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Abstract

Mesh generation is a fundamental precursor to finite element implementations for

solution of partial differential equations in engineering and science. This dissertation

advances the field in three distinct but coupled areas. A robust and fast three dimen-

sional mesh generator for arbitrarily shaped geometries was developed. It deploys

nodes throughout the domain based upon user-specified mesh density requirements.

The system is integer and pixel based which eliminates round off errors, substantial

memory requirements and cpu intensive calculations. Linked, but fully detachable,

to the mesh generation system is a physical boundary recovery routine. Frequently,

the original boundary topology is required for specific boundary condition applica-

tions or multiple material constraints. Historically, this boundary preservation was

not available. An algorithm was developed, refined and optimized that recovers the

original boundaries, internal and external, with fidelity. Finally, a node reposition-

ing algorithm was developed that maximizes the minimum solid angle of tetrahedral

meshes. The highly coveted 2D Delaunay property that maximizes the minimum

interior angle of a triangle mesh does not extend to its 3D counterpart, to maximize

the minimum solid angle of a tetrahedron mesh. As a consequence, 3D Delaunay

created meshes have unacceptable sliver tetrahedral elements albeit composed of 4

high quality triangle sides. These compromised elements are virtually unavoidable

and can foil an otherwise intact mesh. The numerical optimization routine developed

takes any preexisting tetrahedral mesh and repositions the nodes without changing



the mesh topology so that the minimum solid angle of the tetrahedrons is maximized.

The overall quality enhancement of the volume mesh might be small, depending upon

the initial mesh. However, highly distorted elements that create ill-conditioned global

matrices and foil a finite element solver are enhanced significantly.
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Chapter 1

Introduction

Meshes are an indispensable tool in a wide variety of fields ranging from computer

graphics, CAD systems to numerical simulations and partial differential equations.

The work presented in subsequent chapters was motivated by increasing Biomedical

Engineering applications for Finite Element Method (FEM) and the need for robust

and reliable mesh generators. The focus of the effort is restricted to triangular (2D)

and tetrahedral (3D) meshes. These mesh types are dominant element configurations

among the various types of meshes. This chapter briefly illuminates some mesh gen-

eration complications that have plagued the field for years and their resolutions based

on the work presented herein.

1.1 Meshing and its challenges

In order to solve a partial differential equation (PDE) using FEM, the domain of

problem needs to be discretized into smaller regions called elements. Because elements
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have simple shapes relative to the original object, the behavior of a PDE can be

approximated across the simplifed geometry. A FEM system of equations is a linear

combination of these approximations from each element assembled into a large global

matrix. The discretization process or mesh generation can pose more problems than

the rest of numerical simulation process [94]. As a consequence, mesh generation

strategies have been researched extensively over the decades of the FEM solution

methodology.

One very common approach to mesh generation is to first deploy a set of ver-

tices/nodes within the physical domain and then form a topology (or connectivity

list) using the nodes. Within this area of topology formation, Delaunay triangulation

(2D) or tetrahedralization (3D) is the dominant method because of its sound theo-

retical foundations. It is based on the idea of connecting nodes that share an edge in

a Voronoi diagram. A set of given points along with line edges (for 2D) or piecewise

linear complex 1 (for 3D) as the boundary definition is passed to Delaunay algorithms

in order to create the mesh.

1.1.1 Delaunay Tessellation

A triangular mesh is called Delaunay if all the circumcircles2 of the mesh triangles are

empty. An empty circumcircle does not contain any vertex of the mesh. Figure 1.1

shows a set of points and its Delaunay triangulation as well as the empty circumcircles.

The same can be applied for a set of tetrahedrons in 3D. They are Delaunay if and

only if all the circumspheres of the mesh are empty. In both cases the vertices can
1A set of vertices, segments and facets all of which are compromised of planar straight line graphs
2circumbscribed circle: a circle that passes through all vertices of a polygon
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Figure 1.1: (a) Scattered nodes in 2D. (b) Delaunay triangulations of the nodes. None
of the circles shown encloses a node, thus empty circles.

exist on circle or sphere.

1.1.2 Obstacles

In two dimensions, a Delaunay mesh maximizes the minimum angle found over the

entire mesh. This is a very desirable property since small angles in a mesh have been

shown to have negative effects on the outcome of the FEM solutions such as larger

errors in numerical approximations and also impact on the performance of the simula-

tions. These effects are discussed in Chapter 4. Unfortunately, this desirable property

of a Delaunay mesh in two dimensions can not be extended to its 3D counterpart,

i.e. to maximize the minimum solid angle of the mesh. Figure 1.2 shows an example

in which a non-Delaunay formation produces a better and round (Figure1.3) shaped

element. Other forms of compromised tetrahedrons can be generated by Delaunay

3



Figure 1.2: Delaunay tetrahedrons (top) have an almost flat element while a non-
Delaunay mesh produces higher quality elements for this configuration (bottom).

method as shown in Figure 1.3.

A mesh generator is often required to create elements that are in compliance with

the sizing requirements of the underlying governing equation rather than the geometry

of the domain. This situation requires a spatially variable mesh resolution. To achieve

better approximations in FEM or satisfy stability constraints, smaller element sizes

are required in some regions, say, close to boundaries of domain while moving away

from the boundary the size restrictions can be relaxed. One might be tempted to

create a fine resolution mesh all over the domain. However, a variable or graded

resolution mesh saves computer resources (because it deals with fewer elements) and

reduces computational load and time required to solve the FEM problem.
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Round Needle Wedge

Spindle Sliver Cap

Figure 1.3: Different forms of compromised tetrahedral elements compared to the
ideal “Round” tetrahedron.

Frequently, the original input surface (nodes and connectivity) is required to be

part of the final volume mesh. For example when applying a flux across a surface

or material change interface the boundary conditions might be phrased in terms of

surface facets. A numerical formulation that maintains conservation of the physics

requires a consistent mesh. That is, the mating faces from one element to another

(or across a boundary interface) must match identically. Delaunay triangulation or

tessellation guarantees a consistent mesh within the interior. However, it does not

preserve the original boundary edges (2D) or faces (3D) in the final mesh. Figure

1.4 is a 2D example of this caveat in a non-constrained Delaunay. The mesh in

the middle is missing some of boundary segments that delineate the domain of the

problem. These segments can be recovered using a constrained Delaunay which does

not split the segments as oppose to conforming Delaunay. However, an algorithm to

ensure a constrained mesh in 3D has been sorely lacking.

After a mesh generator is done and the location of all the nodes are determined, one

might be able to improve the quality of mesh by using some type of smoothing method

or optimization of node locations based on a given objective function. Generally these

methods do not alter the topology of the mesh rather they attempt to reposition the

5



(a) Original boundary (b) Delaunay triangulation (c) Constrained Delaunay

Figure 1.4: (a) A 2D boundary defined by line segments. (b) Delaunay triangulation
of the domain. (c) constrained Delaunay triangulation preserving all input segments
with fidelity.

nodes to improve the quality of the neighboring elements. These methods prove to

be more useful in 3D than 2D since there are more possibilities to form undesirable

elements[34].

Last but not the least concern is round off errors of floating-point calculations

involved in all numerical methods. Result inaccuracies can exist for any procedure

that operates on floating-point numbers but geometrical algorithms are especially

vulnerable. A typical numerical algorithm properly framed will keep the round off

inaccuracies within the noise of the system. However, a geometrical algorithm to

determine if 3 straight lines intersect at the same location can fail due to these round

off errors.
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1.2 Dissertation advances

The goal of this research is to offer better solutions to the issues mentioned in 1.1.2.

The next 3 chapters each deal with one dilemma previously mentioned in tetrahedral

mesh generation:

1. Node deployment and grading mesh generation,

2. Boundary recovery and sliver removal,

3. Mesh smoothing and optimization.

Each chapter reviews the current state of the art and related work in literature and

offers an extension to it. At the end of each chapter results and examples are provided

to better demonstrate the algorithms.

Chapter 2 deals with a mesh generator that provides the user with a great deal of

flexibility in sizing the mesh element. Grid generation and domain discretization for

Finite Element applications are usually done based upon three general methods: “node

placement and connection”, “domain decomposition” and “mesh-template mapping” or

a combination of these methods. In this chapter a method is proposed that combines

all above methods by using a template matrix overlaid on domain of interest. The

template overlay is used to guide node placement within the domain. The advantage

of using a grid is substantial. It eliminates error-prone floating-point calculations

and avoids expensive exact geometric computations. The proposed method can be

considered a fusion between octree technique and offsetting/advancing front method

without the extensive processing of working fronts.
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In Chapter 3, I deal with element quality and boundary recovery problems. Nu-

merous high-quality, volume mesh-generation systems exist. However, no strategy can

address all geometry situations without some element qualities being compromised.

Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which

frequently fails to preserve the input boundary surface topology. For biomedical ap-

plications, this surface preservation can be critical as they usually contain multiple

material regions of interest coherently connected. In this chapter I present an algo-

rithm as a post-processing method that optimizes local regions of compromised ele-

ment quality and recovers the original boundary surface facets (triangles) regardless of

the original mesh generation strategy. The algorithm carves out a small sub-volume in

the vicinity of the missing boundary facet or compromised element, creating a cavity.

If the task is to recover a surface boundary facet, a natural exit hole in the cavity will

be present. This hole is patched with the missing boundary surface face first followed

by other patches to seal the cavity. If the task was to improve a compromised region,

then the cavity is already sealed. Every triangular facet of the cavity shell is classified

as an active face and can be connected to another shell node creating a tetrahedron.

