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ABSTRACT 

 

Through immersive stereoscopic displays and natural user interfaces, virtual reality (VR) is 

capable of offering the user a sense of presence in the virtual space, and has been long expected to 

revolutionize how people interact with virtual content in various application scenarios. However, 

with many technical challenges solved over the last three decades to bring low cost and high 

fidelity to VR experiences, we still do not see VR technology used frequently in many seemingly 

suitable applications. Part of this is due to the lack of expressiveness and efficiency of traditional 

“simple and reality-based” 3D user interfaces (3DUIs). The challenge is especially obvious when 

complex interaction tasks with diverse requirements are involved, such as editing virtual objects 

from multiple scales, angles, perspectives, reference frames, and dimensions.  

A common approach to overcome such problems is through hybrid user interface (HUI) systems 

that combine complementary interface elements to leverage their strengths. Based on this method, 

the first contribution of this dissertation is the proposal of Force Extension, an interaction 

technique that seamlessly integrates position-controlled touch and rate-controlled force input for 

efficient multi-touch interaction in virtual environments. Using carefully designed mapping 

functions, it is capable of offering fluid transitions between the two contexts, as well as simulating 

shear force input realistically for multi-touch gestures.  

The second contribution extends the HUI concept into immersive VR by introducing a Hybrid 

Virtual Environment (HVE) level editing system that combines a tablet and a Head-Mounted 

Display (HMD). The HVE system improves user performance and experience in complex high-

level world editing tasks by using a “World-In-Miniature” and 2D GUI rendered on a multi-touch 

tablet device to compensate for the interaction limitations of a traditional HMD- and wand-based 
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VR system. The concept of Interaction Context (IC) is introduced to explain the relationship 

between tablet interaction and the immersive interaction, and four coordination mechanisms are 

proposed to keep the perceptual, functional, and cognitive flow continuous during IC transitions. 

To offer intuitive and realistic interaction experiences, most immersive 3DUIs are centered on the 

user’s virtual avatar, and obey the same physics rules of the real world. However, this design 

paradigm also employs unnecessary limitations that hinders the performance of certain tasks, such 

as selecting objects in cluttered space, manipulating objects in six degrees of freedom, and 

inspecting remote spaces. The third contribution of this dissertation proposes the Object 

Impersonation technique, which breaks the common assumption that one can only immerse in the 

VE from a single avatar, and allows the user to impersonate objects in the VE and interact from 

their perspectives and reference frames. This hybrid solution of avatar- and object-based 

interaction blurs the line between travel and object selection, creating a unique cross-task 

interaction experience in the immersive environment. 

Many traditional 3DUIs in immersive VR use simple and intuitive interaction paradigms derived 

from real world metaphors. But they can be just as limiting and ineffective as in the real world. 

Using the coordinated HUI or HVE systems presented in this dissertation, one can benefit from 

the complementary advantages of multiple heterogeneous interfaces (Force Extension), VE 

representations (HVE Level Editor), and interaction techniques (Object Impersonation). This 

advances traditional 3D interaction into the more powerful hybrid space, and allows future VR 

systems to be applied in more application scenarios to provide not only presence, but also improved 

productivity in people’s everyday tasks. 
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Chapter 1: Introduction 

In the past few years, a renewed interest in immersive Virtual Reality (VR) technology has 

emerged, thanks to a new generation of low cost, high fidelity Head-Mounted Display (HMD) 

devices, such as the Oculus Rift and the Sony Morpheus. Using a high resolution, wide Field-Of-

View (FOV), and low latency display, these devices can grant the user a unique feeling of presence 

in the computer generated virtual environments (VE). The experience can be so deeply convincing 

that seconds after being immersed into the VE, users often reach out their hands and try to interact 

with virtual objects in front of them. It is evident that to make VR more successful and useful, an 

equally compelling set of 3D User Interfaces (3DUI) has to be provided to the user to enable them 

to perform real-world tasks, such as modeling a building, rehearsing surgery, or building a game 

level. The importance of 3DUI has also been emphasized in the fields of augmented reality (AR) 

[Zhou08] and mixed reality (MR) [Lok04]. 

In fact, research in 3DUI has been going on for decades. The tasks of 3DUI have been categorized 

into travel, way-finding, selection, manipulation, system control, and symbolic input [Bowman04]. 

There are general challenges to overcome such as spatial body tracking [Welch02], motion 

sickness [Kennedy10], and user fatigue [Lindeman01], and each task category also has its unique 

set of research questions. For example, it is difficult to manipulate a 3D object as there are too 

many degrees of freedom (DOF) to control simultaneously (translation, rotation, and scaling) 

[Hinckley94]. For travel in the virtual world, it is challenging to map actions in a limited real world 

space effectively and intuitively to control locomotion in a much larger VE [Suma12]. Numerous 

novel interfaces have been proposed under each task genre and many empirical user studies have 
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been conducted to evaluate their usability in various, but mostly abstracted, usage scenarios, such 

as navigating a maze [Bowman98a], or rotating a tetrahedron [Zhai93b].  

Of the 3DUIs explored, many are controlled by a single user, who perceives and interacts with a 

single representation of the VE from a single egocentric point of view [Poupyrev98a], similar to 

the system shown in Figure 1.1. By exploiting proprioception [Mine97] through a body-centered 

interaction paradigm [Slater94], they allow the immersed user to interact with the VE much like 

the way they interact in the real world.  

 

Figure 1.1: Most VR systems give the user a single 3DUI to interact with the VE from a single egocentric 
point of view (picture courtesy of [Kellogg06]) 

However, despite the simplicity and intuitiveness, this type of design paradigm can also limit the 

expressiveness and productivity of the user in the VE [Stoakley95]. For example, grabbing virtual 

objects does not offer the same level of precision for objects at a distance [Poupyrev96]; 3D spatial 
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input devices such as a wand do not perform well for 2D menu control or symbolic input tasks 

[Lindeman01]; real walking from a first-person view does not support quick navigation across 

large landscapes [Wang12b]. There is no “silver bullet” 3DUI that fits all use scenarios, but there 

is also no need to limit designs to one option.  

In general human computer interaction discussions, a Hybrid User Interface (HUI) is defined as a 

system that “combines heterogeneous display and interaction device technologies to take 

advantage of the strong points of each” [Feiner91]. By deliberately combining interfaces with 

complementary benefits, an HUI system can offer the user more and better options to perform 

tasks with diverse requirements. In VR, many HUIs can be more appropriately called Hybrid 

Virtual Environments (HVE), such as the Slice-WIM system [Coffey11] shown in Figure 1.2.  

 

Figure 1.2: The Slice-WIM system is an HVE system that offers the user multiple interactive 
representations of the same virtual environment (picture courtesy of [Coffey11]) 
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In this dissertation, we define Interaction Context (IC) in VR as “a conceptual integration of input 

and output devices, techniques, and parameters, which offers the immersed user one interactive 

representation of the virtual environment”. Using this term, HVEs can be defined as “systems that 

combine heterogeneous ICs to offer the immersed user with multiple heterogamous representations 

of the same VE, each with a set of interfaces and interaction techniques to maximize the efficiency 

and user experience of 3D interaction”. Some popular examples of HVE systems include World-

In-Miniature (WIM) [Stoakley95], Voodoo Doll [Pierce99], Portals [Schmalstieg99b] 

[Kiyokawa05], and See-through Lens [Viega96] [Brown06]. Furthermore, HVE systems can also 

encompass Collaborative Virtual Environment (CVE) systems that assign asymmetrical ICs to 

different users, such as the CALVIN system [Leigh96]. 

An important goal of the current work is to improve the effectiveness of 3D interaction in 

immersive VR through new designs of HUI or HVE systems. This dissertation presents three 

techniques that work towards this goal from different perspectives: (1) the Force Extension 

technique blends the accuracy of position control and the large action space of rate control using 

a force sensing multi-touch touchpad [Wang13b]; (2) the Tablet- and HMD-based HVE Level 

Editing system uses a WIM and a 2D GUI rendered on a multi-touch tablet device to compensate 

for the interaction limitations of a traditional HMD- and wand-based VR system in a complex 

high-level world editing task [Wang14]; (3) the Object Impersonation technique breaks the 

common assumption that one can only immerse in the VE from a single avatar, and allows the user 

to impersonate objects in the VE and interact from their perspectives and reference frames 

[Wang15]. 

Although the designers of HUI and HVE systems expect that complementary ICs can compensate 

for each other’s drawbacks, the actual effective use of them is often limited by the extra cognitive 
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overhead required to attend to, and transition between, the distinctly different interface elements 

[Grasset08] [Wang Baldonado00]. Therefore, another goal of my work is to reduce this cognitive 

overhead by employing coordination mechanisms. The Force Extension and the Tablet- and HMD-

based HVE system were both designed with coordination in mind, so that the transitions between 

ICs can be reduced. Results of user studies are also presented to demonstrate the effectiveness of 

these coordination mechanisms. 

1.1 Thesis Statement 

Traditional 3DUIs in immersive VR use simple and intuitive interaction paradigms derived from 

real world metaphors. But they can be limiting and ineffective when used in complex tasks with 

diverse requirements. Using seamlessly coordinated HUI or HVE systems, one can benefit from 

the complementary advantages of multiple heterogeneous interfaces, interaction techniques, and 

VE representations, and achieve better task performance and user experience, without being 

hindered by cognitive overhead introduced during context transitions. 

1.2 Technique 1: Force Extension 

Position and rate controls are the two most common ways to map input data to output variables. 

Imagine a user uses the swiping gesture on a touchpad to rotate a virtual sandbox. The position 

displacement of his/her finger on the touchpad is the input data. It can be mapped directly to rotate 

the sandbox by a certain degree, or indirectly to control the speed of its rotation until the finger is 

lifted. Position control is more accurate because of the one-to-one mapping, but suffers from 

repeated actions (clutching) when a long output range needs to be reached [Casiez08]. Rate control, 

on the other hand, covers longer ranges with reduced effort. However, since the user is controlling 

the speed, it is much easier to overshoot the target [Zhai93b]. 
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The first hybrid technique, Force Extension, strives to seamlessly combine position and rate 

control, so that the user can perform interaction tasks both accurately and efficiently [Wang13b], 

as shown in Figure 1.3. The key to achieving this goal is to coordinate the transition process 

between the two control mechanisms so that a seamless interaction flow can be preserved. Utilizing 

a force-sensing touch pad, two different algorithms, Context Force Extension and Shear Force 

Extension, were designed and implemented to transition fluidly between position-controlled touch 

input and rate-controlled force input. As the ForcePad supports separate force detection of multi-

finger input, this technique can also be applied to various multi-touch gestures, such as rotation 

and pinch zoom. Details of this technique, including results of a preliminary user study, will be 

presented in Chapter 2. 

  

Figure 1.3: The Force Extension technique extends position-controlled touch input to rate-controlled force 
input by scaling the contextual position input vector with the force value. 

1.3 Technique 2: Coordinated HVE Level Editor 

The second technique presented in this dissertation is an HVE virtual world editing system that 

incorporates a smart tablet into a traditional “HMD + wand” VR setup [Wang14]. Because the 

HMD is non-occlusive, the user is able to glance down under the bottom edge to view and interact 

with the tablet placed under his/her non-dominant hand. The idea of using interactive surfaces in 



7 

 

immersive environments was proposed in the early stages of 3DUI research, and has been 

developed over many years with the advancement of mobile phone/tablet techniques 

[Angus95][Bowman98b][Lindeman01][Wilkes12]. However, this tablet- and HMD-based HVE 

level editing system, as shown in Figure 1.4, has its novel contributions. 

 

Figure 1.4: The HVE level editor uses a tablet device to complement the limitations of the immersive 
interfaces by enabling interaction from an above-the-world “God” view. 

First of all, instead of being an auxiliary interaction tool, the tablet device is treated as a full-blown 

IC on the same level as the HMD and wand setup in the HVE system. It renders the virtual world 

completely on its own, and offers rich multi-touch gestures and a GUI interface to support effective 

level editing from a “God” view, which complements the limitations of the first-person interaction 

paradigm of traditional VR. In other words, the tablet IC can be a powerful standalone level editing 

tool even without the VR hardware. Secondly, with distinctly different IC setups comes high 

transitional cognitive overhead. To overcome this challenge and make the HVE level editor an 
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effective tool, four different coordination mechanisms are introduced, including task 

synchronization, mutual awareness, interface sharing, and IC blend-in. The first two are 

implemented in the current system, with task synchronization shown effective through a formal 

user study of virtual world editing tasks. Lastly, based on the iterative design and development 

process of the HVE level editor, a four-step process is proposed for building effective HVE 

systems. These support validation through task analysis, metaphor selection, IC component 

specification, and coordination mechanism implementation. The details of this work will be 

presented in Chapter 3. 

1.4 Technique 3: Object Impersonation 

To preserve an experience similar to being in the real world, most VR systems grant the user an 

avatar as his/her virtual self, and use it as a basis for VE presentation and 3D interaction. Based on 

this body-centric interaction paradigm [Slater94], the user can exploit proprioception [Mine97] to 

realistically and effectively navigate the virtual world through locomotion of the avatar [Usoh99], 

or select and manipulate virtual objects by simply grabbing them with his/her virtual hands 

[Poupyrev98a]. Normally, the user will not switch avatars, as drastic changes in spatial settings 

can cause confusion and disorientation, which in turn can hurt task performance and user 

experience in various applications [Lopez14]. However, there are still task scenarios that can 

benefit from interaction from an out-of-avatar perspective. For example, to center a spotlight 

precisely on a target requires delicate spatial rotation of the light source. If the user can somehow 

“impersonate” the spotlight, the task can then be completed easily by turning and looking at the 

target object himself/herself. Similarly, a user can select objects occluded by a wall by 

impersonating the wall and looking at the VE behind it. The third technique presented is therefore 
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called object impersonation, to indicate that the immersed user does not have to stay attached to 

his/her virtual avatar, but can select and impersonate virtual objects, and view and interact with 

the VE from their perspectives and reference frames, as shown in Figure 1.5.  

 

Figure 1.5: The object impersonation technique allows an immersed user to select and become an object 
to manipulate it from the inside, such as orienting a spotlight on a target by looking at the target from the 

light’s own point of view.  [Wang15]. 

Because directly replacing the virtual avatar with the object’s view can be confusing and 

disorienting, the object impersonation technique implemented in this dissertation chose to present 

both views in the form of two ICs. Specifically, it builds on the hardware system infrastructure of 

a tablet- and HMD-based HVE system as shown in Figure 1.5, and defines a new metaphor to 

correlate the two ICs. In other words, a user can use the wand to select a virtual object from the 

HMD view, and see and interact with the VE from its “impersonated” view on the tablet using 

multi-touch gestures. An alternative implementation was also experimented with by having the 

user select the object on the tablet from an exocentric perspective, to get a more immersive 

impersonation experience in the HMD IC. To validate the benefits of this new HVE metaphor, a 

formal user study was conducted to compare the two object impersonation implementations with 

a standard immersive VR setup for a six degree-of-freedom (DOF) manipulation task [Zhai93b]. 

An in depth discussion of study results and research findings will be presented in Chapter 4. 



10 

 

1.5 Summary 

VR is a technology with great potential, but has never been truly adopted by mainstream users into 

everyday life. Recent advances in HMD devices have made a good push to bring VR back into the 

sight of the public. Many people hope that these high-fidelity and low-cost HMDs will make this 

tide of VR ready for prime time. However, this goal can hardly be achieved if a practical, effective, 

and user friendly 3DUI still is still missing from the picture. Real world applications are filled with 

diverse and complicated tasks, and despite decades of research, it is still difficult today to find one 

3DUI to fulfill all needs. Yet, we do have many options that can deliver satisfactory performance 

and experiences in different sets of task scenarios. Therefore, I set the goal of this dissertation to 

joining complementary strengths of different interfaces and interaction techniques into more 

powerful hybrid interface systems, and successfully achieved it through designing, implementing, 

and evaluating four novel HUI and HVE techniques. The next three chapters of this thesis will 

present and discuss the details of each technique respectively. 
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Chapter 2: Force Extension 

Unlike the mouse and keyboard combination in desktop computing environments, immersive VR 

has not established a universal input device that can be used in most application scenarios. 

