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Abstract

Lets look at a combustion engine, which in the most literal sense is designed to exploit

the Second law of Thermodynamics. Take a glass of petrol, it is in an ordered form of energy

by itself but when the petrol is ignited in a combustion engine, the volume increases (not to

mention the heat and sound dumped onto the environment) and the once ordered energy

becomes disordered. The combustion engine is special in that it can harness the dissipating

energy and tap in to the flow of heat and use it to create a small pocket of order to run

it’s pistons in the midst of all that disorder. Combustion engines are not the only ones,

even life itself does this. When you receive energy in the form of food, your body processes

the ordered energy and converts it in to more disordered energy but it uses the proceeds

off it to power itself. All the while the entropy of the universe is constantly increasing.

In fact, we see this all around us, from crack propagation in materials to phase and glass

transitions, from inter-cellular transportation at the nano-scale that form the basis of life

to the weather systems that dictate the movement of the water, carbon and nitrogen cycles

of our planet [7]. There is unifying theme that comes across from this and that is, there is a

high level of complexity that emerges spontaneously in these systems. Classical equilibrium

thermodynamics cannot answer this and is therefore rendered insufficient in explaining the

underlying dynamics that allow for such complexity. In this report, we study one such

system, the steady-state Rayleigh-Bénard Convection. An important observation we were

able to see through the current study was how temperature took on a time independent

trait yet maintained a spatially varying character. Our study employs a unique technique

by using an Infrared camera to extrapolate thermal profiles and present it statistically. On

a further note, the report also discusses the different approaches that can be adapted to

extend the current study to turbulence, complex networks and information theory.
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1 Introduction

Since the 1700s, classical thermodynamics has fundamentally changed the way we live and

how we solve issues in the real world due to its universality in explaining the flow of energy.

However, the basis of such explanations are grounded on the idea that the systems are closed

and in a state of thermodynamic equilibrium [25]. As we now know, almost all systems are open

to constant influxes of energy and matter and its impossible to separate or completely close a

system from the rest of the universe and therefore almost no system is in equilibrium. The current

challenge in Statistical Thermodynamics is to explain these “non-equilibrium” systems and their

processes. Most of the current theories attempt to approximate these non-equilibrium systems

from an equilibrium thermodynamics perspective but such theories are limited by equilibrium

thermodynamics itself [2, 7, 1]. In this report we explore experimental and computational

techniques that can be used to understand such far-from-equilibrium systems and help build a

general theory in the future. We use a prototype system, the Rayleigh-Bénard Convection, to

do this.

1.1 Equilibrium Thermodynamics

In the past couple of centuries, scientists have come to understand that energy drives the

universe through the laws of thermodynamics. In general, a hotter object (concentrated energy

source) would leak energy to its surroundings in the form of heat. A heat engine, in the modern

sense, takes advantage of this process by tapping in to the flow of heat to do useful work.

Although, work (mechanical form) and heat are two very different concepts they are faucets of

the same thing, energy. This is usually expressed mathematically in the form of the First Law

of Thermodynamics, written as so:

dU = δQ− δW (1)

where dU is the change in internal energy of the system, δQ is amount of energy supplied to

the system by a heating process and δW is the quantity of energy lost by the system due to

work done by system on the environment. The two kinds of processes that can change the

internal energy of a closed system are heat and work and in a very subtle way, this equation

tells us that this relationship is conserved. It reveals that energy can never be created nor

destroyed but merely transferred from one state to another. The internal energy of the system

was later understood to be a state variable expressed in the form of entropy, S and volume, V :

U = U(S, V ). Temperature, T and pressure, P are partial derivatives of U(S, V ) and all these

thermodynamics variables are defined only when the the system is in its own state of internal

thermodynamic equilibrium as seen further on.

It is important to recognize that thermodynamics was initially developed with a steam-

engine centric view that systems are macroscopic and useful work was some kind of extraction of

energy to do mechanical work. As the entire concept of kinetic theory (microscopic particles, like

atoms, interacting and transferring heat) picked on, it became impossible to calculate explicitly
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the energy and motion for every individual particle and for this reason, thermodynamics takes

the general motion of these particles and solves for the average values of the variables (both

intensive and extensive: U,W,Q, S, V, T and P ), under conditions of equilibrium.

Eventually, the kinetic energy of the particles in a hot object gradually decay as heat flows

from the system to the surroundings. Heat is a one way flow of energy and unless work is done

on the system or more heat is added to the object, the system will lose its internal energy. This

came to be understood through the Second Law of Thermodynamics where:

dS

dt
≥ 0 (2)

In the above equation, t is time, indicating that the rate of change of entropy must never

decrease. In time, a closed system will always achieve a state of maximum possible entropy,

or in other words, a state of thermodynamic equilibrium [22]. Thermodynamically speaking,

it can be deduced from this that the whole process is irreversible and we can never go back

in time because symmetry between the previous states and the future states is broken (in a

classical sense) [30]. Herein lies the connection to Far-from-equilibrium Thermodynamics, where

the internal energy of the system is changing between any two given states.

However, when a system is in equilibrium, it will behave ergodically suggesting that it will

carry itself out uniformly in both space and time because the change in internal energy is zero.

When this is combined with the first law of thermodynamics, heat can be redefined in relation

to temperature and entropy to give:

dS =
δQ

T
(3)

Adapting the idea of microscopic particles in facilitating the transfer of heat was ground-

breaking. Ludwig Boltzmann understood that in order to attempt to formulate such a system

with trillions and trillions of particles he had to abandon certainty and instead use concepts

of probability to show that atoms could be travelling at certain speeds and directions. This

formed the basis of what is now called Statistical Thermodynamics [19]. The main idea of

Statistical mechanics is to take the macroscopic system to be a series of events occurring at

certain probabilities on the microscopic scale and formulating the two. The probability was

found using the partition function (Z) as a normalization constant,

p(E) =
e−βE

Z
(4)

Here β is the inverse temperature 1/kBT where kB is Boltzmann’s Constant and E is total

energy of the micro-state. With this thermodynamic variables like entropy can be redefined in

terms of the new probability distribution,

S = kB ln(Z) (5)

Ē = − ∂

∂β
ln(Z) (6)
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p̄ =
1

β

∂ ln(Z)

∂V
(7)

This is the probability that the system will be in a certain state as a function of that state’s

energy. Formally, equation (5) is the thermodynamic definition of entropy and it tells us that

entropy is a measure of disorder. The distribution for equilibrium systems, which is widely seen

in many fields, is Gaussian and is commonly referred to as a Grand-Canonical Ensemble. It

implies that in a state of equilibrium there is uniformity across time and space [20].

1.2 Far-from-equilibrium Thermodynamics

Closed systems or isolated systems will continue to be in a state of equilibrium until and unless

they are driven out by an external steady flow of energy. In a statistical sense, equilibrium is

associated to a state of randomness across both space and time, implying that there is some sort

of symmetry. And although the system is characterized by macroscopic variables like pressure,

temperature and volume, from a microscopic point of view, the system will explore all possible

states before collapsing into a single point in phase space [25, 6, 12]. This forms the basis of

classical thermodynamics. However, when we look around us, almost all systems are open while

being driven out by an energy flux.

