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Abstract 

 Beaches are becoming more littered by trash that is discarded by humans worldwide. 

Currently, there are methods for cleaning trash from beaches that usually entail large, expensive 

machines that may not be accessible for all types of beaches. This project aims to develop a 

multi-robot solution for cleaning beaches in an effective manner. Using the engineering design 

process, our team gathered information about beaches to design prototypes, test designs, and 

build a functioning proof of concept, multi-robot solution.  
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Section 1: Introduction 

1.1 The Ecosystem and Its Importance 

The natural world is composed of many ecosystems: biological environments, containing 

communities of interacting organisms that communicate with each other as well as with their 

physical environment. Ecosystems range from the Amazon Rain Forrest to the Himalayan 

Mountains and beyond. Many of these ecosystems are close to human civilization and are even 

common ground between the organisms that naturally live within and their human counterparts 

(National Geographic Society, 2012). A prime example of these environments are beaches. 

Beaches provide a range of both animal and plant life that contribute to the wellness of the area 

itself as well as its surroundings (US Army Corps of Engineers, n.d.). 

Ecosystems play a major role in the health and stability of life on Earth. Specifically, one 

ecosystem has enough influence to affect its surrounding areas, as the changes experienced 

within a given ecosystem may influence its neighboring counterparts. Ecosystems do this by 

taking the resources available in a region and producing habitable areas for organisms to survive 

(National Geographic Society, 2012). For example, areas around beaches are littered with 

immobile mussels —a similar species to the clam—, which rely on changing tides to flow 

microscopic sea creatures through them for feeding purposes. These mussels in turn depollute the 

surrounding water and make the environment safer for other life forms (Wikimedia Foundation, 

2021).  

Therefore, ecosystems are built on the following concept: every component of an 

ecosystem is tasked with contributing to the health and stability of the system and its inhabitants. 
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Healthy ecosystems further benefit other ecosystems and ensure they remain in good condition. 

Ultimately, the organisms present around the globe are components to the grander ecosystem that 

is planet Earth. 

 

1.2 The Problem 

As previously mentioned, ecosystems have methods of impacting the surrounding areas. 

However, human beings are increasingly intruding into the natural flow of ecosystems. The 

action of being intrusive does not necessarily mean that humans have a decided negative impact 

on habitats. Scientists are constantly exploring ecosystems and aiding in the longevity of many 

different natural environments to produce a healthier planet. However, humans also have an 

extensive history of disrupting ecosystems and aiding in their ultimate demise (US Army Corps 

of Engineers, n.d.). It is important that steps are taken to help reduce the amount of harm that 

people are causing to different natural environments. Our team will be taking a step to making a 

cleaner planet. 

The beaches surrounding heavily populated areas are constantly visited by tourists and 

locals year-round. These locations serve mostly as vacation getaways. However, it is important 

to note that all saltwater beaches serve as fully functional ecosystems; supporting wildlife and 

plant life, which aids nature in maintaining balance. One of the largest problems facing beaches 

is the litter that tourists and locals leave behind, without any regard for how their actions may 

affect the ecosystem. For example, the mussels previously discussed cannot differentiate 

between microplastics and microorganisms that flow into their shells; one of which feeds and 
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supports them while the other kills them. While mussel beds are constantly being destroyed due 

to the decomposition of the surrounding litter, water quality is declining, which heavily impacts 

the surrounding wildlife and ecosystems.  

Microplastics, or micro-litter, come from manmade litter that has been decomposed in the 

saltwater. The litter gets washed into the ocean because of rising and falling tides. While there 

are countless examples of what beach litter does to the oceanic ecosystem, it is important to 

realize that this problem must be dealt with as soon as possible. Litter needs to be removed from 

beaches in order so sustain a healthy, functioning ecosystem (US Army Corps of Engineers, 

n.d.).  

 

1.3 Our Solution 

There are many ways that harmful litter can be cleared from the world’s beaches. This 

project emphasizes a robotic approach to the solution, where an autonomous system is used to 

efficiently clear a beach with minimal human interaction. The robotic system designed in this 

project consists of two robots in an autonomous swarm-like approach: a Basebot and a Smallbot. 

The Basebot acts as the parent robot in the system and one or more Smallbots act as the children. 

The Basebot sits higher up on the shore and it includes a camera that overlooks and maps out a 

portion of beach. The camera on the Basebot tracks the Smallbots maneuvering within the 

mapped area to designate sections of said area to specific Smallbots. 

For this project only one Smallbot will be present in the system. The Smallbot features a 

four-wheel, rocker-bogie drivetrain with grip wheels to move across the sand easily without 
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getting stuck. The Smallbot will drive within its designated area defined by the Basebot until its 

onboard camera recognizes a piece of litter based on a machine learning model. After detecting a 

trash object, a two degree of freedom (DOF) arm will move to the position of the object, grab the 

object with its gripper mechanism, and place the object in the onboard bucket. Once the Smallbot 

completes clearing the area, the Smallbot will return to the Basebot and dump the trash.  

This approach to rid beaches of litter is efficient and practical for most coastal areas. 

Beaches are not always occupied all days of the year and therefore, can be cleared of any leftover 

litter that may have been left behind by visitors. An autonomous robotic system is efficient for 

clearing unoccupied beaches, as it will eliminate human error that could develop from volunteer 

projects that may not clear all parts of a beach. A robotic system can also run for extended 

periods of time without breaks and will therefore be able to clear a larger area than a group of 

humans.  

Our team is achieving the solution to the problem by splitting the workload between four 

terms at Worcester Polytechnic Institute (WPI). The first term consisted of reviewing the 

progress made during the previous iteration of the project and determining areas that could be 

improved. In addition, the first term also consisted of forming preliminary designs and 

performing tests on mechanisms that could be improved. The second term involved making 

improvements to the prototypes from the first term, ordering parts/materials/electronics, and 

implementing a machine learning model for litter detection along with the necessary control 

systems. The third term included testing the final design and making final improvements to the 

dual-robot system. Finally, the fourth term consisted of further testing and documenting the 

progress made during this iteration of the project.  
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The objectives and goals of our team's iteration of the project were the following: 

• The Smallbot needs to be able to maneuver on sand. 

o The robot should drive on sand at a speed of 0.5
𝑚

𝑠
. 

o The robot’s drivetrain must not get jammed or stuck from driving on sand.  

o The robot’s battery life must last an hour at least. 

• Improve upon the Smallbot’s mechanical features. 

o The bottom half of the Smallbot must be water resistant. 

o The gripper should collect trash such as 473ml bottles and 355ml cans. 

o The storage bucket on the Smallbot needs to store at least one soda can (355ml 

5.38cm diameter, 12.07cm tall) and one plastic bottle (473ml 6.1cm diameter x 

19.69cm tall). 

• Soda cans and plastic bottles must be detected as trash by a machine learning model. 

The Smallbot must be equipped with a variety of sensing components to ensure proper 

maneuvering and localization throughout the cleaning routine: an Inertial Measuring Unit 

(IMU), AprilTags and a camera. 

Reach Goals: 

• Implement communication between the Smallbot and the Basebot.  

• When the Smallbot is full, it must return to its starting position.  

• Make the Smallbot’s onboard electronics waterproof.  
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Section 2: Background 

2.1 Causes of Litter in Coastal Areas 

Beaches are commonly used as locations for social gatherings and events, which has 

caused anthropogenic litter to become a byproduct of coastal development (Araújo, et al., 2018). 

Anthropogenic litter is defined as the waste that results from the influence of human beings on 

any given natural environment (Merriam-Webster, n.d.). The cause of this type of litter on 

beaches can be linked to a variety of factors, like “location and morphology of the beach, the 

presence of rivers and streams, and winds” (Araújo, et al., 2018). However, a large contributor to 

this issue is the commercial activity that has developed in urban beaches, where sales of food and 

beverages often take place (Araújo, et al., 2018). Therefore, an elevated number of social events 

and activities is linked to an increase in the anthropogenic litter found in densely populated 

coastal areas. 

Marine debris is another major cause of anthropogenic litter in coastal areas. The types of 

marine debris that are commonly found range from five-millimeter microplastics, to fishing gear 

and abandoned vessels (Ocean Pollution, n.d.). This specific type of litter poses a major threat to 

marine animals and their ecosystems, as these creatures can get entangled in such waste, and 

their natural habitats become polluted (Ocean Pollution, n.d.). Despite marine debris originating 

on land, poor waste management practices, weather conditions and extreme natural events are 

gateways for this land-based litter to enter to ocean (Ocean Pollution, n.d.). Nonetheless, this 

debris is a major concern, as ocean currents cannot only create “garbage patches” — “large areas 

of the ocean where trash, fishing gear, and other marine debris collects”— but they can also 
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cause for some of the debris to sink into the depths of the ocean or be washed ashore with the 

waves and tides (Ocean Pollution, n.d.). 

Ocean dumping is defined as the activity of depositing waste materials directly into the 

ocean (Mambra, 2020). This practice is commonly performed by factories and industries who 

dispose of their “tankers and ships and sewerage waste materials into the oceans and seas” 

(Mambra, 2020). While most of these waste products do not come in the form of solid, physical 

litter, a small percentage of this waste presents itself as medical, hazardous, or toxic materials, 

which once washed up on beaches, can cause accidents and injuries as a result of the sheer 

exposure to these substances (Bortman, 2020). Therefore, the closure of beaches is not unknow 

to the shorelines where this litter lands, as the pollution then needs to be removed, in order to 

ensure the well-being of beachgoers and animals in the area (Bortman, 2020). 

 

2.2 Types of Beach Litter 

It has been estimated that over 300 million tons of plastic is manufactured each year, half 

of which is made into single use products like plastic bags and cosmetic scrubs (Lebreton, et al, 

2017). More than 8 million tons of this plastic ends up in the ocean where it seemingly “goes 

away” (Lebreton, et al., 2017). However, discarded plastic and other waste such as plastic bags, 

toothbrushes, plastic packaging, straws, and plastic bottles all break down when dispersed in salt 

water (Barry, 2009). This results in the plastic pollution spreading throughout the sea, being 

ingested by sea life, and particles of it ending up on our beloved beaches (Parker, 2019).  
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In addition to plastic, many other items are found along the coastlines and within the 

marine environment. Some other common forms of litter are cigarette butts, disposable face 

masks, bottle caps, food wrappers, and foam takeout containers and cups (Chow, 2019 & Reddy, 

2018). In 2015, “it was recorded that there was 5.25 trillion pounds” of litter within the marine 

ecosystem and the beaches that surround it, and it has only exponentially grown from then 

(Weinhardt, 2019). In addition, according to the Ocean Conservancy, “8 million metric tons” of 

trash is dumped into our oceans each year (Leonard, George, et al. 2020). From the oceans, the 

litter ends up washing ashore, polluting beaches, and creating a danger for seaside life, as well as 

beachgoers (Environmental Protection Agency, 2020). 

 

2.3 Impact on the Ecosystem 

Marine litter has a very serious and severe impact on marine life in today’s waters. All 

around the globe, marine pollution is found both in bodies of water, as well as inside the species 

that inhabit said environments. Plastics and other litter can be consumed by marine animals, 

resulting in debris filling their stomachs in place of food. Plastics can easily be broken down by 

the seawater, creating microplastics. These microplastics can also be found in the bloodstream 

and tissue of marine animals (Sharma, et al., 2017). This is how the plastic debris then enters the 

bloodstream and inner tissues of marine organisms. 

Though the impact of ocean pollution on marine life alone is extensive, it affects more 

than just the ocean and its ecosystem. Fish and other organisms that live in the world’s bodies of 

water are consumed by both land animals and humans. Some of these land animals will also be 
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eaten by humans, which therefore completes the food web (Stromberg, 2013). Due to the food 

web, both land animals and humans can be endangered by the impacts that litter in the sea have 

on marine environments (Sharma, et al., 2017). Through consumption of marine life, ocean litter 

also becomes harmful to humans. Human ingestion of these pollutants, as well as their resulting 

chemicals, causes serious health problems such as “alteration in chromosomes which lead to 

infertility, obesity, and cancer” (Sharma, et al., 2017).  

In addition to the tragic effects of consuming marine litter, for both ocean life and 

humans, there are negative impacts of this pollution on land. One of the most prominent issues is 

the inconvenience for beachgoers (Environmental Protection Agency, 2019). People who 

frequently go to the beach are more likely to encounter large amounts of pollution along the 

shoreline (Environmental Protection Agency, 2020). Not only can beach litter be bothersome, 

but it can also be harmful. Oftentimes, both people and wildlife can get caught in it. For humans, 

this is a minor inconvenience and a possible trip to the doctor. Meanwhile, for wildlife within the 

ecosystem, it could mean the end of their lives or lifelong injuries (Werner, Stefanie, et al, 2016). 

According to National Geographic, a common example of this is when seabirds accidentally 

consume colorful plastics and other litter because “it smells like food” and eventually pass away 

due to the chemicals that enter their bodies (Parker, 2016). Since there are large amounts of litter 

and pollution within the marine ecosystem, it is necessary to create a plan of action to do our best 

by removing these harmful substances that we, as humans, put there. 
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2.4 Current Beach Clean-Up Methods 

            A variety of approaches have been developed to help negate the impact of pollution on 

the environment, specifically on beaches. Common beach cleaning methods revolve around 

volunteerism. Volunteers are able to clean beaches by hand and with common tools such as 

rakes, sand sifters, and shovels. However, there are companies that assist with the beach cleaning 

process. One example is a Greek environmental organization named iSea. iSea strives to 

innovate on current beach-cleaning methods. This specific company runs volunteer-based beach 

clean ups and educational programs, while also working with the community through projects, 

such as ‘Fishing for Litter’ (iSea, 2020). Other companies such as 4Ocean, only conduct beach 

cleaning operations, and are supported by selling merchandise. 4Ocean utilizes boats, fishing 

nets, and mobile ocean skimmers to expand their efforts to produce a clean environment 

(4Ocean, 2020). Ultimately, despite there being beach-cleaning robots that currently exist, like 

the Dronyx Solarino, they are too large and expensive to be used in most places (Dronyx, 2016).  
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Section 3: Methodology 

3.1 Overview of System  

 The following two sections give a brief overview of the accomplishments of the previous 

iteration of the project and the current design of the system. 

 

3.1.1 Analysis of Previous System   

The previous implementation of the project was a proof of concept that a swarm system 

could be used for cleaning trash from a beach. The previous system was able to identify cans on 

a beach using a custom TFLite model and a Google Coral Edge Tensor Processing Unit (TPU). 

However, because the TFLite model was not quantized to run on the Coral, the inference could 

only be performed at a maximum of 2 frames per second (FPS) on the ELP camera. The Basebot 

could communicate and manage multiple Smallbots in simulation software (Gazebo) with Robot 

Operating System (ROS) and was also able to perform terrain mapping. However, the Basebot 

was never tested in practice. Regardless, beach areas were able to be divided into workable zones 

and assigned to the simulated Smallbots for cleanup.   

A physical Smallbot was designed and tested in sand, though it proved to be unreliable. 

This is due to the treads clogging up with sand after a few minutes of runtime. Along with the 

drivetrain, a collection mechanism that was mounted on the Smallbot’s drivetrain could lift 

empty cans. The Smallbot was successful in collecting trash from the ground and dumping the 

trash from the storage bucket. Overall, this past iteration of the project created a foundation for 

future teams to build upon.  
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3.1.2 Overview of Current System  

To accomplish the requirements of the project and to efficiently clean trash from beaches, 

the idea of one Basebot and multiple Smallbots was maintained from the previous team. The 

single Basebot would act as the parent robot over the Smallbots (children) which maneuver about 

a specified area in the Basebot’s camera view. To clear large portions of a beach, the Basebot 

would eventually move parallel to shore to allow to allow for more areas to be cleaned.  

For the scope of this project the Basebot will be stationary and one Smallbot will 

maneuver in the Basebot’s camera view. This swarm design is both efficient and cost effective 

versus a single robot that would take a longer period time to clean an entire beach. The current 

approach of one stationary Basebot and a single Smallbot can be easily scaled for future 

iterations of the project.  

 

3.2 Smallbot System  

As previously mentioned, the conceptual swarm would be comprised of multiple 

Smallbots working together under the direction of a single Basebot. The mechanical design of 

the Smallbot and the selection of sensors was determined based on the list of tasks that it needed 

to achieve as an independent system. These tasks include driving and turning on sand reliably, as 

well as being able to detect and grip litter in a consistent manner. Therefore, the mechanical, 

electrical. and software aspects of the robot had to undergo careful planning and consideration to 

achieve the designated goals. 
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3.2.1 Mechanical Design 

The Smallbot was observed and tested based on the previous MQP’s implementation. 

Once completed, it was apparent that there were a variety of mechanical issues that needed to be 

improved to meet the requirements for this iteration of the project. Our team was told that the 

previous iteration of the Smallbot was unable to successfully drive on sand for longer than two 

minutes without stalling. The sand clogged the treads causing the drive speed to decrease 

because there was not enough torque in the drive motors. Correcting this problem was a primary 

mechanical requirement for the Smallbot. Secondly, the gripper on the end of the 2-DOF arm 

was only able to pick up cans that were standing up vertically. This was an issue because litter 

can be positioned in multiple orientations. Furthermore, the onboard bucket could only hold up 

to two, 355ml cans. To meet the requirement of holding a maximum of three, 473ml bottles, the 

bucket needed to be enlarged and redesigned to fit within the new chassis design. Taking these 

considerations into account, and to meet the requirements that our team set for this project, a 

redesign of the chassis and the majority of the mechanisms was deemed necessary.  

 

3.2.1.1 Drivetrain Selection and Design 

After testing the previous iteration of the Smallbot’s chassis, a redesign was necessary to 

meet the requirements that our team designated for the chassis. The previous chassis could only 

reach a top speed of 0.1
𝑚

𝑠
 , which was lower than the top speed requirement our team had made. 

The new speed requirement is approximately 0.5
𝑚

𝑠
, or around walking speed. Furthermore, the 
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chassis from the previous team did not meet the requirement of driving on sand effectively as the 

tread drivetrain design would get clogged with sand after a short period of time. 

