
Pixel Oriented Visualization in XmdvTool

by

Anilkumar Patro

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

August 2004

APPROVED:

Professor Matthew O. Ward, Thesis Advisor

Professor Emmanuel Agu, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

Many approaches to the visualization of multivariate data have been proposed

to date. Pixel oriented techniques map each attribute value of the data to a single

colored pixel, theoretically yielding the display of the maximum possible information

at a time. A large number of pixel layout methods have been proposed, each of

which enables users to perform their visual exploration tasks to varying degrees.

Pixel oriented techniques typically maintain the global view of large amounts of

data while still preserving the perception of small regions of interest, which makes

them particularly interesting for visualizing very large multidimensional data sets.

Pixel based methods also provide feedback on the given query by presenting not

only the data items fulfilling the query but also the data that approximately fulfill

the query.

The goal of this thesis was to extend XmdvTool, a public domain multivariate

data visualization package, to incorporate pixel based techniques and to explore

their strengths and weaknesses. The main challenge here was to seamlessly apply

the interaction and distortion techniques used in other visualization methods within

XmdvTool to pixel based methods and investigate the capabilities made possible by

fusing the various multivariate visualization techniques.

Acknowledgements

I would like to express my gratitude to my advisor, Prof. Matthew Ward, for his

patient guidance and invaluable contributions to this work. I would like to thank

Prof. Elke Rundensteiner to make various suggestions for improving the displays. I

would also like to thank Prof. Emmanuel Agu for being the reader of this thesis.

I would like to thank my team members, Jing Yang for the clear code handed

over to me making my implementation much easier, Nishant Mehta for providing

suggestions to my work, Wei Peng and Shiping Huang for making the evaluation

process a success, Geraldine Rosario and Punit Doshi for giving help in the beginning

of my research.

Thanks also to lots of friends for showing confidence in me.

Last but not least I am grateful to my wonderful parents that are giving me a

great moral support.

This work is funded by NSF under grants IIS-0119276.

i

Contents

1 Introduction 1

1.1 Multivariate Data Visualization . 2

1.2 Pixel Oriented Visualization . 4

1.3 Open Challenges . 7

1.4 Goals of this Thesis . 9

1.5 Contributions . 9

1.6 Thesis Organization . 9

2 Related Work 11

2.1 Visualization Techniques for Large Multivariate Data Sets 11

2.2 Distortion Techniques . 15

3 Background on XmdvTool 17

3.1 Overview . 17

3.2 Flat Visualization Techniques in XmdvTool 18

3.2.1 Flat Visualization Techniques 18

3.2.2 Brushing in Flat Visualizations 19

3.3 Hierarchical Data Analysis in XmdvTool 21

3.3.1 Hierarchical Visualization Techniques 21

3.3.2 Interactive Tools in Hierarchical Visualizations 23

ii

3.4 Common Interactive Tools Used in Both Flat and Hierarchical Visu-

alizations . 24

4 Flat Pixel Oriented Visualization 26

4.1 Introduction . 26

4.2 Visualizing Large Data Sets of Multidimensional Data 28

4.3 A New Query Paradigm . 29

4.3.1 Query Specification in XmdvTool 29

4.3.2 Query Specification in Pixel Oriented Displays 31

4.4 Flat Pixel Oriented Implementation 33

4.4.1 Display Issues . 34

4.4.2 Interaction and Navigation tools 42

4.5 Scaling to Datasets with Large Numbers of Data Items 47

5 Hierarchical Pixel Oriented Visualization 49

5.1 Hierarchical Clustering . 49

5.2 Query Specification on Hierarchies . 51

5.2.1 Structure-Based Brushing . 52

5.2.2 Creation and Manipulation of Structure-Based Brush 53

5.2.3 Structure Based Ordering of Pixels 55

5.3 Visualizing Clusters . 57

6 Implementation 61

6.1 Platform . 61

6.2 Design . 62

6.3 Issues . 63

iii

7 Evaluation 67

7.1 Introduction . 67

7.2 Finding Data Characteristics in Pixel Oriented Displays 68

7.3 Data . 71

7.4 Variables . 73

7.4.1 Independent Variables . 73

7.4.2 Dependent Variables . 73

7.5 Procedure . 74

7.6 Results and Analysis . 74

7.7 Conclusion . 75

8 Conclusions and Future Work 76

8.1 Realization of Goals . 76

8.2 Future Work . 78

A Tasks for Evaluation 80

iv

List of Figures

1.1 Parallel coordinates display of Detroit Homicide data set: a 7-dimensional

data set with 13 records. Note the inverse correlations between the

number of cleared homicides and both the number of government

workers and the total number of homicides. 4

1.2 Parallel coordinates display of a Remote Sensing data set: a 5-dimensional

data set with 16,384 records. Note the amount of over-plotting pre-

cludes the perception of any data trends, for instance the relative

densities. 5

1.3 Various layouts in Pixel-Oriented Visualization. (a) using Screen-

Filling Curve Techniques. (b) using Recursive Pattern Techniques.

(c) Query-Dependent using Spiral and Snake- Spiral Techniques. (d)

Query-Dependent using Snake-Axes and Grouping Techniques [Im-

ages generated in VisDB] . 6

2.1 Wavelet approximations of a timeseries data set at different resolu-

tions. [Image used from [WB96]] . 12

2.2 Using overplotting to reveal the internal structure of a data set. [Im-

age used from [WL97]] . 13

3.1 Flat Parallel Coordinates . 20

v

3.2 Flat Star Glyphs . 20

3.3 Flat Scatterplot Matrices . 20

3.4 Flat Dimensional Stacking . 20

3.5 Hierarchical Parallel Coordinates . 25

3.6 Hierarchical Star Glyphs . 25

3.7 Hierarchical Scatterplot Matrices . 25

3.8 Hierarchical Dimensional Stacking . 25

4.1 HSI Color model used for the color mapping in pixel oriented displays. 35

4.2 Colormap Editor for pixel oriented displays in XmdvTool. 37

4.3 Rectangular and Circular shapes of subwindows. 38

4.4 Rectangular and Circular segment arrangement of pixels. 39

4.5 Subwindow placement by MDS algorithm for AAUP dataset. 41

4.6 Brush region can be changed by moving the markers on the colormap. 43

4.7 Brush region can be changed through the auxiliary brush toolbox. . . 44

4.8 Data-space brushing is accomplished by Shift+Mouse clicking and

painting over the subwindow. Note that the mouse cursor changes to

a hand icon when brushing in data-space. 44

4.9 Distorted dimension for the AAUP dataset. 45

4.10 Manual Pixel Reordering sorted on Magnetics dimension on the Re-

mote Sensing Dataset. 46

4.11 A comparison of the display of (a) full dataset and (b) sampled

dataset of the remote sensing dataset. Both visualizations seem similar. 47

vi

5.1 Structure-based brushing tool. (a) Hierarchical tree frame; (b) Con-

tour corresponding to current level-of-detail; (c) Leaf contour ap-

proximates shape of hierarchical tree; (d) Structure-based brush; (e)

Interactive brush handles; (f) Colormap legend for level-of-detail con-

tour. 53

5.2 Structure-based brushing at two different levels-of-detail. 55

5.3 A hierarchical parallel coordinates display of a remote sensing dataset

with the selected cluster painted in bold red to reflect that it is cur-

rently being brushed in the structure-based tool. The image on the

right shows the corresponding level-of-detail indicated by the colored

contour in the structure-based brush with the brushed region indi-

cated by the wedge. In this case, we observe that the selected clusters

share the same mean value for magnetics and uranium contents, and

have high SPOT contents. 56

5.4 Hierarchical Pixel Oriented Display. 58

5.5 Hierarchical Pixel Oriented Display at lod level of 0.2 for both brushed

and unbrushed clusters for the UVW (6 dim - 150,000 data points) . 58

5.6 Hierarchical Pixel Oriented Display with brushed clusters at lod level

of 0.2 while unbrushed clusters at LOD level of 0.06. The dataset is

the UVW Dataset . 59

5.7 Hierarchical Pixel Oriented Display (Extents Visualization) with brushed

clusters at LOD level of 0.2 while unbrushed clusters at LOD level of

0.06. The dataset is the UVW Dataset 60

5.8 Hierarchical Pixel Oriented Display (Extents Visualization) at LOD

level of 0.2 for both brushed and unbrushed clusters for the UVW (6

dimensional - 150,000 data points) 60

vii

6.1 Class Diagram . 62

7.1 Linear functional dependency between dimensions 0 and 3 and quadratic

functional dependency between dimensions 0 and 6. Note that there

is no dependency between dimension 0, 1 and 2 as they are completely

dissimilar in appearance. 69

7.2 Clustering can be easily seen in this view. Also note that the visu-

alization tells us that the cluster is of a lower dimension than the

dataset. 70

7.3 Pixel oriented visualization for the first data set and corresponding

visualization in Parallel Coordinates. Note that the pixel oriented

display shows the 4-D clusters. 72

7.4 Pixel oriented visualization for the fourth data set and corresponding

visualization in Parallel Coordinates. Note that the pixel oriented

display shows correspondence between dimensions 0, 3 and 6. 73

viii

List of Tables

4.1 Parameters for generating color scales 36

7.1 Value ranges and dependencies for data items in the cluster of third

data set. 72

ix

Chapter 1

Introduction

Our ability to generate and accumulate information has far exceeded our ability to

effectively process them. The ubiquitous exchange of information in this technology

age is a strong impetus for data growth. The proliferation of the internet today

could only hint at the potential of tomorrow’s exponential information growth. Ad-

vancements in data acquisition technologies results in acquiring data at far greater

densities and resolutions than ever before. Such evidence clearly puts forward a case

that data size is ever evolving and rising; and that in view of this growth it will be

increasingly difficult to process data in search of anomalies, patterns, features, and

ultimately knowledge and extrapolation of that knowledge.

Interpreting data, be it overwhelming or not, is an arduous task. But it is most

difficult when it is unclear what, in the voluminous data, to look out for. Automated

analysis is hopeless when such analysis criteria cannot even be explicitly formulated.

This is where visualization plays a crucial and most effective role — by relying upon

the power of the trained human eye.

1

1.1 Multivariate Data Visualization

Multivariate visualization simply refers to the display of multidimensional data. A

multidimensional data set consists of a collection of N -tuples, where each entry

of an N -tuple is a nominal or ordinal value corresponding to an independent or

dependent variable. We distinguish ourselves from the domain-specific class of visu-

alization methods. Our research can be termed as non-domain-specific multivariate

visualization, a radically different mode of displaying multidimensional data. Its

nondomain specific nature results in generality and as such may be used to display

a much larger class of datasets. Examples of such datasets include results from

censuses, surveys and simulations. Most analysis of such data to date still relies

on the application of statistical computations. Statistical methods, though precise,

lack the richness of graphical depictions. But more importantly, they require the

user to explicitly define sets of parameters for analysis. This is an arduous task, if

not impossible, if the user has little knowledge or intuition about the characteristics

of the data that they are about to analyze.

Visualization serves to complement rather than to replace traditional data anal-

ysis. Visualization is the graphical presentation of information, with the goal of

providing the viewer with a qualitative understanding of the information contents.

A visual sense of the data provides an interpretation unprecedented by statistical

methods. It facilitates identification of trends and anomalies otherwise missed by

statistical analysis due to the difficulty of explicitly formulating analysis parameters.

Observations from the visualization session may be further pursued using statisti-

cal methods supplied with parameters that befit the visual cues. These visual cues

help the user to focus on where to target the quantitative or statistical analysis.

Several techniques have been proposed to display non-domain-specific multivariate

2

data. They have been broadly categorized [Kei00] as:

• Geometric Projection: These techniques aim to find interesting geometric

transformations and projections of multidimensional data sets. Examples in-

clude Scatterplot matrices [And72], Landscapes [Wri95], Hyperslice [WvL93]

and Parallel Coordinates [ID90].

• Icon-based : The idea here is to map each multidimensional data item to a

shape, where data attributes control shape and color attributes. Examples

include Chernoff-faces [Che73], Stick figures [PG88], Shape Coding [Bed90],

and Color Icons [Lev91].

• Hierarchical : These techniques subdivide the k-dimensional space and present

the subspaces in a hierarchical fashion. Examples include Dimensional Stack-

ing [WLT96], Worlds-within-worlds [FB90], Treemap [Shn92], and Cone Trees

[RMC91].

• Pixel-based : Here, each attribute value is represented by one colored pixel and

the values for each attribute are presented in separate subwindows. Exam-

ples are spiral [KD94] [Kei96], recursive pattern [KKA95], and circle segment

techniques [AKK96].

The first three techniques do not scale well with respect to the size of the data

set. The main problem with applying such techniques to large data sets is display

clutter — that the amount of clutter obscures or occludes any visible trends in

the data display. For instance, take the parallel coordinates display in Fig. 1.1.