In the process the base of the tetrahedron is removed from the active face list and

potentially 3 new active faces are created. This methodology is the underpinnings of

our last resort method. Each active face can be viewed as the trunk of a tree. An

exhaustive breath and depth search will identify all possible tetrahedral combinations

to uniquely fill the cavity. We have streamlined this recursive process reducing the

time complexity by orders of magnitude. The original surface boundaries (internal

and external) are fully restored and the quality of compromised regions improved.
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In Chapter 4, I propose a method that optimizes the quality of any tetrahedral

mesh regardless of element generation method. It extends the most sought 2D De-

launay property to 3D, i.e. maximizing the minimum solid angle. The algorithm

identifies an interior node and an associated sub-volume of the mesh. It moves the

interior node in a direction to maximize the minimum solid angle. The process of

node and sub-volume identification is done iteratively until no further solid angle im-

provement is possible. The proposed method has the option of altering the boundary

nodes of the mesh in a bid to maximize the optimization. If this option is chosen, it

moves the boundary nodes only in a tangential direction, i.e. they simulate a sliding

motion on the triangular facets of the original surface boundary. The results show the

low quality or sliver elements improve dramatically which can make all the difference

between a numerically sound mesh and one that foils a solver.
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Chapter 2

Template Based Node Deployment

2.1 Background

The finite element method contributes significantly to advances associated with the

coupling of engineering and the life sciences [46, 13, 45, 85, 118]. Numerous approaches

have been proposed and developed for mesh generation (structured or unstructured)

during past twenty five years. The techniques being widely used include advancing

front approaches [38, 69, 50], Delaunay triangulations [90, 107, 40, 84], quad-tree

techniques [79, 110, 73] and sphere packing [67, 102]. It is noteworthy to mention that

these classifications consist of other sub-processes that can be shared by mentioned

methods. Most important of which are node placement and connection; domain

decomposition and mesh-template mapping [48].

In quad-tree methods, a cube grid containing the object to be discretized is recur-

sively subdivided until a desired resolution is reached after which nonuniform elements
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are created at the intersection of the partitioned cubes and the boundary[119]. How-

ever, this category does not preserve the input boundary. It uses the input boundary

to define the limits of the domain. It can also require a remarkable number of in-

tersection operations depending upon mesh density. Another variation of grid-based

approaches is creating a fitted mesh of elements into the volume with elements added

at the boundary to fill the gaps of regular grid [88]. This method, while being robust,

can create low quality elements at the boundary due to difficulties in filling the gaps

between the boundary and the grid[78].

Delaunay triangulation/tetrahedralization is used extensively in numerous mesh

generation strategies for practical engineering applications[113, 102, 57, 40]. A crite-

rion frequently associated with the 3D Delaunay method is the “empty sphere” which

states that no circumsphere of any tetrahedron in the mesh should contain any nodes

of the mesh. The work of Lawson[58] and Watson[111] initiated the popularity of

this method although it was known for many years[23]. In most implementations of

Delaunay triangulation, there is no guarantee that all original boundary segments

will be present in the final mesh triangulation. It should be noted that Delaunay

method provides an algorithm to form topology of the mesh using existing nodes and

does not supply any measure to position the nodes. Therefore it has been combined

with various techniques to generate the nodes. Work done by Weatherill[114] used

the centroid of the tetrahedrons to place nodes. Other methods [24] extend the work

of Chew[19] and Ruppert [86] and used centers of circumsphere to place new nodes

which can create meshes with guaranteed bound on angles in the mesh.

A major issue in Delaunay method is related to preserving the original topology
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that defined the domain of interest. This lack of conformity was addressed by multiple

researchers. Weatherill[114] demonstrated how edge swapping can help recover some

of the initial boundary segments. George et. al. [43, 9] extended this work to recover

boundary edges and faces for a three-dimensional tetrahedral mesh. However, they

inevitably introduced new nodes and facets that altered the original boundary surface.

We recently presented [44] a new approach to the problem in which local topological

transformations were performed to recover original boundary features. The method

does not introduce new nodes to the mesh and restores the original surface topology

with fidelity. If desired, this strategy can be used exhaustively to examine all possible

formations to find an optimum solution.

Advancing front approach was first proposed by Lo[65, 66] and Lohner[68] and was

later modified for the generation of quadrilaterals and extended into three-dimensions,

surface meshing and other applications. In this method, the elements are built pro-

gressively inward from the triangulated facets of the boundary. For every existing

facet the location of a new 4th node is calculated to form a quality element. As ele-

ments are formed new sets (layers) of triangulated facets are introduced. This front

layer keeps advancing toward interior of the domain as the algorithm fills it with

elements. Along similar lines the normal offset strategy by Johnston and Sullivan

deployed interior nodes based upon well shaped interior layers[54]. These methods

require multiple intersection and enclosure tests, especially when it comes to opposing

layers approaching each other, to ensure the integrity of the final mesh.

The sphere/circle packing technique is a node placement tool in domain of interest

which also utilizes an element generation method, such as Delaunay. Given a domain
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geometry and a node-spacing function, spheres are packed on geometry simplexes

such as vertices, edges and faces. The interior nodes will then be placed in the center

of spheres [101]. Different variations of this method have evolved during past years.

Bern et al. [7] and Eppstein[29] triangulated a n-vertex polygonal region (with holes)

by packing circles of different radii so that the angle was bounded by π
2
. Li et al.

combined this method with advancing front strategies.

One of the challenges for mesh generation algorithms is robustness for multiple

situations. Frequently, a cumbersome geometry can foil an otherwise solid algo-

rithm. Large scale problems can be compromised by floating-point round-off opera-

tions which are a consequence of the numerical geometry calculations[49]. There are

methods[92] proposed that guarantee this robustness for some geometrical predicate

operations, however they are not inclusive of all geometries nor physics based con-

straints. Frequently, the element size requirements are imposed by the application

physics or user specified constraints, rather than geometry considerations.

2.1.1 Proposed method

Generating a quality mesh that provides accurate numerical results is fundamental for

FEM analysis. In this paper, we propose a robust 3D mesh generation strategy that

creates quality meshes. Starting with a boundary that defines the problem domain,

we overlay the entire volume with a uniform grid of voxels whose spacing is a function

of the finest desired resolution which is frequently related to the minimum edge size

in the boundary surface. Initially, one might fear the memory requirements of such

a dense deployment. However, this grid is pixel or integer based. Further, each

13



storage voxel requires less than 1 Byte. Consequently, the uniform grid deployment

requires significantly less memory than the final tetrahedral mesh. The voxel overlay

is mainly used to guide node placement within our algorithm. The advantage of using

a grid is that we do not have to deal with floating-point calculations and performing

numerical geometry operations and tests. Further moving around the domain is

simple and robust. Initial physical boundary nodes are identified in the overlaid grid

and they are used as seeds to determine the location of other interior nodes. While

the algorithm moves away from the boundary into the domain interior, it maintains

the desired element size (spatially dependent) while placing new nodes.

2.2 Methodology

Determining the node locations to ensure appropriate resolution throughout the vol-

ume is an important step of mesh generation. In the process, two factors need to be

addressed: desired mesh density at a given location and quality of the elements to

be formed. Using a 3D template matrix, described in section 2.3, we streamline the

process of node deployment in order to satisfy these requirements. The main steps of

the algorithm can be defined as follows:

1. Read in the surface mesh that defines the volume of interest.

2. Create a template matrix enclosing the entire domain.

3. Identify the template matrix pixels corresponding to initial boundary nodes.

4. Based on density requirements, traverse pixels of template matrix and mark
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Figure 2.1: General flowchart of mesh generation method.

them as interior vertex locations.

5. Using set of initial boundary nodes and interior nodes, create a tetrahedral mesh

using Delaunay method.

6. Apply necessary post processing and clean-up operations.

Figure 2.1 shows a flowchart of these steps.

2.3 Algorithm

Essentially, we “pixelize” the domain of interest, i.e. saturate the bounding box of the

region to be meshed by a grid of pixels or voxels. This strategy provides a fast and

15



clean access to the domain and to the necessary operations in order to appropriately

deploy spatially dependent nodes. The spacing between deployed nodes is governed

by a user-defined density function. The grid of voxels is a template that envelopes

the domain of interest in a matrix format. Each pixel can be identified by 3 integer

numbers representing the indices of the aforementioned matrix in 3D. Depending on

the mesh sizing function, pixels in proximity of initial boundary nodes are tagged as

unavailable. That is, a buffer zone about each physical boundary node is established.

The extent of the zone is spatially dependent. All unprocessed pixels within that zone

are tagged as unavailable. The algorithm advances inward from the boundary. When

an unprocessed pixel is encountered, a node location is tagged. The mesh density at

that pixel location is determined and a buffer zone about this node-tagged pixel is

established. The process continues until there are no unprocessed pixels. This inward

direction motion is similar in spirit to an advancing front[66], paving[14, 8], or offset

normal strategy[54]. However, no processing of working surfaces or partial meshes

are required. This node deployment strategy is robust and fast. Once all pixels are

processed nodes are created at the node-tagged pixel locations. The 3D matrix grid is

removed from memory. The resultant nodes have adjacent neighbors spaced according

to the user-specified mesh density. The nodes are passed to a 3D Delaunay routine

with tetrahedrons returned. A simple centroid check of the tetrahedrons eliminates

most elements external to the physical boundary. Finally, the mesh is passed to our

last resort algorithm[44] to recover all original physical boundary surfaces.
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2.3.1 Description

As mentioned previously, performing basic geometrical predicates on floating-point

variables introduces round-off errors as well as heavy loads on the CPU. One of the

main objectives of using a template matrix is to avoid such complications. Mapping

all the nodes, including boundary nodes, of the domain to three integer values helps us

achieve the objectives. Figure 2.2 shows a sample 2D template matrix overlapped on a

given boundary. The spacing dx, between voxels or pixels of the template is calculated

based on the minimum desired edge size and the resolution of the template. The

resolution basically defines how many voxels should represent the minimum desired

length. For the examples presented in this work our resolution was set at 2.

dx =
minimum edge size

resolution
(2.1)

The size of the template is obtained based on the bounding box of the domain to

be meshed.