Figure 1: a) Figure shows a theoretical Carnot engine, C, operating between two reservoirs with
temperature T1 and T2 (T1 > T2). It derives heat Q1 from the reservoir kept at T1, dumps
heat, Q2 into the colder reservoir kept at T2 while does work, W . b) Figure shows a practical
Carnot engine, C ′, operating between two reservoirs with temperature’s θ1 and θ2. It is kept at
a steady-state by the constant heat influxes, q1 and q2. It derives heat Q′1 from the reservoir
kept at θ1, dumps heat, Q′2 into the reservoir kept at θ2 while doing lesser amount of work, W ′

(W ′ < W ).

A standard approach to dealing with the issue is based on the local equilibrium hypothesis,

in which the system can be broken apart in time and space as subsystems where we would

then be able to apply to approximation, classical equilibrium thermodynamic conditions [31]. A

simple theoretical Carnot engine (C), as seen in Figure 1(a), in a macroscopic sense describes
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the efficiency of thermal engines, i.e. the ratio of the work done and the heat coming from the

hot reservoir. It does this by averaging these quantities and assuming reversibility. However,

it becomes cumbersome to visualize this in reality because no real engine is reversible (there is

always positive change in entropy). In order to maintain the reservoirs at constant temperature,

a heat flux must be accommodated and maintained for and that is why no practical Carnot

engine (C ′) can remain as efficient as a theoretical Carnot engine (C). The maximum possible

efficiency of a theoretical Carnot Engine (C) is now reduced to a function of the steady state

non-equilibrium temperature of the reservoirs as seen in Figure 1(b) [2, 14]. In the scientific

community, this function is achieved by accounting for the microscopic behavior of the engines,

which are subjected to strong fluctuations (Fluctuation Theorem) [16].

The challenge is clear, to be able to apply thermodynamics to these systems we would not

only need to reestablish the definitions of the thermodynamic variables but also find ways to

quantify the emergent order or complexity, which represents the gap in our understanding of

these systems from a thermodynamic point of view [2, 5, 28, 11]. While equilibrium systems

exhibit complete randomness, far-from-equilibrium systems are dependent on fluctuations be-

cause they are incredibly sensitive to the driving perturbation. Take that glass of petrol again.

While a combustion engine can vaporize the petrol quickly, it is however a process that needs a

sufficiently high thermal gradient. If you were to heat this glass of petrol over a flame at lower

thermal gradients, you will see that it takes time to achieve a thermal gradient adequate enough

to establish convection currents within the liquid, without vaporizing it. During this period,

hotter less dense liquid flows upwards while the colder more dense liquid drops downwards, in a

cycle. The onset of this feature in convection is denoted by the critical value of the dimension-

less constant, Rayleigh Number (Ra) [29]. When the thermal gradient is increased like in the

combustion engine, the convective motion becomes turbulent and chaotic, this is usually marked

by higher values of the Rayleigh Number (Ra ∼ 109 for vertical surface). Convection itself is

a by product of far-from-equilibrium systems and in it’s very nature there is a high degree of

complexity.

In order to begin understanding how complexity arises and how to quantify it we use a

prototype system, the Rayleigh-Bénard Convection system.

1.3 Background on Rayleigh-Bénard Convection

A mode of transfer of heat, convection is a type of fluid flow that exists due to the competing

forces of viscosity, buoyancy and surface tension. When a fluid is exposed to a non-uniform

temperature gradient on a horizontal plane, such as a plate being heated from below, a difference

in density changes the dynamics of the fluid, producing convection patterns [26]. This phenomena

is known as Rayleigh-Bénard instability. The hotter less dense fluid moves upward and is replaced

by the cooler more dense fluid that flows downward. Visually, these can be seen as cells and

they join at higher temperatures to form rolls like in Figure 2 [33].

It is an observed feature that systems, such as Rayleigh-Bénard convection, when driven

out of equilibrium exhibit complex patterns. These patterns show a spontaneous formation of
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(a) Hexagonal Cells (b) Rolls

Figure 2: Different Patterns observed by performing real time-thermal imaging when silicone oil
a) 10 cSt and b) 150 cSt is heated. Note the homogeneity in the structure for 150 cSt

order and develop in time as a function of thermal fluctuations. Like all other driven out-of-

equilibrium systems, the patterns evolve and mature at various time and length scales [5, 7].

As mentioned earlier, we use the Rayleigh-Bénard Convection as our prototype system in order

to show how far-from-equilibrium systems display complexity. Rayleigh-Bénard Convection is

a simple convection system, that arises from a thermal gradient and the patterns represent

convective instability as seen in Figure 3. This figure depicts the experimental configuration of

the study. A thin layer of fluid is heated from the bottom at constant power (Q̇). As convection

settles down into a stable state, the liquid at the bottom of the pan which is at temperature,

Tbottom, becomes time-independent while the temperature at the surface of the liquid (Ttop)

initiates a spatial reordering. This information is extracted by performing real-time thermal

imaging from above and, by extrapolating the images we can analyze the statistics behind the

thermal fluctuations as a function of both space and time.

The convective instability creates a spatio-temporal non-uniform thermal distribution on the

surface of the fluid film as seen in Figure 3. The advantage of this lies in the simplicity of

being able to dimensionless parameters. We use one such important parameter from the world

of fluid mechanics to understand what kind of liquid we can play around with: the Rayleigh

Number (Ra). The Rayleigh Number is a dimensionless quantity that determines the onset

of convection. Initially we focus on non-turbulent liquids, so we used liquids that have a low

Rayleigh Number. For no-slip boundary conditions (infinite parallel plates), the number is

called the critical Rayleigh Number and was calculated to be 1708 by Jeffreys in 1926 [18]. In

our experiments we used silicone oil with a viscosity of 150 cSt (Ra = 2500 to Ra = 3500

with temperatures from T = 20◦C to T = 130◦C) for non-turbulent flows and later extended

it to turbulent flows by using glycerol water mixtures (Ra > 8 × 104 with temperatures above

T = 20◦C). For non-turbulent experiments the thickness of the oil was relatively thin, about

4mm-5mm while this increased to about 1cm for turbulent conditions.

Since the critical Rayleigh Number for convective patterns to emerge is around 1708, we can

check if our values should show convection without needing to directly recognize the patterns in
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Figure 3: Cartoon illustrates the experimental configuration of the current study. The Rayleigh-
Bénard system at steady-state is set up by heating a thin film of viscous liquid from the bottom
(Q̇). The temperature difference between Tbottom and Ttop gives rise to convection rolls. While
at steady-state, Tbottom is constant, real-time thermal imaging of the top layer is performed to
extract the spatial and temporal distribution of Ttop. The line cut of the thermal profile Ttop(r, t)
is also shown. As the goal was to have convection cells over as wide as an area possible for the
thermal imaging to yield significant temperature statistics, a large diameter to thickness ratio of
the apparatus (2R/lz ' 225 mm / 5 mm ∼ 45) yielded a stable convection cell pattern & 150
mm in diameter and stable for as long as the power was applied.

the images. To do this we calculate the Rayleigh Number:

Ra =
gβ

να
(TPhot

− TPcold
)l3z (8)

where g is the acceleration due to gravity and β is thermal expansion coefficient of silicone

oil. TPhot
and TPcold

describe the mean temperature of the copper plate using the thermocouple

attached to the base and the IR camera records the mean temperature for the surface of the

liquid, respectively. All other values are found either by measuring or in product specifics as

seen in Table 1 and Table 2.