We can easily spot correlations between variables in the data set. However, if we

display a larger data set as shown Fig. 1.2, we can hardly discern any relative

patterns or anomalies due to the mass of overlapping lines. As a generalization, we

3

Figure 1.1: Parallel coordinates display of Detroit Homicide data set: a 7-
dimensional data set with 13 records. Note the inverse correlations between the
number of cleared homicides and both the number of government workers and the
total number of homicides.

postulate that any method that displays a single entity per data point invariably

results in overlapped elements and a convoluted display that is not suitable for the

visualization of large data sets. The quantification of the term “large” varies and

is subject to revision in sync with the state of computing power. For our current

application, we define a large data set to contain tens of thousands to a million data

elements or more. Pixel-based displays are the only set of visualization techniques

that aim to effectively visualize such large datasets.

1.2 Pixel Oriented Visualization

Pixel-oriented techniques have been pioneered by Keim for the VisDB system [KD94]

as a means for representing large amounts of high-dimensional data with respect to

4

Figure 1.2: Parallel coordinates display of a Remote Sensing data set: a 5-
dimensional data set with 16,384 records. Note the amount of over-plotting pre-
cludes the perception of any data trends, for instance the relative densities.

a given query. The basic idea of pixel-oriented visualization techniques is to rep-

resent each attribute value as a single colored pixel, mapping the range of possible

attribute values to a fixed color map and displaying different attributes in different

subwindows. Pixel-oriented visualization techniques maximize the amount of infor-

mation represented at one time without any overlap. They effectively preserve the

perception of small regions of interest while still maintaining the global view.

Designing pixel-oriented displays have been discussed at length in [Kei00]. The

design considerations are the choice of color space, subwindow shapes, pixel ar-

rangement, dimension ordering and query specification. One of the most important

considerations in pixel-oriented displays is the arrangement of the pixels within each

of the subwindows. This is important since, due to the density of the pixel displays,

only a good arrangement will lead to the discovery of clusters and correlations among

5

Figure 1.3: Various layouts in Pixel-Oriented Visualization. (a) using Screen-Filling
Curve Techniques. (b) using Recursive Pattern Techniques. (c) Query-Dependent
using Spiral and Snake- Spiral Techniques. (d) Query-Dependent using Snake-Axes
and Grouping Techniques [Images generated in VisDB]

the dimensions. The arrangement defines the layout of the pixels within the display.

Query-independent techniques use the natural ordering within the data (for ex-

ample, time-series data) to define the layout, whereas Query-dependent techniques

arrange the pixels in the context of a specific user query and also provide feedback

on the query. Figure 1.3 illustrates some of the layout techniques in pixel displays

for the visualization of financial data (database contains prices of IBM stock, Dow

Jones index, Gold and USD exchange rate from Sep’87 to Feb’95 with 64,800 data

values).

Since pixel-oriented visualization techniques maximize the screen space usage,

they have been shown [KK95] to be useful for the exploration and analysis of large

databases to find interesting data clusters and their properties. They have been

proven useful for easily identifying and isolating clusters, correlations and hotspots

6

in large databases [KK95].

1.3 Open Challenges

Unfortunately, it is difficult to comprehend all information within multivariate data

through a single graphical representation, whether it be a parallel coordinates or

pixel oriented display. The effectiveness of the visualization can be enhanced by

providing the information from multiple views and using multiple techniques within

the same environment. Linkage of pixel-oriented visualization techniques with other

displays in XmdvTool may in itself provide better understanding of the data. Since

pixel-oriented displays are an image-based representation of the data items within a

dimension, it would be easy to spot similarity between dimensions and this can be

used to validate the results of Dimension Ordering [YPWR03] in XmdvTool. Pixel-

oriented techniques can also provide quick query response preview for Subspace Data

visualization [Yan03].

By adding interactivity to a visualization system, the understanding of the re-

lationships and patterns within the data can be improved. Due to the complexity

and density of the data sets to be analyzed, interactive visualization brings all kinds

of potential benefits to exploration by allowing the data to be displayed and ma-

nipulated interactively with enough accuracy and speed to be a useful analysis tool.

Many interaction techniques have not been clearly defined for current implemen-

tations of pixel-oriented displays. Simple interactions such as Zooming, Panning,

Distortion, and Selecting (Brushing) have not been addressed in the current imple-

mentations and the first step would be to design these interactions, which are quite

common in the other displays in XmdvTool. The main challenges here are:

• How to provide direct manipulation of brushes. This might require a focus-

7

oriented interaction technique to allow the user to confidently and conveniently

select the data.

• How to perform data driven brushing.

• How to avoid distortion effects (such as loss of sharpness) when zooming and

panning.

• How to keep the context while zooming in different sections of the subwin-

dows. This might require some kind of distortion mechanism (such as fisheye

distortions [Fur86]).

Theoretically, pixel-oriented visualizations should maximize the amount of in-

formation on the display, but auxiliary displays that are required for some of the

interaction mechanisms do take up a lot of space. Overlaying of auxiliary displays

on the main visualization might help in maximizing the screen space.

Pixel-oriented techniques are still limited to the number of pixels on the screen.

With today’s technologies, this means approximately 1024 x 1024 = 1 MB of 1-

dimensional or M/N N-dimensional records can be conveniently displayed on the

screen. While this number is large, it might not be sufficient for very large databases.

Hierarchical Data Visualization techniques [FWR99a] have been incorporated in

XmdvTool to address this in other visualization techniques. The combination of

hierarchical visualization techniques with pixel-oriented displays has not been stud-

ied before. These techniques could identify relationships with the clusters for a

particular level of detail in the hierarchy.

8

1.4 Goals of this Thesis

The purpose of this thesis is to add a new class of visualization techniques, namely

pixel-oriented methods, to the already existing repertoire of techniques within Xmd-

vTool. The fact that no effort has been made to date to link pixel-oriented displays

with more traditional forms of visualization techniques to gain better insight into the

data is the main driving force for this thesis. This brings with itself many challenges

such as the design of interaction techniques and the design of displays for hierarchi-

cally clustered data within pixel-oriented techniques, similar to those found within

other displays in XmdvTool. Hence, the main goal of this thesis will be to study

linking between the various visualization types and investigate how interaction and

multi-resolution methods in XmdvTool port to pixel-based visualizations.

1.5 Contributions

There are two main contributions of this thesis. They are:

• Integration of pixel-oriented visualization techniques into XmdvTool for linked

views with the other displays along with a suite of completely new interaction

and distortion techniques for the display.

• Development and implementation of a completely new pixel oriented displays

for hierarchically clustered datasets that helps the user to load huge datasets

and view relationships among the summarizations.

1.6 Thesis Organization

Recent research work regarding the display of large multivariate data sets are sur-

veyed in Chapter 2. Chapter 3 gives an overview of the XmdvTool system. Chapter

9

4 describes how to generate a flat pixel oriented display, discusses issues in the

display generation and presents the navigation and selection tools for the display.

Chapter 5 does the same for hierarchical pixel oriented displays. Chapter 6 gives

an overview and a high-level system diagram of our implementation. Chapter 7

presents experiments performed to evaluate the usefulness of linking of pixel ori-

ented displays with other displays. Conclusions and open areas for future work are

provided in Chapter 8.

10

Chapter 2

Related Work

This chapter briefly describes the work done by others in the area of visualizing large

multivariate data sets. This chapter also looks into various distortion techniques for

keeping overview and detail views of the displays for large data sets.

2.1 Visualization Techniques for Large Multivari-

ate Data Sets

In recent years several research efforts have been directed at the display of large

multivariate data sets. One approach is to use compression techniques to reduce the

data set size while preserving significant features. For example, Wong and Bergeron

[WB96] describe the construction of a multiresolution display using wavelet approx-

imations, where the data size is reduced through repeated merging of neighboring

points. Wavelet transforms identify averages and details present at each level of com-

pression. The capability of brushing is also incorporated into their model so that

the brushed data is displayed at a different resolution than the nonbrushed data.

Figure 2.1 depicts a series of parallel coordinate plots of the same timeseries data

11

set at different resolutions. Figure 2.1a is the original data. Figure 2.1b presents

an overall reduction in resolution. From this diagram, the user localizes or brushes

an area of interest (shown by the purple band in Figure 2.1c). Figure 2.1d depicts

the brushed area at a higher level of resolution (shown in red). However, wavelet

transform requires data to be ordered, making it useful only for data sets with a

natural ordering along one dimension, for instance time-series data.

Figure 2.1: Wavelet approximations of a timeseries data set at different resolutions.
[Image used from [WB96]]

Another approach is to let the characteristics of the data set reveal itself. For ex-

12

ample, Wegman and Luo [WL97] suggest overplotting translucent data points/lines

so that sparse areas fade away while dense areas appear emphasized. Figure 2.2

shows a parallel coordinates display plotted on a black background. From this plot

which looks rather like an x-ray of the internal structure of the data set, high den-

sity regions can be identified. The disadvantage of this method is that it relies on

overlapping points/lines to identify clusters. Clusters without overlapping elements

will not be visually emphasized.

Figure 2.2: Using overplotting to reveal the internal structure of a data set. [Image
used from [WL97]]

Keim et al. [Kei96] studied pixel-level visualization schemes that allow the dis-

play of large data sets on a typical workstation screen based on recursive layout

patterns, where each pixel represents a data element. This enables the user to get a

global overview of the data through which he/she can find dimensional correlations

and multidimensional clusters. Their visualization system, VisDB, also allows one

to focus on displaying as many tuples as possible and to provide feedback as users

13

refine their queries. This system even displays tuples that do not satisfy the query,

indicating their distance from the query criteria using spatial encodings and color.

This approach helps the user avoid missing important data points that fall just out-

side the selected query parameters. This system will be explained extensively in

Chapter 4.

Wills [Wil98] describes a visualization technique for hierarchical clusters. His

approach expands upon the treemap idea [Shn92] by recursively subdividing the

tree based on a similarity measure. Wills used the similarity measure as a value to

control the clustering granularity. For instance, with a smaller value, fewer clusters

with more elements will be shown. This measure also acts as a level-of-detail control

for smooth transitions across treemaps of different granularity. Their main purpose

is to display the clustering results, and in particular, the data partitions at a given

similarity value. Hence, the N -dimensional characteristics of the clusterings such

as the mean or extents information are not displayed along with the treemap. Our

research draws on several of the ideas found in the above work.

Fua et al. [FWR99a] have augmented the XmdvTool visualization system with

structure-based brushes that allow the user to control the global level of detail (based

on hierarchical clustering of data) and to brush records based on their proximity

within the hierarchical structure. The data is stored and presented at multiple res-

olutions using clustering and partitioning techniques. Data aggregation techniques

are used to collapse the data into clusters, maintaining the N -dimensional charac-

teristics of the clusterings, and show the population and extents of clusters with

bands of varying translucency. However, this approach limits the user, in this case

to viewing a single hierarchical structuring of the data and a single ordering of that

hierarchy to make proximity meaningful. Details about the hierarchical clustering

algorithm and structure based brushing follow in Chapter 5.

14

Our work relates to both the pixel oriented work done by Keim and hierarchical

data visualization by Fua et al. We extend the pixel-oriented techniques suggested

and designed by Keim et al. [Kei96, Kei00] by providing better interaction tools, bet-

ter query-specification mechanisms, subwindow placements to enhance the relation

between dimensions, distortion tools and sampling. We have also used hierarchi-

cal clustering techniques as found in XmdvTool pioneered by Fua et al. to drive

the pixel oriented displays. We remove the limitation of a single ordering for the

hierarchy and introduce structure based orderings of the dataset which makes the

proximity of the brush meaningful.

2.2 Distortion Techniques

The use of distortion techniques has become increasingly common as a means for

visually exploring dense information displays. Distortion operations allow the user

to examine a local area of interest in detail and at the same time present a global

view of the entire space to provide an overall context to facilitate navigation.

Leung et al. [LA94] provide a taxonomy of distortion-oriented techniques and

out-line their underlying relationships. They further classify the techniques into

two distinct classes, namely techniques with continuous magnification functions and

those without. The FishEye View [Fur86], a well-known distortion technique, be-

longs to the former class. Distortion techniques such as Bifocal Display [SA82] and

Perspective Wall [MRC91] belong to the latter.

The FishEye View concept was first proposed by Furnas [Fur86] as a presenta-

tion strategy for information having a hierarchical structure, such as geographical

regions or organization charts of companies. The fundamental idea of the technique

is thresholding. Each element in the hierarchical structure is assigned a number

15

based on its importance and another based on its distance from the current point

of focus. A threshold value is then selected and compared with a function of these

two numbers to determine what information will be presented or suppressed. Con-

sequently, more relevant information will be presented at greater detail whereas less

relevant ones are displayed as an abstraction.

In this thesis, we incorporate distortion techniques in our navigation tools to

reduce display or information clutter while maintaining context. We introduce a

distortion operation similar to FishEye views to allow one to closely examine the

details of each subwindow. Weighing factors are also associated with the dimen-

sions to enhance the pixel ordering for finding non-linear correlations among the

dimensions.

16

Chapter 3

Background on XmdvTool

We have added the pixel oriented displays as an extension to the XmdvTool system

developed by Ward et al. [War94, MW95, FWR99a, FWR99b, WYR00, YWR02] at

Worcester Polytechnic Institute (WPI). We briefly describe the XmdvTool system

in this chapter.