Nrow = ceil(Xmax −Xmin) + 2

Ncol = ceil(Ymax − Ymin) + 2 (2.2)

Npln = ceil(Zmax − Zmin) + 2

Adding +2 to the size of matrix ensures that the entire domain is engulfed by the

template P which is a 3D matrix of size P (Nrow, Ncol, Npln). Before proceeding fur-
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Figure 2.2: A template grid overlaid on a 2D domain

ther, we temporarily perturb the coordinates of boundary nodes in all three directions

by a very small amount to ensure that the coordinates are not integer multiples of the

pixel spacing. This infinitesimal node offset eliminates point-in-polyhedron inclusion

tests issues. We use an extension of Jordan Curve Theorem[55] to 3D in order to

determine interior/exterior status of placed points for the element formation process.

Using Jordan’s method, we cast a ray along a pixel line and count the number of

crossings it has with the boundary of domain. Therefore, this method is heavily de-

pendent on ray-triangle intersection algorithms such as Moller’s [74]. To implement

this algorithm in a robust manner, singularity and ray-triangle special intersection

cases need to be avoided. If a ray intersects a given triangle within the area bounded

by it (but not on the perimeter), the intersection is a valid one to be considered in

Jordan Curve theorem. Otherwise it can not be determined if a valid crossing of ray
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through boundary has occurred. However, we can use the following lemma to account

for intersections along a boundary edge, but not at an edge vertex.

Lemma 1. Assume ψ is a closed oriented triangulated surface and ρ is a cast ray

intersecting at least one of the edges of ψ. The ray ρ is said to be crossing the domain

bounded by ψ if both normal vectors of triangles sharing the crossed edge oppose OR

follow the direction of ρ, i.e:

(−→ρ .−→n1) (−→ρ .−→n2) > 0 (2.3)

where −→n1 and −→n2 are the normal vectors of the two triangles.

Recall that we perturbed boundary nodes such that they were not integer multiples

of the pixel spacing. Therefore, the ray will not intersect boundary vertices. It

is necessary to emphasize that the perturbation process is independent of how our

algorithm handles the template and it will not affect interior node deployment process.

For every boundary node p(x, y, z) we make sure that the following inequality does

not hold true in all three directions:

|mod(x−Xmin, dx)| < ε (2.4)

If it does hold true then the value of x is slightly perturbed using:

x :=x+ ε · rand() (2.5)

In equations (2.4) and (2.5) mod() is the remainder function, ε is a tiny value and
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Figure 2.3: Flowchart of perturbing the initial boundary nodes in 3 directions

rand() is a random number generator function between 0 and 1. Figure 2.3 shows

the flowchart for the above step.

Given that the domain of interest is enclosed by a triangulated surface mesh, we

can identify the pixels that are closest to each boundary node and tag them as such.

This can be done without using any “nearest-point-search” algorithm which would

require floating-point calculations:
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Figure 2.4: Finding closest pixel to each boundary node.

XI = round(x−Xmin)/dx+ 2

Y I = round(y − Ymin)/dx+ 2 (2.6)

ZI = round(z − Zmin)/dx+ 2

Set of equations in 2.6 provide a fast mapping function to access p(x, y, z) by

reading the content of P (XI, Y I, ZI), Figure 2.4.

Based on the density requirements of the final mesh, there is an optimum dis-

tance from each boundary node that no other node can occupy. The distance can

be acquired either by the user-provided density function or calculated based on the

size of the triangles in the neighborhood of the boundary node in question. The
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algorithm translates this distance in terms of number of pixels and accordingly all

the surrounding unprocessed pixels of P (XI, Y I, ZI) within the given reach would

be tagged as ’non-usable’ or buffer. We refer to that set of voxels as the buffer zone

of P (XI, Y I, ZI).

This process is repeated for all boundary nodes to establish a base layer of nodes

that the rest of the mesh will be built upon. One can envision scenarios in which

buffer zones of the 3 vertices of a triangle do not fully cover the span of the surface

triangle. This happens when the size of initial triangle is much larger than that of the

user-defined density requirements for the three vertices that define the triangle. In

those cases, the buffer zone of the 3 vertices does not completely enclose the area of

the triangle and “buffer holes” could exist. As stated in 2.3, algorithm places a node

as soon as an unallocated pixel is available; thus these type of boundary triangles are

susceptible to having nodes very close to their surfaces. To avoid this situation the

following measures are taken for all the boundary facets.

Illustrated in 2D for simplicity reasons, Figure 2.5(a) shows a boundary simplex

(an edge) with its nodes N1 and N2. The length of the boundary edge is greater

than R1 +R2. Consequently, the buffer zones from two nodes do not cover the entire

length of the edge which leaves a hole in the buffer. To resolve this issue, each end

of the boundary edge is extended according to local density size and an area in 2D

(a volume in 3D) is extruded. All the unallocated pixels within the enclosed region

are tagged as buffer ensuring this edge (or surface) is sealed, Figure 2.5(b). Fig 2.6

shows a 2D boundary example whose boundary nodes are mapped to matrix world

P and their buffer zone is established but contains some buffer holes.
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Figure 2.5: (top) 2D Example of a “hole” in the boundary buffer zone. (bottom)
Vertex-dependent extended buffer zone of the boundary simplex N1N2

Buffer Hole
Nodes very close to boundary could
be created in thinning buffer zones

Figure 2.6: Issues related to boundary buffer zone if it were solely based on each
single vertex.
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(a) (b)

Figure 2.7: 3D Prism construction: (a) Non-uniform scale of the boundary facet (b)
Construction of prism using the scaled facet as the mid-plane.

The same can be applied in 3D. Every boundary triangle associated with a buffer

hole is non-uniformly scaled with respect to center of incircle with a scale factor of

di where di is the desired edge size at triangle’s vertex i. Figure 2.7(a) shows an

expanded triangle in which vertex C ′ is obtained by:

−−→
OC ′ =

(
1 +

dC
‖OC‖

)−→
OC (2.7)

After expansion, an imaginary prism-like enclosure is constructed around the facet

using the triangle as the mid-plane of the prism, Figure 2.7(b). The axis of the prism

is along the normal of the facet. The extrusion height of the prism on either side of

the facet is again based on di, Figure 2.7(b). All unallocated pixels trapped within

the prism are tagged as buffer zone which seals any potential buffer holes. This step

ensures that no interior nodes are created in immediate vicinity of the boundary

facets. Figure 2.8 shows the state of the template after this step.

Having the boundary buffer zone completely sealed prevents node creation closer
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Boundary buffer
zone
Node

Imaginary prism/rectangle constructed
around each boundary element

Figure 2.8: Sealing the boundary buffer using constructed prisms.

than required edge sizes in the final mesh. At this stage, all the pixels of the template

are traversed and their status is checked. If a pixel is either a buffer pixel or a node-

tagged pixel of any sort (boundary node or interior node) it is skipped. Otherwise, as

soon as an available pixel, ρi,j,k, is encountered , it is tagged as a node location and

its neighbor voxels N are defined as buffer zone.

N = {v |v ∈ P, ‖v − ρi,j,k‖ ≤ dlocal} (2.8)

where dlocal is the desired edges size at the current location (i, j, k). Note that

‖ ‖ operator measures the distance between two points by simply counting how many

pixels separate them in all 3 directions; therefore no squaring or square root calcu-

lations are performed. If any member,vi, of N is identified as a node, as oppose to

buffer zone or unprocessed pixel, its status will not be altered. This can happen when

the local density requirement of ρi,j,k is coarser than that of vi. By not toggling the
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status of vi the algorithm is essentially favoring a denser element formation over a

coarser one, Figure 2.9.

After all the pixels of P are examined and tagged either as “possible node” or

“buffer zone”, the algorithm calculates the actual coordinates of the pixels that were

tagged as potential interior nodes:

Nodeint.(x, y, z) =


(i− 2) · dx+Xmin

(j − 2) · dx+ Ymin

(k − 2) · dx+ Zmin

 (2.9)

The above set of nodes can potentially contain locations that are outside the

original physical boundary and will be removed, Figure 2.9(b). The Jordan method is

used to perform point in polyhedron inclusion test for all nodes created as described

in section 2.3.1. Note that since we have perturbed the original boundary nodes,

it is not possible for the ray to intersect a triangle exactly at one of its vertices

and therefore Lemma 1 can be used. After this step, all the interior nodes along

with original boundary nodes are passed to the tetrahedral element formation using

Delaunay method, Figure 2.10.

As discussed in [44] there are different implementations of the Delaunay algorithm

but all share some common characteristics:

• The final mesh is the convex hull of input domain boundary.

• Original boundary facets are not preserved in the tetrahedral mesh

• There can exist some poor quality tetrahedrons in the mesh.
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Interior node and its buffer

(a)

Some of vertex!tagged pixels can be exterior to the boundary.

(b)

Figure 2.9: Placing the nodes in blank template locations: (a) Finding the first empty
pixel and creating a node. (b) Covering the entire domain using empty pixels.
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Figure 2.10: Final result of placing nodes in a 2D example

We addressed the last two items in the previous paper by performing local topology

transformations without introducing new nodes to the mesh. The algorithm carves

out small dents in missing facets regions and fills them with a new sub-mesh recovering

the face. For cleaning the convex hull in the final mesh, the algorithms flags all the

tetrahedral elements that at least two of their vertices is a boundary vertex. If the

centroid of the examined element fails the inclusion test that tetrahedron will be

erased from the database.