 To meet the requirements that our team had set for our project, initial design concepts 

were made for various drivetrain implementations and the correct drive motor speed/torque for 

the application. Calculations were conducted to determine the necessary drive motor torque for a 

four-wheel drivetrain driving or turning on sand. To calculate the necessary drive motor torque, a 

free body diagram (FBD) was drawn to designate the forces and torques involved for the four-

wheel drivetrain. In this estimate calculation, it was measured that the robot weight was 11.3kg 

(𝑊𝑟), the width and length of the base was 0.42m (𝑇𝑅 , 𝐵), the wheel radius was 0.076m (𝑅𝑤), and 

a coefficient of friction of 0.35 (𝜇) was referenced from the “Table of Ultimate Friction for 

Dissimilar Materials” (Fine Software, n.d.). Figure 1 and the associated equations show the 

calculation for the motor torque for one of the four wheels of the drivetrain. The wheels are 

pictured in red, and the chassis frame is in blue. From these initial calculations we determined 

that around 1Nm of torque was required for each side of the robot’s drivetrain to maneuver on 

sand.   
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Figure 1: FBD Top View of Drive Train Chassis 

 

∑ 𝑀𝐴 = ∑ 𝑀𝑜𝑚𝑒𝑛𝑡𝑠𝐴 = 0 =  2 ∗ (−𝐹𝑟(𝐵)) + 2 ∗ (𝐹𝑡(𝑇𝑟)) 

𝐹𝑅 = (
𝑊𝑟 ∗ 𝑔

4
) 𝜇 = (

11.3𝑘𝑔 ∗ 9.8
𝑚
𝑠2

4
) 0.35 = 9.73𝑁 

𝜃 = 𝑡𝑎𝑛−1 (
𝐵

𝑇𝑟
) = 𝑡𝑎𝑛−1 (

0.42𝑚

0.42𝑚
) = 45° 

𝐹𝑡 = 𝐹𝑅 sin(𝜃) = 9.73𝑁 ∗ sin(45) = 6.88𝑁 
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𝐹𝑟 = 𝐹𝑡 (
𝐵

𝑇𝑟
) = 6.88𝑁 (

0.42𝑚

0.42𝑚
) = 6.88𝑁 

𝜏𝑤 = 𝑇𝑜𝑟𝑞𝑢𝑒𝑤ℎ𝑒𝑒𝑙 = 𝐹𝑡(𝑅𝑤) = 6.88𝑁 ∗ 0.076𝑚 = 0.524𝑁𝑚 

𝑇𝑜𝑟𝑞𝑢𝑒𝑜𝑛𝑒 𝑠𝑖𝑑𝑒 = 𝜏𝑤 ∗ 2 = 2 ∗ 0.524𝑁𝑚 = 1.05𝑁𝑚 

 From initial research into sand vehicles, our group considered two designs as potential 

options for the Smallbot’s drivetrain: a belt-tread design or a four-wheel rocker-bogie drivetrain. 

The belt drive design idea was similar to the previous iteration of the project, except the treads 

would be a single belt to help prevent sand from clogging them. As mentioned, the previous 

iteration of the Smallbot’s chassis used tread links that would clog from sand getting trapped 

between each link. Some advantages of a single belt design are that it would prevent the robot 

from sinking into the sand and provide the drivetrain with sufficient traction. However, the single 

belt system was more difficult to design and required additional testing for the correct spacing of 

the tread pulleys.  

The four-wheel, rocker-bogie drivetrain option was a simple design that worked well for 

other sand vehicles, like the NASA Mars rover (NASA, 2019). This design was simple, but 

required testing, as sinking into the sand while turning was an inherit concern of the wheel 

design. Fortunately, our group received some of the components of a four-wheel, rocker-bogie 

kit from one of our advisors, Professor Miller. The components that our group received from the 

GearsEd Surface Mobility Platform kit included: four DC motors, four 0.152m diameter wheels, 

and the anodized aluminum box extrusions for connecting the motors together for each side of 

the drivetrain. The four DC motors that were included in the components had a stall torque of 
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18Nm, which was greater than the 0.524Nm that was calculated from our initial estimates. At 

0.524Nm the drive motors would operate at an efficiency of around 30% which is ideal for 

brushed DC motors. The specifications of the drive motors were plotted and evaluated to 

determine the optimal speed and torque, as seen below in Figure 2.    

 

Figure 2: Drive Motor Specifications Graph at 12V 

 

A testing prototype was created to test a functioning rocker bogie system. Using the 

components that were given to our group and by machining/building the parts necessary to 

connect both sides of the chassis together, a prototype of the drivetrain was built. The wheels, as 

seen in Figure 3, are 0.152m in diameter and have deep grooves in them, which help grip the 
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sand surface. In addition, these grooves do not allow for sand buildup, which made them the 

most efficient and cost-friendly option for driving on sand for a long duration of time. The 

0.152m diameter wheels also helps prevent the robot from sinking into the sand while turning, 

since the larger surface area helps distribute contact with the ground. 

 

Figure 3: Picture of Drive Wheel 
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Figure 4: Isometric Back View of Chassis CAD 

 

In addition to the four-wheel chassis, a rocker-bogie suspension system was 

implemented. The suspension system was crucial since there can be variances in the beach 

terrain, such as bumps, holes, or other debris. The main idea of implementing a rocker-bogie 

system was to maintain constant contact with the surface of the beach. The rocker bogie system 

is able to maintain contact with the surface by having a central shaft which allows each side of 

the chassis to rotate about its axis, as seen in Figure 4. Both sides of the chassis are connected by 

a 3-part linkage system which keeps the top plate parallel with the ground and prevents it from 

moving with the changing terrain. The C-channel attached to the top plate holds pillow blocks 

that allow a shaft that connects to the suspension bracket to rotate. The suspension system shown 

above attaches to this rod, so it can rotate freely as the wheelbase moves on terrain, while also 

keeping the top plate parallel to the ground.  
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Another requirement our team wanted to fulfill was to have the drivetrain be partially 

water resistant. To protect the electronics from water, the electronics were placed on top of the 

top plate as pictured in Figure 4. The top plate was measured to be approximately 0.203m off the 

ground, which is an improvement from the previous iteration of the robot which had the 

electronics mounted on the bottom of the Smallbot’s chassis. Also, to help prevent sand or water 

from disrupting the drive motors, motor covers were mounted around the outside of each motor. 

The drive motor covers can be seen in the Figure 5.   

 

Figure 5: Drive Motor Covers 

 

3.2.1.2 Gripper Mechanism  

 To collect trash from the surface of the beach, it was decided that a claw-like gripper 

design was the best mechanism for the task. The previous iteration of the gripper had issues with 

stability, as there was too much backlash between the gears and the bolts that the gears rotated 

about. This first iteration of the design was reworked to maintain stability between the gears 

because it was important to retain a consistent position for grabbing and releasing a bottle or can. 

This was partially due to the 3mm thick gears which caused the bolts to loosen after use making 
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the gears skip. Our team attempted to correct the previous design by replacing the gears and 

fingers. However, the backlash of the gears was still unstable for consistent collection of the 

bottles and cans.   

Since the previous design had mechanical issues that could not be fixed for consistent 

collection, a new design was created to meet the requirements of reliably collecting a bottle or a 

can. A two-gear, two-finger design was decided as the appropriate mechanism for the task; an 

outer plate was mounted onto the opposite side of where each gear with a finger attached to the 

inner plate and the servo horn. This support on both sides of the gripper helps with maintaining a 

constant center distance between the two gears. The gear and fingers were designed and 3D 

printed with 12.7mm thick gears to allow for a greater contact area between the teeth. The 

diametral pitch of the gears was lowered to 12 to help strengthen the teeth since they were 3D 

printed. The gripper was mounted parallel to the ground since bottles are more likely to be 

orientated parallel on a beach, as seen in Figure 8. This new gripper design can collect normal or 

crushed, 355ml cans and 473ml bottles, which meets and exceeds the requirement for this 

mechanism. The gripper uses a 30kg-cm (2.9Nm stall torque) servo that was directly mounted to 

one of the gears and finger parts. At 20% stall torque the gripper can exert a gripping force of 

about 4.57N. This force is exerted at the center of the finger as shown in Figure 6 and Figure 7, 

as well as in the equation of equilibrium below.   
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Figure 6: Right Gripper Finger FBD 

 

Right Finger/Gear Parameters: 

𝐿 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑓𝑖𝑛𝑔𝑒𝑟 = 0.0635𝑚 

𝐹𝑅 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝐹𝑜𝑟𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 

𝐹𝑇 = 𝐹𝑜𝑟𝑐𝑒 𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 𝑓𝑖𝑛𝑔𝑒𝑟 

𝑅 = 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐺𝑒𝑎𝑟 

𝐴 = 𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑆𝑒𝑟𝑣𝑜 𝐻𝑜𝑟𝑛 

𝐴𝑋 = 𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝐴 𝑖𝑛 𝑡ℎ𝑒 𝑋 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝐴𝑌 = 𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝐴 𝑖𝑛 𝑡ℎ𝑒 𝑌 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
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Equations of Equilibrium for the Right Finger/Gear: 

∑ 𝑀𝐴 = 0 = 𝑇𝑚 − 𝐹𝑇(𝑅) − 𝐹𝑅(𝐿) 

 

Figure 7: Left Gripper Finger FBD 

 

Left Finger/Gear Parameters: 

𝐿 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑓𝑖𝑛𝑔𝑒𝑟 = 0.0635𝑚 

𝐹𝑅 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝐹𝑜𝑟𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 

𝐹𝑇 = 𝐹𝑜𝑟𝑐𝑒 𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 𝑓𝑖𝑛𝑔𝑒𝑟 

𝑅 = 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝐺𝑒𝑎𝑟 

𝐵 = 𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑 𝑔𝑒𝑎𝑟 
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𝐵𝑋 = 𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝐵 𝑖𝑛 𝑡ℎ𝑒 𝑋 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝐵𝑌 = 𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝐵 𝑖𝑛 𝑡ℎ𝑒 𝑌 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

Equations of Equilibrium for the Left Finger/Gear: 

∑ 𝑀𝐵 = 0 = 𝐹𝑇(𝑅) − 𝐹𝑅(𝐿) 

 

Figure 8: Isometric View of Gripper CAD 
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Figure 9: Picture of final gripper on the Smallbot 

 

Another problem that had been noted on previous iterations of the gripper was that the 

motor stalled too often, which eventually lead to the original gripper servo burning out and 

having to be replaced. Additionally, the motor would struggle when returning the gears to their 

zeroed position while the gripper was fully closed and when the fingers of the gripper would be 

wrapped around a piece of litter. The motor would never be able to reach this position due to the 

litter restraining the gripper’s range of motion. To alleviate this, a multiple-part solution was 

designed. Firstly, a gear-pawl mechanism attached to a 3.7g micro-servo motor was designed, in 

which a spring-loaded pawl would automatically lock the gears in place and prevent further 

rotation once a piece of litter was gripped. When the gripper moved again, the micro-servo 

would rotate the pawl away from the gears to allow them to move. This design is shown below in 
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Figure 10. However, this pawl design would require that the gripper servo be used to assist the 

locking tooth from clearing the gears and was scrapped in favor of a design that would allow the 

locking tooth to begin meshing with the gears by moving in a straight line. 

Figure 10: Initial Gear Locking Mechanism Design 
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Figure 11: Second Gear Locking Mechanism Design 

This was accomplished by designing a two-bar mechanism that used a pivot joint as well 

as a pin-slot joint, as shown above in Figure 11. The pivot link would be attached to the micro-

servo and would push the link attached to the pin slot into the gears in order to lock them. This 

design was better than the first one, but still had some flaws. Mainly, the force that the gears 

would place on the pawl, and on the micro server horn was a concern. From further discussions 

and research, our team found a much simpler solution to the problem, which involved rubber 

bands. The main idea was that the rubber bands would increase the resistance acting on the gears 

as the gripper opened and they would then allow power to be cut to the servo when the gripper 

was closing. This would occur because the bands themselves could provide the necessary 

gripping force. Therefore, 3D-printed standoffs were added to the gripper fingers, between the 

grippers themselves and the gears. Rubber bands were then attached to these standoffs to provide 

ample gripping force to hold the trash without the servo having to be active, as shown below in 

Figure 12. The rubber bands chosen for this application were #64, VEX robotics rubber bands. 
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New and revised FBDs and calculations were completed to find the force that was necessary for 

these rubber bands to apply to the grippers in order to achieve a similar gripping force. The 

FBDs are shown below in Figures 13 and 14. 

 

Figure 12: Rubber Bands Attached to the Gripper 
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Figure 13: Right Finger FBD with Rubber Band 

Right Finger/Gear Parameters: 

𝐹𝑅 =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐺𝑟𝑖𝑝𝑝𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 = 4.57 𝑁 

𝐹𝐵 = 𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑅𝑢𝑏𝑏𝑒𝑟 𝐵𝑎𝑛𝑑 

𝐿1 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑓𝑖𝑛𝑔𝑒𝑟 = 0.0635𝑚  

𝐿2 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑅𝑢𝑏𝑏𝑒𝑟 𝐵𝑎𝑛𝑑 𝑆𝑡𝑎𝑛𝑑𝑜𝑓𝑓𝑠 = 0.0216𝑚  

A =  𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑅𝑖𝑔ℎ𝑡 𝐹𝑖𝑛𝑔𝑒𝑟 𝐺𝑒𝑎𝑟 

AX =  𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝐴 𝑖𝑛 𝑡ℎ𝑒 𝑋 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

AY =  𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝐴 𝑖𝑛 𝑡ℎ𝑒 𝑌 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
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FT =  𝐹𝑜𝑟𝑐𝑒 𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 𝑓𝑖𝑛𝑔𝑒𝑟 

Equations of Equilibrium for Right Finger/Gear: 

∑ 𝑀𝐴 = 0 = 𝐹𝐵(𝐿2) − 𝐹𝑅(𝐿1) 

 

Figure 14: FBD of Arm for Stepper Motor or Shoulder Joint 

 

Left Finger/Gear Parameters: 

𝐹𝑅 =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐺𝑟𝑖𝑝𝑝𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 = 4.57𝑁 

𝐹𝐵 = 𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑏𝑦 𝑅𝑢𝑏𝑏𝑒𝑟 𝐵𝑎𝑛𝑑 

𝐿1 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑓𝑖𝑛𝑔𝑒𝑟 = 0.0635𝑚  
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𝐿2 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑅𝑢𝑏𝑏𝑒𝑟 𝐵𝑎𝑛𝑑 𝑆𝑡𝑎𝑛𝑑𝑜𝑓𝑓𝑠 = 0.0216𝑚  

B =  𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝐿𝑒𝑓𝑡 𝐹𝑖𝑛𝑔𝑒𝑟 𝐺𝑒𝑎𝑟 

BX =  𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝐵 𝑖𝑛 𝑡ℎ𝑒 𝑋 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

BY =  𝐹𝑜𝑟𝑐𝑒 𝑜𝑛 𝐵 𝑖𝑛 𝑡ℎ𝑒 𝑌 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

FT =  𝐹𝑜𝑟𝑐𝑒 𝑓𝑟𝑜𝑚 𝑜𝑡ℎ𝑒𝑟 𝑓𝑖𝑛𝑔𝑒𝑟 

Equations of Equilibrium for Left Finger/Gear: 

∑ 𝑀𝐵 = 0 = 𝐹𝐵(𝐿2) − (𝐹𝑅(0.2))(𝐿1) 

 Solving these equations for 𝐹𝐵 indicated that the rubber bands need to apply a force of 

26.8N in order to provide a similar gripping force as the servo motor at 20% stall torque. 

However, this is lowered due to the rubber band being layered over itself, which meant that each 

of the four layers of rubber band each must provide a force of 6.70N. It is also important to note 

that the force provided by the rubber band increases coincidentally with how open the gripper is, 

which therefore also increases the distance between the standoffs. Because of this, the gripper 

with the rubber bands cannot output the same gripping force as the gripper. 

 

3.2.1.3 Two Degree of Freedom Arm  

To adjust to varying terrain and positioning of trash, a 2-DOF arm was selected as the 

manipulator for collecting trash. The gripper mechanism was attached to the end of the 2-DOF 

arm to allow the trash to be picked up from the ground. The previous iteration of the project also 
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used a 2-DOF arm. However, this arm was made of 3D printed parts and was not robust enough 

to handle a significant amount of force. After analyzing the previous iteration of the arm, our 

team decided a redesign with more robust materials was necessary. The redesigned, 2-DOF arm 

features two aluminum links with the following lengths: 0.133m for the first link and 0.146m for 

the second link.  The lengths of the links are set accordingly to allow the gripper to reach in front 

of the drive motors and to be in the view of the Smallbot’s onboard camera. If the lengths of the 

two links were any shorter, the camera would not only have difficulties seeing the trash in front 

of it, but it would also be limited to the area that the arm can reach. 

To determine the correct servo and stepper motors for the application, torque calculations 

were performed. The FBDs and the corresponding calculations can be seen below. The 

calculations were performed when the arm was straight, as seen in Figure 15 and Figure 16 

below. The calculations assumed the arm to be lifting a half filled 473ml bottle of water or about 

0.227kg. The required torque for the elbow and stepper motor turned out to have torque 

sufficiently below the stall torque for each joint.  

Arm parameters: 

𝑆𝑡𝑒𝑝𝑝𝑒𝑟 𝑡𝑜𝑟𝑞𝑢𝑒𝑠𝑡𝑎𝑙𝑙 = 4𝑁𝑚, 𝑆𝑒𝑟𝑣𝑜 𝑡𝑜𝑟𝑞𝑢𝑒 𝑠𝑡𝑎𝑙𝑙 = 2.94𝑁𝑚 

𝐿1𝑚𝑎𝑠𝑠  𝑎𝑛𝑑 𝐿2𝑚𝑎𝑠𝑠 = 0.023𝑘𝑔 

𝐺𝑟𝑖𝑝𝑝𝑒𝑟𝑚𝑎𝑠𝑠 = 0.2𝑘𝑔, 𝐸𝑙𝑏𝑜𝑤𝑚𝑎𝑠𝑠 = 0.1𝑘𝑔, 𝐵𝑜𝑡𝑡𝑙𝑒𝑚𝑎𝑠𝑠 = 0.227𝑘𝑔 

𝐿1 = 0.133𝑚, 𝐿2 = 0.146𝑚, 𝐿3 = 0.051𝑚 

𝑔 = 9.81
𝑚

𝑠2
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𝐹𝐵1 = 𝐿1𝑚𝑎𝑠𝑠 ∗ 𝑔 = 0.223𝑁 

𝐹𝑒𝑙𝑏𝑜𝑤 = 𝐸𝑙𝑏𝑜𝑤𝑚𝑎𝑠𝑠 ∗ 𝑔 = 0.981𝑁 

𝐹𝐵2 = 𝐿2𝑚𝑎𝑠𝑠 ∗ 𝑔 = 0.223𝑁 

 𝐹𝑔𝑟𝑖𝑝𝑝𝑒𝑟 = 𝐺𝑟𝑖𝑝𝑝𝑒𝑟𝑚𝑎𝑠𝑠 ∗ 𝑔 = 1.96𝑁 

𝐹𝑏𝑜𝑡𝑡𝑙𝑒 = 𝐵𝑜𝑡𝑡𝑙𝑒𝑚𝑎𝑠𝑠 ∗ 𝑔 = 2.22𝑁 

 

Figure 15: FBD of Arm for Stepper Motor or Shoulder Joint 

 

∑ 𝑀𝐴 = 0 = 𝑇𝑆𝑀 − (𝐹𝐵1)(
𝐿1

2
) − (𝐹𝑒𝑙𝑏𝑜𝑤)(𝐿1) − (𝐹𝐵2) (𝐿1 +

𝐿2

2
) − (𝐹𝑔𝑟𝑖𝑝𝑝𝑒𝑟)(𝐿1 + 𝐿2)

− (𝐹𝑏𝑜𝑡𝑡𝑙𝑒)(𝐿1 + 𝐿2 + 𝐿3) 

Solving for 𝑇𝑆𝑀 the required torque for the shoulder joint is 1.47Nm which is below the 

stall torque for the stepper motor (4Nm). 
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Figure 16: FBD of Arm for Servo or Elbow Joint 

 

∑ 𝑀𝐵 = 0 = 𝑇𝑆 − 𝐹𝐵2(
𝐿2

2
) − 𝐹𝑔𝑟𝑖𝑝𝑝𝑒𝑟(𝐿2) − 𝐹𝑏𝑜𝑡𝑡𝑙𝑒(𝐿2 + 𝐿3) 

Solving for 𝑇𝑠 the required torque for the elbow joint is approximately 0.741Nm, which is 

below the stall torque for the servo (2.942Nm). 
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Figure 17: Side View CAD Assembly of Arm 

 

 

Figure 18: Isometric View CAD Assembly of Arm 
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3.2.1.3.1 Kinematic Calculations  

Denoting the Denavit-Hartenberg (D-H) parameters of the arm was an essential step in 

the early calculations of the 2-DOF arm’s forward kinematics. To accomplish this, the D-H 

parameter table was filled out, as seen below in Table 1. The table was then used to derive the 

homogeneous transformation matrix from the arm’s base frame to its end effector, as seen in 

Figure 19. A generic D-H matrix was calculated, which in turn allowed the forward kinematics 

of the arm to be computed for any given configuration. 

