
1 

 

Project Number: GXS 1101 

 

Extension of Grid Portal 

Functionalities with Collection and 

Visualization of Usage Statistics 

 

A Major Qualifying Project Report  

Submitted to the Faculty of the 

WORCESTER POLYTECHNIC INSTITUTE 

In partial fulfillment of the requirements for the  

Degree of Bachelor of Science by 
 

 

Alessandra Anderson 

 

 

Sam Moniz 

April 28, 2011 

 

 

Professor Gábor N. Sárközy, Major Advisor 

 

 

Professor Stanley M. Selkow, Co-Advisor 



2 

 

Abstract 

The WS-PGRADE Grid Portal allows users to create and maintain workflows through an 

intuitive user interface. However the current version lacks the ability to share metrics about 

the system. To provide these metrics a new portlet, database and web service were 

developed.  The service is responsible for collecting and storing metrics in the database and 

the portlet is responsible for display of these metrics. These additions enable end-users to 

retrieve statistics on the portal, user, DCI’s, resources, concrete workflows, workflow 

instances, and individual jobs from the workflow graph.   



3 

 

 

Acknowledgements 

First of all we would like to thank our sponsor, MTA SZTAKI and the Laboratory of 

Parallel and Distributed Systems (LPDS) and the laboratory head Professor Dr. Péter Kacsuk 

for allowing us to have an opportunity to work with the LPDS staff to create an interesting 

project dealing with the WS-PGRADE Grid Portal. Secondly we would like to thank 

Worcester Polytechnic Institute for allowing us this great experience to travel abroad for 

our capstone project.   

The following individuals deserve particular acknowledgement for their 

contributions to our project and for always making us feel welcome and a part of the LPDS 

community. As mentioned previously, Professor Dr. Péter Kacsuk who provided us with the 

opportunity to work in Budapest with LPDS branch. Also we would like to thank Dr. Miklós 

Kozlovszky for his help and support throughout the project, making us feel welcome, 

checking up on us when we were ill, answering our daily questions, and always ensuring 

our time here was both enjoyable and productive. We would like to thank Sándor Ács for his 

help throughout the project as well as beneficial suggestions and ideas on what to do in 

Budapest as well as Gábor Herman for his friendly approach and assistance with the testing 

phase of our project.  Furthermore we would like to thank Ákos Balaskó for all his technical 

support, ideas, and being there to answer daily questions and sort through bugs as well as 

Krisztián Karóczkai for his support with the database and setting up our development 

environment. 

We would also like to thank Kitti Varga who helped us daily with printing, ordering 

food and suggesting social events in Budapest as well as her welcoming attitude towards us 

in the office. We would like to thank Réka Makkos who assisted us with the language 

barrier, finding train schedules, providing comfort and always checking in to make sure we 

were alright. Furthermore we would like to thank Zsófia Jávor, who would let us know 

whenever anything was going on and Dr. Róbert Lovas  who would always take the time to 

have a friendly conversation. And to everyone on the staff of LPDS, thank you for providing 

a warm environment and making our time here both enjoyable and comfortable, we really 

enjoyed our stay.  Finally we would like to thank our advisor Gábor Sárközy and co-advisor 



4 

 

Stanley Selkow for their guidance on our project, the preparation that went into our being 

here, and our stay in Budapest.  We would like to especially thank Professor Sárközy for 

advising this project and always making sure we were on the right track, both for our 

project and for our experiences in Hungary. 



5 

 

 

Table of Contents 

ABSTRACT .................................................................................................................................................. 2 

ACKNOWLEDGEMENTS .......................................................................................................................... 3 

TABLE OF CONTENTS ............................................................................................................................. 5 

TABLE OF FIGURES .................................................................................................................................. 8 

1: BACKGROUND ...................................................................................................................................... 9 

1.1: PROJECT STATEMENT 9 

1.2: GRID COMPUTING 10 

1.2.1: WORKFLOWS AND JOBS ................................................................................................................................. 10 

1.3: PORTALS 11 

1.3.1: WS-PGRADE GRID PORTAL AND GUSE ................................................................................................... 12 

1.3.2: LIFERAY 12 

1.3.3: PORTLETS 12 

1.4: METRICS 13 

1.5: MTA SZTAKI 13 

1.5.1: LPDS 14 

2: METHODOLOGY ................................................................................................................................ 15 

2.1: ARCHITECTURE 15 

2.2: USER INTERFACE REQUIREMENTS 17 

2.2.1: USE CASES 18 

2.2.2: USE CASE DIAGRAM 19 

2.2.3: SEQUENCE DIAGRAM ..................................................................................................................................... 21 

2.2.4: USER INTERFACE CANDIDATES .................................................................................................................... 22 



6 

 

2.2.5: FINAL DESIGN ................................................................................................................................................. 25 

2.3: DATA AGGREGATION 26 

2.4: DESIGN CONCERNS 27 

3: IMPLEMENTATION .......................................................................................................................... 28 

3.1: DATABASE 28 

3.2: CALCULATOR SERVICE 32 

3.4: UI 35 

3.4.1: TOOLS/LANGUAGES ....................................................................................................................................... 35 

3.4.2: IMPLEMENTATION PROCESS ......................................................................................................................... 36 

3.4.3: ITERATIONS ..................................................................................................................................................... 36 

3.4.4: FINAL PRODUCT ............................................................................................................................................. 39 

3.5: CONFIGURATION 41 

4: TESTING .............................................................................................................................................. 42 

4.1: BACKEND TESTING 42 

4.2: PORTLET TESTING 43 

4.3: FUNCTIONALITY TESTING 43 

4.4: DATABASE MEMORY CONSUMPTION 44 

5: CONCLUSION ...................................................................................................................................... 46 

5.1: USER INTERFACE 46 

5.2: BACK END 46 

6: FUTURE WORK ................................................................................................................................. 47 

6.1: REVISED ARCHITECTURE 47 

6.1.1: META-BROKER ............................................................................................................................................... 48 

6.1.2: ACCOUNTING ................................................................................................................................................... 48 

6.2: METRICS 48 

6.3: UI ADDITIONS 48 



7 

 

REFERENCES ........................................................................................................................................... 50 

GLOSSARY ................................................................................................................................................ 52 

APPENDIX A: JOB STATE TABLE ...................................................................................................... 54 

APPENDIX B: CLASS DIAGRAMS ....................................................................................................... 56 

APPENDIX B.1: CALCULATOR SERVICE 56 

APPENDIX B.2: PORTLET DATA ACCESS LAYER 59 

APPENDIX C: STAT_METRIC_DESCRIPTION TABLE .................................................................. 60 

APPENDIX D: INSTALLATION MANUAL ......................................................................................... 64 

APPENDIX D.1: DATABASE DEPLOYMENT 64 

APPENDIX D.2: CALCULATOR DEPLOYMENT 65 

APPENDIX D.3: PORTLET DEPLOYMENT 66 

APPENDIX D.4: STOPPING STATISTICS 66 

APPENDIX E: DATABASE DESCRIPTION ....................................................................................... 67 