2.4 Results & Discussion

We used the algorithm to create meshes for human brain and breast models. Both

input boundary surfaces were constructed from segmented two dimensional MR scans

of the organs using multiple material marching cube M3C[116]. As outlined in Figure

2.1, boundary recovery and cleaning processes were performed on all examples. For
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Figure 2.11: A simple algorithm to utilize this mesh generator in multiple material
region scenarios.

complete clarity of the mesh generation details, all the illustrated examples are for

single material volumes. However, our algorithm can be easily used to create meshes

for various regions with different material ID and then concatenated to form the fi-

nal mesh with minimal effort since the physical boundary faces separating different

regions are restored with fidelity, as shown in Figure 2.11. The algorithm was im-

plemented in MATLAB (a strong development environment albeit with compromised

execution performance) and was run on a machine with Mac OSX 10.5 as the op-

erating system with a 2.8GhZ Intel Core Duo CPU and 2GB of DDR2 RAM. The

relationship between time required to generate a mesh and number of final tetrahe-

dron is of O(n), Figure 2.16.
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Figure 2.12: Surface depiction of white and great matter of human brain. It was
constructed using a marching cube algorithm on Harvard brain repository. A cross
section of the generated solid mesh is also shown.

2.4.1 Human Brain

Figure 2.12 shows multiple slices of a human brain MR image volume which is pub-

licly available from Harvard Brain Segmentation Repository[16]. A segmented volume

set for white and grey matter was also provided at the Harvard Brain Segmentation

Repository. A boundary mesh was reconstructed from these 2D medical image slices

using M3C. The surface mesh contained 22,964 surface triangles and 11,476 nodes.

The final volume mesh retained all physical surfaces and contained 250,416 tetrahe-

dral elements. The cutout view of Figure 2.12 demonstrates the interior tetrahedral

elements and their intersection with profiling planes.

Another human brain [51] input surface was constructed using the M3C code is

shown in Figure 2.13. This mesh was generated using a 17,312-face surface mesh

which resulted in a solid mesh with 199,129 tetrahedron and 35,686 vertices.
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Figure 2.13: A human brain meshed using proposed template-based algorithm.

2.4.2 Human Breast

Using data from Dartmouth College’s Alternative Breast Imaging project, a human

breast surface mesh was constructed. The needle-type spikes or serrated dents seen

in Figure 2.14 is result of imaging probes pressing on breast tissue and deforming it,

Figure 2.15. The probes were used to receive and transmit near infrared (NIR) waves

[117]. The triangulated surface mesh for this model has 9,864 faces and 3,014 nodes.

The final solid mesh contained 29,719 tetrahedral elements.
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Figure 2.14: Solid mesh of a human breast constructed from 2D images obtained from
Alternative Breast Imaging Techniques.

Figure 2.15: Apparatus used in Near Infrared imaging of the breast. The spikes on
the exterior of the breast mesh in Figure 2.14 are caused by the transreceivers on the
ring.
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Figure 2.16: CPU-time and number of generated elements are linearly proportional.

2.4.3 Timing and comparison

Table 2.1 shows the performance of the proposed algorithm prototyped in Matlab.

Given the slower performance of Matlab versus a high level language such as Fortran

or C/C++, the timings shown in the table are extremely superior to the timings of

spmesh method, a utility which is being used by researchers in Dartmouth College

to produce high quality, multiple material tetrahedral meshes. spmesh partitions the

input domain using skewed bricks and then extracts tetrahedral elements based on

desried sizing requirements. It is also capable of performing multi level refinements.

This creates almost perfect tetrahedrons inside the domain. To achieve the same

quality adjacent to boundary, spmesh tries to morph the elements to conform to the

boundary, which results in a mesh that is not fully constrained and at times sharp

corners are rounded.

An accurate comparison would have been possible if both algorithms were im-
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Time (min) # of tetrahedrons Template memory in kByte
Brain 1 4:30 250,416 1,107.30
Brain 2 3:00 199,129 953.07
Breast 0:35 29,719 140.15

Table 2.1: Performance of mesh generator algorithm versus number of tetrahedrons.

plemented in the same platform. In order to demonstrate the performance of our

algorithm a rough comparison was made by running the spmesh on breast model. It

took spmesh about 12:00 minutes to create the same size mesh while our algorithm

generated the mesh in 00:35 seconds.

On the other hand the memory footprint of our algorithm is minimal. The tem-

plate matrix overlaid on domain can be stored in memory by saving multiple pixels

information in a single byte, although our implementations uses one byte of memory

for each pixel. Table 2.1 shows the memory used by our implementation to generate

meshes in previous sections. It is obvious that template matrix memory can be re-

leased as soon as all the pixels are processed and tagged, and it is not needed for the

topology formation.

The template based algorithm proposed in this chapter lays the foundation for

creating tetrahedral meshes for complex biological models with great user control

over sizing of the mesh. The mesh created by Delaunay method using the deployed

nodes by this algorithm is ready for consequent post processing steps, which can

include optimizing the mesh quality or recovery of original input geometry, if required.

Majority of elements created using the proposed method have high quality and the
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only type of compromised element present in the mesh is sliver tetrahedron (see Figure

1.3) which is result of Delaunay method. The mentioned post processing steps are

not unique to our algorithm. Therefore in next chapter we introduce a new approach

to recovery original input geometry and remove the sliver elements.
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Chapter 3

Boundary Recovery using last

resort

3.1 Introduction

Finite element method is a versatile tool that tackles various problems in multiple

engineering fields such as structure design, Bioengineering, MEMS and Nanoscience

[13, 45, 46, 85, 118]. Discretizing the domain of the problem is an essential step

to FE method. Adaptive problem solving strategies frequently require automated

(re)generation and modification of the mesh in order to optimize various parameters in

the problem and solution. For productivity reasons a fully automated mesh generator

is a must [91], and historically, problems encountered in the mesh regeneration process

are far more difficult than the rest of simulation process [94].

Post-processing a mesh is often a necessary step to ensure element quality. This
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stage is paramount to success of applications using the mesh. Each mesh can be

examined for various quality measures such as element shape measures (minimum

solid angle, radius ratio ρ and gamma coefficient γ [63]), regularity measures [21]

and insphere deformation [60]. The accuracy and outcome of FE solutions rely on

the quality of the mesh. For example dihedral angles of a tetrahedron in a mesh

can have significant impacts on either precision of computations or the conditions of

the stiffness matrix [31, 99]. Frequently, a finite element implementation requires the

mesh to preserve the original defining boundary topology. This requirement is critical

for adaptive remeshing of a sub-volume, or a multiple material volume coherently

connected [97].

Delaunay triangulation is a favored approach in creating 2D meshes due to its

inherent properties. For example, Delaunay triangulation tends to create well-shaped

elements by maximizing the minimum interior angle over the domain [105]. The

elements are also suitable for use in interpolation [99, 106] as well as refinement

methods that can help generate meshes with provably good properties [25, 72, 27, 95].

The highly successful 2D Delaunay mesh generation strategies provided strong

momentum for a 3D extension. Delaunay tetrahedralization has been used in [90]

to simulate respiratory gating which helps diagnosticians overcome problems with

artifacts in SPECT imaging method due to breathing motion. Sullivan and Zhang

simulated 3D contaminant and fate transport of benzene for groundwater flow situ-

ations experiencing semi-discontinuous permafrost [107]. Quad-tree [119], Delaunay

triangulation, advancing front [65] and sphere packing [101] are most common meth-

ods of mesh creation, out of which Delaunay is being used widely for establishing the
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connectivity [64, 114, 10, 93, 112, 4, 67, 9]. Unfortunately Delaunay tetrahedraliza-

tion lacks several of the inherent qualities noted in the 2D triangulation. 2D Delaunay

maximizes the minimum angle in the triangulation [58], minimizes the largest circum-

circle and minimizes the largest min-containment circle1[22]. Unfortunately the first

two properties can not be extended to higher dimensions, albeit the last one is proved

to be a general property of Delaunay triangulations [82]. Additionally, 3D Delaunay

triangulation does not always exist for every polyhedron [89] whereas all 2D polygons

have a Delaunay triangulation.

Delaunay tetrahedralization can have undesirable side effects: poor quality el-

ements and missing input boundaries. Different approaches have been developed

to address these issues including introduction of new vertices at the centroids or

the center of circumcircle of problematic elements or using advancing front methods

[39, 66, 113]. Another significant difference is that in 2D the edge elements are pre-

served in the triangular mesh provided a constrained Delaunay was used. However, in

3D the triangular surfaces are not always guaranteed even if a constrained Delaunay

is used [100]. This situation can raise problems for FEM applications. For instance,

maintaining simplexes of the boundary is necessary for applying boundary conditions

imposed by the application. Similarly, respecting the interface between two biolog-

ical tissues with different diffusion coefficients, when solving a material propagation

problem, is required.

Post-processing or clean-up of a mesh generally falls into two categories: smooth-

ing and topological optimizations [78]. The former is relocating one or more nodes
1Min-containment circle of a triangle is the smallest circle that contains it and is not necessarily

its circumcircle
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in order to increase quality measures, while the latter is changing the connectivity of

the nodes in order to form better elements. During last two decades, extensive work

has advanced these post-processing tools significantly. [6, 34, 83, 41]

However, recovery of the original physical boundaries (internal and external) has

remained illusive. This paper presents a successful strategy to recover all physical

boundaries regardless of the original technique used to create the mesh. A natural

underlying mechanism within this approach is the optimization of element qualities

in the vicinity. This latter feature can be applied throughout the mesh.