However, 3DUI designers do have a good arsenal of sensors and input devices to choose from 

when facing a specific set of task requirements. For example, leaning-based flying in 3D virtual 

spaces can be realized by either sensing the tilt angle of a board, or calculating the user’s center of 

gravity on it [Wang12b]. Similarly, to translate a virtual object in space, the user can move a 

motion sensor, drag a string-attached sphere, or push the outside of a fixed trackball [Zhai95].  

Based on the type of muscular feedback provided to the user, input devices can be categorized into 

isometric, isotonic, and elastic devices. The terms isometric and isotonic come from exercise 

physiology. An isometric contraction happens when there is tension on the muscle but no 

movement is made, causing the length of the muscle to remain the same [Zhai93b]. Most force-

sensing devices, such as the Wii Fit Balance Board, or the IBM TrackPoint, are isometric devices. 

On the other hand, in isotonic contraction, tension remains unchanged but the muscle’s length 

changes. Many free space input devices, such as the mouse, or the Polhemus magnetic tracker, are 

isotonic devices. Lastly, elastic feedback stands in between isometric and isotonic, giving the user 

increasing resistive force as the device is pushed further. Traditional joysticks, the Reebok Core 

Tilt Board [Wang12b], and a string-attached spherical sensor device [Zhai93b] both fall into this 

category.  

The efficiency of isometric, isotonic, and elastic devices depends a lot on the mapping mechanism 

being used. Based on the study results of a 6-DOF object manipulation task, Zhai summarized that 
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isotonic position control, isometric rate control, and elastic rate control have significantly superior 

performance than other combinations [Zhai93b]. Even so, the respective range and precision 

advantages of rate and position control are still separated, and thus hindering user performance in 

many interaction tasks. For example, recent 3D interfaces often integrate touchscreens or 

touchpads to support rich expressiveness of multi-touch gestures such as swipe, pinch, and 

rotation. But multi-touch input is isotonic, and the dominant mapping is for position control (e.g., 

swiping or pinch zoom). Like the mouse, multi-touch interfaces face the same challenges of greater 

user fatigue and degraded user performance when frequent clutching (the temporary recalibration 

to extend limited input space) is required. On the other hand, rate-control devices such as the IBM 

TrackPoint eliminate clutching, but tend to lead to overshooting of targets.  

Based on Zhai’s findings, research efforts have recently been investigating hybrid approaches, 

tapping the advantages of both position and rate control by augmenting the normal touchpad with 

a rate-controlled elastic edge [Dominjon05] [Kulik12]. Empirical studies of 2D pointing tasks have 

shown improved performance and user experience of such hybrid solutions in comparison to 

position control alone. However, these interfaces still have limitations. For example, to switch 

between position and rate control, the finger needs to constantly move back and forth between the 

center and the edge of the input space to activate different sensors. This discontinuous transition 

may break the interaction flow of the user and hurt performance even when complementary 

subtasks are assigned to both sensors. Additionally, as these devices were originally designed to 

expand the effect range of position-controlled pointing, they are not capable of combining position 

and rate control for multi-touch gestures such as pinch, rotation, or multi-finger swipe. 

Recent advances in touchpad development have enabled simultaneous position and force sensing 

of multiple touch points. For example, the Synaptics ForcePad in Figure 2.1 is a USB-connected 
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multi-touch force-sensing touchpad that detects up to five fingers of variable pressure, at 6-bit 

resolution and up to 1000g of force [Wang13b]. In essence, these devices provide a third input 

dimension that can be used to augment existing touch-based interaction techniques. And since 

force input is isometric, it can be ideally coupled with rate control to extend the output space of 

position-controlled multi-touch gestures.  

 

Figure 2.1: The Synaptics ForcePad detects variable pressure of up to five touch points (right picture 
taken from the Synaptics ForcePad demo program) 

Based on this idea, I developed two novel methods to seamlessly combine the two into a more 

efficient interface. The first approach, context-force extension, uses the finger movement in the 

previous position control mode as the context of the extension, preserving the user’s flow of 

interaction through a smooth transition between the two modes. On the other hand, by scaling 

micro-finger displacements with pressure input, the second approach, shear-force extension, 

successfully simulates shear force sensing [Harrison12], allowing the user to change the direction 

of rate-control movement without switching back to position-control mode. The rest of this chapter 

will present the design and implementation of the two methods, discuss their pros and cons based 

on the result of a preliminary user study, and demonstrate their usage in a 3DUI application. 
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2.1 Related Work 

The two most popular ways to map input to output are position control (zero order) and rate control 

(first order) [Zhai95]. Most pointing devices such as the mouse use position control. Previous 

studies comparing a mouse and a finger-controlled isometric joystick (the IBM TrackPoint) 

revealed the movement microstructure of both devices and concluded that the random variations 

in the velocity of the joystick make it harder to control [Mithal96]. However, when the input space 

of position-control devices is limited compared to the much-larger screen space, frequent 

“clutching” (i.e., the action to rewind the input space by lifting one’s hand to a previous input 

location) can cause low efficiency and high fatigue. Increasing the scaling factor of position-

controlled input (i.e., Control-Display gain, or CD gain) can reduce clutching, but a high CD gain 

can hurt performance [Casiez08]. Alternatively, the CD gain can be dynamically adjusted based 

on the velocity (i.e., the pointer acceleration technique [Jellinek90]) or the range (e.g., the Go-go 

interaction technique [Poupyrev96]) of the input. However, as far as we know, there is no 

published research showing the performance benefit of such techniques in comparison to standard 

position control with clutching [Jellinek90]. Zhai classified input devices into isotonic, isometric, 

and elastic. Through the study results of a 3D object manipulation task, it was found that isotonic 

devices were better suited to position control, and isometric and elastic devices should be used for 

rate control because of their self-centering properties [Zhai95]. 

Instead of clutching, the effect range of position control can be extended by rate control when 

position input reaches the limit of the input space. Examples include the Bubble technique 

[Dominjon05], the RubberEdge [Casiez07], and the GroovePad [Kulik12]. Based on the findings 

of Zhai, these interfaces all use isotonic devices for position input and switch to elastic rate control 
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at the edge of the input space. The Bubble technique simulates a spherical volume in physical 

space and visualizes it as a transparent sphere on the display. The movement of the input point is 

by position control within the volume and by rate control beyond the volume with elastic feedback. 

The RubberEdge technique identified a flaw in the mapping functions of the Bubble technique that 

created trajectory and velocity discontinuities at the transition point, and proposed a novel solution 

inspired by the physical movement of a dinner plate when pulled at the edge with a string. A user 

study was conducted for a 2D pointing task and results showed that RubberEdge outperformed 

position control by 20% when there was significant clutching [Casiez07]. The GroovePad 

[Kulik12] provides a hardware implementation of RubberEdge and studied its usability in pointing, 

panning, and dragging tasks. Although results indicated using GroovePad reduced clutching 

compared to a standard touchpad, performance failed to increase as users spent extra time deciding 

which mode to activate when using two input sensors for the same functionality. Hybrid 

position/rate-control techniques have also been used for other purposes. For example, the Magic 

Barrier Tape uses rate-controlled navigation to extend the walk-able space in VR [Cirio09]. 

There are two intrinsic limitations of these “push the edge” techniques that hindered them from 

delivering the full potential of hybrid position and rate control. Firstly, as shown in Figure 2.2a, 

since the rate-control region is on the edge of the input space, the user cannot smoothly transition 

to rate control immediately at point B when he/she realizes the target is out of reach. Instead, an 

unnecessary finger movement to point C is required. Secondly, as shown in Figure 2.2b, assuming 

the user has performed enough rate-controlled movement in the direction of BC to approach the 

aforementioned target without overshoot, he/she still has to do at least one clutch to point exactly 

to the target in order to use the position-controlled input space. These limitations create a transition 



16 

 

gap between the two modes, and impose high cognitive overhead on the user in comparison to 

simple position- or rate-controlled solutions.  

 

             (a)                                                                 (b)                            

Figure 2.2: Limits of existing hybrid position/rate-control techniques: (a) they can only trigger rate control 
at edges of position control; (b) the user needs to clutch to use position-control for precise control. 

Both limitations can be resolved using a force-sensing touchpad like the Synaptics ForcePad 

shown in Figure 2.1. As pressure-based rate control can be triggered at any time and any place on 

the touchpad, the user can transition from position to rate control immediately at point B. Also, 

because rate control started at point B, the extra space around point B can be used to finish the final 

touch when the target is approached, without having to lift the finger and rewind the input space.  

In general, pressure sensors can be added to any position-control device to provide an extra degree 

of freedom (DOF) for input. Ramos & Balakrishnan studied the human ability to perform discrete 

target selection tasks by varying a stylus’ continuous pressure, with full or partial visual feedback 

and different ways to confirm selection once the target is acquired [Ramos14]. One of the 

challenges of using pressure input on a touch surface, either through finger or stylus, is the potential 

interference between spatial x-y movement and pressure channels. In contrast, the movement of 

the mouse is much more stable and orthogonal to the control of pressure sensors attached to the 
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side of the mouse, allowing users to comfortably control up to 64 modes with a dual-pressure 

augmented mouse [Cechanowicz07]. Shear (tangential) force can also be sensed by pressure 

sensors attached to the four corners of a touch surface. When applying shear force, the finger does 

not perceptibly move but the skin of the finger pad shifts position slightly and provides the user 

with viscoelastic feedback [Lee12]. The potential of shear-force input has been demonstrated for 

mobile multi-touch devices through single-touch force gestures [Harrison12] [Heo11]. A recent 

user study investigated the user controllability of shear force to reach and maintain target force 

levels with regard to hand pose and direction of force input, and found that target-acquisition tasks 

using shear-force input follow Fitts’ law [Fitts54] and that users have more physical and perceived 

loads when applying shear force in the lateral direction [Lee12]. Small thumb-rolls have been 

found to be discernable from swipes in the definition of a gesture set for mobile input [Roudaut09]. 

However, to the best of my knowledge, there is no published solution that senses shear forces of 

multiple touch points, and the use of rate-controlled shear force to extend the effect range of 

position control is rarely discussed. 

2.2 Context-Force Extension 

To seamlessly transition from position-controlled touch to rate-controlled push, the context-force 

extension technique uses the touch input vector as the directional and scalar context to calculate 

the speed vector of rate-controlled movement. The transition between position and rate control is 

triggered by the force input crossing a threshold, which is set to 20 percent (200g) of the maximum 

force in my implementation. Taking single-finger cursor control as an example, Figure 2.3 and 

Equation 2.1 illustrate the transfer functions and the position/rate-control transitions of the context-

force extension mode step by step.  
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Figure 2.3: Step by step illustration of context-force extension 

                                            

                                            (Equation 2.1) 

 

When a touch-down gesture is detected, the base point is updated to P0, and all subsequent 

movement of the finger (the vector from the base point to the current point, P0P1) is scaled by a 

constant CD gain (c in Equation 2.1) to move the cursor by position control as long as the current 

force F1 is below the threshold Ft. When F1 exceeds Ft, rate control is triggered and the speed 

vector is calculated by scaling the previous position control vector (P0P1, as the context) with the 

force input beyond the threshold (F1 – Ft). The transition back to position control is triggered when 

F1 decreases to below Ft, while the base point gets updated to P1 so that the direction of future 
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rate-controlled movement can be changed without lifting the finger, allowing smooth transitions 

between position and rate control within one touch session. 

2.3 Shear-Force Extension 

During the iterative implementation of the context-force extension mode, it was discovered that 

when applying shear force on the touchpad, the detected position of the fingers shift slightly with 

the force variance. This “micro-finger displacement” provides a direction vector which can be 

combined with pressure input as the magnitude to simulate shear-force sensing. Figure 2.4 shows 

a step-by-step illustration of how shear force extension was implemented. 

 

 

 

 

Figure 2.4: Step by step illustration of shear-force extension 
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As shown in Figure 2.4, the base point is set to P1 when F1 exceeds Ft. Instead of scaling the 

previous position-control movement (P0P1) as the context of rate control, the shear-force extension 

mode tracks the micro-finger displacement (P1P2) and scales it with the force input beyond the 

threshold (F2 – Ft) and a constant factor c (to scale up the micro-finger displacement, this was set 

to 10.0 in my implementation) to calculate the speed vector.  

Preliminary tests confirmed that this mechanism was able to realistically simulate shear-force 

sensing of multiple active fingers in all directions. Because the base point is updated every time Fi 

exceeds Ft, the mechanism is also very tolerant of different use patterns, as some users tend to 

release the force when changing the shear-force direction while others do not. Nevertheless, it 

should also be mentioned that a potential problem exists at the third step. If the finger movement 

from P1 to P2 is inadvertently more than a micro displacement, the transfer function could produce 

a velocity much greater than expected. The speed vector can be clamped at a maximum but in 

future work, per finger calibration may be necessary to sample the possible range of the user’s 

micro-finger displacement. 

2.4 Application in Multi-Touch 3DUI 

Both force-extension modes can be applied to multi-touch gestures. For example, by averaging the 

pressure of multiple fingers and replacing the single finger position (P) with two-finger centroid, 

separation, or rotation data, multi-touch controls such as camera pan, pinch zoom, or camera orbit 

can be augmented using the same mechanism demonstrated in Figures 2.3 and 2.4. 

As a proof of concept, an application called the “Full Force Terrain Editor” was developed in 

which a single ForcePad is used to perform terrain surface editing as well as 3D camera 

manipulation as shown in Figure 2.5. The gesture definitions are listed in Figure 2.6. The 
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movement of the terrain brush, i.e., the cursor, is position controlled by single-finger touch. Single-

finger pressure controls how fast the terrain surface under the brush gets raised or lowered (if 

another finger is holding the bottom left corner of the touchpad). Force Extension is applied to 

camera orbit, pinch zoom, and camera pan for efficient camera manipulation. A gameplay 

mechanism was added to the application requiring the user to raise/lower the terrain surface to 

herd physics-based animal objects back to the farm. The application was developed in the Unity3D 

game engine using TUIO [Kaltenbrunner05] to communicate to the ForcePad driver. The game 

was demonstrated publicly at the student contest of ACM User Interface Software and Technology 

(UIST) in 2012, and received highly positive feedback. Participants commented that the terrain 

editing application made good use of the force-sensing feature of the touchpad, that the hybrid 

position and rate control was very easy to learn, and that it was very intuitive and efficient for 3D 

camera manipulation. 

 

 Figure 2.5: “Full Force Terrain Editor” uses the Synaptics ForcePad for terrain-surface editing as well as 
effective 3D camera manipulation with multi-touch “Force Extension” gesutures. 
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              (a)                                       (b)                               (c)                                 (d) 

Figure 2.6: Gesture definitions: (a) single finger raise/lower terrain surface; (b) two-finger movement orbits 
camera; (c) two-finger pinch zoom; (d) three-finger movement pans camera. 

2.5 User Evaluation 

A preliminary user evaluation was conducted with six users to collect their subjective feedback 

about using a single ForcePad for 3D camera manipulation tasks. A rough terrain was constructed 

with eight objects scattered around, each one with a three-digit number attached to it (Figure 2.7). 

The task was for the user to move to each of the objects and report the number verbally.  