3.1 Overview

XmdvTool is a public-domain software package for interactive visual exploration of

multivariate data sets. XmdvTool version 6.0 is based on OpenGL and Tck/Tk

and is available for Windows95/98/NT/2000/XP and Linux platforms. It already

supports four classes of techniques for displaying both (non-hierarchical) flat form

data and hierarchically clustered data, namely scatterplots, star glyphs, parallel

coordinates, and dimensional stacking. XmdvTool also supports a variety of inter-

action modes and tools, including brushing in screen, data, and structure spaces,

zooming, panning, and distortion techniques, and the masking and reordering of

dimensions. Univariate displays and graphical summarizations, via tree-maps and

modified Tukey box plots, are also supported. Finally, color themes and user cus-

17

tomizable color assignments permit tailoring of the aesthetics to the users. Xmdv-

Tool has been applied to a wide range of application areas, such as remote sensing,

financial, geochemical, census, and simulation data.

We introduce the existing functions of XmdvTool briefly below. To learn detailed

information about the flat visualization and N-dimensional brushing techniques, see

[War94, MW95]. To learn detailed information about the hierarchical visualiza-

tion techniques and their interactive tools in XmdvTool, see [FWR99a, FWR99b,

WYR00, YWR02]. More information about the XmdvTool project can be obtained

from http://davis.wpi.edu/~xmdv.

3.2 Flat Visualization Techniques in XmdvTool

3.2.1 Flat Visualization Techniques

XmdvTool supports four methods for displaying flat form data, namely parallel

coordinates (see Figure 3.1), star glyphs (see Figure 3.2), scatterplot matrices (see

Figure 3.3), and dimensional stacking (see Figure 3.4).

In parallel coordinates [ID90, Weg90], each dimension is represented as a uni-

formly spaced vertical axis. A data item in this multidimensional space is mapped

to a polyline that traverses across all the axes. Figure 3.1 shows the Iris data set (4

dimensions, 150 data items) using parallel coordinates.

In star glyphs, each data item is represented by an individual shape [And72,

Che73, RAEM94]. In a star glyph, the data values are mapped to the length of

rays emanating from a central point, and the ends of the rays are linked to form a

polygon. We can view these rays as axes, with each axis representing a dimension.

The directions of these axes are from the center point to the outside. Figure 3.2

shows the Iris data set using star glyphs.

18

In scatterplot matrices, each data item is projected to N ∗N plots, with N being

the number of dimensions of the data set. The position of the projected point in a

plot is decided by the values of the data item in the two dimensions that compose

this plot. Figure 3.3 shows the Iris data set using scatterplot matrices.

Flat dimensional stacking [LWW90] displays an N dimensional data set by re-

cursively embedding pairs of dimensions within one another. Each dimension is dis-

cretized into a small number of subranges, and two dimensions are initially selected

to subdivide the display space into subimages whose size depends on the number of

subranges or bins used for those dimensions. These subimages are subdivided based

on the next two dimensions, and the process repeats until all dimensions have been

mapped. Thus the multivariate space is split into a number of small cells that each

map to a segment of the screen. Each data item will fall into one of these small

cells, and thus have an assigned screen position. Figure 3.4 shows the Iris data set

using dimensional stacking.

3.2.2 Brushing in Flat Visualizations

XmdvTool has implemented N-D brushes in the flat visualizations [MW95] to allow

users to select subsets of data items from the visualized data sets. Many useful

operations, such as highlighting, magnifying, or saving as new data sets, can be

applied to the selected subsets. N-D brushes have the following characteristics:

• N-D hyperbox shape

• step edge or ramp edge boundary

• boolean operations among multiple brushes

• multiple methods to control the sizes and positions of the brushes

19

Figure 3.1: Iris Data Set in Flat Parallel
Coordinates

Figure 3.2: Iris Data Set in Flat Star
Glyphs

Figure 3.3: Iris Data Set in Flat Scat-
terplot Matrices

Figure 3.4: Iris Data Set in Flat Dimen-
sional Stacking

XmdvTool provides a function for saving brushed data. This function will save

the brushed data as a new file in the XmdvTool format.

20

3.3 Hierarchical Data Analysis in XmdvTool

3.3.1 Hierarchical Visualization Techniques

The flat visualizations become very crowded when they are applied to large-scale

data sets. To overcome this clutter problem, we have developed an Interactive Hier-

archical Display framework [YWR02]. The underlying principle of this framework is

to develop a multi-resolution view of the data via hierarchical clustering, and to use

hierarchical variations of traditional multivariate visualization techniques to convey

aggregation information about the resulting clusters. Users can then explore their

desired focus regions at different levels of detail, using our suite of navigation and

filtering tools.

By applying this framework to the flat visualization techniques, we extend Xmd-

vTool with hierarchical parallel coordinates (see Figure 3.5), hierarchical star glyphs

(see Figure 3.6), hierarchical scatterplot matrices (see Figure 3.7) and hierarchical

dimensional stacking (see Figure 3.8).

Hierarchical parallel coordinates are an extension of traditional (flat) parallel

coordinates. In hierarchical parallel coordinates, the clusters replace the data items.

The mean of a cluster is mapped to a polyline traversing across all the axes, with

a band around it depicting the extents of the cluster in each dimension. The lower

edge of the band intersects each axis at the minimum value of its respective cluster

in that dimension. The upper edge of the band intersects each axis at the maximum

value of its respective cluster in that dimension. To give the user a sense of the

location of data points in a cluster and to convey the overlap among clusters, each

band is translucent. We assume that there is a linear drop-off in the density of

cluster data from its center to the edge, and set the maximum opacity proportional

to the population.

21

Hierarchical star glyphs are an extension of flat star glyphs. In hierarchical star

glyphs, each star glyph represents a cluster. The mean values are used to generate

the basic star shape. The band around the mean polygon has two edges; one is

outside the mean polygon and another one is inside the mean polygon. The inside

edge intersects each axis at the minimum value of its respective cluster in that

dimension, while the outside edge intersects each axis at the maximum value of its

respective cluster in that dimension. Obviously, if we draw a star glyph starting

from the same center point to present a data item included in that cluster, this star

glyph would be inside the band of that cluster. Thus the band successfully depicts

the extent of the cluster.

Hierarchical scatterplot matrices are an extension of flat scatterplot matrices.

The mean of a cluster is drawn as an ordinary data item in flat scatterplot matrices.

The extents of each cluster form rectangles around the projected mean in each plot.

The projections of a cluster on different plots are drawn in the same color, which

gives users the possibility to more easily link a cluster from one plot to another. In

the flat form scatterplot matrices, all the data items have the same color. Hence

users can have difficulty linking a data item when they move from one plot to

another, although selective highlighting helps this linkage.

Hierarchical dimensional stacking is an extension of flat dimensional stacking.

The clusters replace the data items. The mean of a cluster will fall into a single

small block as if it were an original data item in the flat form dimensional stacking.

The band of this cluster depicting the cluster extents may potentially map to many

blocks. This time it is possible that some parts of the band are disjoint from others

due to the embedding process, even though they are adjacent in N -dimensional

space.

22

3.3.2 Interactive Tools in Hierarchical Visualizations

There are several interactive tools, such as the structure-based brush, drill-down/roll-

up operations, extent scaling, and dynamic masking, to help users interactively ex-

plore the hierarchical visualizations. These are described briefly below. Details can

be found in [FWR99b, FWR00, WYR00, YWR02].

• Structure-based Brush

A structure-based brush allows users to select subsets of a data structure (for

example, a hierarchy) by specifying focal regions as well as a levels-of-detail

on a visual representation of the structure.

• Drill-down/Roll-up Operations

Drill-down/roll-up operations allow users to change the level of detail of in-

teractive hierarchical displays intuitively and directly. Drill-down refers to the

process of viewing data at an increased level of detail, while roll-up refers to the

process of viewing data with decreasing detail [FWR99a]. The drilling opera-

tions are coupled with brushing. XmdvTool permits selective drill-down/roll-

up of the brushed and non-brushed region independently.

• Extent Scaling

Extent scaling solves the problem of overlapping among the bands by decreas-

ing the extents of all the bands in each dimension by scaling them uniformly

via a dynamically controlled extent scaling parameter. Users can still differen-

tiate between clusters with large and small extents after the bands have been

scaled.

• Dynamic Masking

23

Dynamic masking refers to the capability of controlling the relative opacity be-

tween brushed and unbrushed clusters. It allows users to deemphasize or even

eliminate brushed or unbrushed clusters. With dynamic masking, the viewer

can interactively fade out the visual representation of the unbrushed clusters,

thereby obtaining a clearer view of the brushed clusters while maintaining the

context of unbrushed areas. Conversely, the bands of the brushed clusters can

be faded out, thus obtaining a clearer view of the unbrushed region. Used

together with the structure-based brush, dynamic masking reduces the over-

lapping and density of the clusters on the screen by fading out uninteresting

clusters so that users can concentrate on the clusters of interest.

3.4 Common Interactive Tools Used in Both Flat

and Hierarchical Visualizations

There are some interactive tools in XmdvTool that can be used in both the flat and

hierarchical displays. There are briefly described below:

• Zooming and Panning

The whole display area can be zoomed and panned.

• Dimension Distortion

In Parallel Coordinates, the distance between two adjacent axes can be in-

creased or decreased. In Scatterplot Matrices, the size of a single plot can be

enlarged or reduced.

• Dimension Enabling/Disabling and Reordering

Dimensions can be enabled/disabled and reordered.

24

Figure 3.5: Iris Data Set in Hierarchical
Parallel Coordinates

Figure 3.6: Iris Data Set in Hierarchical
Star Glyphs

Figure 3.7: Iris Data Set in Hierarchical
Scatterplot Matrices

Figure 3.8: Iris Data Set in Hierarchical
Dimensional Stacking

25

Chapter 4

Flat Pixel Oriented Visualization

Two aspects distinguish pixel oriented visualization techniques from other tech-

niques used in XmdvTool. First, the number of data items that can be visualized

without overlap is much higher than in other approaches. In general, pixel ori-

ented techniques use each pixel of the display to represent one data value. This

means that the number of data values that can be visualized at one point of time

is only limited by the number of pixels on the display. A second unique feature of

the technique is that the generated visualizations can be query-dependent. Query-

dependency means that not only the data items fulfilling the query are visualized,

but also a number of data items that approximately fulfill the query. This chapter

introduces these two aspects of pixel oriented visualization techniques and discusses

the implementation in XmdvTool.

4.1 Introduction

In very large databases with tens of thousands or even millions of data items, it is

often a problem to find the data in which a person is interested. Scientific, engi-

neering, and environmental databases, for example, contain large amounts of data

26

that in many cases are collected automatically via sensors and (satellite) monitor-

ing systems. In querying such systems, even users who are experienced in using a

database and query system may have difficulties finding the interesting data spots.

If the user does not know the data and its distribution exactly, many queries may

be needed to find the interesting data sets. The core of the problem in searching

huge amounts of data is the process of query specification. With todays database

systems and their query interfaces, a person has to issue queries in a one-by-one

fashion. Generally, there are no possibilities to slightly change a query or to express

vague queries. Most importantly, the user gets no feedback on his query, except

the resulting data set that may contain either no data items and thus no hint for

continuing the search, or too many data items and thus too many to look at.

Many approaches have been made to improve the database query interface by

providing better feedback in cases of unexpected results. One approach consists of

graphical database interfaces that allow the user to browse the data (e.g. FLEX

[Mot90] or GRADI [KL92]). Another approach uses cooperative database interfaces

[Kap82] that try to give approximate answers in cases where the queries do not pro-

vide a satisfactory answer. Such systems use techniques such as query generalization

that involves dropping or relaxing a dimension in cases where the original queries

fail, and statistical approximations or intensional responses instead of full enumer-

ation in the case of large results (the key ideas were presented for the first time in

[JKL77]). Cooperative systems mainly help the user to understand the results and

to refine erroneous queries, but do not help to find interesting properties of the data

such as functional dependencies, local correlations, or exceptional data items.

Another area that relates to our work is the area of information retrieval. In

information retrieval, a lot of research has been done to improve recall and precision

in querying databases of unstructured data, such as (full) text. User-provided rele-

27

vance assessments of results may be used to re-rank the results or to re-run adapted

queries [SM83].

4.2 Visualizing Large Data Sets of Multidimen-

sional Data

Many approaches to visualize arbitrary multivariate, multidimensional data have

been proposed for various purposes in different application contexts. Many exam-

ples can be found in the well-known books of Bertin [BSB82] and Tufte [Tuf82].

More recent techniques include shape coding [Bed90], worlds within worlds [FB90],

parallel coordinates [ID90], stick figures [PG88], dimensional stacking [WLT96], and

dynamic methods as presented in [MZ92]. In dealing with data sets consisting of tens

of thousands to millions of data items, the goal is to visualize as many data items

as possible at the same time to give the user some kind of feedback on the query.