3.2 Existing Approaches

As mentioned previously, boundary recovery is necessary for meshes created by De-

launay tetrahedralization and it can be difficult for certain domain boundaries [97].

Studies and research on boundary recovery mainly use two strategies in order to mit-

igate the problem: (a) Breaking up input boundary constraints and (b) a series of

edge and face swaps/flips. In general there are three different approaches: conforming

Delaunay, almost Delaunay and constrained Delaunay tetrahedralization [97].

• Conforming Delaunay

Conforming Delaunay has been presented in several works as a technique to recover

the physical boundary topology [76, 20, 43]. In this method additional vertices are

introduced to the mesh. The methods differ based on the interior node insertions

locations and criterion to minimize the number of point insertions. These strategies do

maintain the Delaunay property of empty circumspheres. Upon successful completion
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of this procedure, the boundary facets are basically subdivided into several smaller

ones. That is, the original surface facets have been subdivided. Consequently, they are

not suitable for remeshing a sub-region of a domain. Additionally, these algorithms

can create extremely small tetrahedrons. Liu shows some cases that fail the above

method [59].

• Almost Delaunay

Several researchers retrieve the domain boundary by inserting additional points wher-

ever a face of the mesh intersects a missing segment or an edge of the triangulation

intersects a missing facet [47, 42, 114]. Again the faces are recovered as a union of

smaller faces. If the input physical boundary was defined as a polygon and not nec-

essarily as a single triangle, this technique is valuable. However, it still produces an

inconsistent mesh if the recovery of the boundary was an interior boundary. Within

this category two investigations have developed strategies to recover the boundary

without introducing new nodes. Originally, Wu developed the first ’Last Resort’

code in 2001 [115]. The system could recover the original boundaries, but the time

complexities were considerable. Recently, a small polyhedron reconnection (SPR) op-

eration was presented that reconstructs the original input boundary without adding

new nodes [61]. This sphere-packing method packs spheres based on a mesh sizing

function. Selection of this sizing function is important for their algorithm to work

well. In this category ’Almost Delaunay’, the Delaunay property is not fully preserved.

The elements are split such that they introduce new vertices without removing ex-

isting faces and edges of the domain boundary. Although this method does not fully

maintain Delaunay property, it is very common in practical applications.
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Figure 3.1: Typical connectivity transformations involving 2 to 4 elements.

• Constrained Delaunay tetrahedralization

In this method, after creating Delaunay tetrahedralization of the input vertices, which

usually creates a convex hull encompassing the domain, the missing edges of the

boundary are identified and new vertices are inserted to recover them. At this point

the Delaunay tetrahedrons are replaced by constrained Delaunay tetrahedrons which

recovers the missing faces. Usually these algorithms first generate a constrained

triangulation of input boundary using different methods such as [19]. Then either

a gift wrapping algorithm, sweep algorithm or incremental face insertion is used to

construct constrained Delaunay tetrahedrons [96, 97, 108].

3.3 Algorithm

We present a different approach that does not involve introducing new vertices to the

mesh. It is purely based on altering the topology in a limited section of the mesh. As

stated previously, there are works that include changing the connectivity of the nodes

in order to recover the boundary edges and/or faces [114, 26, 47]. Those methods
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usually limit the alterations to edge swaps involving the missing physical face. For

instance, Figure 3.1 shows common topological transformations involving edge flips.

Some techniques insert new points to the mesh to force a different mesh configura-

tion as a means of recovering the original physical face [76, 43], but frequently, this

produces a composite surface and is not suitable for interior boundary recoveries.

Our corrective approach is an edge/face swap strategy that expands the number of

tetrahedrons traditionally involved in the connectivity alteration process. This fea-

ture results in multiple configuration options to recover the physical boundary facets

simultaneous with an improved quality mesh in that particular region.

Our strategy carves out a cavity, caps the surface with the previously missing

physical faces, if necessary, and subsequently fills the void with tetrahedrons. It is

based on a fully exhaustive branching algorithm, hence dubbed last resort [115].

However, several algorithm improvements as well as performance optimizations have

reduced the search time by orders of magnitude. Consequently, the last resort

post-processing strategy is a practical plug-in for most mesh generation systems.

Since all the possible topological configurations are examined, we not only recover

missing physical boundaries but also have the potential to improve element qualities

in the vicinity.

The next section delineates the last resort algorithm followed by its use to

recover missing physical boundaries.
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3.3.1 Last Resort

Modifying a sub-volume of a mesh is always in high demand as a post-processing

stage. It can be used to recover original boundary topologies of a domain or help

improve the quality of a mesh. A few degenerate elements, in an otherwise quality

mesh, can compromise the reliability and accuracy of FEM results. Re-meshing just

a sub-volume of that mesh can avoid repeating the entire meshing process and save

computational resources. The last resort algorithm performs this task. Consider

an interior element of compromised quality. The routine identifies the element, deletes

it, and all neighboring tetrahedrons that share a common node. This carved out sub-

volume creates a cavity that is closed. Each cavity shell triangle is considered an

active surface initially. The system considers all possible tetrahedrons that can be

formed using an active cavity shell facet and selects the best one based on a quality

criterion. This tetrahedron will, at minimum, retire one of the original boundary’s

facets and potentially introduce three new active shell faces. This iterative process

continues until the sub-volume is filled with consistent, conforming tetrahedrons.

Simply searching for the optimal solution using this method is inefficient. If we

assume every N face can produce N − 1 elements at every level, then the number of

possible solutions to be tested is in the order of O(N !). In following section we will

show how to drastically improve the efficiency of algorithm by intelligently choosing

which route to take in order to obtain an optimal solution in less time and make the

algorithm a practical approach for mesh improvement problems.
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3.3.1.1 Description

We describe the algorithm for a 3D case but the example illustrations are in 2D for

clarity purposes. Assume a part of a mesh contains a low quality element q ≤ ηe,

Figure 3.2(a). We create a closed cavity by removing the low quality element (marked

as X) and its surrounding elements (marked as Y), Figure 3.2(b). In 3D counterpart,

this will be a closed surface, Ψi. The algorithm continues with the boundary surface

enclosing the sub-domain to be meshed. This boundary can also include scattered

interior points which will be used in the meshing process. All the entities of the

closed cavity are considered active 3D faces (2D edges) or nodes (Figure 3.2(c)).

Assume a boundary surface of Nf faces and Nscattered interior scattered points or

n = Nf +Nscattered total nodes. Given that there exists n points in the original cavity,

we can form mi different tetrahedrons using face Fi(1 ≤ i ≤ Nf ) and another point

(Figure 3.2(d)), where

mi ∈ {1, ..., n− 3} (3.1)
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As shown in Figure 3.2(d), not all mi possible formations are viable since some

do not meet the quality criterion or their formation invalidates the continuity of the

mesh. Next, using another active face Fi+1 in the current boundary surface Ψi, we

examine how many valid tetrahedral elements, whose quality is greater than ηe, can be

formed: mi+1. If mi+1 < mi, the algorithm discards face Fi as a potential candidate

for generating a tetrahedron at that level and substitutes it with Fi+1. Note that as

in Figure 3.2(e), some of element formations might produce different number of new

active edges or active faces in 3D case. The iteration continues and discards each face

Fj if mj ≥ mmin, where

mmin = current minimum number of possible tetrahedrons (3.2)

The result is a face with the least number of potential offspring tetrahedrons, out

of which the best quality tetrahedron is chosen (Figure 3.3). The algorithm then

inserts that tetrahedron into the domain causing removal of at least one boundary

facet and creating potentially three new active faces. This process generates a dif-

ferent sub-volume encapsulated by a new boundary surface ψi, on which the same

aforementioned process can be performed recursively (shown for 2D in Figure 3.2(f)

and in Figure 3.4 for 3D case.)

As Figure 3.2 shows, removal of elements can leave behind some internal nodes

within the carved out region that do not connect to any other simplex. This makes

no difference in how last resort makes use of them. All the simplexes involved in

the carved out region are examined in the process of forming all possible tetrahedrons

regardless of their isolation state and no element is formed if it contained any node,

46



including the isolated ones.

This process continues until there only exists four faces which form the last tetra-

hedral element and the entire domain is populated. Once one complete solution is

achieved, we can trace back our steps to mother face set Ψi and try a different route.

Upon successful completion of each try, the algorithm compares the quality of all the

solutions, either based on minimum element quality or an average quality of elements,

in order to choose the desired mesh. This can also be done exhaustively to examine

all possible connectivities, but this option is not realistic since it can be time con-

suming. Figure 3.2 shows an example of the steps described above, depicted in 2D

for simplicity in illustration.

If in any given sub-surface ψi, one of the triangular facets, Ffailed , fails to produce

any acceptable tetrahedral element, that step is considered void and none of the other

available facets of ψi are examined (Figure 3.5). At this point, the algorithm goes

back one step and tries the previous sub-surface Ψi, using a different triangular facet

to form an element (Figure 3.6).

If we had used other faces of a failed ψi and created a different tetrahedron path,

the resulting sub-surface still contains Ffailed and eventually it must be connected to

one of the available points in the current point set but we have already established

that such connectivity was not acceptable. Algorithm 3.1 flowcharts the last resort

process. As discussed previously, performing an exhaustive search along only one

branch of the tree in Figure 3.3 is of the order O(N !). Therefore the upper bound for

number of operations necessary for an exhaustive search can be expressed as:
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Figure 3.3: Each active triangle in Level K has the potential of producing different
number of tetrahedrons. Every possible tetrahedron is examined for quality. The
active face with the least number of possible tetrahedrons is chosen to form an element.