 

Figure 2.7: (a) Terrain scene and (b) target object close up. 
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Five interface variations were constructed: three position-control-only interfaces with c (CD gain) 

empirically set to 200, 400, or 800 (for small, medium, and high CD gain, and referred to as 

“p200”, “p400”, and “p800” in later discussions), context-force extension with c = 200 (“c200”) 

and shear-force extension with c = 200 (“s200”). In a tutorial session, the experimenter 

demonstrated all interface variations, and encouraged the subjects to try out each mode and ask 

questions freely. In the study session, the subject completed the same task five times using the five 

different interface variations. No time limit was imposed, and the users were encouraged to think 

aloud as they searched. After each trial, users were asked for any comments, and after all the trials, 

they were asked to rank the interfaces. Of the position-control-only approaches, p400 was 

preferred most often, with p200 reported as requiring too much clutching, and p800 leading to too 

much overshoot. For all five interfaces, two users preferred c200, three preferred p400, and one 

preferred p800. Two users ranked c200 as the least preferable, but these users also commented that 

more practice might change their answers. Two users commented that they thought the rate-

controlled movement was counter to what they expected, meaning that they expected the scene to 

move in the direction of finger movement instead of the camera to move in the direction of finger 

movement. This is the well-known cognitive problem of viewport vs. content scrolling that is 

present in many tablet interfaces [Wang13b]. Providing a settable user preference for this is one 

solution used in many applications. Three users suggested the strategy of using force extension 

modes for large scale navigation, and low (200) to medium (400) gain position control when close 

to a target, and commented that Force Extension was most efficient when zooming out to the 

highest level. Finally, two users suggested that the c200 should have a higher gain (c) value, and 

that the force should be scaled using a fixed rate, rather than a rate based on the length of the recent 

position-control gesture. This might remove some of the confusion, and improve usability. 
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2.6 Summary  

With the advance of multi-touch technology, more and more 2D and 3D input devices will consist 

of multi-touch touchpads that can accurately sense the pressure of each individual finger. To take 

advantage of this new technology, this chapter presented two novel approaches to smoothly 

combine position and rate control for multi-touch gesture input. The transition to rate control is 

triggered whenever the averaged force input of all active fingers exceeds a threshold. The context-

force extension approach extends the most recent position-control movement using rate control, 

and the shear-force extension approach utilizes the fingers’ micro displacement after passing the 

threshold to simulate shear-force based rate control. By granting position control context to the 

rate-control extension, the former approach intensifies the user’s recent memory of the current 

interaction state, promising not only physically but also cognitively smooth transitions between 

position and rate control. On the other hand, the latter approach builds on the intuitiveness and rich 

expressiveness of shear-force input, allowing the direction of rate-control extension to be altered 

without switching back to position control. Although a carefully designed and formally conducted 

user study is still needed to draw definitive conclusions, the feedback from the preliminary user 

study already showed promising advantages of the Force Extension techniques. 

Thinking beyond multi-touch, what Force Extension enables is a way to fluidly combine two 

complementary control mechanisms to achieve improved user performance and experiences. Its 

success as a HUI technique has two important factors. First of all, the matches of isotonic touch 

input with position control, and isometric force input with rate control, have both been shown as 

optimal combinations [Zhai95]. However, their “optimal” aspects are different and conveniently 
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complementary to each other’s drawbacks. This not only makes a legitimate motivation to combine 

the two, but also sets up a good basis for the hybrid solution to create an even better result. 

Secondly, the two extension methods both preserve some connections between the two control 

mechanisms after transitions are made. The context-force extension technique does this by taking 

the previous position control vector into the rate calculation, and the shear-force extension 

technique scales the micro-finger displacement (small change in position) by the pressure value to 

simulate the shear force vector. Because the two modes are not clearly separated, the user is able 

to carry over his/her cognitive memory of the previous interaction state, and gradually adopt the 

new control mechanism through a continuous interaction flow [Wang Baldonado00]. These two 

guidelines of complementarity and coordination can be widely adopted in the design process of 

hybrid systems to build effective HUIs and HVEs. As a main theme of this dissertation, they will 

be emphasized again in the discussions of Hybrid and Coordinated Virtual Environments (Chapter 

3) and Object Impersonation (Chapter 4).  
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Chapter 3: Hybrid and Coordinated Virtual Environments 

As mentioned in Chapter 1, traditional 3DUIs in immersive environments are centered on the 

user’s virtual body and based on real world metaphors [Slater94]. Despite the realistic experience 

of grabbing and manipulating a virtual object using your hand [Poupyrev98a], or real walking 

[Zanbaka05] and flying [Wang12a] in the VE, they can still be just as confusing, limiting, and 

inefficient as in the real world [Stoakley95]. These limitations are especially evident when it comes 

to tasks with diverse requirements [Wang14]. For example, it is difficult to select and manipulate 

objects of different sizes, from multiple angles, and at different distances, without spending 

significant time and effort on navigation. Due to these limitations, successful application of VR in 

people’s everyday lives is still far from commonplace. 

One way to overcome the limitations of traditional 3DUIs is through HVE systems that offer 

multiple and complementary interactive representations of the same VE, each appropriate for a set 

of tasks. An example of an HVE system with multiple virtual world representations is the World-

In-Miniature (WIM) interaction technique, which renders an interactive miniature world in the 

non-dominant hand of the user to complement the immersive context with quick teleportation, 

range-less object selection, and large scale object translation [Stoakley95]. In addition to 

combining multiple virtual interaction elements, HVE systems can also consist of different 

physical interfaces. An often adopted approach is the combination of a tracked surface and a spatial 

input pen. The physical surface offers good affordance of passive haptic feedback [Lindeman99] 

and bimanual interaction [Guiard87], leading to enhanced performance of 2D tasks such as system 

control [Watsen98], symbolic input [Poupyrev98b], and map-based way-finding [Bowman98b].  
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The rapid progress of mobile device technology has inspired a recent research trend of offloading 

3DUI tasks to mobile phone and tablet devices, to take advantage of their growing computing 

power, high resolution, multi-touch touch screens, and various built-in motion sensors [Bornik06] 

[Song11] [Roberts12] [Wilkes12]. However, most of these techniques have been focused on very 

simple scenarios, where only one or two UI functions are assigned to the tablet to aid the primary 

spatial interface used in the immersive environment. And few studies have been conducted to 

investigate the overhead involved in transitioning between the multiple interface elements 

[Grasset08]. 

This chapter offers an in-depth presentation of an HVE level-editing system that aims to join the 

strengths of a tablet device and an HMD-and-wand-based immersive VR setup [Wang14]. Unlike 

previous research on tablet-based VR interfaces, in which a tablet is used as a tool supplementary 

to the primary spatial input device, the HVE level editor targets the tablet as a complete IC, which 

renders the entire virtual world on its own, and supports all 3DUI tasks through multi-touch 

gestures and 2D GUI elements. In addition, to reduce the perceptual, cognitive, and functional 

overhead [Dubois02] caused by complex 3DUI transitions across multiple ICs, a set of 

coordination mechanisms, featuring mutual awareness cues, input sharing, display blend-in, and 

3DUI task synchronization, is proposed.  

A user study was conducted to evaluate the effectiveness of task synchronization. The results 

suggest that task synchronization can lead to smoother transitions across ICs, and that user 

performance can be increased by using multiple complementary ICs in an HVE system. Finally, 

to summarize and extend the research contribution, a four-step design process is presented, which 

can be used to aid the design and implementation process of HVE systems, as well as their 

application in various appropriate task scenarios. 
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3.1 Related Work 

3.1.1 Tablet-Based 3D Interfaces 

Interactive tablets have been demonstrated as powerful tools for interaction in VR. The Virtual 

Notepad enabled handwriting using a stylus on a touchpad, providing an intuitive and effective 

interface to input symbols in immersive virtual worlds [Poupyrev98]. By displaying an interactive 

2D map on a tracked touchpad, early pen-and-tablet prototypes also made way-finding and travel 

efficient in cluttered indoor spaces [Angus95], as well as in large-scale outdoor scenes 

[Bowman98b]. The Personal-Interaction-Panel (PIP) proposed concepts of a hybrid approach for 

object selection and manipulation, system control, and interaction with volumetric data 

[Szalavári97]. The main idea was to augment virtual objects with 3D widgets and 2D GUI elements 

on the tablet, both of which could be interacted with using a stylus. A pen and a semi-transparent 

pad were combined to enable Through-The-Lens (TTL) interaction with the virtual contents 

displayed on a tabletop [Schmalstieg99a]. From a usability point of view, an empirical study of a 

UI manipulation task has shown that the bimanual interaction and passive haptic feedback offered 

by a physical surface held in the non-dominant hand can significantly increase precision and 

efficiency, as well as reduce fatigue [Lindeman99]. Based on these advantages, the design 

guideline of “dimensional congruence” was proposed, which advocates matching the 

dimensionality of the 3DUI tasks to that of the input devices [Darken05]. 

With no tethers attached, mobile phone and tablet devices can provide more flexibility than 

traditional pen-and-tablet interfaces. The use of mobile devices in VR has grown with the 

advancement of mobile technologies. Early work by Watsen et al. demonstrated a handheld 

computer used as an interaction device, which only contained simple 2D GUI widgets to aid system 
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control tasks in the VE [Watsen98]. As the computing power increased, researchers started to 

experiment with rendering interactive virtual objects on the screen of mobile devices, based on 

PIP [Bornik06] or TTL [Miguel07] metaphors. Recently, many mobile devices contain high-

performance, multi-touch touchscreens. To take advantage of this, various 3D interfaces have been 

proposed that combine multi-touch gestures with spatial tracking of mobile phones or tablets for 

object manipulation [Wilkes12], volume data annotation [Song11], and textual data visualization 

[Roberts12]. Furthering this trend, a different perspective was taken in the design of the HVE level 

editor, which treated the mobile device not as a supplementary tool, but a complete interaction 

system, with computing power, display technology, and interaction richness comparable to that of 

an HMD-based, immersive VR system [Kin11]. Compared to using mobile tablets as a simple 

input device, this new approach can inspire new design possibilities of HVE systems to handle 

complex and highly diverse interaction tasks more effectively in 3D spaces. 

3.1.2 Hybrid Virtual Environments 

The early seminal work of Feiner & Shamash defined the term HUI as interface systems that 

combine heterogeneous display and interaction devices in a complementary way to compensate 

for the limitations of the individual devices [Feiner91]. Rekimoto & Saitoh adopted the idea and 

developed the Augmented Surfaces system, which used several computers and display devices to 

form a continuous hybrid work environment [Rekimoto99]. Just as the Force Extension technique 

attempted to smooth transitions between different control mechanisms (see Chapter 2), HVE 

systems also strive to seamlessly integrate multiple representations of the same VE, in order to 

facilitate 3D interactions from different angles, scales, distances, reference frames, and 

dimensions. The multiple VE representations in HVE systems are often related based on some 

natural metaphor. For example, the WIM technique combines an egocentric and an exocentric 
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view of the virtual world through a “handheld miniature world” metaphor [Stoakley95], and has 

been adopted to unify the multiple ICs in the HVE level editor presented in this chapter. The 

Voodoo Dolls technique creates a second instance of a remote object in the local space following 

a well-known fictional metaphor [Pierce99]. The SEAMs technique defines a portal which can be 

traveled through, or reached into, to translate objects across two distinct spaces [Schmalstieg99b]. 

The Magic Lens technique adopts an x-ray see-through metaphor to offer different visualizations 

of the same virtual content side by side [Viega96]. 

HVE systems can also incorporate different physical interface components alongside the VE 

representations. As an example, the HVE level editing system presented in this chapter coordinates 

two VE representations contained in two ICs: a tablet device with multi-touch input and a 2D GUI, 

and an HMD-based VR system with wand input. Two closely related works are the HybridDesk, 

which surrounds a traditional desktop computer with a desktop VE display [Carvalho12], and 

SCAPE, which puts a see-through workbench display in the center of a room with projection walls 

[Brown06]. However, the former limited its ICs to exclusive 3DUI tasks, forcing the user to make 

unnecessary switches, and the latter mainly focused on view management, instead of rich 3D 

interactions. 

Much research work in transitional user interfaces and CVEs is also closely related to HVEs. 

Transitional user interface systems present multiple representations of the virtual world in a linear, 

time-multiplexed way [Grasset08]. The MagicBook is a classic demonstration of a transitional 

experience between an exocentric view of the VE in Augmented Reality (AR) to an egocentric 

view represented in immersive VR [Billinghurst01]. Many CVEs can be considered as HVEs with 

their multiple VEs assigned to different users. A well-known metaphor is the combination of a 

God-user and a Hero-user, who possess complementary views and reference frames in the shared 
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VE to aid each other towards a common goal [Holm02] [Wang13a]. The unique challenge of 

designing CVE systems is to ensure the collaborators are well aware of each other’s viewpoints 

and interaction intentions as tasks are carried out. Avatars and artificial cues have been found to 

be effective for this [Churchill98]. Finally, it is also possible to merge hybrid, transitional, and 

collaborative virtual environments together into a hybrid collaborative system, such as the VITA 

system [Benko04]. 

3.1.3 Cross-Context Transitions 

Compared to traditional VR, one main challenge for HVE systems is the perceptual, cognitive, and 

functional overhead induced by transitions across multiple virtual and physical components 

[Dubois02]. The challenge is also present in coordinated multiple view systems, where multiple 

views of the same dataset are generated and displayed to help the data analyst discover unforeseen 

patterns. The key to reducing the transition gap in these systems is to coordinate the visualizations 

of, and the interactions with, the multiple views [Wang Baldonado00]. For example, multiple 

views can be “snapped together” to better reveal their relationships and ease the gap between 

transitions [North00]. Multiple views of 3D data can also be linked [Plumlee03], or integrated 

through frame-of-reference interaction [Plumlee03]. Guidelines for view management have been 

provided to minimize the cognitive overhead of context switching [Wang Baldonado00]. 

Applications and study results have demonstrated improvements in user performance when 

coordination mechanisms are implemented [Ryu03] [Steinicke06]. Inspired by these findings, the 

remainder of this chapter presents four coordination mechanisms that can keep the complex 3D 

interaction transitions simple and smooth in the proposed HVE system. 
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3.2 Immersive Level Editing 

The early design and development of the presented HVE system was heavily influenced by the 

short concept film World Builder by Bruce Branit, as shown in Figure 3.1. The film centers on a 

man who builds a virtual world for his partner who is in a coma. The hospital where she is staying 

supports neuro-holographic input which allows patients to experience full-sensory virtual worlds. 

The building process begins with the man standing in an empty space, and building up a rich city 

scene by combining primitive geometric objects, positioning, scaling, and rotating them, applying 

textures, cutting and pasting objects, applying lighting effects, and more, all from within the world 

itself. During the world building process, the man uses many interaction techniques, such as hand 

gestures, image-based group selection, bimanual interaction, and hybrid hand + tablet selection 

techniques.  

 

Figure 3.1: The concept film World Builder (courtesy of Bruce Branit) 

Influenced by the rich and effective interaction metaphor demonstrated in the film, a goal was set 

to simulate the same experience using off-the-shelf technology. A prototype system called the 
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“DIY World Builder” was then designed, developed, and successfully demonstrated in the annual 

IEEE 3D User Interfaces Contest in 2013 [Wang13a]. As shown in Figure 3.2, my solution took 

advantage of the multi-touch input, advanced computing power, and high-resolution display of a 

modern phone/tablet device to render a highly interactive God-view representation of the VE that 

complements the traditional wand-based 3D interaction in the immersive virtual world.  

 

Figure 3.2: The DIY World Builder system uses a phone/tablet device with a “wand + HMD” VR setup. 

Based on the success of DIY World Builder [Wang13a], virtual world editing was finalized as the 

test bed to drive the design and study of the HVE system. It was selected for several reasons. First, 

level editing plays a key role in many real world applications, such as video game design, 

animation production, and urban planning. Second, many level-editing tasks feature diverse and 

complementary requirements, which makes them good candidates to adopt HVE approaches 

[Bowman98b] [Steinicke06]. Third, unlike the simple and monotonous tasks most VR studies have 

been designed for (e.g., travel from A to B [Zanbaka05]), level editing actually involves all 3DUI 

tasks (i.e., navigation, selection, manipulation, system control, and symbolic input) and combines 

them in various ways. This grants an opportunity to study complex 3D interaction transitions 
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across multiple ICs, and the overhead involved in the process. The following specific level-editing 

tasks were defined and implemented in the HVE level editing system: 

 Terrain height editing: The height of the terrain surface can be raised, lowered, or aligned 

to a pre-sampled height within the range defined using a circular terrain brush. 

 Terrain texture editing: The terrain surface can be painted with a selected texture using 

the terrain brush. 

 Foliage editing: Trees and grass can be planted on the terrain surface using the terrain 

brush. 

 Object geometry editing: Objects in the virtual world can be created, selected, 

manipulated, duplicated, and deleted. Manipulation includes translation on the terrain 

surface, rotation around the up-axis, and isometric scaling.  

