
Neuroprosthetic Device for Video Game Control

Worcester Polytechnic Institute, Worcester, MA 01609

A Major Qualifying Project submitted to the faculty of WORCESTER POLYTECHNIC

INSTITUTE, in partial fulfillment of the requirements for the degree of Bachelor of Engineering

By Francis Coghlan and Drew Silvernail

Date: 2024

Report Submitted to: Professor Adam Lammert, Professor Taimoor Afzal

Worcester Polytechnic Institute

Disclaimer: This report represents the work of one or more WPI undergraduate students

submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these

reports on its website without editorial or peer review.

1

Table of Contents:

Acknowledgments: 6
Abstract: 6

I. Project Proposal 7
1. Introduction: 7

1.1. Identified Problem: 8
1.2. Project Objective: 8
1.3. Project Specifications: 8

2. Background 10
2.1. The Problem. 10
2.2. The Definition and Source of EMG 12
2.3. RAW EMG signal 13
2.4. Refinement of EMG signal 14
2.5. EMG surface electrodes and electrode placement 16
2.6. EMG Amplifiers, Bandpass Filter and Sampling Frequency 20
2.7. EMG Signal Processing - Rectification: 22
2.8. EMG control of devices 25
2.9. Limitations of sEMG devices: 27
2.10. History of Voice Control 28
2.11. Voice Control in Accessibility 28
2.12 Multimodal Systems 29
2.13. Video Games 30

3. Project Approach 31
3.1 Project Specifications: 32

4. Design 34
4.1 sEMG System Design: 35
4.2 Decisions: 39
4.3 Optimization: 42

II. Methods and Results 44
5. Methods: 44

5.1 Threshold Calibration Trials: 49
5.2 Sensitivity Trials: 50
5.3 Game Trials: 51

6. Results: 52
6.1 Threshold Calibration Trials: 52
6.2. Sensitivity Trials: 54
6.3 Game Trials: 56
6.4 Observations: 59

7. Discussion: 60
7.1. Low Threshold Calibrations: 60

2

7.2. Sensitivity Testing: 61
7.3. Game Trials: 61
7.4. Ethical Concerns 63

Environmental: 63
Social: 64
Global: 64
Economic: 65

8. Conclusion: 66
9. Recommendations: 66

III. References: 69
IV. Appendices 74

Appendix A: Specifications of Electronic Components 74
Appendix B: Project Code: 76

3

Table of Tables

Table 3.1: Design Specifications of sEMG Interface 32
Table 3.2: Example Control Layout for EMG Signal Input and Keyboard Output 34
Table 5.1: Initial Control Layout for EMG Signal Input and Keyboard Output 47
Table 5.2: Final Control Layout for EMG Signal Input and Keyboard Output 48
Table 6.1: Average Durations and Signal Outputs. 1: (Normalized Signal ADC Values) 53
Table 6.2: Device Sensitivity Test 56

4

Table of Figures:

Figure 2.1: Amputation sites (Physiopedia, (n.d.) 11
Figure 2.2: Frontal view of typical electrode sites. Left side indicates deep muscles and
positions for fine wire electrodes, while the right side is for surface muscles and electrodes.
(Konrad, 2006) 18
Figure 2.3: Dorsal View of typical electrode sites. Left side indicates deep muscles and positions
for fine wire electrodes, while the right side is for surface muscles and electrodes. (Konrad,
2006) 19
Figure 2.4: Effects of A/D sampling frequency on a digital signal. Too low frequencies result in
loss of signal information (Konrad, 2006). 22
Figure 2.5: Comparison of raw EMG recording to Full Wave rectified EMG recording (Konrad,
2006). 23
Figure 2.6: Comparison of RAW EMG to linear envelope EMGs MovAg, RMS, and Butterworth
Low Pass (Konrad 2006) 25
Figure 4.1: Hardware Modules 36
Figure 4.2: Peripheral Arduino Uno R4 WiFi, Battery Pack, MyoWare 2.0 Arduino Shield & Link
Shield & Muscle Sensors. Bottom Left: Central Arduino Nano ESP32 board & USB-C cable 36
Figure 4.3: Software Logic, Final Variant 37
Figure 5.1: Location of MyoWare muscle sensors. Top Left: Left Bicep. Bottom Left: Right Bicep.
Right: Left and Right Gastrocnemius Groups. 44
Figure 6.1: Example of Voltage Outputs in Threshold Calibration Trials, Left Bicep 53
Figure 6.2: Advancement Scores per Trial, with Control and sEMG+Mouse Interface 57
Figure 6.3: Average Number of Advancement over Collection of Trials 58
Figure 6.4. Average points Scored in Dino Run trials 59
Figure 6.5. Points scored vs trials (Period 1: Control. Period 2: Experimental) 60

5

Acknowledgments:

Our team would like to express our appreciation for the guidance and assistance from Professor

Adam Lammert and Professor Taimoor Afzal of WPI. We also would like to express our gratitude

to our families for supporting and listening to our thoughts and ideas and supporting us

throughout writing this paper. This project was only as successful as it was with your support.

Abstract:

This research presents the design and development of a novel assistive device that

seamlessly integrates surface electromyography (sEMG) and voice control modalities. The

device targets users with limb amputations or limited mobility, empowering them to interact with

video games intuitively. sEMG electrodes capture muscle activation signals, which are

translated into game actions. Additionally, a microphone facilitates voice commands, providing

supplementary control and adaptability. The design process emphasizes considerations for

signal processing, adjustable algorithms for sEMG classification, and developing a user-friendly

voice control interface. This research addresses a gap in the field of assistive technology by

offering a multimodal control mechanism using real-time inputs that enhances accessibility and

user experience within the gaming domain and beyond.

6

I. Project Proposal

1. Introduction:

Prosthetic research for amputation has primarily focused on the replacement of missing

limbs with artificial substitutes. From basic functionality to sensory feedback, such prosthetics

focus on controlling a physical device to interact with objects in the real world or to enable those

with physical disabilities to operate devices. Typically, these prosthetics rely on

electromyography (EMG) sensors for user input, allowing the ability to grab, release, hold,

press, and so on. However, the question must be asked of whether such a method is the most

efficient means of interaction or if it is possible to remove the physical prosthetic altogether for

an operator to interact with an electronic device.

Accessibility research has made major improvements in the past twenty years. In the

field of sEMG, currently, the few limitations left are recording deep muscle activity and the

unintentional recordings of muscles other than the targeted muscle group. sEMG is typically

used in clinical applications or for utilizing myoelectric prosthetics, but it also has the capability

of controlling electronics through muscular impulses. Voice control has long been a sought-after

tool for accessibility and has made improvements in recent years through the use of improved

audio capture and analysis tools, as well as AI to analyze and process sound.

This project aims to design a multimodal system meant to allow user control within a

video game, with the goal of being intuitive. The system should be compatible with multiple

games, and be capable of connecting to different computer systems, and function with minimal

user intervention. This paper begins with an overview of the latest publicly available research on

prosthetic devices and interfaces for the disabled, as well as the various options for interaction

with a prosthetic device, primarily focused on EMG research and voice control software over

other control methods. It then details this project’s approach to the proposed problem, and then

7

goes into the design methodology for creating a device meant to allow those with missing limbs

to interact directly with computers. Due to time constraints, this project focuses primarily on the

development of a device meant to activate the most commonly used keys of a keyboard for

video gaming, to remove the need to create a device to control the entirety of a keyboard,

though such an interface may be possible in the future.

1.1. Identified Problem:

Those with a physical disability, such as a hand amputation, who struggle to interact with

electronics appropriately, typically will have to make uncomfortable adjustments or creative

workarounds to control devices, to the point where they may not be capable of playing video

games at the same functionality as other people.

1.2. Project Objective:

This project objective is to design and build an active control interface to allow someone

to control a video game within a virtual sandbox environment.

1.3. Project Specifications:

The project requires the discovery of appropriate sEMG sensor locations on the human

body and the development of a functional voice control system. Once locations are noted, the

project needs an interface that actively samples sEMG and audio signals, interprets the signals,

and sends appropriate signals to a computer. The signals will be processed into button presses,

specifically ‘w’, ‘a’, ‘s’, ‘d’, and ‘space,’ which a user can use to move their avatar within the

virtual environment. For more complex movements, such as aiming with the mouse, a Bluetooth

mouse would be provided. This is done with the assumption that the user only has a single

amputated hand. The goal is for a user to be capable of performing a complex task (e.g.,

8

completing a level of a game) with the device and mouse at similar or slightly slower paces than

another using a mouse-keyboard interface.

9

2. Background

2.1. The Problem.

Amputation is the variable removal of an extremity via medical intervention. Reasons for

needing an amputation range from bodily trauma, infectious diseases, or even cancer. It was

estimated in 2017 that 57.7 million people were living with limb amputation due to traumatic

cases alone worldwide (McDonald et al., 2021). Alternatively, individuals may be born with

congenital anomalies that lead to a missing or deformed hand or foot. Regardless of source, the

site of the surgical amputation can change, though almost always, it would lead to at least the

loss of a foot or a hand, depending on whether the upper or lower limb is amputated. Different

patients, however, can require differing levels of amputation, and the more a limb is removed,

the more the functionality of the limb diminishes, as shown in Figure 2.1.

In the case of upper limb amputation, limb functionality significantly decreases when the

hand is amputated. This decreases an individual’s autonomy in performing everyday tasks. As

such, worldwide efforts have been made to develop prosthetic solutions. Solutions can range

from practical or affordable prosthetic devices that solely focus on the mechanical replacement

of the limb to prosthetics capable of interpreting and transmitting signals to and from the

nervous system of the user through EMG, granting the capacity of both control and feedback

sensations.

10

Figure 2.1: Amputation sites (Physiopedia, (n.d.)

For upper limb injuries, there is an express need for prosthetic devices capable of

multiple operations. However, prosthetics primarily focus on having multifunctional uses for

everyday life, which can lead to them falling short in providing fine motor skills or control to do

specific tasks in a time-sensitive manner. For instance, interaction with electronic devices, such

as smartphones or computers, may take those using a prosthetic longer to interact with.

Specialized human interface devices (HIDs) have been made to assist those with amputation,

such as one-handed keyboards, foot controllers, and facial interface devices, but each has their

own advantages and disadvantages.

11

2.2. The Definition and Source of EMG

Electromyography (EMG) is a procedure meant to measure muscle response or

electrical activity from myoelectrical signals. EMG sensors allow one to look into myoelectrical

signals, measure muscular performance, and even activate devices based on the signals

received from the sensors (Konrad, 2006). EMGs are standardly used in myoelectric prosthetics

or interfaces, but are also typically used for clinical diagnosis of neurological or neuromuscular

problems (Reaz et al., 2006).

A motor unit (MU) is the smallest functional unit for neural control of muscular

contraction. It is the cell body and dendrites of a motor neuron, the multiple branches of the

axon, and the muscle fibers that innervate it. All muscle fibers of a given unit act as one and are

innervated by a single neuron. Excitability of muscle fibers through neural control is a major part

of muscle physiology (Konrad, 2006; Etana et al., 2023).

Much like nerves, the excitability of muscles is explained by the difference in membrane

electrical potential. The membrane is semi-permeable, with a differing concentration of ions

between the inside and outside of the muscle cell producing a difference in potential. At resting

potential, where the muscle is inactive, the voltage is approximately between -80 mV to -90 mV.

When the muscle cell is activated by the nervous system, membrane channels open up to allow

Na+ ions to diffuse across the membrane. Known as depolarization, this causes the electrical

potential of the cell to change from the resting potential of -80 mV to +30 mV. This voltage

change is almost immediately reversed from a further exchange of ions with an active ion pump

mechanism. This restoration of voltage potential across the cell is known as repolarization.

However, this reversed voltage change typically overshoots below -80 mV for a short period of

time, before being restored back to resting potential. This overshoot is known as

hyperpolarization. These rapid changes of voltages across the cell membrane are known as

12

action potentials (Konrad, 2006). The EMG signal is derived from these action potentials

traveling along the surface of muscle fibers (Konrad, 2006). Action potentials propagate along

muscle fibers in both directions from their origin, terminating at the tendon zone present at the

end of each fiber (Etana et al., 2023).

The generating of potential differences originating from each MU are defined as the

motor units action potentials (MUAPs) of active motor units (MUs), which are made up of

thousands of action potentials (AP) generated by individual fibers of MUs in the muscle (Merletti

& Muceli, 2019). The motor unit action potentials of all active motor units are superposed and

detected as a single bipolar EMG signal with symmetric distribution of positive and negative

amplitudes (Konrad, 2006). The EMG signal is effectively the sum of MUAPs originating from

different MUs (Etana et al., 2023). The two most important mechanisms influencing the

magnitude and density of the observed signal are the recruitment of MUAPs, where multiple

MUAPs activate in response to a single reflex or induced by the central nervous system, and

their firing frequency, the amount of times MUAPs fire for a muscular contraction. These

mechanisms are what modulate the force output and response of the involved muscle for

different actions, or differing requirements of force (Konrad, 2006).