The obvious limit for any kind of visualization is the resolution of current displays,

which is on the order of one to three million pixels, e.g. in the case of our 19 inch

displays with a resolution of 1280 x 1024 pixels about 1.3 million pixels. Important

is the interactiveness of such a system, which suggests that a new querying system

is required. Empirical studies show that interactive, slider- based interfaces improve

efficiency and accuracy in accessing databases considerably [Shn94]. Equally im-

portant is the possibility of getting immediate feedback on the modified query. By

playing with such a system, the user may learn more about the data than by issuing

hundreds of queries.

28

4.3 A New Query Paradigm

In todays database systems, queries are specified in a one-by-one fashion. This is

adequate if the user of the database exactly specifies the desired data and accesses

a clearly separated data set. For many application areas where databases are used

on a regular basis, e.g. accounting, reservation systems, and so on, queries are

often based on keys, accessing exactly the desired data. In other application areas,

however, especially those with very large data volumes such as scientific, engineering

and environmental databases, it is often difficult to find the desired data. If, for

example, researchers in environmental science are searching a huge database of test

series for significant values, they might be looking for some correlation between

multiple dimensions for some specific period of time and some geographic region.

Since none of the parameters for the query are fixed, it is in general very difficult

to find the desired information. With a query interface that provides users more

feedback on the results of their queries, the researchers would probably start to

specify one query that corresponds to some assumption and after issuing many

refined queries and applying statistical methods to the results, they might find some

interesting correlation.

4.3.1 Query Specification in XmdvTool

Query Specification in XmdvTool is through N-dimensional brushing. Brushing is

the process of interactively painting over a subregion of the data display using a

mouse, stylus, or other input device that enables the specification of location at-

tributes. It has been used as a method for performing selection in graphics for

many years. The principles of brushing were first explored by Becker and Cleve-

land [BC87] and applied to high dimensional scatterplots. In this system, the user

29

specified a rectangular region in one of the 2D scatterplot projections and based on

the mode of operation, points in other views corresponding to those falling within

the brush were highlighted, deleted or labelled. Ward and Martin [War94, MW95]

extended brushing to permit brushes to have the same dimensionality as the data

(N -D instead of 2-D). The goal is to allow the user to gain some understanding of

the spatial relationships in N-space by highlighting all data points that fall within

a user-defined, relocatable subspace.

One common method of classifying brushing techniques is by identifying space

in which the selection is being performed, namely screen or data space. This can

then be used to specify a containment criteria (whether a particular point is inside

or outside the brush). In screen space techniques, a brush is completely specified by

a 2-D contiguous subspace on the screen. In data space techniques, a complete spec-

ification consists of either an enumeration of the data elements contained within the

brush or the N -D boundaries of a hyperbox that encapsulates the selection. A third

category, namely structure space techniques, allows selection based on structural

relationships between data points as discussed in Chapter 5.

In addition, brush manipulation may be direct or indirect. Direct manipulation

refers to the ability to interactively control brush creation and manipulation by

mouse (or other locator) actions on the data display itself. On the other hand,

indirect manipulation refers to the use of separate widgets such as sliders to specify or

manipulate the brush coverage. Direct manipulation is generally preferred for data-

driven operations (such as isolating an interesting subset of the display), while user-

driven operations (such as a range query) are often easier to specify with indirect

methods.

The brush region provides the query for the data to be selected. Various brush

operations are defined in XmdvTool that can be performed on the data selected by

30

the brush, important among them being highlighting and linking. Highlighting is

one of the most fundamental brush operations. Points that are contained by the

brush are colored differently from other points to make them stand out. Linking is

the ability to select data in one display and see the same data selected in another

display. This is useful when multiple methods of visualization are being used in

conjunction, as is the case in XmdvTool. By default, XmdvTool provides brush

linking between all views.

4.3.2 Query Specification in Pixel Oriented Displays

Brushes in XmdvTool correspond to N -dimensional range queries for databases. The

data objects that are within the query region form the result of the query. In most

cases, the number of results cannot be determined a priori; the resulting data set

may be quite large, or it may even be empty. The results are visually represented

in other displays of XmdvTool as differently colored points to make them stand

out. This would correspond to large number of red colored polylines in the parallel

coordinate display for large results and to none for empty results. To give the

user more feedback, not only the data objects that are within the query region are

presented in pixel oriented display, but also those that are “close” to the query region

and only approximately fulfill the query. The approximate results are determined

by using distance functions for each of the dimensions which are combined into the

overall distance. The distance functions are datatype and application dependent

and must be provided by the application. Examples of distance functions are the

numerical difference (for metric types), distance matrices (for ordinal and nominal

types), lexicographical, character- wise, substring or phonetic difference (for strings),

and so on. The distance function yields distance tuples (d1
i , d

2
i , d

3
i , ..., d

k
i) that denote

the distances of the data object ai to the query. Having calculated the distances for

31

each of the dimensions, the distances are combined into the overall distance dk+1
i to

the query region. The overall distance dk+1
i would be close to 0 for objects that are

within the query region and increasing for the other objects.

The combination of distances for the different dimensions can be a problem

because the distances for the different dimensions now have to be considered with

respect to the distances of the other dimensions and the combined distance must be

defined and meaningful globally. One problem is that the values calculated by the

distance functions may be in completely different orders of magnitude. A second

problem is that the relative importance of the multiple dimensions is highly user

and query dependent. The first problem can be solved by a normalization of the

distances. A simple normalization may be defined as a linear transformation of the

range [0, dmax] (or [dmin, dmax] in case of bi-directional distances) for each dimension

to a fixed range (e.g. [0, 255]). The second problem can only be solved by user

interaction since only the user is able to determine the priority of the dimensions.

Therefore, in general, it is necessary to obtain weighting factors (w1, w2, w3, ..., wk+1)

representing the order of importance of the dimensions assigned by the user. This is

somehow similar to techniques used in information retrieval that have been proposed

to allow a ranking of the resulting data according to its relevance for the query.

With this kind of pixel oriented display in the XmdvTool system, the query

specification process would be much easier. In the beginning, the users will see

the default N-dimensional range query where the extents of each dimension is set

to the mid 50% of its complete range. Then, guided by the visual feedback, they

may interactively change the query according to their impression of the visualized

results. In exploring very large databases, the visualization of results coupled with

the possibility to incrementally refine the query are an effective way of finding the

interesting properties of the data. The key idea of the system is to use the phenom-

32

enal abilities of the human vision system, which is able to analyze small to mid size

amounts of data very efficiently and recognizes immediately patterns in images that

would be very difficult (in some cases even impossible) if done by a computer.

4.4 Flat Pixel Oriented Implementation

The basic idea of pixel-oriented visualization techniques is to use each pixel of the

screen to visualize the data items relevant in the context of a specific query. Each

distance to the query is mapped to a colored pixel and these values belonging to

one dimension are presented in a separate subwindow. Pixel-oriented techniques

partition the screen to m subwindows for data sets with m dimensions. An addi-

tional (m + 1)th subwindow is provided for the overall distance. Inside the subwin-

dows, the data values are arranged according to their relevance with respect to the

query. The sorting is necessary to avoid completely sprinkled images that would

not help the user in understanding the data. Correlations, functional dependencies

and other interesting relationships between dimensions may be detected by relating

corresponding regions in the multiple windows.

To achieve that objective a number of design issues have to be examined. The

issues can be categorized into the static display part and the dynamic interaction

part. The display issues to be considered are:

• How to map the values to colors? A good mapping is obviously very important,

but has to be carefully engineered to be intuitive.

• How to arrange the pixels within the subwindow? This can be described

formally as an optimization problem.

• What shapes to use for the subwindows? This depends on the number of data

33

points and dimensions.

• How to order the subwindows for the dimensions? This is very important

because dependencies and correlations between dimensions might best be de-

tected if they are placed next to each other.

• Where to place the subwindows on the screen? The positions of the subwin-

dows might reveal more relationships between dimensions.

The issues to be considered for the interaction mechanism are:

• How to interactively specify the query or the brush region? A good interface

will be able to improve the speed and accuracy of getting the results.

• Can distortion be used to enhance the visualized patterns and/or improve the

query specification?

4.4.1 Display Issues

Color Mapping

Visualizing the distance values using color corresponds to the task of mapping a color

scale to a single parameter distribution. The advantage of color over gray scales is

that the number of just noticeable differences (JNDs) is much higher [HL92]. The

main task is to find a path through color space that maximizes the number of JNDs,

but at the same time, is intuitive for the application domain. From a perceptual

point of view, brightness is the most important characteristic for distinguishing

colors corresponding to a single parameter distribution [HL92]. Hence, it is sufficient

to use a color scale with a monotonically increasing (or decreasing) brightness while

using the full color range.

34

Figure 4.1: HSI Color model used for the color mapping in pixel oriented displays.

Keim et al. have experimented with different colormaps varying in hue, satu-

ration and value. The experiments revealed that the mapping of colors has a high

impact on the intuitiveness of the system. The user, for example, may implicitly

connect good answers with light colors and bad answers with dark colors or the user

may be accustomed to green colors for good answers and red colors for bad answers

(like the colors used for traffic lights). They concluded that the parameters of the

color mapping should therefore use a monotonically decreasing brightness (intensity,

lightness or value), a color ranging over the full scale (hue), and a constant (full)

saturation. They have experimentally defined a colormap with the hue (color) rang-

ing from yellow over green, blue and red to almost black is a good choice to denote

the distance from the query. The HSI (Hue, Saturation and Intensity) color model

(Figure 4.1) provides a color scale with monotonically decreasing brightness. Here,

colors with constant intensity and saturation form a circle and linear interpolation

provides color scales whose lightness ranges continuously from light to dark. The

exact mathematical definition of the HSI parameters in terms of the RGB (Red,

35

Green and Blue) components is as follows:

mid = (
r + g + b

3
)

intensity = mid +

√
2

3
× (r2 + g2 + b2)

saturation =
2× (intensity −mid)

intensity

hue = arccos(
(2× r − g − b)√
6×√r2 + g2 + b2

)

The algorithms for generating HSI color values and converting HSI to RGB and

vice versa are provided in [KK95]. The parameters for generating the color scales -

including the HSI color scale used for the visualization presented in the rest of the

thesis - are shown in Table 4.1.

hue saturation intensity
HSImin 1.5 (= Light Green) 1.0 0.4
HSImax 1.0 (= Yellow) 1.0 1.0

Table 4.1: Parameters for generating color scales

The usefulness of the colormaps varies depending on the the user and the appli-

cation. The user may want to define different colormaps and use them instead of the

standard colormap. We have provided a Colormap Editor in XmdvTool to allow the

user to define colormaps. Figure 4.2 shows a screen dump of the Colormap Editor

in XmdvTool. The user can define the colormap not only for the unbrushed region,

but also the brushed region, which might indicate the usefulness of the query. The

user can specify the color model (RGB, HSI or Greyscale) to use for the color map

through the Editor. The Editor also allows one to define non-linear ramps for all

the color models.

36

Figure 4.2: Colormap Editor for pixel oriented displays in XmdvTool.

Subwindow Shapes

To relate the visualization of the overall result to visualizations of the different

dimensions, we generate a separate window for each dimension. In the separate

windows we place the pixels for each data item at the same relative position as the

the data item in the overall result window. All the windows together make up the

multidimensional visualization. By relating corresponding regions in the different

windows, the user is able to perceive data characteristics such as multidimensional

clusters or correlations. Additionally, the separate windows for each of the dimension

provide important feedback to the user, e.g. on the restrictiveness of each of the

dimension and on single exceptional data items.

The rectangular shape of the subwindows allows good screen usage, but at the

same time leads to a dispersal of the pixels belonging to one data object over the

whole screen. This is especially true for data sets with many dimensions, which

37

Figure 4.3: Rectangular and Circular shapes of subwindows.

makes it difficult to detect any patterns. Keim et al have suggested using a circle

segments technique (refer Figure 4.3) to optimize the distance between the pixels

belonging to one data object. The fundamental idea is to display the data dimensions

as segments of a circle. If the data consists of k dimensions, the circle is partitioned

to k +1 segments, the extra one being for the overall distance. The main advantage

of this technique is that the overall representation of the whole data set is better

perceivable - including potential dependencies, analogies and correlations between

dimensions.

38

Figure 4.4: Rectangular and Circular segment arrangement of pixels.

Arrangement of Pixels

An important question in designing the system was how to arrange the values dis-

played on the screen. This is important since, due to the density of the pixel displays,

only a good arrangement will allow discovery of clusters and correlations among the

dimensions. Keim et al [KD94] tried several arrangements such as top-down, left-

to-right, centered and found that arrangements with the lowest overall distances

centered in the middle of the window seemed to be the most natural ones. The one

closest to the query are colored yellow in the middle and the approximate answers

create a rectangular spiral around this region (see Figure 4.4).