 Object texture editing: The subparts of the objects, such as the roof of a house, can also 

be painted with different textures in customizable scales. 

 Time-of-day editing: Users can change the time of day, which affects the sunlight and the 

textures of the skybox. 

3.3 Interaction Context 

This section underscores the notion of an interaction context as an important concept in HVE 

systems. As discussed in Chapter 1, an Interaction Context (IC) is “a conceptual integration of 

input and output devices, techniques, and parameters, which offers the immersed user one 

interactive representation of the virtual environment”. HVE systems are formed by relating 
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multiple ICs under a unified metaphor. The metaphor defines the conceptual relationship between 

the ICs, making it more likely for the user to consider the overall HVE system as an integrated 

whole. Common HVE metaphors include WIM [Stoakley95], Portal [Schmalstieg99b] 

[Kiyokawa05], Voodoo Doll [Pierce99], See-Through Lens [Viega96] [Brown06], and 

Information Surround [Feiner91]. For the HVE level editor, WIM was selected as the metaphor to 

combine the exocentric “God” view with the egocentric first-person “Hero” view. An IC can be 

formed by specifying the following components: 

 Medium: The type of medium adopted by the IC on the reality-virtuality continuum 

[Milgram95], such as VR, AR, or mixed reality. 

 Display device: The multi-sensorial devices used to display the virtual world to the user’s 

sensory organs, such as HMD, CAVE [Cruz-Neira92], headphones, haptic stylus, etc. 

 Rendering technique: The technique used to render the virtual content to the display 

device (e.g., shaders for visual display). 

 Input device: The device(s) used to express commands, such as a data glove or a multi-

touch touch pad. 

 Interaction technique: The software that maps the input data to control parameters in the 

virtual world. For example, wand input devices usually use ray-casting based interaction 

techniques [Poupyrev98a]. 

 Perspective: The position, orientation, and other parameters of a virtual camera that 

determine the IC’s view of the virtual world. Immersive VR systems usually offer an in-

the-world, first-person perspective. 



36 

 

 Reference frame: The coordinate system that determines the perception of the virtual 

world and the effect of interaction. Egocentric (body-centered) and exocentric (object-

centered) are two reference frames commonly discussed in VR [Plumlee03a]. 

This list of components defines a taxonomy that can be used to categorize HVE systems. For 

example, the original WIM interaction technique includes two ICs [Stoakley95]. Both ICs use VR 

as the medium, and render their views of the VE in the same HMD, using a photorealistic shader. 

In addition, a buttonball prop is used in both ICs to interact with virtual objects, using a collision-

based pick-and-drop technique. However, the two ICs are different in their perspectives and 

reference frames. The immersive IC has an in-the-world, first-person view where all interactions 

are based on the user’s egocentric body, while the miniature IC adopts an above-the-world, God 

view with object-centered exocentric reference frame.  

Another example, the HybridDesk system [Carvalho12], features two ICs with more differences 

in hardware components. The immersive IC uses a desktop CAVE system as the display device, 

and a Wii Remote controller-based wand interface as the input device to do travel, object selection 

and manipulation in the virtual world. The desktop IC can be activated by bringing its display 

device, a regular desktop monitor, to the front of the user. It uses the standard mouse and keyboard 

as input devices to support efficient performance of system control tasks, such as selecting models 

from a hierarchical repository, or entering text to annotate 3D objects. The desktop IC is also used 

to bring selected virtual objects close to the user (i.e., creating a Voodoo Doll), to enable effective 

editing of small details from an exocentric reference frame. Both ICs use VR as the medium, and 

render the VE photo-realistically. The HVE level editor presented in this chapter incorporates an 

immersive IC and a tablet IC, whose components are specified in Table 3.1. 
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Table 3.1: The IC components of the HVE level editor 

Components Immersive IC Tablet IC 

Medium Virtual reality Virtual reality 

Display device HMD, fans Tablet screen 

Rendering 

technique 
Photorealistic Photorealistic 

Input device 6-DOF wand & head tracker Touch screen 

Interaction 

technique 
Ray-casting & button based 2D GUI & multi-touch gestures 

Perspective  In the world Above the world 

Reference 

frame 

Egocentric  

(body-centered) 

Exocentric  

(object-centered) 

 

3.4 Immersive IC 

As shown in Figure 3.3a, an eMagin Z800 HMD is used to display a first-person, in-the-world 

view of a photorealistic VE, with a 60-degree horizontal field-of-view (FOV). The HMD utilizes 

two 800x600 OLED screens to render mono-scopic images to both eyes with a 40-degree diagonal 

FOV. It is tracked in six degrees of freedom (DOF) using the PhaseSpace motion capture system. 

A constellation of four active LED markers is attached to the top of the HMD and tracked by 

sixteen cameras surrounding an octagon-shaped cage space, with the user seated in a swivel chair 

in the center. Since the HMD is non-occlusive, the user is able to see the display in the center of 

his/her field of view, as well as look at the screen of the tablet by gazing down below the bottom 

edge of the HMD. While the user is traveling, a group of fans corresponding to the direction of the 

locomotion is turned on, and blows wind at a constant speed to enhance the sense of motion in the 

virtual world. 
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Figure 3.3: The hardware setup (a), the floating menu (b) and terrain brush (c) of the immersive IC in the 
HVE level editing system. 

A wand interface is provided to the dominant hand of the user to enable 3D interaction in the 

immersive VE. The wand is made by attaching a 6-DOF tracking constellation to a Wii Remote 

controller. 3DUI tasks are performed by pointing the wand and pressing buttons to issue 

commands. To navigate within the VE, the user can point the wand in different directions, and 

press down the D-pad buttons to travel in that direction at a constant speed. To preserve a realistic 

feeling, virtual locomotion is always constrained to the ground, but the swivel chair gives extra 

flexibility to point the wand easily in all directions.  

As listed in Section 3.2, the user can perform a set of level editing tasks in the VE. To select an 

editing mode, the user can call out a floating menu as shown in Figure 3.3b, by holding down the 

“home” button on the Wii Remote controller. The tile pointed to by the wand is highlighted, and 

the corresponding editing mode is selected upon release of the “home” button. In the modes of 
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terrain shape, texture, grass, or tree editing, a ray is cast from the tip of the wand to the intersection 

on the terrain surface, and a circular terrain brush is visualized to indicate the effective range. The 

size of the terrain brush can be changed using the “+” and “-” buttons on the wand controller. The 

“A” and “B” buttons have opposite effects. The former is used to raise, align, and plant trees and 

grass, while the latter is used to lower, sample, and remove trees and grass. In object editing mode, 

the objects in the VE, such as houses, can be selected by ray-casting and pressing the “A” button, 

or deselected by pressing the “B” button. Objects are highlighted in light blue when being pointed 

at, and in bright blue when actually selected. Once selected, the user can drag the object on the 

terrain surface by holding the “A” button, rotate it around the up-axis by pressing the left and right 

buttons on the D-pad, or scale it by pressing the “+” and “-” buttons. Lastly, the user can paint 

subparts of the virtual objects with different textures, as well as change the scale of each texture.  

3.5 Tablet IC 

Figure 3.3a shows a user wearing a Google Nexus-7 tablet on his left forearm, and resting it on an 

armrest to reduce fatigue. To leverage bimanual interaction [Lindeman99], the user is asked to 

hold the wand interface temporarily in the left hand, or place it between the legs, and use the right 

hand to apply multi-touch gestures to the touch screen. The interface on the tablet is illustrated in 

Figure 3.4. It consists of a three-tier GUI menu, a WIM view of the VE, and a shortcut bar. The 

top tier (1) is a tool bar for switching between the general editing modes. The tool bar at the second 

tier (2) displays further sub-modes, such as height, texture, grass, and trees for terrain editing. 

Based on the selection in the first two tiers, the third tier (3) shows specific GUI elements that can 

be used to perform the current task, such as a slider to resize the terrain brush, a selection grid to 

choose a type of grass to plant, and a broom button to clean grass from the terrain. Note that the 
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immersive IC and the tablet IC each have their own terrain brush, so that terrain editing can be 

performed at different scales.  

 

Figure 3.4: The tablet IC used to edit the VE from the God view 

To the right of the third-tier panel, an above-the-world, photorealistic, third person view of the VE 

is presented (4), whose camera has a 60-degree horizontal FOV in the VE, and can be manipulated 

using multi-touch gestures. These include a pinch gesture for zooming, a rotate gesture for orbiting, 

a two-finger all-direction swipe gesture for panning, and a three-finger up-and-down swipe gesture 

for pitch control. The one finger tap and swipe gestures are reserved for level editing, such as 

painting the terrain, or dragging an object on the terrain surface. The functionality of the shortcut 

buttons (5) will be discussed later. 

Regarding the software implementation, the HVE system was developed using the Unity game 

engine as a multi-player game running separately on the desktop and the tablet platforms. The 

hardware devices of the immersive IC are connected to the desktop computer through USB and 

Bluetooth connections. The input data from the PhaseSpace motion capture system and the Wii 
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Remote controller are collected and streamed to the game process through VRPN [Taylor01] and 

the Unity Indie VRPN Adapter (UIVA). Both the desktop and the tablet simulate the VE locally, 

and keep each other synchronized by sending UDP data streams and RPC calls over a local WiFi 

network. This way, both ICs can run the game at a steady 30 frames per second, and editing 

performed in one IC can be propagated to the other IC in real time, giving the user a convincing 

experience that they are viewing and interacting with the same virtual world, only from two 

different perspectives. 

3.6 Coordination Mechanisms 

The advantages of the two ICs can complement each other to support diverse tasks efficiently. For 

example, a fast way of moving a small object across a long distance in the VE is to select the object 

in the local space using the wand, and drag it to the destination using the tablet. However, such 

processes involve frequent switches between the ICs, and the mental overhead of adapting to 

different IC components cannot be overlooked. The challenges to create smooth transition 

experiences in the HVE level editor are further illustrated in Figure 3.5, in which each level-editing 

task is decomposed into a set of basic 3DUI tasks.  

As shown in Figure 2.5, the user’s virtual world editing workflow may start with any low-level 

3DUI task in one IC and end with another task in a different IC. During transitions, the user needs 

to understand the relationship between the two VE representations, and adapt to distinctly different 

display devices, input devices, interaction techniques, reference frames, and perspectives. To 

reduce this transition gap, I propose the following four different coordination mechanisms. 
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Figure 3.5: The four different coordination mechanisms aimed to smooth the complex cross-task, cross-IC 
transitions in the HVE level editor. 

 Task synchronization: In coordinated multiple view systems, the multiple data views are 

often implemented to be consistent during user interaction [North00] [Plumlee03b] [Wang 

Baldonado00]. Similarly, the effect of low-level 3D interaction (e.g., travel, way-finding, 

selection, manipulation, system control, and symbolic input [Bowman04]) in one IC should 

also be propagated to all other ICs, to avoid interrupting the user’s workflow during 

transitions. For example, when a user changes to object editing mode (i.e., system control) 

and selects an object using the wand (i.e., selection), the tablet should also update to the 

same mode and select the same object, so that the user can directly continue to manipulate 

this object after changing the IC. Without synchronization of the low-level 3DUI tasks, the 

user’s work would be interrupted, forcing her to repeat actions. 

 Display blend-in: The change of display device can cause perceptual discrepancies 

between ICs due to differences in screen size, resolution, brightness, and other parameters. 

Using mixed reality technology [Bruder10], the image of one IC's display device can be 
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embedded into another IC’s view to reduce this discrepancy. For example, compared to 

viewing the tablet screen from the peripheral vision, a better experience may be provided 

by tracking and rendering a virtual tablet in the HMD view, in place of the physical tablet 

itself. 

 Input sharing: Some generic input devices, such as the mouse and keyboard, can be 

effectively used in multiple ICs [Benko04]. For example, a similar HVE system can be 

formed using a desktop computer and a tablet. In this situation, the mouse and keyboard 

could be efficient tools for controlling both the first-person view on the monitor and the 

God view on the tablet. The system could even incorporate an eye tracking device to detect 

the user’s gaze, so that the mouse and keyboard input events could be directed to control 

the IC being currently looked at. Sharing input among ICs may not only reduce the mental 

overhead of transitions between interfaces, but also the physical effort of switching 

between devices. 

 Mutual awareness: Research in CVE systems has stressed mutual awareness as the key 

to efficient human collaborations in VR [Churchill98] [Holm02]. This rule can also be 

applied to HVE systems where different views are assigned to the same user. By knowing 

the whereabouts of the other view and the status of its interfaces, the user can better 

determine when to make the IC transition, and be more prepared to adapt to the new IC 

once the transition is made. Examples of effective mutual awareness cues include avatars, 

viewing frusta, pointing rays, and editing brushes. 

Of the four coordination mechanisms, task synchronization and mutual awareness cues have 

been implemented in the current version of the HVE level editor. Figure 3.6 shows an example 
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of the implementation in object-editing mode. The ultimate goal of this mode is to properly 

arrange virtual objects in the scene, through manipulation of the objects’ positions, 

orientations, and scales. Manipulation is preceded by enabling object-editing mode (system 

control), moving to an appropriate spot (travel), and selecting the object (selection). 

 

Figure 3.6: An example of task synchronization and mutual awareness cues implemented in the HVE 
level editor to achieve seamless IC transitions in object selection and manipulation tasks. 

By default, the effect of object manipulation is synchronized between the two ICs, as the VE needs 

to look the same on both displays. However, synchronization of the preceding steps is optional, 

and very much dependent on the level of multi-tasking a hybrid system aims to support. I 

hypothesize that by synchronizing the effects of all 3DUI basic tasks, the working-memory 

demands required to keep track of the status of 3D interactions across ICs can be effectively 

reduced, leading to better task performance and user experience. Thus, task synchronization was 
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implemented, with the goal of minimizing the mental overhead during transitions between the ICs. 

As illustrated in Figure 3.6, changing the editing mode or selecting a virtual object in one IC is 

always automatically synchronized to the other IC. 

The virtual location of the God and Hero viewpoints are also synchronized by enabling teleporting 

of the Hero avatar. Teleporting the user’s Hero avatar to the field of the God view is done manually 

with the tap of a shortcut button (1) on the tablet, as previous research has indicated that constantly 

changing an immersive view can cause disorientation and even motion sickness symptoms 

[Stoakley95]. To synchronize the God view with the space surrounding the Hero avatar, the user 

can either tap a button (2) to focus the God camera on the Hero avatar, or switch a toggle (3) to 

enable/disable the God camera to follow the Hero avatar as the user travels around the VE in the 

immersive IC. 

3.7 User Study 

3.7.1 Preliminary User Study 

The prototype “DIY World Builder” system was tested in a preliminary user study. The subjects 

were introduced into a blank virtual world with only a flat terrain, and asked to build a level to 

their liking. They were free to ask questions and give comments during the exercise. Task 

synchronization and mutual awareness were always enabled, and the subjects were able to try out 

all level editing tasks listed in Section 3.2. Four users, including one expert, participated in the 

study. The subjects had no prior experience using immersive VR technology, but were all everyday 

smart phone users with significant experience in multi-touch gestures. The expert user was a 

college student majoring in game design, and used the Unity3D game engine to do level design on 

a daily basis.  
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Two sample worlds built by the users are shown in Figure 3.7. The duration of immersion ranged 

from 45 to 90 minutes, and feedback was generally positive. All of the users said they would have 

liked to continue, and that the system was fun to use. Interestingly, fatigue was not mentioned as 

an issue during the sessions. The user comments were separated into two categories: feature 

requests and system improvements. In terms of feature requests, the ability to undo and redo 

actions, and save and load created worlds were the most common system control features that were 

requested. One user asked for a way to smooth the terrain better, and the ability to resize trees was 

requested by three users. Two users asked for more objects, such as leaves, rain, and fish, and the 

ability to change the water color. 

 

                                            (a)                                                                               (b) 

Figure 3.7: Virtual worlds created by novice (a) and expert (b) users in the preliminary user study. 