 𝜃 (degrees) 𝑑 (meters) 𝑎 (meters) 𝛼 (degrees) 

T0
1 𝜃1

 0 0.133 0 

T1
2 -𝜃2 0 0.197 0 

Table 1: DH Parameters 
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The inverse kinematics of the arm were calculated through a geometric approach. By 

evaluating a simplified side-view representation of the arm, the equations needed to calculate the 

joint angles for any given set of end effector coordinates in the task space were computed, as 

seen below in Figure 19. 

Figure 19: Inverse Kinematics 

 

 

 

 

 

 

𝛼 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) 

𝛽 = 𝑐𝑜𝑠−1 (
𝑎1

2 − 𝑎2
2 + 𝑥2 + 𝑦2

2𝑎1√𝑥2 + 𝑦2
) 

𝜃1 = 𝛼 + 𝛽 

𝜃2 = 180 − 𝑐𝑜𝑠−1 (
𝑎1

2 + 𝑎2
2 − (𝑥2 + 𝑦2)

2𝑎1𝑎2
) 
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3.2.1.3.2 Stress Analysis Calculations 

 

Figure 20: Depiction of the Arm at the Horizontal 

It was imperative for the Smallbot’s 2-DOF arm to undergo a stress analysis. This was 

done to ensure that the arm would not yield in the event that it was struck from the side when 

operating. These calculations were performed under the assumption that the 2-DOF arm was 

straight out horizontally, as this is the position in which the arm is most vulnerable, as seen 

above in Figure 20. 

Assuming that the Smallbot would be collecting a half-filled, 473ml plastic bottle, 

weighing 0.227kg, calculations were conducted in the vertical direction to show that the stresses 

were low enough for the arm to withstand on its own. This weight is heavier than both empty 

plastic bottles and soda cans, which weigh 0.01kg and 0.0136kg on average, respectively. By 
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assuming a worst-case scenario, where the Smallbot collects a half-filled bottle, the feasibility of 

the system can be easily verified when picking up lighter objects.  

The combined total length of the arm was 0.629m, and the moment about the shoulder 

corresponded to the previously calculated shoulder torque of 1.47Nm. The width of the 

examined cross section, W, is 0.00635m, while the height, H, is 0.00965m. The centroid for the 

cross section is located at a value of 𝑐 =
𝐻

2
, represented by the orange dotted line as the neutral 

axis. The cross section of the arm link can be seen below in Figure 21. 

Figure 21: Cross Section of Arm Link 

 

𝐼 =
1

12
(𝑊)(𝐻3) =

1

12
∗ 0.00635𝑚 ∗ 0.00965𝑚3 = 4.76 ∗ 10−10𝑚4 

𝜎 =
𝑀(𝑐)

𝐼
=

1.47𝑁𝑚 ∗ (
0.00965

2 )

4.76 ∗ 10−10𝑚4
= 15.9 𝑀𝑃𝑎 
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 Here, the vertical stress in the arm is found to be 15.9 MPa. As the yield strength of 6061 

Aluminum is between 124-290 MPa, reinforcing the arm in the vertical direction is not a concern 

since there is already such a large buffer.  

 

3.2.1.3.2.1 Arm Reinforcement and Calculations 

 

Figure 22: Two-Degree of Freedom Arm Reinforcement Piece Side View 

 

Figure 23: Two-Degree of Freedom Arm Reinforcement Piece Top View 

 

While the arm might not need any support in the vertical direction, it is weaker in the 

horizontal direction due to the beam’s cross-sectional area. To resolve this issue, a reinforcement 
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piece was added to the link of the arm between the stepper motor and the elbow joint, as depicted 

above in both Figure 22 and Figure 23. This reinforcement piece increased the moment of 

inertia, and therefore, decreased the magnitude of deflection and stress in the arm.  

A stress analysis of the arm in the horizontal direction, both with and without the 

reinforcement link, was completed. The arm was examined under stress at a moment where, 

while the SmallBot would be turning, the arm would get caught and thus provide enough 

resistance for the wheels to begin to slip. At this moment, the stress in the arm is at its highest, so 

by examining the arm at this critical moment a further demonstration of the need for the 

reinforcement part is provided. The coefficient of friction, μ, was referenced to be 0.35 (from the 

“Table of Ultimate Friction Factors for Dissimilar Materials”), as for the purposes of this 

analysis, the SmallBot has not sunk into the sand (Fine Software, n.d.). As used previously, the 

width of the drivetrain, B, was 0.305m, while the weight of the robot, 𝑊𝑟, was 11.3kg. For this 

calculation, the total length of the arm, d, is 0.628m, which is the distance from the end of the 

arm to the center of the top plate. This is also the distance between where the arm experiences 

the force on the end and where the robot experiences the turning force of the drivetrain. First, the 

stress experienced by the arm without the reinforcement was examined. The width of the arm, 

W, is 0.00635m, while the height, H, of the arm is 0.00965m. To help with finding the Moment 

of Inertia, a diagram of a cross-section of the arm was created, shown in Figure 24. The orange, 

dotted line denotes the neutral axis, along which the centroid of the cross-section lies, at a 

location of  𝑐 =
𝑊

2
.  
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Figure 24: Cross-Section of Arm Without Reinforcement 

Force Acting on End of Arm: 

𝑊𝑏𝑜𝑡 = 𝑊𝑟(𝑔) 

𝐹 =
𝜇(𝑊𝑏𝑜𝑡

𝐵
2)

𝑑
=

0.35 ∗ 110.85𝑁 ∗
0.305𝑚

2
0.628𝑚

= 9.41𝑁 

Stress of Arm, without Reinforcement: 

𝐼 =
1

12
𝐻(𝑊3) =

1

12
∗ (0.00965𝑚) ∗ (0.00635𝑚)3 = 2.06 ∗ 10−10𝑚4 

𝑀 = 𝑀𝑜𝑚𝑒𝑛𝑡 = 𝐹(𝑑) = 9.41𝑁 ∗ 0.628𝑚 = 5.92 𝑁𝑚 

𝜎 =
𝑀 (

𝑊
2 )

𝐼
=

5.92 𝑁𝑚 ∗ (
0.00635𝑚

2 )

2.06 ∗ 10−10𝑚4
= 91.3 𝑀𝑃𝑎 



 
 

  43 
 
 

The arm, at this moment, experiences a stress of 91.3 MPa. While this is still less than the 

yield strength of 6061 Aluminum (as 6061 Aluminum begins to yield around 120 MPa), this can 

still be improved to further ensure the safety and longevity of the arm by adding the support. The 

reinforcement piece was made of 3D-Printed PLA, and was modeled as a combined, composite 

cross-section with the aluminum arm. This was accomplished by comparing the Young’s Moduli 

of the two materials to find the equivalent dimensions. PLA has an average Young’s Modulus of 

7 GPa, 6061 Aluminum has an average Young’s Modulus of 69 GPa. Therefore, the scaling ratio 

n is 
7𝐺𝑃𝑎

69 𝐺𝑃𝑎
, or 0.101. While the width of the reinforcement piece at the shoulder, WR, does not 

scale, and remains 0.0127m as it acts as a spacer, the original height 0.00965m is multiplied by 

the scaling ratio to obtain a new height, HR, of 0.000979m. This composite model is shown 

below in Figure 25. Once these were obtained, the new moment of inertia and maximum bending 

stress could be found. In order to find the location of the new centroid (marked by the orange 

line on Figure 25, which represents the neutral axis), the cross-sectional areas of the two parts 

had to be calculated. The cross-sectional area of the arm, AA, is 𝐻(𝑊)  =  0.00965𝑚 ∗

0.00635𝑚 =  6.13 ∗ 10−5 𝑚2, and the cross-sectional area of the reinforcement piece, AR, is 

𝐻𝑟(𝑊𝑟 ) =  0.000979𝑚 ∗ 0.0127𝑚 =  1.24 ∗ 10−5 𝑚2. The centroid locations of the two parts 

were measured from the right side. The locations of the arm centroid and reinforcement centroid 

were calculated to be 0.0159m and 0.00635m, respectively, and are represented on Figure 25 as 

the blue dot (the arm) and the orange dot (the reinforcement). Using these area values and 

centroid locations, the new centroid, c, can be found using the below equation. 

Centroid Location: 
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𝑐 =  
∑ 𝑥(𝐴)

∑ 𝐴
=

(0.0159 ∗ 6.13 ∗ 10−5) + (0.00635 ∗ 1.24 ∗ 10−5)

(6.13 ∗ 10−5) + (1.24 ∗ 10−5)
= 0.0143𝑚 

Now, the distances d1 and d2 can also be calculated. The distance between the arm centroid and 

the total centroid, d1, is 0.00161m, while the distance between the reinforcement centroid and the 

total centroid, d2, is 0.00792m.  

Figure 25: Cross-Section of Arm With Reinforcement Modeled as Composite 

 

Stress of Arm, with Reinforcement: 

𝐼𝑅 = (
1

12
𝐻(𝑊3)) + (𝐴𝐴𝑑1

2) + (
1

12
𝐻𝑅(𝑊𝑅

3)) + (𝐴𝑅𝑑2
2)

= (
1

12
∗ 0.00965𝑚 ∗ (0.00635𝑚)3) + (6.13 ∗ 10−5𝑚2 ∗ (0.00161𝑚)2)

+ (
1

12
∗ 0.000979𝑚 ∗ (0.0127𝑚)3) + (1.24 ∗ 10−5𝑚2 ∗ (0.00792𝑚)2)

= 1.31 ∗ 10−9𝑚4 
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𝜎𝑅 =
𝑀(𝑐)

𝐼𝑅
=

5.92 𝑁𝑚 ∗ 0.0143𝑚

1.31 ∗ 10−9𝑚4
= 64.4 𝑀𝑃𝑎 

When the stress was analyzed at this position without the reinforcement part, the arm was 

found to undergo a maximum bending stress of 91.3 MPa. While this stress was below the yield 

strength of 6061 Aluminum, adding the reinforcement piece lowered the maximum bending 

stress at the shoulder to 64.4 MPa. This lower stress allows for a much safer range of operation 

for the arm and further expands the existing buffer in the event of a worst-case scenario.  

After the manual calculations were completed, further stress analysis of the arm with and 

without the reinforcement was done. A wheatstone bridge and strain gauge were used to 

manually analyze the arm both with and without the reinforcement. These profiles are shown 

below in Figure 26 and Figure 27. Using Hooke’s law to calculate the strain, we can find them to 

be:  

εA  =
91.3 ∗ 106

69 ∗ 109
= 0.00132 

ε𝑅 =
64.4 ∗ 106

69 ∗ 109
= 0.00093 

The orange lines drawn in Figures 26 and 27 below indicate where these strains would 

fall in the results, according to the trendline.  
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Figure 26: Stress & Strain of Arm without Reinforcement 

 

Figure 27: Stress & Strain of the Arm With Reinforcement 
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While the equivalent stresses shown with the orange lines in Figures 26 and 27 do not 

perfectly align with the calculated stresses, the maximum deviation of any given data point is 

around 20%, which is simply due to the margin of error in both the strain gauge, as well as the 

added human error that stemmed from approximating forces when using a spring force gauge. 

Therefore, it can be said that the measured data from the strain gauge agrees with the calculated 

stress.  

Once this was analyzed, it was also found that the L-Bracket that holds the elbow servo 

onto the arm was another point of potential deflection, as a lot of force was put on the corner of 

the bracket. To resolve this, a reinforcement brace was made for the L-bracket as well, shown 

below in Figure 28. Calculations were also completed to demonstrate that this reinforcement 

would help improve the strength of the bracket. For the purposes of these calculations, the arm 

was assumed to extend straight out from the elbow, at a full length of about 0.330m. A collision 

force, labeled FC, was applied at the end of the arm. The diagram shown in Figure 29 shows how 

this force was distributed and the torque it applied on the corner of the L-bracket while Figure 30 

demonstrates how the forces are distributed when the reinforcement piece was applied.  

Figure 28: CAD of the Elbow L-Bracket Reinforcement 
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Figure 29: Force Distribution Diagram for L-Bracket 

 

Parameters for L-Bracket Force Analysis: 

𝐶 = 𝐶𝑜𝑟𝑛𝑒𝑟 𝑜𝑓 𝐿 − 𝐵𝑟𝑎𝑐𝑘𝑒𝑡 

𝐹𝐶 = 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒, 𝐴𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 10𝑁 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

𝐿1 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐴𝑟𝑚 𝐿𝑖𝑛𝑘 2 = 0.330𝑚  

𝐿2 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑟𝑚 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐶 = 0.00696𝑚  

𝑟 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐶 𝑎𝑛𝑑 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 = 0.330𝑚  
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Equation for Torque acting on C: 

𝑇𝐶 =  𝑟 ( 𝐹) = 0.330𝑚 ∗ 10𝑁 = 3.30 𝑁𝑚 

If the L-Bracket reinforcement piece shown above is added on, the force distribution 

diagram becomes: 

 

Figure 30: Force Distribution Diagram for L-Bracket with Reinforcement 

 

Parameters for L-Bracket Reinforcement Force Analysis: 

𝐶 = 𝐶𝑜𝑟𝑛𝑒𝑟 𝑜𝑓 𝐿 − 𝐵𝑟𝑎𝑐𝑘𝑒𝑡 

𝐷 = 𝐶𝑜𝑟𝑛𝑒𝑟 𝑜𝑓 𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 

𝐹𝐶 = 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒, 𝐴𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 10𝑁 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 
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𝐿1 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐴𝑟𝑚 𝐿𝑖𝑛𝑘 2 = 0.330𝑚  

𝐿2 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐴𝑟𝑚 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐶/𝐷 = 0.007𝑚  

𝑟 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐶/𝐷 𝑎𝑛𝑑 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 = 0.330𝑚  

𝜃 = 𝐴𝑛𝑔𝑙𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑟 𝑎𝑛𝑑 𝐿1 =  𝑐𝑜𝑠−1 (
𝐿1

𝑟
) =  𝑐𝑜𝑠−1 (

0.330

0.330
) = 1.41° 

Equations for Equilibrium at End of Arm: 

∑ 𝐹𝑥 = 0 = 𝐶𝑥 −  𝐷𝑥 

∑ 𝐹𝑧 = 0 =  𝐹𝐶 −  𝐶𝑧 − 𝐷𝑧 

Solving Equations for Torque acting on C: 

𝐶𝑥 = 𝐷𝑥 →  𝐶𝑟 ∗ cos(1.41°) = 𝐷𝑟 ∗ cos(1.41°) → 𝐶𝑟 = 𝐷𝑟;  𝐶𝑧 = 𝐷𝑧 

0 = 10𝑁 − 2 ∗ 𝐶𝑧 

10𝑁 = 2 ∗ 𝐶𝑧 → 𝐶𝑧 = 5𝑁 

𝑇𝐶 =  𝑟 ∗  𝐹 = 0.330𝑚 ∗ 5𝑁 = 1.65 𝑁𝑚 

 As shown via the above force calculations, when the reinforcement part was present on 

the L-Bracket, it greatly reduced the amount of force/torque on the corner of the bracket, which 

in turn reduced its stress and strain and made it more resistant to deflection.  
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3.2.1.4 Trash Storage Design 

The dimensions of the bucket were imperative to the design, as the bucket needed to meet 

requirements to fit at least two, 473ml bottles and one 355ml can inside it. At the widest 

dimension, the bucket is 0.254m by 0.127m, and at the smallest dimension is 0.203m by 0.076m 

with 0.127m in depth. This allows for three 473ml bottles, as well as other combinations of 

bottles and cans to be stored. In addition, the bucket has cutouts throughout it, allowing for 

excess sand to exit upon rotation. The bucket is actuated by a servo at the end of the base plate. 

To determine the correct servo for the application, torque calculations for the servo were 

completed. These calculations considered the heaviest configuration of trash stored in the bucket, 

which was three half-filled 473ml bottles. In this calculation the center of mass of the bucket was 

assumed to be in the center of the bucket. The calculations can be seen below in Figure 31. From 

the calculations the required torque for the bucket and its contents was 1.25Nm, which was 

sufficient for the servos stall torque stated below.  
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Figure 31: FBD of Bucket with Three Bottles 

 

𝑆𝑒𝑟𝑣𝑜 𝑇𝑜𝑟𝑞𝑢𝑒𝑠𝑡𝑎𝑙𝑙 = 2𝑁𝑚 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 3 ℎ𝑎𝑙𝑓 𝑓𝑖𝑙𝑙𝑒𝑑 16𝑜𝑧 𝑏𝑜𝑡𝑡𝑙𝑒𝑠 = 0.68𝑘𝑔  

𝐹𝐵 (𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑢𝑐𝑘𝑒𝑡 𝑎𝑛𝑑 𝑏𝑜𝑡𝑡𝑙𝑒𝑠) = 1.02𝑘𝑔  

𝐿1 (𝐷𝑖𝑠𝑡 𝑡𝑜 𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝐵𝑢𝑐𝑘𝑒𝑡) = 0.125𝑚  

∑ 𝑀𝐴 = 0 = 𝐹𝐵(𝐿1) − 𝑇𝑠 

Solving for 𝑇𝑆 the required torque to rotate the bucket with three bottles was 

𝑇𝑜𝑟𝑞𝑢𝑒𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 1.25𝑁𝑚. This required torque was below the servo stall torque which was 
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2𝑁𝑚. The torque required is more than 60% of the stall torque. This mechanism will require 

future teams to make improvements to decrease the load on the servo.  

 

Figure 32: CAD Assembly Isometric View of Bucket 

 

3.2.1.5 Camera Mount  

To detect trash on a beach, it was important to have a camera mounted on the front of the 

Smallbot. The camera was mounted in the middle of the Smallbot and underneath the arm at a 

30-degree angle below the horizontal. This angle was important to achieve the desired camera 

view of the surface. The desired camera view of the surface was where the bottom boundary of 

the camera was located, in front of the drive motors, and the top boundary of the camera was 

within reach of the gripper that was attached to the end of 2-DOF arm. The camera also needed 
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to be positioned in the center of the robot to allow the Smallbot to turn in either direction when a 

soda can or plastic bottle was detected off-center.  