APPENDIX F: USER MANUAL ............................................................................................................. 70 

F.1:  INTRODUCTION 70 

F.2: DCI METRICS 71 

F.3: RESOURCE METRICS 71 

F.4:  USER METRICS 72 

F.5:  CONCRETE WORKFLOW METRICS 72 

F.6: WORKFLOW INSTANCE AND ABSTRACT JOB METRICS 72 

 



8 

 

Table of Figures 

FIGURE 1 DIRECTED ACYCLIC GRAPH EXAMPLE ........................................................................................................ 11 

FIGURE 2 SYSTEM ARCHITECTURE ......................................................................................................................... 15 

FIGURE 3 DATA FLOW DIAGRAM .......................................................................................................................... 16 

FIGURE 4 USE CASE DIAGRAM ............................................................................................................................. 19 

FIGURE 5 SEQUENCE DIAGRAM DCI STATISTICS ...................................................................................................... 21 

FIGURE 6 CANDIDATE DESIGN 1 ........................................................................................................................... 23 

FIGURE 7 UI CANDIDATE DISPLAY DESIGN .............................................................................................................. 24 

FIGURE 8 SITE MAP ........................................................................................................................................... 25 

FIGURE 9 DATA COMPOSITION DIAGRAM............................................................................................................... 26 

FIGURE 10 STAT_RUNNING TABLE DESCRIPTION ....................................................................................................... 29 

FIGURE 11 STAT_JOBINSTANCE AND STAT_JOBINSTANCESTATUS ................................................................................ 30 

FIGURE 12 SIMPLIFIED JOB STATE DIAGRAM ........................................................................................................... 31 

FIGURE 13 STAT_AGGREGATEJOB AND STAT_AGGREGATEJOBSTATUS ......................................................................... 31 

FIGURE 14 CALCULATOR DATABASE STRUCTURE...................................................................................................... 34 

FIGURE 15 UI IMPLEMENTATION GRAPH ............................................................................................................... 36 

FIGURE 16 ORIGINAL USER INTERFACE .................................................................................................................. 37 

FIGURE 17 SECOND ITERATION USER INTERFACE ..................................................................................................... 38 

FIGURE 18 FINAL PRODUCT ................................................................................................................................. 40 

FIGURE 19 FINAL PRODUCT CONCRETE WORKFLOW AND ABSTRACT JOB METRICS ........................................................ 41 

FIGURE 20 NUMBER OF DATABASE ENTRIES FOR A WORKFLOW ................................................................................. 44 

FIGURE 21 NUMBER OF DATABASE ENTRIES FOR A WORKFLOW ................................................................................. 47 

FIGURE 22 STATAGGREGATOR CLASS DIAGRAM ...................................................................................................... 57 

FIGURE 23 STATAGGREGATOR CLASS DIAGRAM PART 2 ........................................................................................... 58 

FIGURE 24 PORTLET DATA ACCESS LAYER CLASS DIAGRAM ....................................................................................... 59 

FIGURE 25 USER INTERFACE ................................................................................................................................ 70 

FIGURE 27 SELECTING DCI STATISTICS ................................................................................................................... 71 

FIGURE 28 SELECTING RESOURCE ......................................................................................................................... 71 

FIGURE 29 CONCRETE WORKFLOW METRICS .......................................................................................................... 72 

FIGURE 30 POP UP WINDOW FOR WORKFLOW INSTANCE ........................................................................................ 73 

 

 

 

 

 



9 

 

  

1: Background 

In the field of scientific computing there are some complex computational problems 

that require a large amount of resources to solve. Such tasks as parameter studies, analysis, 

and other complicated problems are difficult to accomplish due to lack of resources or 

computational power. One of the solutions to these problems is grid computing.  

Grid computing is used to share tasks over multiple computers and shared 

resources. MTA-SZTAKI, located in Budapest, Hungary, has developed The WS-PGRADE Grid 

Portal which is a web based, service rich environment for the development, execution and 

monitoring of workflows and workflow based parameter studies on various grid platforms. 

The WS-PGRADE Grid Portal uses high-level graphical interfaces to allow all levels of users 

to submit applications, in the form of directed acyclic graphs (DAG), to a large variety of grid 

solutions.  The DAG defines the dependencies between components of the user’s workflow 

and the job manager then uses various Grid resources for processing the application. 

Furthermore the portal can access multiple grids simultaneously which allows easy 

distribution on multiple platforms [10].  

The portal allows users to run jobs on multiple grid infrastructures such as gLite and 

other middleware as well as local clusters [9]. Furthermore they can submit a workflow to 

multiple Distributed Computing Infrastructures (DCI) which are each comprised of 

numerous resources. 

 1.1: Project Statement 

The objective of this project was to integrate a new service into the WS-P-GRADE Grid 

Portal which would collect, store and present data about the execution of jobs and 

workflows on the WS-PGRADE Grid Portal.  This addition allows end-users, communities, 

and administrators to retrieve statistics on the portal usage. 

The design of our project had three major components: data collection, metric 

calculation and visualization. The goal of our data collection component was to receive data 

from the WS-PGRADE Grid Portal and reduce it to an efficient structure. Our metric 



10 

 

calculation component consumed that data and calculated the portal’s statistics. Finally our 

visualization component displayed the statistics to the user in a meaningful form.  

The motive behind this project was to provide a new service in the WS-PGRADE Grid 

Portal that would be a useful addition. Although this project is mostly to provide a new 

feature for the users it is also helpful for administrators. For administrators this feature will 

allow them to track of the load on different aspects the portal, as well as be able to monitor 

different levels of usage so they can better provide for the user.  For the user our service 

provides feedback on the execution of their jobs and workflows.   

1.2: Grid Computing 

Grid Computing was originally proposed as a global system to solve computationally 

intensive problems that could be solved in a reasonable amount of time even with state of 

the art supercomputing resources[6].This problem was solved by aggregating multiple 

computing resources that may be geographically or architecturally distinct.  

On top of these resources there is a grid middleware layer that hides the low level 

hardware and software differences between resources and provides a standardized 

interface for use. To add another layer of abstraction, it is also possible to use a grid portal 

to hide the differences between multiple grid middlewares, such as the WS P-Grade Portal 

developed by MTA SZTAKI’s Laboratory of Parallel and Distributed Systems.   

There are two main categories of resources used in grid computing. First are 

dedicated resources called service grids. These can be single monolithic machines or they 

can be computing clusters. The primary benefit of these resources is that they are 

dedicated, trustworthy and powerful. The other type of resource is commonly referred to as 

a desktop grid. These primarily function using a concept called cycle scavenging where 

owners donate their unused CPU time to work on a problem farmed out to the grid[2]. The 

considerations of desktop grid systems are different than those of service grids as there are 

not the same guarantees of availability and trust that there are with service grids [13]. 