2.3. RAW EMG signal

A standard EMG signal is an unfiltered and unprocessed signal detecting superposed

MUAP electrical potentials. When a muscle group is relaxed, a mostly noise-free EMG baseline

can be seen, though the baseline noise can depend on different factors, such as the quality of

the EMG amplifier, environmental noise, and quality of preparation. A relaxed muscle has no

significant EMG activity due to lack of depolarization and action potentials. But raw EMG activity,

such as when a muscle is tensing, is typically in a random shape, where one raw EMG

recording of muscle activation cannot be precisely reproduced in the same shape as a second

13

activation of the same muscle group. The actual set of motor units being recruited for motions

are constantly changing within the group of available motor units with each flex, meaning that

sometimes, a differing number of motor units in differing positions will activate (Konrad, 2006).

Surface EMG (sEMG) is a two-dimensional distribution of electrical potential over the

skin. (Merletti & Muceli, 2019). Raw sEMG signals can range between positive and negative

5000 microvolts, and typically the frequency of these signals ranges between 6 and 500 Hz,

though the signal shows most frequency power between ~20 and 150 Hz (Konrad, 2006).

EMG signals can be influenced from their raw state by several factors, such as tissue

characteristics, cross-talk produced by neighboring muscles around the targeted muscle group,

physical changes between signal origin and detection site (such as sensor movement), external

noise from electrical environments, and the selection of electrodes and amplifiers themselves.

Most of these factors can be minimized or controlled by proper preparations and checking

laboratory conditions (see B.7) (Konrad, 2006).

In regards to tissue characteristics, the human connective tissue and skin layers have a

low pass effect on the raw EMG signal, where human tissue blocks electrical signals of higher

frequencies and only allows signals of lower frequencies to pass through (Merletti & Muceli,

2019). As such, any surface EMG sensors will not be able to measure the original firing and

amplitude characteristics. But the sEMG signal does reflect the recruitment and firing processes

of the motor units within a measured muscle (Konrad, 2006).

2.4. Refinement of EMG signal

EMG electrodes are typically configured in a bipolar configuration, with two different

nodes for an electrode pair, and one for the common ground reference electrode. Typically for

the gathering of EMG signals, skin surface electrodes are used due to their non-invasiveness,

14

as they can simply be placed and secured on the skin to read raw EMG data, though more

invasive probes such as fine wire or needle electrodes can be used to read EMG signals in

deeper muscle layers. This paper will focus on sEMG signals to minimize wearer invasiveness.

Disposable surface electrodes are most commonly silver/silver chloride pre-gelled electrodes,

and are recommended for general use in sEMG experiments (Konrad, 2006).

The quality of the EMG can improve based on skin preparation prior to the placement of

electrodes. Removing as many obstacles between the sensor and the source of the EMG

signal, the muscles, can help make the signal clearer to read and process. The main goals for

skin preparation are stable electrode contract, and low skin impedance.

Impedance is the effective opposition of an electrical circuit to alternating current, which

rises from the effects of resistance and reactance in the circuit. Resistance is the measure of

opposition to the flow of electric current, while reactance is opposition presented to alternating

current by inductance and capacitance. Reactance stores energy and shifts it by a quarter of a

cycle relative to phase of the voltage across the reactance element, before returning the energy

to the circuit (Urone, 2012).

Skin impedance is the resistive response of a specific skin region to externally applied

electrical current. Impedance depends on various factors, like structural thickness and moisture

content, presence of sweat glands, age of individuals, geographical location, local temperature

and humidity. Hair follicles and sweat glands exhibit resistive properties in the skin, while the

lipid bilayer exhibits capacitive properties. Thus, the heterogenous layered nature of the human

skin makes it difficult to determine the electrical behavior of skin with physiological tissue

conditions and develop accurate models without flaws (Bora & Dasgupta, 2020) (Murphy, 2021).

When EMG is recorded using surface electrodes, the amplitude of the signal is

attenuated by the connective tissues, skin layers, and subcutaneous adipose layer that is

15

present between the source of MUAPs and the skin surface (Etana et al., 2023). Thus, most

sEMG recordings require amplifiers to record the weak electrical signals.

Most EMG amplifiers are designed for skin impedance levels between 5 and 50 kOhm,

primarily when used with a bipolar electrode setup. There are no general rules for skin

preparation, but different methods exist, such as removing hair between electrodes and skin,

and cleaning the skin of dead skin cells, which produce high impedance. In addition, the

targeted test exercise and conditions are important: if the measurement of EMG signals is

during slow or small movements, simple alcohol cleaning may be sufficient, and if

measurements are made in dynamic conditions, such as running or accelerated movements,

thorough preparation is needed (Konrad, 2006).

2.5. EMG surface electrodes and electrode placement

There exist three general types of surface electrodes: wet (conductive paste or gel), dry

(metal-skin contact with no gel or paste), and insulating (capacitive electrodes) with no electric

contact with skin. The most common sEMG sensors are Ag-AgCl pediatric ECG electrodes,

though some industries have developed reusable, more flexible electrodes for sEMG

measurements (Merletti & Muceli, 2019).

The number of electrodes used for each muscle group may vary from two to hundreds,

depending on the task being required. And ultimately, the placement of those sensors can vary

between people, even if they are meant to target the same muscle group (Merletti & Muceli,

2019). Different studies have come up with different means of determining the best locations for

sEMG sensors, primarily based on both the type of sensor they utilized and the task the

researchers are attempting to do. One paper, for instance, has a ring of sensors located around

the upper forearm, running signals into a computer algorithm to recognize when the user is

16

moving their hand into specific gestures, such as a fist, hand open, wrist flexion, wrist extension,

and so on (Oña ED, 2022).

Regardless, every individual will have noticeable differences in sEMG signal quality due

to biological and environmental differences. If the sEMG sensors are placed in exactly the same

location on their body, they will also have noticeable differences in sEMG signal quality, such as

amplitude. As such, the user has to determine what location would be best suited for their

sensors prior to measuring EMG signals, typically through trial and error (Bora, 2020). That

does not mean, however, that there are not standard general locations for specific muscle

groups where sEMG quality is, on average, consistent. These muscle groups can be seen in

Figure 2.2 and Figure 2.3 below.

17

Figure 2.2: Frontal view of typical electrode sites. Left side indicates deep muscles and

positions for fine wire electrodes, while the right side is for surface muscles and electrodes.

(Konrad, 2006)

18

Figure 2.3: Dorsal View of typical electrode sites. Left side indicates deep muscles and positions

for fine wire electrodes, while the right side is for surface muscles and electrodes. (Konrad,

2006)

19

2.6. EMG Amplifiers, Bandpass Filter and Sampling Frequency

EMG-amplifiers are differential amplifiers, meant to reject or eliminate signal artifacts.

Differential amplification detects potential differences between electrodes, and cancels

interference out. For instance, background noise from a nearby electrical device may reach

sEMG electrodes. But noise signals typically reach both electrodes with no phase shift, and are

equal in phase and amplitude. These types of signals are common mode signals, and the

electrodes will have a gain based on these signals (Konrad, 2006).

The Common Mode Rejection Ratio (CMRR) is the term defining the relationship

between differential and common mode gain. It effectively allows differential signals, such as the

signals originating from raw EMG data from muscles, while filtering out noise signals, such as a

signal coming from a nearby electrical device. CMRR should be as high as possible to eliminate

the most interfering signals to improve quality (Konrad, 2006).

A raw EMG signal that has been read from sEMG electrodes has typical charges

between a few microvolts to 2-3 millivolts. With amplifiers, the signal is multiplied by a factor of

500 to 1000. The input impedance of the amplifier should have a value of at least 10x of the

given impedance of the electrode (Konrad, 2006).

Filtering an EMG signal can be done through multiple means, at once, and commonly,

analog filters and digital filters are used to refine an EMG signal. In addition, algorithms can be

utilized to also refine the signal along with the analog front-end. An analog filter uses analog

electronic circuits made up from components such as resistors, capacitors, and operational

amplifiers to produce a desired filtering effect. Typically, a high-pass filter, used to remove low

frequency signals from a signal and allows high frequency signals to pass through, and a

low-pass filter, used to remove high frequency signals and allows low frequency signals to pass

20

through, are used to create a band pass filter, to filter out interfering signals outside of the range

of EMG signals to allow only the EMG signal through.

The frequency range of an EMG amplifier, with a bandpass filter, should start from 10 Hz

highpass and go up to 500 Hz lowpass. Notch filtering, typically used to cancel power hum,

destroys too much EMG signal information, and needs to be avoided (Konrad, 2006).

Digital filters, on the other hand, use a digital processor to perform calculations and

mathematical operations on sample values of the signal to refine it. For digital filters, EMG

signals have to be converted from an analog voltage to a digital signal, through A/D conversion.

The resolution of A/D measurement boards has to be capable of converting an amplitude range

of +/- 5 volts. A 12 bit A/D board can separate the voltage range of the input signal into 4095

intervals, which should be sufficient for most setups. However, very small signals may need

higher amplification to achieve a better amplitude resolution (Konrad, 2006).

The determination of sampling frequency is necessary to properly transmit an EMG

signal. The sampling rate of the A/D board must be twice as high as the maximum expected

frequency, as determined by the Sampling Theorem of Nyquist. Sampling a signal at a

frequency too low results in aliasing effects, which can result in significant loss of signal

information (Konrad, 2006). This effect can be seen in Figure 2.4.

21

Figure 2.4: Effects of A/D sampling frequency on a digital signal. Too low frequencies result in

loss of signal information (Konrad, 2006).

The frequency of EMG signals is located between 10 and 250 Hz (Konrad, 2006). An

amplifier band setting of 10 to 500 Hz is recommended for EMG signals. This results in a

sampling frequency of at least 1000 Hz or even 1500 Hz to prevent any loss of signal.

2.7. EMG Signal Processing - Rectification:

The original EMG recording already contains important information and can serve as

appropriate documentation of muscle innervation. But amplitude analysis techniques can be

used to increase reliability of readings.

A first step for EMG processing is a full wave rectification, whose effects can be seen in

Figure 2.5. Negative spikes are moved up to positive, or are reflected by the baseline. This

allows for standard amplitude parameters like mean, peak/max value, area to apply to the

22

curve. Otherwise, the raw EMG signal has a mean value of zero, and standard processing

techniques cannot be applied properly.

Figure 2.5: Comparison of raw EMG recording to Full Wave rectified EMG recording (Konrad,

2006).

The interference pattern of EMG is inherently random. Different motor units may be

recruited to perform the same motor action, or MUAPs may superimpose on each other in

differing ways. Effectively, a raw EMG signal indicating muscle activity cannot be reproduced.

However, it is possible to apply digital smoothing algorithms to minimize the non-reproducible

part of the signal, allowing for more reproducible signals that can be used for the activation of

electrical devices such as prosthetics. Two smoothing algorithms are available for this process.

23

Moving average (MovAg) is an averaging method where, based on a predefined time

window, a certain amount of data is averaged using a sliding window technique. Sections of the

EMG signal are taken based on the time window, where it is then averaged.

Root Mean Square (RMS) utilizes the square root calculation to smooth the signal. RMS

can result in higher EMG amplitude data than MovAg, and is the preferred algorithm for

smoothing.

Both algorithms have a defined time sampling window. Typically, time durations of 20 ms

are appropriate for fast movements, while time durations of 500 ms are suited for slow or static

activities instead. The higher the time window, the higher the risk of a phase shift and signal loss

(Urone, 2012). Typically, a sampling window between 50 to 100 ms is sufficient in most

conditions.

An alternate method to the above algorithms are filters such as low pass filters. A low

pass filter at 6 Hz can be used to create a linear envelope EMG instead of digital algorithms,

where a linear envelope is the combination of the low pass filter and a raw EMG signal full wave

rectification. The signal is converted from a spiky wave with fast oscillations into a smoother,

more linear line (Esposito, 2023). Examples of linear envelope EMGs resulting from the

algorithms or filters can be seen in Figure 2.6.

24

Figure 2.6: Comparison of RAW EMG to linear envelope EMGs MovAg, RMS, and Butterworth

Low Pass (Konrad 2006)

2.8. EMG control of devices

sEMG sensors are a viable source of input for designing a human-machine interface

(HMI). When traditional means of HMIs are unsuitable for controlling devices, such as

keyboards, or button presses, sEMGs can be used instead. Typically, this will be done by

tensing muscles being read from sEMG sensors, and the increased detected amplitude of

sEMG signals would trigger desirable outputs on devices from any detected activity.

As sEMG sensors are typically utilized when traditional means of HMIs are unviable,

research has shown that there typically rises three different types of devices sEMG sensors

would control: 1) A medical rehabilitation device to restore functionality to its user, 2) a

replacement prosthetic limb to replace a missing limb, 3) an external device meant to act as an

alternate means of interaction.