 

Figure 33: Isometric CAD view of Smallbot - Camera Mount is Circled in Red 

 

Figure 34: Detailed Side View of Smallbot Camera from CAD Assembly 
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3.2.2 Electrical Design 

The electrical design of the first iteration of this project was evaluated and tested for 

functionality to meet this year’s new requirements. From the previous iteration of the project, 

there were multiple problems with the electrical system and wiring. The issues observed are 

listed below:  

• Cable management was unorganized. 

• There were no wiring schematics, which made following the wiring and determining the 

types of components that were used difficult. 

• Electrical components such as the IMU were still attached to a breadboard, which while 

helpful for testing, proved to have unreliable connections for a final product that may be 

deployed in the real world.  

• The battery was duct-taped to the bottom of the chassis, which increased the risked of it 

falling off along with other electrical components. 

• Most of the electrical components were exposed on the underside of the robot, which 

meant that sand and water could easily damage them.  

To address the above issues discovered from the previous iteration and to meet the new 

requirements, the electrical system needed to be redesigned. In addition, to improve upon the 

issues listed, a battery to power all the components needed to last about one hour to clean the 

largest area possible without sacrificing weight or space on the robot.  
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3.2.2.1 Schematic  

 To improve upon the previous iteration and streamline the debugging process, a detailed 

schematic of the Smallbot was created. This schematic can be seen in Figure 35 below. 

Figure 35: Schematic Diagram of the Smallbot 
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The Smallbot schematic was created for the user’s convenience by following a similar 

layout to the mounted electronics on the Smallbot. By observing Figure 35, it can be seen that 

the Raspberry Pi and its breakout board are being centered in the middle of the schematic. The 

only exceptions are the H-Bridges, limit switch, and IMU. The H-Bridges are both located on the 

right side of the Smallbot, the limit switch was positioned under the arm servo, and the IMU was 

mounted under the bucket. The reason for this placement was to make the schematic as intuitive 

to follow as possible. For example, if the IMU was placed next to the bucket servo in the 

schematic, the viewer would most likely have trouble tracing its wires back across the whole 

schematic back to the breakout board GPIO pins to which they are attached. The Smallbot 

schematic was developed using NI Multisim.  

 

3.2.2.2 Microprocessor Selection and Hardware Accelerator  

Despite the last team’s microprocessor selection being adequate for the scope of the 

project, it was decided to upgrade the system from a Raspberry Pi 3 Model B+ to a Raspberry Pi 

4 Model B. This change was justified by the high computational load that was needed to run the 

system. The Raspberry Pi 4 not only has a high clock speed than its predecessor, but also 

features 4GB of RAM, as opposed to the Raspberry Pi 3 B+’s single 1GB of RAM memory. 

These improvements in the hardware have been reflected by a significant increase in 

performance, as seen in Figure 36 below (Hattersley, 2020). 
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Figure 36: Raspberry Pi Performance Chart 

 

Additionally, the Coral Edge TPU was an essential part of the system as it would be used 

to lighten the Raspberry Pi’s workload when performing the inference on the video feed from the 

camera for object detection. The performance of running the TFLite model on the Raspberry Pi 

alone was approximately 2FPS: greatly draining the microprocessor’s resources. However, with 

the aid the Edge TPU, the model performance was boosted to approximately 20FPS. An image 

of this TPU is provided in Figure 37. 
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Figure 37: Coral Edge TPU 

 

3.2.2.3 Sensor Selection 

 A variety of sensors were used to maintain optimal control of the onboard mechanisms 

and for detecting visible trash. The main sensor that was used to detect these objects was the ELP 

13-megapixel camera, as seen below in Figure 38. This USB camera was an important sensor to 

detect trash on the sand. The high-resolution camera sensor along with the wide 75-degree lens 

helped detect the litter scattered across the Smallbot’s field of view.  

Figure 38: ELP 13MP Camera 
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Another sensor that was used on the Smallbot was the Adafruit BNO055 IMU. The IMU 

was a critical part of maintaining control of the Smallbot when driving through the sand. By 

using the IMU’s heading, or Euler yaw angle, the Smallbot was able to maintain a consistent 

heading while driving on the sand. By maintaining its heading straight, the Smallbot was able to 

drive straight and turn regardless of changes in the terrain such as bumps, valleys, or sand 

inconsistencies.  

Additionally, a limit switch sensor was used for control of the 2-DOF arm. As seen in 

Figure 39, the limit switch was mounted at the base of arm set 30 degrees below the horizontal. 

The limit switch allowed for the stepper motor on the arm to be calibrated from a known 

position. This happens when the limit switch was pressed or when the switch was set to ground. 

By resetting the arm’s shoulder position, the Smallbot was able to maintain a consistent start 

position every time prior to object pick-up. 
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Figure 39: Picture of Limit Switch Mounted Below Shoulder Link of Arm 

 

3.2.2.4 Battery Selection  

A key requirement in our team’s iteration of the Smallbot was to ensure that it could 

maneuver and drive on sand autonomously for an hour at a time. One hour of time was given as 

the requirement for the battery life because the Smallbot needed to clean the largest area possible 

without having a battery that would be too large or heavy for the chassis to handle. To determine 

the correct battery for the application, calculations were conducted with the necessary power 

requirements that would be included on the Smallbot. The maximum power for each of the 

Smallbot’s components was found from their corresponding specification sheets. The total 

maximum power was determined by summing the maximum power of all the components. The 

power table in Table 2 below shows these calculations. 
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Table 2: Power Calculations Table  

From the power calculations, it was determined that a battery of 192.07Watt-Hours was 

necessary to run the Smallbot for 1 hour of time with all components running at maximum 

power. Although it would be unlikely for all components to simultaneously run at maximum 

power, our team wanted to consider the worse possible scenario, even if it would rarely happen. 

After researching different 12V battery types, our team was able to find the Miady LFP16AH 

12V 16Ah Deep Cycle LiFePO4 Battery from Amazon. Not only did this battery have the 

necessary number of Watt-Hours, but it also was made from LiFePO4 chemistry which allowed 

for a smaller and lighter battery at just 1.8kg. An AGM battery with similar power specifications 

would have been slightly more inexpensive but would have weighed significantly more. The 

Component 
Max Current 
Draw (Amps) 

Idle Current 
Draw (Amps) 

Max Power 
(Watts) 

 Idle 
Power 
(Watts) 

Raspberry Pi 4B 1.25 0.6 6.4  2.7 

Drive Motors (x4) 68 1.32 128  0 

H-Bridge (x2) - - -  - 

Servo Controller 0.03 0.03 0.48  0.48 

Bucket Servo 3.5 0.4 17.5  2 

Elbow Servo 1.8 0.04 9  0.5 

Gripper Servo 1.8 0.04 9  0.5 

Stepper Motor Driver 0.04 0.04 0.2  0.2 

Stepper Motor 1.68 0.4 8.4  2 

Camera 0.4 0.4 0.22  0.22 

IMU 0.0123 0.0004 0.04059  0.00132 

Limit Switch  - - -  - 

Total 78.5123 3.2704 179.24059  8.60132 

    
 

 

Run Time Hours     

Max 1.071185941     

Idle 22.3221552     
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lightweight battery helped keep the Smallbot’s total weight below the initial 11.3kg calculated 

for the chassis.  

 

3.2.3 Software Architecture  

 Having a robust codebase for the Smallbot was a priority, as it would not only allow for 

easier debugging, but would also influence the overall logic behind the robot’s actions. The 

codebase for the Smallbot was written in Python. The reasoning behind choosing this language 

was due to the fact that Python is not only syntactically simple, but also very powerful when 

dealing with challenges that can be more easily managed when using a high-level programming 

language such as this one.  

 The functionality of each of the Smallbot’s actuators and sensors was housed in 

designated classes, which were comprised of functions that carried out a set of defined actions 

that depended on their respective input parameters. The Chassis class introduced the methods 

needed to write any set of wheel efforts to the motors, drive straight with the use of the IMU, and 

perform point turns with the IMU. Furthermore, the Arm class allowed for individual movement 

of the joints in the arm, calibration of the arm shoulder joint with the use of the mounted limit 

switch, and the execution of a pre-set movements that allowed for pick-up of cans and bottles. 

The Vision class was used to perform inference with the TFLite model mentioned in section 

3.2.3.1. This class included a set of methods that were used to perform the object detection and 

acquire the camera coordinates from a detected can or bottle through OpenCV. These 
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coordinates were then relayed to the DriveDetect class, which held the main logic for the 

Smallbot operations.  

Once the OpenCV coordinates of an object were acquired, the methods within the 

DriveDetect class enabled the robot to align itself with a detected object. The DriveDetect 

methods allowed the Smallbot to turn towards the center of the object, drive forward to collect 

the object, and finally, drive back to the original position with a straight heading. Additionally, 

there were helper classes that were used to actuate the servos connected to the Maestro servo 

controller, obtain usable yaw data from the Adafruit IMU, stream a live video feed from the 

camera, and get up-to-date data from the Basebot. Ultimately, all these classes were used 

together within the main RunSmallBot class, which constantly requested data from the Basebot 

to perform a given action as can be seen in Figure 40 and Figure 41.  
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Figure 40: Smallbot Package Diagram 

  

Figure 41: Smallbot UML Class Diagram 
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3.2.3.1 Chassis Alignment 

 As previously mentioned, in section 3.2.3, when a set of coordinates from a detected 

object were extracted from the live image through OpenCV, the Smallbot was commanded to 

align itself with it. To make this happen, it was necessary for a desired angle to be calculated for 

the Smallbot to successfully align its heading towards the detected object in a horizontal manner. 

This was accomplished by mapping the OpenCV x-values to the range of possible achievable 

headings from the IMU as represented in Figure 42. 

Figure 42: Visual Representation of the Yaw Alignment Process 

 

 To calculate the desired angle (𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑) which the Smallbot would be required to turn 

towards, a ratio was found between the camera’s width and the IMU’s angle range. This ratio 

depended on the camera’s viewing angle, as it ultimately limited the range for IMU angles from -

180 to 180 to a more reasonable one that would ultimately yield a reliable 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 yaw angle.  

 

𝛼 =
𝐶𝑎𝑚𝑒𝑟𝑎 𝑎𝑛𝑔𝑙𝑒

2
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3.2.3.2 Object Detection 

The previous iteration of the project only identified soda cans that were in a vertical 

position. To increase the functionality of the Smallbot, our team decided to improve upon the 

different can or bottle orientations that the camera could detect. Furthermore, our team decided it 

would be beneficial to train an entirely new model that would allow for the Smallbot to detect 

473ml plastic bottles, alongside the 355ml cans from the previous implementation. The images 

used for machine learning training were based on standard, 473ml water bottles and 355ml soda 

cans.   

It was essential to add other orientations of soda cans to improve the model’s accuracy. 

This was achieved by adding more photos of cans, which were primarily taken from Google 

Images. To accomplish this task, a Google Chrome extension that allowed the user to 

automatically download all images within an open tab was used (Fatkun AI Downloader). This 

created an efficient and easy-to-use system to collect images for training. A vast array of 

pictures, consisting of bottles and cans, were collected to expand upon the previously used 

dataset. The can and bottle images also included crushed and partially visible cans or bottles to 

improve the model’s accuracy. Ultimately, our team would need to label all of the images based 

𝛽 = −𝛼 

𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 =
𝑥

𝐶𝑎𝑚𝑒𝑟𝑎 𝑊𝑖𝑑𝑡ℎ (𝛼 − 𝛽 ) + 𝛽 
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off what they represented and then train a TFLite model, which would also be quantized for the 

Google Coral Edge TPU. 

 

3.2.3.3 Communication between the Basebot and the Smallbot 

 Transmission Control Protocol (TCP) wireless connection was used as the data transport 

protocol between the Basebot and the Smallbot. Although our team initially considered using 

User Datagram Protocol (UDP) as a means of data transmission, it was decided to use TCP due 

to a variety of reasons. Some key reasons for why TCP was chosen consist of the following: 

unlike UDP, TCP guarantees delivery of data to the destination router in the form of echo 

confirmation messages, and has a fixed order in which packets are sent and received (TCP vs 

UDP: What's the Difference?, n.d.). Having a defined order in which the data packets were being 

transmitted was imperative for not only debugging purposes, but also for the overall reliability of 

the dual-robot system. 

An ESP32 microcontroller was used as a wireless access point (AP) between the 

Smallbot and the Basebot. By utilizing this AP as a hotspot, the conventional need of having a 

router as the AP was removed entirely. Once the framework for the communication was 

implemented, the Basebot (the client in this case) sent strings that were converted to bytes and 

then received by the Smallbot (in this case the server). These strings were then used as 

commands that directed the Smallbots actions based on where it was positioned relative to the 

Basebot’s camera. The Basebot tracked the Smallbot’s position from the mounted AprilTags as 

mentioned in section 3.3.3.2. This communication between the Basebot and the Smallbot was a 
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critical feature that can be expanded to a swarm of Smallbots collecting trash in a designated 

area.  

 

3.3 Basebot System 

The Basebot is the second robot in the beach cleanup system, which communicates with 

the Smallbot. The Basebot directs the Smallbot’s actions based on where it is located with 

respect to its camera frame. The mechanical features of the Basebot and the camera selection 

were determined based on the list of tasks that it needed to achieve as an independent system. 

These tasks included: recognizing AprilTags and being able to communicate with the Smallbot 

via TCP communication. 

 

3.3.1 Mechanical Design 

As previously mentioned, the Basebot was stationary for this iteration of the project and 

therefore, a mechanical structure was not necessary. However, to test the full functionality 

between the Smallbot and Basebot, a camera stand was required. The camera stand pictured 

below in Figure 43 was used to test the Basebot’s tracking of the Smallbot AprilTags. This stand 

was made to help with testing the correct height and angle that the Basebot camera needed to be 

set to.  
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Figure 43: Basebot Camera Stand for Testing 

 

3.3.2 Microprocessor Selection 

An Nvidia Jetson Nano microprocessor was used as the Basebot’s electrical control 

board. The Jetson Nano was a low cost, yet effective system that included a GPU that was 

capable of handling intensive, graphics-processing tasks. The Jetson Nano’s performance was 

especially helpful while running OpenCV for the AprilTag recognition. With the more capable 

GPU, the Jetson Nano could handle additional improvements to the mapping process of the 

beach, such as creating 3D meshes or recognizing/tracking multiple Smallbots in a swarm. 
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3.3.3 Software Architecture 

 The Basebot’s main script used to execute the program was declared within the 

RunBaseBot class. This file contained the functions needed to send the necessary commands to 

the Smallbot via TCP communication, based on where it was positioned with respect to the 

Basebot’s camera. 

 The ApriltagDetector class was used to perform the real-time AprilTag recognition and 

display it through OpenCV. This functionality was then utilized by the StateMachine class, 

which executed the set of calculated states for the Smallbot to carry out. Each defined state had 

an action attributed to it; The action was ultimately sent to the Smallbot by the BaseBotCom 

class, which introduced the functionality needed for the TCP communication between both 

systems. A graphical representation of the system can be observed in both Figure 44 and Figure 

45. 

 

Figure 44: Basebot Package Diagram 
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Figure 45: Basebot UML Class Diagram 

 

3.3.3.1 State Machine Path Planning 

A simple state machine was the chosen approach for determining the Smallbot’s cleaning 

path. Though at first glance, a state machine may seem insufficient to fulfill the requirements for 

the task at hand, it happened to be an adequate technique for the purposes of this iteration of the 

Basebot. The main goal was to perform real-time AprilTag recognition and communicate with 

Smallbot. 

The Smallbot’s predetermined path was found in the form of a zig-zag pattern, where the 

Smallbot would drive from the right to the left side of the camera, drive forward for a given 

distance, and finally return to its starting position. This pattern was chosen because it would 

ensure full coverage of an area when driving through it. However, the number of laps was not 
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limited to the 2 seen in Figure 46, instead this number depended on the user’s input parameter in 

the Constants support file. Ultimately, the Smallbot has the capability to perform an unlimited 

number of laps, as long as the AprilTags are visible by the Basebot’s onboard camera.  

 

Figure 46: Driving Pattern for Path Planning 
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 3.3.3.2 Localization with AprilTags  

Figure 47: AprilTags on Smallbot 

 

 AprilTags were chosen as the marker to identify the Smallbots in the camera view of the 

Basebot. An AprilTag, which is a type of fiducial marker, is used a as reference object that is 

placed within the video frame of the camera view (Wikipedia, 2020). AprilTags resemble QR 

codes and consist of a pattern of black squares within a white background. This pattern of black 

squares makes them easy to be detected in a variety of sizes, angles, and lighting conditions. 

These AprilTags were mounted on both sides and the back of Smallbot, as seen above in Figure 

47. By having AprilTags mounted on the right, left, and back sides of the Smallbot, the Basebot 

was able to track the position of Smallbot with respect to the camera position. By using the 

AprilTag package developed by the University of Michigan (Olson, 2010) in unison with 
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OpenCV, the Basebot was able to localize and send commands to the Smallbot according to 

where it was in its path.  

To determine the distance between the Basebot’s camera and the Smallbot, triangle 

similarity calculations of the AprilTag marks were derived as seen below.   

𝐹 = 𝐹𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 

𝐷 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑎𝑚𝑒𝑟𝑎 𝑎𝑛𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 

𝑊 = 𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 

Where the focal length was equal to: 

𝐹 =
𝑃(𝐷)

𝑊
 

To calculate the focal length, an AprilTag was placed 0.6m away from the camera, and the pixel 

width was measured to be 170 pixels. The known width of the AprilTag was then calculated as 

0.165m. With these values the focal length F was found: 

𝐹 =
170 𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 0.6𝑚

0.165𝑚
= 618 𝑝𝑖𝑥𝑒𝑙𝑠 

Using this focal length, any distance between the camera and an AprilTag can be calculated by 

formatting the focal length equation to:   

𝐷′ =
𝑊(𝐹)

𝑃
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Where 𝐷′ is the distance between the camera and AprilTag for a pixel width P that changes as 

the AprilTag was moved further away or closer to the camera. 
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Section 4: Results 

To efficiently identify problems and establish solutions, our team followed the 

engineering design process, as seen in Figure 48 below. The first part of the engineering design 

process was identifying the problem. In this step our team identified the problem to be trash that 

was left on a beach. By identifying the problem, our team was able to research trash that was left 

on beaches and discuss ideas about potential solutions to tackle the issue at hand. From research 

and discussing ideas, initial designs were made as the solution to the problem. These designs 

were then used to create prototypes that could be tested. Testing these prototypes helped to 

quickly evaluate whether a design would serve as a proof of concept. If the testing was approved 

the design was improved to be used on the final product. However, if testing was unsuccessful 

our team would go back to the design and make the necessary changes to test it again or try a 

completely different design. The engineering design process was an important part of 

accomplishing the objectives for the project in a timely matter.   
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Figure 48: The Engineering Design Process 

 

4.1 Prototyping  

 As discussed in the previous section, the following subsections discuss the prototyping 

that was completed for both the Smallbot and the Basebot.  