The motion of a viscous fluid is described by the Navier-Stokes equations. The solutions

to these equations are unsolved mysteries. However, solutions can be approximated using as-

sumptions like incompressible flow and small density variations etc. One such way to solve

non-isothermal flow, such as the Rayleigh-Bénard convection without having to solve the Navier

stokes is by using the Boussinesq approximation. Under this technique, approximations of an

ideal incompressible fluid that is thermally driven can be rewritten by using the following set of

equations,
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∂ρ

∂t
+∇ · (ρ−→u ) = 0

∂−→u
∂t

+ (−→u · ∇)−→u = −1

ρ
∇p+ ν∇ · (∇ · −→u )− gβ∆T

∂T

∂t
+−→u · ∇T = α∇2T +

−→
J

ρcP

(9)

For a packet of fluid with local convective velocity, −→u incompressibility implies, ∇ · −→u = 0;

the density is assumed to vary linearly with temperature, ρ = ρ0(1 − β∆T ), and the specific

heat of the fluid is denoted by cP .

Rayleigh-Bénard convection, due to its conceptual richness has become one of the most ac-

tively studied physical systems. Its dynamics offer extensive insight into both the fluid mechanics

and the thermodynamics aspects of natural convection. Over the years, Rayleigh-Bénard con-

vection has especially been used to study the fluid mechanics of turbulent flow while numerous

boundary layer studies have been performed to estimate the effect of geometry on convective

heat transfer and the role of plumes. One can also find numerous studies on the empirical rela-

tionships between the various dimensionless numbers (specially, Nusselt number (Nu), Reynolds

number (Re), Prandtl number (Pr) and Rayleigh number (Ra)) under conditions of laminar and

turbulent flows [18, 29]. Currently, the fluid mechanics community is interested in solving issues

like hydrodynamics, convection cell formation through the role of plumes, rotation and magnetic

fields effects on cell placement, turbulent convection with cryogenic gas etc [18, 29, 30, 8, 9].

Although, the current state of the art experimental setups, data logging techniques, numerical

and mechanistic simulations have already provided numerous critical insights about the fluid

mechanical aspects and more needs to be done in respect to this, a lot of the thermodynamical

interpretations still remain unresolved. Our approach does not analyze the system through a

fluid mechanics perspective and focuses solely on the thermodynamics behind the images taken

through the infrared (IR) camera.

2 Methodology

Rayleigh-Bénard convection is one of the most widely used canonical examples to study

pattern formation and since it can be easily recreated, it is also one of the most ’simple’ complex

systems.

A resistive heat film (heater) is attached to the base of a copper pan. The copper pan has a

diameter of 0.225 m and the electric resistance of the heater is 37.5 ± 0.5 Ω. Copper being a good

conductor of heat will allow the flow of energy through it with minimal thermal resistance. Over

the copper plate, a thin layer of silicone oil, with a kinematic viscosity of either 10 cSt, 20 cSt or

150 cSt is heated. As seen in Figure 4, the plate is also attached with a J-Type Thermocouple,

T1. The entire experiment is placed within an wooden gasket. The gasket rests on an insulating

foam (isolation block) and has an opening on top, from where an IR Camera (FLIR T62101)

can image the surface of the plate (as seen in Figure 4). The IR camera is positioned about
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Figure 4: Figure illustrates the experimental setup with the copper pan (2R = 0.225 m), the
three thermocouples (T1, T2, T3), inlet and outlet ducts for the forced convective heat transfer,
and the Infra Red camera for real-time thermal imaging. The inlet and the outlet ducts are
present on the top cover and the copper pan sits on a wooden bottom rest and a polyurethane
foam foundation which acts as an insulator.

0.7 m above the plate. The gasket also has two openings allowing for gas exchange, if required

for forced convective heat transfer. T2 and T3 measure the temperature of the incoming and

outgoing gas respectively. The isolation block, which is made out of polyurethane foam, also

accounts for the lateral dissipation of heat by fitting right around the copper plate. This sums

up the experimental resources needed to create a Bénard Cell.

Since each thermal image has its own temperature scale, a test run with no oil is needed

to calibrate the temperature readings of the IR Camera to the temperature readings of ther-

mocouple attached to the base of the Copper plate. This ensures the camera records a similar

change in temperature as the thermocouple. In order to do this, adhesive tape is attached to five

randomly chosen spots on the surface of the plate and the IR Camera is focused onto the entire

plate. Figure 5 represents the calibration curves for these five spots comparing the thermocouple

temperature at the base and the IR Camera temperature of the surface. Although it is checked

during every run, it can be assumed here on that the IR Camera is now imaging approximately

the surface of the liquid that will be placed. This is because the thin layer of Silicone Oil is only

about 4 or 5 mm based on the experiment [34].

Data from the thermocouple can be viewed using NI Signal Express while data from the IR

Camera can be viewed through the FLIR Software. The FLIR software will allow for remotely

accessing the camera and also display statistics for selected regions or points. Any other manual

arrangements to the system can be ensured through the real time display as well. All data is

structured on a MATLAB Spreadsheet where a fit can be made (Figure 5). The fit will define

the amount the camera needs to adjust in order to report a temperature more accurate.
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Figure 5: Figure shows the steady state relationship between the IR Camera recorded temper-
ature and the base thermocouple temperature at different power settings for the five randomly
chosen spots on the empty copper pan.

2.1 Image Analysis

An IR Camera detects infrared energy (heat) and converts it to bits. This means that every

pixel will have an allocated bit value, in this case, between 0 and 255. The bit value determines

the intensity of the pixel with 0 being the coldest pixel in the image and 255 being the most

intense or ’hottest’ in that particular frame or image. The FLIR T62101 has a resolution of 320

x 240 pixels (76800 pixels) with a sensitivity less than 0.045◦C at room temperature. However,

there is a trade off. The camera does record higher temperatures than it should at higher

powers and this is because of the emissivity of the copper plate. We also accounted for this in

the calibration curves as seen in Figure 5, but nonetheless the sensitivity fails to be less than

0.045◦C. We therefore focus most of the studies for the data below a certain power (usually

95W -130W ).

Using the FLIR software, images and videos can be taken and the output can be analyzed or

viewed in two different ways. The first would be by taking advantage of FLIR’s output matrix

and the second would be by uploading the images as a stack in ImageJ. The first approach is

more desirable and accurate, however, ImageJ allows for great ways to derive other kinds of

statistics like temperature threshold.

Utilizing the FLIR Software, a 2D Array (M x N = 320 x 240 elements) of bit values can

be obtained, where every element of the array represents the bit value of a particular pixel.