1.2.1: Workflows and Jobs 

One of the advantages of the distributed computing paradigm of grid computing is 

the capability for parallelization. This is further suggested by the structure of the 

applications or workflows created to be executed on such grid systems. At a high level a 



11 

 

workflow is defined by a Directed Acyclic Graph (DAG) for which the nodes are jobs and the 

edges are inputs and outputs of those jobs. 

 

Figure 1 Directed Acyclic Graph Example 

Figure 1 shows an example of a DAG. The orange rectangles are jobs, and the grey 

squares are output ports and the green squares are input ports. The edges are files that are 

supplied by the output ports to all connected input ports. This structure allows the 

workflow to be executed in a parallel manner by scheduling jobs for execution as soon as 

their inputs become available, and executing the job as soon as there is a resource available 

for it. Multiple jobs from the same workflow can therefore be executed in parallel[9].    

In combination with repository technologies a configured workflow can be executed 

an arbitrary number of times, each execution of which is a workflow instance.  In a similar 

manner, jobs that appear in the DAG, to be referred to as abstract jobs, can be executed 

multiple times, across multiple workflow instances, or a single abstract job can be executed 

many times within the same workflow instance, when using special ports [13]. Those ports 

cause the job to be executed for each of some combination of the inputs.  

 1.3: Portals 

A portal is a web system that provides an interface for accessing services such as a 

grid portal or a gateway platform. Originally all major portals started out as Grid Portals 

and were later extended to support other infrastructures, such as desktop Grids. The portals 

act as portlet containers and provide basic functionality to incorporate a portlet framework. 

The WS-PGRADE Grid Portal is the second generation of the original P-Grade portal. 

The portal allows creation and submission of workflows on multiple DCI’s. The portal uses 



12 

 

the Grid User Support Enviornment (gUSE) to provide the gird functionality. One of the 

services is the gUSE repository which stores the workflow objects to be downloaded and 

further developed. Furthermore it provides a forum for collaboration and enables 

workflows to be shared across the community [10]. 

1.3.1: WS-PGRADE Grid Portal and gUSE  

The WS-PGRADE Grid Portal and Grid User Support Enviornment(gUSE) are both 

products developed by MTA-SZTAKI LPDS branch. The WS-PGRADE Grid Portal is the 

second generation of the P-Grade Portal. It is a “web based environment which provides 

tools for the development and execution of workflow based grid applications.” WS-PGRADE 

added capability to better handle both parameter study and workflows and the internal 

structure changed to be a modular, service oriented architecture based system. This change 

was implemented through the development of gUSE. gUSE provides a graphical 

environment that a user can define and execute grid applications on, using the WS-PGRADE 

as a user interface [9]. 

1.3.2: Liferay 

Liferay Portal was created in 2004.  It is a software platform for building websites and 

web applications [4]. It can be used for web, integration, collaboration and social 

application platforms. Liferay is developed by a large open source community as well as 

professional interactions. This makes it both flexible and innovative. 

The Liferay portal is used in the WS-PGRADE Grid Portal as part of the user interface 

framework. As WS-PGRADE uses the Liferay framework, our user interface was built as 

portlets that can be viewed on Liferay. 

1.3.3: Portlets 

“A portlet is a Java technology based web component that processes requests and 

generates dynamic content.” Portlets are used as plug-ins to an existing user interface to 

provide different features. This allows a website to be customized for each type of user as 

well as provide different content. A portlet is managed by a request and response paradigm, 

and normally is intractable through its forms and links. 



13 

 

A portlet is managed by the portlet container, Liferay in this project, which provides 

them with the runtime environment. It contains and manages the lifecycle as well as storage 

and preferences. The container and portlet can be separate entities or built together. [1]. 

1.4: Metrics 

Metrics are a measurement of performance, efficiency or other statistics in an 

application. For the WS-PGRADE Grid Portal there are numerous metrics for the different 

aspects of the system. We defined metrics that deal primarily with usage statistics. 

               Among the metrics we were able to calculate are: 

 Average job completion time 

 Average time jobs are in different states 

 The standard deviation for the times 

 The number of jobs 

 Number of workflows 

 Running failure rate 

 Number of failed jobs 

1.5: MTA SZTAKI 

MTA SZTAKI is Hungary’s largest and most successful information technology 

research Institute. The name is an acronym for “The Computer and Automation Research 

Institute, Hungarian Academy of Sciences” in Hungarian. It is governed by the Hungarian 

Academy of Sciences and is supervised by the Board of the Institute [11].  It was founded in 

1964 and has more than 300 full time employees. 

The main task for the institute is to “perform basic and application-oriented research 

in an interdisciplinary setting in the fields of computer science, engineering, information 

technology, intelligent systems, process control, wide-area networking and multimedia.” 

[11]. Also they do contract-based research, development and training as well as provide 

support for domestic and foreign industrial, governmental and other groups.   They are 

active in both graduate and undergraduate education offering lectures and classes as well as 

providing opportunities for students to participate in the work at the institute. 



14 

 

The institute is a part of the European Research Consortium of Informatics and 

Mathematics and a member of the World Wide Web Consortium. They have worked on 

projects for both Hungarian companies, such as Paks, a Hungarian Nuclear Power Station, 

and international companies such as General Electric, the National Aeronautic and Space 

Administration, and the Office of Naval Research One of their main research areas is cluster 

and grid computing.  

1.5.1: LPDS 

The Laboratory of Parallel and Distributed Systems (LPDS) is a branch of MTA 

SZTAKI that specializes in grid technologies. LPDS is a member of the Hungarian Grid 

Competence Center and the National Grid Initiative. The department is headed by 

Proffessor Dr. Péter Kacsuk, a renowned expert in the field of Grid computing and co-editor-

in-chief of the Journal of Grid Computing [12]. LPDS has produced five projects, the most 

prominent being the WS-PGRADE Grid Portal. 

LPDS participated in the CoreGRID Network of Excellence and works as a project 

member in all the phases of the largest European grid infrastructure project (EGE, EGI-

Inspire). Furthermore they helped establish the Hungarian Virtual Organization of the 

European Grid Infrastructure (HUNGRID) extended with the WS-PGRADE Grid Portal. They 

are also involved in many more projects as well both nationally and internationally. 

They have two goals in grid research: 

“To provide efficient software development tools and high-level services together 

with customizable scientific gateways based on workflows (P-GRADE Grid Portal, gUSE) for 

harvesting the most wide-spread grid infrastructures based on gLite, Globus, and BOINC” 

“To offer easy-to-maintain middleware solutions (SZTAKI Desktop Grid) and 

technologies for interoperability (3G Bridge) that enables cost-efficient alternative 

platforms for scientific and business applications.”[10] 



15 

 

2: Methodology 

In order to determine the requirements for our system we progressed through a 

series of steps to determine what metrics we wanted to make available to the user, what 

data we had to store in order to provide those metrics, and how we had to transform the 

data we received into the data we needed to store. Furthermore we explored different 

methods of displaying these metrics to the user. 