Regarding system improvements, two users commented that changing the focus from the tablet to 

the HMD breaks presence and interrupts the flow of interaction, which motivated the four 

coordination mechanisms proposed in Section 3.6. One user also requested a “sample” tool, 

whereby objects, colors, or textures currently used in the scene could be sampled, and then applied, 

which would speed creation of similar objects. The user feedback informed the next iteration (see 
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Section 3.4, 3.5, and 3.6), which was formally evaluated in a larger scale user study, with 

hypotheses focused on transition continuity between the immersive and tablet ICs. 

3.7.2 Hypotheses 

Our HVE system aims to combine the strengths of an immersive VR setup and a multi-touch tablet 

device. Being inside the virtual world, the user can better understand the space, judge scales of 

objects, and do manipulation of finer details [Holm02]. Meanwhile, from the God view, the user 

can better navigate the VE, investigate the overall layout, and perform large-scale manipulations 

[Stoakley95]. The two ICs are unified under the WIM metaphor, and coordinated through mutual 

awareness cues and task synchronization. Based on these analyses, the following hypotheses were 

made: 

 H1: Having the effects of basic 3DUI tasks synchronized between the ICs can make the 

transitions more continuous, and lead to better task performance and user experience. 

 H2: The users are able to learn the HVE system despite its complexity, and use both ICs 

to handle tasks with diverse requirements. 

 H3: The users are able to decompose a complex, high-level task into a series of basic 3DUI 

tasks, and find step-by-step strategies to efficiently leverage the complementary benefits 

of both ICs. 

H2 and H3 are trying to capture higher-level processes, such as user behavior, as opposed to low-

level, performance-based claims. These unconventional research hypotheses were made with a 

strong belief that 3DUI research is now at a stage where this level of assessment is possible and 

necessary. As will be shown in Section 3.7.4 and 3.7.5, various approaches were used to assess 
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these unconventional hypotheses, including post-questionnaires, subject interviews, and video 

capture of task performance. 

3.7.3 Formal User Study 

An initial task design was first experimented with in a pilot study, where subjects were asked to 

duplicate a pre-built virtual scene in an empty space from scratch. This design was rejected after 

testing with two subjects, who got lost quickly with too much freedom and too many options to 

build a relatively complex virtual world. Therefore, a different approach was taken in the actual 

study. Instead of building a virtual world from scratch, the study presented the subjects an 

unfinished virtual world (see Figure 3.8), and asked them to find and fix five different types of 

design flaws in the VE as quickly and precisely as possible: 

 Fix mountain textures: Paint the mountain sides with rock, the mountain top with snow, 

the platform with dirt, and the ground with grass textures. 

 Match trees and flowers: Plant flowers under each tree, and plant a tree on each patch of 

flowers.  

 Clear foliage in rivers: Remove trees and grass in the rivers. 

 Correct houses: Edit the terrain surface to make the houses stand on flat ground. Scale the 

house and the roof textures to realistic sizes. 

 Collect cubes: Collect small cubes spread around the virtual world, and bring them close 

to a large cube. 

This applied task approach was chosen for several reasons. First of all, based on natural metaphors, 

the design flaws were clear to identify, and the goals easy to understand and remember. Secondly, 
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compared to building a VE from scratch, fixing existing design flaws takes less time to complete, 

making the threats such as user fatigue and motion sickness much more manageable. Thirdly, to 

complete the tasks efficiently, the subject needed to take different angles, interact at different scales 

and reference frames, and use different interfaces. This encouraged the subjects to learn both ICs, 

and explore different ways to use their complementary advantages. Finally, the tasks made it 

possible to study both between-task and within-task IC transitions. As an example of between-task 

transitions, the user could plant flowers and trees using the wand, followed by riverbed foliage 

cleanup using the tablet. As an example of within-task transitions, the cube collecting task could 

be done by searching for the small cubes on the tablet, teleporting the Hero avatar close to the 

cube, selecting it with the wand, and dragging it to the destination using the tablet again. 

 

Figure 3.8: The study task is to fix five types of design flaws in an unfinished VE. 

The study employed a within-subjects approach to compare the HVE level editor with and without 

task synchronization (indicated by green lines in Figure 3.6). The study began with the subject 

reading and signing the consent form approved by the institutional review board (IRB). The subject 
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then answered a demographic questionnaire that asked about gender, age, and handedness, as well 

as experiences with immersive VR, multi-touch devices, multi-screen devices (e.g., the Nintendo 

WiiU), real-time strategy games, first-person shooter (FPS) games, first-person world building 

games (e.g., Minecraft), and 3D modeling software, in a range from one to six (one for “Never” 

and six for “Everyday”).  

The subject was then introduced to the hardware used in the study, including the HMD, the wand, 

the tablet, and the fans. While having the freedom to swivel the chair, the subject was asked to stay 

in the center of the cage, to keep the best tracking quality of the motion capture cameras. The 

experimenter also explained the five world-fixing tasks as illustrated in Figure 3.9. The subject 

then put on the equipment, and learned the interfaces and the tasks in a 20-minute training session. 

Because the system supported multiple ways to perform the same tasks, the experimenter first 

explained all approaches, using either the wand or the tablet, in a training session. The VE used in 

this session had the five types of design flaws and the goals shown side by side as in Figure 3.9. 

After the training session, the subject took a five-minute break, and then continued through two 

experimental conditions, each of which had one trial of world editing tasks. The conditions were 

presented to the subject in counterbalanced order, and only one of them had task synchronization 

enabled. To get used to the HVE system with different configurations, the subject spent eight 

minutes in a practice scene prior to each trial. In each trial, the subject had up to 15 minutes to fix 

the virtual world, but could end the trial early if they felt all design flaws had been addressed.  
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(a) 

 

(b) 

Figure 3.9: The five types of design flaws were shown side-by-side to the subjects. Images with Red 
borders (a) need fixing, and those in Blue (b) show them fixed. 

After completing both conditions, the subject was asked to fill in a questionnaire to compare the 

HVE level editor with and without task synchronizations enabled, and to rate them on a one to six 

scale regarding questions such as efficiency, ease of learning, ease of use, smoothness of IC 
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transitions, understanding of spatial relationship between ICs, time and mental effort to adapt to 

new ICs, and level of integration. At the end, the subject was interviewed to indicate any perceived 

perceptual, cognitive, and functional disconnections between ICs, and to give comments about the 

benefits and drawbacks of having multiple ICs and the effectiveness of task synchronization. 

With approval from the IRB, 25 WPI students were recruited with no remuneration. Only one 

subject dropped out of the study because of motion sickness, and commented that the visual change 

from spinning the chair made him uncomfortable. Of the 24 subjects who successfully completed 

the experiment, 18 were males and six were females. Only one subject was left-handed. Their ages 

ranged from 18 to 34 years (mean = 22.8, SD = 4.2). Their experiences with VR ranged from 1 to 

6 (mean = 3.9, SD = 1.5), multi-touch devices from 2 to 6 (mean = 5.5, SD = 1.2), multi-screen 

devices from 1 to 4 (mean = 2.1, SD = 1.2), real-time strategy games from 1 to 6 (mean = 2.9, SD 

= 1.4), first-person shooter games from 1 to 5 (mean = 3.2, SD = 1.4), first-person world building 

games from 1 to 5 (mean = 1.9, SD = 1.2), and 3D modeling software from 1 to 4 (mean = 1.9, SD 

= 1.0). These demographic data were used in correlation analyses with the subjects’ task 

performance and questionnaire responses, and will be presented in the next section. 

3.7.4 Results 

At the end of each trial, the system recorded the total time spent, and saved the edited VE into a 

data file. All VE data files were then reloaded and independently rated by the experimenter and an 

external anonymous reviewer, to evaluate the editing quality and the level of completeness of the 

end-result VE. The rating process involved comparing the completed VE with a snapshot of the 

sample VE, and grading each subtask following the rubric detailed below, adding up to a maximum 

possible score of 100 points. 
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 Fix mountain textures (25 points): Paint the mountain sides with rock (7 points), the 

mountain top with snow (7 points), the platform with dirt (4 points), and the ground with 

grass textures (7 points). 

 Match trees and flowers (18 points): Plant flowers under each tree, and plant a tree on 

each patch of flowers. Each of the six trees in the VE was worth 3 points. 

 Clear foliage in rivers (12 points): Remove trees (6 points) and grass (6 points) in the 

rivers. 

 Correct houses (25 points): Edit the terrain surface to make the houses stand on flat 

ground (8 points). Scale the house (8 points) and the roof textures to realistic sizes (9 

points). 

 Collect cubes (20 points): Collect small cubes spread around the virtual world, and bring 

them close to a large cube. Each of the five cubes in the VE was worth 4 points. 

The inter-rater reliability was evaluated using Pearson’s correlation analysis and the result showed 

high agreement (R = 0.92). As indicators of task performance, the task time, task score, and score-

per-minute of the two conditions were compared using two-sided, paired t-test, with a threshold of 

0.05 for significance. Score-per-minute was calculated by dividing score by time, and used as a 

measure of user efficiency. As indicated in Figure 3.10, subjects spent less time, and achieved 

higher task completeness, with task synchronization. The results are statistically significant for 

score-per-minute (p = 0.02), and showed trends for task time (p = 0.08) and score (p = 0.07).  
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Figure 3.10: The analysis results of task performance indicators. 

A Pearson correlation analysis was performed between these task performance measurements and 

the subjects’ demographic information, with a special interest in their prior experience with related 

hardware and software applications. Although no very strong correlation was discovered (all 

correlation coefficient values were below 0.7), an interesting trend was found, showing 

correlations between the performance measures and the subjects’ prior experience in video games, 

FPS games, and world building games, were much stronger when task synchronization was 

enabled. Specifically, the inverse correlation coefficient values in “Sync” and “No-Sync” modes 

were -0.61 and -0.25 respectively between video game experience and task time, -0.53 and -0.19 

between FPS games and task time, and -0.51 and -0.16 between world building games and task 

time. Similarly, the coefficient values in “Sync” and “No-Sync” modes were 0.55 and 0.27 

respectively between video game experience and score-per-minute, 0.51 and 0.23 between FPS 

games and score-per-minute, and 0.56 and 0.67 between world building games and score-per-

minute. In other words, subjects’ expertise predicted their performance with the “Sync” condition 

but not the “No-Sync” condition. With more experiences dealing with complex spatial and multi-

view tasks, expert users can benefit more from the “Sync” condition than non-expert users. 
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The six-point rating scores of the two conditions were analyzed using two-sided Wilcoxon signed-

rank tests with a threshold of 0.05 for significance on all questions. As indicated in Figure 3.11, 

the HVE system with task synchronization was considered to be more efficient, easier to learn, 

and easier to use, and the transitions between ICs smoother, and less time and mental effort 

demanding.  

  

Figure 3.11: The analysis results of subjective rating scores. 

In addition, the subjects felt the task synchronization mechanisms made it easier to understand the 

spatial relationship between the two VE representations, and the ICs were better integrated in the 

HVE system. All results were statistically significant (p < 0.01). Pearson correlation analyses 

between the rating scores and the subjects’ prior experiences were also performed, however, no 

strong correlation coefficient was identified. 



56 

 

3.7.5 User Feedback 

In the interview, the experimenter explained the definitions of perceptual, cognitive, and functional 

transition overhead [Dubois02], and asked the subjects whether they experienced any of such 

disconnections between the ICs when the transitions were made. The summary of their answers 

indicated better transitional continuity when task synchronization was enabled. The number of 

subjects who reported disconnected experiences, comparing “Sync” with “No-Sync,” were six and 

11 for perceptual disconnection, one and seven for cognitive disconnection, and two and 16 for 

functional disconnection. 

Table 3.2: The summary of comments on “disconnected interaction experience” 

Sync No-Sync Comment about “disconnection” 

6 11 Perceptually disconnected experience. 

1 7 Cognitively disconnected experience. 

2 16 Functionally disconnected experience. 

 

For the “Sync” condition, eight subjects complimented the synchronization of the editing mode, 

for emphasizing strong connection between the ICs, and making sure the non-active IC always 

kept up with the user’s workflow in the active IC. The travel synchronization buttons on the tablet 

(teleport, focus, and follow) also had significant contributions to the smooth transition experiences, 

according to eight subjects who claimed that “the two views were spatially connected with these 

buttons” and that “the appropriate camera view was always available at hand when I tapped these 

buttons.” Synchronization of selected objects was also liked by four subjects, as it enabled 

effortless within-task transitions, such as picking up a small cube using the wand and dragging it 

across the virtual world on the tablet screen. 
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Table 3.3: The summary of comments on about the “Sync” mode (“+” indicates positive comment) 

Sync Comment 

8 + System control synchronization ensures smooth workflow. 

8 + Travel synchronization makes transition smooth. 

4 + Object selection makes within-task transition effortless. 

 

For the “No-Sync” condition, seven subjects felt the ICs were disconnected, and the overall HVE 

system was confusing and awkward to learn and use. Because the editing mode and the selected 

object did not get updated in both ICs, the subjects had to keep track of their individual status, and 

repeat actions they already took before the transitions. Four subjects even gave up using both ICs, 

and stayed with one interface throughout the trial. Six subjects complained about the absence of 

travel synchronization, which required more manual navigation, and separated the perceptions of 

space in the two VE representations. However, because the interaction states are different between 

the two ICs in the “No-Sync” mode, four subjects did point out its advantage to enable 

simultaneous performance on two different tasks and/or in two different spaces.  

Table 3.4: The summary of comments on about the “No-Sync” mode (“-” indicates negative comment) 

No-Sync Comment 

4 + Can work on different tasks or in different spaces simultaneously. 

7 - Confusing and awkward to learn and use. 

4 - I gave up using both ICs and just stayed with one. 

6 - Too much manual navigation without travel synchronization. 

 

When asked about preference of ICs in “Sync” mode, 22 subjects preferred to use both ICs, two 

subjects preferred tablet only, and no subject selected VR only. Different answers were given in 

the “No-Sync” mode, with nine for both ICs, four for tablet only, and 11 for VR only. In other 
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words, subjects preferred using both ICs with task synchronization, but staying with one IC 

without it. 

Table 3.5: The comparison of IC preferences in “Sync” and “No-Sync” modes 

 Both Tablet-only VR-only 

Sync 22 2 0 

No-Sync 9 4 11 

 

The subjects were also asked to give general comments about the HVE level editor. Eleven subjects 

appreciated the complementary benefits offered by the heterogeneous views and interfaces. They 

suggested 2D tasks (e.g., painting and menu control), long distance navigation, and large scale 

manipulation to be performed on the tablet, and 3D tasks (e.g., object selection and scaling), local 

space locomotion, and small scale adjustment to be performed using immersive VR. Having 

redundant functionality on both ICs was acknowledged by two subjects, for it granted them 

freedom to perform the tasks differently in different situations. Lastly, suggestions to improve the 

HVE level editor were given in the interviews, such as undo and redo (three subjects), ambient 

sound and sound effects (two subjects), teleport in VR (three subjects), flying in VR (two subjects), 

showing a virtual tablet in the HMD (one subject), and combining the wand and tablet into a single 

interface like the Nintendo WiiU controller (one subject). 

3.7.6 Video Analysis 

To understand how the subjects used the two ICs, video footage of the experiment trials was 

captured from three sources. A web camera was mounted on the ceiling to capture the subject from 

the top, and screen capture software was installed on the desktop computer and the tablet to capture 

from both screens. The three streams of video footage for each trial were then merged, timeline-
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synchronized, and analyzed. The videos showed that subjects were able to connect the two views 

in the shared 3D space, and take advantage of both ICs for different tasks. For example, after 

painting the mountain with the wand, many subjects immediately switched to the tablet, located 

the river near the mountain, and continued to clean the foliage in it. With task synchronization, the 

subjects did not need much time to plan such sequences of transitional actions, and were able to 

execute them smoothly. On the other hand, although all subjects eventually adapted to the absence 

of task synchronization, many of them expressed confusion and awkwardness at repeating actions 

that had already been done, and some even made a few mistakes when they lost track of the ICs’ 

individual statuses. The videos also showed that subjects made fewer transitions without task 

synchronization. They grouped all appropriate tasks for one IC, and completed them before 

changing to the other IC.  