For rectangular subwindows, this is derived as a solution to the optimization

problem of arranging the pixels in [Kei00]. The pixel arrangement problem is the

problem of finding a mapping of the data objects {ak
1, a

k
2, ..., a

k
n} to a subwindow of

39

size (w × h), i.e., a bijective mapping f : {1 . . . n} → {1 . . . w} × {1 . . . h} such that

n∑

i=1

n∑

j=1

∣∣∣∣∣∣
d(f(i), f(j))− d((0, 0), (w ·

√
|i− j|

n
, h ·

√
|i− j|

n
)

∣∣∣∣∣∣

is minimal where d(f(i), f(j)) is the LP -distance of the pixels belonging to ai and

aj, and
n∑

i=1

∣∣∣∣∣∣
d(f(i), (

w

2
,
h

2
))− d((0, 0), (

w

2
·
√

i

n
,
h

2
·
√

i

n
))

∣∣∣∣∣∣

is minimal where d(f(i), (w
2
, h

2
)) is the LP -distance of the pixels belonging to ai

from the center. The first condition in both the definitions aims at preserving the

distance of the one-dimension ordering in the two-dimensional arrangement as much

as possible. The second portion adds the constraint that the distance to the center

should correspond to the overall distance as much as possible.

For circular segment subwindows, the data objects within one segment can be

arranged in a back and forth manner along the so-called “draw-line”, which is or-

thogonal to the line that halves the two border lines of the segment (see Figure

4.4).

Ordering of Dimensions

Ordering of dimensions is a general problem that arises for a number of other tech-

niques, such as parallel coordinates and dimensional stacking. The basic problem

is that the data dimensions have to be positioned in some one- or two- dimensional

ordering on the screen and this is usually done more or less by chance - namely,

the order in which the dimensions happen to appear in the data set. The ordering

of the dimensions, however, has a major impact on the expressiveness of the visu-

alization, be it parallel coordinates or pixel oriented displays. Parallel coordinates

and the circle segments technique require a one-dimensional ordering of the dimen-

40

sions. In case of the spiral pixel oriented display, a two-dimensional ordering of the

dimensions is required.

XmdvTool provides an interactive hierarchical dimension ordering tool that al-

lows for Similarity-based, Importance-based and Interactive dimension reordering.

Pixel oriented displays reflect the ordering selected by the automatic tools or set

manually.

Subwindow Placement

Figure 4.5: Subwindow placement by MDS algorithm for AAUP dataset.

The pixel oriented techniques as defined by Keim [Kei00] do not suggest any par-

ticular placement for the subwindows. The subwindows are arranged in a raster-like

fashion on the screen, but the subwindows can be placed such that the placement

conveys more information about the relationships among the dimensions. The po-

sitions of the subwindows can be generated using Multidimensional Scaling (MDS)

[KW78] according to the pair-wise relationships among the dimensions. MDS is a

technique that maps locations in high dimensional space to positions in a low dimen-

sional space. It is widely used in visualization applications to convey relationships

41

among data items within a multi-dimensional dataset. For example, [WTPea95]

used MDS to map data items in a document dataset to a 2D space and generated

a Galaxies display as a spatial representation of relationships within the document

collection. The pixel oriented display uses MDS in a different way in that it maps

dimensions rather than data items in a dataset to a 2D space according to rela-

tionships among the dimensions. Thus, closely related dimensions have positions

adjacent to each other.

To get a good set of positions, we first need to identify the factors that affect

the subwindow positions. A distance matrix records the correlation of the distances

of the data points with respect the user-specified query between each pair of dimen-

sions in the dataset. There are many different correlation measures [ABK98]. We

get the similarity distance matrix for the dataset based on the Euclidean distance

and use the positions generated by MDS based on this correlation measure. The

positions reveal more insights into the data because the positions of the subwindows

change when the query (brush) extents are modified. This allows one to observe

the similarity between dimensions for a specific range of the brush and accurately

determine the range for which two dimensions seem to be strongly correlated. The

animation resulting from modification of the brush also gives a better picture of the

relationships.

4.4.2 Interaction and Navigation tools

A rich set of navigation and selection tools has been developed for the pixel ori-

ented display in XmdvTool. Zooming and panning, brushing, distortion and pixel

reordering help users learn information about the dataset. Manual selection tools

allow users to perform human-driven dimension reduction by selecting subsets of di-

mensions for further exploration using the display as well as other multi-dimensional

42

visualization techniques.

Brushing

As discussed in section 4.2, brushing in XmdvTool has been categorized either as

brushing in screen-space, data-space or structure-space. Both, screen-space and

data-space, types of brushing have been implemented with a slight variation on the

usage pattern when compared to brushing interactions in other displays. Screen-

space brushing is accomplished by modifying the brush extents on a separate col-

ormap display for the currently selected dimension shown within the same space

((see Figure 4.6) or an auxiliary dialog showing colormaps for all dimensions (see

Figure 4.7).

Figure 4.6: Brush region can be changed by moving the markers on the colormap.

The user can change the extents by dragging the brush handles or translate the

entire brush to select different extents but keep the same size. The brush can also

be incrementally reduced or increased in size by a middle-click of the mouse on

43

Figure 4.7: Brush region can be changed through the auxiliary brush toolbox.

the brushed section and translation of the mouse to indicate the direction. Data-

space brushing is accomplished by manually performing a paint-like operation on

one of the subwindows. This selects all the data points that have been painted over

(see Figure 4.8). This operation can be slightly confusing if the user paints over a

dimension that has not been sorted, but nevertheless is a very useful technique and

complements the data-space brushing found in other displays.

Figure 4.8: Data-space brushing is accomplished by Shift+Mouse clicking and paint-
ing over the subwindow. Note that the mouse cursor changes to a hand icon when
brushing in data-space.

44

Distortion

Figure 4.9: Distorted dimension for the AAUP dataset.

Users can interactively enlarge the size of some subwindows while keeping the

size of all the other subwindows fixed. This is accomplished by using the distortion

slider in a helper GUI. In this way users are allowed to examine details of textures

of the enlarged subwindows within the context provided by the other subwindows.

Figure 4.9 gives an example of distortion.

Zooming and Panning

Users can zoom in, zoom out and pan the pixel oriented display using the corre-

sponding controls provided in XmdvTool. For example, in order to reduce overlaps,

sometimes the size of the subwindows has to be set very small when there are a

large number of dimensions. Zooming into the display will enlarge the subwindows

so that the user can have a clear view of the texture of the subwindows.

45

Figure 4.10: Manual Pixel Reordering sorted on Magnetics dimension on the Remote
Sensing Dataset.

Manual Pixel Reordering

We allow users to select a dimension on which the data items are sorted by selecting

the subwindow and then clicking the middle button on the mouse. Subwindows

will have different textures, thus different patterns of the dataset will be revealed.

Figure 4.10 was generated using manual pixel reordering.

Manual Selection

Selection tools enable users to select dimensions of interest for further exploration

using other multi-dimensional visualization techniques. They can also be used as

a filter to reduce the number of subwindows displayed in a pixel oriented display.

Manual selection allows a user to manually select a dimension by left clicking on

its corresponding subwindow. The user can unselect a dimension by clicking on any

other subwindow.

46

4.5 Scaling to Datasets with Large Numbers of

Data Items

Figure 4.11: A comparison of the display of (a) full dataset and (b) sampled dataset
of the remote sensing dataset. Both visualizations seem similar.

When generating a pixel oriented display for a dataset containing a large number

of data items, we use a random sampling approach to reduce response time of user

interactions. In particular, users can set the sampling factor (between 0 and 1.0)

to return a sampled dataset. Figure 4.11 shows two pixel oriented displays of a

dataset with sampling (factor = 0.25) and without sampling. It can be seen that

the corresponding subwindows in the two displays have very similar patterns.

Secondly, in order to use the capabilities of the graphics card on the user’s

computer and improve the speed of user interactions for large-scale datasets, we store

all subwindows as texture objects in OpenGL. Thus unless we need to regenerate

47

the texture of the subwindows, each subwindow can be refreshed, repositioned, or

resized on the screen by simply redrawing the texture objects, mapping the texture

objects to different positions on the screen, or mapping them to areas of different

sizes. All these operations can be efficiently performed in hardware.

Both the above two approaches cause information loss in the pixel oriented dis-

play. When random sampling is performed, data items not in the sample are not

visually presented to the user. When the texture objects are mapped to screen areas

that are not exactly their original sizes, magnification or minification happens so

that the pixels visualized are only approximations of the original pixels. However,

information loss is exchanged for the reduction of clutter in the display and the re-

duction of response time of user interactions, which are very important for a visual

exploration task. Moreover, approximation is usually acceptable in a visualization

system. Furthermore, users can always get the information accurately by setting

the sampling factor near 1.0, and setting the size of the subwindows to exactly the

size of the texture objects.

48

Chapter 5

Hierarchical Pixel Oriented

Visualization

The hierarchical visualization in XmdvTool also addresses the visualization of large

data sets by presenting a multi-resolution view of the data. Creation of the hierarchy

preserves all the information present in the data while having access to the raw data

elements. All the displays in XmdvTool have a counterpart in the hierarchical world

and display the aggregate information maintained at each node in the cluster tree.

The set of associated hierarchy navigation tools allows the user to discover patterns

in the data set and are the topic of discussion for this chapter.

5.1 Hierarchical Clustering

The primary purpose for building a cluster hierarchy is to structure and present

the data at different levels of abstraction. A hierarchical approach is a convenient

mechanism for organizing large datasets. By recursively clustering or partitioning

data into related groups and identifying suitable representative information (sum-

49

marizations) for each cluster, we can examine the data set methodically at different

levels of abstraction, moving down the hierarchy (drill-down) when interesting fea-

tures appear in the summarizations and up the hierarchy (roll-up) after sufficient

information has been gleaned from a particular subtree.

A clustering algorithm groups objects or data items based on measures of proxim-

ity between pairs of objects [JD88]. In particular, a hierarchical clustering algorithm

constructs a tree of nested clusters based on proximity information.

Let E be the a set of k N -dimensional objects, i.e.,

E = {e1, e2, e3, ..., ek}

where ei is an N -vector:

ei = {xi1, xi2, xi3, ..., xiN}

An m-partition P of E breaks E into m subsets {P1, P2, ..., Pm} satisfying the

following two criteria:

Pi ∩ Pj = ∅ for all 1 ≤ i, j,≤ m, i 6= j , and
m⋃

i=1

Pi = E

A partition Q is nested into a partition P if every component of Q is a proper

subset of a component of P. That is, P is formed by merging components of Q. A

hierarchical clustering is a sequence of partitions in which each partition is nested

into the next partition in the sequence.

A hierarchical clustering may be organized as a tree structure: Let Pi be a

50

component of P, and Q be the m partitions of Pi. Let Pi be instantiated by a tree

node Ti. Then, the components of Q form the children nodes of Ti.

The approaches that impose a hierarchical structure to a data set can be broadly

categorized as either explicit or implicit clustering. In explicit clustering, hierarchical

levels correspond to dimensions and the branches correspond to distinct values or

ranges of values for the dimension. Hence different orders of the dimensions give

different hierarchical views. On the other hand, implicit clustering tries to group

similar objects based on a certain metric, for instance the Euclidean distance.

There is a large body of literature on algorithms for the computation of implicit

clusters [JD88]. The particular method used for the tree construction is however

not relevant to this thesis. Any method that builds a tree that abides by the above

definitions could in principle be used as the tree construction scheme in our system.

However, most clustering algorithms are not appropriate for large data sets be-

cause of large storage and computation requirements. In recent years, a number of al-

gorithms for clustering large data sets have been proposed [ADO90, GRS98, ZRL96].

XmdvTool adopts the K-means clustering algorithm [Mac67] although all the visu-

alization techniques would work equally well with data clustered by other methods.

5.2 Query Specification on Hierarchies

We had seen in chapter 4 that the brush directly corresponded to an N -dimensional

range query and that the brush could be specified in data-space or screen-space.

Hierarchical clustering of the data set introduces another space, termed as structure-

space, where brushing could be performed. This section introduces structure-based

brushing concepts and then uses these concepts to define an N -dimensional brush

from the parameters of the structure-based brush.

51

5.2.1 Structure-Based Brushing

As noted, a hierarchy or a tree is a convenient mechanism for organizing large data

sets. By recursively clustering or partitioning data into related groups and identi-

fying suitable representative information (summarizations) for each cluster, we can

examine the data set methodically at different levels of abstraction, moving down

the hierarchy (drill-down) when interesting features appear in the summarizations

and up the hierarchy (roll-up) after sufficient information has been gleaned from a

particular subtree.

XmdvTool has a suite of techniques, termed structure-based brushing, aimed at

supporting the interactive exploration of large data sets that are either implicitly or

explicitly clustered into a hierarchical structure.

The first containment criteria for the brush is an augmented monotonic value

relative to its parent for each node in the hierarchy, that is each cluster. This value

can be, for example, the level number, the cluster size/population, or the volume of

the cluster’s extents (defined by the minimum and maximum values of the nodes in

the cluster). This assigned value determines the control for the level-of-detail. By

choosing a continuous control variable, such as cluster size, the traversal of the tree

through different levels-of-detail can be smooth transitions instead of abrupt screen

changes. Formally, the level-of-detail variable L with range lmin to lmax and a value

range [la, lb] can be defined such that lmin ≤ la ≤ lb ≤ lmax.