2.1: Architecture 

 

 

Figure 2 System Architecture 

Figure 2 reflects the architecture for the system, with our proposed components in 

red and orange. The proposed components have to receive job status data from gUSE and 

group it in an efficient and meaningful manner. To do this, the statistics database will 

handle grouping of data on the job level, and the proposed calculator service would use the 

grouped data to calculate statistics and store the calculated values in another database 

structure for the calculated statistics. The calculated statistics tables would be read by the 

portlet in order to be displayed to the user.  

            Statistics  

                   DB 

Stat_Running -> 

JobInstance 

JobInstance -> 

AggregateJob 

gUSE 

gUSE 

Database 
WS PGrade 

Stat 

Portlet 

Metabroker 
Metabroker 

Metabroker 
Other 

Services 

Calculator 

Service 



16 

 

 

 

Figure 3 Data Flow Diagram 

The above figure shows how data flows through the proposed system. The 

information starts in the statistics database as entries in the stat_running table, which 

is populated by a gUSE service. The stat_running entreis describe the current state of the job 

at a specific point in time. These values are then combined using MySQL database triggers 

into structures based off of job instances run on the grid. The job instance values then are 

grouped again into a structure called aggregate jobs which are a combination of several job 

instances that share the same job name, workflow instance and resource. There also exists a 

web service,the calculator service, that consumes the aggregate jobs, and calculates the 

metrics for the user. The calculated values are then available to the portlet for display to the 

user.  

Overall, this design allows our services and database to be completely isolated from 

the gUSE systems that allows the performance to be controlled independently. The 



17 

 

exception to this would be the constructs created for the portlet to provide useful menus to 

the user. 

2.2: User Interface Requirements 

The UI requirements included functionality requirements and usability 

requirements. The functionality requirements included being able to show the metrics 

gathered, accessing the database, having similarity to the rest of the portal, and creating a 

way to navigate the data. Showing the metrics gathered required providing a layout and a 

table structure as well as offering graphical representations of some statistics. The metrics 

the user needed to be able to view were on several layers listed below. Each layer had to 

have the same layout for organization purposes as well as function in the same manner, 

even though the data accessed was different. Accessing the database required a way to 

retrieve the data. To maintain similarity with the rest of the portal it was necessary to study 

the previously completed sections. Finally to navigate the data required setting up choice 

lists as well as menu buttons.  The menu buttons were main navigation, reaching all the top 

levels of metrics such as portal, user, DCI, and concrete workflow. The choice lists required 

populating the list with what was available. Furthermore it required that the user makes 

choices either with a drop down menu or a user filled input box.   

The usability requirements included general user interface standards such as size of 

text or coloration. Other standards include arrangement, readability, comprehensibility, and 

usability.  

1. Users may view metrics about: 

 The WS-PGRADE Grid Portal 

 User 

  DCI 

 Resource 

 Concrete Workflow 

 Workflow Instance 

 Abstract job 

2. Users may choose the navigational buttons: 

 DCI 

 User 



18 

 

 Concrete Workflow 

3. Users may select individual: 

  DCI’s 

 Resources 

 Concrete Workflows 

 Workflow Instances 

 Abstract Jobs 

4. Users may compare multiple Concrete Workflows 

2.2.1: Use Cases 

For the interface there were multiple levels of metrics. Administrators, as mentioned 

before, are interested in the overall portal statistics as well as the DCI and resource levels. 

While our system provides the data to all users, the differences between them will mean 

some levels of data will be more useful to a particular type of user.  For example an 

administrator may be interested in the amount of jobs run on a certain resource; while a 

user may be more interested in the amount of time there workflow took. For this reason the 

data was divided into the multiple levels.   

The user can view the levels by choosing different menu options. The portal and user 

levels assume the statistics to be displayed were the current portal and user; the other 

levels require a choice of what object to be displayed. This is because there are multiple 

options, for example a user can have many concrete workflows, and it is not possible to 

easily display all of them.  

The multiple levels and choices allows both administrators and users to view only the 

statistics they wish to see, without having to deal with an overload of information. Overall 

this design works for the system because there is no need for a user to see more. The user 

may only view their statistics because the other levels of statistics provide for comparison. 

The other choices provide a way to view statistics on individual objects instead of receiving 

an overload of information. A user can compare DCI’s to select which one has been 

performing the best in the past and choose individual resources if they wish to view another 

level in. The same works for concrete workflows. The user can choose one and then expand 

upon it by selecting an abstract job or workflow instance.  



19 

 

2.2.2: Use Case Diagram 

 

Figure 4 Use Case Diagram 

For this system there is only one actor, an “End User”. This represents anyone using 

the system such as an administrator or normal user. Each user can perform the same 



20 

 

actions regarding navigation and viewing statistics. The diagram below shows what is 

possible. 



21 

 

2.2.3: Sequence Diagram 

 

 

Figure 5 Sequence Diagram DCI Statistics 



22 

 

Figure 5 is a sequence diagram that demonstrates one path to get statistics, in this 

case for DCI metrics. This path is similar for all the levels. The portal statistics are displayed 

first and then the user needs to make a choice what to access next. The portlet serves as the 

user interface for the end-user and provides the options for the user. The Menu Populator is 

responsible for providing a choice list for the user in applicable cases. Metrics Information 

Factory provides metric descriptions such as the name and units of the possible metrics. 

Statistics Factory retrieves the data for the given metric description and the database 

provides the data for all the objects.  

The end user, either an administrator or user, accesses the portlet, which accesses 

MetricsInformationFactory. The factory queries the database table 

stat_metric_description which sends the results back to the factory. This step 

returns a collection of the metric information back to the portlet. Next the portlet sends the 

information to the StatisticsFactory. This factory queries the database for portal 

metrics and receives the result set, which populates the collection of metric information 

with data. The information is then sent back to the portlet. The data is than displayed to the 

user.  

At this point the user can request to view DCI statistics. The portlet accesses the 

object MenuPoulator. MenuPopulator accesses the database to receive a list of possible 

DCI’s and returns it to the portlet. The portlet produces a selection list for the end-user. 

Once the user makes a selection, the path is the same as with portal metrics, except with DCI 

information.  

2.2.4: User Interface Candidates  

 Before starting on the programming aspect of the user interface we created multiple 

candidate designs to present as potential candidates for a user interface. The designs were 

based on the assumption that there would be only one page to display all the data. 

Furthermore, they were designed before we knew the amount of data we could retrieve and 

before we had directly interacted with the system. The two designs below are the closest to 

the final design.  

 

  



23 

 

 

 

Figure 6 Candidate Design 1 

Design 1 has six buttons the user could select for the level and then hit display 

button to get to the statistics. Whenever a user would choose a button it would appear to be 

pushed in to indicate it was selected. The button remained depressed until the user either 

deselected it or hit display. To select a job or a workflow the user would be offered a drop 

down list to choose from. Again they could select multiple to display at once by highlighting 

more than one.  