25

A recent work titled ‘Processing Surface EMG Signals for Exoskeleton Motion Control’

shows an example of a medical rehabilitation device would be an EMG-driven lower limb

exoskeleton, meant to assist in physical rehabilitation for wearers (Yin et al., 2020). It utilizes

sEMG sensors to calculate and derive gait cycle durations of various walking speeds. Both

sEMG signals and calculated gait cycle durations were utilized to control the motion speed of

the exoskeleton. This kind of technology shows promising signs of enhancing motor recovery in

patients.

There are a large variety of EMG-controlled prosthetics being both developed and sold.

Replacement prosthetic limbs are diverse in their costs, complexity, and capabilities (Smidt,

2023). For a recent example in the development of sEMG prosthetics, a work titled “A Low-Cost

EMG-Controlled Anthropomorphic Robotic Hand for Power and Precision Grasp” focuses on the

design of a low-cost affordable prosthetic hand, utilizing commercial EMG armband for its

sensors, and utilizing a modified open-source six-degree-of-freedom hand prosthetic

(Sánchez-Velasco et al., 2020). The processing of EMG data was replaced by a portable

hardware system that was built into the design of the prosthetic limb and EMG armband.

More rare are devices designed to utilize sEMGs for the main method of communication

in HMIs. An example of such a device would be an electric wheelchair with an attached robotic

arm for grasping and manipulation purposes, meant to primarily help those suffering from

severely reduced muscle function (Vogel et al., 2020). Another example is a system that utilizes

EMG and EEG (Electroencephalography) signals to control a smart home for individuals with

paralysis (Chai et al., 2020).

Some EMG-based HIDs (Human Interface Devices) are more focused on the

enhancement of the user’s capacity to interact with devices. For instance, the paper “Typing

Everywhere with an EMG Keyboard: A Novel Myo Armband-Based HCI Tool” documents the

26

utilization of a Myo armband to utilize hand gestures, read through sEMG signals, to type with a

nine-key keyboard layout similar to keypads in mobile phones (Fu et al., 2020). However, the

Myo armband technology relies on the capacity to make hand gestures, and for those with a

hand amputation, renders it more difficult with which to interact.

2.9. Limitations of sEMG devices:

sEMG has several limitations that prevent more active use. For instance, in an active

workplace environment, such as in industry, or athletics, electrodes have a tendency to be

displaced from the body of the user, requiring the need for either repositioning or replacement of

the electrode (Olmo, 2020). In addition, sEMG measurements have a variety of limitations,

ranging from the inability to measure deep muscle activity, to active interference from various

sources. Many of these limitations and methods to limit them have been detailed in earlier

sections.

Most of the issues can be resolved with further investments, but the technology can

become more complex, less modifiable, as investment price increases. For instance, it is

possible to design an sEMG armband with multiple sensors wrapped around the arm, paired

with neural network training to read the movement of the arm and recognize intentional gesture,

based on monitored sEMG signals, but both price and time required to train the machine for

signal processing increases as a result (Zhang, 2023). In addition, these devices can become

too specialized, and too specific for user to user. With the prior example, the armband can

steadily read muscular impulses from a group of subjects, around 30, once the neural network is

trained, but the paper does not describe how well the device would generalize to other subjects

that did not provide data for neural network training.

27

2.10. History of Voice Control

Various innovations such as voice recognition software, eye-tracking systems, and

adaptive controllers have enabled many individuals to engage in digital experiences previously

inaccessible to them. Despite these advancements, a critical gap remains in providing real-time

control solutions for individuals with severe physical disabilities. While existing technologies

offer alternative input methods, they often lack the responsiveness required for immersive

gaming experiences. A voice control software, in combination with the previously described

sEMG system, should provide ample dimensions for control.

2.11. Voice Control in Accessibility

Voice control revolutionizes accessibility by providing alternative ways to interact with

technology, especially for individuals with motor impairments, vision loss, or cognitive difficulties.

People who struggle with traditional input methods, like keyboards or touch screens, can use

their voice to dictate text messages, compose emails, search the web, and control various

devices. For example, a person with a spinal cord injury or conditions like ALS might struggle to

use a traditional keyboard or mouse. Voice control lets them navigate websites, open

applications, and even compose emails – all with spoken commands. Or someone with dyslexia

can use voice-to-text software that allows those who struggle with typing to dictate reports,

emails, or even creative works effortlessly.

This enhanced independence fosters greater inclusion in the digital world. However,

there's a trade-off between speed and accuracy. Simpler signals, like indistinct noises or

vocalizations, are processed faster as the software analyzes a less complex signal. In contrast,

high-specific commands, such as dictating a long paragraph of text or requesting detailed

information, require more time for the software to understand the nuances of speech, including

individual words, intonation, and context.

28

Limitations of Voice Control

Currently, there are two different methods for using one’s voice to control secondary

devices. The first and most well-known is Speech Recognition. This type of recognition uses

sophisticated algorithms to determine what word was spoken, and then internal logic determines

the following course of action. This design excels at specificity and control but lacks speed, and

incorrect recognition can lead to other annoying issues like opening the wrong file or typing the

wrong word, requiring user intervention to remedy. The other common form of voice control and

the method we chose to explore for this project was audio analysis. As opposed to speech

recognition, audio analysis extracts mathematical data from the audio signal in real-time,

sending that data to the program to use as input signals. This technique does not have as many

dimensions of control as speech recognition but excels at speed and accuracy.

2.12 Multimodal Systems

Multimodal systems hold immense promise within the realm of accessibility. By allowing

users to interact with technology through a blend of input methods, they cater to varied abilities

and preferences. Consider a user with limited hand mobility; they might navigate a menu using

eye-tracking technology, paired with voice commands to execute specific actions. Or, someone

with a hearing impairment could rely on haptic feedback coupled with visual cues on their smart

device for notifications and alerts. These combinations create flexibility and adaptability in ways

that single-mode systems often cannot.

Our research aims to push this multimodal vision further by exploring the potential of

sEMG alongside traditional audio analysis. By combining modalities in this way, we envision a

system where a user could perform precise, localized muscle movements in combination with

voice control, enabling a level of control currently unattainable.

29

2.13. Video Games

Video games are often implemented into electromyography applications for muscular

training, typically by focusing on repetitive, singular movements to control a simple game. For

instance, in “Surface Electromyography-Driven Therapeutic Gaming for Rehabilitation of Upper

Extremity Weakness: A Pilot Study,” focuses on using a video game similar to ‘Flappy Bird’,

where a single muscular impulse is enough to control the game (Liu et al., 2022). This was done

to create an enjoyable form of physical therapy, where patients would be motivated and

engaged with repeated methods to retrain muscles with severe extremity weakness. However,

most of the time, these electromyography applications are designed with a single video game in

mind, or the video game itself is designed solely for the therapeutic application. sEMGs have

been utilized in other applications as well, such as interaction with a computer, but again suffer

from limitations, such as being only designed for mouse interaction. However, it should be

possible to design an sEMG interface capable of interactions with multiple, different games,

each with differing levels of complexity.

For instance, it should be possible to design a sEMG interface to control one of the most

popular games worldwide, Minecraft. With over 300 million sales as of October 2023, the game

should serve as an appropriate test for a game controller sEMG device (Zachary, 2023).

30

3. Project Approach

The need for a device like this is based around exploratory research, where it is

apparent that in recent years there has not been a casual use of multimodal systems. To

elaborate, most research focuses on the creation of interface devices meant for fundamental

purposes, such as prosthetics, or equipment interfaces, such as interfacing with a wheelchair for

movement, or interfacing with a smart home to ease interactivity. However, most research

focuses on granting the ability to meet fundamental needs, or multiple needs at once. There

hasn’t been research shown, at least recently, on equipment meant to assist in interactivity with

electrical equipment on a more casual use, such as video games or interacting with a keyboard.

The project’s main objective is to design a control system to connect for a PC computer

to emulate the “wasd” keys and spacebar at the hardware level, and combine multiple EMG

inputs with voice signals to allow for more outputs. Note that the “wasd” keys are standard for

use in video gaming, typically for moving a player’s in-game avatar within a virtual environment.

The target audience for this device are those with a single amputated hand.

The project assumes that the intended user for this system will be an amputee, but can

still use a mouse with the other hand. The mouse will have additional buttons on it to add more

interactivity in comparison to the limited amount of outputs the device will be able to create.

Theoretically, anyone else can use this system in place of a keyboard. In addition, this project

focuses solely on gaming as a testing medium, instead of typing on a full keyboard. As such, the

project will assume the need to set up the game, possibly through keyboard interaction if

necessary for tasks such as logging in, typing in a password, etc.

31

3.1 Project Specifications:

Table 3.1: Design Specifications of sEMG Interface

Design Specifications

sEMG Signal Detection Sampling Frequency of 1000 Hz to 1500 Hz
Read signals through three conductive electrodes
per sensor placed on the skin, and are functionally
available at home.

Isolation Minimal risk of electric shock when the system is
connected to a device connected to the power grid.

sEMG Signal Filtering and Processing Capable of applying rectifying and enveloping
signal processing techniques

Transmission of Data Capable of reading sEMG signals and outputting
appropriate keystrokes within 500 ms

Logic Able to read 4 sEMG sources and process to
generate 6 possible outcomes.

Keyboard Controller Functionally act as an external HID device capable
of interacting with Windows OS systems through
the emulation of keyboard strokes.

Size/Weight/Portability Lightweight to fit on a person, with minimal
interference to the person’s ability for interaction.

Additional Control External wireless interface devices instead of wired
devices, such as a mouse.

Microphone Microphone to capture audio and send to computer
for analysis

Digital Audio Interface (optional) Some microphones may require additional power or
special inputs which can be satisfied through the
use of a digital audio interface

Audio Analysis Python Scripts are utilized in this project for the
analysis of audio signals captured by the
microphone

Table 3.1 shows the required specifications of the interface for the project to be

evaluated as successful. On top of having a functional interface, there were additional goals for

32

this project to try to achieve, primarily to improve the system or improve use of the system, such

as:

1. Comfort, ease of use.

a. To have 75% of users be able to set up the electrodes and microphone without

errors given written instructions within 5 minutes.

2. Latency of communication between controller and computer.

a. With a mean average of 500 ms upon muscle contraction/vocalization to

computer output.

3. Sensitivity of the sEMG sensors to outputs:

a. Within 10 false positives and 10 false negatives per 100 intended keystrokes for

all four individual outputs.

4. Additional outputs from four input sources, such as shown in Table 3.2.

a. Example 1: Activation of left and right gastrocnemius muscle groups will lead to a

new output on the keyboard, such as spacebar, corresponding to jumping.

b. Example 2: Activation of both biceps leads to a different output on the keyboard,

such as shift.

5. The system would be capable of connecting and outputting key strokes to any computer.

This means compartmentalizing most of the code onto the Arduino Boards, instead of

having an additional program run on the computer during use.

33

Table 3.2: Example Control Layout for EMG Signal Input and Keyboard Output

EMG INPUT/KEYBOARD OUTPUT W A S D Spacebar Shift

Left Gastrocnemius Group X X

Right Gastrocnemius Group X X

Left Bicep X X

Right Bicep/Left Tricep X X

4. Design

The device has different requirements that are necessary to function: It must be able to

interface with an user with minimal noise input, while being able to process the gathered sEMG

and audio data to determine if activity is a valid user input, or if it is generated from noise or

accidental muscle activity. Once a valid user input is detected, it sends out keyboard signals to

the computer to process and run.

Several additional features would have been implemented if there was enough time to

do so. The device itself would be more comfortable if the electrodes were reusable, and if one

could simply slide the device into position like on an armband, rather than sticking it to the skin

via electrodes. In addition, the device being designed to be capable of plugging into different

computer systems for user simplicity, much like most Bluetooth HID devices, would increase the

ease of use for most users.

Initial prototyping and preliminary data were gathered using Delsys Trigno Centro.

Delsys was utilized primarily to record signals from different muscle groups, primarily focusing

on the upper arm, the lower arm, and the leg. The data gathered was used to determine optimal

locations for placing wearable sEMG sensors on the body, with the deciding factors being

34

determined by both signal quality and signal interference. Signal quality was how corresponding

sEMG data was with the muscular activity of the targeted muscle group, where moving or

tensing the muscle group would elevate detected electrical activity read by the sensor. Signal

interference was whether an sEMG sensor would pick up electrical activity from non-target

muscular groups, where accidental movement or tension on muscles around the target muscle

would result in increased sEMG activity from the sensor.

Matlab was used in the preliminary post-processing of sEMG data recorded from Delsys

equipment, multi-signal processing of different measurements of sEMG data from different

sensors, as well as establishing basic logic for keyboard control.

Finally, to test the feasibility of keyboard control on Windows computers, Python was

utilized as a preliminary method to control a keyboard via programs, rather than the keyboard

itself. Multiple python libraries were used to test this functionality, such as pyautogui, keyboard,

and PyDirectInput. It must be noted that video games typically utilize key presses in the format

of DirectInput objects, which work directly with device drivers, rather than character objects. This

kind of interactivity can be seen whenever a first-person-shooter video game is loaded, and the

mouse cursor vanishes to be replaced by a crosshair.