Taking into account the previous calibration of the Camera and the thermocouple, it is now

possible to use the scale at the right edge of the image. The scale displays the temperature of

the hottest and coldest pixel in ◦C and assumes a linear conversion from bits to ◦C. Using the

linear equation:
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y = mx+ b, m =
y2 − y1
x2 − x1

(10)

where ’y’ is temperature of pixel in ◦C and ’x’ is the temperature of same pixel in bits. Slope

’m’ is determined from the broader range of values with y2 being the pixel with the highest value

in ◦C and y1, the pixel with the lowest value in ◦C. x2 and x1 would be the same pixels but the

value in bits. The y-intercept ’b’ is always taken to be equal to y1, making it simpler during

analysis. This can be rewritten in the form:

Temp (◦C) =
Max Temp (◦C)−Min Temp (◦C)

255− 0
× bit +Min Temp (◦C) (11)

Since the camera is not vertically adjusted anymore, the diameter of the copper plate will

help convert pixels to meters. The diameter is traced on the image using a software called

ImageJ. ImageJ will calculate how many pixels make up a millimeter and output the subsequent

results in millimeters. With the following information from the ◦C matrix, it is now possible to

calculate useful statistics.

The second technique mentioned above takes a slightly different approach but could be useful

in certain scenarios where plug-ins for threshold calculation in ImageJ may be used. Raw images

from the camera can be directly dropped into ImageJ. A feature of ImageJ called Virtual Stack

will allow the user to upload more than one image and perform the same operations that will

be executed in every image on the same pixel. Since the camera does not move during image

collection, it is acceptable for us to be able to use it. Although the approach mentions a

different technique it is similar to the earlier one in that the calculations go through the same

procedure and we assume a linear conversion from bits to ◦C. A region is selected using the

oval selection tool. The region’s mean, standard deviation and other statistics can be obtained

through ‘set measurements’. With this technique however the mean temperature corresponds to

the temperature of the the surface of the oil, Ttop. Tbottom remains as the temperature readings

from the thermocouple attached to the bottom of the copper plate [34].

2.2 Outline

Now that we have data that shows the intensity of the image (i.e. the M ×N matrix in ◦C),

we can use this to calculate statistics like mean temperature and standard deviation for every

image. We then expand the technique with the infrared camera to map the convective instability

of the surface of the liquid across different external powers as seen in the sample snapshots in

Figure 6[a]. All the while we make sure that the applied power never exceeds a value that can

change the molecular configuration of the oil through burning or extend the system into the

turbulent regime by boiling. This means that the Rayleigh Number (Ra) <3500. We can now

use this data to understand how the system behaves in space.

At each power we also take time lapses (or a series of images usually about 480 to 900 images)

for the liquid beginning at room temperature steady state and ending when the system reaches

a position where the thermal fluctuations are less than 1/10th of a ◦C (this usually takes about
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Figure 6: a) Figure shows steady–state thermal images recorded for two thickness, lz = 4.74 mm
and 5.02 mm at various powers. b) Figure shows the time–evolution of the lz = 4.74 mm at 95.0
W over a period of two hours. Note that the shown images are logarithmically placed in time.

2-3 hours) as seen in the sample snapshots in Figure 6[b]. This data is used to understand how

the system behaves in time.

3 Manufacturing of Setup

The initial setup had some fundamental limits to it. For example, the thickness of the walls

were only 0.8cm high and this forced us to play with lower thicknesses of the liquid which

was perfect for non-turbulent studies but not for turbulent conditions in which we needed a

higher thickness. Another problem we faced was the flatness of the copper plate. Due to the

manufacturing process of the initial setup we faced difficulties in trying to manage the uniform

distribution of the patterns across the surface of the liquid. However, for our initial experiments

these issues were not dominant as the thickness of the liquid was thin enough. As a part of this

MQP, we also created a new setup to avoid future issues like this.

To be able to avoid the earlier issues we needed to change the way we manufactured this

setup. Instead of a press style approach in which a single sheet of copper was pressed and the

sides were bent normal to the sheet, we decided on a clamped style approach. A thin square

sheet of copper was placed between two square blocks of aluminum and together the three layers

had six tapped holes (through all) around a circumference of 24 cm from the center as seen in

Figure 15. A circular hole on the aluminium block at the top was machined all the way through.

The hole had a diameter of 22.5 cm. This was our approach to recreate the previous setup but

with a flatter copper platform and higher walls around (aluminum block on top). The entire
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setup was manufactured in Higgins Laboratories with the help of the VM2 mill while ESPRIT

files executed the instructions. The design was also adapted to make space for the heater that

was attached to the bottom of the copper plate and a small hole allowed for the thermocouple

and wiring’s to the heater to fit through. In order to fully make sure that the liquid did not

seep through gaps between the copper sheet and aluminum block placed over it, we also used

high temperature silicone sealant that acted like an adhesive between the block and the copper

sheet.
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Figure 7: Figure illustrates the manufacturing setup with the copper sheet bolted between two
aluminum blocks. The aluminum block on top is machined to include a hole (2R = 0.225 m)
in order to directly see the copper sheet underneath and six tapped holes allow for the bolts to
fasten. The Aluminum block on top also acts like the boundary (walls) for the liquid poured
over the copper sheet.

After initial trials that confirmed that the setup worked, the entire structure replaced the

copper plate in Figure 4 of the previous setup. The setup had finally enabled us to perform

experiments with higher thicknesses and moreover allowed us to use a near flat copper base.

CAD and CAM files are included in this MQP.

4 Results and Discussion

This methodology helps us quantify spatio-temporal thermal fluctuations in a driven out-of-

equilibrium steady state system like the Rayleigh-Bénard convection. As mentioned earlier each

of the images are converted to M×N matrices with temperature in ◦C and statistical analysis

can now be performed by choosing a region of interest (ROI). The ROI depends based on what

the focus is but it can be square, a circle, area between two concentric circles or list of pixels

with temperature above a threshold. A square is selected by defining the coordinates of upper

left corner (x1, y1) and the bottom right corner (x2, y2), i.e. the diagonal points. Similarly a

circular or annular region can be extracted by specifying the center point and the radii (inner

and outer circle) of the respective circles. Isolating regions of interest allows for calculating

statistics and can enable us to chart down how the different viscosities or thicknesses or powers

affect the temperature distribution on the surface of the liquid. Table 1 highlights the properties

of silicone oil at 150 cSt.
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Table 1: Table outlines thermal and material properties of the silicone oil sample that was used
to perform the current study [?].

