
COC2

PIC301 PIC302
COC3

PIC401
PIC402

COC4

PIC501 PIC502
COC5

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4
 COP1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4
 COP2

PIR101
PIR102

COR1
PIR201 PIR202 COR2

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

COU1

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

COU2

P
I
U
3
0
1

P
I
U
3
0
2

P
I
U
3
0
3

P
I
U
3
0
4

P
I
U
3
0
5

P
I
U
3
0
6

P
I
U
3
0
7

P
I
U
3
0
8
 COU3

PIC101

P
I
P
2
0
3

P
I
U
1
0
5

PIC202

P
I
P
1
0
3

P
I
U
2
0
3

NLA0Demux

PIC102

PIC201
PIC301

PIC402

PIC502

P
I
P
2
0
4

PIR201
P
I
U
1
0
1

P
I
U
1
0
9

P
I
U
2
0
2

P
I
U
3
0
5

P
I
U
3
0
6

P
I
U
1
0
3

P
I
U
2
0
4

NLIN1

P
I
U
1
0
2

P
I
U
2
0
6

NLIN2

PIC501

P
I
P
1
0
4

P
I
U
3
0
7

P
I
P
2
0
1

P
I
U
1
0
8

PIR102
P
I
U
1
0
4

PIR202
P
I
U
1
0
7

P
I
U
1
0
6

P
I
U
3
0
3

P
I
U
3
0
4

NLOUT1

P
I
P
2
0
2

P
I
U
3
0
1

P
I
U
3
0
2

NLP202

PIC302

P
I
P
1
0
2

P
I
U
2
0
1

NLS0Demux

PIC401

P
I
P
1
0
1

PIR101

P
I
U
2
0
5

P
I
U
3
0
8

Figure D.1: Circuit diagram for motor driver with current sensor PCB

D1

Figure D.2: PCB composite for the motor driver with current sensor PCB

Comment Description Designator Footprint LibRef Quantity

100uF
100uF Filter
Capacitor C1 CAPR5-4X5 Cap2 1

CAP0805
0805 (2012 Metric)
Chip Capacitor C2, C3

CAPC0805(2012)145
_L CMP-1590-00003-1 2

0.1uF Capacitor C4, C5 CAPR5-4X5 Cap2 2

Header 4 Header, 4-Pin P1, P2 HDR1X4 Header 4 2

RES0805
0805 (2012 Metric)
Chip Resistor R1 RESC0805(2012)_L CMP-1591-00002-1 1

RES2512
2512 (6432 Metric)
Chip Resistor R2 RESC2512(6432)_L CMP-1591-00007-1 1

DRV8872DDAR Imported U1 DDA0008H_N DRV8872DDAR 1

SN74LVC1G18DBVR

One of Two
Noninverting
Demultiplexer with 3-
State Deselected
Output, DBV0006A,
LARGE T&R U2 DBV0006A_L CMP-0859-00184-3 1

ACS722LLCTR-05AB-
T

High Accuracy,
Galvanically Isolated
Current Sensor IC, 3
to 3.6 V, -5 to 5 A IP,
-40 to 150 degC, 8-
Pin SOIC (LC), RoHS,
Tape and Reel U3 ALEG-LC-8_V CMP-1557-00006-1 1

Figure D.3: Bill of materials for the motor driver with current sensor PCB

D2

Appendix E Load Cell Amplifier

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/12/2018
Sheet of

File:
C

:\U
sers\..\load_cell_am

p.SchD
oc

D
raw

n B
y:

Load Cell A
m

plifier
1.0

1
1

B
en Titus

1
3 2

4 8

U
1A

LM
358D

R

1 2 3 4

P2Load C
ell

1234

P1H
eader 4

R
1

5.0k

R
5

3.9k

R
3

200k

R
2

1k

C
2

1uF

G
N

D

G
N

D
G

N
D

V
C

C

V
C

C

V
C

C
V

C
C

V
C

C

G
N

D

C
1

10nF

C
4

10nF
C

3
10nF

R
4

10k

1
23

4

5 6

7

8
U

2
IN

A
332A

ID
G

K
R

PIC101 PIC102
COC1

PIC201 PIC202
COC2

PIC301 PIC302
COC3

PIC401 PIC402
COC4

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4
 COP1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4

COP2

PIR101 PIR102 COR1

PIR201
PIR202

COR2
PIR301

PIR302
COR3

PIR401
PIR402 COR4

PIR501 PIR502 COR5

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

PIU104 PIU108
COU1A

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

PIU204
P
I
U
2
0
5

P
I
U
2
0
6

PIU207
P
I
U
2
0
8

COU2

PIC101
PIC202

PIC301
PIC401

P
I
P
1
0
4

P
I
P
2
0
3

PIR501

PIU104

PIU204
PIC102

P
I
P
1
0
3

PIR302

P
I
U
2
0
6

PIC302

P
I
P
2
0
2

P
I
U
2
0
3

PIC402

P
I
P
2
0
4

P
I
U
2
0
2

P
I
P
1
0
2

PIR402

P
I
U
2
0
8

PIR101 PIR502
P
I
U
1
0
3

PIR201

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
2
0
5

PIR202
PIR301

P
I
U
2
0
1

PIC201

P
I
P
1
0
1

P
I
P
2
0
1

PIR102

PIR401

PIU108

PIU207

Figure E.1: Circuit diagram for load cell amplifier PCB

E1

Figure E.2: PCB composite for the load cell amplifier PCB

Comment Description Designator Footprint LibRef Quantity

CAP0805
0805 (2012 Metric)
Chip Capacitor C1, C3, C4

CAPC0805(2012)145
_L CMP-1590-00003-1 3

1uF Capacitor C2 CAPR5-4X5 Cap2 1

Header 4 Header, 4-Pin P1 HDR1X4 Header 4 1

Load Cell Header, 4-Pin P2 HDR1X4 Header 4 1

RES0805
0805 (2012 Metric)
Chip Resistor R1, R2, R3, R4, R5 RESC0805(2012)_L CMP-1591-00002-1 5