4.1 sEMG System Design:

The hardware modules are shown in Figure 4.1, and a physical image of the hardware

used is shown in Figure 4.2 (See Appendix 1 for hardware specifications). The basic software

logic is displayed in Figure 4.3 but is further elaborated in the text below.

35

Figure 4.1: Hardware Modules

Figure 4.2: Peripheral Arduino Uno R4 WiFi, Battery Pack, MyoWare 2.0 Arduino Shield & Link

Shield & Muscle Sensors. Bottom Left: Central Arduino Nano ESP32 board & USB-C cable

36

Figure 4.3: Software Logic, Final Variant

The MyoWare 2.0 Muscle Sensors read signals from the ECG Kendall 30x24 mm snap

hydrogel electrodes when worn. The Muscle Sensors record, rectify, and envelope signals

through analog bandpass filters, a full-wave rectification circuit, and an envelope detector circuit.

It transmits the enveloped signal to the Link Shield extension, which then transmits voltage

readings through the 3.5 mm TRS to TRS cable into the Arduino Shield. The Arduino Shield in

turn sends the recorded signals into A0 through A3 ports on the Arduino Uno R4 Wifi board.

The sEMG sensors have to be physically separated from the device generating key

outputs to a computer connected through USB-C, in order to isolate the system from the power

grid, and to prevent the sensitive sEMG sensors from reading active inputs on any directly

connected peripheral device. As such, the Arduino Uno R4 Wifi Board then transmits sEMG

values through its ESP32-S3-MINI-1-N8 module, where the device broadcasts a BLE UUID

(universally unique identifier) for the central device to recognize and connect to, which, when

connected, transmits readings in the form of a 32 bit unsigned integer, attached with an

37

BLEUnsignedLongCharacteristic for the Arduino Nano ESP32 board to read. Readings from

four different channels are compressed from 1024 bits to 256 bits and are assigned in specific

positions within the 32-bit long unsigned integer, but are extracted and then expanded into

1024-bit-long unsigned integers in the Nano ESP32. Some resolution is lost, but there is still

enough resolution to recognize sEMG inputs. Each sEMG reading is updated at a rate of 10 ms

per reading.

The central device, the Arduino Nano ESP32, handles both voltage threshold logic and

keyboard logic. Taking the single 32-bit unsigned integer and extracting sEMG recordings, the

Nano ESP32 reads each channel at 50 ms per reading. The central device records these data

values per iteration and follows an internal logic per iteration. Key Values are stored in the

Arduino Nano as states for each sensor. They store whether a key output should be active or

inactive, based on sEMG inputs, and will act as state toggles.

Each sensor sEMG recognition is tied to an initial delay. This delay ticks down when a

signal is above an activation voltage threshold each iteration, until it reaches the delay interval.

Then, the signal is recognized as valid, in which it then inverts the state of the associated Key

Value, whether it be from inactive to active, or active to inactive. If the sEMG value goes below

their associated deactivation voltage threshold, the delay resets back to 0. This delay system is

to prevent voltage spikes from possible interference. In the same iteration, statements check to

see if their associated Key Values are active or inactive. If they are active, then the Key output

they are connected to generates their associated output. In the latest instance, differing voltage

thresholds allowed for more than one output per sEMG sensor. This multiple threshold-based

output was based on the left bicep and right bicep.

38

4.2 Voice Control Software Design

To optimize the voice control software for real-time responsiveness, accuracy and speed

were prioritized. Traditional speech recognition, which involves complex algorithms to convert

spoken words into text, was deemed too computationally intensive for the desired level of

responsiveness. This means it would take too long for the software to analyze and understand

spoken commands, creating a noticeable delay between the user speaking and the software

acting upon those commands.

To achieve real-time responsiveness, the project employed simple Python scripts for

audio analysis. These scripts focused on establishing volume thresholds for triggering the

software, as well as initial experiments with pitch analysis. A specific volume threshold of 250

out of 255 was implemented using integer data from a PyAudio-generated audio stream (Pham

2006). This relatively narrow range was selected to prevent accidental activations caused by

background noise or unintentional sounds made by the user. For example, a cough or a

slammed door might reach a high enough volume to trigger the software if a wider threshold

were used. By setting a specific volume threshold, the software can distinguish between these

extraneous sounds and intentional user input intended to activate the voice controls

4.2 Decisions:

The final hardware configuration and software design went through a number of

revisions, during which key decisions were made at each step of the process, which are

described in the following section.

Delsys Triago, after some consideration, was deemed not viable for designing an sEMG

interface. While each sensor was wireless, fairly easy to attach to the body, and transmitted high

signal quality to the central computer, the limited program Delsys Triago was based on made it

39

difficult to design an active controller for a computer. Triago was designed primarily to be a

product for human movement studies and leaves little room for modification.

Myoware was chosen as the basis for this project primarily due to the available support

and modular equipment. Myoware sensors are meant to be easy to use in a variety of designs

and are compatible with Arduino hardware. There is plenty of documented evidence that

Myoware is perfectly functional for most needs. Their systems are compartmented compared to

having to design a breadboard-based system, and they have both technical support and

documented guides for using their equipment properly. Designing an exposed circuit with

purchased electronic components, such as op-amps, capacitors, and resistors mounted on a

breadboard, poses multiple risks, such as the individual components falling out of the

breadboard, being misplaced, or being burned out. Buying a fully integrated design such as

Myoware means less risk of damage to internal components.

The Myoware hardware requires Arduino components to function. The project had a

choice between designing the final product with a single Arduino board or with a double board.

After exploring what was possible with a single board, the Arduino Uno R4 Wifi, the project

invested in purchasing another Arduino product, the Arduino Nano ESP32. Initially, the goal was

for the Arduino Uno R4 Wifi board to act as both the central hub for the sEMG sensors as well

as to communicate key presses to a computer over Bluetooth, but after some investigation, it

was deemed inviable, as the Arduino boards cannot be configured to act as a wireless

Bluetooth keyboard. However, they can be used as a wired USB-keyboard. With that in mind,

the ESP32 was purchased, as information can be sent over BLE (Bluetooth Low Energy) from

the Arduino Uno R4 to the ESP32, which the ESP32 board would interpret and then send

keyboard strokes to a connected computer through a USB port. This, in turn, would convert the

device into a plug-and-play system, allowing it to be connected to different devices and control

40

them instead of requiring a specialized program to initialize the device every time a user wishes

to use it.

There were two different options for the project in regard to the electrodes used by the

system. It is possible to use reusable electrodes instead of disposable electrodes, where the

user can comfortably slip on a sleeve sewn with metal-based electrodes and adjust them. On

the other hand, disposable electrodes would be more accurate, as each electrode was secured

on the skin via adhesive. However, these electrodes are only useful in the short term and are

harder to readjust.

More preferable sensors were found from a different source, known as uMyo sensors.

The uMyo product is a wearable sEMG sensor attached to an armband meant to securely hold

the sensors against the skin while they come equipped with dry, reusable electrodes. Multiple

uMyo sensors can be connected to a single receiver, and the hardware present on the uMyo

sensors is compatible with Arduino libraries and Arduino hardware. However, for this year, the

Ukraine-based company producing the open-source sensors has stopped selling their

equipment until September 2024, primarily because of the Ukraine war.

Determining voltage thresholds can depend heavily on the location each sensor is

placed on the user and can vary heavily from person to person. After some research into

different models of signal analysis, this project determined that voltage thresholds would be the

best approach for the device. Alternate options were found, such as signal recognition, where

software is trained to recognize the shape of different sEMG signals to produce different

outputs. However, these alternate options were not pursued for the following reasons. While

time constraints were a significant factor in deciding on voltage thresholding over signal

recognition, considering the fact that this device is meant primarily for gaming, having to wait

seconds for software to store, analyze, and recognize specific sEMG signals before creating an

41

output would cause a not-insignificant delay, considering most games require a rapid response

time. While it is possible for this kind of signal recognition to be within the required

high-response time period, because such software would be hosted on the ESP32 and its

limited SRAM memory of 512 kB, it was determined that it would be safer to use the simpler

option of voltage thresholds instead.

The project decided to implement a toggling system for controlling key inputs, where

keys were toggled into the on or off states upon the detection of a corresponding valid sEMG

signal. It is possible to design the device so that when an sEMG signal goes above a

designated voltage threshold, the device holds down the key until the sEMG signal is no longer

above the voltage threshold. However, that requires the user to constantly tense the muscles for

the desired movement until they no longer need it. In a game like Minecraft, where the player

may be moving forward for a long period of time, using toggling would help increase the

long-term comfort of the user.

Initially, a pitch analysis section was also devised for the software. However, this idea

was scrapped due to the unpredictability of the pitch analysis software utilized by PyAudio.

These issues could be resolved, however, with the use of faster Fourier transforms (FFT), which

are used to derive pitch information from waveforms, and better noise reduction (filtering). In its

current state, the pitch analysis would not output the expected dominant frequency, and it is

speculated that this is due to environmental noise and the way the data is processed by the

program.

4.3 Optimization:

Software optimization would be heavily reliant on user feedback, user preferences, and

voltage thresholding recalibration every session. sEMG readings rely on different

characteristics, such as humidity, skin impedance, sensor locations, and so on. These factors

42

can change from day to day or even from session to session with the proposed sEMG interface.

As such, calibrating voltage thresholds was needed, even if it was a minor adjustment of values,

after reading corresponding outputs from each sensor. In addition, initial suggestions on

combining two channels of sEMG inputs to produce a new key output were not guaranteed to

be implemented; while possible, easier methods of adding additional controls may be

discovered during development. Primary optimizations for voice control mainly come down to

reducing noise in the signal, as our software does not use speech recognition but extracts data

quickly from the signal. Better hardware would also create a clearer environment for the

analysis.

The suggested control schematics, having the user be capable of moving in all four

cardinal directions, may be reconsidered during gameplay testing: for instance, the user may

not be utilizing an sEMG sensor as much as they could be if it was connected to a different key

output. An example of changing the control schematic would be moving backward, as,

alternatively, the user can turn around and move forward to go in that direction rather than

traveling backward blindly. Another example would be changing outputs from toggles into single

outputs or bursts of outputs, e.g., moving left or right by a few seconds rather than moving left or

right continuously in response to their corresponding sEMG input.

43

II. Methods and Results

5. Methods:

Figure 5.1: Location of MyoWare muscle sensors. Top Left: Left Bicep. Bottom Left: Right Bicep.

Right: Left and Right Gastrocnemius Groups.

The MyoWare 2.0 Muscle Sensors were placed on the left bicep, right bicep, and left and

right gastrocnemius groups, as shown in Figure 5.1. These sensors read sEMG signals through

the disposable Hydrogel snap electrodes. The initial approach for this project, once initial data

and experimentation had been concluded, was to start by gathering data from four sensors, to

ensure that equipment was functional and to ensure that data could be gathered and recorded

simultaneously. As such, this required an initial assembly.

After testing the purchased Arduino Uno R4 Wifi through a test program to see if the

board functioned, the project then moved to using MyoWare 2.0 ecosystem equipment,

44

including the muscle sensor, link shield, and Arduino shield. As documented by MyoWare, any

computer used for Serial debugging of hardware directly connected to MyoWare muscle

sensors was disconnected from the power grid to safeguard against electrical shock. In addition,

while debugging, a wireless keyboard and mouse were used to interact with the computer. At

the same time, it was connected to the MyoWare sensors, as per MyoWare documentation, to

prevent the sensors from picking up a signal from interacting with a wired keyboard or trackpad.

Otherwise, the muscle sensors would have had false readings and constantly output the maxed

voltage value, as the pin would be read as High. The sEMG side of the project initially used

Myoware’s Sparkfun tutorial programs to determine whether the sensors were functioning upon

purchase. The peripheral and central device programs were then expanded to create the

programs used in the project, such as multisensor encoding, sEMG voltage thresholding, and

keyboard logic. To enable Bluetooth functionality, the ArduinoBLE library was used (Arduino,

2019). Two other libraries were used to allow USB keyboard functionality from the central device

to the computer: the USBHIDKeyboard.h library and the USB.h library (Saavedra, 2015) (Sloth,

2015).

For testing, the initial program would print values read from each sensor to the serial for

the Arduino IDE software to see if it could accurately read muscle tension and relaxation. The

readings are in analog-to-digital (ADC) values, where the analog voltage, ranging from 0V to 5V

after the gain is applied, is then converted into a range from 0 to 1023. While it is possible to

convert these values back into voltage ranges, it was decided that to reduce complexity, the

above ranges of 0 to 1023 would be used for measuring and calibrating the system with voltage

thresholds. Once debugging and testing were concluded, and all components were deemed

viable, the project moved on to BLE transmission.

The Arduino Nano ESP32 Board was used as the central device, while the Arduino Uno

R4 Wifi was used as the peripheral device for BLE transmission. The central device was

45

programmed to search for the peripheral device when enabled. The peripheral device is

powered by an external AA battery pack. When connected, the voltage values of each sensor

were condensed into an 8-bit unsigned integer, then collectively stored into a single 32 unsigned

bit integer. This 32 unsigned-bit integer is then transmitted to the central device. When the

central device detects an update in the data characteristic of the peripheral device, it updates its

stored voltage values by extracting and then expanding each value from the 32 unsigned-bit

integer. From there, it sends the newly obtained voltage values to Serial print for debugging.