Advantages Disadvantages 

Simple for the User 2-Step Process to see statistics 

Clean and uncluttered Looks unfinished 

 



24 

 

 

Figure 7 UI Candidate Display Design 

Figure 7 shows a candidate display design. This design displays each metric in 

categories and sub-categories. A sub-category is a grouping of statistics for example times.  

For each choice the user had selected a main category, such as “Portal” would be generated, 

and sub-categories of each type of metric would be created below.   

Advantages Disadvantages 

Metrics Available Right away Potentially a lot of scrolling 

Clean Takes up a lot of room 

 No Customizability 

 

The final design was loosely based on the two above.  These designs evolved into the 

final design as we progressed through the project. The principle of selecting workflows and 

abstract jobs as well as separate categories for displaying was still incorporated into the 

final product. Furthermore they were useful for discussions on how the final interface 

should look. 



25 

 

2.2.5: Final Design 

After reviewing the original designs, the final design was proposed. This design 

consisted of creating multiple pages to display each level of statistic on its own page. The 

pages were divided into the different levels: a page for portal, user, DCI, and concrete 

workflow. The user could choose up to three concrete workflows to display at once. For DCI 

the user could choose to view individual resources on the selected DCI and for concrete 

workflow the user can choose either abstract job or workflow instance metrics to view. 

After the portal is accessed the portal metrics are displayed automatically.  ,  

 

Figure 8 Site Map 

 Figure 8 shows the final site map. The user accesses the portlet which shows them 

user statistics. From there they can navigate to DCI, user, or concrete workflow metrics. 

From there the user can enter one more layer, viewing resource, workflow instance or 

abstract job metrics. Back End Requirements 



26 

 

Another area of functionality for this project was in maintaining the database 

structures that support the system. The data had to be aggregated in such a manner that we 

did not consume all of the resources of the database. However, there was a drawback to 

aggregating data as detail was lost with every aggregation operation. Therefore, in order to 

provide as much useful data as possible, the data was organized into aggregate jobs units, 

which combined the data for each abstract job for each workflow instance into one 

structure. This allowed us to aggregate all jobs involved in a parameter study into few 

entries as they are all similar. Furthermore, in order to provide data to compare grid 

resources we also divided aggregate jobs on the resource that it was executed on. 

In order to remove the load of statistic calculation from the grid portal, we also need a 

method of pre-calculating those statistics that would be required of us. This service must 

use the aggregate job entries and use them to calculate the metrics. With this in mind, here 

are the requirements for the data maintenance portion of the project. 

1. The system shall group job instance data. 

2. The system shall group job instance data with the same job name, workflow 

instance and computing resource into constructs called Aggregate Jobs. 

3. The system shall pre-calculate statistics from aggregate jobs for the user interface.  

2.3: Data Aggregation 

Figure 9 Data Composition Diagram 



27 

 

Figure 9 shows a high level example of the method of aggregating our data into 

statistics. For each layer, statistics can be generated through some combination of the layer 

below, until the “Aggregate Job” layer. In the diagram, the only data that is being stored is 

the data for an “Aggregate Job” which is one of two things. If the aggregate job refers to a 

parameter study node, such as the case of “Parameter Study Job”, in the diagram, aggregate 

job stores statistics about the aggregate of all of the jobs that compose it. Otherwise, there is 

a one job instance to one aggregate job relationship. This allows us to significantly reduce 

the volume of data stored.  

 The aggregate job structure can therefore be used to generate statistics about larger 

constructs. For instance, Figure 17 shows how statistics about a resource are composed by 

aggregating statistics about all the aggregate jobs that have been run on that resource. 

Furthermore, DCI (Distributed Computing Infrastructures) statistics can be aggregated from 

all the resources that compose it. There are similar paths to aggregate statistics about users, 

workflow instances, abstract jobs, and concrete workflows.  

2.4: Design Concerns 

During the design, one of the main issues that was presented the amount of memory 

use and CPU load on the gUSE and WS-PGRADE Grid Portal servers. Our goal was to keep 

any load on these servers to a minimum so that the portal operation would not be impacted 

significantly. This was one of the primary reasons for our calculator service to be a separate 

web service from gUSE. We also designed our database components to function on a 

separate database from the gUSE database if called for.  

The main concerns for the front end was how to display the amount of data provided in 

a simple and meaningful way that did not require too much hardcoding. Furthermore we 

wanted to have a simple way to change what was displayed without having to touch the 

code. Finally we wanted to be able to display some of the data graphically.  



28 

 

3: Implementation 

For this stage of the project we sought to implement our system and add a portlet to 

the user interface to the WS-PGRADE Grid Portal. We first implemented the changes to the 

database which included defining schema changes and stored procedures. Having the 

database defined allowed us to concurrently implement the user interface and the 

calculator service. 

 3.1: Database 

The database component of the system focused on creating and modifying database 

structures in order to aggregate the data from the gUSE system. Our main concern was the 

scale of the data that we received, which consisted of many entries for each job instance run 

on the grid. As the number of jobs that are run could be very large due to the nature of 

parameter study workflows we determined we must consume these entries upon their 

entry into the database. This was accomplished using database triggers, which execute a 

routine in conjunction with SQL INSERT or UPDATE statements.  

There were three table structures maintained by the database. 



29 

 

 

Figure 10 stat_running table description 

 

First was the stat_running table, which received data from gUSE in a polling 

manner. For each job being run on the portal, the portal would periodically query the job’s 

status and record the information in this table. Therefore, this table has many entries for 

each job executed. 

The stat_running table was consumed using database triggers that executed 

whenever a row was inserted into it. That trigger would create or add to data to the next 

intermediate table structure which grouped data by job instance.  



30 

 

 

Figure 11 stat_JobInstance and stat_JobInstanceStatus 

The stat_JobInstance table structure maintained data for each of the states 

that the job touched. There are currently 23 possible states. With the shown structure it is 

only required to maintain information about the states that are used. Our system however is 

built with the assumption that the number of states can change. Also, one of the states was 

added for our system. This structure also handles the case of the loops in the state diagram 

for jobs, by allowing multiple entries for all of the states.  

 



31 

 

 

Figure 12 Simplified Job State Diagram 

Figure 12 represents a basic subset of the graph of states that jobs may traverse 

during their execution. The full list of possible job states is available in the appendix. 

Primarily we store data on the transitions between states, and combining different states 

allows us to draw conclusions about where in the system the job is waiting.  

 

 

Figure 13 stat_AggregateJob and stat_AggregateJobStatus 



32 

 

Figure 13 shows the final step in the database component, the aggregate job 

structure. Aggregate job combines data from several job instances that share some data and 

combines the jobs into one structure. All of the job instances combined into an aggregate job 

share the same job name, workflow instance, and execution resource. The same job name 

and workflow instance means that the job instances share the same executable routine. 

Enforcing the same resource allows comparisons between different grid resources 

executing the same job. 