LM358DR

Dual Operational
Amplifier, 3 to 32 V,
0 to 70 degC, 8-Pin
SOIC (D), Green
(RoHS & no Sb/Br),
Tape and Reel U1 D0008A_L CMP-1685-00009-1 1

INA332AIDGKR

Low-Power, Single
Supply, CMOS, Low
Cost,
Instrumentation
Amplifier, -55 to 125
degC, 8-pin SOP
(DGK8), Green
(RoHS & no Sb/Br) U2 DGK0008A_M CMP-0944-00077-2 1

Figure E.3: Bill of materials for the load cell amplifier PCB

E2

Appendix F CAN Transceiver

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/18/2018
Sheet of

File:
C

:\U
sers\..\can_transceiver.SchD

oc
D

raw
n B

y:

CA
N

 Transceiver
1.0

1
1

B
en Titus

U
1

TC
A

N
332

S1D
IP_Sw

itch_6

1

2

3

Q
1

B
S170

C
1

47pF
C

2
47pF

C
3

0.1uF

R
2

1k

R
3

100k

R
1

115

G
N

D

G
N

D

G
N

D

G
N

D
V

C
C

V
C

C

V
C

C

1234567

P2H
eader 7

1234567

P1H
eader 7

R
X

D
TX

D

TX
D

R
X

D

C
A

N
H

C
A

N
L

C
A

N
H

C
A

N
L

TX
D

R
X

D

V
C

C

G
N

D

PIC101 PIC102 COC1
PIC201 PIC202 COC2

PIC301 PIC302
COC3

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4

P
I
P
1
0
5

P
I
P
1
0
6

P
I
P
1
0
7
 COP1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4

P
I
P
2
0
5

P
I
P
2
0
6

P
I
P
2
0
7
 COP2

PIQ101
P
I
Q
1
0
2

PIQ103
COQ1

PIR101 PIR102 COR1

PIR201 PIR202 COR2

PIR301 PIR302 COR3

PIS101 PIS102 PIS103 PIS104 PIS105 PIS106 PIS107
PIS108

PIS109
PIS1010

PIS1011
PIS1012

COS1

PIU101

PIU102

PIU103

PIU104
PIU105

PIU106

PIU107

PIU108

COU1

P
I
P
1
0
5

PIR102

PIU107

NLCANH

P
I
P
1
0
6

PIQ103 PIR302

PIU106

NLCANL

PIC101
PIC201

PIC301

P
I
P
1
0
7

P
I
P
2
0
7

PIR301

PIU103

P
I
P
1
0
2

P
I
Q
1
0
2

PIR201

P
I
P
2
0
1

PIS1012

P
I
P
2
0
2

PIS1011

P
I
P
2
0
3

PIS1010

P
I
P
2
0
4

PIS109

P
I
P
2
0
5

PIS108

P
I
P
2
0
6

PIS107

PIQ101 PIR101

PIU105

PIU108

PIC202

P
I
P
1
0
3

PIU104

NLRXD

PIC102

P
I
P
1
0
4

PIU101

NLTXD

PIC302

P
I
P
1
0
1

PIR202

PIS101 PIS102 PIS103 PIS104 PIS105 PIS106

PIU102

Figure F.1: Circuit diagram for CAN transceiver PCB

F1

Figure F.2: PCB composite for the CAN transceiver PCB

Comment Description Designator Footprint LibRef Quantity

CAP0805
0805 (2012 Metric)
Chip Capacitor C1, C2, C3

CAPC0805(2012)145
_L CMP-1590-00003-1 3

Header 7 Header, 7-Pin P1, P2 HDR1X7 Header 7 2

BS170

Small Signal
MOSFET, 500 mA,
60 V, N-Channel, 3-
Pin TO-92, Bulk Box Q1

ONSC-TO-92-3-29-
11 BS170 1

RES0805
0805 (2012 Metric)
Chip Resistor R1, R2, R3 RESC0805(2012)_L CMP-1591-00002-1 3

DIP_Switch_6 6 pin DIP switch S1 SOP12 DIP_Switch_6 1

TCAN332
3.3V CAN
Transceiver U1 SOP8 TCAN332 1

Figure F.3: Bill of materials for the CAN transceiver PCB

F2

Appendix G Joint Board Boosterpack

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/24/2018
Sheet of

File:
C

:\U
sers\..\joint_board_boosterpack.SchD

oc
D

raw
n B

y:

Joint B
oard B

oosterPack
1.0

1
5

B
en Titus

+12

V
C

C
1234567891011121314151617181920

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
3.3V

G
N

D

R
ST

5V G
N

D

PB
5

PB
0

PB
1

PE4
PE5
PB

4
PA

5
PA

6
PA

7
PA

2
PA

3
PA

4
PB

6
PB

7

PF0
PE0
PB

2
PD

0
PD

1
PD

2
PD

3
PE1
PE2
PE3
PF1
PF4
PD

7
PD

6
PC

7
PC

6
PC

5
PC

4
PB

3
PF3
PF2

U
1

B
oosterPack H

eaders

G
N

D
G

N
D

M
O

TO
R

_D
IR

R
X

D
TX

D

SC
LKC

S
M

ISO
M

O
TO

R
_PW

M

ISEN

SW
6

SW
5

SW
4

SW
3

SW
2

SW
1

LO
A

D
_C

ELL

12

P1H
eader 2

1234

P2H
eader 4

G
N

DV
C

C

C
A

N
H

C
A

N
L

R
ES_EN

D
1

V
M

_LED

R
1

4k

G
N

D

D
2

H
B

_LED
_LED

R
2

1k

G
N

D

D
3

V
C

C
_LED

R
3

1k

G
N

D

PID101 PID102

COD1

PID201 PID202

COD2

PID301 PID302

COD3

P
I
P
1
0
1

P
I
P
1
0
2
 COP1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4
 COP2

PIR101 PIR102 COR1

PIR201 PIR202 COR2

PIR301 PIR302 COR3

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
5

P
I
U
1
0
6

P
I
U
1
0
7

P
I
U
1
0
8

P
I
U
1
0
9

PIU1010

P
I
U
1
0
1
1

P
I
U
1
0
1
2

P
I
U
1
0
1
3

P
I
U
1
0
1
4

PIU1015

P
I
U
1
0
1
6

P
I
U
1
0
1
7

P
I
U
1
0
1
8

P
I
U
1
0
1
9

PIU1020
PIU1021

P
I
U
1
0
2
2

P
I
U
1
0
2
3

P
I
U
1
0
2
4

P
I
U
1
0
2
5

PIU1026

P
I
U
1
0
2
7

P
I
U
1
0
2
8

P
I
U
1
0
2
9

P
I
U
1
0
3
0

PIU1031

P
I
U
1
0
3
2

P
I
U
1
0
3
3

P
I
U
1
0
3
4

P
I
U
1
0
3
5

PIU1036

P
I
U
1
0
3
7

P
I
U
1
0
3
8

P
I
U
1
0
3
9

P
I
U
1
0
4
0

COU1

PID101
P
I
P
1
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
U
1
0
1
2

P
I
P
1
0
2

PIR101

PIR201

PIR301

PIU1020

P
I
U
1
0
2
2

P
I
U
1
0
1
8

P
I
U
1
0
2
8

P
I
U
1
0
1
3

PIU1015

P
I
U
1
0
1
4

PID102 PIR102

PID201

P
I
U
1
0
2

PID202 PIR202

PID302 PIR302

P
I
U
1
0
3

P
I
U
1
0
4

P
I
U
1
0
8

P
I
U
1
0
1
6

P
I
U
1
0
1
7

P
I
U
1
0
1
9

PIU1021

P
I
U
1
0
2
3

P
I
U
1
0
2
7

P
I
U
1
0
2
9

P
I
U
1
0
3
0

PIU1031

P
I
U
1
0
3
2

P
I
U
1
0
3
3

P
I
U
1
0
3
4

P
I
U
1
0
3
5

PIU1036

P
I
U
1
0
3
7

P
I
U
1
0
3
8

P
I
U
1
0
3
9

P
I
U
1
0
4
0

P
I
P
2
0
4

P
I
U
1
0
5

P
I
U
1
0
1
1

PIU1010

P
I
U
1
0
9

P
I
U
1
0
2
4

P
I
U
1
0
7

PIU1026

P
I
U
1
0
2
5

P
I
U
1
0
6

PID301

P
I
P
2
0
1

P
I
U
1
0
1

Figure G.1: Circuit diagram for joint board Boosterpack PCB

G1

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/24/2018
Sheet of

File:
C

:\U
sers\..\joint_board_boosterpack_can.SchD

oc
D

raw
n B

y:

CA
N

 Transceiver
1.0

2
5

B
en Titus

1234
5 6 7 8

U
2

TC
A

N
332

S1D
IP_Sw

itch_6

1

2

3

Q
1

B
S170

C
2

47pF
C

3
47pF

C
1

0.1uF

R
5

1k

R
6

100k

R
4

115

G
N

D

G
N

D

G
N

D

V
C

C

V
C

C

TX
D

R
X

D

SW
1

SW
3

SW
2

SW
4

SW
5

SW
6

R
ES_EN

C
A

N
L

C
A

N
H

V
C

C

PIC101 PIC102
COC1

PIC201 PIC202
COC2

PIC301 PIC302
COC3

PIQ101
P
I
Q
1
0
2

PIQ103
COQ1

PIR401 PIR402 COR4

PIR501 PIR502 COR5

PIR601 PIR602 COR6

PIS101 PIS102 PIS103 PIS104 PIS105 PIS106 PIS107
PIS108

PIS109
PIS1010

PIS1011
PIS1012

COS1

PIU201

PIU202

PIU203

PIU204
PIU205

PIU206

PIU207

PIU208

COU2

PIR402

PIU207

PIQ103 PIR602

PIU206

PIC101

PIC201
PIC301

PIR601

PIU203

PIQ101 PIR401

PIU205

PIU208

P
I
Q
1
0
2

PIR501

PIC302

PIU204

PIS1012 PIS1011 PIS1010 PIS109 PIS108 PIS107

PIC202

PIU201

PIC102

PIR502

PIS101 PIS102 PIS103 PIS104 PIS105 PIS106

PIU202

Figure G.2: Circuit diagram for joint board Boosterpack PCB

G2

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/24/2018
Sheet of

File:
C

:\U
sers\..\joint_board_boosterpack_hall_effect_encoder.SchD

oc
D

raw
n B

y:

H
all Effect Encoder

1.0
3

5
B

en Titus

12345678

P3H
eader 8

G
N

D

V
C

C

M
ISO

SC
LKC

S

P
I
P
3
0
1

P
I
P
3
0
2

P
I
P
3
0
3

P
I
P
3
0
4

P
I
P
3
0
5

P
I
P
3
0
6

P
I
P
3
0
7

P
I
P
3
0
8
 COP3

P
I
P
3
0
8

P
I
P
3
0
3

P
I
P
3
0
6

P
I
P
3
0
4

P
I
P
3
0
7

P
I
P
3
0
1

P
I
P
3
0
2

P
I
P
3
0
5

Figure G.3: Circuit diagram for joint board Boosterpack PCB

G3

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/24/2018
Sheet of

File:
C

:\U
sers\..\joint_board_boosterpack_load_cell.SchD

oc
D

raw
n B

y:

1
3 2

4 8

U
3A

LM
358D

R

1 2 3 4

P4Load C
ell

R
7

5.0k

R11
3.9k

R
9

200k

R
8

1k

C
5

1uF

G
N

D

G
N

D
G

N
D

V
C

C

V
C

C

V
C

C
V

C
C

V
C

C

G
N

D

C
4

10nF

C
7

10nF
C

6
10nF

R
10

10k

1
23

4

5 6

7

8
U

4
IN

A
332A

ID
G

K
R

Load Cell A
m

plifier
1.0

4
5

B
en Titus

LO
A

D
_C

ELL

PIC401 PIC402
COC4

PIC501 PIC502
COC5

PIC601 PIC602
COC6

PIC701 PIC702
COC7

P
I
P
4
0
1

P
I
P
4
0
2

P
I
P
4
0
3

P
I
P
4
0
4

COP4

PIR701 PIR702 COR7

PIR801
PIR802

COR8
PIR901

PIR902
COR9

PIR1001
PIR1002 COR10

PIR1101 PIR1102 COR11

P
I
U
3
0
1

P
I
U
3
0
2

P
I
U
3
0
3

PIU304 PIU308
COU3A

P
I
U
4
0
1

P
I
U
4
0
2

P
I
U
4
0
3

PIU404
P
I
U
4
0
5

P
I
U
4
0
6

PIU407
P
I
U
4
0
8

COU4

PIC401
PIC502

PIC601
PIC701

P
I
P
4
0
3

PIR1101

PIU304

PIU404
PIC402

PIR902

P
I
U
4
0
6

PIC602

P
I
P
4
0
2

P
I
U
4
0
3

PIC702

P
I
P
4
0
4

P
I
U
4
0
2

PIR701 PIR1102
P
I
U
3
0
3

PIR801

P
I
U
3
0
1

P
I
U
3
0
2

P
I
U
4
0
5

PIR802
PIR901

P
I
U
4
0
1

PIR1002

P
I
U
4
0
8

PIC501
P
I
P
4
0
1

PIR702

PIR1001

PIU308

PIU407

Figure G.4: Circuit diagram for joint board Boosterpack PCB

G4

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/24/2018
Sheet of

File:
C

:\U
sers\..\joint_board_boosterpack_m

otor_drivers.SchD
oc

D
raw

n B
y:

IP+
1

IP+
2

IP-
3

IP-
4

G
N

D
5

B
W

_SEL
6

V
IO

U
T

7

V
C

C
8

U
7

A
C

S722LLC
TR

-05A
B

-T

G
N

D
1

IN
2

2

IN
1

3

FA
U

LT_N
4

V
M

5

O
U

T1
6

ISEN
7

O
U

T2
8

PA
D

9

U
6

D
RV

8872D
D

A
R

R
12

0.1 Shunt R
esistor

G
N

D

G
N

D

G
N

D

G
N

D

V
C

C

V
C

C

V
C

C

+12

IN
2

IN
1

IN
1

IN
2

O
U

T1

C
8

10nF
C

9
10nF

G
N

D

C
10

100uF

R
13

10k

C11
0.1uF

C
12

0.1uF

S
1

G
N

D
2

A
3

Y
1

4

V
C

C
5

Y
0

6
U

5

SN
74LV

C
1G

18D
B

V
R

O
U

T1

M
otor D

river w
ith C

urrent Sensor
1.0

5
5

B
en Titus

12

P5H
eader 2

M
O

TO
R

_D
IR

M
O

TO
R

_PW
M

ISEN

PIC801 PIC802
COC8

PIC901 PIC902
COC9

PIC1001 PIC1002
COC10

PIC1101 PIC1102
COC11

PIC1201
PIC1202

COC12

P
I
P
5
0
1

P
I
P
5
0
2
 COP5

PIR1201 PIR1202 COR12

PIR1301
PIR1302

COR13

P
I
U
5
0
1

P
I
U
5
0
2

P
I
U
5
0
3

P
I
U
5
0
4

P
I
U
5
0
5

P
I
U
5
0
6

COU5

P
I
U
6
0
1

P
I
U
6
0
2

P
I
U
6
0
3

P
I
U
6
0
4

P
I
U
6
0
5

P
I
U
6
0
6

P
I
U
6
0
7

P
I
U
6
0
8

P
I
U
6
0
9

COU6

P
I
U
7
0
1

P
I
U
7
0
2

P
I
U
7
0
3

P
I
U
7
0
4

P
I
U
7
0
5

P
I
U
7
0
6

P
I
U
7
0
7

P
I
U
7
0
8
 COU7

PIC1001
P
I
U
6
0
5

PIC801
PIC901

PIC1002

PIC1102

PIC1202

PIR1201

P
I
U
5
0
2

P
I
U
6
0
1

P
I
U
6
0
9

P
I
U
7
0
5

P
I
U
7
0
6

P
I
U
5
0
4

P
I
U
6
0
3

NLIN1
P
I
U
5
0
6

P
I
U
6
0
2

NLIN2

PIC1101
P
I
U
7
0
7

PIC802

P
I
U
5
0
1

PIC902
P
I
U
5
0
3

P
I
P
5
0
1

P
I
U
6
0
8

P
I
P
5
0
2

P
I
U
7
0
1

P
I
U
7
0
2

PIR1202
P
I
U
6
0
7

PIR1302
P
I
U
6
0
4

P
I
U
6
0
6

P
I
U
7
0
3

P
I
U
7
0
4

NLOUT1

PIC1201

PIR1301

P
I
U
5
0
5

P
I
U
7
0
8

Figure G.5: Circuit diagram for joint board Boosterpack PCB

G5

Figure G.6: PCB composite for the joint board Boosterpack PCB

G6

Comment Description Designator Footprint LibRef Quantity

CAP0805
0805 (2012 Metric)
Chip Capacitor

C1, C2, C3, C4, C6,
C7, C8, C9

CAPC0805(2012)145
_L CMP-1590-00003-1 8

1uF Capacitor C5 CAPR5-4X5 Cap2 1

100uF
100uF Filter
Capacitor C10 CAPR5-4X5 Cap2 1

0.1uF Capacitor C11, C12 CAPR5-4X5 Cap2 2

VM_LED D1 0805 Diode SMD_LED 1

HB_LED_LED D2 0805 Diode SMD_LED 1

VCC_LED D3 0805 Diode SMD_LED 1

Header 2 Header, 2-Pin P1, P5 HDR1X2 Header 2 2

Header 4 Header, 4-Pin P2 HDR1X4 Header 4 1

Header 8 Header, 8-Pin P3 HDR1X8 Header 8 1

Load Cell Header, 4-Pin P4 HDR1X4 Header 4 1

BS170

Small Signal
MOSFET, 500 mA,
60 V, N-Channel, 3-
Pin TO-92, Bulk Box Q1 SOT23-3 BS170 1