 

4.1.1 Smallbot Prototyping 

 In order to test the new, four-wheel, rocker-bogie drivetrain for the Smallbot, a prototype 

first had to be created to hold the electronics.  
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4.1.1.1 Mechanical Prototyping  

From the initial concepts of the drivetrain as presented in section 3.2.1.1, a drivetrain 

prototype was created. This prototype was designed to be a proof of concept of a four-wheel, 

rocker-bogie drivetrain. Some of the parts, including the four DC motors, the four 152mm 

wheels, and the anodized aluminum box extrusions for connecting the motors together for each 

side of the drivetrain had the potential to be used on the final design. However, the rocker-bogie 

assembly and the support parts to connect both sides together were made from plywood. The 

majority of the components were mounted by duct tape or zip ties. While working on this 

prototype, it was apparent that rigid and water-resistant materials would be necessary to meet our 

team’s project goals. 

 

4.1.1.2 Electrical Prototyping  

The prototyping of the Smallbot electrical system was conducted in a linear fashion; from 

revising the previous team’s electrical work, to optimizing and expanding upon what was 

available to work with for each given component. First, it was necessary for our team to analyze 

the previous team’s work since it did not have proper documentation. Next, our team created a 

simple, Bluetooth Low Energy (BLE), prototype of the Smallbot using the new chassis and 

motors for a better insight into the drivetrain’s functionality when driving on sand. This BLE-

enabled prototype used the ESP32 microcontroller. After that, our team made the necessary 

changes needed to use the battery that would be in the final iteration of the Smallbot. 

Subsequently, each electrical component was individually tested with its corresponding 

mechanism on the Smallbot. For example, independently making the gripper servo and arm 
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function together. This was done to ensure that each joint in the system could be adequately 

actuated before soldering the wires to each electronic. Additionally, another aspect of the testing 

performed included: attaching each component to a power supply and a digital multi-meter to 

verify its power output, as well as determining how to properly implement servos and stepper 

motors while also testing their physical limits without damaging the components.  

The final version of the prototype had all the electrical components soldered together; the 

one exception being any wires attached to GPIO ports on the Raspberry Pi. The final iteration of 

the electrical prototype was based off the early additions to the previous team’s electrical work, 

new power calculations, and the routine testing of electrical components.  

 

4.1.1.3 Software Prototyping  

Several scripts were developed during the early prototyping stages of the Smallbot 

system. The overarching idea behind the creation of multiple small programs was to test each 

software component in a modular manner. By doing so, the debugging process was streamlined 

considerably, and the functionality of each aspect of the Smallbot could be tested in an effective 

and reliable way. These test programs included: scripts for speed controllers, encoder data 

recording, TCP communication with the ESP32, scripts for the stepper motor and servos, and 

developing a testbench for the TFLite model. After each one of these main components was 

tested and the functionality was verified, the final prototyping for the rest of the codebase on the 

Smallbot was finalized in a linear, and non-problematic manner. 
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4.1.1.4 Object Detection Prototyping 

Once all the images of both soda cans and plastic bottles were collected, stored, and 

properly labelled, our team preceded to training models. To train a machine learning model for 

detecting bottles and cans, Google Cloud’s AutoML training platform was utilized. AutoML was 

chosen for two main reasons: the previous team had written a brief explanation on how to 

properly utilize the platform, and when signing up with a new Gmail account, the user is granted 

$300 worth of credit towards Google’s cloud services. This credit would be more than enough 

for our team to properly train two different models.  

Preparing each model involved the steps listed below:  

• Select multiple images to upload to Google Cloud project. 

• When images are done uploading to cloud, create labels for the images. 

o In this project’s case, the labels ‘can’ and ‘bottle’. 

• Go to the uploaded images and label them appropriately with bounding boxes; an 

example is provided in Figure 49. 

• Navigate to “train” tab, and train new model. 
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Figure 49: Google Cloud Image Labeling 

 

Our team often referenced Google’s documentation for assistance on specific details 

when training the model (Google, n.d.). Once the model was trained, it could be downloaded for 

implementation with a variety of different frameworks; one of which being TFLite. The models 

could then be downloaded and stored on a personal computer for future use. Following this, our 

team would reuse the Google Coral Edge TPU Accelerator, which the previous team made use 

of. As previously explained on section 3.2.2.2 of the Methodology, the accelerator adds an Edge 

TPU co-processor to the Raspberry Pi, which takes the demanding computational workload 

accompanied with implementing a neural network off of the Pi.  

Following model training, our team noticed that Google Cloud’s services no longer 

supported the export of quantized, TFLite models for proper use on Edge TPU accelerators. 
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Ultimately, our team decided it was not optimal to use another model training service due to time 

constraints. However, example models were available from the Coral.ai website which our team 

made use of. These models were able to detect up to one-thousand common objects, including 

bottles. One downside of using these models was the high rate of false-positive detections that 

we experienced when testing.  

Our team eventually reached out to a fellow WPI student (Grant Perkins) who had 

extensive experience with object detection and machine learning. At the time, Grant was 

developing software to train TFLite models which would be compatible with Edge TPU 

accelerators. Furthermore, he was able to recommend our team a different model labeling 

website, named Supervisely, which we utilized for a more efficient image-labelling process 

(Supervisely, n.d.). With Supervisely, our team was able to upload and label images 

simultaneously; in a similar fashion to how Google Docs works. Due to this, the time to prepare 

image data for training was exponentially reduced while also allowing for our team members to 

add more images of their choosing, which eventually increased the original image count from 

~600 to ~1300. Supervisely, in terms of preparing image data, was vastly superior to Google 

Cloud for the following reasons: the user interface was smooth and reliable, newly labeled 

images were saved in the background while the user continued to work on different images, and 

most importantly, the Supervisely service that our team was utilizing was completely free of 

charge.  

With this new software at our team’s disposal, a new model was able to be trained that 

consisted of cans, bottles, and ‘not’ datasets. The ‘not’ dataset was comprised of bounding boxes 

that were used to identify everything in an image that is not a bottle or a can —essentially acting 
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as reject case when performing inference on the video feed from the camera. The addition of the 

‘not’ dataset greatly improved the accuracy of the model to the point where there were no false 

positives on objects that were not bottles or cans, whereas previous iterations of the model would 

falsely identify almost everything including, sand mounds, as a false positive. Displayed to the 

left in Figure 50 is a labeled image from the Supervisely platform. To the right in Figure 50, the 

tan boxes represent ‘not’ while the green and turquoise bounding boxes represent ‘bottles’ and 

‘cans’, respectively.  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 50: (From left to right) An image with ‘bottle’, ‘can’ and ‘not’ bounding boxes 

 

The final steps to prototyping our team’s object detection, machine learning model 

consisted of making use of Grant’s software, named Axon, which allowed a TFLite model to be 

trained on a set of labeled images. Axon is written in Python and runs in a Docker environment. 
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Training with Axon was simple and intuitive as opposed to Google Cloud’s training platform. 

When data preparation was completed in Supervisely, the newly edited image dataset was 

downloaded. This consisted of all the images which were originally uploaded, but with the 

addition of bounding boxes drawn on them. The download also included a very important .json 

file which consisted of the dataset’s classes, representing their bounding boxes, respective IDs, 

and colors which were all needed to train the model successfully. Provided in Figure 51 is an 

image of Axon’s training UI. 

 

Figure 51: Axon User Interface 

 

 It can be seen in Figure 51 that training a TFLite model with Axon requires the user to 

input five arguments: Epochs, Batch Size, Evaluation Frequency, Percent Evaluation, and 
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Datasets. ‘Epochs’ represent how many passes the whole dataset will go through the neural 

network in one training session. ‘Batch Size’ indicates the amount of data that will be used for 

training the model per epoch. ‘Evaluation Frequency’ dictates how many times the neural 

network will make use of training examples to evaluate the accuracy of the model. ‘Percent 

Evaluation’ symbolizes how much training data will be used for accuracy improvement 

purposes. Finally, ‘Datasets’ is where the user inputs a .tar file containing the necessary 

dependencies and images; in our case, the files downloaded from Supervisely. Under the training 

settings in Figure 51, there is a graph depicting the accuracy of the model after each Evaluation. 

The user is able to select any node on this graph and download the TFLite model with that 

respective accuracy.  

 It can be seen in Figure 51 that the model training accuracy graph seems to plateau after 

the first accuracy evaluation. This was because while training the model, its accuracy will 

eventually stop improving. This was mostly based off what data the neural network was provided 

with. This trend is very common when training neural networks, however; the length of the 

plateau heavily depends on the training data as well as the type of neural network that is being 

used to train the model. 

While observing the model accuracy graph in Figure 51, the best node to download an 

instance of the model from seems to only have an accuracy of ~37%. It is important to note that 

even though training accuracy is low, real world accuracy will usually be much greater since the 

model, in the case that it was being used by our team, will be provided with a high-quality 

camera feed with most of the frame being filled with the object that needs to be detected. In a 
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way, the accuracy improves because the Smallbot’s environment was outputting the specific data 

that it required. 

Finally, with a successfully trained TFLite model, that was also compatible with the 

Coral Edge TPU, our team was ready to move onto the testing phase for object detection.  

 

4.2 Testing 

 The following sections discuss the testing that was completed with the Smallbot and the 

Basebot, as well as when the two robots were integrated together.  

 

4.2.1 Smallbot Testing  

To ensure that Smallbot was fully functional throughout this project, various testing had 

taken place. This occurred both at local beaches near the WPI campus and/or at our team’s given 

laboratory space on a 1.22m by 2.44m table covered in sand. Testing was conducted in the lab 

space during the winter months due to inclement weather conditions that could be hazardous to 

the onboard electrical components. The purpose of these tests was to verify that our team’s 

progress was significant, as well as to determine if the designs and prototypes that were 

developed would work for the full scope of the project. 
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4.2.1.1 Mechanical Testing 

 To ensure the mechanical redesign of the Smallbot was sufficient, various components 

were tested to determine whether they were able to withstand normal wear-and-tear, as well as 

any slight bumps that may arise. 

 

4.2.1.1.1 Drivetrain Testing 

The testing of Smallbot’s prototype chassis was done at a local beach. The purpose of this 

test was to test how the four-wheel, rocker-bogie drivetrain operated on sand, dunes, and holes. 

The local beach had coarse sand that was somewhat damp, similar to what can be seen at the 

shore near the tide of an ocean. Therefore, these beach conditions were helpful in simulating 

what the Smallbot could encounter at an ocean. During testing, the Smallbot had no issues when 

driving over dunes or valleys up to 88.9mm on one side of the drivetrain. The drivetrain also had 

no issues with turning on the sand since it minimally dug into the sand, which was a concern of 

the wheeled design. In addition, the Smallbot’s drivetrain prototype was able to reach a top speed 

of about 0.62
𝑚

𝑠
 during testing, even with additional 3.63kg mounted on the robot. Overall, the 

prototype chassis was successful and was helpful to determine improvements that needed to 

make for the final design.  
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Figure 52: Chassis Prototype Design 

 

The rocker-bogie drivetrain was also tested to find the experimental coefficient of friction 

while performing a 90-degree turn. To calculate the experimental coefficient of friction, encoders 

were used to determine the wheel speed while running the motors at 20% effort. Using this 

speed, the coefficient of friction was found by using the equations below.  

𝑡 = 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡𝑢𝑟𝑛 = 9𝑠𝑒𝑐 

 As observed in section 3.2.1.1 of the Methodology, the measured radius of the wheels 

was found to be approximately 0.076 meters (𝑅𝑤). Thus, the wheel circumference was 

calculated with equation below. 

𝐶𝑤 = 𝑊ℎ𝑒𝑒𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 2𝜋(𝑅𝑤) = 2𝜋 ∗ 0.076𝑚 = 0.477𝑚 
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 The number of encoder ticks (CPT) were recorded throughout the duration of the turn (𝑡), 

and the resolution of the encoders (CPR) was found in the motor datasheet (PittmanExpress, 

1994). The recorded values were the following:  

𝐶𝑃𝑇 = 631
𝑐𝑜𝑢𝑛𝑡𝑠

𝑡𝑢𝑟𝑛
 

𝐶𝑃𝑅 = 500
𝑐𝑜𝑢𝑛𝑡𝑠

𝑟𝑒𝑣
 

Subsequently, the wheel speed (𝜔) was calculated in order to cross-reference the torque 

required to drive the motors at such RPM. 

𝑅𝑡 = 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑡𝑢𝑟𝑛 =
𝐶𝑃𝑇

𝐶𝑃𝑅
=

631

500
= 0.792rev 

𝑅𝑠 = 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 =
𝑅𝑡

𝑡
=

0.792rev

9𝑠𝑒𝑐
= 0.088

rev

𝑠𝑒𝑐
 

𝜔 =  𝑅𝑠(60) = 0.088
rev

𝑠𝑒𝑐
∗ 60𝑠𝑒𝑐 = 5.28RPM 

 Once the RPM was found, a new motor graph like the one displayed on Figure 2, under 

section 3.2.1.1 of the Methodology, was generated to match our voltage output when driving the 

motors at 20% effort (2.4V). 
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Figure 53: Drive Motor Specifications Graph at 2.4V 

From the graph above, it can be deduced that the torque required to drive the motors at 

5.28RPM is approximately 2.43Nm. This ultimately allowed us to calculate the experimental 

coefficient of friction, by reworking the equations used to calculate the theorical torque required 

per wheel with an assumed coefficient of friction of 0.35. 

𝐹𝑡 =
𝜏𝑤

𝑅𝑤
=

2.43𝑁𝑚

0.076𝑚
= 32.0N 

𝐹𝑟 = 𝐹𝑡 = 32.0𝑁 
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𝐹𝑅 = √𝐹𝑟
2 + 𝐹𝑡

2 = 45.3𝑁 

𝐹𝑅 = (
𝑊𝑡 ∗ 𝑔

4
) 𝜇 

𝜇 =
𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡

(
𝑊𝑟 ∗ 𝑔

4 )
=

45.3𝑁

(
11.3𝑘𝑔 ∗ 9.8

𝑚
𝑠2

4 )

= 1.64 

 The experimental coefficient of friction value of 1.64 seemed reasonable, despite the 

initial, referenced value of 0.35 in section 3.2.1.1 of the Methodology. This difference from our 

referenced coefficient of friction was not surprising, because it was expected that when the robot 

would turn on sand it would sink. This sinking in turn caused for the motors to exert a higher 

torque as the robot essentially had to dig itself out of the hole that it dug itself. Figure 54 is a 

picture of the Smallbot after completing a 90-degree turn. As seen in the Figure 54, the back-left 

wheel has sunk into the sand after completing a turn.   

 

Figure 54: Smallbot After Completing a 90-degree turn 
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4.2.1.1.2 Gripper Testing  

 Our team first tested the previous iteration of the gripper before it underwent a total 

redesign. The previous iteration of the gripper featured two fingers that were manipulated by two 

gears. Both the driving gear and finger, which were mounted to the servo horn, allowed the 

driven gear to rotate in the opposite direction. This gripper was tested for collecting both bottles 

and cans in sand. A key feature of the gripper was that it was able to sift through sand well, 

however; over time the gears would separate and create too much backlash to the point where the 

gears would start to skip. This was mainly due to the thin teeth and improper placement of the 

nut and bolt holding the system together. As seen in the Figure 55 below, the gears became loose 

due to the continuous grabbing and releasing of either a can or bottle over time. This would 

cause inconsistencies when grabbing an object and therefore the gripper became unreliable.  

  

Figure 55: Previous Iteration of the Gripper 
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 After testing the previous iteration of the gripper, our team decided that a redesign was 

necessary for the gripper to reliably pickup both bottles and cans. This redesign of the gripper 

was an attempt to make the gears thicker, which could potentially help prevent backlash between 

the teeth. Once the thickness of the gears was increased, it was determined that there were still 

issues of the gears slipping and causing 10 degrees of backlash. After conducting further testing, 

it was found that the servo mount was the cause of the backlash between the two points of 

rotation for the gears due to it not being secure enough.  

  

Figure 56: Gears from Redesign of Gripper 

 

  Following the first redesign of the gripper, a second redesign was deemed necessary for 

collecting bottles and cans reliably. This second redesign addressed the issues that were found 
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from the previous designs, which included the backlash in the gears as well as the lack of support 

on the servo mount. These issues were fixed in the second redesign. This was achieved by adding 

an external plate that provided support on both sides of the gears. Also, the diametral pitch and 

thickness of gears was changed to 12 teeth per inch and 12.7mm. The thicker gears and the extra 

support allowed for the gripper to consistently collect bottles and cans, as well as crushed cans. 

This third test was found to be the most successful gripper test since it proved to be reliable and 

prohibited any sort of backlash or movement between the gears and fingers.  

 

  

Figure 57: Second Redesign of Gripper 
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As discussed previously in Section 3.2.1.2, the gripper was fitted with rubber bands to 

maintain gripping force without power to the servo motor. New 3D-printed standoffs were added 

to the gripper’s fingers and manually tested. This allowed our team to determine how many 

bands were needed to maintain sufficient gripping force on the bottles and cans. One rubber band 

doubled back on itself provided ample grip for holding litter in the gripper. The gripping force 

was further tested with a filled plastic water bottle. This test concluded that the bands were able 

to maintain a constant gripping force on objects that were heavier than the target litter.  

Once the rubber bands were added to the gripper, it was discovered that the servo 

controller was unable to cut power to the servo. Thus, a new design had to be created to solve the 

servo motor burnout problem. Slots were added to the inside of the fingers to allow a pin on the 

servo to rotate edge of the slot to pull the jaws open. This design allows the servo to pull the jaws 

open to grip trash, while not having to return to position zero, as it can continue traveling 

through the slot even when the fingers have stopped moving. A version of this design, with the 

top plate removed can be seen, in Figure 58.  
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Figure 58 Pin Slot Mechanism on Gripper Fingers 

 

4.2.1.1.3 Two DOF Arm Testing 

As stated in section 3.2.1.3, testing was conducted to determine the strength and the 

correct distance required to collect trash with the 2-DOF arm. Although the arm was consistent at 

collecting objects and was a great improvement from the previous iteration, additional support 

was required for the arm to handle deflection from the side. To add additional support to the 

shoulder part of the arm an additional part was added to support the first link. The calculations 

for the deflection of the arm can be found in section 3.2.1.3 and 3.2.1.3.1.  

 The arm was also tested for the maximum lifting weight it could handle. For the scope of 

the project, the maximum weight out of the three trash options (a 473ml bottle, a 355ml can, and 
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a crushed can) was the 473ml bottle, which was measured to be 0.454kg. The arm successfully 

managed to lift all three objects separately, without any issues. The previous iteration of the arm 

experienced issues when lifting a 0.650kg bottle because of the lower torque servo used at the 

elbow joint. This servo with a stall torque of 1.96Nm was upgraded to a 2.96Nm servo, which 

ultimately increased the arm’s lifting capacity. 