Viscosity Density Conductivity Specific Heat Diffusivity Compressibility
ν (cSt) ρ (Kg/m3) k (W/m−K) cpoil (J/Kg −K) α (m2/s) βT (m2/N)

150 970 0.16 1500 1.099× 10−7 9.5× 10−4

Table 2: Table shows the calorimetric data from the steady–state images at different powers for
the two thickness (lz = 4.74 mm and 5.02 mm). The numbers listed in the first column denote
the specified points in the plots shown in Figure 10. The top temperature (Ttop) is recorded by
the thermal camera, bottom temperature (Tbottom) by the thermocouple T2, the hot and cold
spot temperatures (TPhot

and TPcold
) are obtained by spatially averaging regions of interest (Phot

and Pcold) from the thermal images, conduction temperature (Tcond) is calculated from Equation

11, and the Rayleigh Number (Ra = gβl3z
να

(Tbottom − Ttop)) from the listed values in Table 1.

lz # Power Ttop TPhot
TPcold

Tbottom Tcond Rayleigh Number
(mm) (W ) (◦C) (◦C) (◦C) (◦C) (◦C) Ra

1 23.8 39.4 −− −− 53.2 46.8 831
2 42.2 48.4 61.5 54.8 71.7 61.7 1410

4.74 3 66 59.9 78.2 69.7 89.5 76.1 1790
4 95 70.9 100.9 91.1 115 96.4 2670
5 130 89.8 124.8 114.1 147 122.2 3464
1 10.5 30.3 −− −− 37.9 34.5 535
2 23.8 38.1 43.1 39.7 53.4 46.9 1080

5.02 3 42.2 47.2 63.5 56.7 70.9 60.9 1670
4 66 58.8 84.4 73.6 91.8 77.7 2330
5 95 73.1 101.3 90.1 115 96.4 2960

Table 2 highlights the data gathered and extrapolated from the matrices in ◦C. Two main

thicknesses that were played around with are lz = 4.74 mm and 5.02 mm. The power supplied

was incrementally increased and the steady state non-equilibrium images were used to highlight

the last temperature recordings for each power (Table 2). Tcond and Rayleigh Numbers were

calculated as seen later on in temperature plots.

As mentioned earlier the data comes from spatially averaging the statistics on regions of

interest. In Figure 8, the analysis strategy is pictorially represented to give a better idea of how

we account for space and time. Figure 5[a] represents how a specific region is followed across

in time to extract temporal statistics whereas in Figure 5[b], a region of interest is looked at

across the steady state image (final image) in order to extract spatial statistics. In Figure 5[b]

the region R denotes the section of the image that does not display convective patterns and the

region P is where the patterns are visible.

4.1 Spatial Results

Spatial statistics are taken from the final image in the time lapse. The last image is at non-

equilibrium steady state. This means that the image was taken when the thermal fluctuations

are less than than 1/10th of a ◦C. The image was usually seen across different powers after

slightly more than 2 hours of observation.
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Figure 8: a) Figure illustrates the temporal analysis of an arbitrary region of interest on the
images as a function time as the system evolves from room temperature equilibrium to an out–
of–equilibrium steady–state. b) Figure shows the regions of interest for the spatial analysis on
the steady–state image of a Rayleigh–Bénard convection. The complete image is denoted by
I, the annular region without any structures by R, the circle at the center by P , the upward
(bright spots) and downward plumes (dark spots) by Phot and Pcold respectively [5, 34]

4.1.1 Distributions

The first study performed was to see how the thermal profile looked in regions with patterns

(i.e. convection), P, and compare them to regions where the patterns were not visible, R in Figure

8[b]. Because convection can be seen clearly over the images, it was easy to isolate the two and

define circular or annular regions of interest on the images. Every pixel with its corresponding

temperature, Tij, within the region of interest is stored in a 1D array and a frequency histogram

is generated to model the distribution of temperature across space. A measure, µ is defined over

the collection of all pixel temperatures within a region (P or R) such that,

δT ∗ =
1

µ(P )

∫
µ

δT ∗(P ) (12)

In Figure 9, the left panel (a and c) shows the histograms and the kernel density approxima-

tions for the region of interest with convection (in green on the images) for the two thicknesses.

As one can see there is a clear bi-modality and this suggests that the ergodicity of the system

is broken and moreover, broken spatially [15, 23]. However, like in the middle panel (b and d)

the outer regions of interest with no convection (between the red circles on the images) shows a

histogram that can be fit with a near perfect cumulative Gaussian distribution function. This

suggests that thermal fluctuations in this region are purely random (normal distribution) while

those within the convective boundary also contain gradients along with the fluctuations, and,

together they contribute to the temperature spatial variance [22].

If we look closer at the bi-modal distributions, it can be identified clearly that there are two

different peaks here. So we performed two independent Gaussian fits over the data. This was

done by selecting a threshold that allowed for all colder pixels within the ROI to be below the

threshold and all the hotter pixels within the ROI to be above the threshold. The temperature

data was split into two different arrays by this process and the respective histograms were created.

ImageJ was a useful factor in retrieving the threshold information here. This is illustrated in
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Figure 9: Figure shows the scaled-thermal fluctuations in a Rayleigh-Bénard convection under
steady-state at 40 Volt (top panel) and 60 Volt (bottom panel) at Ra=3464. The probability
density plots on the left ((a) and c)) captures the fluctuations in the annular region (in cyan)
with Gaussian fits (light gray, shaded) centered at the origin, while the plots on the right ((b)
and d)) captures the fluctuations in the closed circular region (in red).

Figure 10.

The two independent Gaussian fits are performed and denoted by N (µk, σ
2
k) where µk and σ2

k

represent the mean and variance respectively. For example in Figure 10, N (89.25± 0.089, 1.25)

accounts for the hot region (in red) and N (86.21 ± 0.13, 1.24) accounts for the cold region (in

blue). As you can see the histograms are normally distributed in Figure 10c and 10d. Figure

10c represents the histogram with N (89.48±, 0.64) for the hot region and Figure 10d represents

the histogram with N (86.49±, 0.96) for the cold region.

4.1.2 Temperature Plots

From the tabulated data in Table 2, it is possible to now understand how temperature changes

across the surface with change in applied power. Moreover, it has also enabled us to understand

how convection plays a role in here. If there was to be no convection then temperature across

the surface of the liquid will be characterized by the dominant form of heat transfer, conduction.

We can calculate this theoretical conductive temperature, Tcond using the steady state heat

conduction equation and the available calorimetric data in Table 1. Compressing and rewriting

all this in one line, we will get:

Q̇ =
(mCucpCu

+moilcpoil)(Tbottom − Ttop)
2× 60× 60

= −kA∇T = −kA
(Tcond − Tbottom

lz

)
(13)

where A is the area of the copper pan, lz is the thickness of the fluid, Table 1 shows the

expected temperature of theoretical conductive layer, Tcond which is measured and like previously
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Figure 10: Figure a) shows a bimodal distribution of the temperature frequency distribution in
the ROI with the pattern. Two independent Gaussian distributions (b and c) are performed
which are identified as ’hot’(in red) and ’cold’(in blue) to the left and right.

mentioned the temperature of the upward and downward plumes are (TPhot
and TPcold

). It is also

observed clearly that, Tbottom > Tconduction > Ttop, across the entire spectrum.

Figure 11: Figure shows the temperature plots (TPhot
, TPcold

, Tcond and Tbottom) for the steady-
state images at different values of input power for a) lz = 4.74 mm and b) lz = 5.02 mm.
The inset plots capture the variation in the plume temperatures (TPhot

and TPcold
) about the

theoretical conduction temperature (Tcond) as a function of power. For details about the specific
points denoted in the plots, refer Table 2. Also, note that ε is arbitrary.

In Figure 10, we plotted the temperatures of the calculated values of Tcond along with the
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measured values of TPhot
and TPcold

as function of the power supplied to the pan. Whenever the

Rayleigh Number was higher than 1708 we did see convection and the theoretical conductive

temperature was close to the weighted average of the temperature of the hot and cold plumes [9].