RES0805
0805 (2012 Metric)
Chip Resistor

R1, R2, R3, R4, R5,
R6, R7, R8, R9, R10,
R11, R13 RESC0805(2012)_L CMP-1591-00002-1 12

RES2512
2512 (6432 Metric)
Chip Resistor R12 RESC2512(6432)_L CMP-1591-00007-1 1

DIP_Switch_6 6 pin DIP switch S1 SOP12 DIP_Switch_6 1
BoosterPack
Headers U1

boosterpack_header
s

BoosterPack
Headers 1

TCAN332
3.3V CAN
Transceiver U2 SOP8 TCAN332 1

LM358DR

Dual Operational
Amplifier, 3 to 32 V,
0 to 70 degC, 8-Pin
SOIC (D), Green
(RoHS & no Sb/Br),
Tape and Reel U3 D0008A_L CMP-1685-00009-1 1

INA332AIDGKR

Low-Power, Single
Supply, CMOS, Low
Cost,
Instrumentation
Amplifier, -55 to 125
degC, 8-pin SOP
(DGK8), Green
(RoHS & no Sb/Br) U4 DGK0008A_M CMP-0944-00077-2 1

SN74LVC1G18DBVR

One of Two
Noninverting
Demultiplexer with 3-
State Deselected
Output, DBV0006A,
LARGE T&R U5 DBV0006A_L CMP-0859-00184-3 1

DRV8872DDAR Imported U6 DDA0008H_N DRV8872DDAR 1

ACS722LLCTR-05AB-
T

High Accuracy,
Galvanically Isolated
Current Sensor IC, 3
to 3.6 V, -5 to 5 A IP,
-40 to 150 degC, 8-
Pin SOIC (LC), RoHS,
Tape and Reel U7 ALEG-LC-8_V CMP-1557-00006-1 1

Figure G.7: Bill of materials for the joint board Boosterpack PCB

G7

Appendix H TM4C123GH6PM Dev Board

1 1

2 2

3 3

4 4

D
D

C
C

B
B

A
A

Title

N
um

ber
R

evision
Size

AD
ate:

3/21/2018
Sheet of

File:
C

:\U
sers\..\tm

4c123_dev_board.SchD
oc

D
raw

n B
y:

PB
6

1

V
D

D
A

2

G
N

D
A

3

PB
7

4

PF4
5

PE3
6

PE2
7

PE1
8

PE0
9

PD
7

10

V
D

D
11

G
N

D
12

PC
7

13
PC

6
14

PC
5

15
PC

4
16

PA
0_U

0R
x

17

PA
1_U

0Tx
18

PA
2_SSI0C

lk
19

PA
3_SSI0Fss

20

PA
4_SSI0R

x
21

PA
5_SSI0Tx

22

PA
6

23

PA
7

24

V
D

D
C

25

V
D

D
26

G
N

D
27

PF0
28

PF1
29

PF2
30

PF3
31

W
A

K
E_N

32

H
IB

_N
33

X
O

SC
0

34

G
N

D
X

35

X
O

SC
1

36

V
BA

T
37

R
ST_N

38

G
N

D
39

O
SC

0
40

O
SC

1
41

V
D

D
42

PD
4

43

PD
5

44

PB
0_U

SB
0V

ID
45

PB
1_U

SB
0V

B
U

S
46

PB
2_I2C

0SC
L

47

PB
3_I2C

0SD
A

48

PC
3_TD

O
_SW

O
49

PC
2_TD

I
50

PC
1_TM

S_SW
D

IO
51

PC
0_TC

K
_SW

C
LK

52

PD
6

53

V
D

D
54

G
N

D
55

V
D

D
C

56

PB
5

57
PB

4
58

PE4
59

PE5
60

PD
0

61

PD
1

62

PD
2

63

PD
3

64

U
2

TM
4C

123G
H

6PM
T7R

O
U

TPU
T

1

G
N

D
2

IN
PU

T
3

U
1

LP2950-33LPR
E3

USB

G
N

D
5

ID
4

D
+

3
D

-
2

V
B

U
S

1

J1

10118192-0001LF

+5

+5

G
N

D

G
N

D

C
4

0.1uF

V
C

C

V
C

C

G
N

D

USB

G
N

D
5

ID
4

D
+

3
D

-
2

V
B

U
S

1

J2

10118192-0001LF

G
N

D +5

R
1

10k

1
2

X
1

A
B

15T-32.768K
H

Z

C
2

24pF
C

1
24pF

G
N

D
X

G
N

D
X

1
2

X
2

A
B

LS2-4.096M
H

Z-D
4Y-T

C
5

10pF
C

6
10pF

G
N

D

G
N

D C
3

0.1uF

G
N

D

G
N

D

U
SB

1D
+

U
SB

1D
-

U
SB

1D
-

U
SB

1D
+

R
ST

123456789101112131415161718192021222324

P1H
eader 24

123456789101112131415161718192021222324

P2H
eader 24

PF1
PF2
PF3
PF4

W
A

K
E

V
C

C
R

ST

W
A

K
E

1
2

3
4

SW
1

1825910-6

V
C

C

G
N

D C
7

1nF

R
2

10k

G
N

D

R
ST

R
3

1k
R

4
1k

R
5

1k
R

6
1k

D
1

SM
D

_LED
D

2
SM

D
_LED

D
3

SM
D

_LED
D

4
SM

D
_LED

G
N

D

PF1
PF2

PF3
V

C
C

PB
6

PB
7

PF4
PE3
PE2
PE1
PE0
PD

7
PC

7
PC

6
PC

5
PC

4
PA

0
PA

1
PA

2

PA
4

PA
3

PA
5

PA
6

PA
7

PB
7

PB
6

PB
5

PB
4

PB
3

PB
2

PB
1

PB
0

PA
7

PA
6

PA
5

PA
4

PA
3

PA
2

PC
0

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PD
0

PD
1

PD
2

PD
3

PD
6

PD
7

PE0
PE1
PE2
PE3
PE4
PE5

PF0

PF3
PF2
PF1
PF0
U

SB
1D

+
U

SB
1D

-
PB

0
PB

1
PB

2
PB

3
PC

3
PC

2
PC

1
PC

0
PD

6
PB

5
PB

4

PD
3

PD
2

PD
1

PD
0

PE5
PE4

PA
0

PA
1

V
C

C

G
N

D
G

N
D

PC
2

PC
3

PC
0

PC
1

G
N

D
R

ST

1
2

3
4

5
6

7
8

9
10

P3H
eader 5X

2

TM
4C

123 D
ev B

oard
1.0

1
1

B
en Titus

PIC101 PIC102
COC1

PIC201 PIC202 COC2

PIC301 PIC302
COC3

PIC401 PIC402
COC4

PIC501 PIC502
COC5

PIC601 PIC602
COC6

PIC701 PIC702
COC7

PID101 PID102

COD1
PID201 PID202

COD2
PID301 PID302

COD3
PID401 PID402

COD4

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

PIJ10M1

PIJ10M2

PIJ10S1

PIJ10S2

PIJ10S3

PIJ10S4

COJ1

PIJ201

PIJ202

PIJ203

PIJ204

PIJ205

PIJ20M1

PIJ20M2

PIJ20S1

PIJ20S2

PIJ20S3

PIJ20S4 COJ2

P
I
P
1
0
1

P
I
P
1
0
2

P
I
P
1
0
3

P
I
P
1
0
4

P
I
P
1
0
5

P
I
P
1
0
6

P
I
P
1
0
7

P
I
P
1
0
8

P
I
P
1
0
9

P
I
P
1
0
1
0

P
I
P
1
0
1
1

PIP1012

P
I
P
1
0
1
3

P
I
P
1
0
1
4

P
I
P
1
0
1
5

P
I
P
1
0
1
6

PIP1017

P
I
P
1
0
1
8

P
I
P
1
0
1
9

P
I
P
1
0
2
0

P
I
P
1
0
2
1

PIP1022

P
I
P
1
0
2
3

P
I
P
1
0
2
4
 COP1

P
I
P
2
0
1

P
I
P
2
0
2

P
I
P
2
0
3

P
I
P
2
0
4

P
I
P
2
0
5

P
I
P
2
0
6

P
I
P
2
0
7

P
I
P
2
0
8

P
I
P
2
0
9

PIP2010

P
I
P
2
0
1
1

P
I
P
2
0
1
2

P
I
P
2
0
1
3

P
I
P
2
0
1
4

PIP2015

P
I
P
2
0
1
6

P
I
P
2
0
1
7

P
I
P
2
0
1
8

P
I
P
2
0
1
9

PIP2020

P
I
P
2
0
2
1

P
I
P
2
0
2
2

P
I
P
2
0
2
3

P
I
P
2
0
2
4

COP2

P
I
P
3
0
1

P
I
P
3
0
2

P
I
P
3
0
3

P
I
P
3
0
4

P
I
P
3
0
5

P
I
P
3
0
6

P
I
P
3
0
7

P
I
P
3
0
8

P
I
P
3
0
9

P
I
P
3
0
1
0

COP3

PIR101
PIR102

COR1

PIR201 PIR202 COR2

PIR301 PIR302 COR3

PIR401 PIR402 COR4

PIR501 PIR502 COR5

PIR601 PIR602 COR6

P
I
S
W
1
0
1

P
I
S
W
1
0
2

PISW103
PISW104

COSW1

P
I
U
1
0
1

P
I
U
1
0
2

P
I
U
1
0
3

COU1

P
I
U
2
0
1

P
I
U
2
0
2

P
I
U
2
0
3

P
I
U
2
0
4

P
I
U
2
0
5

P
I
U
2
0
6

P
I
U
2
0
7

P
I
U
2
0
8

P
I
U
2
0
9

P
I
U
2
0
1
0

P
I
U
2
0
1
1

P
I
U
2
0
1
2

PIU2013

P
I
U
2
0
1
4

P
I
U
2
0
1
5

P
I
U
2
0
1
6

P
I
U
2
0
1
7

PIU2018

P
I
U
2
0
1
9

P
I
U