The data stored in the aggregate job tables is similar to the data from the job instance 

table. The main difference is that it is structured to combine several job instances. For each 

state that any of the job instances visit data required to calculate the average time, the 

number of entries into that state, and the standard deviation are stored. One of the 

requirements for this table was that the only metric information that we store would be 

calculable with only the previous metric value and information about the values to add to it. 

Storing data that satisfies this requirement allows us to calculate aggregate job data 

incrementally, adding one job instance at a time.  

3.2: Calculator Service 

The calculator service’s goal was to retrieve the data from the aggregate job tables 

and calculate the relevant statistics for each of the seven levels we are providing: portal 

statistics, DCI, resource, user, concrete workflow, workflow instance and abstract job. The 

service did this in three steps, first it queried a set of aggregate job entries, then it calculated 

the changes in the statistics for each row for each of the seven levels of statistics that needs 

updating. Finally, it then performs an update on the statistic database tables. The calculator 

service also managed some database clean up for the database component.  

For the querying of the aggregate job entries there were several concerns. As our 

calculator was being implemented as a simple web service we wanted it to only pull in a 

manageable subset of the aggregate job entries, as the design called for the subset to be 

stored in memory. This was addressed through a LIMIT clause on the SQL query. Another 

concern with the query was a race condition with the database component. As the database 

component needs to write to the stat_AggregateJob table whilst the calculator needs 

to read from it, we had to implement a guard that would allow the calculator to know when 

a stat_AggregateJob entry is complete, or that it will not have any more job instances 



33 

 

added to it. This was solved by only querying aggregate jobs that the workflow instance that 

executed them is terminated.  

The calculation step had to consume the aggregate jobs and calculate what effect they 

had on the pertinent statistics. For each aggregate job the change in statistics is calculated 

for each portal, user,  DCI , resource,  concrete workflow, workflow instance, and abstract 

job , using the identifier shown in the table below.  

Table 1 Statistic Level Identifiers 

Statistics Level Identifier 

Portal Portal URL 

Resource Resource URL 

Concrete Workflow  Workflow ID (wfID) 

Workflow Instance Workflow Instance ID (wrtID) 

Abstract Job Job Name and Workflow ID (jobName and 

wfID) 

User User ID  



34 

 

The change in the statistics are then stored in the database using some combination 

of SQL updates and SQL inserts for values that do not exist yet. 

 

Figure 14 Calculator Database Structure 

The above table structure holds the final statistics for our system. This structure 

allows us to isolate the storage of the statistic values, such as average, from the identity, 

such as resource URL. This simplified the table structure by removing common, shared 

columns into a separate table. The exception to this is workflow instance where we store 

the start and end time for the workflow instance, and concrete workflow where we store 

statistics about the workflow as a whole. However, the difference in workflow instance is 

not maintained by the calculator and instead is maintained by the database component. 

While this is not the ideal place for the responsibility, it was necessary because we use that 

information to know when a workflow is complete so that the calculator only pulls 

aggregate jobs from complete workflow instances.  



35 

 

The final task of the calculator service was the database cleanup. Due to the triggers 

handling the data aggregation in the database component, it was impossible to delete 

consumed entries from the stat_running and stat_JobInstance tables. Instead, we 

were only able to flag the offending rows for deletion. Therefore, since the calculator is 

already polling that database, it also runs a SQL delete query to remove the unneeded 

entries.   

3.4: UI 

The front end of our system was the portlet integrated into the WS-PGRADE Grid 

Portal. To accomplish this we used a multitude of tools and Liferay. Liferay was used as part 

of our development environment to upload the portlet and test its interactions. The creation 

of the portlet was done in multiple iterations eventually ending with the final product.  

3.4.1: Tools/Languages 

The user interface was an additional portlet added to the preexisting webpage. For 

this four languages and tools were used: HyperText Markup Language(HTML), JavaServer 

Pages(JSP), JavaServer Pages Standard Tag Library(JSTL),  Java Script and Google Chart 

Tools.     

1.     HTML is the predominant language for the design and display of webpages. 

It is used to create structure, formatting, and functionality in a webpage. 

2.     JSP is a technology that enables the design dynamic Web pages and 

separates the user interface from the content generation which allows a Web 

designer to change the page layout without altering the underlying 

content[7]. 

3.     JSTL: “A collection of tag libraries that implement general-purpose 

functionality common to many Web applications.” [7] 

4.     Java Script  is an object-oriented scripting language that is used for web 

development to create more interactive webpages.  

5.     Google Chart Tools or Google Chart API is a tool that allows the creation of 

charts from data  and embeds it in a webpage. The embedded data must 

follow the formatting parameters in an HTTP request, and Google than 



36 

 

returns a PNG image of the chart[14]. We used this tool because it allowed 

simple creation of dynamic graphs.  

3.4.2: Implementation Process 

The UI implementation was done between three main stages with multiple iterations 

within them.  

 

Figure 15 UI Implementation Graph 

The figure above highlights each iteration and the milestones within it. 

3.4.3: Iterations 

The UI was developed in three iterations, with numerous milestones for each one. 

The first iteration consisted of creating a template for the portlet that could access Liferay, 

accessing the database, displaying the data and adding the Google Chart API.  



37 

 

 

Figure 16 Original User Interface 

 

Figure 16 shows the original design, seen below, displayed metrics in rows.  

The second iteration incorporated many changes. First, the site layout was changed 

to the final version. Second, DCI was added to the levels of metrics. Third, a new way to 

access the database was implemented. Fourth, the ability to select multiple concrete 

workflows was added. Fifth, the number of states was decreased to five instead of seven. 

Finally, a new table structure was added. The new layout is seen below. 



38 

 

 

Figure 17 Second Iteration User Interface 

The table that was added to the database, stat_metric_description, created a 

simpler way of presenting the data. This table was comprised of nine columns: 

column_name, pretty_name, category, units, precision, source, 

for_level, statetype, and id. The column_name referenced what column the data 

was being accessed from the source table. The pretty_name and units columns were 

the description and units respectively that would be shown on the portlet. The precision 

column was the number of decimal places that would be shown. The id was both the 

primary key for the table and was also used for ordering of statistics within a category. 

for_level specified what the statistic was good for, as some metrics only worked for 

certain levels and the statetype column allowed us to set one of the five state types we 

were using. Lastly the category column allowed statistics to be grouped together so they 

could all be displayed with a single call. The category dictated which metrics would be 

displayed together, for example times in state types was one category. By extracting the 



39 

 

presentation information from the database this extra table cut down the amount of 

hardcoding considerably and made the system overall easier to modify.  

The final iteration incorporated small changes to achieve the final product. Frist, 

both graphs were modified to better display the data. Second, hide and expand options were 

added to each category of statistic. Third, both abstract job and workflow instance were 

changed to be displayed in popup windows, instead of on a separate page. Finally, a menu 

navigator was added at the top of each page, and the titles for categories changed to better 

describe the metrics.  