When debugging is concluded and voltage values are being transmitted correctly to the

central device, voltage, and keyboard logic are then implemented into the central device.

Voltage logic was determined to be based on voltage thresholding. When an sEMG signal

reaches above a voltage threshold for a period of time, typically by tensing a measured muscle

group, the device would then store that instance as a valid signal, which is then used by the

keyboard logic section.

Determining voltage thresholds can depend heavily on the location of each sensor

placed on the user and can vary heavily from person to person. As such, each muscle group

needs an initial sEMG measurement to determine appropriate sensor locations. sEMG sensor

locations are verified and noted down for every new subject.

Keyboard logic uses the detection of valid sEMG signals from voltage thresholds and

audio signals through volume thresholds to determine the user’s intent. The device’s goal was

to be capable of moving the character forward, backward, left, and right, as well as output

diagonal movements by pressing two adjacent keys together, e.g., forwards and left to move

forwards diagonally to the left. In addition, the device’s goal was to be capable of creating two

more outputs, jumping, through the spacebar, and sneaking, through pressing the shift key. The

target source and their associated key binds are shown in Table 5.1 below.

46

Table 5.1: Initial Control Layout for EMG Signal Input and Keyboard Output

INPUT W A S D Spacebar Shift

Left Gastrocnemius Group X X

Right Gastrocnemius Group X X

Left Bicep X X

Right Bicep X X

Loud Audio Signal X

For utilizing the spacebar to jump and the shift key to sneak in the game, it was initially

decided that the sensors associated with both the left and right gastrocnemius groups, located

in the calves of the legs, would be used. Seeing that the left calf was being utilized for moving

left, and the right calf was associated with moving right, it was highly unlikely that both would be

on at the same time, as that would produce direct opposite movements. The same holds true for

the muscles associated with moving forward and backward. As such, those keys would be

suitable for creating additional outputs.

However, the system changed from using two simultaneous inputs to using two different

voltage thresholds, for the left and right biceps. A low voltage threshold would be used to

generate one output and a high voltage threshold would generate another, as seen in Table 5.2.

This allowed the user to create multiple outputs with a single muscle without the need for a

simultaneous output of both muscles, where mistiming tensions may lead to the system only

reading a single input instead of a combined multi-input.

47

Table 5.2: Final Control Layout for EMG Signal Input and Keyboard Output

EMG INPUT/KEYBOARD
OUTPUT

W (Walk) W + Alt
(Sprint)

A Spacebar
(Single Input)

Spacebar
(continuous)

D

Left Gastrocnemius
Group

X

Right Gastrocnemius
Group

X

Left Bicep Low
Threshold

High
Threshold

Right Bicep Low
Threshold

High
Threshold

To implement key toggling, the ESP32 would send a keystroke over USB when a valid

sEMG signal is detected, and continuously maintain that key output until the same valid sEMG

signal is detected again. Upon the second detection of a valid sEMG signal, the ESP32 ceases

to maintain that key output to the computer. Toggling is implemented for all four key outputs to

reduce muscle strain on the user. The ESP32 also stores four values internally to reference,

with all four pointing to an individual sensor or key press to be used for outputting the spacebar

key or the shift key.

When two of the four-movement values, either ‘forward’ and ‘backward’ or ‘left’ and

‘right’, are on, they toggle the ‘space’ or the ‘shift’ keys on or off. As such, even when toggled,

the device should still be capable of outputting the standard forward, backward, left, and right

movement, even as the character is jumping or moving slowly. .

In order to perform additional interactions such as looking around, or interacting with the

inventory, the user will be using a traditional mouse with built-in keys. These keys are rebound

within the game to different controls, to allow the player to access the game’s inventory, and

48

perform standard mouse interactions such as attacking, aiming, and character orientation.

Further possibilities for development will be detailed within the recommendations section.

For testing the device at different developmental stages, different trials were

implemented to both record values to use for development and to test the device’s functionality.

First are the threshold calibration trials, which gather typical sEMG signals using the MyoWare

muscle sensor environment. These signals would be used to program the central device’s signal

recognition software. Then, the sensitivity trials would test system outputs by measuring how

responsive the sEMG system was, with a user tensing and relaxing various muscles to different

sensors and the system generating key outputs in response to recognized sEMG signals.

Finally, Game Trials were used to test how viable the system was in comparison to a

regular keyboard-mouse interface. The sEMG device and the voice control software were tested

independently of each other to avoid crosstalk in trials. The in-game system of advancements,

where completing certain tasks would be noted as game progression, was used for the sEMG

control and score of the Google Dino Run game for the voice control software. Each trial

performed with the sEMG-Mouse interface would measure the amount of advancements

completed within a set timespan and compare it to a control trial completed with a

keyboard-mouse interface to evaluate whether the sEMG-Mouse interface was comparable with

normal users using a mouse and keyboard.

5.1 Threshold Calibration Trials:

To measure data to create initial values for voltage thresholds, the central device would

be programmed to output voltage thresholds to a serial printout, where they would be ported

into an Excel document for subsequent analysis. Each muscle group was measured in three

trials. The device would record at least ten muscle activations over a short period of time per

trial, and the Excel document would display the gathered sEMG data. Valid or intended sEMG

49

signals would be identified via manual annotation, where active signals and baseline signal

voltage levels would be identified and then averaged. Mean signal duration would also be

identified. All three trial values would be averaged to get an average baseline, average active,

and average duration of active signals, from which final thresholds and threshold durations

would be derived. It must be noted that the final voltage threshold and threshold durations must

be below the calculated averages, or else risk a chance of false negatives.

Explicit calibration was not found to be necessary for the voice control software in its

initial design. Currently, the software relies on a fixed volume threshold of 250 to determine

when a user intends to issue a command. This standardized approach offers the advantage of

simplicity. However, calibration could be a valuable addition to accommodate users who might

struggle to consistently reach that volume level due to physical limitations.

If customization is implemented, a calibration process to establish a personalized, lower

threshold would increase the software's accessibility. It's important to note that lowering the

threshold comes with a trade-off: the system becomes more sensitive to background noise and

unintentional vocalizations, increasing the likelihood of accidental triggers. To mitigate this,

additional noise filtering techniques might need to be implemented alongside a customized

volume threshold, adding a layer of complexity to the software design.

5.2 Sensitivity Trials:

To test the responsiveness of the sensors with the gathered voltage threshold and

durations, a second test would be used to evaluate system performance. Each sensor and its

respective output would be tested individually, where a series of thirty muscle contractions

would be performed to see if the system would recognize these contractions as valid signals

and create their output. These results would be recorded by how many signals were recognized

out of the thirty muscle contractions and used to evaluate the sensitivity of the system.

50

5.3 Game Trials:

A single user was selected to control the devices, due to time constraints, considering

the various factors that can change each use of the device per individual, such as muscle

strength, electrode placement, and so on. The single user had past experience with the games

used to test the sEMG system, Minecraft and Google Dino Run. Scoring was determined via the

in-game advancement system, where certain actions would be noted as a significant benchmark

for in-game progress, and score respectively.

To test the completed devices, it was decided that Minecraft and Dino run would be

perfect. Different tasks were derived for a player to interact with, primarily, goals and objectives

within the game that would be common for any new player.

These tasks were based on the already present in-game advancement system and

score. Advancements in Minecraft are challenges for players to complete, effectively meant to

act as a guide for newer players to naturally progress towards. But they can also be used as

benchmarks to evaluate player progress over a period of time.

For the purposes of evaluating the user’s ability to use the current system, the

sEMG+Mouse interface would be used for 20 minute test sessions, in which the number of

achievements would be measured and recorded. If the system suffers a malfunction, the test

session will be paused to fix the problem, before being resumed. The amount of time it takes to

fix the issue will not be counted as time used for the test session. This decision was made

because this test is focusing on how responsive the system is to the user, and testing software

configuration; hardware issues are normally solved by replacing or readjusting electrodes or

hardware connections.

51

For the voice control test, the user was simply asked to play Google Dino Run using

sharp, precise vocalizations to trigger the space bar via the microphone placed in front of them,

causing the character to jump over incoming obstacles. These obstacles increase their speed

as time progresses, increasing difficulty. The user's score will increase until they fail to jump

over an object, at which point the score would be recorded. 30 trials of this were completed with

a control and experimental group. The control group utilized a standard keyboard, while the

experimental group used the voice control software and microphone. Audio capture and

analysis was all handled within Python. Libraries included PyAudio, Pyautogui, and librosa was

originally considered for pitch but were ultimately not needed.

After a trial, the player would take the time to note down results and observations, as

well as any technical issues that may have occurred during playing. This would include deaths,

time duration, and any user notes or adjustments made to the system. These results would be

compared to playthroughs with traditional keyboard and mouse controls for both games.

6. Results:

6.1 Threshold Calibration Trials:

The overall goal of the low-level calibration trials was to establish thresholds for the

sensor, determining what was the most comfortable max output and duration for a user, and

what was the average relaxed baseline for the user. An individual sensor was recording sEMG

values from their designated muscle group, and the user was requested to tense, clench, or

activate the muscle for a duration of time that was comfortable for them. The data was recorded

in sets, which could be plotted as such in Figure 6.1. The average baseline, average active, and

average signal duration were recorded to determine the final thresholds and durations of

signals.

52

Figure 6.1: Example of Voltage Outputs in Threshold Calibration Trials, Left Bicep

Table 6.1: Average Durations and Signal Outputs. 1: (Normalized Signal ADC Values)

Muscle Group Average
Baseline1

Average
Active1

Average
Duration
(ms)

Final
Thresholds1

Threshold
Duration

Left Bicep 41.63 357.83 878.00 300 800

Right Bicep 43.23 195.56 1736.97 150 800

Left
Gastrocnemius

33.65 126.91 1267.88 100 1000

Right
Gastrocnemius

38.40 123.28 1315.99 100 1000

The resulting average baseline, average active, and average durations of active sEMG

signals are shown in Table 6.1. From these values, threshold durations and final threshold

values were derived in ADC values, which were used to create an initial sEMG controller

interface. Signal duration for the right bicep was significantly lowered from 1700 ms to 800 ms

53

due to wanting both left and right bicep inputs to respond quickly and have equal response

times.

It must be noted, however, that these averages can change, not just from person to

person but from trial to trial, based on the placement of the electrodes, skin impedance, and

other environmental factors. These thresholds, however, were useful for encoding an initial

value to calibrate as needed in future trials. In addition, with duration, it was decided that for a

faster response, shorter durations would be implemented to be within the range of 1 second,

and despite the drastic change in comparison to the average durations of the Right Bicep group,

later tests have shown that this held minimal impact to results.

6.2. Sensitivity Trials:

After initial voltage calibrations, the device was then tested via four different outputs to

evaluate the responsiveness of each sensor compared to each individual output. These outputs

were tied specifically to one sensor, rather than one sensor being capable of creating multiple

outputs, as this test was meant to evaluate the effectiveness of these sensors in response to a

user’s desired output.

A true positive output would correspond to muscle tension, followed by a keyboard

output. A false positive would be no muscular tension, then keyboard output. True negative

would be muscle relaxation or no muscular tension, then no keyboard output. A false negative

would be muscular tension, then no keyboard output.

In Table 6.2, the results show the true positive outputs out of all outputs, with the note

that no keystrokes were recorded that indicate a false negative output. This is because of how it

only recognizes valid signals when they rise above certain voltage thresholds. When the

54

sensors and electrodes are applied to the body correctly, as they were in these series of tests, if

a sensor is unable to read an sEMG signal, they default to a single voltage value. As this

voltage value is always below the voltage threshold, the device never reads a false negative.

However, this result can theoretically change if the sensors are applied incorrectly to be

outputting continuously changing erroneous magnitude voltage values of an sEMG signal, but in

that case, the user should be able to notice and adjust the sensors.

Table 6.2: Device Sensitivity Test

Muscle Group # Keystrokes/Number of Intended Activations %Sensitivity

Left Bicep 29/30 96.67

Right Bicep 25/30 83.33

Left Gastrocnemius 24/30 80.00

Right Gastrocnemius 23/30 76.67

6.3 Game Trials:

The key outputs of the sEMG device had been changed from the initial configuration, as

per user request. When initially playing Minecraft, the user relied heavily on moving forwards,

left, and right, but rarely, if ever, moved backward. As such, inputs and outputs had a change of

configuration, as seen in Table 5.2. The game trials used this configuration to test the feasibility

of the sEMG-Mouse interface.

Scoring for the sEMG tests was determined via the in-game advancement system for

Minecraft, where certain actions were noted as a significant benchmark for in-game progress.

After initial trials, the user noted that one of the sensors was rarely, if at all being utilized for

controlling the in-game avatar, resulting in a change of outputs (see chapter 7.3, Game Trials

under Analysis and Discussion).