The second containment criteria for structure-based brushing is based on the fact

that each node in a tree has extents, denoted by the left- and right-most leaf nodes

originating from the node. In addition, it is always possible to draw a vertically

oriented tree in such a way that the horizontal position of each node (and, in fact,

all of its children) falls between its extents. These extents ensure that a selected

subspace is contiguous in structure space. Formally, we define an extents variable E,

52

with range emin to emax and an extent range [ec, ed] such that emin ≤ ec ≤ ed ≤ emax.

Thus a structure-based brush is defined by a subrange of the structure extents

and level-of-detail variables, namely [la, lb, ec, ed].

5.2.2 Creation and Manipulation of Structure-Based Brush

Figure 5.1: Structure-based brushing tool. (a) Hierarchical tree frame; (b) Con-
tour corresponding to current level-of-detail; (c) Leaf contour approximates shape
of hierarchical tree; (d) Structure-based brush; (e) Interactive brush handles; (f)
Colormap legend for level-of-detail contour.

Figure 5.1 shows the structure-based brushing interface in XmdvTool. The trian-

gular frame depicts the hierarchical tree (see (a)). The leaf contour (see (c)) depicts

the silhouette of the hierarchical tree. It delineates the approximate shape formed

by chaining the leaf nodes. The colored bold contour (see (b)) across the tree delin-

eates the tree cut that represents the cluster partition corresponding to the specified

level-of-detail. A proximity-based coloring scheme is used in assigning colors to the

partition nodes [FWR99a].

53

In this scheme, a linear order is imposed on the data clusters gathered for display

at a given level-of-detail. This linear order is directly derived from the order in which

the tree is traversed when gathering the relevant nodes for a given level-of-detail. In

our implementation, we adopt the in-order tree traversal. Colors are then assigned

to each cluster by looking up a linear colormap table (see (f)). The same colors

are used for the display of the nodes in the corresponding data display. The two

movable handles (see (e)) on the base of the triangle, together with the apex of the

triangle, form a wedge in the hierarchical space (see (d)).

The structure-based brushing tool supports both direct and indirect manipula-

tion. Sets of elements may be directly selected by positioning the wedge handles so

as to bound the range of colors spanned by the elements. This is made possible by

the direct color correspondence between the data display and the structure display.

Moreover, similar elements are selected as a group, since by our coloring criteria,

similar elements are drawn in similar colors. The wedge handles can be adjusted

at either end or simply translated to bound the desired set of elements. Indirect

manipulation is provided through the use of sliders for the range of extents and

values, in case the user prefers such a mode of interaction.

In a hierarchical organization, drill-down and roll-up operations are commonly

used to explore the hierarchy. Our tool supports a global drill-down and roll-up

operation, that is, the current level-of-detail can be adjusted by dragging the colored

contour vertically. The data display changes to reflect more details when the contour

is adjusted vertically downwards while showing more and more abstract views of the

data when the contour is adjusted vertically upwards.

Besides a global drill-down/roll-up operation, our tool also allows the user in-

dependent control of the level-of-detail of the brushed and unbrushed region. That

is, the colored contour in the brushed region can be adjusted independently of the

54

Figure 5.2: Structure-based brushing at two different levels-of-detail.

contour segments outside the brushed region, and vice versa (See example in Figure

5.1). We term this selective drill-down/roll-up. This separate mode of control gives

the user the flexibility to view the hierarchical structure at two different levels-of-

detail at the same time.

5.2.3 Structure Based Ordering of Pixels

In order for hierarchical pixel oriented displays to show the same semantics as the

flat pixel oriented displays, it is important to contrast structure-based brushing with

traditional data-based brushing. In a traditional user-driven brushing operation, to

specify a region of interest in a multivariate data display, the user sets upper and

lower bounds for each dimension. In data-driven brushing, the user paints over

groupings of interesting data. Neither of these approaches is suitable for isolating

data elements which are structurally related. Rather, their focus is on the values of

the data. Clearly, structure-based brushing provides new, and potentially invaluable,

55

Figure 5.3: A hierarchical parallel coordinates display of a remote sensing dataset
with the selected cluster painted in bold red to reflect that it is currently being
brushed in the structure-based tool. The image on the right shows the corresponding
level-of-detail indicated by the colored contour in the structure-based brush with the
brushed region indicated by the wedge. In this case, we observe that the selected
clusters share the same mean value for magnetics and uranium contents, and have
high SPOT contents.

functionality beyond data-based brushing.

A logical question is whether it is possible and, if so, useful to switch between

structure-based and data-driven brushes. Each is a specialization of what we term

set-based brushing, where every point is classified as either being within the brush or

outside the brush. In explicit hierarchies, which are often generated via categorical

data or ranges of data values, there is generally a direct mapping from structure-

based brushes to data driven brushes, but not vice versa. A user could specify a

subspace of the hierarchy that maps to a contiguous subspace in data space. This

would correspond directly to a data-driven brush. A simple method to implement

this would be to collect all clusters selected by the specified extents of the structure

based brush and define the smallest N -dimensional region containing all the selected

56

clusters.

We use this direct mapping from structure-based brush to a traditional N -

dimensional data brush to generate the Hierarchical Pixel Oriented Display. The

structure-based brush drives the selection of clusters at the specified level of detail.

Distances are calculated for the all the clusters for the current level of detail. The

overall distance can be calculated as in the case of flat pixel oriented displays, which

can order the pixels of the display. We term this ordering controlled by the structure

based brush as Structure-based Ordering.

5.3 Visualizing Clusters

The hierarchical pixel oriented display is the new extension that we have developed

for visualizing large data sets using pixel oriented techniques. In the hierarchical

pixel oriented display, data is structured as a hierarchy of clusters, and the display

shows summarizations of the clusters at a certain level of detail. Many display op-

tions exist, including showing cluster centers (which look identical to traditional flat

pixel oriented displays), cluster population (which manifest themselves as replicated

pixels in each subwindow) and other cluster statistics. Distortion techniques as in

the flat display, structure-based coloring, and selective fade-in/fade-out are available

to help reduce clutter and expose structure.

Figure 5.4 shows the hierarchical pixel oriented display at a given level-of-detail.

Each pixel across the subwindows displays the mean value of its cluster. The size of

the subwindows gives an indication to the number of clusters at the given level-of-

detail. For the cluster population display option, the color of the pixel is replicated

by the number of leaves in the corresponding cluster. The coloring of the pixels is

according to the techniques listed for flat pixel oriented displays. With the brushing

57

Figure 5.4: Hierarchical Pixel Oriented Display.

tool, the user simply adjusts the handles at the base of the triangle wedge to bound

the extents of interest. The selected clusters are drawn in yellow, indicating they are

being brushed. Next, we demonstrate the usefulness of the selective drill-down/roll-

up operations.

Figure 5.5: Hierarchical Pixel Oriented Display at lod level of 0.2 for both brushed
and unbrushed clusters for the UVW (6 dim - 150,000 data points)

Figures 5.5 and 5.6 show two images of hierarchical pixel oriented displays at

different levels-of-detail for the UVW dataset which is a 6-dimensional dataset con-

taining around 150,000 data points. Figure 5.5 displays the initial state, with all

clusters at the same level-of-detail. The user can then brush the cluster(s) of interest

by adjusting the handles at the bottom of the wedge on the structure-based brush

interface. Next, by “pulling” the brushed contour vertically downwards, we can view

58

Figure 5.6: Hierarchical Pixel Oriented Display with brushed clusters at lod level of
0.2 while unbrushed clusters at LOD level of 0.06. The dataset is the UVW Dataset

the unselected clusters at higher level-of-detail while maintaining the same level-of-

detail for the selected clusters. This results in the display shown in Figure 5.6, which

helps the user in identifying how the unselected region relates to the query. The

usefulness of the selective drill-down/roll-up feature is evident here – users have the

flexibility to see relationships between the clusters at the region of interest. One

important observation is that the textures in Figures 5.5 and 5.6 almost look the

same. This indicates that the relationships are maintained across resolutions (which

is to be expected). Thus, the user can opt to use a lower resolution for exploring

the dataset and then switch to higher resolution for higher accuracy.

The subwindows of the hierarchical pixel oriented display contract when rolling

up the level of detail brush because the size of the subwindows directly correspond

to the number of clusters being visualized. We have implemented the population

display option for hierarchical pixel oriented display which replicates the pixels for

a particular cluster by the number of leaves in the cluster. This maintains the size

of the subwindows, but loses correspondence with the level of detail. Figures 5.7

and 5.8 show the extents visualization for the UVW Dataset.

59

Figure 5.7: Hierarchical Pixel Oriented Display (Extents Visualization) with brushed
clusters at LOD level of 0.2 while unbrushed clusters at LOD level of 0.06. The
dataset is the UVW Dataset

Figure 5.8: Hierarchical Pixel Oriented Display (Extents Visualization) at LOD
level of 0.2 for both brushed and unbrushed clusters for the UVW (6 dimensional -
150,000 data points)

60

Chapter 6

Implementation

This chapter briefly describes the design and current implementation of the flat and

hierarchical pixel oriented displays with respect to the XmdvTool system.

6.1 Platform

The new display modules were implemented as part of the XmdvTool system version

6.0a. The system is a cross-platform visualization toolkit and works on Windows

2000/XP and Linux platforms. The language of implementation is C++, which is a

superset of the C programming language that includes object-oriented features. The

software development process of this project is completely object oriented, aided by

the fact that the XmdvTool system is itself organized using object-oriented method-

ologies. C++ is also the language of choice for high-performance applications. The

application interacts with the underlying graphics platform through Tcl/Tk [tcl] for

GUI and OpenGL [ope] for rendering. This makes it completely platform indepen-

dent, flexible to add GUI widgets and takes advantage of the graphics hardware

capabilities of the underlying machine.

61

6.2 Design

This project started as a prototype for incorporating pixel oriented visualizations in

XmdvTool which was developed as part of the Data Visualization course (CS525D)

in Spring 2003. As the project grew into a thesis implementation, the goal was to

provide a framework so that the development of different types of pixel oriented

techniques could be integrated into the system.

Figure 6.1: Class Diagram

Figure 6.1 shows the class diagram for the classes that were integrated into the

system. The system provides a basic framework of classes (grCanvas, CDisplay,

CFlatDisplay, and CHierDisplay) for adding new display types to the tool. gr-

Canvas handles the OpenGL interface for all the displays. The main application

maintains a list of CDisplay objects that would correspond to the display modules

in XmdvTool. The pixel oriented display module consists of the main base class

62

CPixelOriented that provides functions common to the two types of pixel oriented

displays (CFlatPixel and CHierPixel). CPixelOriented also maintains an N +1 num-

ber of ISubwindow objects for an N -dimensional dataset to visualize the distance

values of each dimension and the combined distance. The ISubwindow interface al-

lows implementation of different shapes of the subwindows. Two implementations

of this interface have been provided – CRectSubwindow for rectangular subwindows

and CSegSubwindow for circular segments. The CRectSubwindow also allows for

different types of pixel arrangements through the IPixelArrangement interface, an

example being the CSpiralArrangement class. The Strategy design pattern has been

used for the shape and pixel arrangement classes to allow for more techniques to be

added in the future.

Dialogs that were added or modified for the new pixel oriented modules were:

• Pixel Oriented Brush Toolbox dialog was added, which is similar in function-

ality to the other brush toolboxes for the respective displays in XmdvTool.

• Weight Modification dialog that shows sliders for assigning weights for each of

the dimensions.

• ColorMap Editor for changing the standard brushed and unbrushed colormaps.

The ColorMap Editor can be accessed via the existing Color Requester dialog

which is already being used for changing system-wide colors in XmdvTool.

6.3 Issues

During the development of the pixel oriented framework, many issues were encoun-

tered. Some of the issues related to the flat pixel oriented display were:

63

• Query specification was one of the main issues to be resolved. The main

constraints were that the controls should not take up a lot of screen space. We

provide a limited query specifier through a colormap display for the currently

selected dimension on the pixel oriented display and an extensive one through

colormaps for all dimensions on an auxiliary dialog.

• Specifying queries through the colormap display can be thought of as screen-

space brushing or user-driven brushing (Refer section 4.3.1). Data-space brush-

ing, provided in other displays in XmdvTool, was a tricky issue for pixel ori-

ented displays. Selecting a data point which is just one pixel wide would

be very difficult for users. This required distorting the view and providing

some control over the selection process. Different distortion techniques were

considered, such as providing a zooming window or fish-eye views. Finally, a

focus+context type of distortion was identified and applied to the display. For

data-space brushing, options such as providing a slider on mouse click over a

pixel or using the distance of the mouse after a click and drag were consid-

ered. None of these proved to be intuitive to the user. Finally, a paint-like

operation, where the user presses shift+mouse click to paint over the pixels to

specify the data points contained in the selection, was developed and seemed

to work well.

• All the rectangular subwindows were arranged in a raster-like fashion for the

non-MDS placement technique. It was felt that placing the derived dimension

(the Combined Distance dimension) in line with the other dimensions might

confuse the user. Hence, we now display the subwindows for all the derived

dimensions (there might be more in the future) separately. A line is drawn to

separate the two classes of subwindows and we have also added the capability

64

to toggle the display of the derived dimensions.