3.4.4: Final Product 

The final product showed portal metrics when the user accessed the portlet. Users 

could choose, from a top menu, to view DCI, user, or concrete workflow statistics. From DCI 

and concrete workflow the user could enter another level and view resources, workflow 

instances, and abstract jobs. Each level was displayed in the same format except for 

workflow instance and abstract jobs which were displayed in popup windows. 

The final metrics that were shown fell into four categories: overall statistics, 

runtimes in states, standard deviation, and number of times a job was in a run state. The 

first category contained metrics such as the name, overall time, and failure rate. Following 

categories were dependent on the states a job could enter. The states were run, failed run, 

queue, portal, and other. These states were the combined states of all of the job states 

available in the system. We created the pooled states because the user would not be 

interested in all the states available. The run state was when a job would successfully pass 

through to completion. The failed run state was how long the job would loop through the 

states, as it was possible to go from run back to queue, or another state. The queue state was 

how long the job was waiting at a resource and the portal state was the time spent on the 

portal before being submitted to a resource. Finally, the other state encompasses any states 

that are not covered in the other joint states.  

  



40 

 

 

Figure 18 Final Product 

Figure 18 shows the portal metrics and serves as the front page to the portlet. The 

other pages are lain out in the same manner.  



41 

 

 

Figure 19 Final Product Concrete Workflow and Abstract Job Metrics 

 Figure 19 shows an example of an abstract job within a concrete workflow. The 

abstract job is displayed in a pop up window and the concrete workflow is underneath it.  

3.5: Configuration 

In order to remove configuration constants from our code, we employed a java 

configuration file for both the portlet and the calculator service. This file contained 

information about the database connection and any constants that we wanted to be simple 

to change. This is advantageous as it makes it simpler to change some of the behavior of the 

system. 



42 

 

4: Testing 

Our testing approach was a combination of iterative and cumulative tests. As we 

progressed through the implementation of our system we had many smaller components 

that could be tested individually, which was accomplished as we progressed through the 

implementation. We also had a dedicated time set aside for testing, which focused on 

functionality, integration and performance testing. This approach was beneficial as it lent 

itself to the concurrent development model of the back end and the portlets. All of our tests 

were executed on our development virtual machine. 

For this project the tests consisted of manual testing. Due to the bulk of the 

functionality being the database interactions, it was simpler to test the functionality 

manually or with test scripts. While we did consider building a Java database test harness 

for our database code, we deemed it unnecessarily time consuming.  

 Our testing also relied heavily on the logging provided by Apache Tomcat’s logging system 

and log file catalina.out. This system allowed us to print debugging messages to 

determine the state of the program when it was running on our development environment 

instead of our local machines.  

4.1: Backend Testing 

Throughout the development of the database component’s SQL stored procedures and 

database triggers continuous testing was done in the form of SQL scripts to simulate a 

workflow running on the grid. Further testing was provided through executing actual 

workflows on our development portal to test our system with actual data. The final pass for 

database testing was a suite of testing SQL scripts that tested the behavior of the database 

programs in a manner similar to unit tests.  

The calculator service testing methodology was almost entirely made up of 

functionality tests, running a workflow and confirming that all of the statistics are correct. 

There were several types of workflows that we used in order to do this testing. First was a 

very simple workflow that just executed one job which simply waited for a short period of 

time. This allowed us to quickly test that the data was propagating through the system. We 

would then manually confirm the values though comparison with the original data.  



43 

 

4.2: Portlet Testing 

Testing for the portlet consisted of making sure it could handle different information 

loads as well as operate in the expected way. The first part of testing consisted of testing 

extreme data, both large and small numbers as well as having no data. This ensured that the 

display would never fail and even if there was no data it would still work. 

We also had to test the functionality. This involved making sure every button and 

selection acted in the way it was supposed to. Furthermore it was tested on multiple 

browsers to ensure the portlet worked the same way on each browser.  

4.3: Functionality Testing 

In order to show that our system was working as expected, we ran a suite of 

functionality tests. The goal of these tests was to explore the behavior of the system at a 

high level. These tests consisted of workflows that would be executed on the portal and 

after the execution was complete we viewed the statistics pertinent to the workflow. 

There were several workflows that were created for these tests. As the edge cases to 

our system were all related to parameter studies, and because in WS-PGRADE a non-

parameter study workflow is just a parameter study workflow in which all the jobs only 

execute once, all of the workflows behaved as a parameter study. The most specialized 

workflow was a workflow that would contain jobs that failed; this tested the behavior of our 

failure rate statistic. Other workflows were created to test the running statistics of our 

system. The workflow would run a large number of jobs that had a predictable execution 

time. We were then able to compare the calculated running times with the expected. 

Table 2 Expected Average Running Time Compared to Reported 

Concrete Workflow Name Expected Average Running 

Time Per Job 

Reported Running Actual 

Time Per Job 

QuickLongRunner 10 seconds 345.33 seconds 

LongRunner 60 seconds 297.55 seconds 

LongRunner_10minEach 600 seconds 1328.7 seconds 

 



44 

 

The discrepancy between the expected and the actual running time is due to the 

service that populates the stat_running table. Currently, that service does not 

distinguish between a job instance waiting in the queue of a resource and the job instance 

being executed on that resource. This was discovered during the implementation of our 

system. We therefore were careful to show that once the stat_running table is 

populated correctly our system would return the correct values. 

4.4: Database Memory Consumption 

As was previously mentioned, the aggregate job structure was designed to reduce 

the memory consumption of the system.  

 

Figure 20 Number of Database Entries for a Workflow 

  The above graph shows how much this structure reduces the number of database 

rows as the jobs progress through our system. This data is from a workflow that was 

executed on our development portal accessing production grids. The workflow had 6 

abstract jobs and was executed as a parameter study causing a total of 26 job instances to 

be executed. In total, the workflow took 2687 seconds. As can be seen in the graph, the 

number of database rows vastly decreases between stat_running to 

stat_JobInstance and stat_JobInstanceStatus. This drop is primarily due to 



45 

 

stat_running entries being inserted as a function of time and job instances where 

stat_JobInstance entries are bounded by job instances and the number of state 

transitions they experience. The drop from stat_JobInstance to 

stat_AggregateJob is due to two groupings done. First is the grouping of similar job 

instances into one aggregate job. The second grouping is due to grouping the similar states 

from stat_JobInstanceStatus, because a job could enter some states an arbitrary 

number of times, within stat_AggregateJobStatus. 



46 

 

5: Conclusion 

In this project we successfully created a system for the collection of usage statistics for 

integration with the WS-PGRADE Grid Portal. In its current state, the system will be able to 

track the execution of workflow instances and job instances executing on the grid and store 

this information in an efficient manner. We also created a useful visualization interface for 

this data that displays it for several different levels.  

5.1: User Interface 

The user interface was successfully implemented as an additional portlet for the WS-

PGRADE Grid Portal. The statistics portlet had five pages in the end displaying portal, user, 

DCI, resource and concrete workflows. From the concrete workflow page the user could 

choose a workflow instance or an abstract job metrics that appear in a pop-up window.  