55

On average, the user with the sEMG-mouse interface scored at least 1 advancement or

score lower than the control interface (mouse and keyboard), and showed no relative

improvement over time, as shown in Figure 6.2. Trial 5 skews the number of advancements

downwards, though trial 5 had multiple hardware faults, resulting in a lower number of

advancements. Overall, though, the resulting average scores of the sEMG-mouse interface

were close to that of the traditional mouse and keyboard interface, as seen in Figure 6.3, and

the difference in scores could be accounted for due to the stronger familiarity of a user with the

traditional keyboard and mouse, and the lower number of faults experienced with the keyboard

and mouse.

Figure 6.2: Advancement Scores per Trial, with Control and sEMG+Mouse Interface

56

Figure 6.3: Average Number of Advancement over Collection of Trials

In addition, the traditional gameplay trials were done with a user with full operational use

of both hands, while this system was designed for a user with the inability to operate one hand.

It may be possible that a player with an arm amputation would find it easier to operate the

sEMG-mouse interface over the traditional keyboard interface, though, for the project’s duration,

it was unable to find such a user to test the device with.

For the voice control software, 30 trials were done for each group, control and

experimental. In-game score was used to measure progress and was recorded for each trial.

The mean scores for the control and experimental group were 456.73 and 81.86 (Figure 6.4)

respectively. This was expected, as participants in the control group were already familiar with

the keyboard and mouse interface and this was the interface the game was designed for.

57

Figure 6.4. Average points Scored in Dino Run trials

6.4 Observations:

Overall, the sEMG-Mouse interface allows users to play video games through muscle

contractions and relaxations, and the voice control software allows for the use of vocalizations

for added dimensions of control. While the device does need more adjustment and refinement,

a user can use the interface to play a game consistently. The player can move in multiple

directions, including diagonally, and when remapped to their desired specifications, the player is

capable of making various in-game achievements much like a regular player would. The

accumulating muscle strain from the use of the system is still noticeable after long durations.

The sEMG-Mouse system is noticeably different from the traditional keyboard-mouse interface,

using different muscles and movement patterns, so a user has to adjust over a period of time

58

and may make more mistakes than a traditional player, as shown in the comparison between

the control and the sEMG-Mouse interface.

Additionally, the writers would like to make note of the improvement over time seen in

the experimental voice control group (Figure 6.5). While shallow with an R squared value of

0.408, this still shows improvement over time, suggesting the device is learnable and could

even potentially be easier to use for certain situations than a traditional input setup.

Figure 6.5. Points scored vs trials (Period 1: Control. Period 2: Experimental)

7. Discussion:

7.1. Low Threshold Calibrations:

The first set of tests were useful for determining baseline voltage thresholds and

durations for the purposes of coding key logic and signal validation logic. However, every time

59

the electrodes on the body were replaced after each session, the voltage thresholds may be

altered even due to a slight change in placement. Therefore, recalibration was a near-constant

factor in every test and needs to be noted for future developments of the device. In addition, if

the electrodes need to be adjusted, the single-use snap electrodes are unsuitable, as they lose

adhesion with the skin with every change in placement, resulting in more input noise on the

system and less reliability of staying in place.

7.2. Sensitivity Testing:

Sensitivity testing has shown that the sEMG sensors can report false negatives based

on software or hardware configuration. Other than the left arm sensor, all sensors had above the

targeted 10% of false negatives outputs. This percentage could be improved via further

calibration, or more specific valid signal identification than voltage thresholding, or even

improvements to the current voltage threshold valid sEMG-signal logic stored on the ESP32.

However, the user reported that correcting for false negative outputs were akin to correcting a

wrong key press on the keyboard, where the user would generate an sEMG input again for the

system to recognize moments later.

7.3. Game Trials:

For early in-game trials, initial control schematics were based on moving forwards,

backward, left, and right. However, the user showed an increased preference for utilizing the ‘w’,

‘a’, and ‘d’ keys, with minimal or nonexistent use of the ‘s’ key for moving backward. As such,

with a new set of trials, the user was given the option to redesign controls to their preference. In

addition, after sEMG sensor calibration, the user could get multiple desired outputs by different

voltage thresholds, rather than combined signal inputs. This was used in two instances for the

right and left arm. In the right bicep sensor, a high voltage threshold on the right arm would

output multiple jumps, while a lower voltage threshold would output a single jump. In the left

60

bicep sensor, a high voltage threshold would output a ‘sprint’ motion, while a lower voltage

threshold would create a ‘walking’ forward motion at lower in-game speeds.

Gameplay trials show that playing with this alternative interface resulted in lower

advancement gain compared to traditional playthroughs, but this could be accounted for by both

possible improvements to be made to the device and a longer duration of training time required

for a user to be capable of controlling a computer through the interface. The experimental group

was still capable of the same actions and motions of a traditional player without requiring the

use of the left hand for interaction with the computer. In this regard, the project was a success,

but various improvements can be made, such as improving signal recognition and sensor

quality, removing potential sources of noise or interference, such as the 3.5 mm TRS cables,

and replacing them with wireless options, and so on.

Similarly, for the voice control software, gameplay trials initially showed lower scores for

the experimental group, while the control group consistently scored higher. This discrepancy

can be attributed to several factors. The most substantial factor is undoubtedly the users'

familiarity with the traditional control setup. Years of experience using keyboard or gamepad

controls provide an inherent advantage for the control group. However, it's encouraging that the

experimental group demonstrated improvement over successive trials, showcasing the

learnability of the voice control system.

With extended practice and familiarization, it is possible that the experimental group

could eventually surpass the control group in terms of score. This potential outcome highlights

the intuitive nature of the experimental voice control system. Once a user overcomes the initial

unfamiliarity, voice control could enable more fluid and natural interaction with the game

environment, potentially leading to gameplay advantages over the traditional control scheme.

61

It must be noted that at the initial stage, the equipment had multiple flaws. For instance,

the sensors are noted to be sensitive in the documentation, where they can detect the activation

of any keyboard, mouse, or trackpad directly connected to the computer, when the sensors are

directly connected through a computer port. While this issue can be resolved by transmitting

recorded voltage values through Bluetooth Low Energy, this does not prevent the sensors from

being able to detect and read each other’s sEMG signals in particular instances. It is currently

unknown if the board is accidentally reading other sensors through the pins, if the audio cables

are not isolated enough, or if the sensors can accidentally read each other through the body.

The most likely candidate for faults, however, are the audio cables, seeing that the physical

contact of audio cables for different sensors holds a high tendency of producing similar outputs

on pins, which can be resolved by adjustment of the cables. An immediate resolution would be

to transition to a completely wireless version, but this cannot be done with this project due to

time constraints.

7.4. Ethical Concerns

Environmental:

The device developed in this project allows amputees to gain access to playing computer

games more effectively than without the device. Environmental impacts come from the

manufacture of the device and very modest electricity usage commensurate with that used by

other low-voltage devices, such as wireless keyboards and mice. Production of the components

of the device are manufactured in developing countries and must be shipped to the user

location, resulting in impacts on the environment. These environmental impacts can also have

negative impacts on the health of people in areas where the materials are sourced and

manufactured. Under the global and economic statements, some mitigating outcomes are listed.

Once produced and shipped, the device has a long lifespan, meaning that the impact of

62

production is spread over many hours of use compared to most disposable items. Further,

people who turn to computer gaming because of this device might reduce more

resource-intensive activities such as driving to see friends. While the prototype sEMG device

used disposable ECG Hydrogel Electrodes, the project advocates replacing these with reusable

electrodes in the production product.

Social:

Although the project device is designed for amputees who are looking for entertainment, others

including their family and friends will also benefit from their increased enjoyment of life and

social mobility. In particular, online gaming can be a way to gain and develop friendships, and so

enabling amputees to partake is hugely positive not just for the amputee but for their new

friends and for their families who benefit from seeing their disabled family members enrich their

lives. Other amputees might benefit also as the word spreads about the usefulness of the

device, and they also start to use it. One concern might be that amputees using the device

might develop a gaming addiction, but for most of the amputee population, it is more likely that

their increased social mobility benefits outweigh such a downside. It is well-known that

increased social interaction carries many health benefits, not least of which is mental (Johannes

et al., 2021), benefitting amputee users. Video gaming was seen as a life-saver for many during

the recent COVID pandemic as even able-bodied individuals faced isolation. In addition to

mental health benefits, there is evidence that training the muscles for amputees can have

additional physical therapy health benefits (Liu et al., 2022).

Global:

The device is a product that will be useful worldwide. Given the relatively higher percentage of

amputees in many developing countries in Asia and Africa, it may be of higher use overseas

than in the US. The reason for the higher amputation rate in developing countries is a

63

combination of lower healthcare standards and higher accident rates (McDonald et al., 2020;

Yuan et al., 2023). When expanding use to other countries, consideration must be made of the

socio-economic implications including the potential for application to other types of devices,

such as smartphones, as well as applications for sEMG technology for other types of

applications including for work or education. As noted under environmental regulations,

components for the device will mostly be manufactured in developing countries where there will

be harmful environmental impacts, but such manufacture will create jobs and improve

healthcare as a mitigant. Because the environmental impacts are small, and are mitigated by

job creation, there should be very limited political concerns about the production of these

components. Further, the components are available off-the-shelf, so the manufacturability of the

product is also not a major concern.

Economic:

Except where the components for the product are manufactured, the economic impact is likely

to be modest. Better mental and physical health outcomes reduce health care costs, for

example. However, the application, if extended to other purposes such as education and

work-related activities, could make the difference between people not being engaged in the

workforce and being able to be meaningfully employed. In fact, digitalization is being tied closely

to sustainability and economic advancement by multilateral institutions such as the World Bank

(Perez et al., 2023) although there are acknowledged offsets for environmental degradation and

resource use. The point though is that for amputees gaining access to the digital world can

make a significant difference in their life outcomes.The device created in this project is,

however, a precursor for the kinds of devices that would make this contribution.

64

8. Conclusion:

The project was able to create a multimodal interface for controlling a computer

character within a virtual environment. While performance has shown that in its current state it is

not able to match with traditional keyboard and mouse, our interface is still a viable alternate

option for playing computer games, especially for those with an amputated hand. Multiple

possible improvements to the device have been observed and noted in recommendations,

where with further development, this alternative interface may become an adequate substitute

to the traditional keyboard and mouse, especially for amputees.

9. Recommendations:

There are multiple points of improvement that could be made for the interfaces. For

instance, on rare occasions, there is a present signal interference where other sensors’ voltage

values are being read through the wrong Arduino ports, most likely through the audio cables. In

addition, the Arduino Shield ports may fail to function until readjustment of the audio cables.

One recommendation to correct these faults would be removing the audio cables and

transitioning the wired electrodes to a wireless system, where each sensor is its own contained

electronic environment transmitting voltage values over BLE to a central device.

Another recommendation is the transition from disposable electrodes to reusable

electrodes. The project had consumed around 200 disposable electrodes during testing and

development. While these disposable electrodes were around 20 dollars per pack of 50,

recurring costs can be limited by transitioning to reusable electrodes, such as conductive fabric

electrodes that can be sewn into sleeves. This would also allow the user to adjust the electrodes

as well, for both comfort and to refine acquisition of sEMG signals.

65

A third recommendation would be to address the fact that a mouse is still needed to

interact with a computer game, which limits this product’s reach to those with a single

functioning hand. Users with dual hand amputation would not be capable of using this interface.

As such, an sEMG-Gyroscope interface can be developed, where muscle inputs could be used

to control inputs such as left and right clicking, and movement of the hand or head could be

used to control the cursor of the computer. In addition, this could also be done by implementing

the voice control system, or a combined mix of the two systems discussed above.

For the voice control software, substantial refinements can be made to enhance noise

reduction and filtering. Isolating the critical frequency range used for voice commands will

significantly improve the software's ability to distinguish between intentional input and

background noise. More robust filtering of unnecessary high and low frequencies will refine the

audio signal, leading to more reliable key activations and reducing the chance of false positives.

Introducing pitch analysis offers an exciting opportunity to expand the control scheme.

By analyzing the tone of the user's voice, the software can differentiate between different

commands or even adjust in-game parameters continuously. However, successful

implementation hinges on optimizing the software's calculations for faster processing. Any

noticeable delay between vocal input and the corresponding action will severely degrade the

user experience, making the system feel unresponsive.

Additionally, it's highly recommended that a high-quality microphone be used for optimal

results. A clearer input signal reduces the burden on the filtering algorithms, simplifies analysis,

and ultimately contributes to a more accurate and responsive system.

The need for recalibration and adjustment is not noticeable until the system becomes

faulty, such as not responding to muscle tensions or outputting false readings. A suggestion for

66

improving this is to readjust or recalibrate sensors. Also, a way to see values other than through

the Serial monitor on the IDE, like a side window, would be helpful for troubleshooting.