2
0
2
0

P
I
U
2
0
2
1

P
I
U
2
0
2
2

PIU2023

P
I
U
2
0
2
4

PIU2025

P
I
U
2
0
2
6

P
I
U
2
0
2
7

P
I
U
2
0
2
8

P
I
U
2
0
2
9

PIU2030

P
I
U
2
0
3
1

PIU2032

P
I
U
2
0
3
3

P
I
U
2
0
3
4

P
I
U
2
0
3
5

P
I
U
2
0
3
6

P
I
U
2
0
3
7

P
I
U
2
0
3
8

P
I
U
2
0
3
9

P
I
U
2
0
4
0

P
I
U
2
0
4
1

P
I
U
2
0
4
2

P
I
U
2
0
4
3

P
I
U
2
0
4
4

P
I
U
2
0
4
5

PIU2046

P
I
U
2
0
4
7

P
I
U
2
0
4
8

P
I
U
2
0
4
9

PIU2050

P
I
U
2
0
5
1

P
I
U
2
0
5
2

P
I
U
2
0
5
3

PIU2054

P
I
U
2
0
5
5

P
I
U
2
0
5
6

P
I
U
2
0
5
7

P
I
U
2
0
5
8

PIU2059

P
I
U
2
0
6
0

P
I
U
2
0
6
1

P
I
U
2
0
6
2

P
I
U
2
0
6
3

PIU2064

COU2

P
I
X
1
0
1

P
I
X
1
0
2

COX1

P
I
X
2
0
1

P
I
X
2
0
2

COX2

PIC402

PIJ101

PIJ201

P
I
U
1
0
3

PIC301
PIC401

PIC502
PIC602

PIC701

PIJ105

PIJ10M1

PIJ10M2

PIJ10S1

PIJ10S2

PIJ10S3

PIJ10S4

PIJ205

PIJ20M1

PIJ20M2

PIJ20S1

PIJ20S2

PIJ20S3

PIJ20S4

P
I
P
1
0
2
4

P
I
P
2
0
2
4

P
I
P
3
0
3

P
I
P
3
0
5

P
I
P
3
0
9

PIR301
PIR401

PIR501
PIR601

P
I
S
W
1
0
2

P
I
U
1
0
2

P
I
U
2
0
3

P
I
U
2
0
1
2

P
I
U
2
0
2
7

P
I
U
2
0
3
9

P
I
U
2
0
5
5

NLGND

PIC102
PIC202

P
I
U
2
0
3
5

NLGNDX

PIC101

P
I
U
2
0
3
4

P
I
X
1
0
1

PIC201

P
I
U
2
0
3
6

P
I
X
1
0
2

PIC501

P
I
U
2
0
4
1

P
I
X
2
0
1

PIC601

P
I
U
2
0
4
0

P
I
X
2
0
2

PID102 PIR302
PID202 PIR402

PID302 PIR502
PID402 PIR602

PIJ104

PIJ204

P
I
P
3
0
7

PISW103
PISW104

PIU2025

P
I
U
2
0
3
3

P
I
U
2
0
5
6

PIJ203

P
I
P
2
0
1
3

P
I
U
2
0
1
7

NLPA0

PIJ202

P
I
P
2
0
1
4

PIU2018

NLPA1

PIP2015

P
I
U
2
0
1
9

NLPA2

P
I
P
2
0
1
6

P
I
U
2
0
2
0

NLPA3

P
I
P
2
0
1
7

P
I
U
2
0
2
1

NLPA4

P
I
P
2
0
1
8

P
I
U
2
0
2
2

NLPA5

P
I
P
2
0
1
9

PIU2023
NLPA6

PIP2020

P
I
U
2
0
2
4

NLPA7

PIP1017

P
I
U
2
0
4
5

NLPB0 P
I
P
1
0
1
6

PIU2046

NLPB1
P
I
P
1
0
1
5

P
I
U
2
0
4
7

NLPB2 P
I
P
1
0
1
4

P
I
U
2
0
4
8

NLPB3

P
I
P
1
0
7

P
I
U
2
0
5
8

NLPB4 P
I
P
1
0
8

P
I
U
2
0
5
7

NLPB5

P
I
P
2
0
1

P
I
U
2
0
1

NLPB6

P
I
P
2
0
2

P
I
U
2
0
4

NLPB7

P
I
P
1
0
1
0

P
I
P
3
0
4

P
I
U
2
0
5
2

NLPC0

P
I
P
1
0
1
1

P
I
P
3
0
2

P
I
U
2
0
5
1

NLPC1

PIP1012

P
I
P
3
0
8

PIU2050

NLPC2

P
I
P
1
0
1
3

P
I
P
3
0
6

P
I
U
2
0
4
9

NLPC3

P
I
P
2
0
1
2

P
I
U
2
0
1
6
 NLPC4

P
I
P
2
0
1
1

P
I
U
2
0
1
5
 NLPC5

PIP2010

P
I
U
2
0
1
4
 NLPC6

P
I
P
2
0
9

PIU2013 NLPC7

P
I
P
1
0
4

P
I
U
2
0
6
1

NLPD0 P
I
P
1
0
3

P
I
U
2
0
6
2

NLPD1
P
I
P
1
0
2

P
I
U
2
0
6
3

NLPD2 P
I
P
1
0
1

PIU2064

NLPD3 P
I
P
1
0
9

P
I
U
2
0
5
3

NLPD6

P
I
P
2
0
8

P
I
U
2
0
1
0
 NLPD7

P
I
P
2
0
7

P
I
U
2
0
9
 NLPE0

P
I
P
2
0
6

P
I
U
2
0
8
 NLPE1

P
I
P
2
0
5

P
I
U
2
0
7
 NLPE2

P
I
P
2
0
4

P
I
U
2
0
6
 NLPE3

P
I
P
1
0
6

PIU2059

NLPE4
P
I
P
1
0
5

P
I
U
2
0
6
0

NLPE5

P
I
P
1
0
2
0

P
I
U
2
0
2
8

NLPF0

PID201

P
I
P
1
0
2
1

P
I
U
2
0
2
9

NLPF1

PID301

PIP1022

PIU2030

NLPF2

PID401

P
I
P
1
0
2
3

P
I
U
2
0
3
1

NLPF3

P
I
P
2
0
3

P
I
U
2
0
5
 NLPF4

PIC702
P
I
P
2
0
2
3

P
I
P
3
0
1
0

PIR201

P
I
S
W
1
0
1

P
I
U
2
0
3
8

NLRST

PIJ103

P
I
P
1
0
1
9

P
I
U
2
0
4
3

NLUSB1D0
PIJ102

P
I
P
1
0
1
8

P
I
U
2
0
4
4

NLUSB1D0

PIC302

PID101

P
I
P
2
0
2
2

P
I
P
3
0
1

PIR101

PIR202

P
I
U
1
0
1

P
I
U
2
0
2

P
I
U
2
0
1
1

P
I
U
2
0
2
6

P
I
U
2
0
3
7

P
I
U
2
0
4
2

PIU2054

NLVCC
P
I
P
2
0
2
1

PIR102
PIU2032

NLWAKE

Figure H.1: Circuit diagram for tm4c123 dev board PCB

H1

Figure H.2: PCB composite for the load cell amplifier PCB

H2

Comment Description Designator Footprint LibRef Quantity

CAP0805
0805 (2012 Metric)
Chip Capacitor

C1, C2, C3, C4, C5,
C6, C7

CAPC0805(2012)145
_L CMP-1590-00003-1 7

SMD_LED D1, D2, D3, D4 0805 Diode SMD_LED 4

10118192-0001LF
CONN USB MICRO
B RECPT SMT R/A J1, J2

10118192-
0001LF_10118192-
0001LF(Primary) 10118192-0001LF 2

Header 24 Header, 24-Pin P1, P2 HDR1X24 Header 24 2

Header 5X2
Header, 5-Pin, Dual
row P3 HDR2X5 Header 5X2 1

RES0805
0805 (2012 Metric)
Chip Resistor

R1, R2, R3, R4, R5,
R6 RESC0805(2012)_L CMP-1591-00002-1 6

1825910-6

Tact Switch, SPST-
NO, 0.05 A, -35 to
85 degC, 4-Pin THD,
RoHS, Bulk SW1 TECO-1825910-6_V CMP-1684-00021-1 1