• The earlier prototype displayed the subwindows with a colormap for the se-

lected dimension, which allowed for brush specification. However, it was later

realized that the colormap could also be toggled to allow for more screen space

for the subwindows. When the colormap is not shown, the brush can be spec-

ified through any of the auxiliary brush toolboxes in XmdvTool or via the

paint-like operation introduced earlier.

• A GUI was developed using the GLGooey [glg] package to allow setting up

the various options and bringing up the dialogs from the display itself. This

allowed a centralized control over the pixel oriented display and its related

functionalities.

Some of the issues related to the hierarchical pixel oriented display were:

• The structure-based brush already provides an ordering for the clusters. The

order assigned by the cluster tree (left to right) is completely dependent on

the clustering algorithm. The proximity based coloring provided by the other

displays can conveniently use this ordering and use a simple colormap to show

the cluster relationships. We felt that although this was useful for the other

displays in XmdvTool, this restriction was too tight to take advantage of pro-

viding query feedback in pixel oriented techniques. Hence, we have structure-

based ordering to induce a query-based ordering to the clusters for the benefit

of providing query relevance visualization for hierarchies.

• A variety of cluster statistics are possible for the hierarchical pixel oriented

display such as cluster means, extents, population or distribution. The most

intuitive option seemed to be to display cluster means (as single pixels) as is

65

the default option in other displays. The level-of-detail controls the size of

the subwindows. The main issue was to port the mean-band technique (used

for showing cluster extents in other displays) to hierarchical pixel oriented

display, which meant using opacity and pixel replication to display the cluster

extents. Adding opacity levels to pixels sprinkled over the subwindow would

lead to confusion, and hence, population is displayed instead of extents. The

population of the cluster controls the number of pixels that are to be replicated

for each cluster.

66

Chapter 7

Evaluation

We have conducted a small user study to illustrate the usefulness of adding pixel

oriented displays in XmdvTool. This chapter briefly describes the goal, the method

and the result of this evaluation process.

7.1 Introduction

The goal of pixel-oriented displays is to use every available pixel to show as much

data as possible on the screen thereby providing local detail in the global con-

text. This type of representation aims to solve the clutter problem associated with

information dense displays. Usability tests for pixel-oriented displays have been

conducted [KK96] for their perceptual properties and data usability features. Pixel-

oriented visualization techniques have been shown [KK95] to be useful for the ex-

ploration and analysis of large databases to find interesting data clusters and their

properties such as functional dependencies and correlations among the dimensions.

The power of this representation can be magnified by combining it with various

interaction/distortion techniques and linked views. Pixel oriented displays provide

an overview of the data while the other displays in XmdvTool provide detailed views

67

of the data. Pixel oriented displays also provide a query feedback mechanism where

it not only plots the results of the query, but also the relevance of the unselected data

points with respect to the query. Chimera’s study [CWMS94] seems to indicate that

overview-and-detail should perform better than detail-only. The goal of this study

is to measure the added value of coordinated pixel-oriented and other visualizations

in terms of user task times and subjective satisfaction for browsing large information

spaces.

The questions to guide us on this quest are:

• How does the multiple linked view with pixel oriented display and the inter-

actions/distortions introduced in this display help the user to specify “good”

queries?

• The visual feedback across the visualizations could be distracting or disorient-

ing for the users. But, if there is a benefit, what is its magnitude?

• Which enhancement is the important factor that causes improved user per-

formance? Is it the information displayed in the overview or the coordination

between the overview and detail?

• What are the successes and shortcomings of the flat pixel oriented displays

integrated into XmdvTool?

7.2 Finding Data Characteristics in Pixel Oriented

Displays

Before presenting our evaluations, in the following we briefly introduce how data

characteristics such as correlations, functional dependencies, and clusters may be

68

Figure 7.1: Linear functional dependency between dimensions 0 and 3 and quadratic
functional dependency between dimensions 0 and 6. Note that there is no depen-
dency between dimension 0, 1 and 2 as they are completely dissimilar in appearance.

identified in our visualizations generated by the spiral technique. Note that these

techniques are interactive in nature and are therefore difficult to describe in written

form.

Properties that hold for all or most of the data can be deduced from the overall

brightness and color distribution of the visualizations. The size of the yellow por-

tion of the visualization indicates the number of data items fulfilling the query for

the corresponding attribute. The brightness of the visualization of some attribute

indicates the degree of fulfilling the corresponding query predicate, and the overall

color distribution shows the distribution of distance values for the corresponding

attribute. Sharp borders between colors, which indicate discontinuities in the value

range of an attribute, are especially interesting.

Usually the visualizations of the attributes are not independent. Using our visual

data mining techniques, correlations and functional dependencies between attributes

may be identified by the similarity of their visualizations (see Figure 7.1). In cases

69

where existing structure in the data is not revealed by the visualization, the structure

can usually be made visible by arbitrarily changing the weighting factors of some

attributes. Changing the weighting factors makes it easier to perceive similarities

in the visualizations and to determine correlations and functional dependencies.

Another important group of interesting data characteristics is clusters of data

items with similar properties. In our visualizations, clusters usually appear as rect-

angular regions (possibly partial rectangles) which may have different colors for

different attributes (See Figure 7.2). Clusters may have a lower dimensionality than

the whole data set. Therefore, the clustering may appear only in the visualizations

of certain attributes. Note that the visualizations generated by the spiral technique

in general depend on the chosen query region. Changing the query region has a

major impact on the resulting visualizations. For example, if the query region is

moved away from a cluster, the cluster becomes less visible in the visualization. By

interactively changing the query region, different clusters can be made visible.

Figure 7.2: Clustering can be easily seen in this view. Also note that the visualiza-
tion tells us that the cluster is of a lower dimension than the dataset.

70

7.3 Data

We use a general test data generation model which is used for a standardized and

quantitative testing of visualization techniques [BKP94]. The model allows gener-

ation of data sets with characteristics similar to those of real data sets. However,

the characteristics can be varied arbitrarily. We developed a tool, DataGen, that

partially implements the test data generation model and allows specification of a

wide range of data characteristics. The following five data sets were used for the

evaluation:

1. Data set to evaluate finding a 4-dimensional cluster in a 6-dimensional data.

The data set consists of 15,000 data items. Two thirds of the data is generated

randomly in the range of [0,100] for each dimension and the remaining one

third of the data defines 3 clusters that are generated by inserting additional

data items in specific range values.

2. We use a data set generated by using different distributions for defining a

cluster. The base data set consists of 10,000 data items, uniformly distributed

in the range of [-10000,10000] for each of the dimensions. The cluster consists

of 1,000 data items and the cluster dimensions differ in the distribution.

3. The third data set is generated using different functional dependencies for

defining a cluster. The base data set again consists of a 10,000 data items with

9 dimensions, uniformly distributed in different ranges: [0,1000] for dimensions

one to three, [0,2000] for four to six and [0, 1,000,000] for the rest. The

functional dependencies of the other dimensions for a cluster of 2000 data

items are given in Table 7.1.

4. The fourth dataset is generated with functional dependency as above for the

71

Table 7.1: Value ranges and dependencies for data items in the cluster of third data
set.

complete dataset. The data set is again 10,000 data items with 9 dimensions

with the values generated as in the Table 7.1.

5. The last data set used was the Remote Sensing data set, which is a real data

set. The users were unaware of which data sets were real and which were

artificial. The aim was to see if the users could find any relationships in this

data set. The base data set consists of 16,000 data items with 5 dimensions.

Examples of visualization that result from data sets 1 and 4 are provided in

Figures 7.3 and Figures 7.4.

Figure 7.3: Pixel oriented visualization for the first data set and corresponding
visualization in Parallel Coordinates. Note that the pixel oriented display shows the
4-D clusters.

72

Figure 7.4: Pixel oriented visualization for the fourth data set and corresponding
visualization in Parallel Coordinates. Note that the pixel oriented display shows
correspondence between dimensions 0, 3 and 6.

7.4 Variables

7.4.1 Independent Variables

A variety of browsing tasks, using a question-answer approach were presented to the

subjects. Some of the treatments are as follows:

• How many clusters can you see in the data set? What is the dimensionality of

the observed cluster? Was the cluster visible before/after discovered in pixel

oriented display?

• Are any correlations seen between the dimensions? What type of correlation

is it (Linear/Quadratic)?

The complete list of tasks for each of the data set is provided in Appendix A.

7.4.2 Dependent Variables

As part of the evaluation process, we measured two dependent variables, namely

user performance time and user subjective satisfaction.

73

• User performance time: Time to correctly complete each task, not includ-

ing reading the task question.

• User subjective satisfaction: Subjects rate their satisfaction with each in-

terface on a scale of 1 to 10 on four categories (with scales): comprehensibility

(confusing to clear), ease of use (very difficult to very easy), speed of use (very

slow to very fast), overall satisfaction (terrible to wonderful).

7.5 Procedure

There were 3 users for the evaluation. All the 3 students were Computer Science

students who were also familiar with the XmdvTool system. All of them were

familiar with the concepts of using multivariate visualizations for the purpose of

finding relationships between dimensions and cluster finding. All of them had some

idea of pixel oriented visualization but only one of them had worked with this

technique before. The concepts of pixel oriented visualization, objective of the test

and procedure were explained to each user. Each of them were asked to work

with the system for approximately 10 minutes. The users were asked to note the

approximate time for the evaluation of each data set and save the generated image

for the pattern they had discovered.

7.6 Results and Analysis

Most of the users were able to find the clusters and functional dependencies in the

data set. The users found that clustering was easier to detect in pixel oriented

visualization than in other displays, but analysis of the results shows that this also

depended on the size and dimensionality of the cluster. Users could find linear

74

dependencies among the dimensions in the data set, but found it difficult to find

quadratic dependencies. Also, a small cluster with function dependency was difficult

to discover than larger clusters. The users found changing weights of the dimensions

to be confusing and was used sparingly. Users could also find some interesting

clustering in the Remote Sensing data set through pixel oriented displays.

It was noted that the time taken for completing each of the tasks reduced as

they progressed in the evaluation. This may be attributed to increasing familiarity

with the system during the course of the evaluation. The rating of all the users were

on the high side (7-9) for all the subjective variables. They found the system to be

quite responsive as compared to other displays in XmdvTool.

Overall, the experience of the evaluation was good and we received some feedback

on improving the system and the evaluation. Some users noted that the provided

brushing interaction was intuitive and unique. They suggested some strategies such

as adding a simple button to change the query regions to the full or zero range in

all dimensions. One user noted that an option for turning off the highlighting and

using query-independent technique could be provided to enhance the display.

7.7 Conclusion

The above results does seem to indicate that pixel oriented visualization does in-

crease the productivity of the user when used along with other displays in XmdvTool.

The study concludes that the ability to visualize large data sets in maximum reso-

lution and find patterns in the data is enhanced when pixel oriented visualization

is used in conjunction with other multivariate techniques.

75

Chapter 8

Conclusions and Future Work

Visualization is becoming a necessity in today’s academic, government and com-

mercial working world. Data is becoming more and more complex, and increasing

in amount. The ability to see and understand the data to make critical decisions

is needed now more than ever. The need to share this data in a meaningful way,

where one can interact with others and draw important conclusions, is technology

one has to embrace. Many multivariate visualization tools exist that allow one to

analyze the data, but most of them fail to display large data sizes which manifest

as clutter on the display. One way to visualize these large data sizes is using the

optimum display resolution today’s graphics hardware and monitors can offer and

pixel oriented techniques aim to accomplish that.

8.1 Realization of Goals

In this project, we proposed to implement and link pixel oriented visualization tech-

niques with the other display techniques in XmdvTool. Pixel oriented visualization

techniques are not new and there are already implementations available. However,

to the best of our knowledge, this project is the first attempt at linking pixel ori-

76

ented visualizations with other multivariate displays and introducing hierarchical

pixel oriented displays for larger data sizes. These techniques also offer a better

query feedback than any other multivariate techniques, so that the user is better

equipped to explore and mine the data.

In this project, we have implemented an enhanced version of the pixel oriented

display by working out the issues with existing implementations. The efforts have

largely been concentrated on providing a framework for pixel oriented displays in

XmdvTool so that it can be easily extended. This includes providing a suite of

navigation and interaction tools, such as zooming, panning, distortion, and brushing,

for the display. Many new issues have been discovered and implemented during the

course of development of pixel oriented displays. Such issues include placement of

the subwindows in a way that provides more information about the relationships of

the dimensions, and sampling of the data set to improve the handling of large data

sizes in the flat display itself. The newer pixel oriented display in XmdvTool also

borrows ideas such as screen-space and data-space brushing from the other displays

in XmdvTool. This common interaction provided in all XmdvTool displays allows

seamless linking between the different views, which was one of the main ideas in

including pixel oriented techniques in XmdvTool.

This project also introduced a completely new pixel oriented display for hierar-

chical data structures. The hierarchical pixel oriented display is the first of its kind

in XmdvTool that provides query feedback for the structure-based brush. Using this

kind of multi-resolution technique for pixel oriented displays allows one to load very

large data sets (sizes in the order of tens to hundreds of thousands) and visualize

cluster relationships in the hierarchy.