N∑
i=0

(N − i)! (3.3)

However the selective approach for the path descent down the search tree will

reduce the upper bound of required operations to:

N−1∑
i=0

(N − i). (N − (i+ 1)) (3.4)

where N is the total number of original active faces in the carved out surface Ψ.

3.3.2 Boundary Recovery

As mentioned previously, our goal is to recover the original surface topology of any

given tetrahedral mesh regardless of how it was created. This task requires having

the original boundary surface Θ, and the mesh Γ. The idea is to identify a missing

face and remove all the elements that are connected to its three vertices, creating an
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Figure 3.4: Insertion of tetrahedron T1 to the sub-volume will create a new set of
active faces. This moves the algorithm one level down (K + 1). The new active
triangles are now ready to be examined for their possible tetrahedron formations.
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Figure 3.5: If one of the active faces fails to produce an acceptable tetrahedron, the
algorithm will not check additional faces on that level and that branch is tagged as
broken.

open cavity in the mesh. The cavity will not be sealed since the elements associated

with the missing face nodes were removed. The missing face is recovered and added

to the active cavity surface shell and additional triangles are added to seal the cavity

if necessary. The resulting closed surface is now ready to be passed to our last

resort operation to create new tetrahedral elements that can be directly inserted

into the parent mesh.

As a preliminary step, we remove all elements of the parent mesh whose centroid

fails the Θ inclusion test. This rudimentary constrained Delaunay recovery is a nec-

essary step for meshes created by Delaunay method as it produces a mesh covering

the convex hull of Θ. All boundary faces of the mesh Γ are identified. These faces

are contained in only one tetrahedron of the same material type. We refer to this set
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Figure 3.6: A broken branch forces algorithm to consider other active faces in previous
level (K). Here tetrahedron T2 from previous level is considered and a new level of
active faces is created in the same way as Figure 3.3.
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of faces as numerical boundary faces Ω, as opposed to the physical boundary Θ. The

faces in Θ are compared against the Ω list to identify the missing physical faces of

interior or exterior boundaries.

For every missing face Mi, we identify its 3 vertices and tag all the tetrahedrons

whose vertex list contains at least one of the 3 vertices. Concatenating the tagged

tetrahedrons creates a shell ψi which is not necessarily a closed surface, meaning that

there are edges of triangular facets on ψi that only belong to one boundary face. Note

that ψi is a piecewise linear complex with the following extra restriction.

Denoting the triangular sub-surface as ψi, we can write:

ψi =
i=n⋃
i=1

δi (3.5)

where δi’s are the faces of the carved-out sub-volume. Given an edge

segment λ shared by two triangular facets δm and δn, then A must be

empty, where A is set of all faces containing λ and:

A = {δi | λ ⊂ δi, i 6= m,n} (3.6)

Using the same notation we call ψi non-closed if n(B) = 1 where

B = {δi | Λ ⊂ δi, 1 ≤ i ≤ n} (3.7)

where Λ is an edge segment. This implies that ψi, i.e. the carved out volume, is a

boundary separating only two different regions and none of its triangular edges can
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be shared by more than two triangular faces.

The perimeter of a possible hole on surface of ψi can also contain a set of scattered

nodes depending upon the extent of tetrahedral element deletion. Denoting all these

simplexes asK, we cover the hole using edges and points fromK. FirstMi is recovered

forming the original surface triangle. The algorithm also searches for other possible

missing faces that can be reproduced using the simplexes available in K, removing

them from K upon a successful recovery. Once the cavity is capped any remaining

nodes (isolated during the carve out process) become part of the set of simplexes to

be sent to last resort algorithm.

At this stage if the hole is completely covered, the sealed cavity is sent to our

last resort algorithm to be meshed. Otherwise the remaining entities in K are

examined to create new boundary faces in order to stitch up the hole. Figures 3.7 to

3.11 show an example of recovering a boundary face on a brain mesh. A pseudo code

for recovery of the original surface boundary faces is provided in Algorithm 3.2.
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Figure 3.7: A tetrahedral mesh of an inverted human brain generated using 3D De-
launay algorithm.

Figure 3.8: Detail of mesh where two of the original input boundary faces were missing
(shown as blue lines).

Figure 3.9: All the tetrahedrons containing one of the missing faces vertices are
removed from mesh.
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Figure 3.10: The carved out volume interface with mesh along with restored missing
faces are used to seal the cavity in the mesh. This creates a closed surface suitable
for last resort algorithm.

Figure 3.11: The output of last resort is inserted back to the original mesh with
no inconsistencies since last resort preserves the cavity shell with fidelity.

The use of last resort on the closed surface ψi requires providing a desired

quality value. A wide range of quality measures for tetrahedral elements has been

devised. We chose to use the volume ratio quality, which measures the ratio of a given

tetrahedron to that of a unilateral one.

If an acceptable quality sub-mesh cannot be created via the last resort algo-

rithm, the failure is overwhelmingly related to a flawed or poor quality segment of the

physical boundary facets. Introducing new internal nodes would rarely rectify this
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situation containing flawed boundary facets. The last resort algorithm is exhaus-

tive. Consequently, every possible connection, independent of Delaunay, is examined

given the existing node deployment. If a satisfactory sub mesh cannot be created the

user is notified of the root cause of problem so corrective measures can be taken. It

should be noted that we have not encountered cases similar to (author?) [89] where

the quality of facets of polyhedron is acceptable but no Delaunay tessellation was

possible due to topology of boundary.

3.4 Results & Discussion

This post-processing method has been used on volume meshes generated with different

methods: spmesh [121], offset normal method [54] and Tetgen[104]. Our application

is associated with alternative breast imaging strategies [80]. Meshes in Figure 3.12

and Figure 3.13 show a brain and a breast mesh. The breast tissue in Figure 3.13 is

deformed due to the various imaging probes being applied to the tissue [80].

Test case 1 included the brain mesh which had 17,312 triangles and 8,658 nodes

in the original physical boundary surface. 6,022 surface triangles were not present in

the final volume mesh of 142,167 tetrahedrons. The parent mesh and surface mesh

were sent to the last resort boundary recovery post processor. All missing surface

facets were recovered such that the 17,312 original surface triangles were part of the

final volume mesh. The updated volume mesh was subsequently sent to the last

resort quality improvement post-processor. The overall quality was improved a

small amount qavg = 0.410−→qavg = 0.421, however more importantly 1621 elements
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whose qualities were virtually unacceptable were rectified. (The quality measure

used here was a volume ratio similar to [63]). We should mention that the quality of

input original mesh was not optimum and 817 faces out of 17312 had an area quality

qarea < 0.1 which affects the improvement results.

In test case 2, a breast mesh was used containing 4,824 original boundary facets.

The volume mesh was created using Tetgen containing 37,486 tetrahedral elements

after removing the convex hull. The volume mesh was missing 579 original boundary

faces which were all recovered after the mesh was post-processed. After returning

from the last resort quality improvement post-processor the average quality was

increased from qavg = 0.416 to qavg = 0.427. All 60 sliver and void elements were

removed.
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Figure 3.12: A volume mesh of a human brain.

Figure 3.13: A volume mesh of a human breast.
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3.4.1 Timing & comparison

We used 3 different implementations of Delaunay tetrahedralization algorithm for the

mentioned test cases: tetgen [104], qhull [1] and our in-house 3D Delaunay. All of

produced meshes using different methods contained almost the same number of miss-

ing faces and sliver elements. As described before, boundary recovery process tackles

each missing face by removing adjacent tetrahedrons and performing a local topology

transformation. Very often, remeshing of the cavity from a single missing face results

in recovering multiple other missing faces. This contributes to performance increase

of the algorithm. For example for the brain mesh with 17,312 missing faces, the last

resort subroutine was only called 686 times. For the breast mesh this was 189 for

579 missing faces. The timing required to recover each missing face greatly depends

on the size of cavity associated with it but in practice it averages between 0.15 sec-

onds and 0.20 seconds. Table 3.1 summarizes the timings as well as number of last

resort calls in order to re-mesh the cavity. Also using the breast mesh, we increased

the resolution of the mesh to obtain finer meshes of the same geometry. Figure 3.14

shows how the number of missing faces varies based on the number of solid elements

present in the mesh.

# of elements # of missing faces # of last resort calls avg. time
Breast 1 30,011 260 114 0.15 sec
Breast 2 50,310 282 124 0.20 sec
Brain 95,581 1,694 686 0.15 sec

Table 3.1: Performance of last resort in boundary recovery application.

Using last resort to enhance the quality of mesh and remove sliver elements
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# of slivers # of last resort calls avg. time for each sliver
Breast 148 104 1.08
Brain 310 241 1.22

Table 3.2: Performance of last resort in sliver removal application

required slightly different number of calls to last resort function. The brain mesh

contained 310 sliver elements and last resort was called 241 times with 1.22 sec-

onds spent on each try. In order to remove 148 sliver elements of breast mesh number

of calls was 104 and average time spent to recover sliver tetrahedrons was 1.08 seconds

(see Table 3.2).