 

4.2.1.2 Electrical Testing   

To fully ensure that the selected electronics were functioning properly, there were a series 

of tests that occurred throughout the duration of the project. The motor controllers and battery 

were tested with an ESP32 microcontroller. 

 

4.2.1.2.1 Arduino ESP32 Initial Testing   

 Initial testing consisted of sending wheel efforts through the GPIO pins of the ESP32. 

This process allowed for our team to fully understand how the new drivetrain would function in 

an outdoor environment. The setup for initial ESP32 testing is displayed in Figure 52 Our team 

drove to a local, freshwater beach in order to carry out the initial tests. The tests required the 

Smallbot to drive forwards and backwards and perform point/swing turns in both directions on 

uneven terrain. The tests were successful in showing that the chassis worked as intended and 

proved that the new drivetrain was superior for beach environments, when comparing it to the 

old chassis. Furthermore, the new chassis would allow for more space to mount the necessary 

electrical and mechanical components. 
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4.2.1.2.2 Motor Controller Testing 

 The initial testing for the motor controllers that were interfaced with the chassis began 

with a simple, single channel control board, which was manufactured by Anmbest and was used 

to modulate the individual wheel efforts of each side of the drivetrain. Since our preliminary 

testing did not require the motors be able to drive in both directions, a dual channel speed 

controller was not in immediate need. The purpose of this initial testing was to ensure that both 

sides of the drivetrain functioned appropriately and did not have any factory defects that could 

have had comprised any further development of this project. 

 Once full functionality of both sides of the drivetrain was confirmed, our team then 

purchased a pair of dual-channel H-Bridge motor drivers that were rated for the motors’ voltage 

and current draw requirements. Each one of these H-Bridges controlled opposite ends of the 

drivetrain and were able to reliably send the PWM signals needed for any combination of wheel 

efforts that could be performed by the chassis.  

 

4.2.1.3 Software Testing 

To ensure that the software was robust, efficient, and effective enough to meet our team’s 

requirements, various tests were conducted. These tests included Bluetooth, motor encoder, 

IMU, and object detection testing. 
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4.2.1.3.1 Bluetooth Testing 

Once the functionality of the motor speed controllers was tested and verified, as 

discussed in section 4.2.1.2.2, our team needed to find a way to conduct driving tests with 

teleoperated commands. After a series of ideas were presented, Bluetooth communication was 

settled as a viable, temporary method. Bluetooth helped conduct tests that required teleoperation 

behaviors, such as driving the chassis outdoors on sand. To achieve this, a script that supported 

Bluetooth communication was written to run on the ESP32. This program enabled the 

microprocessor to be seen as a pairable device by other electronics, which in turn allowed our 

team to pair our smartphones with the ESP32. Furthermore, by using an Android App called 

“Serial Bluetooth Terminal”, our team was then able to send individual characters to the ESP32 

via Bluetooth, which could be interpreted as commands to drive forward, backwards, turn, etc. 

Ultimately, this temporary form to send data to the Smallbot was an effective way to conduct 

early testing of the drivetrain, outdoors on sand. 

 

4.2.1.3.2 Drive Motor Encoder Testing 

 During the early stages of the project, testing was conducted with the drive motors 

encoders. The drive motors included built-in encoders that could potentially assist the 

localization of the Smallbot relative the Basebot’s camera view. However, our team had initial 

concerns that the encoders would be inaccurate due to wheel slippage caused by the low traction 

of the sand. To address this concern, our team brought the original drivetrain prototype to a 

beach at a local pond in Worcester. This test also served as a way to check if there was a 

reduction in motor RPM when traveling in sand, due to wheel-sinkage or loss of traction. Our 
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team added an additional 3.6kg to the prototype to test for a possible worst-case scenario in the 

event that the Smallbot’s final weight happened to be over 14.5kg. For this test, the Smallbot 

drove 1.52m over sandy terrain with varying bumps and valleys and was placed in three different 

configurations on the beach. These three different configurations include: the Smallbot facing 

parallel to the shore, the Smallbot facing uphill away from the shore, and the Smallbot facing 

down towards the shore. The results from this test can be seen below in Table 3.  
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   Dist in m: 1.52 

Sideways 
Time 
(s) 

Right 
Encoder 

Left 
Encoder RPM 

Test 1  2.5 2330 2290 65.5 

Test 2 2.3 2080 1960 71.2 

      

Uphill      

Test 1  2.3 2190 2330 71.2 

Test 2 2.5 1670 1770 65.5 

     

Downhill      

Test 1  2.1 2540 2190 78 

Test 2 2.4 1980 1850 68.2 

   Avg RPM: 68.3 

Table 3: Encoder and RPM testing  

 As can be seen in the table above, no matter which orientation the Smallbot traveled, 

there was a significant difference between the left and right encoder values. With the encoder 

ticks having a maximum difference of 351 ticks over a span of 1.52m, our group decided 

encoders would not be effective for traveling larger distances as considerable error would 

accumulate over time. From this test, our team learned that an IMU and an external localization 

strategy (AprilTags), would be essential for a robust control solution.  

 

4.2.1.3.3 IMU Testing 

 Testing of the Adafruit BNO055 IMU was conducted. First, our team needed to find 

which data transmission protocol would be best to obtain the most recent gyroscope values from 

the IMU. 𝐼2𝐶 was the serial communication protocol of choice, as this would ensure that by 
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sampling the data synchronously with the Pi’s master clock, our team would always request the 

most up-to-date information from the IMU’s onboard sensors.  

 Once our team was able to obtain usable gyroscope values from the IMU, a controller to 

ensure that the chassis would drive straight needed to be implemented. This involved the 

integration of a simple proportional controller to the function that wrote the wheel efforts to both 

sides of the drivetrain. By calculating the difference between the actual heading and the desired 

heading, our team was able to interpret each wheel effort as a function of the computed delta in 

terms of a desired wheel effort.  

∆𝜃 =  𝜃𝑎𝑐𝑡𝑢𝑎𝑙 − 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

𝐿𝑒𝑓𝑡 𝑤ℎ𝑒𝑒𝑙 𝑒𝑓𝑓𝑜𝑟𝑡 = 𝑤ℎ𝑒𝑒𝑙 𝑒𝑓𝑓𝑜𝑟𝑡𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − ∆𝜃 

𝑅𝑖𝑔ℎ𝑡 𝑤ℎ𝑒𝑒𝑙 𝑒𝑓𝑓𝑜𝑟𝑡 = 𝑤ℎ𝑒𝑒𝑙 𝑒𝑓𝑓𝑜𝑟𝑡𝑑𝑒𝑠𝑖𝑟𝑒𝑑 + ∆𝜃 

 Similarly, point turns were performed with the aid of the gyro data obtained from the 

IMU. By comparing the current heading and the desired heading of the chassis, our team was 

able calculate the difference in the yaw angle that the drivetrain needed to turn. After 

implementing a simple check to determine which direction the chassis needed to turn to, either 

right or left, our team was finally able to successfully perform point turns on sand with an 

accuracy of ~2 degrees.  
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4.2.1.3.4 Object Detection Testing 

 Furthering the work after prototyping the object detection, our team was ready to start the 

testing phase. The starting point for testing the object detection was to place either a bottle or can 

in front of the Smallbot camera to test if the model worked as intended. By using a program 

called “TeamViewer”, our team was able to remotely connect to the Raspberry Pi with a laptop 

and thus monitor the output without the need for an external monitor. Initially, with TeamViewer 

up and running, bottles and cans were individually placed in view of the Smallbot camera as seen 

in Figure 59.  

However, as mentioned in the prototyping section for object detection, the model was 

falsely identifying many different areas of camera video feed as bottles or cans. In order to fix 

this problem, our team decided to retrain the entire model with a new dataset that was denoted by 

a collection of ‘not’ bounding boxes. The ‘not’ bounding boxes identified everything that was 

not a can or bottle. This allowed for the model to strictly identify bottles and cans, which 

dramatically increased the model’s practical accuracy. An updated image is provided in Figure 

59, in which common areas of the frame that were previously falsely identified were labeled with 

‘not’ bounding boxes.  
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Figure 59: Update Image with ‘not’ Bounding Boxes 

 

As seen in Figure 60, the TFLite model was functioning as intended with a greater 

accuracy than that of what Axon had originally predicted.  
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Figure 60: Model Running on Coral Edge TPU 

 

 Once our team verified that the model ran as intended on the Edge TPU, additional 

testing was conducted to determine how the model performed with the robot in motion while 

actively searching for objects to pick up. It is important to note that the Smallbot’s speed played 

an important role, since the speed at which the camera was moving affected the accuracy and 

detection time of the model; hence, the speed at which the Smallbot would traverse its path was 

set to 20% of its maximum speed.  

Our team found the optimal driving speed by testing different values which were above 

and below half of the maximum speed of the motors, and the results were as follow: the 
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difference between 20%, and any speed lower was negligible. However, there was a significant 

difference between 20% speed and above, as driving at higher speeds prevented the robot from 

reliably detecting litter on its path. Based off this series of tests, our team concluded that 20% of 

the maximum speed would allow the inference algorithm to have enough time to reliably detect 

objects while also maintaining a reasonable speed.  

 Once the optimal detection speed was determined, our team needed to perform tests to 

find the optimal position for the Smallbot to collect litter. This was accomplished by having the 

arm follow a set of pre-defined motions that would allow it to reliably pick up the trash that was 

in front of it. Therefore, the only calculation necessary was the time it would take for the 

Smallbot to drive forwards or backwards, depending on how far or close it was to the object of 

interest. To test this functionality, we calculated the equations needed to find the centroid of an 

object in the camera frame. The y-component of the centroid was then used to determine the 

amount of time that the Smallbot would need to drive to position itself in front of the object. The 

calculation to find the centroid of an object can be seen below: 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑥, 𝑦) =  
𝑥𝑚𝑖𝑛 +  𝑥𝑚𝑎𝑥

2
,
𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥

2
 

 

Furthermore, the centroid was used in a larger formula which would first find the angle at 

which the chassis needed to turn to face the object. The distance between the camera and the 

object was then detected. The Smallbot would finally either move backwards or forwards, based 

on an ideal distance value, with an offset applied, to position itself for successful collection. 
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After collection, the Smallbot would go return to its original position before it detected the object 

and continue to follow its path. The script for this part of the code is provided in the Appendix. 

 

4.2.2 Basebot Testing  

Testing was required to ensure that the Basebot was functioning properly and to meet the 

project requirements. The testing of the Basebot took place in our team’s laboratory where the 

Basebot was placed near the table that the Smallbot operated on. The purpose of these tests was 

to verify that the project requirements were met for the Basebot prototypes.  

 

4.2.2.1 Camera Stand Testing 

 To test the Basebot’s ability to track AprilTags, a simple stand was built for the camera to 

be mounted onto. This stand used REV robotics 15mm extrusion to create the base and to allow 

the camera height to be adjusted. The camera could easily be adjusted by moving the L-bracket 

mount for the camera up or down, within the slotted extrusion. From testing, the optimal height 

was found to be about 0.914m from the top of the sand table where the Smallbot operates. This 

height difference was found to help with distinguishing a wide-angle view of the entire table that 

the Smallbot would be moving about on. This simple camera stand was used throughout the 

project and was helpful for maintaining a consistent height and position for the Basebot to 

observe the Smallbot’s AprilTags.  
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Figure 61: Camera Stand Facing the Sand Table 

 

4.2.2.3 Software Testing 

In a similar manner to how the Smallbot’s was tested, our team needed to ensure that the 

Basebot’s codebase was robust, efficient, and effective enough to meet the set requirements. 

Therefore, various tests were conducted. These tests included AprilTag recognition testing and 

testing of the state machine, based on the camera’s video feed. 
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4.2.2.3.1 AprilTag Testing 

 The early implementation of the AprilTag recognition software required our team to use 

the AprilTag package developed by Electrical Engineering and Computer Science department 

from the University of Michigan (Olson, 2010). Once the software was able to run on our local 

machines, a series of tests were performed to guarantee that the printed tags could be detected 

under a wide array of different conditions. Initially, our team needed to determine which type of 

AprilTag families the imported software was able to detect. After some research on the C++ 

implementation of the package, it was found that the detector was able to recognize the following 

series of AprilTag families: 16h5, 25h7, 25h9, and 36h11. Next, our team needed to test the 

maximum distance at which an AprilTag could be recognized —this number resulted to be 

approximately 5m, which meant that the detection range was not going to be an issue for the 

purposes of this iteration of the project. Finally, a wide variety of lighting conditions and angles 

were applied to the camera, to ensure that the AprilTag detection was reliable enough to be 

deployed during a real test run. Ultimately, the AprilTag package was able to be used reliably 

and proved to be robust, as it was able to effectively track multiple AprilTags even when 

external factors were applied.  

 

4.2.2.3.2 State Machine Testing 

 The initial prototype of the state machine was developed according to the actions that the 

Smallbot needed to perform with respect to the Basebot’s camera view. This was done by 

positioning the Smallbot’s onboard AprilTags on different spots within the Basebot’s camera’s 

field of view. Each time after the AprilTags were displaced, our team needed to ensure that the 
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OpenCV coordinates were not only being extracted appropriately, but also that they were being 

attributed to their corresponding state. For instance, if an AprilTag was seen on the left side of 

the OpenCV coordinate frame, then the state machine needed to update the Smallbot’s action to 

tell it to perform a point turn to the right to ensure that it would stay within the camera’s field of 

view. This idea was applied to every state in the path, to verify that a state was constantly being 

outputted regardless of where the AprilTags were located in space.  

 

4.2.3 Integration Testing 

Once every software-related aspect of both the Smallbot and the Basebot was 

individually tested, our team had to ensure that all of these components worked in unison after 

both systems were combined and began communicating autonomously via TCP Communication.  

 

4.2.3.1 TCP Communication Between the Smallbot and the Basebot Testing 

 As seen in Figure 62, the Basebot was tasked with sending field commands to the 

Smallbot via TCP. As previously discussed in section 3.2.3.4, the ESP32 acted as the wireless 

AP between both systems. Upon deployment of this implementation, it was found that there were 

some initial issues due to blocking code that stemmed from while loops being used to perform 

point turns on the Smallbot’s end. These segments of blocking code caused a temporary halt on 

the Basebot’s AprilTag detection’s camera feed displayed on OpenCV. The root of this issue was 

traced down to be caused by the fact that the execution of the while loops delayed an echo 

command that needed to be sent back to Basebot, as a confirmation that the information was 
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being received by the Smallbot adequately. Nonetheless, this issue was solved by creating a new 

function that would perform point turns without the need of any loops. This new addition to the 

Smallbot’s codebase fixed the issue and allowed for reliable back-and-forth communication 

between both systems. 

 

Figure 62: Package Diagram of the Entire System 

 

4.2.3.2 Combined State Machine Testing 

 The final testing phases of the state machine involved running a series of tests runs to 

ensure that the information being sent from the Basebot adequately allowed the Smallbot to 

follow its path, while having it simultaneously scan for trash to pick up. This testing was 

accomplished by replicating scenarios where the Smallbot would detect an object in random 

locations at any given point throughout the path. After conducting numerous tests runs to ensure 

that this functionality did not interfere with the Basebot’s commands, it was discerned that the 

system worked in a reliable manner and accomplished the required tasks.  
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Section 5: Conclusion and Recommendations  

5.1 Reflection of our Project 

This section provides more insight into the final product of the Smallbot and the Basebot. 

These reflections are broken down between mechanical, electrical, and software components. 

 

5.1.1 Mechanical Reflection 

 Overall, the project’s mechanical requirements were met and exceeded. The Smallbot’s 

drivetrain successfully managed to drive on sand during early tests at a beach and later in the 

project when testing was conducted in the lab. The Smallbot was able to reach a top speed of 

0.62
𝑚

𝑠
 on sand. Although this speed had to be reduced to 20% for the object detection to function 

properly, the Smallbot has the capability to drive faster than 0.1
𝑚

𝑠
, or around walking speed. 

Also, the Smallbot can drive without the drivetrain jamming or the robot getting stuck in the 

sand. Furthermore, the rocker-bogie system proved to be efficient and capable for maneuvering 

on varying beach terrain.  

 The gripper and arm proved to meet the requirements for collecting trash objects reliably 

from the beach surface. The gripper was designed and tested to be able to capture a full 473ml 

bottle, 355ml can, or even a crushed can. In addition, strain placed on the servo motor and 

chance of servo burnout can be reduced with the use of rubber bands to grip the cans and bottles. 

Also, the arm was capable of lifting and placing a full 473ml bottle into the bucket. The arm was 

reinforced to lessen the chance of breaking or deflecting if it runs into obstacles. The goals for 
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the bucket were exceeded since the final design of the bucket could store up to three 473ml 

bottles. The bucket was tested to hold all three bottles securely, and efficiently managed to dump 

all trash objects at the end of the Smallbot’s path. 

 

5.1.2 Electrical Reflection 

 The requirements for the electrical portion were met and exceeded. Starting a project of 

this caliber called for a solid electrical foundation, which was achieved through individual 

component testing, battery calculations, and the creation of a detailed, wiring schematic. 

Developing the electrical schematics and improving cable management were important first steps 

in developing this solid electrical foundation. Furthermore, our team was able to easily make 

additions to the Smallbot with the foundation that we had built. 

Completing the electrical work in a timely manner allowed for our team to focus our 

efforts in other areas of the project which required more effort. All of the documentation that our 

team had created for the electrical work on the Smallbot will give the following team a better 

experience continuing this project.  

 

5.1.3 Software Reflection  

 The software requirements for the entire system were exceeded. The Smallbot was able to 

use the gyroscope’s data from the IMU, to not only perform accurate point turns on sand, but to 

also drive straight while scanning for trash. Furthermore, the dataset of detectable objects was 

successfully expanded from only cans to both bottles and cans. The new optimized TFLite model 
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for the Google Coral Edge TPU proved to be of great use in increasing the system’s overall 

performance.  

 The implementation of TCP communication between both the Smallbot and the Basebot 

was a considerable improvement from the last iteration of the project, as this feature can be 

expanded to work with multiple Smallbot systems. Additionally, the use of AprilTags to perform 

visual localization and field commands allowed for both robots to work in unison. This also 

expanded the functionality of the system to a point where it can clean an entire area seen by the 

Basebot’s camera. Finally, these requirements were further exceeded by having the Smallbot 

return to its starting position upon finalizing the clean-up of an area.  

