

GE Aviation Tube Polishing System Major Qualifying Project

David Iglesias (RBE)

Xueyang (Charles) Lin (RBE, ME)

James Loy (RBE)

Fernando Perez (ME)

Advisors: Prof. Nestinger, Prof. Putnam

Outline

- Introduction
- Project Goal
- Design Requirement
- Solution
 - Gripper Design
 - Polishing Methods
- Implementation
- Results and Conclusion
- Future Recommendation
- Acknowledgement

Introduction

Engine

Aircraft

Introduction

Introduction

Project Goal

The goal of this project is to automate the process of polishing brazed or welded areas on a tube assembly supplied by GE Aviation.

Initial Design Requirement

Grip

- A robotic gripper that can adapt to various shapes of tubes
- May not damage the tubes upon gripping
- Make use of robotic arm supplied by GE Aviation

Inspect

- Use computer vision to locate the brazed areas
- Decide if polishing is necessary

Polish

- Fully polish brazed areas on the tube assembly
- Must not damage tube, cosmetically or physically

Final Design Requirement

Grip

- Unique gripper design for the tube supplied by GE Aviation
- Must not damage tube upon gripping
- Use Fanuc 200iB located in Washburn Shop

Inspect

- Was outside of the scope for the project
- To be left for future MQPs

Polish

- Fully polish brazed areas on the tube assembly
- Must not damage tube, cosmetically or physically

Polishing Prototype System

Gripper EOAT

Candidate Solution – Gripper

Grip

- A robotic gripper that can adapt to various shapes of tubes
- May not damage the tubes

Gripper Base

Tube Follower

Solution – Gripper Metrics

Methods Metrics	Gripper Base	Tube Follower	
	Design Difficulty		
Programming complexity	4 Need to adapt to different tubes	2	
Mechanical design complexity	3	5 Highly customized design	
	Resources		
Cost (Budget)	3	4 Highly customized design	
Time cost (for GE)	4 May change gripping locations	3	
	Performance		
Precision	4 Harder to determine polish area	3	
Desired functions absence	2	5 Cannot polish branches	
Total	20	22	

Candidate Solution – Gripper

Gripper Base

Pros:

- + Capable of grabbing tubes at all different angles
- + Flexible joints adapt to different tubes
 - Interchangeable gripper fingers

Cons:

- Complex design

Gripper Base

Final Gripper Design

Polishing Station

Candidate Solution – Polishing

Moving Tube, Fixed

Moving Polisher, Fixed Tube

Polisher

Combined: Moving Tube, Moving Polisher

Solution – Polishing Metrics

Methods Metrics	Moving tube, fixed Polisher	Moving Polisher, fixed tube	Moving tube, moving Polisher	
Design Di <mark>c</mark> iculty				
Programming complexity	3	4 Need to pass the tube	5	
Mechanical design complexity	2	3 Need to change tools	4	
EOAT	3	2	4	
	Resoures			
Cost (Budget)	2	3 Need tool changer	4	
Time cost (for GE)	4	5 Need to pass the tube	3	
	Perform nce			
Precision	4 Force sensing on a more complex EOAT	3	5	
Desired functions absence	2	2	2	
Total	20	22	27	

Polishing Process

Programming

- Force sensor collects data => Arduino
- Arduino generates PWM signals to linear actuator
- When desired force reached, Arduino sends signal to NI DAQ
- NI DAQ sends signal to Robot Fanuc DAQ
- Robot reacts

Results and Conclusion

Created polishing system

- EOAT works for specific tube
- Polishing routine implements force feedback controller

Program maneuvers tube on polisher

Future Work

- New Fanuc 710iC
- Computer vision
 - Identify welds/brazes
 - Determine the gripping positions
 - Check quality
- Built-in force sensor on the gripper
- Movable polishing finger belt to allow a finer polishing technique

Acknowledgement

We would like to thank our project sponsor General Electric Aviation and our advisors for their support.

- Our advisors
- Robotics lab
- Washburn labs
- Higgins machine shop
- FRC Team

Questions?

GE Aviation Tube Polishing System Major Qualifying Project

Candidate Solution – Gripper

Gripper Base

Linear Tube

Planar Tube Non-Planar Tube

Candidate Solution – Gripper

Gripper Base

Gripping Different Positions

Polishing Comparison

Moving Tube, Fixed Polisher

Pros:

- + No need for tool changing
- + Can pick up the tube then starts to polish immediately

Cons:

- EOAT design requires two grippers that can adapt to the tube

Moving Polisher, Fixed Tube

Pros:

+ Fewer kinematics calculations

Cons:

- Need to change tools
- Need to pass the tube to the gripper base (tube fixture)

- Force sensor: 25lb FlexiForce
- Linear Actuator: screw mechanism driven by 12V DC motor
- Motor: CIM motor 884
- Polishing belt: 120 grit

Force Sensing

GE Work Cell

GE Robot 710iC