We also compared our algorithm to tetgen, a 3D mesh generator freely available

to public. ’tetgen’ is based on Delaunay refinement algorithm proposed by Shewchuk

[93]. ’tetgen’ can create constrained Delaunay meshes with variable sizing and it

attempts to remove sliver elements. The grading of mesh is done based on volume

size of a tetrahedron rather than edge lengths and also it can not remove all sliver

and compromised elements. The methods proposed so far to generate a mesh and

perform post processing steps might not be able to achieve timings similar to that

of ’tetgen’ but it surpasses spmesh. The excellent quality of elements inside the

domain and virtually no sliver element close to boundary can make up for the lack

of speed in our algorithms when it is compared against ’tetgen’. After all it is always

preferable to spend more time preparing a good mesh for a finite element model than

spending that time to evaluate and re-produce results that are based on a mesh with

compromised elements.
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Algorithm 3.1 Last Resort Flowchart
1: Last_Resort_Algorithm(Ψi,ηe)
2: Ψi ← Boundary surface
3: ηe ← Minimum desired element quality
4: Output: PotentialMeshj
5: if Ψi has only 4 remaining faces then
6: Form the tetrahedral element e
7: PotentialMeshj ← e
8: return PotentialMeshj
9: end if

10: for all Faces, Fi, in current boundary surface Ψi do
11: if Fi can produce at least one acceptable tetrahedron whose quality q > ηe

then
12: Ni ← number of possible tetrahedrons
13: if Ni < Nmin then
14: Nmin ← Ni

15: Insert Fi to the top of Listfaces stack and push all the current faces down
16: end if
17: else
18: return NULL
19: end if
20: end for
21: while Listfaces 6= ∅ do
22: Pick the face from top of the Listfaces stack and form its best tetrahedron e
23: Update Ψi boundary surface based on insertion of element e
24: Assign the new boundary to ψi
25: Call M ← Last_Resort_Algorithm(ψi,ηe)
26: if M is not NULL then
27: PotentialMeshj = PotentialMeshj ∪M
28: return PotentialMeshj
29: else
30: Remove the top enitity in Listfaces stack and continue
31: end if
32: end while
33: return NULL
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Algorithm 3.2 Boundary Recovery
1: BoundaryRecovery(Γ,Θ)
2: Γ = Tetrahedral mesh
3: Θ = Original/Desired Boundary mesh
4: Output: Constrained Delaunay of Γ (an almost Delaunay mesh)
5: Ω← Extract numerical boundary faces of Γ by considering faces that only belong

to one tetrahedron
6: M ← Θ ∩ Ω′ {Find list of missing faces}
7: for all Faces, Mi, in missing faces list M do
8: e←Find all tetrahedral elements that share at least one of the vertices of Mi

9: Concatenate all members of e, leaving only their exterior surface → ψ
10: if ψ is non-closed surface then
11: K ← All the vertices and edges of the hole
12: Construct missing face Mi as well as any additional missing faces in neigh-

bourhood using members of K. Remove all the members of K used in con-
struction of missing faces.

13: if K 6= ∅ then
14: Cover the hole by creating new numerical faces by using simplexes of K
15: end if
16: end if
17: Meshi = Call Last_Resort_Algorithm(Ψi,ηe)
18: if Last Resort was successful then
19: Insert Meshi back to Γ
20: else
21: Move Mi to the bottom of missing face list M
22: end if
23: if M = ∅ or we have tried all missing faces in M then
24: break the loop
25: end if
26: end for
27: Return Modified Γ
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Chapter 4

Mesh Smoothing

4.1 Introduction

The quality of elements can affect results and performance of discretization methods

which are used to solve partial differential equations over a domain[32, 99]. These

methods partition the domain into elements of simple geometrical form in order to find

a solution function in the space of problem which approximates the actual solution

to the differential equation [12]. Schewchuk [99] shows how the element quality can

affect both discretization errors as well as stiffness matrix condition numbers in a

finite element application. Additionally, the time cost of FEM solvers can be reduced

by providing them with a better and optimized mesh [37]. This quality issue has

prompted extensive study on optimization of mesh and its effects on implementation

methods.
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4.2 Related Work

Post processing of a mesh to optimize its overall quality and filter out compromised

elements is almost ubiquitous among automatic mesh generators, especially three

dimensional mesh generators since tetrahedral elements have more possibilities to be

ill-formed than their 2D counterparts [34]. Classically, mesh improvement techniques

could be categorized into 3 general areas, or their combinations:

1. Topological optimizations

2. Vertex set alteration (insertion or deletion of nodes)

3. Node displacement (geometric optimizations).

In topological optimization, connectivity of adjacent elements is altered to achieve

a higher quality set of elements without changing the coordinates of vertices. This

strategy can include diagonal swaps or face/edge swaps [53, 120, 63, 33]. The advan-

tage of this approach is its easy implementation and effectiveness. We also recently

proposed a robust, successful generalization of local transformation based on a last

resort algorithm [44].

In second method, i.e. insertion/deletion of vertices, new vertices are introduced

or removed from the mesh in order to improve the quality. When inserting, a point

is placed in a strategically computed location to improve the local elements. This

point, known as Steiner point, is usually centered in geometric locations such as the

circumcenter of a compromised element [18, 17, 87]. Subsequently, this method was

improved by work in [98] and [109]. Other researches have tried different methods to

determine the insertion location [28].
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In node displacement method or geometric optimization, the actual location of

nodes are changed to achieve a better state of element quality, such as shape measures,

or to optimize an “energy field” which is correlated with good quality elements. The

measures to optimize can either be determined beforehand or after the solution is

obtained to minimize the approximation errors.

The most popular method in this category is the Laplacian method and its variants

in which a node is moved to the centroid of its immediate neighbours [3, 30, 62, 119].

Laplacian method is simple to implement and it runs fast but it does not necessarily

improve the quality of elements. Also in this category, researchers try to minimize

a given distortion metric as opposed to heuristic-based Laplacian algorithms[2, 5].

Knupp [56] proposes a method based on the optimization of Jacobian matrix norm.

Oddy et. al. [77] used elasticity concepts for smoothing process. Freitag [35] and

Canann et. al [15] combined the Laplacian method with optimization based ap-

proaches to achieve better results and faster timings. Furthermore, smoothing tech-

niques based on simulation of repulsion and attraction forces between vertices has

been studied [11, 70, 81, 103].

Majority of these methods perform their smoothing or optimization operation on

a local basis and then iteratively visit every node in the mesh in order to obtain

global improvement. More recently, global approaches have been introduced in which

a system of equations is established for all the vertices, and solutions are obtained

afterwards to determine the new location of nodes. In general, these methods define

an objective function and its constraints and then apply a numerical solver to obtain

the results. For example [75] chooses “inverse mean ratio metric” of a tetrahedral ele-
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ment and minimizes it globally over the entire domain. Careful selection of objective

function, constraining conditions and numerical solver are important for quantifiable

results. This method can require a long time to run. Freitag et. al. and the reference

within illuminate more details and constraints of this approach[36].

4.3 Proposed Method

One of the desired features of a Delaunay mesh in 2D is the fact that it maximizes

the minimum angles of the triangle mesh [58]. This feature produces an optimum

topology for a given set of vertices but, unfortunately, it does not extend to three

dimensional tetrahedral meshes generated by Delaunay method. In fact, with nearly

optimally spaced nodes the 3D Delaunay can yield unacceptable tetrahedral elements

[52]. It has been shown that maximizing the solid angle of a Delaunay tetrahedral

mesh can result in a mesh better than the original mesh [52].

Inspired by this property, we propose a method that repositions the nodes of the

mesh to locally maximize the solid angles of the mesh. Solid angle subtended by the

vertex v of a tetrahedron is proportional to the spherical area of the projection of

opposing face to v on a unit sphere centered at v. In general a solid angle can be

defined as (Figure 4.1:

Ω =

¨
S

~r.n̂

r3
dS (4.1)

where ~r is the vector from origin to surface patch dS and n̂ is unit vector normal

to patch. For a regular tetrahedron (equal side lengths) all 4 solid angles are equal
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Figure 4.1: A Solid angle Ω.

to:

3. arccos(1/3)− π w 0.551 str (4.2)

The interior nodes of the mesh and the attached elements are examined to estimate

the gradient of solid angle with respect to current vertex. All the adjacent nodes of

the current vertex are kept fixed while the vertex is moved in the gradient direction.

The node is relocated continuously in the optimum direction till no further local

solid angle increase is attainable. This process iterates over all the mesh nodes until

a preset mesh quality is achieved or the global improvement converges. User can

choose to keep the boundary nodes completely unaltered or they can be repositioned

in a tangential motion with respect to the original boundary facets.

4.3.1 Algorithm

The process starts with identifying low quality elements in the mesh. An interior

node is selected as a free node and all tetrahedrons connected to it are extracted,

forming a cluster of elements. All the nodes within the cluster are considered fixed
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except for the free vertex. The goal is to increase the minimum solid angle within

this mesh cluster by relocating the free node. To achieve this, algorithm needs to

calculate a gradient for the solid angle change, i.e., determine the gradient direction

of the node to attain the highest increase in the minimum solid angle of the cluster.

Let ξi(x) |16i6n represent the value of n solid angles in the cluster which are a

function of current location x of the free node. Our goal is to find a displacement

vector ~∆(x) that will determine new location of free node yielding the highest increase

in the current minimum solid angle:

~Xnew = ~Xold + ~∆(x) (4.3)

where ~X is the location of free node. Using a linear approximation for ξi(x)

functions, one can obtain the new solid angle values if the free point was moved by

~d(x) = (dx1, dx2, dx3):

ξm+1
i = ξmi +

∂ξmi
∂x1

dx1 +
∂ξmi
∂x2

dx2 +
∂ξmi
∂x3

dx3 (4.4)

To calculate the gradient of ξi, i.e.