We also show the variance of these plume temperatures as a function of the power applied

in the inset of Figure 11. ε tells us how much change their can be above and below the Tcond

trend-line. It is arbitrary because we don’t really know what the actual value is. Although

it confirms our understanding that the theoretical conductive temperature should be between

the hot and cold plume temperatures, it was informative in the sense that we can see that this

is not a linear relationship. The variation grew on opposite sides of the Tcond “almost anti-

symmetrically” [5]. In conclusion, the data suggests a sort of spatially varying character to

this system and the spatial analysis corresponding to TPhot
and TPcold

can be thought of as two

different local equilibrium like regions that coexist with each other [17]. As documented earlier

this is one of the ways we can begin to understand how non-equilibrium systems behave using

the local equilibrium hypothesis [31].

4.1.3 Precursor to Length Scales

Figure 12: a) Figure shows the mean thermal profiles of six spatially averaged horizontal lines
for Lz = 5.02 (blue) and 4.74 mm (magenta) at 66W. (b) Figure shows the mean thermal profiles
of six spatially averaged horizontal lines for Lz = 5.02 (blue) and 4.74 mm (magenta) at 42.2
W. The shaded bands about the mean thermal profiles represent the standard deviation.

An important technique to analyze how the pattern’s length scales develop can be done by

using auto-correlation techniques, specifically the Wiener–Khinchin theorem. However, a more

easy and quick way to see if there are length scales within the system is by simply checking
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mean temperature across a line of pixels. Before we used the auto-correlation equations to do

this, we plotted the thermal profiles that are spatially averaged along six horizontal line cuts

that arranged to be parallel with each other.

As one can see mean temperature for a higher powers (Figure 12[a] - 66W) is greater than

those with lower powers (Figure 12[b] - 42.2W). The variation in strength of the thermal profiles

describe the thermal field heterogeneity. The more flat a curve is, the easier it is to identify spatial

correlation length scales and that’s why at higher powers (66W) it can be observed that the

temperature was more uniform over longer length scales than for those at lower powers (42.2W).

However, this could also be the case that the temperature profiles are not fully developed at

lower powers, making the patterns randomly oriented. Since the patterns occupy a smaller area,

the majority of the peripheral region experiences mostly conduction and this may also lead to

more thermal heterogeneity. This tells us that as the power increases the patterns become more

developed and homogeneous. The patterns are chaotic and most of all uneven and in order to

construct a more detailed geometry of the region spatially we need to integrate over the whole

area which is where we use the Wiener–Khinchin theorem.

Figure 13: Figure shows on a semi-log scale the temperature mean and standard deviation as a
function of time of the top of the silicone oil film as it responds to the applied heating power
until steady-state is reached for various values of input power. The left axis corresponds to the
temperature mean in degrees Celsius (solid blue circles) and the right axis corresponds to the
standard deviation (solid red triangles). Plots a, c, e show heating profiles for a film thickness
of lz = 4.74 mm, and plots b, d, f for lz = 5.02 mm. Note that the applied heating power in
Watts are labeled by the far left y−axis.
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4.2 Temporal Results

Unlike spatial analysis, time statistics are taken from a time lapse. The time lapse begins

just before the a power is supplied to the pan (room temperature equilibrium) and the last image

is taken when the system reaches a far-from-equilibrium steady state as seen in Figure 6[b]. The

Flir Camera’s time lapse feature enables us to take images every 15 seconds and since it takes

almost two hours to reach a position where the thermal fluctuations are less that 1/10th of a ◦C

we get around 481 images.

4.2.1 Temperature Plots

A natural reaction to this data set is to see how the mean temperature and the standard

deviation of the surface of the silicone oil evolve as a function of time. A region of interest is

selected (a circle encompassing the boundary of the plate) and we then average all the pixels

with in it using our computational image analysis technique.

Figure 14: Figure shows on a semi-log scale the temperature mean and standard deviation as
a function of time of the top surface of the silicone oil film as it relaxes to room temperature
after the applied heating power is removed. The left axis corresponds to the temperature mean
in degrees Celsius (solid blue circles) and the right axis corresponds to the standard deviation
(solid red triangles). Plots a, c, e show cooling profiles for the film thickness of lz = 4.74 mm,
and plots b, d, f for lz = 5.02 mm. Note that the applied heating power in Watts are labeled
by the far left y−axis.

Figure 8[a] highlights the approach we use to track the region across images. The mean

temperature of the region of interest is 〈T 〉 = 1
N

∑
i,j∈I Tij and the standard deviation, σT =
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√∑
i,j∈I(Tij−〈T 〉)2

N−1 , and they are both calculated from the image matrix (Iij). The same region of

interest is used across all the images and the data is graphed as seen in Figure 13.

An interesting result from this was the unexpected drop in standard deviation as the patterns

began to form around ≈200 seconds into the process. Standard deviation measures the thermal

fluctuations in the system and this suggests that the increasing trend of thermal fluctuations

is broken at the onset of convection. At around ≈900 seconds this value reaches a minimum

and begins to increase till the mean temperature stabilizes. During this period convection cells

grow to their maximum extent over the film. Note also that the maximum mean temperature

at steady state for the sample increases with an increase of power supplied.

We then recorded this entire process as the system begins to cool when the power supplied

to the system is turned off as seen in Figure 14. Unlike when the power is turned on, this time

the mean and standard deviation fall abruptly until the cell patterns disappear. The fall in

standard deviation begins to slow down when the patterns disappear and flattens as the mean

temperature reaches room temperature. It is again seen through the whole temperature plots

that standard deviation is dominated by these spatial thermal fluctuations so long as there is

no convection. But as soon as convection cells appear, thermal gradients across the film affect

the standard deviation and there is this “unexpected and sudden” change [5].

4.2.2 Distributions

This next section of the temporal plots account for the region changes after it has reached

steady state. We know that fluctuations decay when a system is at equilibrium state as a function

of 1/
√
N and this is also the case for fluctuations at far-from-equilibrium steady state when

it is considered independent of time and space (equivalence principle in thermodynamics)[1].

Therefore we can say that after the system has reached steady state and we will get normally

distributed histograms. This section shows that.

Figure 15: Figure shows the histograms for the scaled-thermal fluctuations averaged over time
after the system has reached a steady-state on a semi-logarithmic scale. The panels a) denote
the hot regions (Phot), b) the entire region (P ), and c) the cold regions (Pcold). The mean
temperature, 〈T 〉 (in ◦C) of the various regions of interest are also denoted. The histograms are
fitted with normal distribution functions all centered at zero.
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To do this we take a video (a movie) at 30 frames/sec for 15 minutes. The region of interest

which is fixed across the whole movie is extracted. This region is either one that has no patterns

within it or one over a hot or cold plume (part of a convection cell). This can be seen in Figure 15,

that shows the time-averaged scaled thermal fluctuations over these particular regions. Thermal

fluctuations are calculated by finding the difference between the global mean and every pixel

temperature within the ROI. This is then scaled using that same mean by δT ? =
Tij−〈T 〉
〈T 〉 .