There was also no within-task transition for the cube collecting task in “No Sync” mode. Many 

subjects chose to stay with the wand, and traveled long distances to carry the cubes to their 

destinations. This is probably because they had to reselect the same cube on the tablet, which was 

why the wand was used in the first place. In contrast, several subjects were able to discover some 

efficient strategies to leverage both ICs with task synchronization enabled. For example, three 

subjects completed the cube collecting task quickly by using the tablet to teleport the Hero avatar 

near a small cube, selecting it with the wand, teleporting with the tablet again near the destination, 

and dropping the cube. Another interesting approach was taken by two subjects, who positioned 

the Hero avatar near the destination, and used the wand to drop cubes that had been selected using 

the tablet from a zoomed-in view.  

It is also evident that subjects only made transitions when there were clear advantages. No one 

switched ICs just to change the editing mode, as they could do so in both ICs. When a cube was 
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selected, and the destination was available in the current view, many subjects tended to finish the 

manipulation within the current IC, even though it might be more efficient to do in the other IC. 

In fact, one subject praised the redundant functionalities of the two ICs in the interview, for it did 

not force him to waste time on unnecessary transitions.  

The “teleport” and “focus” buttons were used a lot in the experiment. Using these two buttons, one 

subject demonstrated an interesting strategy to speed up multi-scale navigation on the tablet. 

Instead of panning and zooming in the God camera, the subject teleported his Hero avatar, and 

tapped the focused button. This allowed him to instantly navigate to an area of interest. However, 

the “follow” toggle was not used as much, probably because the test bed did not include any “focus 

+ context” task [Baudisch01]. 

Lastly, the video analysis offered insight about how the interfaces were used for the five test bed 

tasks. In general, the tablet was mainly used for 2D tasks that needed to be done from different 

angles, and at large scales, such as painting textures on the terrain, clearing foliage in the rivers, 

and moving cubes across the VE. In contrast, the wand and HMD were used to edit details of 

objects in 3D spaces, such as selecting cubes, smoothing terrain surfaces, scaling houses, and 

planting flowers under trees. These interaction patterns agreed with the subjects’ comments in the 

interview, and clearly indicated the complementary benefits of the two ICs for 3D interaction tasks 

with diverse requirements. 

3.7.7 Discussion 

The user study results provided strong evidence that is consistent with all three hypotheses. Similar 

interaction patterns were discovered in the interview feedback and the video analysis, proving that 

the subjects were able to connect the Hero and God views in the shared virtual space, and learn to 
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use both ICs effectively to perform tasks with diverse and complementary requirements (H2). 

However, the transitions between ICs were much more continuous with task synchronization 

enabled, as suggested by comparative ratings, user comments in the interview, and video analysis 

of the experiment trials (H1). First of all, the synchronization of system control parameters, such 

as the editing mode, saved not only the mental overhead of tracking the ICs’ individual status, but 

also the physical effort to repeat actions previously done in other ICs. In addition, the 

synchronization of object selection enabled and inspired various within-task transition strategies 

to perform the cube-collecting task efficiently (H3). Furthermore, the travel synchronization 

techniques, especially the “teleport” and “focus” buttons, were used effectively to aid the 

connection between the two VE presentations at the perceptual and cognitive levels. 

In comparison, the HVE system without task synchronization was perceived to be confusing, 

awkward, and inefficient to learn and use in a hybrid way. In essence, the absence of task 

synchronization broke the hybrid system into two separate tools. Although it was still beneficial 

to use both ICs for complementary task requirements, subjects tended to avoid transitions as much 

as possible. The video analysis showed them doing so by dividing the tasks into two groups, and 

finishing all tasks in one IC before transitioning to a different one. And when some subjects 

attempted to add more transitional interactions to their workflows, mistakes were made, because 

they forgot to constantly invest more working memory to keep track of the status of both systems. 

The synchronization of travel and object selection also enabled and inspired various within-task 

transition strategies to perform the cube-collecting task efficiently (H3). In comparison, these 

strategies were abandoned when task synchronizations were absent, because subjects had to 

reselect the cubes in the second IC, which was the reason why it was not used in the first place. 
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Due to all these disadvantages, many subjects had worse task performance in the “No-Sync” 

condition, preferring to stay in one IC, the inefficient way, to complete the tasks. 

Another interesting finding is that in both the “Sync” and “No-Sync” modes, the subjects only 

made transitions when there were clear benefits in making the task performance more efficient. In 

other words, subjects would not spend the time and effort to switch contexts, just to change the 

editing mode, or to select an object that could already be picked up using the interface at hand. 

This goes against some previous research findings, such as the rule of dimensional congruence 

[Darken05], or the methodology to assign 3DUI tasks exclusively to ICs [Carvolho12]. However, 

this may also change given an HVE system that has fewer different components between the ICs, 

which would demand less time and effort to switch interfaces. 

3.8 HVE Design Process 

Based on the design and development of the HVE level editor, and the research findings from the 

user study, a four-step design process for HVE systems, as illustrated in Figure 3.12, is proposed 

in this section.  

 

Figure 3.12: Four-step design process of an HVE system 
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In comparison to traditional, single IC VR systems, HVE systems can be much more complex for 

the developer to build, and for the user to learn and use. Therefore, a designer should first conduct 

a task analysis to determine the necessity of involving such complexity. Following similar rules 

suggested for the design of coordinated multiple view systems [Wang Baldonado00], one can 

decompose the 3DUI tasks in the target application, and look at their degree of diversity and 

complementarity, regarding the scales, perspectives, reference frames, and dimensionality. High 

diversity could indicate the need for multiple ICs, while high complementarity promises the 

benefits of implementing an HVE system. As an example, when analyzing the tasks in 3D level 

editing, I found that a level designer would constantly change his perspective between an above-

the-world God view and an in-the-world Hero view, in order to validate his design from different 

perspectives, as well as edit objects at different scales. This observation in task diversity and 

complementarity served as a motivation to design an HVE system that could provide the designers 

with two sets of tools, allowing them to do both tasks simultaneously and efficiently.  

With the motivation justified, the next step is to choose appropriate metaphors to conceptually 

unify the multiple ICs. Depending on the application, the HVE designer can choose from WIM 

[Stoakley95], Voodoo Doll [Pierce99], Portal [Schmalstieg99] [Kiyokawa05], Magic Lens 

[Viega96] [Brown06], Information Surround [Feiner91], or even invent his/her own metaphor (as 

will be seen in Chapter 4). An appropriate metaphor, such as the WIM metaphor used in the HVE 

level editor, can enable the user to immediately understand the purpose of having multiple interface 

components, and the functional relationship between the multiple ICs. Contrarily, a badly designed 

metaphor can confuse users, giving them an impression that the ICs are unrelated parts with no 

benefits of being put together.  
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From the designer’s point of view, the metaphor also helps to visualize a framework of the final 

HVE system, which can be effectively referred to in the specification of the IC components. As 

elaborated in Section 3.3, each IC needs to be specified by its medium, display device, rendering 

technique, input device, interaction technique, perspective, and reference frame. Provided the 

requirements of the application are met, the number of heterogeneous components between 

different ICs should be minimized to reduce the cognitive overhead of IC transitions.  

The final step of the process is to implement the HVE system, by simulating the VE on each IC, 

and programming the communications between ICs to keep the multiple VE representations 

synchronized in real time. As an example, the HVE level editor presented in this chapter adopted 

a peer-to-peer approach over a WiFi network. During the implementation, the designer is 

suggested to program coordination mechanisms, such as mutual awareness, task synchronization, 

input sharing, and display blend-in, to effectively reduce the transition gap between the 

heterogeneous ICs to achieve a seamless interaction experience. 

3.9 Summary 

To summarize, this chapter presented a novel HVE system to overcome the limitations of 

traditional immersive VR systems, in task scenarios that involve diverse scales, angles, 

perspectives, reference frames, or dimensions. The system leveraged the power and rich 

interactivity of a tablet device to complement the natural yet limiting 3D interfaces in a traditional 

HMD and wand-based immersive VR setup. The definition of IC was given, and a taxonomy of 

IC components was presented to describe the immersive and tablet ICs based on their mediums, 

display devices, display techniques, input devices, input techniques, viewing perspectives, and 

reference frames. Based on research findings in related fields, four coordination mechanisms were 
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proposed to increase the transition continuity between the ICs. Two of these, namely, mutual 

awareness and task synchronization, were implemented in the current version of the HVE system. 

Lastly, a user study was conducted based on five level-editing tasks, to validate the benefits of 

multiple ICs, and compare the transition experience with and without task synchronization 

enabled. The study results confirmed that complex HVE systems can be learnt and used to perform 

diverse 3D tasks efficiently, and suggested that task synchronization is necessary to keep 

continuous and effortless transitions across ICs. Based on these research findings, a four-step 

design process was proposed to aid the design and development of HVE systems, as well as the 

coordination of multiple ICs for seamless transitions. 

In the future, the HVE system can be continuously improved from many aspects. For example, the 

formal user study had the user seated in a swivel chair with an armrest to reduce fatigue. 

Alternatively, the system could replace the tablet with a lighter phone device, and allow the user 

to stand up and really walk around the tracked space. As shown in previous research, real walking 

can significantly improve the level of immersion and engagement, and has the potential to lead to 

a better sense of presence in the virtual environment [Usoh99]. Another possible change to the 

system is to combine the tablet and the wand into a single interface device, similar to the approach 

adopted by the Nintendo WiiU controller, the Go‘Then’Tag point cloud annotation interface 

[Veit14], or the tracked touch surface from Disney Imagineering [Mine14]. These approaches can 

better unify the input devices of the two ICs, and reduce the physical effort and cognitive overhead 

of IC transitions. Although, as discussed in previous research, reaching a proper ergonomic design 

for such a hybrid “pointing + touching” input device is difficult, and demands much effort in 

designing and testing iterations [Mine14]. 
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Following the theme laid out by the previous chapters, the guidelines of diversity, 

complementarity, and coordination for building effective hybrid systems were extensively 

discussed again in this chapter. The four-step design process presented in Section 3.8 provided 

concrete examples of how to apply these guidelines in the actual design workflow. It also served 

as a good summary of many contributions in this research work, from the beginning task analysis 

to the final evaluation of coordination mechanisms.  

While the proposed design process could help designers create new HVE systems, the underlying 

research methodology could also serve as inspiration to researchers working in virtual reality, 

augmented reality, and 3D user interfaces. For example, the systematic research approach suggests 

any interface innovation to start with a careful validation through task analysis. Only after 

problems or new requirements have been identified should researchers proceed to design, develop, 

and evaluate their proposed solutions. Furthermore, decomposing an interface system into 

components not only helps effectively characterize it in terms of prior work, but also enables 

researchers to explore the design space more thoroughly before finalizing the design. Lastly, as 

the interaction paradigms in immersive environments tend to follow those used in the real world 

rather closely, the naturalness of the interaction metaphor can be a critical factor in the success of 

the interface design. However, a good interaction technique does not have to strictly follow reality, 

but could instead come completely from imagination, or, more likely, relaxing or bending the rules 

of the real world [Pierce07]. As an example, a new HVE metaphor, object impersonation, will be 

introduced in the next chapter.  
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Chapter 4: Object Impersonation 

HVE systems provide the immersed user with multiple interactive representations of the virtual 

world, and can be effectively used for 3D interaction tasks with highly diverse requirements. In 

the last chapter, a HVE level editor was introduced that combined the traditional wand- and HMD- 

based immersive system with a multi-touch tablet. Based on the WIM metaphor, it successfully 

joined the realistic experience from the egocentric Hero point of view with the efficient and 

effortless interaction capability from the exocentric God perspective. In addition to WIM, various 

metaphors can also be used to form HVE systems, such as Voodoo Doll [Pierce99], Portal 

[Schmalstieg99b] [Kiyokawa05], See-through Lens [Viega96] [Brown06], and Information 

Surround [Feiner91]. A common characteristic of these metaphors is that they were all invented 

by breaking real world assumptions [Pierce07], such as “one object cannot exist in two places” 

(Voodoo Doll), “no object can travel across disconnected spaces” (Portals), and so on. Therefore, 

a question is naturally raised about whether one can come up with new and useful HVE metaphors 

by simply identifying and breaking assumptions in current immersive systems and interaction 

paradigms. The answer is “yes,” and this chapter demonstrates an exemplary idea I experimented 

with using the system infrastructure of the HVE level editor.  

I propose Object Impersonation, an immersive interaction technique that allows the user to not 

only manipulate a virtual object from outside, but also become the object, and maneuver from 

inside. For example, by impersonating a virtual spotlight, one can efficiently change its location 

by travelling around the space, and precisely illuminate a target area by turning and looking at it. 

Similarly, being inside the head of a train, one can pave railroads on a terrain surface, or drill a 

tunnel through a mountain, simply by traveling through the path from the first-person view. In 
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other words, object impersonation has the potential to turn complex object manipulation tasks into 

intuitive travel tasks. This approach blurs the line between travel from the object’s view and 

manipulation of the object, leading to efficient cross-task interaction in various task scenarios. To 

the best of my knowledge, cross-task interaction was only briefly suggested as an alternative 

approach to design 3DUIs [Bowman99a] [Bowman99b], but has not been formally implemented 

or studied, particularly in the context of HVEs.  

 

Figure 4.1: The system infrastructure of the HVE level editor was used to realize and study object 
impersonation in object alignment tasks. 

After explaining the general methodology and presenting six use cases, the rest of this chapter will 

focus on two different implementations of object impersonation in the tablet- and HMD-based 

HVE system (see Figure 4.1), as well as a user study that comparatively evaluated their efficiency 

and user experience in three object-target alignment tasks. The study results indicate improved 

task performance and enhanced user experience with the added orientation control from the 

object’s point of view, in comparison to a traditional, non-hybrid interface. However, they also 
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revealed higher perceptual and cognitive overhead to attend to both ICs, especially without 

sufficient reference cues in the virtual environment. 

4.1 Methodology 

Object impersonation is formally defined here as an interaction technique that enables an 

immersed user to select an object in the virtual world as his/her virtual self, and view, move, and 

interact with other objects from its point of view. Generally speaking, impersonating a different 

virtual object can cause various changes in view point location, orientation, field of view, body 

scale, reference frame, and mappings between the user’s body motion and his/her avatar actions. 

As a first exploration of this paradigm, the discussion in this chapter is limited solely to view point 

position and orientation changes, as well as reference frame changes of the virtual object.  

Object impersonation can be implemented as a transitional user interface by allowing the user to 

jump in and out of the first-person view of his/her virtual avatar [Billinghurst01], or used as a 

metaphor to define the relationship between ICs in an HVE system [Wang14]. The discussion in 

this chapter is focused on the latter scenario, where a user is given two ICs, one using the 

traditional, avatar-based approach, while the other is based on the perspective and reference frame 

of the selected object. Being the object, the user is still able to perform the same 3DUI tasks (i.e., 

travel, way-finding, selection, manipulation, etc.), thereby supporting effectiveness in the 

following application scenarios: 

 Remote space inspection (way-finding): Using object impersonation, an enhanced 

version of Worldlets [Elvins01] can be implemented, which allows a user to navigate and 

inspect remote spaces without having to travel there first. By jumping between objects at 
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different geo-locations, the views of each object’s surrounding environment can be 

connected to form survey knowledge [Chen05] of a large VE relatively quickly. 

 Avatar transportation (travel): From the object’s point of view, the user can also drag 

and drop his/her virtual avatar to locations in nearby space. This enables quick and accurate 

transportation, and can be helpful for collaboration, or tasks with distributed goals (e.g., 

annotation of landmarks). However, certain awareness cues may be necessary to highlight 

the spatial relationship between the multiple views [Wang14], as seeing one’s previous 

avatar in his/her current view may cause disorientation. 

 Occlusion-free object selection (selection): Selecting objects in cluttered virtual space 

can be difficult due to the large amount of occlusion in the scene. Applying object 

impersonation can alleviate this challenge in two different ways. First, the user can select 

and impersonate an object to the side of the occluded space, offering an orthographic view 

to complement the limited selection angle from the current perspective [Pinho08].  Second, 

the user can even become the occluding object itself, and use its perspective as a see-

through lens [Miguel07] to select the objects behind it. Using these approaches, the amount 

of travel needed to gain different viewing angles of the VE can be effectively reduced to 

one click of a button. 