 

5.2 Final Conclusion 

 Currently, the multi-robot system is capable of detecting, navigating, and collecting trash 

from a beach. The Basebot can track and direct a single Smallbot that is navigating within the 

Basebot’s camera view. With TCP communication, the Basebot can send instructions to the 

Smallbot while it is traveling on the shore. The Smallbot can drive efficiently and effectively on 

varying sand terrain without getting stuck or clogging the drive motors. Furthermore, the 

Smallbot can detect, maneuver to, and collect a variety of trash objects that are typically found 

on beaches. Some of the trash objects include empty or filled bottles and cans, as well as crushed 

cans. The second iteration of the project was another step towards the conceptual idea of having 

a swarm of beach clean robots.  
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 Future teams of this project should look towards gradually adding additional Smallbots to 

the system, collecting different sizes of trash objects (i.e., liter sized bottles or beer bottles), and 

waterproof all of the Smallbot’s electrical components. The Basebot should be able to move 

parallel to the Smallbot, and to the next section of the beach while still giving instructions to the 

Smallbots. After these improvements, the system will have a greater chance of accomplishing the 

overall goal for this project. 
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Addendum 

Overview of Current Basebot: 

 

Figure 63: Current Basebot 

 The current Basebot is an average garden cart, as seen above in Figure 63. This garden 

cart has not been utilized in any way, added on to, or altered from its initial form throughout the 

previous iteration of this project. Currently, the goal is to create a detailed design plan in which 

the following iteration of this project can rebuild the Basebot, in order to make it drive reliably 

and efficiently on sand. 

Requirements 

 To allow the BaseBot to be fully drivable, the following objectives must be achievable 

through this design: 

• The Basebot design must utilize the given Basebot, which is a garden cart. 
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• The Basebot must drive on sand. 

• The Basebot must run at or above 0.25m/s. 

Mechanical Design: 

 In order to fulfill the requirements for the Basebot’s drive system, it was necessary to 

follow the engineering process and create an overall design for a drivable Basebot. This was 

done by taking measurements of the current garden cart, creating a model of it in SolidWorks, 

completing various calculations, and modifying the model to have a more effective and efficient 

design. Multiple aspects of the garden cart had to be reworked, including the steering 

mechanism, the addition of motors, and the addition of batteries, as well as other various 

electronics to power this autonomous vehicle. 

Steering Mechanism: 

Figure 64: Current Basebot Steering Mechanism View 1 
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Figure 65: Current Basebot Steering Mechanism View 2 

 

 Due to the difficulty of attaching drive motors to the original garden cart, as seen above 

in both Figure 64 and Figure 65, a new driving system was designed. First, it was decided that it 

was necessary for the front portion of the steering, as depicted in Figure 64, to be removed from 

the Basebot; this is a simple task that can be done with a wrench and nut driver. In addition, this 

removes the handle of the garden cart, which decreases the amount of interference it could have 

caused during operation. Once this was analyzed, it was apparent that the front part of the 

steering system would have to be completely redesigned. Furthermore, the back portion of the 

drivetrain would need to be powered by two motors and would nearly stay the same as the initial 

product, aside from slight changes to mount the motors on a new supporting beam and altering 

the axle. In terms of the front of the system, the wheels would not be powered themselves, 

however; a rack and pinion, as seen below in Figure 66, would be powered by a Pololu 37D 

Metal Gearmotor with a gear ratio of 131:1. This allows for easy steering, as well as a clean-cut 
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design, as seen below in Figure 67. In addition, the large wheels that the garden cart is equipped 

with allow for the Basebot to go over sand dunes and through dips in the surface with ease. This 

design was initially inspired by how cars drive and was redone in such a way that would be ideal 

for turning in sand. 

Figure 66: Rack and Pinion 
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Figure 67: Steering Design and Bottom View of Basebot Final Design 

 

Motor Selection: 

 In order to power both of the back wheels, it was necessary to choose a motor that would 

be reliable, efficient, and that could fulfill all of the requirements for the Basebot portion of this 

project. This was also completed in detail for the rack and pinion system. 

Back Wheel Motor Calculations 

 To ensure that the chosen motor would function as intended, calculations were 

completed. These calculations were computed with the assumption that the Basebot would be 
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full of uncrushed, empty, 12oz aluminum soda cans. On average, an empty 12oz aluminum soda 

can weighs 0.0136kg, has a diameter of 0.0524m, and a height of 0.121m. In addition, it was also 

assumed that the Basebot would be completing a 45 degree turn for the overall robot 

calculations, as seen in the free body diagram depicted through Figure 68. For these calculations, 

the empty garden cart was found to be 16.6kg. Therefore, after a series of calculations were 

conducted, the total maximum mass of the Basebot was found to be 21.6kg. Due to the 

requirement for the Basebot’s speed being ½ the average walking speed, as well as ½ of the 

Smallbot’s speed requirement, it was found that the necessary minimum speed of the Basebot is 

19.3 revolutions per minute. It was also assumed that the friction factor of clean sand is 0.3, this 

was also tested for, as described later in the report (Fine Software. (n.d.)). 

 As seen below through a free body diagram of one of the front, undriven wheels in Figure 

69, there are effectively no forces in either the x-direction or the y-direction. This is due to the 

wheels not being directly driven by motors and therefore, there are no notable forces within that 

singular system. However, there would be a rolling resistance due to kinetic friction. This is 

computed to be 63.6N, as seen below. 

Lastly, through the free body diagram depicted in Figure 70, of one of the back, driven, 

wheels and its moment calculations, the necessary torque for the motor was found. This torque 

was found to be 7.89Nm. In order to find the needed power for a chosen motor, calculations were 

also performed. The necessary power for both of the back, driven motors was found to be 15.9W. 

Therefore, the Pololu 37D Metal Gearmotor utilizes less than 80% of the maximum power 

potential and falls within the 85% of maximum efficiency curve for both driving the back wheels 
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and turning the rack and pinion mechanism. All of the free body diagrams and calculations for 

each of the steps previously mentioned can be found below. 

Volume: 

𝑉𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = 𝐿 ∗ 𝑊 ∗ 𝐻 

𝑉𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = 0.469𝑚 ∗ 0.851𝑚 ∗ 0.241𝑚 

𝑉𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = 0.0961𝑚3 

𝑉𝐸𝑚𝑝𝑡𝑦 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛 = 𝜋 ∗ 𝑟2 ∗ 𝐻 

𝑉𝐸𝑚𝑝𝑡𝑦 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛 =  𝜋 ∗ (0.0262𝑚)2 ∗ 0.121𝑚 

𝑉𝐸𝑚𝑝𝑡𝑦 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛 = 0.000261𝑚3 

Maximum Soda Cans in the Garden Cart: 

𝑀𝑎𝑥𝑆𝑜𝑑𝑎 𝐶𝑎𝑛𝑠 𝑖𝑛 𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = (
𝑉𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡

𝑉𝐸𝑚𝑝𝑡𝑦 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛
) 

𝑀𝑎𝑥𝑆𝑜𝑑𝑎 𝐶𝑎𝑛𝑠 𝑖𝑛 𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = (
0.0961𝑚3

0.000261𝑚3
) 

𝑀𝑎𝑥𝑆𝑜𝑑𝑎 𝐶𝑎𝑛𝑠 𝑖𝑛 𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = 368 𝑐𝑎𝑛𝑠 

Total Mass: 

𝑚𝐸𝑚𝑝𝑡𝑦 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛 = 0.0136𝑘𝑔 

𝑚𝑀𝑎𝑥 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛𝑠 𝑖𝑛 𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = 𝑀𝑎𝑥𝑆𝑜𝑑𝑎 𝐶𝑎𝑛𝑠 𝑖𝑛 𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 ∗  𝑚𝐸𝑚𝑝𝑡𝑦 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛  
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𝑚𝑀𝑎𝑥 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛𝑠 𝑖𝑛 𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 =  368 𝑐𝑎𝑛𝑠 ∗ 0.0136𝑘𝑔 

𝑚𝑀𝑎𝑥 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛𝑠 𝑖𝑛 𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = 5.00𝑘𝑔 

𝑚𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 = 16.6𝑘𝑔 

𝑚𝑇𝑜𝑡𝑎𝑙 =  𝑚𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 + 𝑚𝑀𝑎𝑥 𝑆𝑜𝑑𝑎 𝐶𝑎𝑛𝑠 𝑖𝑛 𝐺𝑎𝑟𝑑𝑒𝑛 𝐶𝑎𝑟𝑡 

𝑚𝑇𝑜𝑡𝑎𝑙 = 16.6𝑘𝑔 +  5.00𝑘𝑔 

𝑚𝑇𝑜𝑡𝑎𝑙 = 21.6𝑘𝑔 

Required Rotations per Minute: 

𝑆𝑝𝑒𝑒𝑑 = 0.25
𝑚

𝑠
= 15

𝑚

𝑚𝑖𝑛
 

𝑑𝑊ℎ𝑒𝑒𝑙 = 0.248𝑚 

𝐶𝑊ℎ𝑒𝑒𝑙 = 𝑑𝑊ℎ𝑒𝑒𝑙 ∗ 𝜋 

𝐶𝑊ℎ𝑒𝑒𝑙 = 0.248𝑚 ∗ 𝜋 

𝐶𝑊ℎ𝑒𝑒𝑙 = 0.779𝑚 

𝑅𝑃𝑀 =  
𝑆𝑝𝑒𝑒𝑑

𝐶𝑊ℎ𝑒𝑒𝑙
 

𝑅𝑃𝑀 =  
15

𝑚
𝑚𝑖𝑛

0.770𝑚
 

𝑅𝑃𝑀 =  19.3
𝑟𝑒𝑣

𝑚𝑖𝑛
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Forces: 

Fg = 𝑚𝑇𝑜𝑡𝑎𝑙 ∗ −g 

Fg = 21.6𝑘𝑔 ∗ −9.81 
𝑚

𝑠2
 

Fg = −212N 

FN =  −Fg 

FN = 212N 

μ𝐶𝑙𝑒𝑎𝑛 𝑆𝑎𝑛𝑑 = 0.3 

Ff = FN ∗ μ𝐶𝑙𝑒𝑎𝑛 𝑆𝑎𝑛𝑑 

Ff = 212N ∗ 0.3 

Ff = 63.6N 

θ = 45֩ 
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Figure 68: Whole Robot (Top View) FBD 

 

Top View Calculations: 

Σ𝐹𝑥 = 0 = 2 ∗ 𝐹𝑓cos (𝜃) 

Σ𝐹𝑥 = 0 = 2 ∗ 63.6cos(45֯) 

Σ𝐹𝑥 = 0𝑁 

ΣFy = 0 =  2 ∗ −Ff cos(θ) + 2 ∗ Ff 

Σ𝐹𝑦 = 0 = 2 ∗ 63.6𝑁 ∗ cos(45֯) + 2 ∗ 63.6𝑁 

ΣFy = 0𝑁 
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Figure 69: Front (Undriven) Wheel FBD 

 

Front Wheel Calculations: 

Σ𝐹𝑥 = 0 =  𝐹𝑓 

Σ𝐹𝑥 = 0𝑁 

Σ𝐹𝑦 = 0 =  𝐹𝑁 − 𝐹𝑔 

Σ𝐹𝑦 = 0𝑁 
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Figure 70: Back (Driven) Wheel FBD 

 

Back Wheel Calculations: 

Σ𝐹𝑥 = 0 =  𝐹𝑓 

Σ𝐹𝑥 = 0𝑁 

Σ𝐹𝑦 = 0 =  𝐹𝑁 − 𝐹𝑔 

Σ𝐹𝑦 = 0𝑁 

Σ𝑀𝑎𝑥𝑙𝑒 = 0 = τ − 𝑟𝑊ℎ𝑒𝑒𝑙 ∗ 𝐹𝑓 

Σ𝑀𝑎𝑥𝑙𝑒 = 0 = τ − 0.124𝑚 ∗ 63.6𝑁 
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τ𝐵𝑜𝑡ℎ 𝑊ℎ𝑒𝑒𝑙𝑠 = 7.89Nm 

τ𝑂𝑛𝑒 𝑊ℎ𝑒𝑒𝑙 = 3.94Nm 

 

Power Calculations: 

𝑃𝑜𝑤𝑒𝑟 = (
(τ ∗ RPM)

9550
) 

𝑃𝑜𝑤𝑒𝑟 =
(7.89Nm ∗ 19.3

𝑟𝑒𝑣
𝑚𝑖𝑛

)

9550
 

𝑃𝑜𝑤𝑒𝑟 = 0.0159𝑘𝑊 = 15.9𝑊 

𝑃𝑜𝑤𝑒𝑟𝑂𝑛𝑒 𝑊ℎ𝑒𝑒𝑙 = 0.00796𝑘𝑊 = 7.96𝑊 

 

Back Wheel Gear Train: 
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Figure 71: Back Wheel Gear Train 

 

Due to the lower RPM, higher torque, and power requirements of the system being lower 

than 85% of the maximum power potential, it became apparent that the back wheel driven 

system would have to be significantly geared down for a motor to function within the Basebot 

system efficiently and reliably. The calculated gear ratio for this two-stage gear train was 3.04:1, 

as seen through the calculations below. This was achieved by first locating where the power is 

equal to 7.96W on the motor graph, which was 84% of the maximum power potential. At 7.96W, 

the torque was calculated to be 1.30Nm utilizing the motor graphs. This was then utilized with 

the desired torque of 3.94Nm to find the gear ratio. Next, the gear ratio was checked with the 

speed of 58RPM calculated at 7.96W utilizing the motor graph, in order to ensure that the gear 
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ratio was correct. This calculation was performed, as seen below, and it was equal to the 

necessary RPM for the system. Lastly, the gear train was calculated with an assumed 90% 

efficiency factor. With such, it was calculated that two 24 tooth gears and two 12 tooth gears 

were necessary for this two-stage gear train to reach the gear ratio of 3.2:1. The calculated gear 

ratio of 3.2:1, which is slightly slower due to gear limitations, but has more torque than the 

desired gear ratio of 3.04:1 would be. Thus, the system will be more accurate and precise. 

The overall two-stage gear train design and housing can be seen in Figure 71 above. Each 

motor required a gear train and housing, and therefore, one was mounted on each side of the 

Basebot, as seen in Figure 81. Aside from this being a necessary feature for the motors to 

function, it also added stability to the back wheels by rigidly fixing the axles to the gear train 

housing. The gear train was rigidly attached at two mounting locations using both steel bolts and 

lock nuts. In addition, the input torque applied to by the gear train was computed to be 1.30Nm 

utilizing the gear ratio equation with 58RPM from the motor graphs, the actual rotational 

velocity and calculations at 3.94Nm, as seen in Back Wheel Calculations, and 19.3RPM as 

determined as the rotational velocity above. The power required to operate the gear box was also 

computed. This was done through utilizing the equation that converts from Newton-meters and 

RPM, divided by a unitless 9550, to power in kilowatts (Binsfield Engineering Inc. (n.d.)). 

Calculating Gear Ratio: 

𝜏𝐷𝑒𝑠𝑖𝑟𝑒𝑑 =  3.94𝑁𝑚 

𝜏𝐴𝑡𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟 = 1.30𝑁𝑚 
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𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =  
𝜏𝐷𝑒𝑠𝑖𝑟𝑒𝑑

𝜏𝐴𝑡𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟
 

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =  
3.94𝑁𝑚

1.30𝑁𝑚
 

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =  3.04: 1 

Checking Gear Ratio with Speed: 

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =  
𝑅𝑃𝑀𝐷𝑒𝑠𝑖𝑟𝑒𝑑

𝑅𝑃𝑀𝐴𝑡𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟
 

3.04: 1 =  
58𝑅𝑃𝑀

𝑅𝑃𝑀𝐴𝑡𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟
 

𝑅𝑃𝑀𝐴𝑡𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟 =  19.3𝑅𝑃𝑀 

Gear Sizes: 

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =  (
𝜔1

𝜔2
)  =  (

𝑛1

𝑛2
)  =  (

𝑑2

𝑑1
)  =  (

𝑇2

𝑇1
) ∗ 𝜂𝑠𝑦𝑠 

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =  (
𝑇2

𝑇1
) ∗ 𝜂𝑠𝑦𝑠    

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 = ((
24𝑇

12𝑇
) ∗ (0.90)) ∗  ((

24𝑇

12𝑇
) ∗ (0.90))  

𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜 =  3.2: 1 

Torque: 

𝜏𝐷𝑒𝑠𝑖𝑟𝑒𝑑 =  3.94𝑁𝑚 
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𝑅𝑃𝑀𝐴𝑐𝑡𝑢𝑎𝑙

𝑅𝑃𝑀𝐷𝑒𝑠𝑖𝑟𝑒𝑑
  =  

𝜏𝐷𝑒𝑠𝑖𝑟𝑒𝑑

𝜏𝐴𝑐𝑡𝑢𝑎𝑙
 

58𝑅𝑃𝑀

19.3𝑅𝑃𝑀
  =  

3.94𝑁𝑚

𝜏𝐴𝑐𝑡𝑢𝑎𝑙
 

𝜏𝐴𝑐𝑡𝑢𝑎𝑙  =  1.31𝑁𝑚 

Power: 

𝑃𝑜𝑤𝑒𝑟 =  
𝑅𝑃𝑀𝐴𝑐𝑡𝑢𝑎𝑙 ∗ 𝜏𝐴𝑐𝑡𝑢𝑎𝑙  

9550
  

𝑃𝑜𝑤𝑒𝑟 =  
58𝑅𝑃𝑀 ∗ 1.30𝑁𝑚 

9550
 

𝑃𝑜𝑤𝑒𝑟 =  0.00796 = 7.96𝑊  

 

Rack and Pinion System Motor Calculations: 

 To ensure that the rack and pinion steering system was properly motorized, a series of 

calculations were completed. The mass of the Basebot was 21.6kg, as previously calculated. In 

addition, the mass of the Basebot’s front corner was calculated to be 4.86kg, and the mass of the 

rear corner of the Basebot was computed to be 5.94kg. The force of friction was then found to be 

14.3N, utilizing gravity, mu, and the mass of the Basebot’s front corner. Using both this found 

force of friction and measured distance to the king pin, as seen in Figure 72, the frictional torque 

was computed to be 1.77Nm. Furthermore, the force of the rack was found to be 26.1N by 

multiplying the force of the control arm by two. Lastly, the torque at the rack was found to be 
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0.726Nm, as seen through the free body diagrams in Figure 73 and Figure 74, as well as the 

computations below. 