Finally, calibration of voltage thresholds and remapping key outputs still relied on using

the Arduino IDE, to directly reprogram key outputs and redefine voltage thresholds and delays

within the software contained on the Arduino Nano ESP32. In the future, once the sensors are

placed, the device should be capable of making a live recording of sEMG signals for each

sensor, and then prompt the user with a window to input different voltage thresholds and delays

based on the live recording. The window should also be capable of changing outputs, based on

both voltage thresholds and sEMG signal source.

67

III. References:

Arduino Sa, 2019, ArduinoBLE, https://github.com/arduino-libraries/ArduinoBLE. (2024)

Amputations. (n.d.). Physiopedia. https://www.physio-pedia.com/Amputations, accessed

April 20, 2024.

Bora, D. J., & Dasgupta, R. (2020). Estimation of skin impedance models with experimental

data and a proposed model for human skin impedance. IET Systems Biology, 14(5),

230–240. https://doi.org/10.1049/iet-syb.2020.0049

Chai, X., Zhang, Z., Guan, K., Lu, Y., Liu, G., Zhang, T., & Niu, H. (2020). A hybrid

BCI-controlled smart home system combining SSVEP and EMG for individuals with

paralysis. Biomedical Signal Processing and Control, 56, 101687.

https://doi.org/10.1016/j.bspc.2019.101687

Esposito, D., Centracchio, J., Bifulco, P. et al. A smart approach to EMG envelope

extraction and powerful denoising for human–machine interfaces. Sci Rep 13, 7768

(2023). https://doi.org/10.1038/s41598-023-33319-4

Fu, Z., Li, H., Ouyang, Z., Liu, X., & Niu, J. (2020). Typing Everywhere with an EMG

Keyboard: A Novel Myo Armband-Based HCI Tool. In M. Qiu (Ed.), Algorithms and

Architectures for Parallel Processing (Vol. 12452, pp. 247–261). Springer International

Publishing. https://doi.org/10.1007/978-3-030-60245-1_17

Johannes Niklas, Vuorre Matti and Przybylski Andrew K. 2021, Video game play is

positively correlated with well-being, R. Soc. Open Sci.8202049;

https://royalsocietypublishing.org/author/Przybylski%2C+Andrew+K

68

https://www.physio-pedia.com/Amputations
https://doi.org/10.1049/iet-syb.2020.0049
https://doi.org/10.1016/j.bspc.2019.101687
https://doi.org/10.1016/j.bspc.2019.101687
https://doi.org/10.1038/s41598-023-33319-4
https://doi.org/10.1007/978-3-030-60245-1_17

Konrad, P. (2006). The ABC of EMG (1.4). Noraxon U.S.A., Inc.

https://www.noraxon.com/wp-content/uploads/2014/12/ABC-EMG-ISBN.pdf

Lehman GJ, McGill SM. The importance of normalization in the interpretation of surface

electromyography: a proof of principle. J Manipulative Physiol Ther. 1999

Sep;22(7):444-6. doi: 10.1016/s0161-4754(99)70032-1. PMID: 10519560.

Liu Y, Silva RML, Friedrich JB, Kao DS, Mourad PD, Bunnell AE. Surface

Electromyography-Driven Therapeutic Gaming for Rehabilitation of Upper Extremity

Weakness: A Pilot Study. Plast Reconstr Surg. 2022 Jul 1;150(1):125-131. doi:

10.1097/PRS.0000000000009208. Epub 2022 May 10. PMID: 35544314; PMCID:

PMC9246860.

McDonald CL, Westcott-McCoy S, Weaver MR, Haagsma J, Kartin D. Global prevalence of

traumatic non-fatal limb amputation. Prosthet Orthot Int. 2021 Apr 1;45(2):105-114. doi:

10.1177/0309364620972258. PMID: 33274665.

Merletti, R., & Muceli, S. (2019). Tutorial. Surface EMG detection in space and time: Best

practices. Journal of Electromyography and Kinesiology, 49, 102363.

https://doi.org/10.1016/j.jelekin.2019.102363

Murphy, B.B.; Scheid, B.H.; Hendricks, Q.; Apollo, N.V.; Litt, B.; Vitale, F. Time Evolution of

the Skin–Electrode Interface Impedance under Different Skin Treatments. Sensors

2021, 21, 5210. https://doi.org/10.3390/s21155210

Myoware Muscle Sensors - SparkFun Electronics.

https://www.sparkfun.com/myoware?ref=msaavedra.com

69

https://www.noraxon.com/wp-content/uploads/2014/12/ABC-EMG-ISBN.pdf
https://www.noraxon.com/wp-content/uploads/2014/12/ABC-EMG-ISBN.pdf
https://doi.org/10.1016/j.jelekin.2019.102363
https://doi.org/10.1016/j.jelekin.2019.102363
https://doi.org/10.3390/s21155210
https://www.sparkfun.com/myoware?ref=msaavedra.com

Getting Started with the MyoWare® 2.0 Muscle Sensor Ecosystem - SparkFun Learn.

https://learn.sparkfun.com/tutorials/getting-started-with-the-myoware-20-muscle-sensor

-ecosystem/arduino-example-2-transmitting-sensor-data-via-bluetooth---single-sensor

Olmo Md, Domingo R. EMG Characterization and Processing in Production Engineering.

Materials. 2020; 13(24):5815. https://doi.org/10.3390/ma13245815

Pérez-Martínez, J., Hernandez-Gil, F., San Miguel, G., Ruiz, D., & Arredondo, M. T. (2023).

Analysing associations between digitalization and the accomplishment of the

Sustainable Development Goals. Science of The Total Environment, 857, 159700.

https://doi.org/10.1016/j.scitotenv.2022.159700

Pham, Hubert (2006). PyAudio Documentation

https://people.csail.mit.edu/hubert/pyaudio/docs/#class-pyaudio-stream

Raez MB, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection,

processing, classification and applications. Biol Proced Online. 2006;8:11-35. doi:

10.1251/bpo115. Epub 2006 Mar 23. Erratum in: Biol Proced Online. 2006;8:163.

PMID: 16799694; PMCID: PMC1455479.

Saavedra, L, 2015, USBHIDKeyboard.h,

https://github.com/espressif/arduino-esp32/blob/master/libraries/USB/src/USBHIDKeyb

oard.h. (2024)

Sánchez-Velasco, L. E., Arias-Montiel, M., Guzmán-Ramírez, E., & Lugo-González, E.

(2020). A Low-Cost EMG-Controlled Anthropomorphic Robotic Hand for Power and

Precision Grasp. Biocybernetics and Biomedical Engineering, 40(1), 221–237.

https://doi.org/10.1016/j.bbe.2019.10.002

70

https://doi.org/10.3390/ma13245815
https://doi.org/10.1016/j.scitotenv.2022.159700
https://doi.org/10.1016/j.bbe.2019.10.002
https://doi.org/10.1016/j.bbe.2019.10.002

Sloth, K, 2011, Usb.h, https://github.com/arduino-libraries/USBHost/blob/master/src/Usb.h.

(2024)

Smidt KP, Bicknell R. Prosthetics in Orthopedics. [Updated 2023 Jul 24]. In: StatPearls

[Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from:

https://www.ncbi.nlm.nih.gov/books/NBK570628/

Urone, P. P., & Hinrichs, R. (2012). 23.11 Reactance, Inductive and Capacitive. In College

Physics. OpenStax.

https://openstax.org/books/college-physics/pages/23-11-reactance-inductive-and-capa

citive?query=reactance&target=%7B“index”%3A0%2C“type”%3A“search”%7D#import-

auto-id1169737988958

Vogel, J., Hagengruber, A., Iskandar, M., Quere, G., Leipscher, U., Bustamante, S.,

Dietrich, A., Hoppner, H., Leidner, D., & Albu-Schaffer, A. (2020). EDAN: An

EMG-controlled Daily Assistant to Help People With Physical Disabilities. 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

4183–4190. https://doi.org/10.1109/IROS45743.2020.9341156

Yin, G., Zhang, X., Chen, D., Li, H., Chen, J., Chen, C., & Lemos, S. (2020). Processing

Surface EMG Signals for Exoskeleton Motion Control. Frontiers in Neurorobotics, 14,

40. https://doi.org/10.3389/fnbot.2020.00040

Yuan B, Hu D, Gu S, Xiao S, Song F. The global burden of traumatic amputation in 204

countries and territories. Front Public Health. 2023 Oct 20;11:1258853. doi:

10.3389/fpubh.2023.1258853. PMID: 37927851; PMCID: PMC10622756.

Zachary Boddy (October 15, 2023). "Minecraft crosses 300 million copies sold as it

prepares to celebrate its 15th anniversary". Windows Central. Archived from the

original on October 15, 2023.

71

https://doi.org/10.1109/IROS45743.2020.9341156
https://doi.org/10.3389/fnbot.2020.00040

Zhang R, Hong Y, Zhang H, Dang L, Li Y. High-Performance Surface Electromyography

Armband Design for Gesture Recognition. Sensors (Basel). 2023 May 21;23(10):4940.

doi: 10.3390/s23104940. PMID: 37430853; PMCID: PMC10222313.

72

IV. Appendices

Appendix A: Specifications of Electronic Components

Table A.A: Arduino Uno R4 WiFi specifications - Peripheral Device Arduino Uno R4 WiFi

Specification Details

Microprocessor 48 MHz Arm® Cortex®-M4 microprocessor with Floating Point Unit

Memory 256 kB Flash Memory
32 kB SRAM
8 kB Data Memory (EEPROM)

Power Operating voltage for RA4M1 is 5 V
Recommended input voltage (VIN) is 6-24 V. Barrel jack connected to
VIN pin (6-24 V). Power via USB-C® at 5 V

Peripherals: Capacitive Touch Sensing Unit (CTSU)
USB 2.0 Full-Speed Module (USBFS)
14-bit ADC
Up to 12-bit DAC
Operational Amplifier (OPAMP)

Secondary MCU: ESP32-S3-MINI-1-N8

Microprocessor Xtensa® dual-core 32-bit LX7 microprocessor (with single precision
FPU), up to 240 MHz

384 KB ROM
512 KB SRAM
16 KB SRAM in RTC
Up to 8 MB Quad SPI flash

Power: 3.3 V operating voltage

WiFi 802.11 b/g/n
Bit rate: 802.11n up to 150 Mbps

Bluetooth BLE (Bluetooth Low Energy): Bluetooth 5
Speed: 125 Kbps, 500 Kbps, 1Mbps, 2Mbps.
Advertising Extensions
Multiple Advertisement sets

73

Table A.B: Arduino Nano ESP32

Specification Details

Microprocessor Xtensa® Dual-core 32-bit LX7 Microprocessor

Memory 384 kB ROM
512 kB SRAM
256 kB Flash Memory
32 kB SRAM
8 kB Data Memory (EEPROM)

Power Operating voltage 3.3 V
VBUS supplies 5 V via USB-C® connector
VIN range is 6-21 V

Connectivity Wi-Fi®
Bluetooth® LE
Built-in antenna
2.4 GHz transmitter/receiver
Up to 150 Mbps

Table A.C: MyoWare 2.0 Muscle Sensors:

Specification Details

Supply Voltage min. = 2.27V, typical. = +3.3V or +5V, max. = +5.47V

Input Bias Current: 250 pA, max 1 nA

Input Impedance: 800

Common Mode
Rejection Ratio
(CMMR):

140 dB

Ideal Gain
Equations:

Raw (RAW): G = 200
Rectified (RECT): G= 200
Envelope (ENV): G = 200 * R / 1 kOhm
R is the resistance of the gain potentiometer in kOhm

Filters: High-pass Filter: Active 1st order, fc = 20.8 Hz, 2-20dB
Low-pass Filter: Active 1st order, fc = 498.4 Hz,2-20dB
Envelope Detection: Linear, Passive 1st order, fc = 3.6 Hz,3 -20 dB
Rectification Method: Full-wave

Outputs: EMG Envelope (default), Raw EMG, Rectified EMG

74

Appendix B: Project Code:

Figure B.A.: sEMG Peripheral Device Code:

#include <ArduinoBLE.h>

BLEService sensorDataService("19b10000-e8f2-537e-4f6c-d104768a1214"); // BLE Service named

"sensorDataService"

// BLE Data Characteristic - custom 128-bit UUID, readable, writable and subscribable by

central

// Note, "BLENotify" is what makes it subscribable

BLEUnsignedLongCharacteristic dataCharacteristic("19b10001-e8f2-537e-4f6c-d104768a1214",

BLERead | BLEWrite | BLENotify);

void setup()

{

Serial.begin(115200);

// while (!Serial); // optionally wait for serial terminal to open

Serial.println("MyoWare_MULTIPLE_BLUETOOTH");

if (!BLE.begin()) { // begin initialization

Serial.println("starting BLE failed!");

while (1);

}

Serial.println("BLE initialized successfully");

BLE.setLocalName("MYOWARESENSOR"); // set advertised local name

BLE.setAdvertisedService(sensorDataService); // set advertised service UUID

sensorDataService.addCharacteristic(dataCharacteristic);

// add the characteristic to the service

BLE.addService(sensorDataService); // add service

dataCharacteristic.writeValue(0);

// set the initial value for the characteristic

BLE.advertise(); // start advertising

}

void loop()

{

BLEDevice central = BLE.central(); // listen for BLE peripherals to connect

if (central) // if a central is connected to peripheral

{

Serial.print("Connected to central: ");

Serial.println(central.address()); // print the central's MAC address

75

Serial.println("Reading Sensors and writing BLE characteristic values now...");

while (central.connected())

{

uint16_t sensorValue1 = analogRead(A0);

// read the input on analog pin A0 / left leg/

uint16_t sensorValue2 = analogRead(A1);

// read the input on analog pin A1 / left arm

uint16_t sensorValue3 = analogRead(A3);

// read the input on analog pin A3 /right arm/

uint16_t sensorValue4 = analogRead(A2);

// read the input on analog pin A2 /right leg/

uint8_t Val1Byte = map(sensorValue1, 0, 1023, 0, 255);

uint8_t Val2Byte = map(sensorValue2, 0, 1023, 0, 255);

uint8_t Val3Byte = map(sensorValue3, 0, 1023, 0, 255);

uint8_t Val4Byte = map(sensorValue4, 0, 1023, 0, 255);

uint32_t output = 0; //output value 32 bit.