Averaging across all frames (which is about 27000 frames) for the entire video, the δT ? then

becomes:

δT ? =
1

T

∫ T

0

δT ?(t)dt. (14)

As seen in Figure 14, we accounted for different regions of interest and saw that they are all

normally distributed. Figure 14[a] and 14[b] show the time averaged histograms for the hot and

cold plumes and Figure 14[b] is for a entire region with patterns, P (seen in Figure 7[b]). The

plots were on a semi log y axis to highlight the deviations from the fit near the tails. This can be

seen especially on the distributions of the cold plumes in Figure 14[b] suggesting the presence of

higher time scales or moments. The combined distribution does not reveal the deviations near

the tails from the normal because the distribution is dominated by the hot plumes. Moreover to

understand how distribution works in respect to time scales we will need to do auto-correlation

using the Wiener–Khinchin theorem again but this time, averaging over every image in the time

series.

5 Future Work

Due to the nature of the experiments and its features that can be recognized across other far-

from-equilibrium systems, the studies can be extended to incorporate various other phenomena.

Although there wasn’t enough time to do all of this, we did begin some and also designed further

experiments. Here are a few:

5.1 Turbulent Rayleigh-Bénard Convection

A natural extension to the main study of non-turbulent Rayleigh-Bénard Convection is to

look at how the statistics change when turbulence arises using the same methodology. Turbulence

is achieved at higher Rayleigh Numbers and we attempted to recreate the system for this case

by using glycerol-water mixtures [24]. Glycerol-water mixtures are the best liquids we could use

for this because they are not only cheap but also allow for a wider range of Rayleigh Numbers

that can be played around with (different concentrations of glycerol and water). The new setup

also allowed for higher thicknesses which is required for turbulence.

Figure 16 plots the scaled standard deviation of the intrinsic value and order as a function of

time (temporal results) for the Rayleigh-Bénard Convection system. The intrinsic value is the

spatially averaged temperature, 〈T (t)〉 and this is denoted by 〈T (∞)〉 at steady state. Figure
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Figure 16: Figure shows the scaled standard deviation of the temperature and the evolution of
the order parameter as a function of time (log-scale) for different fluid samples. Note that the
Rayleigh Number changes from non-turbulent to turbulent.

16[b] and 16[f] are the graphs we saw earlier for the silicone oil experiments which show non-

turbulent Rayleigh-Bénard Convection. The same experiment was performed using glycerol

which at the same conditions does not push the system into turbulence (Figure 16[c] and 16[g]),

however when mixed with water at 1:4 or 1:2 ratios by volume, achieve Rayleigh Numbers high

enough to be turbulent (Figure 16[d] and 16[h]) [4].

The drop in standard deviation across both turbulent and non-turbulent regimes connects

them. The dissimilarities like the presence of multiple peaks and unusual drops suggest that

there exists various time scales. Overall, these results correlate the spatial ordering of the

convective cells with the evolution of the systems temperature manifold. Space and time do

not work symmetrically and therefore these systems, both turbulent and non-turbulent are non

ergodic [10].

Future work on this can delve into other features of the turbulent Rayleigh-Bénard Convection

and assist in making a better comparison to non-turbulent regimes. Statistics across space and

time can show how different turbulence can get even though there is a common feature of the

spontaneous reduction in local entropy. However this was the extent to which we could finish in

this setting.

5.2 Complex Network Framework

This particular study deals with the idea that the 2D matrices (images) from the FLIR

Camera which highlight convection patterns can be modeled by complex networks in order to
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evaluate the various statistical properties that emerge [3]. The framework will help us understand

the patterns and the matrices from a mathematical sense. This could eventually help us connect

the current energy studies on Far-from-equilibrium systems to Network theory. However this is

a work in progress and although preliminary studies have already been conducted the analysis

and logic is still in the early stages of development.

Figure 17: A heat map of the after effects of the application of the autocorrelation function.
Figure 17 [a] (left) is the room temperature image and the Figure 17 [b] (right) is the steady
state image for a non-turbulent 40V data set.

One of the tools we use for this is called the autocorrelation function. An autocorrelation

function is a measure of how similar or dissimilar values are with respect to the values around

them. The range is described by values from 0 to 1, where 0 says the value has no correlation

and 1 means that it is perfectly correlated or is the same value. Usually an autocorrelation

function begins at the point of origin or in this case the center of the matrix (from the Rayleigh-

Bénard Convection) and moves radially outward. The simplest and most traditional way to

calculate the autocorrelation function is by using the Wiener-Khinchin theorem. The Wiener-

Khinchin theorem calculates the autocorrelation through a relation of the functions’ spectral

density (which is to say that it uses the Fast Fourier transform) and the complex conjugate of

the spectral density. It is written in the form:

G(m) =

∫ ∞
−∞

f̂(m)
¯̂
f(m)ei2πxmdm (15)

where f̂ is the Fourier transform of f and
¯̂
f is the complex conjugate of the Fourier transform

of f [32]. When the autocorrelation function is applied across a 2D matrix from the Rayleigh-

Bénard Convection images, we get another 2D matrix with all diagonal values equal to 1 because

they are perfectly correlated with themselves while values on either side of the diagonal are equal
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and have opposite signs because they represent the correlation of a pixel A with pixel B and

pixel B with pixel A. We neglect the diagonal elements by setting them equal to 0 and then

take the absolute value of the whole matrix, which is now consisted of values between 0 and 1

(instead of -1 to 1). This logic can be seen in the python supplement,“Autocorrelation.py”.

However, in order to build a network model, we need values to be either 1 or 0 and nothing in

between. A value of 1 suggests that there is a link connecting a pair of nodes while 0 says there

is no link. From trial and error, a certain threshold (T) can be considered to change all values

greater than T to 1 and all values less than T to 0. While this is a simplified approach, in reality

a stochastic model is used to predict this threshold. Future work would need to incorporate this.

The networkx library in python takes this matrix filled with 1’s and 0’s and converts it to

a MultiGraph component (group of nodes connected indirectly) by changing the 1’s into nodes

and allocating edges across these nodes. In our case the edges are undirected and the network

is a giant component meaning that any node is reachable from any other (this is used because

we know fluctations arise randomly). A networks framework allows us to calculate path length,

avg degree distribution and many more insights into topological features of the layout.

(a) Room Temperature Image (b) Steady State Image

Figure 18: Gephi Visualization of the respective networks for the 40 V non-turbulent dataset.

For this particular study of the 40V room temperature image and its steady state counter

part, we were able to see that the number of edges is greater for the room temperature image

(2310:1754). Naturally, this should be the case because we know that most pixel temperatures

are identical in room temperature matrices. However to fully understand this, we would need

to perform a time series analysis to see how the number of edges fall before they begin rise as

patterns form. Another interesting feature is the network’s average path length which represents

the average distance between any two nodes. As expected this increases from 1.54 for the 40V

room temperature image to 1.9 for the steady state image. An increase in path length measures

the efficiency of the transport phenomena and therefore we know that network has become
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more efficient as patterns form. Notice how in Figure 18[b], there are two distinct regions in

the steady state image, the segments account for the hot and cold spots respectively. Other

information regarding the degree distribution or number of connections in a network is also used

to understand structural and dynamical features of the network. However, this is the extent to

which the MQP has dealt with. Future work would look into how to connect all this together

and figure out if the Rayleigh-Bénard Convection system can be modelled accurately through

complex networks. Codes are attached to this MQP.