 

Figure 72: Basebot’s Kingpin 

Masses: 

𝑚𝑇𝑜𝑡𝑎𝑙  =  21.6𝑘𝑔 

𝑚𝐹𝑟𝑜𝑛𝑡 =  %𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑛 𝐹𝑟𝑜𝑛𝑡 𝑊ℎ𝑒𝑒𝑙𝑠  ∗ 𝑚𝑇𝑜𝑡𝑎𝑙 

𝑚𝐹𝑟𝑜𝑛𝑡 = 0.45 ∗ 21.6𝑘𝑔 

𝑚𝐹𝑟𝑜𝑛𝑡 = 9.72𝑘𝑔 

𝑚𝐹𝑟𝑜𝑛𝑡 𝐶𝑜𝑟𝑛𝑒𝑟  =
9.72𝑘𝑔

2
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𝑚𝐹𝑟𝑜𝑛𝑡 𝐶𝑜𝑟𝑛𝑒𝑟  = 4.86𝑘𝑔 

𝑚𝑅𝑒𝑎𝑟  =  11.9𝑘𝑔 

𝑚𝑅𝑒𝑎𝑟 𝐶𝑜𝑟𝑛𝑒𝑟  =
𝑚𝑅𝑒𝑎𝑟  

2
 

𝑚𝑅𝑒𝑎𝑟 𝐶𝑜𝑟𝑛𝑒𝑟  =
11.9𝑘𝑔

2
 

 𝑚𝑅𝑒𝑎𝑟 𝐶𝑜𝑟𝑛𝑒𝑟  = 5.94𝑘𝑔 

Force of Friction: 

µ =  0.3 

𝑔 =  9.81
𝑚

𝑠2
 

𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =  𝑚𝐹𝑟𝑜𝑛𝑡 𝐶𝑜𝑟𝑛𝑒𝑟  ∗  𝑔 ∗  µ 

𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =   4.86𝑘𝑔 ∗  9.81
𝑚

𝑠2
 ∗  0.3 

𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =  14.3𝑁 
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Torque at Pinion: 

 

Figure 73: FBD of Frictional Torque 

 

Figure 74: FBD of Pinion Torque 
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𝐷𝐾𝑖𝑛𝑔 𝑃𝑖𝑛  =  124𝑚𝑚 =  0.124𝑚 

𝜏𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =  𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  ∗ 𝐷𝐾𝑖𝑛𝑔 𝑃𝑖𝑛 

𝜏𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =  14.3𝑁 ∗ 0.124𝑚 

𝜏𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =  1.77𝑁𝑚 

𝐹𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐴𝑟𝑚 =  14.3𝑁 

𝐹𝑅𝑎𝑐𝑘  =  𝐹𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐴𝑟𝑚  ∗  2 

𝐹𝑅𝑎𝑐𝑘  =  14.3𝑁 ∗  2 

𝐹𝑅𝑎𝑐𝑘  =  28.6𝑁 

𝑟𝑃𝑖𝑛𝑖𝑜𝑛  =  25.4𝑚𝑚 =  0.0254𝑚 

𝜏𝑃𝑖𝑛𝑖𝑜𝑛  =  𝐹𝑅𝑎𝑐𝑘  ∗  𝑟𝑃𝑖𝑛𝑖𝑜𝑛  

𝜏𝑃𝑖𝑛𝑖𝑜𝑛  =  28.6𝑁 ∗  0.0254𝑚  

𝜏𝑃𝑖𝑛𝑖𝑜𝑛  =  0.726𝑁𝑚 
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Motor Selection: 

 
Figure 75: Power vs. Torque Graph for Motor 
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Figure 76: Current vs. Torque Graph for Motor 

 
Figure 77:  Efficiency vs. Torque Graph for Motor 
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Figure 78: Speed vs. Torque Graph for Motor 

 

 Through careful consideration and research, the chosen motor to power each of the rear 

wheels of the Basebot, as well as the rack and pinion steering system, was the 131:1 Pololu 37D 

Metal Gearmotor, which can be seen below in Figure 79. In addition, this motor requires 24V to 

operate. The 131:1 Pololu 37D Metal Gearmotor is easily accessible through the Pololu website, 

and proves to be reliable through its affordable price, torque, and small make. Furthermore, the 

131:1 Pololu 37D Metal Gearmotor has an attached encoder, which will aid in counting cycles of 

the motor when turning the pinion on the rack to either the left or the right. However, in order for 

these three motors to run, there must be at least 24V of supplied voltage. 

More specifically, for the Basebot’s back wheels individually, this motor proved to be 

sufficient. The 131:1 Pololu 37D Metal Gearmotor motor is one of the few available for an 
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affordable price, high torque, and small make. As seen above in Figure 75, this motor provides a 

large amount of power. Furthermore, this motor will never reach its maximum power, as the 

required amount of Watts for the Basebot to operate is 7.96W, which is less than 85%, in 

comparison to the maximum potential power output of the 131:1 Pololu 37D Metal Gearmotor. 

Additionally, as depicted through both Figure 78, it is apparent that the motor can reach and 

exceed the required 19.3 revolutions per minute. Therefore, this motor will allow the Basebot to 

move at the desired speed for extended periods of operation. Lastly, as seen in Figure 77, the 

Basebot motor requirements are located on the left side of the efficiency curve. This means that 

the 131:1 Pololu 37D Metal Gearmotor, as seen below in Figure 79, is within 80% of the 

maximum efficiency that is presented by the motor. Thus, the motor can handle the high amount 

of torque and power necessary to run the Basebot. 

 Furthermore, the 131:1 Pololu 37D Metal Gearmotor also was an efficient and effective 

motor choice for the rack and pinion steering mechanism. As seen above in Figure 75, this motor 

will never reach its maximum power, as the required amount of Watts for the rack and pinion 

system to operate is a mere 7.38W, which is less than 80% in comparison to the maximum power 

output of the 131:1 Pololu 37D Metal Gearmotor. Additionally, as depicted through both Figure 

78, it is apparent that the motor can reach and exceed the required 68 revolutions per minute and 

therefore, this motor will allow the Basebot to move at the desired speed for extended periods of 

operation. Lastly, as seen in Figure 77, the Basebot pinion motor requirements are located on the 

left side of the efficiency curve. This means that the 131:1 Pololu 37D Metal Gearmotor is 

within 80% of the maximum efficiency that is presented by the motor. Thus, the motor can 
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handle the amount of torque and power necessary to run the Basebot, while being efficient and 

reaching the speed requirement. 

 

 
 

Figure 79: 131:1 Pololu 37D Metal Gearmotor 

 

Battery Selection: 

 For the motors to run efficiently and correctly, at least 24V of power was required. To 

fulfill this requirement, it was found that running two 12V batteries in series would be the best 

option. This is because two 12V batteries would not only take up less space than a single 24V 

battery, but they would also weigh less and be much more cost efficient. The chosen battery was 

the Mighty Max Battery 12V 18AH. 
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Figure 80: Battery Power Calculations 

 

 As seen in Figure 80 above, battery calculations were computed. This was a necessary 

step in ensuring that this battery would be the correct fit for the Basebot system. All of the 

onboard electronics, including the AdaFruit BNO055 IMU, two H-Bridges, a Raspberry Pi 4B, 

and three 131:1 Pololu 37D Metal Gearmotors were analyzed. Each of these component’s 

maximum current draw in amps, idle current draw in amps, maximum power in watts, and idle 

power in watts were recorded and multiplied for the amount of each in the table above. The same 

was done for the battery, analyzing the voltage in volts and battery watt-hours, multiplied by two 

for both of the batteries utilized. This proved that together, these two batteries are more than 

reliable to power the Basebot system and fulfill all of the set requirements. 

Basebot Housings 

 To ensure that none of the electrical components are impacted by sand or other debris 

during cycles, housings for each component were designed. 
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Motor and Encoder Housings: 

Figure 81: Housing for Back (Driven) Motors 

 

Figure 82: Housing for Front Motor on Rack and Pinion 
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 Once the sandy terrain of beaches that the Basebot would be completing its run time on 

was analyzed, it became apparent that the drive motors needed to be encased. This was necessary 

in case of an event where sand got kicked up by the wheels or the Basebot was driving over or 

through any uneven spaces where sand and other debris were present. Figure 83 depicts the 

housing that was created for the two back motors on the Basebot. This cover encapsules both of 

the motors into one cohesive unit. In addition, there are holes for wires within the casing to allow 

for ease of access for wiring. Furthermore, Figure 81 above depicts the rack and pinion motor 

cover. This housing serves as both a bracket and protection from sand. Similarly to the back 

motor housing, there are holes for wires to flow through, for simple and stress-free wiring 

Rack and Pinion Housing: 

 

Figure 83: Housing for Rack and Pinion 

 It was a top priority to encase the rack and pinion portion of the Basebot. This was 

necessary due to the nature of the mechanism. For example, if sand or other debris were to enter 
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the teeth of the pinion on the rack, the gears could slip and lead to failure. Overall, this housing 

fully encloses both the rack and the pinion, as seen above in Figure 83. 

Battery and Electronics Housing: 

 

Figure 84: Top View of the Battery and Electronics Housing without the Cover 

 

Figure 85: Fully Enclosed of the Battery and Electronics Housing 
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Figure 86: Front View of the Battery and Electronics Housing with Transparent Front Plate 

 To ensure that the electronics and batteries were unphased by water and sand, a casing 

was designed. This housing sits in the back of the Basebot and allows for the electronics to sit at 

the bottom, to ensure easy access for wiring and cable management. The batteries sit on top and 

are easily accessible from the top of the housing when the cover is opened. This design, as seen 

above in Figure 84, Figure 85, and Figure 86, is extremely user-friendly, as well as minimalistic 

and practical for the environment the Basebot will be operating in. 
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Electronics: 

 In order to allow the BaseBot to successfully drive on sand, electronics were researched 

and chosen based on the required tasks the Basebot needed to complete. 

IMU Selection: 

 

Figure 87: AdaFruit BNO055 IMU 

 There were many factors that were considered while choosing an IMU to work with for 

the Basebot. Ultimately, the AdaFruit BNO055 IMU was selected, as seen above in Figure 87. 

This particular IMU was chosen because of its capabilities, as well as the fact that this is the 

same sensor that is utilized on the SmallBot. One of the main reasons behind choosing AdaFruit 

BNO055 was that it has the ability to sense nine degrees of freedom. This is due to the fact that it 

has an accelerometer, a magnetometer, and a gyroscope in each of the three axes: x, y, and z, 

also known as pitch, roll, and yaw respectively. In addition, the BNO055 can output the 

following sensor data: the absolute orientation with respect to the Euler vector, the absolute 

orientation with respect to the quaternion, the angular velocity vector, the magnetic field strength 
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vector, the linear acceleration vector, the gravity vector, and the temperature (Adafruit. (n.d.)). 

Thus, through the use of the AdaFruit BNO055, the Basebot can be programmed for navigation, 

such as waypoint following, with a specified speed and orientation with ease, while having the 

orientation and velocity constantly tracked, which is an essential aspect of the Basebot’s overall 

purpose. 

Hardware Selection: 

  

Figure 88: H-Bridge Motor Driver Selection 

 

 In order for the Basebot to have both forward and backward driving capabilities, it was 

essential to incorporate H-Bridges into the design. H-Bridges are utilized to reverse the polarity 

of a voltage that is applied to a motor. In this design with the 131:1 Pololu 37D Metal Gearmotor 

which is an electromagnetic DC brushed motor, it is crucial to complete the Basebot’s required 

tasks. Furthermore, if H-Bridges were not included within this design, the Basebot would not be 

able to efficiently complete a run, as it would have to fully turn around 90 degrees while driving, 

as opposed to simply switching the direction that the motor is spinning in through polarity. The 
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chosen H-Bridge for this application is the BTS7960 Motor Driver by Handson Technology, as 

seen above in Figure 88. There is one H-Bridge for both of the back motors, as well as an H-

Bridge for the rack and pinion system, which means that there are two of the BTS7960 Motor 

Driver H-Bridges onboard the Basebot. 

Microprocessor Selection: 

  

Figure 89: Raspberry Pi 4 Model B 

 As depicted above in Figure 89, the Raspberry Pi 4 Model B was chosen for a variety of 

reasons, including that the team had successfully integrated electronics and software on the 

Smallbot using the same microprocessor. In addition, the Raspberry Pi 4 Model B was chosen 

due to its ability to effectively communicate with other devices. This is an essential function of 

the Basebot, as it must communicate with the Smallbot, and in the future, with multiple 

Smallbots. Furthermore, the Raspberry Pi 4 Model B is able to handle camera capabilities. This 

is quintessential to the Basebot’s operation, as its entire purpose is to locate new regions for the 

Smallbot to clean up on beaches, as well as to keep track of the Smallbot. Lastly, this particular 
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microprocessor was chosen because it is readily upgradable, due to its 40 GPIO pins, 4 GB of 

RAM, and its 64-bit quad core processor (RaspberryPi.org. (n.d.)). This is a necessary function 

for the Basebot to acquire, as this project is ever-expanding. 

Testing: 

In order to ensure correct values were being assumed throughout the duration of the 

designing process of the Basebot, a few tests were performed.  
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Coefficient of Friction of Sand Testing: 

 

Figure 90: Coefficient of Friction of Sand Testing 

Normal Force: 

𝑚𝑐𝑎𝑟𝑡  =  16.6𝑘𝑔 

𝑚𝐵𝑟𝑖𝑐𝑘  =  1.90 𝑘𝑔 

𝑚𝑇𝑜𝑡𝑎𝑙 =  𝑚𝑐𝑎𝑟𝑡  +  4 ∗ 𝑚𝐵𝑟𝑖𝑐𝑘 
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𝑚𝑇𝑜𝑡𝑎𝑙 =  24.2𝑘𝑔 

𝐹𝑁  = 𝑚𝑇𝑜𝑡𝑎𝑙 ∗  𝑔 

𝐹𝑁  = 24.2𝑘𝑔 ∗  9.81
𝑚

𝑠2
 

𝐹𝑁  =  237𝑁 

Force of the Spring Balance: 

𝐹𝑆𝑝𝑟𝑖𝑛𝑔 𝐵𝑎𝑙𝑎𝑛𝑐𝑒  =  𝑚𝑃𝑢𝑙𝑙𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒  ∗  𝑔 

𝐹𝑆𝑝𝑟𝑖𝑛𝑔 𝐵𝑎𝑙𝑎𝑛𝑐𝑒  =  7.14𝑘𝑔 ∗  9.81
𝑚

𝑠2
 

𝐹𝑆𝑝𝑟𝑖𝑛𝑔 𝐵𝑎𝑙𝑎𝑛𝑐𝑒  =  70.0𝑁 

Coefficient of Friction: 

µ =  
𝐹𝑆𝑝𝑟𝑖𝑛𝑔 𝐵𝑎𝑙𝑎𝑛𝑐𝑒  

𝐹𝑁
 

µ =  
70.0𝑁 

237𝑁
 

µ =  0.295 

            Digital scales and spring balances measure weight, which is also known as the force 

acting on a mass equal to the object’s mass times the acceleration due to gravity. Therefore, 

when utilizing such scales and balances, it was determined that the output force would be 

measured in kg but need to be multiplied by 9.81m/s2 (O'Driscoll, A. (2018, July 17)). Utilizing 
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this knowledge, an experiment was conducted to confirm that the assumed coefficient of friction 

of clean sand is equal to 0.3, a simple test was conducted. 

            This test was performed on the table of sand in the team’s laboratory space in Atwater 

Kent, on Worcester Polytechnic Institute’s campus. This was achieved by first weighing a brick, 

which was 1.9kg. In addition, four bricks were utilized for this test weighing a total of 7.6kg. 

This weight was coupled with the measured weight of the Basebot, 16.6kg, to get a total weight 

of the Basebot 24.2kg. In order to get the total force, the total weight was multiplied by 9.81m/s2 

to achieve a normal force equal to 237N. 

Next, the spring balance was attached to the front of the Basebot system, seen in Figure 

90, and dragged through the sand by the spring balance. The observed maximum force was 

determined to be equal to 7.14kg. Similar to the normal force, the maximal force was multiplied 

by 9.81m/s2 due to the spring gauge measuring the force acting on a mass equal to the object’s 

mass times the acceleration due to gravity. The final maximal force was determined to be 70.0N. 

Furthermore, using the two forces, the coefficient of friction was calculated to be 0.27. This 

value is within a reasonable tolerance to the assumed value of 0.3, and therefore, the calculated 

values prove to be correct. 
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Turning Force Testing: 

 

 

Figure 91: Turning Force Testing Part 1 
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Figure 92: Turning Force Testing Part 2 

Turning Force: 

𝐹𝑇𝑢𝑟𝑛𝑖𝑛𝑔 = 𝑚𝑃𝑢𝑙𝑙𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒  ∗  𝑔 

𝐹𝑇𝑢𝑟𝑛𝑖𝑛𝑔 =  1.44𝑘𝑔 ∗  9.81
𝑚

𝑠2
 

𝐹𝑇𝑢𝑟𝑛𝑖𝑛𝑔 =  14.1𝑁 

In order to ensure that the turning force of the steering mechanism was correct, a simple 

test was performed on the table of sand in the team’s laboratory space in Atwater Kent, on 

Worcester Polytechnic Institute’s campus. The test was conducted by first rigidly hindering 

movement of the Basebot's rear wheels with two bricks utilized as a tire chock, as seen in Figure 

92 above. The spring balance was then attached to the rear corner of the front steering, as seen 
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above in Figure 91. The spring balance was then pulled co-linearly with the steering, as also seen 

in Figure 91, and the maximal observed force was recorded to be 1.44kg. That was then 

multiplied by the acceleration of gravity, 9.81m/s2, which was measured similarly to the 

coefficient of friction experiment in section 1.4.1 above, in which the spring balance was pulled. 

The value of the observed turning force was 14.1N, as seen below in the calculations. 

Comparatively with the theoretical calculated force on a singular control arm, the force was 

within a reasonable tolerance with a variation of 0.17N. Therefore, confirming the force required 

to turn the front wheels of the Basebot system using the rack and pinion steering system. 

Basebot Results: 

 

 

Figure 93: Front View with Wheels Turned Basebot Final Design 
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Figure 94: Side View of Final Basebot Design 

 

Figure 95: Top View of Final Basebot Design 
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Overall, the Basebot drive design was carefully crafted, while meeting and exceeding all 

requirements. Figure 95, Figure 96, and Figure 97 above all show the simulated Basebot design. 

The exploded view of both the steering mechanism and the gearbox design can be found in 

Figure 98 and Figure 99 in the Appendix below. In addition, the bill of materials for the overall 

Basebot can be seen in the Appendix through Figure 100. The Basebot was constructed utilizing 

many of the garden cart’s original components, as well as additional structural parts and newly 

designed mechanisms to become a fully autonomous vehicle. In addition, the Basebot will be 

able to meet and surpass the 15 meter per minute speed requirement. Furthermore, the Basebot 

will be able to drive on sand effectively and reliably, due to the rack and pinion steering system, 

thick and wide wheels, and the provided motor torque significantly within the system’s power 

requirements. With this design, the Basebot will be able to be constructed and executed early 

within the next iteration of this project. The SolidWorks model, calculations, and report will 

cohesively act as a guide for the next project team to bring this design to life. 
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Appendix 

Figure 96: Solidworks CAD Drivetrain Sub Assembly Exploded View Drawing 
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Figure 97: Solidworks CAD Arm Sub Assembly Drawing 
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Figure 98: Exploded View of the Basebot Steering Mechanism 
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Figure 99: Exploded View of the Basebot Gearbox 

 

Figure 100: Basebot Bill of Materials 

 

Final Release from Github: https://github.com/SpencerGregg/beachbots2020/releases/tag/final 

Github link to repo: https://github.com/SpencerGregg/beachbots2020 

https://github.com/SpencerGregg/beachbots2020/releases/tag/final
https://github.com/SpencerGregg/beachbots2020
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PDD & Demo videos: 

https://www.youtube.com/playlist?list=PLyf91onamMM4yoIhD3SHlfeA9mGNKwy6- 

https://www.youtube.com/watch?v=z2DAhZM5XK0  

 

https://www.youtube.com/playlist?list=PLyf91onamMM4yoIhD3SHlfeA9mGNKwy6-
https://www.youtube.com/watch?v=z2DAhZM5XK0