LP2950-33LPRE3 Imported U1 LP3 LP2950-33LPRE3 1
TM4C123GH6PMT7
R Imported U2 PM0064A_N

TM4C123GH6PMT7
R 1

AB15T-32.768KHZ

Low Frequency
Cylindrical Watch
Crystal, 32.768 kHz, -
20 to 70 degC, 2-Pin
5 x 1.4 x 1.5 mm
THD, RoHS, Bulk X1 ABRA-AB15T-2_V CMP-1326-00001-1 1

ABLS2-4.096MHZ-
D4Y-T

Low Profile Surface
Mount
Microprocessor
Crystal, 4.096 MHz
+/-30 ppm, 180
Ohm, -40 to 85
degC, 2-Pin 11.4 x
4.7 x 3.3 mm SMD,
RoHS, Tape and
Reel X2 ABRA-ABLS2-2_V CMP-0277-00002-1 1

Figure H.3: Bill of materials for the load cell amplifier PCB

H3

Appendix I Code Repositories

Joint control board and base code repository:
https://github.com/bentitus13/MIRA_Joint_Board_Code.git

Joint board testing repository:
https://github.com/bentitus13/MQP_TivaWare_Tests.git

Software repository:
https://github.com/atags22/MavenMira.git

PCB repository with Altium files:
https://github.com/bentitus13/MQP_PCBs.git

I1

https://github.com/bentitus13/MIRA_Joint_Board_Code.git
https://github.com/bentitus13/MQP_TivaWare_Tests.git
https://github.com/atags22/MavenMira.git
https://github.com/bentitus13/MQP_PCBs.git

	1 Introduction
	1.1 Problem Statement
	1.2 Goal Statement
	1.3 Objectives
	1.4 Constraints
	1.5 Summary

	2 Background
	2.1 Introduction
	2.2 Examples of Robot Arms
	2.2.1 ABB Robotics
	2.2.2 Universal Robots
	2.2.3 KUKA AG
	2.2.4 Small Industrial Robotic Arm Comparison

	2.3 Modular Arms
	2.3.1 igus Robolink
	2.3.2 Reconfigurable Modular Manipulator
	2.3.3 Modular Robotic Arm

	2.4 Our Robotic Arm System
	2.5 Technology
	2.6 Joint Control board
	2.6.1 Joint Position Detection
	2.6.2 Current Sensing
	2.6.3 Off-Board Communication

	3 Methodology
	3.1 System Design
	3.2 Fourth Joint and Existing Arm
	3.2.1 Fourth Joint Design
	3.2.2 Fourth Joint Prototyping
	3.2.3 3-D Printing
	3.2.4 Motor Selection
	3.2.5 Arm Base

	3.3 Joint Control Board
	3.3.1 Overview of Design
	3.3.2 Joint Angle Sensor
	3.3.3 Motor Current Sensor
	3.3.4 Inter-board Communication
	3.3.5 Preliminary Joint Control Board Designs
	3.3.6 ADC Selection
	3.3.7 Preliminary Price Breakdown
	3.3.8 Motor Driver
	3.3.9 Demultiplexer
	3.3.10 INA332
	3.3.11 Hall Effect Encoder
	3.3.12 TM4C123GXL Launchpad
	3.3.13 Printed Circuit Boards
	3.3.14 Joint Control Board Code

	3.4 CAN Bus
	3.4.1 Determining Joint Placement with Message ID
	3.4.2 Implementing a Simple CAN Bus
	3.4.3 CAN Termination
	3.4.4 Position Updates

	3.5 Base Module
	3.5.1 Overview of Base Module Design
	3.5.2 Base Module Code
	3.5.3 Power Rails

	3.6 Arm Structure
	3.7 Software Application
	3.7.1 Maven
	3.7.2 Program flow
	3.7.3 Serial Communication
	3.7.4 Mutltithreading
	3.7.5 Saving of Configuration

	4 Testing
	4.1 Acceptance Criteria
	4.1.1 Joint Board
	4.1.2 Modify RBE3001 Arm
	4.1.3 End Effector
	4.1.4 Base
	4.1.5 Software Application
	4.1.6 Code Library

	4.2 Motor Driver

	5 Conclusion
	5.1 Future Work

	Appendix A Early Project Iteration
	A.1 Introduction
	A.2 Modular Robotic Arm
	A.2.1 Our Robotic Arm System
	A.2.2 Control board
	A.2.2.1 Joint Position Detection
	A.2.2.2 Current Sensing
	A.2.2.3 Off-Board Communication

	A.3 Description of Work
	A.4 Methodology
	A.4.1 Kit Components
	A.4.2 Connectors
	A.4.2.1 Connector Position on Joints
	A.4.2.2 Securing the Connection
	A.4.2.3 Keying the Connector
	A.4.2.4 Passing Signals

	A.4.3 Sticks
	A.4.4 Motor Selection
	A.4.5 Control Board Part selection
	A.4.5.1 Joint Angle Sensor
	A.4.5.2 Motor Current Sensor
	A.4.5.3 Off-board Communication

	A.4.6 Arm Structure
	A.4.7 Arm Base
	A.4.8 End-of-Arm Tooling

	A.5 Constraints
	A.6 Project Goals
	A.6.1 Sticks
	A.6.2 Joints
	A.6.3 End Effector
	A.6.4 Base
	A.6.5 Software Application
	A.6.6 Code Library

	A.7 Kit Components

	Appendix B Solidworks Drawings
	Appendix C Motor Driver
	Appendix D Motor Driver with Current Sensor
	Appendix E Load Cell Amplifier
	Appendix F CAN Transceiver
	Appendix G Joint Board Boosterpack
	Appendix H TM4C123GH6PM Dev Board
	Appendix I Code Repositories