77

8.2 Future Work

Directions for future research include both enhancing the current approach and

making it more efficient. In the future, we plan to pursue the following tasks:

• Functionally extend the system by integrating more forms of pixel arrange-

ment techniques. A number of generalized spiral and axes techniques have

been suggested by Keim et al [Kei00] that improve upon the spiral technique

implemented in XmdvTool. The current implementation is flexible enough to

allow different forms of pixel arrangement techniques to be integrated within

the framework.

• Allowing application of multiple brushes or query regions to pixel oriented

displays. This might involve showing multiple layers of subwindows for each

of the query regions. A query independent display might be required for

displays with no brushes.

• Improve the hierarchical pixel oriented display by including more statistics

about the cluster on the display such as cluster extents or cluster distribution.

A separate display method is required for showing the level-of-detail (as a

separate subwindow or through separate color mapping or maybe through a

separate 3D display of the subwindows).

• Improve the efficiency of the system by carefully studying and analyzing the

bottlenecks, such as computation of the distance to the query region, in the

system and optimizing them. This is necessary for pixel oriented visualizations

to be viable for very large datasets (from millions to tens or hundreds of

millions).

78

• Evaluating the flat and hierarchical pixel oriented displays through more thor-

ough user studies and experiments.

79

Appendix A

Tasks for Evaluation

1. Are you able to see any clustering in the pixel oriented display (you can use

the interactions provided on the pixel oriented display for this)?

2. If yes for question number 1, then save the image and answer the following

questions -

(a) How many clusters can you see?

(b) What dimensional cluster for each of the clusters can you see?

(c) Is this information available from any of the other flat displays without

using the pixel oriented display? If yes, which one?

(d) After using the flat pixel oriented, can you see clustering in any of the

other displays? If yes, which one?

(e) Can you see any correlations / functional dependencies among the di-

mensions for the discovered clusters (you can try changing weights of the

dimensions for this)?

(f) If yes for question number 2e, then save the image and answer what kind

of dependency is it (Linear or Quadratic) and what are the weights chosen

80

to find it?

3. Is there any relationship (correlation / functional dependencies) that you can

discover among the dimensions?

(a) If yes for question number 3, then save the image and answer what kind of

dependency is it (Linear or Quadratic) and what are the weights chosen

to find it?

4. Approximate Time taken to complete the above tasks.

5. How would you rate this task:

(a) Comprehensibility (1 - confusing to 10 - clear)

(b) Ease of use (1 - very difficult to 10 - very easy)

(c) Speed of use (1 - very slow to 10 - very fast)

(d) Overall satisfaction (1 - terrible to 10 - wonderful)

81

Bibliography

[ABK98] M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering of di-
mensions for an enhanced visualization of multidimensional data. Proc.
of IEEE Symposium on Information Visualization, InfoVis’98, p. 52-
60, 1998.

[ADO90] P. Andreae, B. Dawkins, and P. O’Connor. Dysect: An incremental
clustering algorithm. Document included with public-domain version of
the software, retrieved from Statlib at CMU, 1990.

[AKK96] M. Ankerst, D. A. Keim, and H.-P. Kriegel. Circle segments: A tech-
nique for visually exploring large multidimensional dataset. Proc. Vi-
sualization ’96, 1996.

[And72] D. F. Andrews. Plots of high-dimensional data. Biometrics, 29:125–136,
1972.

[BC87] A. Becker and S. Cleveland. Brushing scatterplots. Technometrics, Vol
29(2), p. 127-142, 1987, 1987.

[Bed90] J. Beddow. Shape coding of multidimensional data on a microcomputer
display. Proc. Visualization ’90, pages 238–246, 1990.

[BKP94] R. D. Bergeron, Daniel A. Keim, and R. Pickett. Test data sets for eval-
uation data visualization techniques. Perceptual Issues in Visualization,
page 922, 1994.

[BSB82] J. Bertin, P. Scott, and W.J. Berg. Graphics and Graphic Information-
Processing. Walter de Gruyter, Inc., 1982.

[Che73] H. Chernoff. The use of faces to represent points in k-dimesional space
graphically. Journal of the American Statistical Association, 68:361–
368, 1973.

[CWMS94] R. Chimera, K. Wolman, S. Mark, and B. Shneiderman. An exploratory
evaluation of three interfaces for browsing large hierarchical tables of
contents. ACM Transactions on Information Systems, 12, 4, pages
383–406, 1994.

82

[FB90] S. Feiner and C. Beshers. Worlds within worlds: Metaphors for ex-
ploring n-dimensional virtual worlds. Proceedings ACM Symposium on
User Interface Software and Technology, pages 76–83, 1990.

[Fur86] G.W. Furnas. Generalized fisheye views. Proc. of Computer-Human
Interaction ’86, p. 16-23, 1986.

[FWR99a] Y. Fua, M.O. Ward, and E.A. Rundensteiner. Hierarchical parallel
coordinates for exploration of large datasets. Proc. of Visualization
’99, p. 43-50, Oct. 1999.

[FWR99b] Y. Fua, M.O. Ward, and E.A. Rundensteiner. Navigating hierarchies
with structure-based brushes. Proc. of Information Visualization ’99,
p. 58-64, Oct. 1999.

[FWR00] Y. Fua, M.O. Ward, and E.A. Rundensteiner. Structure-based brushes:
A mechanism for navigating hierarchically organized data and informa-
tion spaces. IEEE Visualization and Computer Graphics, Vol. 6, No.
2, p. 150-159, 2000.

[glg] GLGooey - OpenGL GUI Library. http://glgooey.sourceforge.net/.

[GRS98] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algo-
rithm for large databases. SIGMOD Record, vol.27(2), p. 73-84, June
1998.

[HL92] G. T. Herman and H. Levkowitz. Color scales for image data. Computer
Graphics and Applications, pages 72–80, 1992.

[ID90] A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for visual-
izing multidimensional geometry. Proc. of Visualization ’90, p. 361-78,
1990.

[JD88] K. Jain and C. Dubes. Algorithms for Clustering Data. Prentice Hall,
1988.

[JKL77] A. K. Joshi, S. J. Kaplan, and R. M. Lee. Approximate responses from
a data base query system: Applications of interferencing in natural lan-
guage. Proceedings of the 5th Internation Joint Conference on Artificial
Intelligence (IJCAI), pages 211–212, 1977.

[Kap82] S. J. Kaplan. Cooperative responses from a portable natural language
query system. Artificial Intelligence, 19:165–187, 1982.

[KD94] D.A. Keim and H.P. Driegel. VisDB: Database exploration using multi-
dimensional visualization. In Computer Graphics & Applications, pages
40–49, Sept. 1994.

83

[Kei96] D. A. Keim. Pixel-oriented visualization techniques for exploring very
large databases. J. Computational and Graphical Statistics, 5(1):58–77,
1996.

[Kei00] D. A. Keim. Designing pixel-oriented visualization techniques: Theory
and applications. In IEEE Transactions on Visualization and Computer
Graphics, volume 6, pages 1–20, January-March 2000.

[KK95] D. A. Keim and H.-P. Kriegel. Issues in visualizing large databases.
Proc. Conf. on Visual Database Systems (VDB-3), pages 203–214,
March 1995.

[KK96] D. A. Keim and H.-P. Kriegel. Visualization techniques for mining
large databases: A comparison. Transactions on Knowledge and Data
Engineering, Special Issue on Data Mining, 8(6):923–938, 1996.

[KKA95] D. A. Keim, H.-P. Kriegel, and Mihael Ankerst. Recursive pattern: A
technique for visualizing very large amounts of data. In Proc. of the 6th
IEEE Visualization Conference, pages 279–286, 1995.

[KL92] D. A. Keim and V. Lum. Visual query specification in a multimedia
database system. Proc. Visualization ’92, pages 194–201, 1992.

[KW78] J.B. Kruskal and M. Wish. Multidimensional Scaling. Sage Publica-
tions, 1978.

[LA94] Y.K. Leung and M.D. Apperley. A review and taxonomy of distortion-
oriented presentation techniques. ACM Transactions on Computer-
Human Interaction Vol. 1(2), June 1994, p. 126-160, 1994.

[Lev91] H. Levkowitz. Color icons: Merging color and texture perception for
integrated visualization of multiple parameters. Proc. Visualization ’91,
1991.

[LWW90] J. LeBlanc, M.O. Ward, and N. Wittels. Exploring n-dimensional
databases. Proc. of Visualization ’90, p. 230-7, 1990.

[Mac67] J. MacQueen. Some methods for classification and analysis of multi-
variate observations. Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, 1:281–297, 1967.

[Mot90] A. Motro. FLEX: A tolerant and cooperative user interface to
databases. IEEE Transactions on Knowledge and Data Engineering,
2(2):231–246, 1990.

[MRC91] J. Mackinlay, G. Robertson, and S. Card. The perspective wall: detail
and context smoothly integrated. In Proc. ACM CHI, p. 173-179, 1991.

84

[MW95] A.R. Martin and M.O. Ward. High dimensional brushing for interactive
exploration of multivariate data. Proc. of Visualization ’95, p. 271-8,
1995.

[MZ92] F. Marchak and D. Zulager. The effectiveness of dynamic graphics in
revealing structure in multivariate data. Behavior, Research Methods,
Instruments and Computers, 24(2):253–257, 1992.

[ope] OpenGL Graphics Rendering Library. http://www.opengl.org/.

[PG88] R. M. Pickett and G. G. Grinstein. Iconographic displays for visualizing
multidimensional data. Proc. IEEE Conf. Systems, Man and Cybernet-
ics, pages 514–519, 1988.

[RAEM94] W. Ribarsky, E. Ayers, J. Eble, and S. Mukherjea. Glyphmaker: Cre-
ating customized visualization of complex data. IEEE Computer, Vol.
27(7), p. 57-64, 1994.

[RMC91] G. Robertson, J. Mackinlay, and S. Card. Cone trees: Animated 3d
visualization of hierarchical information. Proc. of Computer-Human
Interaction ’91, p. 189-194, 1991.

[SA82] R. Spence and M. Apperly. Database navigation: An office environment
for the professional. Behavior and Information Technology, 1(1):43–54,
1982.

[Shn92] B. Shneiderman. Tree visualization with tree-maps: A 2d space-filling
approach. ACM Transactions on Graphics, Vol. 11(1), p. 92-99, Jan.
1992.

[Shn94] B. Shneiderman. Dynamic queries for visual information seeking. Tech-
nical Report UMCP-CSD CS-TR-3022, College Park, Maryland 20742,
U.S.A., 1994.

[SM83] G. Salton and M. J. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, New York, 1983.

[tcl] Tcl/Tk Scripting Language. http://www.scriptics.com/.

[Tuf82] E.R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, 1982.

[War94] M.O. Ward. Xmdvtool: Integrating multiple methods for visualizing
multivariate data. Proc. of Visualization ’94, p. 326-33, 1994.

[WB96] P.C. Wong and R.D. Bergeron. Multiresolution multidimensional
wavelet brushing. Proc. of Visualization ’96, p. 141-8, 1996.

85

[Weg90] E.J. Wegman. Hyperdimensional data analysis using parallel coordi-
nates. Journal of the American Statistical Association, Vol. 411(85), p.
664, 1990.

[Wil98] G.J. Wills. An interactive view for hierarchical clustering. Proc. of
Information Visualization ’98, p. 26-31, 1998.

[WL97] E.J. Wegman and Q. Luo. High dimensional clustering using parallel
coordinates and the grand tour. Computing Science and Statistics, Vol.
28, p. 361-8., 1997.

[WLT96] M.O. Ward, J.T. LeBlanc, and R. Tipnis. N-land: a graphical tool for
exploring n-dimensional data. CG194 Proc: Insight Through Computer
Graphics, p. 130-41, 1996.

[Wri95] W. Wright. Information animation applications in the capital markets.
Proc. Int’l Symp. Information Visualization, pages 19–25, 1995.

[WTPea95] J. A. Wise, J. J. Thomas, K. Pennock, and et al. Visualizing the
non-visual: spatial analysis and interaction with information from text
documents. InfoVis’95, p. 51-58, 1995.

[WvL93] J. J. Wijk and R. D. van Liere. Hyperslice. Proc. Visualization ’93,
pages 119–125, 1993.

[WYR00] M. O. Ward, J. Yang, and E. A. Rundensteiner. Hierarchical explo-
ration of large multivariate data spaces. In Proc. Dagstuhl Seminar on
Scientific Visualization, 2000.

[Yan03] J. Yang. Visual Hierarchical Subspace Indexing (VHSI) for High Di-
mensional Datasets (to be submitted). PhD thesis, Dept. of Computer
Science, Worcester Polytechnic Institute, 2003.

[YPWR03] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner. Interactive
hierarchical dimension ordering, spacing and filtering for exploration of
high dimensional datasets. IEEE Symposium on Information Visual-
ization, October 2003.

[YWR02] J. Yang, M. O. Ward, and E. A. Rundensteiner. Interactive hierarchical
displays: A general framework for visualization and exploration of large
multivariate data sets. Computer and Graphics Journal, 27:256–283,
2002.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data
clustering method for very large databases. SIGMOD Record, vol.25(2),
p. 103-14, June 1996.

86