 Multi-perspective object manipulation (manipulation): Like the previous use case, 

object impersonation can also be utilized to enable object manipulation from two 

orthographic perspectives. Similar approaches have been shown to be effective in 

collaborative virtual environments for a variety of cooperative object-manipulation tasks 

[Pinho08]. In addition, objects at high elevation can be impersonated to gain a God view 
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of the VE, offering the user a WIM-like interface [Stoakley95] to ease large-scale 

manipulation tasks. 

 Object-target alignment (manipulation): The previous use cases all focused on what the 

user can do to other objects from the impersonated object’s perspective. The user can also 

affect the impersonated object itself, by simply looking, turning, and moving around within 

its frame of reference. This approach can be used to simplify object manipulation tasks 

where the goals of the tasks are related to the object’s view. For example, the user can 

impersonate a spotlight, and simply look at the target to accurately illuminate its 

surrounding area. This crosses the 3DUI tasks of travel and manipulation, implying an 

interesting “What-I-See-Is-What-I-Do” (WISIWID) metaphor.  

 Path editing (manipulation): In addition to looking around, the user can also travel 

around the VE using the object as his/her virtual self. Opposite to the path-drawing 

technique used for navigation [Igarashi98], a “Where-I-Go-Is-What-I-Do” (WIGIWID) 

metaphor can be implemented, letting the user impersonate a brush to draw a 3D spline, or 

the front of a train to lay out a roller coaster in the VE. Compared to a traditional interface 

such as a 3D stylus, this object-egocentric approach can make it easier to draw a spline 

across multiple anchor points, especially through cluttered or enclosed spaces. 

It should be mentioned that despite the advantages listed above, object impersonation also has its 

limitations, so one should not rely on it completely for all 3DUI tasks. For example, directing the 

orientation of a spotlight may be easier from its own point of view, but setting its position can be 

difficult without seeing it from a third-person view. Similarly, a third-person view is necessary to 

keep track of the overall structure of a spline, even though passing through the anchor points can 
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be easily done by impersonating the brush itself. Fortunately, the advantages of object 

impersonation and traditional avatar-based approaches appear to complement each other’s 

drawbacks in many aspects. Therefore, I propose a hybrid solution based on an HVE system, and 

expect it to combine the strengths of both techniques, to offer effective cross-task 3D interaction 

in immersive VR. The research presented in this chapter specifically studies this methodology 

using the object-target alignment task as a test bed. 

4.2 Test Bed Tasks 

As discussed previously, the object-target alignment task was selected as the test bed to evaluate 

object impersonation for cross-task 3D interaction in HVEs. To gain an in-depth understanding of 

all task scenarios, three different object-target alignment tasks were implemented. As shown in 

Figure 4.2, the spotlight task asked the user to translate and rotate a spotlight, in order to have it 

placed in the position of a street lamp, and oriented to illuminate a text plate. Taking advantage of 

object impersonation, one efficient hybrid strategy is to first drag the spotlight to its destination 

using an avatar-based third-person view interface, and then to impersonate the spotlight, and 

illuminate the text plate by simply looking at it. 

 

Figure 4.2: The spotlight task can be effectively done by dragging the light bulb to the right location, and 
then impersonating it to look at (orient to) the target number plate. 
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The spotlight task presents a special case of object manipulation in VR. More generally, the 

impersonated object may neither feature a shape similar to the viewing frustum, nor afford a visual 

indicator (the light) to naturally connect the goal of the task to the style of the first-person view. 

Therefore, a second task is illustrated in Figure 4.3, which asks the user to translate and rotate a 

house in 6-DOF, in order to have it stand on the ground, and face another house door to door. 

Without the visual cues, the advantages of object impersonation in this task may not be as 

significant as in the spotlight task. However, the user may still find it helpful to level the house on 

the ground, or determine its alignment with the other house. 

 

Figure 4.3: The house alignment task is a more general use case, in which the impersonation view can be 
used to aid the leveling and alignment of the house. 

To facilitate controlled comparison with traditional 3D interfaces, a further generalized object-

docking task was developed, following the classic object manipulation task proposed by Zhai 

[Zhai95]. As shown in Figure 4.4, this task requires the user to manipulate a tetrahedron in 6-DOF, 

and match it with another tetrahedron with arbitrary position and orientation. To avoid ambiguity 

of the orientation matching, a uniquely colored sphere is attached to each vertex of the tetrahedron. 

Using object impersonation, the user can become the tetrahedron, and change its position and 

orientation by moving and looking around the VE, respectively. To make the task goal visible in 
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the object’s view, a crosshair was added to both tetrahedra, which can be matched to align their 

orientations. This approach reduces the overhead of mentally rotating the tetrahedron by separating 

the interrelated 3-DOF object rotation control to the combination of a 2-DOF looking action (i.e., 

crosshair translation) and a 1-DOF rolling action (i.e., crosshair rotation), and is expected to 

enhance user performance and experience in comparison to traditional, non-hybrid spatial input 

interfaces. 

 

Figure 4.4: The tetrahedron alignment task is a classic 6-DOF object manipulation task. Using object 
impersonation, the 3-DOF rotation control can be decomposed to simpler looking and rolling actions. 

4.3 Interface Design 

Based on the hardware and software infrastructure of the HVE level editor, two different object 

impersonation modes, namely, VIEW and DRIVE modes, were realized and studied. The main 

differences between these two modes, from a user’s standpoint, are the depth of immersion in, and 

the degree of control over, the impersonated object. As shown previously in Figure 4.4, the Object 

View Impersonation (VIEW) mode displays the view of the impersonated object on the screen of 

the tablet, leaving the HMD to the traditional avatar-based immersive model. Object translation in 

the immersive IC is realized using a combination of virtual hand and ray-casting techniques 

[Bowman99a]. Ray-casting-based translation is triggered when the user points the wand at the 
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tetrahedron and presses down the “B” button on the Wii Remote controller. The tetrahedron will 

follow the movement of the wand at the original hit point, while two fishing rod buttons can be 

used to move it further or closer along the direction of the ray [Bowman97]. Virtual-hand-based 

translation starts when the user points at the tetrahedron and presses down the “Home” button. The 

tetrahedron will then follow the position change of the user’s hand, allowing more accurate 

position control over a much smaller range. This hybrid control approach combines two modes of 

position-controlled wand movement and rate-controlled button pressing, allowing the user to 

match the targets both quickly and precisely [Wang13b]. In the tablet IC, the user can see the 

tetrahedron’s first-person view, and look around using a single-finger swipe gesture, or roll the 

view using a two-finger rotation gesture. Since the tetrahedron’s viewing frustum is fixed to its 

body, changing its first-person view will also affect the object’s orientation. Therefore, by moving 

the tetrahedron onto the target, and matching the two crosshairs, the orientation of the objects can 

be roughly matched. The result can then be perfected by micro-adjusting the tetrahedron’s position 

using the wand interface, until a “Right There!” text is shown on the screen to indicate the 

completion of the task. 

Figure 4.5 illustrates the Object Drive Impersonation (DRIVE) mode. In this mode, the tablet 

screen is used to display a third-person view looking towards one vertex of the tetrahedron from 

behind, allowing the user to use the HMD to gain a first-person view immersion in the tetrahedron. 

The experience in the immersive IC is similar to driving a spacecraft from the inside, with the 

tetrahedron being the spacecraft, and following pointing-directed locomotion of the user. Rotations 

around the up- and right-axes (i.e., yaw and pitch) are realized by turning the head. To avoid 

straining the neck, rolling can also be done by pressing down two buttons on the wand, with one 

being clockwise and the other counter-clockwise. It should also be mentioned that pressing these 
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two buttons will only rotate the tetrahedron; the immersive view is always kept upright, in order 

to prevent disorientation and motion sickness induced by looking at the VE upside-down 

[Vidal04].  

 

(a)                                                                                   (b) 

Figure 4.5: The tetrahedron docking task in the object drive impersonation (DRIVE) mode, from (a) the 
avatar’s view on the tablet and (b) the tetrahedron’s view on the HMD. 

To match the tetrahedron with the target in DRIVE mode, a three-step procedure is suggested. The 

first step is to drive the tetrahedron to the center of the target object, which sets up a base point to 

align the crosshairs. The user can then hold down the “B” button, and turn his/her head to find and 

match the reference crosshair, which will match the orientation of the tetrahedrons as well. Finally, 

the user switches to the tablet, and uses one-finger swipe and two-finger pinch gestures to precisely 

match the positions of the tetrahedrons. It should be mentioned that the last two steps may need to 

be repeated, depending on the precision of the initial position match in the first step. 

To evaluate object impersonation, a traditional, non-hybrid 6-DOF manipulation interface was 

implemented as a control condition, using the wand device only (WAND). The interaction 

technique adopted is similar to HOMER [Bowman99a]. Translation control is the same as in 

VIEW mode, with the “B” button dedicated to enabling ray-casting-based object dragging, and the 
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“Home” button used to trigger virtual hand-based accurate position adjustment. Instead of turning 

the object’s first-person view, object rotation in WAND mode is done by holding down the “A” 

button, and directly rotating the wand device, as shown in Figure 4.6. Clutching is supported by 

releasing and repressing the “A” button. Furthermore, since there is only one object to control in 

the tetrahedron task, the user can start rotating it as soon as the button is pressed down, without 

having to point the wand at the object first. These two settings compensate for the physical 

constraint of the wrist, giving the user more freedom and flexibility to operate the wand interface 

effectively [Hinckley97b]. 

 

Figure 4.6: The WAND mode allows tetrahedron manipulation from a single immersive view. 

4.4 User Study 

4.4.1 Hypotheses 

Object impersonation offers the user a cross-task approach to perform 3D manipulation tasks from 

the point of view of the target object itself. As proposed in Section 4.1, this metaphor can benefit 

many task scenarios where traditional 3DUIs fall short, such as the object-target alignment task 



78 

 

selected as the study test bed. However, it is also believed that despite its advantages, object 

impersonation also has its limitations, and should not be used to replace traditional, avatar-based 

3DUI techniques, but rather to supplement them. The HVE system thus offers a hybrid solution to 

combining the benefits of both approaches, allowing the user to select and drag the object from 

the outside, as well as to change its orientation from the inside. I feel that the WAND interface 

does offer a more realistic simulation of object rotation, and integrates all interaction in one single 

IC. Based on these analyses, the following hypotheses were made: 

 H1: Users will spend less time completing the tetrahedron docking task in the VIEW and 

DRIVE modes compared to the traditional WAND interface. 

 H2: Users will feel the WAND interface to be more intuitive and natural to understand and 

learn than the VIEW or DRIVE modes. 

 H3: Users will find the VIEW and DRIVE modes to be more efficient and precise, and 

easier and less tiring to use compared to the traditional WAND interface. 

 H4: The mental rotation skill required to manipulate the object in 6-DOF will be lower in 

the VIEW and DRIVE modes compared to the traditional WAND interface. 

 H5: Higher cognitive overhead will be required by users when multiple ICs are involved 

in the VIEW and DRIVE modes compared to the traditional WAND interface. 

4.4.2 Procedure 

To validate these hypotheses, a within-subjects user study was designed and conducted. The study 

was approved by the institutional review board (IRB), and 26 WPI students were recruited with no 

remuneration. Each session began with the subject reading and signing a consent form, followed 
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by a demographic questionnaire that asked about gender, age, and handedness, as well as 

experiences with video games, 3D modeling software (e.g., Maya, SketchUp), immersive VR, 

multi-touch devices, and multi-screen devices (e.g., the Nintendo WiiU). The subject was then 

asked to complete Peters’ redrawing of Vandenber & Kuse Mental Rotation Test (MRT), which 

presented 24 questions with a time limit of 10 minutes [Peters95]. After the MRT, the experimenter 

gave the subject a brief introduction to the hardware used in the study, including the HMD, the 

wand, and the tablet. The experimenter also explained the details of the three object-target 

alignment tasks, especially the tetrahedron docking task, which served as the primary task to 

compare the efficiency of the WAND, VIEW, and DRIVE interfaces.  

After the introduction, the subject put on the equipment, and completed the tetrahedron docking 

task using each of the three interfaces, following a counterbalanced order based on a Latin square. 

Each of the three conditions included a training session and an experiment session, in which the 

same VE was used. As shown in Figure 4.7, the VE included three tetrahedral targets in different 

positions and orientations. The subject was asked to practice the specific interface in each training 

session, by matching the three targets one after another. In the experiment sessions, the subject 

was asked to match up to three rounds (nine trials) of the same targets, within a time limit of 10 

minutes.  

At the beginning of a session, the subject’s avatar was spawned in the center of the VE shown in 

Figure 4.7, together with a semi-transparent tetrahedron object floating right in front of him/her. 

The subject could then use this tetrahedron to match the targets one by one, as quickly as possible. 

The distances between each pair of the colored spheres were calculated, and were compared to a 

threshold variable d to determine whether the tetrahedrons had been matched. When the threshold 

was reached, a “Right There!” text would show up on both screens to indicate a match. The subject 
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could then let go of the control, and wait for the current target to disappear, and the next target to 

appear, in three seconds. 

 

Figure 4.7: The task VE of the tetrahedron docking task. 

This process was repeated three times in training (one round, with d = 0.8m and tetrahedron’s edge 

length = 5m), and up to nine times (three rounds, with d = 0.8m, 0.4m, and 0.2m), or 10 minutes 

in the experiment sessions. The experiment sessions had increased precision requirements with 

each round, so that the effects of the interfaces on task precision could be inspected. During the 

experiment, a timer was displayed in the top-left corner, and a target counter was shown in the 

bottom right, on both screens. The crosshair plates accompanying each target were only made 

visible in the VIEW and DRIVE conditions. They indicated the target’s first-person views, and 

were used to aid rotation alignment from the impersonated object’s perspective. After completing 

all three conditions, the subject was asked to fill in a questionnaire to compare the WAND, VIEW, 

and DRIVE interfaces, and to rate them on a one to six scale regarding six different questions (see 

Figure 4.9, discussed later). The subject was also asked to indicate his/her general preference for 
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the three interfaces, and provide comments on what they liked and disliked about each of them. 

Lastly, to expand the investigation to real world applications, the house and spotlight tasks were 

also included in the study. However, instead of being formally evaluated, they were only tested in 

a short session after the tetrahedron experiment. The subjects casually selected the houses and 

spotlights in a VE, and tried each aforementioned interface to align them with their targets. During 

the process, the experimenter kept an active conversion with the subject, so that he/she could give 

comments on the go about the advantages and drawbacks of each interface for the two tasks. 

Of the 26 participants, 14 were male and 12 were female. All subjects were right handed. Their 

ages ranged from 19 to 31 years (mean = 23.9, SD = 3.1). With 1 being “Never” and 6 being 

“Every day,” their experiences with video games ranged from 1 to 6 (mean = 3.2, SD = 1.5), 3D 

modeling software ranged from 1 to 4 (mean = 1.9, SD = 1.0), VR ranged from 1 to 3 (mean = 1.4, 

SD = 0.6), multi-touch devices from 1 to 6 (mean = 5.7, SD = 1.0), multi-screen devices from 1 to 

6 (mean = 2.8, SD = 1.7). Their responses to the MRT were also graded. With 24 being the 

maximum score, their answers ranged from 7 to 24 (mean = 14.9, SD = 4.9).  

4.4.3 Results 

For each experiment session, the system recorded how many targets were successfully completed 

in 10 minutes, as well as the exact time stamp when each target was matched. The numbers of 

completed targets of the three interface conditions were compared using a Friedman test, however 

the results were not significant. Since many subjects were able to match all nine targets before the 

time expired, a more accurate indicator of task efficiency was needed. To do this, for each subject, 

the time he/she spent to match the targets was averaged, for all targets collected by the subject, as 

well as targets in the first round, or the second round alone (all subjects were able to complete all 



82 

 

three targets in the first round, and at least one target in the second round). The seconds-per-target 

data produced from this process was analyzed using a one-way ANOVA, and the results are shown 

in Figure 4.8 below.  

 

Figure 4.8: The analysis of the task performance indicators. 