∇ξi =

(
∂ξi
∂x1

,
∂ξi
∂x2

,
∂ξi
∂x3

)
(4.5)

we introduce an infinitesimal change in x1 direction while constraining other two

directions to zero. Then from Equation 4.4:
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∂ξi
∂x1

=
ξm+1
i − ξmi
dx1

(4.6)

Repeating the same steps for other two spatial directions ∇ξi is obtained for every

solid angle. Since the objective is maximizing the minimum angle, we only consider

the gradient of Φ(x) at the current location of the free node in local mesh cluster:

Φ(x) = min
16i6n

ξi(x) (4.7)

At this point the free node is moved by a distance δ which is dependent of cluster

size in ~∆(x) direction. The size of δ is based on the cluster size to prevent over stepping

its bounds or bypassing an optimal locations. The algorithm obtains displacement

vector as:

~∆(x) = δ · ∇Φ(x)

|∇Φ(x)| (4.8)

and reposition the free node to its new location, Figure 4.2(a). The process keeps

moving the free vertex in ~∆(x) direction until the minimum solid angle ceases to

improve at which point the step size δ is reduced by a predefined factor, Figure 4.2(b)

and (c). This is done since a finer step might put the free node closer to the local

peak without skipping over it because of a large displacement step. If the finer δ

would increase the minimum angle, the free node will be displaced in ~∆(x) direction.

Otherwise, if resorting to a finer step fails to improve the solid angle the algorithm

recalculates the ~∆(x) to obtain a new direction of repositioning. The above steps are

iterated for the current free node until no further angle increase is obtained. Amenta

et. al [2] show the locus of possible positions of the free node is convex provided a
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(a)

(b) (c)

Figure 4.2: (a) Initial gradient of free node. (b) Closer look at free node: Coarse
steps in gradient direction taken. (c) Closer look at free node: After coarse steps fail,
algorithm resorts to finer steps till no more improvement is possible.

bound on the quality of desired local cluster is given.

This process is iterated over all compromised elements of the mesh until the quality

criterion is met or optimization converges. Figure 4.3 shows a 2D example of the

smoothing algorithm. It can be seen how the gradient gets updated as moving the

free node is being displaced from its original location.
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(a) (b) (c)

Figure 4.3: 2D Example of the algorithm. (a) Original mesh with one free node.
(b) The nodes is moved along initial gradient in small steps. A new gradient is
recalculated as soon as the current one seizes to improve the minimum angle. (c)
Optimized location of the node.

4.4 Results & Discussions

To show a better demonstration of how the algorithm smooths the mesh, we first

show a 2D example. The mesh in Figure 4.4 is a box with randomly generated points

inside it. It consists of 234 nodes and 434 elements. Several measures are used to

quantify the quality of mesh [31]. In this work we choose the aspect ratio quality of

an element which is the ratio of volume (area in 2D) of element to sum of squares of

edge lengths. For a tetrahedron we can calculate it as:

q = 12

3

√
(3V )2∑6
i=1 L

2
i

(4.9)

Also extremum of angles in addition to a histogram of all angles are provided.

Figure 4.4(b) is the optimized mesh which was obtained after 20 iterations over the

entire domain, not just the low quality elements with small angles. To create the

mesh in Figure 4.4(b), all the boundary nodes were fixed while all the interior nodes
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(a) (b) (c)

Figure 4.4: 2D Experimentation of the algorithm. (a) original mesh. (b) Optimized
mesh with fixed boundary nodes. (c) Optimized mesh with sliding boundary nodes.

were considered as free nodes. On the other hand, Figure 4.4(c) shows the same mesh

but this time we let the algorithm slide the boundary nodes tangentially. Reader

can notice the biggest visual difference at the bottom and top right corner of the

optimized meshes. One can easily implement a feature to keep 4 corners of the mesh

fixed while allowing other boundary nodes to move tangentially in order to avoid

the smoothed lower left corner in this example. As Table 4.1 shows, the latter mesh

produces a better quality mesh in terms of angle distribution and minimum angle of

the mesh. A full histogram of the original mesh and its two smoothed counterparts

are shown in Figures 4.5 and 4.6. Note how an optimization done with sliding nodes

has eliminated all the angles in α < 20◦ and α > 120◦ range.

We also experimented the algorithm on 3D meshes. Shown in Figure 4.7 is a

brain mesh constructed using spmesh [121]and surface data is courtesy of Dr. Miga

73



q min α

original 0.683 3.54◦

Mesh (a) 0.849 6.34◦

Mesh (b) 0.854 20.05◦

0− 20◦ 20− 60◦ 60− 90◦ 90− 120◦ 120− 180◦

original 118 576 364 199 45
Mesh (a) 7 754 350 182 4
Mesh (b) 0 767 357 174 4

Table 4.1: Angle histogram of the 2D meshes of Figure 4.4
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Figure 4.5: Angle histogram of the 2D mesh in Figure 4.4 before optimization.
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(a) Fixed boundary nodes
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(b) Sliding boundary nodes

Figure 4.6: Angle histogram after optimization.(a) Optimization with fixed boundary
nodes.(b) Optimization with sliding boundary nodes.
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[71]. The mesh contains 39,876 elements and 7,768 nodes. To measure the quality

improvement of the mesh, we measured dihedral angles of tetrahedrons as well as

the solid mesh. Figure 4.8 shows the histogram of dihedral1 angles before and after

optimization while Figure 4.9 is portion of solid angle histogram. Note how the his-

togram is shifted toward the higher solid angles (> 0.2 stradians). The optimization

was done using a sliding boundary method. For this mesh convergence criterion is

based on node movement, i.e. the algorithm will terminate when improving the solid

angles requires node displacements much smaller than a preset value based on the

minimum edge size of the mesh. Figure 4.11 shows the convergence rate before and

after each iterations. Note that the first 2 to 3 iterations include the steepest increase

in the solid angle and the consequent iterations can be considered as fine tuning the

location of the vertices to obtain the optimum position.

The average quality of mesh using Equation 4.9 was increased to 0.8726 up from

0.8641 while the minimum quality for this particular mesh was at a constant value

of 0.2296. Figure 4.10 shows a linear relation for time requirements for optimization

and the number of elements.

1Dihedral angles can be related to solid angles using
∑4

{i=1} Ωi = 2
∑6

i=1 φi − 4π
where φi are the dihedral angles.
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Figure 4.7: A brain mesh generated from reconstructed surfaces off of 2D images.
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Figure 4.8: Histogram of dihedral angle of the brain mesh.
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Figure 4.9: Partial histogram of solid angles obtained from the brain mesh.
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Figure 4.10: Linear time requirements in terms of number of tetrahedral elements in
the mesh.
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Figure 4.11: Number of iterations required to optimize the brain mesh.
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Chapter 5

Conclusions

In this dissertation we tackled three major problematic areas in modern automatic

mesh generation: node deployment and element grading, boundary recovery and

element quality as well as post processing and mesh smoothing.

We presented a template based grid generation coupled with Delaunay tetrahe-

dralization that provides great flexibility in mesh size and density variation. Using a

triangulated surface mesh to define the domain, a 3D matrix template is overlaid to

enclose the bounding box. The template is then exclusively used to guide the algo-

rithm through the mesh and to decide spatial location of the grid points to be placed

based on user-defined density requirements. Since the matrix indices are used to lo-

cate points, measure distances and adjust edges sizes, the algorithm enjoys a fast and

robust venue to explore the mesh. This is achieved by initially tagging pixels of tem-

plate closest to input boundary nodes and a buffer zone of pixels is established around

each node whose extent is spatially dependent on density requirements. Moving in-
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ward the domain, the pixels of template, which are not processed yet, are examined

for possible placement of a new node. Each new node and its neighboring pixels are

marked as processed. The template not only helps avoid floating point calculations

and round-off errors but also it eliminates the need to process working surfaces or

partial meshes. Although the quality of input surface will dictate the shape of tetra-

hedral elements adjacent to it, our algorithm is fairly insensitive to shape of surface

triangles in order to create good elements.

A post-processing tool was presented that recovers the original surface boundary

for both interior and exterior boundaries using local transformations in connectivity

rather than extra vertex insertions. This ability was generally lacking in the field, yet

of critical importance for remeshing a sub-zone of a large parent mesh or replacement

of a material region. Our proposed method can handle any type of volume mesh

generated by various methods and recover the initial physical boundary. To achieve

this, we introduced last resort, an efficient search algorithm capable of creating

quality grids using a closed polyhedron. Missing boundary faces of the given mesh are

identified and their neighboring tetrahedral elements are removed creating an open

cavity. The hole on the cavity, resulted from removal of the rogue faces, is covered

using all possible physical boundary faces that were missing in this region. The sealed

cavity is passed to last resort to create a sub-mesh that can be inserted directly

into the parent mesh. We have been successfully using this approach in biomedical

applications and alternative tissue imaging applications which use a variety of mesh

generations systems.

Mesh optimization and smoothing are necessary for a reliable and fast FEM solu-

82



tion. Seeking the angle property of 2D Delaunay in higher dimension, we proposed an

optimization algorithm that maximizes the minimum solid angle of tetrahedral ele-

ments. The smoothing process is performed on a local cluster of tetrahedral elements

that are connected to a free node. Using a linear approximation method, we solve for

the gradient direction. The free node is displaced using that direction and a small

step size which is carefully chosen in order to keep the validity of cluster intact. After

each step the algorithm checks the improvement. If no improvement is realized or a

different vertex poses as the minimum solid angle, the gradient calculation is repeated

to keep the free node moving in the steepest increase direction until no further im-

provement is obtainable. This process is repeated iteratively for all free nodes of the

mesh. The algorithm optimizes the mesh regardless of element generation method.

Our method easily improves the element with low quality or compromised shape.
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