5.3 Precursor to Information Theory

Throughout the study we have looked at how energy plays a vital role in the emergence

of order and how the statistics change as a result. However, there is a completely different

way to look at these studies altogether and it is by using information theory. The Rayleigh-

Bénard Convection can be thought of a system that sends and receives information in order to

maintain its own stored data. Moreover, the theory inherently brings the idea of entropy into

the picture. In information theory, entropy quantifies the amount of uncertainty in the outcome

of a random process [27]. Before we delve into such a topic, we tried to first replicate the system

mathematically. That is to say, how would you make up the Rayleigh-Bénard Convection if you

did not have an IR Camera to image the surface of the liquid.

0 Matrix 1 Matrix Alt Matrix

Time

Space

0 ± .2 ⋯ 0 ± .2
⋮ ⋱ ⋮

0 ± .2 ⋯ 0 ± .2

1 ± .2 ⋯ 1 ± .2
⋮ ⋱ ⋮

1 ± .2 ⋯ 1 ± .2

0 ± .2 ⋯ 1 ± .2
⋮ ⋱ ⋮

1 ± .2 ⋯ 0 ± .2

𝜇𝑘 ± 𝜎𝑘 ⋯ 𝜇𝑘 ± 𝜎𝑘
⋮ ⋱ ⋮

𝜇𝑘 ± 𝜎𝑘 ⋯ 𝜇𝑘 ± 𝜎𝑘

0𝑀 1𝑀 0𝑀 1𝑀 0𝑀 𝐴𝑙𝑡𝑀 𝐴𝑙𝑡𝑀 𝐴𝑙𝑡𝑀

100 × 100 matrix

1000 iterations

Figure 19: Figure shows the histograms of the matrices with respect to time and space.

First we created three different matrices. The first of these is called a 0-Matrix. As seen

in Figure 19, the 0-Matrix is a 100 × 100 matrix with every element Mij being a random

variable with a mean 0 and a standard deviation of 0.2. We use this matrix to represent a room

temperature equilibrium image as its basic properties are identical. Similarly, the 1-matrix
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(random variables with mean of 1 and standard deviation of 0.2) accounts for a steady state

image that shows no patterns even after a power is supplied (one giant hot plume). Finally,

the Alt-Matrix, is a 100 × 100 matrix with four quadrants, each quadrant being a 0-Matrix or

1-Matrix alternatively as seen in Figure 19. This matrix represents an image that shows patterns

and is at non-equilibrium steady state. We do this because we know that when we look at the

hot or cold plumes separately, they should be normally distributed (Figure 10). This is how

we can represent the Rayleigh-Bénard Convection mathematically using matrices. Although in

reality it is much more complex than this, this is just the initial developments we made.

Spatially, the histograms show an obvious peak at 0 for the 0-Matrix, 1 for the 1 Matrix and

two different peaks at 0 and 1 for the Alt-Matrix, similar to the Rayleigh-Bénard Convection

distributions. Temporally, we arranged the matrices in two different ways. The first was the

sequence of the 0-Matrix and 1-Matrix alternatively for a 1000 times. This essentially meant

having a hot plume and then a cold plume in repeat or continuous form. We modelled this

after similar studies that were conducted in the temporal analysis section in Rayleigh-Bénard

Convection, as seen in figure 15 [a][c]. Figure 15[b] can be arrived at by using the Alt-Matrix.

The role of the Alt-Matrix is to mimic a steady state image with patterns. By running the

experiment a 1000 times, we can get the distribution of the Random Value Matrix over time.

Since the mean of an image is close to 0.5 and due to the overall nature of the Alt-Matrix, we

get a normally distributed histogram even though half the values are vastly different just like in

the hot and cold sections of the convection patterns from Figure 15[b].

Further studies into the autocorrelation function being applied on this have shown that the

idea could be taken on and variables like Shannon’s Entropy can be calculated some day. The

reason for this method is purely to see if the flow of information through a pixel/region can be

modelled especially since the section can be adopted as either being hot(1) or cold(0). However

more work would need to be added to see how to precisely model an information matrix and

how one could extract useful information from it.
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6 Conclusion

Although far-from-equilibrium systems are still hard to study and the theories for them are

not fully developed, they can still be modelled using novel techniques within a wide array of

experimental, computational and analytical approaches. While this is the case, there is still

plenty of work to be done in non-equilibrium thermodynamics and we strongly believe that the

techniques and ideas highlighted in this report will not only serve as evidence of reproducibility,

but also engage the scientific community to explore more efficient and innovative ways to study

such systems [21].

The use of the Rayleigh-Bénard Convection as a prototype system was proposed not because

it is one of the oldest and most widely studied Canonical examples but because it is the easiest to

reproduce and analyze [26, 13]. Due to this factor, there has been a considerable amount of work

done with respect to the fluid mechanics aspects of the system but from a more thermodynamic

perspective, many of the insights have gone unnoticed [35, 8].

In this report and in other published papers by the group, we have highlighted the importance

of studying such systems and also discussed in great detail the computational and statistical

approaches we used to perform a first principles thermodynamics study on the non-turbulent

steady state Rayleigh-Bénard Convection when driven out-of-equilibrium [2]. Specifically we

spent most of the time trying to understand the emergence of order that occurs in the form of

patterns in the Rayleigh-Bénard Convection system.

With the appearance of patterns as the system is driven out-of-equilibrium, the statistics of

the Rayleigh-Bénard Convection show a bifurcation from randomly distributed thermal fluctu-

ations to a skewed bi-modal fluctuation distribution. The analysis shows how the steady state

thermal images display local equilibrium like regions that coexist spatially. As the system moves

from a room temperature equilibrium to a steady state non-equilibrium, an unexpected drop in

standard deviation marks the onset of convective patterns suggesting that there is an underlying

time independent character. Insightful as the statistics in space are, we see that the system

does not behave uniformly across space and time which means that symmetry is broken and the

system is non-ergodic [13, 21].

Other properties of our analysis of Rayleigh-Bénard Convection explain the ordering of the

convective cells by indicating the presence of localized regions of hot and cold plumes and

describing the spatial variation of their temperature manifold (as seen in Figure 10). From the

various results we have obtained, its clear that in order to interpret non-equilibrium systems we

must not only include the emergence of order in the form of thermodynamic variables but also

consider temperature not as a state variable but as a function of the energy landscape [5].

Throughout the report, we have employed computational techniques using languages like

Python, MATLAB and ImageJ. These techniques have formed the backbone of our statistical

analysis approach and paved the way for all sorts of ideas that can be incorporated to further

our understanding of these systems. Although the field is still a “work in progress”, the present

work provides some intuition as to how the systems behave the way they do and what can be

done to advance our understanding of them [34].
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8 Supplementary Files

• Circle.m - Matlab File for Extracting Circular Profile Statistics from Matrices (RBC)

• .SLDPRT and .SLDASM - CAD Files for Experimental Setup

• .esp files - CAM Files for Mini Mill (Manufacturing)

• Autocorrelation.py - Wiener-Khinchin theorem

• EqCorrelation.py - Random Value Generator for Matrices
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