Although no results are strictly significant (i.e., p > 0.05), statistical trends towards significance 

were evident in all of them (i.e., p < 0.1), suggesting further post-hoc investigation. Using the 

Tukey HSD test, trends were identified that suggested better efficiency in DRIVE mode than the 

WAND interface, for all targets in general (p = 0.074), and low-precision-requirement targets in 

the first round (p = 0.085). Additionally, a trend was also identified indicating better efficiency in 

VIEW mode than using the WAND interface, for the second-round targets that required medium-

precision matching (p = 0.061). Finally, a Pearson correlation analysis was performed between 

these task performance measurements and the subject’s prior experiences and mental rotation 

skills. However, no strong correlation was discovered (all correlation coefficient values are below 

0.7). 
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The six-point rating scores of the three conditions were analyzed using a Friedman test. As 

indicated in Figure 4.9, the differences among the three conditions were significant regarding 

efficiency (p = 0.032) and precision (p = 0.040), and just short of significance for ease-of-learning 

(p = 0.054) and fatigue (p = 0.057, lower score is better).  

 

 

Figure 4.9: The analysis of the subjective rating scores. 

Post-hoc analyses were performed using pairwise Wilcoxon signed-rank tests. The results suggest 

that the subjects considered VIEW mode to be more efficient, and less tiring to use than DRIVE 
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mode (p = 0.075 and 0.009, respectively) and the WAND interface (p = 0.004 and 0.007, 

respectively). Additionally, VIEW mode was also considered to be more precise than the WAND 

interface (p = 0.004), and easier to learn than DRIVE mode (p = 0.025). Pearson correlation 

analyses between the rating scores and the subjects’ prior experiences and MRT scores were also 

performed, however, no strong correlation coefficient was identified. 

For VIEW mode, 14 of 26 subjects complimented it for making the target matching process easier 

and faster. Specifically, six subjects found the combination of the avatar’s view and the object’s 

view helpful, as third-person control from the avatar’s view allowed them to translate the object 

efficiently, while first-person control from the object’s view allowed them to match the rotation 

intuitively and precisely. Four subjects preferred this mode because matching the 2D crosshairs 

was easier than figuring out the mental rotations to match the targets in 3D space. Five subjects 

liked to use the tablet device, because it was more stable and precise to touch on a 2D plane than 

holding and manipulating a wand.  

On the other hand, seven subjects disliked having another display, as it made the task more 

complicated, and took away the immersion and spatial orientation established in the HMD view. 

In addition, nine subjects pointed out that searching for the reference plates (i.e., the ones that 

accompanied each target tetrahedron) could sometimes become very difficult to do on the tablet, 

partly due to the first-person view [Chen05]. Based on the experimenter’s observations, some 

subjects attempted to alleviate this challenge during the experiments by looking at the HMD while 

touching the tablet. Nevertheless, many of them struggled, because the mapping of the swiping 

gesture was based on the object’s view, and felt inverted from the avatar’s view. Noticing this 

problem, one subject asked the experimenter if it was possible to detect his gaze change to the 
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HMD, and base the touch control on its perspective instead - a solution similar to the interface 

sharing idea proposed in Section 3.6. 

The “think-aloud” feedback session presented the user with a hybrid interface that combined all 

three aforementioned interface conditions. The user could point at an object and hold down 

different modal buttons to translate and rotate it using the wand device. The first-person view of 

the object was displayed on the tablet upon selection, and could then be rotated using multi-touch 

gestures. Furthermore, pressing the “+” and “-” buttons on the Wii Remote made the user jump in 

and out of the selected object respectively, realizing DRIVE mode through a transitional user 

interface approach [Billinghurst01]. Due to user fatigue and other logistical reasons, only 15 of the 

26 subjects participated in this session. Nonetheless, they all tried different modes for both the 

spotlight task and the house task, and provided oral feedback to the experimenter on the go. 

Summarizing subject comments, a majority group of 12 subjects did not state a clear interface 

preference for either task. Instead, they liked the fact that they could switch between interfaces, 

and felt that having all three options was actually better than any of them alone. For example, 

seven subjects preferred using the wand device for positioning the house, but would rather use the 

object’s first-person view to align the orientation. For object-impersonation-based rotation control, 

eight subjects considered the jump-in DRIVE mode to be more effective than VIEW mode, as 

target house searching was easier by looking around, and the house orientation could quickly 

follow the view by pressing the “B” button. Specific to the house task, five subjects pointed out 

that none of the two modes had made the object’s first-person view appropriate for judging the 

leveling of the house; without any visual cue added to the VE, the user still had to refer to the 

avatar’s third-person view to place the house on the ground, using either the WAND interface or 

the tablet in DRIVE mode. 
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The three interfaces also had different and complementary advantages in the spotlight task. Nine 

subjects preferred using the wand device for translating the spotlight, and two subjects were willing 

to use it for orienting it as well, since it only involved 2-DOF rotation, in comparison to the 3-DOF 

tetrahedron rotation task. In addition, a majority group of 12 subjects preferred to control 

orientation from the spotlight’s first-person view, as it was more direct, intuitive, and efficient. 

Four subjects even felt it too easy to do using the jump-in DRIVE mode, as they could simply look 

at the target, and press a button to accurately illuminate it. 

4.4.4 Discussion 

Using the object-target alignment tasks as the test bed, the user study results revealed various 

advantages and limitations of object impersonation in HVE systems. Although the results were not 

conclusive, the performance results, such as the average time spent on each round of targets, did 

show statistical trends that object impersonation could complement a traditional 3D wand interface 

to make performance of 6-DOF manipulation tasks more efficient (H1). Analyses of subjective 

measurements revealed advantages and shortcomings of each interface condition. According to 

the subjects’ ratings, VIEW mode provided the most efficient, precise, and least-fatiguing interface 

of the three conditions (H3). The subjects’ post-study comments suggested two explanations for 

these preferences. First, by requiring the user to align the crosshairs to match the rotation, the 

object impersonation techniques transformed complex and hard-to-reason 3D rotation tasks 

[Zhai93a] into simpler and more-intuitive 2D target-matching tasks. Second, the tablet device 

offered a physical surface to touch on, leading to an increase in operator effectiveness and 

precision, and a reduction in user fatigue confirming results of other studies [Angus95] 

[Lindeman99] [Marzo14], especially in comparison to spatial input devices (i.e., the WAND 

interface).  



87 

 

Partially refuting H3, neither the VIEW nor DRIVE mode was considered to be easier to use than 

the traditional WAND interface. A summary of user comments suggests they had difficulty 

searching for the reference plates from the object’s first-person view, especially using the tablet in 

VIEW mode. By allowing the user to search with head and chair turning, this challenge was 

alleviated in DRIVE mode. However, DRIVE mode forced the user to completely immerse 

themselves in the object’s body, without providing a maneuverable avatar camera on the tablet to 

adjust the position of the tetrahedron from all angles. On the other hand, refuting H2, the WAND 

interface was not rated to be more intuitive or easier to use than the two object impersonation 

modes, although DRIVE mode was commented as being more difficult to understand and learn. 

This suggests that object impersonation may be better accepted as an augmentation to, instead of 

a complete replacement for, existing interaction metaphors. 

The hypotheses in H4 and H5 were only evaluated anecdotally. Six subjects complimented VIEW 

and DRIVE modes for requiring less mental rotation, as the DOFs involved in the rotation 

alignment process were reduced from three to two (H4). Increased cognitive overhead of attending 

to two ICs was mentioned by seven subjects for VIEW mode, and six subjects for DRIVE mode 

(H5). According to them, dividing the task sequences to different ICs made it more complex to 

complete, and also broke the immersion established in the HMD. This issue was mainly caused by 

divided attention during context switching, and could be alleviated by peripheral displays 

[Chen05], display blend-in, and interaction coordination mechanisms [Wang14].  

The “think aloud” feedback collected during the spotlight and house task sessions suggest a need 

to further combine the three interface conditions to form a more-advanced hybrid interface on top 

of the current HVE system. In other words, such a system should not only combine the immersive 

and tablet ICs (the avatar and object perspectives), but also the different interface approaches, to 



88 

 

counter each of their disadvantages. In addition, this session also provided interesting insights 

about the applicability of object impersonation in real world application tasks. The preference of 

object impersonation was most evident in the spotlight task. On one hand, the cone shape of the 

spotlight was similar to the frustum of the first-person view, offering good visual affordance for 

the object impersonation metaphor. On the other hand, the goal of the task (i.e., having the light 

illuminate the target) also had a strong similarity to the user’s action of looking at a target. In 

contrast, the effectiveness of object impersonation fell short for leveling the houses on the ground, 

due to the lack of visual cues from inside the house itself, and users needed to refer to the traditional 

exocentric interaction paradigm for better efficiency. Similarly, the effectiveness of the object’s 

point of view may degrade significantly without the crosshair plate indicating the proper 

alignment. These findings suggest that object impersonation should be used in a hybrid context, 

and in a task-dependent way according to the following guidelines: 

 Rule of personification: Objects with human-like shapes or behaviors, such as a spotlight, 

or a train head, are more natural to impersonate. A natural impersonation not only makes 

the object-centered interfaces easy to learn and effective to use, but also reduces the 

cognitive overhead during transitions between the avatar- and object-based ICs. In contrast, 

objects with less human-like features, such as a house, make the attachment of a first-

person view ambiguous. As a result, the user can get confused about how his/her 

interactions may affect manipulation of the object. 

 Rule of actionable goals: Object impersonation can better enhance task performance when 

the goals of the task are more actionable from the first-person view, through looking, 

traveling, or moving different body parts. For example, the goal of the spotlight task was 

to illuminate a target, which closely relates to the action of looking at the target. The 



89 

 

performance of aligning the house to the ground was not successful using object 

impersonation, but may become easier if the system can detect the user’s body motion, and 

apply the “sit” gesture to the vertical movement of the house. 

 Rule of goal indication: Object impersonation can be used to reduce the complexity of 

third-person view tasks. However, this potential is constrained when the goal of the task is 

not clearly evident in the object’s first-person view. Various indicators can be added to 

clarify the task goal, such as the crosshair plate adopted in the tetrahedron matching task, 

or the illuminated target itself in the spotlight task. In addition to visual indicators, auditory 

or haptic indicators can also be explored in future work. 

4.5 Summary 

This chapter proposed a new interaction technique that can benefit various 3DUI task scenarios in 

immersive VR. By impersonating a virtual object, the user can perform 3D interaction from a 

different perspective, or even manipulate the impersonated object by looking and traveling around 

the VE. This blurs the line between basic 3DUI tasks, and can be used in HVE systems to 

complement the limitations of traditional 3D interfaces. As listed in Section 4.1, object 

impersonation can be used to enhance 3D interaction in many task cases. As a start, the presented 

user study explored three types of object-target alignment tasks as the test bed to investigate the 

task performance and user experience with two different object impersonation implementations, 

within a tablet-and-HMD-based HVE system. The results showed improved task performance and 

user experience using object impersonation together with traditional 3DUIs, but also suggested 

issues and limitations that make it less useful by itself. For example, alignment from the object’s 

view is only useful when the target is already in the view. When the target is outside the view of 
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the impersonated object, it becomes difficult to find it because the user has no idea of which 

direction to look. On the other hand, this is exactly where avatar-based interaction is good. In other 

words, just like the tablet and immersive ICs are good complements for level editing, the two 

distinctly different embodiments (i.e., avatar and object) offer complementary benefits at different 

stages of the object alignment task, and thus should be combined in a hybrid solution to maximize 

their efficiency.  

There are certainly limitations in this research work. For instance, the impersonation studied here 

is still limited to view point and reference frame changes, and does not allow the user to use his/her 

full body motion to act as the impersonated virtual object. The divided attention between the tablet 

and HMD induces cognitive overhead in context transitions. The study results show promising 

performance and user experience improvements, but due to the compound effect of touch input, 

multiple views, and reduced task DOF (i.e., the crosshair plate), it is difficult to isolate and 

precisely appraise the real benefits of object impersonation. Lastly, to advocate cross-task 

interaction as a mainstream 3DUI design, many more convincing use cases, like the spotlight 

alignment task, need to be discovered and tested.  Nevertheless, it served as a good example to 

advocate the creative thinking of how we may “relax reality in VR”, and once again demonstrated 

the power of carefully designed hybrid techniques in improving 3DUI in immersive environments. 
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Chapter 5: Conclusions and Future Work 

As the technology for VR, AR, smartphones, tablets, and wearable systems continues to boom, it 

is inevitable that users will be confronted more and more with strongly hybrid spaces that mix 

virtual and real content presented in various ICs. Therefore, I believe the contributions in this 

dissertation are both important and timely. Specifically, this dissertation focused on improving the 

usability of VR systems, through three related projects in the common theme of hybrid interaction 

in immersive virtual environments. The contributions include, but are not limited to, the following 

core innovations: 

1. Created two new methods for extending position-controlled multi-touch gestures using a 

force-sensing touchpad. 

2. Designed and evaluated a Hybrid Virtual Environment (HVE) approach to improving user 

performance on complex tasks in immersive virtual environments. 

3. Introduced the notion of Interaction Context (IC) to define the multiple sets of interface 

elements used in HVE systems. 

4. Designed and evaluated mechanisms to coordinate the interaction flow between ICs to 

enhance the transition experiences in HVE systems. 

5. Explored the idea of Object Impersonation as a cross-task interaction metaphor for 

positioning and orienting objects in VEs. 

6. Proposed a methodology for 3DUI designers to use when devising new HVEs. 
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In the near future, continuous advances in multi-touch technology will enable force sensing in 

many more 2D and 3D touch input devices. The context and shear force extension techniques can 

thus be used in many different application scenarios to combine the strengths of position and rate 

control in a seamless manner. Using Force Extension, the user can conveniently extend the 

effective range of his/her input actions, without sacrificing the accuracy of control. Its application 

to multi-touch gestures also suggest stronger use cases that allow efficient control of multiple 

simultaneous DOFs, such as the 3D camera manipulation example demonstrated in Chapter 2.  

Regarding future work, a carefully designed and formally conducted user study is necessary to 

draw comparative results of the two force extension approaches and is regarded as future work. 

Furthermore, it has been argued that transitioning from horizontal movement to vertical pressure 

for rate control may not be intuitive [Casiez07], which poses a challenge to Force Extension. 

Therefore it is also of my interest to formally compare the context and shear force extension 

approaches with existing techniques such as the GroovePad [Kulik12] to explore under what 

circumstances each technique is preferred. 

Although the non-occlusive HMD used in this work may be seen as contrary to current HMD 

trends towards more occlusion, the research findings about the HVE level editor and transition 

coordination can help inform a broad array of devices, device combinations, and usage scenarios. 

For example, most of the emerging glasses-based AR devices still lack efficient, natural, and non-

fatiguing approaches to interacting with virtual content. Combining these devices with a 

smartwatch or smartphone might support such design goals, but could also lead to increased user 

frustration due to poor design. Therefore, the next step of this research is to explore the use of our 

tablet IC in CAVEs [Cruz-Neira92], occlusive VR headsets such as the Oculus Rift and Sony 

Morpheus, or AR headsets like the Microsoft HoloLens. It is also of interest to investigate the 
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transition dynamics between three or more ICs in HVE systems, and experiment with further 

optimized IC transitions through input sharing and display blend-in techniques. 

Finally, while many VR systems struggle to discover more 3D interaction opportunities based on 

traditional metaphors, it becomes necessary to experiment with designs that strive to break 

common assumptions. The object impersonation technique does this by stressing that immersive 

interaction does not have to center on the user’s virtual self, but can be dynamically changed to 

different virtual objects according to the task requirements. It blurs the line between basic 3DUI 

tasks, enabling new interface design opportunities in both traditional and hybrid virtual 

environments. Moving forward, a more comprehensive impersonation technique can be 

implemented to allow the user to use his/her full body motion to act as the impersonated virtual 

object. Many more convincing use cases, like the spotlight alignment task, need to be discovered 

and tested as well to advocate cross-task interaction as a mainstream 3D UI design. Finally, the 

divided attention between the tablet and HMD induces considerable cognitive overhead in the 

context transition process, which should be alleviated by implementing coordination mechanisms 

such as those proposed in Chapter 3. 
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