//Sections where data is transcribed into u32bit integer to transmit

output |= Val1Byte;

// ---- ---- ---- ---- ---- ---- XXXX XXXX

output |= (Val2Byte << 8);

// ---- ---- ---- ---- XXXX XXXX ---- ----

output |= (Val3Byte << 16);

// ---- ---- XXXX XXXX ---- ---- ---- ----

output |= (Val4Byte << 24);

// XXXX XXXX ---- ---- ---- ---- ---- ----

delay(10);

dataCharacteristic.writeValue(output);

//Test Prints:

//Serial.print("\t");

//Serial.print(sensorValue1); // print out the value

//Serial.print("\t");

//Serial.println(sensorValue2); // print out the value

//Serial.print("\t");

//Serial.print(sensorValue3); // print out the value

//Serial.print("\t");

//Serial.println(sensorValue4); // print out the value

}

76

Serial.print(F("Disconnected from central: ")); // when the central disconnects, print it

out

Serial.println(central.address());

}

}

77

Figure B.B.: sEMG Central Device Code:

#include <ArduinoBLE.h>

#include "USB.h"

#include "USBHIDKeyboard.h"

USBHIDKeyboard Keyboard;

//Initializing Values:

uint8_t val1Byte = 0;

uint8_t val2Byte = 0;

uint8_t val3Byte = 0;

uint8_t val4Byte = 0;

uint16_t value1state = 0;

uint16_t value2state = 0;

uint16_t value3state = 0;

uint16_t value4state = 0;

int spacebarcheck = 0;

void setup() {

// put your setup code here, to run once:

Serial.begin(115200);

Keyboard.begin(); //Begin keyboard.

// while (!Serial); // optionally wait for serial terminal to open

Serial.println("MyoWare Multi Sensor Example - BLE Central");

if (!BLE.begin()) // initialize the BLE hardware

{

Serial.println("starting BLE failed!");

while (1);

}

Serial.println("BLE initiallized successfully");

BLE.scanForUuid("19b10000-e8f2-537e-4f6c-d104768a1214"); // start scanning for peripheral

with specified UUID

Keyboard.begin();

}

void loop() {

// Main code here, to run repeatedly:

BLEDevice peripheral = BLE.available(); // check if a peripheral has been discovered

if (peripheral) // discovered a peripheral, print out its info to Serial (For Bug Testing

Purposes)

{

Serial.print("Found ");

Serial.print(peripheral.address());

78

Serial.print(" '");

Serial.print(peripheral.localName());

Serial.print("' ");

Serial.print(peripheral.advertisedServiceUuid());

Serial.println();

if (peripheral.localName() != "MYOWARESENSOR")

{

return;

}

BLE.stopScan();

checkUpdate(peripheral);

Serial.println("Starting to scan for new peripherals again...");

BLE.scanForUuid("19b10000-e8f2-537e-4f6c-d104768a1214"); // peripheral disconnected, scan

again

Serial.println("Scan has begun...");

}

}

void checkUpdate(BLEDevice peripheral)

{

Serial.println("Connecting ..."); // Connect to the peripheral notification

if (peripheral.connect())

{

Serial.println("Connected");

} else {

Serial.println("Failed to connect!");

return;

}

Serial.println("Discovering attributes ..."); // Discover peripheral attributes

if (peripheral.discoverAttributes())

{

Serial.println("Attributes discovered");

} else {

Serial.println("Attribute discovery failed!");

peripheral.disconnect();

return;

}

// Retrieve the data characteristic

79

BLECharacteristic dataCharacteristic =

peripheral.characteristic("19b10001-e8f2-537e-4f6c-d104768a1214");

if (!dataCharacteristic)

{

Serial.println("Peripheral does not have that characteristic!");

peripheral.disconnect();

return;

} else if (!dataCharacteristic.canWrite())

{

Serial.println("Peripheral does not have a writable characteristic!");

peripheral.disconnect();

return;

} else if (!dataCharacteristic.canRead())

{

Serial.println("Peripheral does not have a readable characteristic!");

peripheral.disconnect();

return;

} else if (!dataCharacteristic.canSubscribe())

{

Serial.println("Characteristic is not subscribable!");

peripheral.disconnect();

return;

} else if (!dataCharacteristic.subscribe())

{

Serial.println("subscription failed!");

peripheral.disconnect();

return;

}

//Change Values here per Sensor:

int delay_interval = 50;

int delayValue = 1500;

int delayValueUpper = 2000;

//Sensor W/

bool delay1 = false;

int counter1 = 0;

int delayCount1 = 0;

int count1_signalLength = 500;

int voltage_thresh_1_upper = 300;

int voltage_thresh_1_upper_high = 600;

int voltage_thresh_1_lower = 100;

80

//Sensor A

bool delay2 = false;

int counter2 = 0;

int delayCount2 = 0;

int count2_signalLength = 500;

int voltage_thresh_2_upper = 100;

int voltage_thresh_2_lower = 50;

//Sensor Spacebar

bool delay3 = false;

int counter3 = 0;

int delayCount3 = 0;

int count3_signalLength = 500;

int voltage_thresh_3_upper_high = 300;

int voltage_thresh_3_upper = 150;

int voltage_thresh_3_lower = 100;

//Sensor D

bool delay4 = false;

int counter4 = 0;

int delayCount4 = 0;

int count4_signalLength = 500;

int voltage_thresh_4_upper = 100;

int voltage_thresh_4_lower = 50;

bool keyW = false;

bool keyW_Alt = false;

bool keyS = false;

bool keyS_Space = false;

bool keyA = false;

bool keyD = false;

bool keySpace = false;

bool keyShift = false;

while (peripheral.connected()) // while the peripheral is connected

{

if (dataCharacteristic.valueUpdated()) // Check to see if the value of the characteristic

has been updated

{

uint32_t received_val = 0;

dataCharacteristic.readValue(received_val); // note, "readValue(uint32_t& value)" needs

the variable to be passed by reference

81

// parse received_val - this contains all 4 of our ADC values (as each byte)

//Serial.println(received_val, BIN); // optional print of the entire uint32_t for

debugging. Suppress other prints.

val1Byte = (received_val & 0x000000FF);

// read the input on analog pin A0 /left leg/ 'a'

val2Byte = ((received_val & 0x0000FF00) >> 8);

// read the input on analog pin A1 /left arm/ 'w'

val3Byte = ((received_val & 0x00FF0000) >> 16);

// read the input on analog pin A3 /right arm/ 'spacebar'

val4Byte = ((received_val & 0xFF000000) >> 24);

// read the input on analog pin A2 /right leg/ 'd'

uint16_t sensorValueA = map(val1Byte, 0, 255, 0, 1023); // A

uint16_t sensorValueW = map(val2Byte, 0, 255, 0, 1023); // - W

uint16_t sensorValueS = map(val3Byte, 0, 255, 0, 1023); // - Spacebar

uint16_t sensorValueD = map(val4Byte, 0, 255, 0, 1023); // - D

// W

if (delay1 == true){

delayCount1 += delay_interval;

}

if (delayCount1 >= delayValueUpper){

delay1 = false;

}

if (sensorValueW > voltage_thresh_1_upper){

counter1 += delay_interval;

if (counter1 >= count1_signalLength && delay1 == false){

//Voltage Threshold Check:

if (sensorValueW > voltage_thresh_1_upper_high){

keyW_Alt = !keyW_Alt;

}

else {

keyW = !keyW;

}

delay1 = true;

delayCount1 = 0;

}

}

if (sensorValueW <= voltage_thresh_1_lower){

counter1 = 0;

}

// A

if (delay2 == true){

82

delayCount2 += delay_interval;

}

if (delayCount2 >= delayValue){

delay2 = false;

}

if (sensorValueA > voltage_thresh_2_upper){

counter2 += delay_interval;

if (counter2 >= count2_signalLength && delay2 == false){

keyA = !keyA;

delay2 = true;

delayCount2 = 0;

}

}

if (sensorValueA <= voltage_thresh_2_lower){

counter2 = 0;

}

// Spacebar

if (delay3 == true){

delayCount3 += delay_interval;

}

if (delayCount3 >= delayValueUpper){

delay3 = false;

}

if (sensorValueS > voltage_thresh_3_upper){

counter3 += delay_interval;

if (counter3 >= count3_signalLength && delay3 == false){

if (sensorValueS > voltage_thresh_3_upper_high){

keyS_Space = !keyS_Space;

}

else {

keyS = !keyS;

}

delay3 = true;

delayCount3 = 0;

}

}

if (sensorValueS <= voltage_thresh_3_lower){

counter3 = 0;

}

// D

if (delay4 == true){

delayCount4 += delay_interval;

83

}

if (delayCount4 >= delayValue){

delay4 = false;

}

if (sensorValueD > voltage_thresh_4_upper){

counter4 += delay_interval;

if (counter4 >= count4_signalLength && delay4 == false){

keyD = !keyD;

delay4 = true;

delayCount4 = 0;

}

}

if (sensorValueD <= voltage_thresh_4_lower){

counter4 = 0;

}

//Change .press outputs for different keys.

//Logic (W/Space Outputs)

if (keyW == true){

Keyboard.press('w');

}

else if (keyW_Alt == true){

Keyboard.press('z');

Keyboard.press('w');

}

else if (keyW == false || keyW_Alt == false){

Keyboard.release('w');

Keyboard.release('z');

keyW = false;

keyW_Alt = false;

}

if (keyS == true){

Keyboard.press(' ');

delay(1);

keyS = false;

}

else if (keyS_Space == true){

Keyboard.press(' ');

}

else if (keyS == false || keyS_Space == false){

Keyboard.release(' ');

keyS = false;

keyS_Space = false;

}

84

// Space

if (keyA == true){

Keyboard.press('a');

}

else if (keyA == false){

Keyboard.release('a');

}

if (keyD == true){

Keyboard.press('d');

}

else if (keyD == false) {

Keyboard.release('d');

}

// Serial Print Checks: Uncomment or Comment values you want to check for

calibration/testing purposes. Can output a single line of sEMG values if needed for Trial 2

// You have to suppress key outputs to prevent accidental typing while testing.

//Serial.print(keyA);

// Serial.print("\t");

// Serial.print(keyD);

// Serial.print("\t");

// Serial.print(keyW);

// Serial.print("\t");

// Serial.print(keyS);

// Serial.print("\t");

// Serial.println(keyShift);

// Serial.print(spacebarcheck);

// Serial.print("\t");

Serial.print(sensorValueA);

Serial.print("\t");

Serial.print(sensorValueW);

Serial.print("\t");

Serial.print(sensorValueS);

Serial.print("\t");

Serial.println(sensorValueD);

delay(delay_interval);

}

delay(1);

}

Serial.println("Peripheral disconnected");

Keyboard.releaseAll();

}

85

Figure B.C. Voice Control Software

86

87

Figure B.D Voice Control Software Flowchart

88

Appendix C: Additional Results:

Figure C.A: Threshold Calibration Left Bicep Trial 1

Figure C.B: Threshold Calibration Left Bicep Trial 2

89

Figure C.C: Threshold Calibration Left Bicep Trial 3

Figure C.D: Threshold Calibration Right Bicep Trial 1

90

Figure C.E: Threshold Calibration Right Bicep Trial 2

Figure C.F: Threshold Calibration Right Bicep Trial 3

91

Figure C.G: Threshold Calibration Left Gastrocnemius Trial 1

Figure C.H: Threshold Calibration Left Gastrocnemius Trial 2

92

Figure C.I: Threshold Calibration Left Gastrocnemius Trial 3

Figure C.J: Threshold Calibration Right Gastrocnemius Trial 1

93

Figure C.J: Threshold Calibration Right Gastrocnemius Trial 2

Figure C.H: Threshold Calibration Right Gastrocnemius Trial 3

94