All the pages used a consistent format.  At the top of each page is a navigational menu 

so the user can easily visit each page without having to use the browsers “back” button. On 

each page the user is able to hide or show the sections of statistics to see. If there is no data 

available for one of the levels it instead displays “no data available.”  

5.2: Back End 

Our data management and aggregation services are implemented so that once 

deployed they will be able to track all job instances that are executed on the portal. While 

complicated, our aggregate job structure aggregates the data into more efficient units while 

still allowing meaningful comparisons. It was created in a manner that it could be run on an 

isolated server from the gUSE system, allowing for any performance issues to be addressed 

separately. 



47 

 

6: Future Work 

  Throughout the project we created a list of possible features and metrics for our 

system. However, due to time constraints or complexity, we were unable to implement 

everything. We want to identify some areas where we feel that future work on our system 

would be of value. Our suggested enhancements are generally either new features to the 

system or additional metrics. 

6.1: Revised Architecture 

 

Figure 21 Number of Database Entries for a Workflow 

Figure 19 proposes changes to our architecture of the system, with our proposed 

component in purple. Specifically we would recommend implementing an API service that 

would replace or add on to the calculator service. This API would provide an access point 

for the portlet and allow for the possibility of other services to use the statistics data. We 

gUSE 

Metabroker 
Metabroker 

StatAggregator 

 

Stat_Running -> 

JobInstance 

JobInstance -> 

AggregateJob 

Stat API Service 

UI Interface 

Workflow Output 

Broker Interface 

 

gUSE 

Database 

WS PGrade 

Stat 

Portlet 

Metabroker 
Other Services 

Statistics 

Database 



48 

 

would further suggest to keep the separation of the statistics services from the gUSE 

services to reduce the impact if at all possible. 

6.1.1: Meta-Broker 

Assuming the API is implemented, one service that could use our data would be the 

brokering service. The broker is responsible for assigning job instances to computing 

resource queues. If an API is implemented, the broker could use the past performance of the 

job or the resource as part of its decision.  

6.1.2: Accounting 

Our system can also be used as the first step in an accounting component to gUSE. As 

previously there was no information being recorded about how the workflows were 

executing. This component could be used for example, to monetize the portal usage. 

6.2: Metrics  

Another set of future work would be to expand the set of metrics offered both on the 

portlet and from an API. Currently, our system does not provide data regarding the current 

state of the portal, DCI’s, or User. Metrics on these categories would be useful, in particular 

to administrators, to gain knowledge on how the portal or DCI’s are being used. Specifically, 

there is a set of metrics that would be useful about the user that would be available through 

Liferay. Also, it would be possible to determine how many workflows are currently under 

submission using the stat_WorkflowInstance table. These additional metrics would 

be best implemented after the API is created as they do not all make sense to be stored in a 

database.  

Another set of possibly useful metrics would be to allow combinations of the current 

metrics. Currently, it is only possible to view workflow instances individually or combined 

in the concrete workflow. It could also be feasible for the user to be able to choose a subset 

of the workflow instances to be combined.  

6.3: UI Additions 

Some new features could be added to the user interface in later work. First a search 

function could be added to easily find a concrete workflow, instead of having to find it in a 

drop down list. Second, the UI could be made more customizable and allow the user to 



49 

 

select which statistics to display. Third, the portlet could display multiple levels of metrics 

at once, for example display both the portal and the user metrics together. Finally, better 

navigation techniques could be implemented, for example tabs instead of a menu as well as 

a “back” or “refresh” button.  



50 

 

7: References 

[1] Alejandro Abdelnur, Stefan Hepper. 2003. Java Portlet Specification. October 7, 2003. 

[2] Anderson, David P. 2004. BOINC: A System for Public-Resource Computing and 

 Storage. 5th IEEE/ACM International Workshop on Grid Computing . 2004, pp. 4-10. 

 BOINC PAPER . 

[3] gLite. gLite Lightweight Middleware for Grid Computing. [Online] 

 <http://glite.cern.ch/>. 

[4] Liferay Inc. What is a Portal? Liferay Enterprise.Open Source. For Life. [Online] 

 <https://www.liferay.com/documentation/additional-

 resources/whitepapers?p_p_id=20&p_p_lifecycle=0&p_p_state=maximized&p_p_mo

 de=view&_20_redirect=/c/document_library/get_file%3Fuuid%3D8f82e386-3109-

 4512-bacc-

 64cda6724751%26groupId%3D14&_20_struts_action=/document_library/file_entr

 y_web_form&_20_fileEntryId=7454189&_20_fileName=What+is+a+Portal%3F.pdf>. 

[5] MTA Sztaki LPDS. 2011. P-Grade Grid Portal. [Online] 2011. [Cited: April 7, 2011.] 

 <http://portal.p-grade.hu/>. 

[6] Multi-Grid, Multi-User Workflows in the P-GRADE Grid Portal. Sipos, Gergely and 

 Kacsuk, Péter. 2005. 3-4, December 6, 2005, JOURNAL OF GRID COMPUTING, Vol. 

 3, pp. 221-238. 

[7] Oracle. JavaServer Pages Technology. Oracle. [Online] [Cited: April 22, 2011.] 

 <http://www.oracle.com/technetwork/java/overview-138580.html>. 

[8] P-GRADE portal family for grid infrastructures. Kacsuk, Peter. 2011. 3, March 10, 2011, 

 Concurrency and Computation: Practice and Experience, Vol. 23, pp. 235-245. 

[9] P-GRADE Portal: A generic workflow system to support user communities. Kacsuk, Péter 

 and Farkas, Zoltan. 2011. 5, May 2011, Future Generation Computer Systems, Vol. 

 27, pp. 454-465. Arch of PGRADE and basic job and workflow . 



51 

 

[10] SZTAKI LPDS. 2011. Welcome to WS-PGRADE Portal. GUSE. [Online] 2011. [Cited: 

 April 22, 2011.] 

[11] SZTAKI. MTA SZTAKI Computer and Automation Research Institute Hungarian 

 Academy of Sciences. The Instute. [Online] [Cited: 4 1, 2011.] 

 <http://www.sztaki.hu/institute>. 

[12] SZTAKI. People - Kacsuk Péter. SZTAKI. [Online] [Cited: 4 1, 2011.] 

 <http://www.sztaki.hu/people/008001429/>. 

[13] WS-PGRADE: Supporting parameter sweep applications in workflows. Kacsuk, P., 

 Karoczkai, K., Hermann, G., Sipos, G., Kovacs, J. Nov 2008, Workflows in Support 

 of Large-Scale Science. doi:10.1109/WORKS.2008.4723955. 

[14] Google. Coogle Chart Tools/Imgage Charts(aka Chart API). Google Code. [Online] 2011. 

[Cited: 4 11, 2011.] 

<http://code.google.com/apis/chart/docs/making_charts.html>. 

 

 

 



52 

 

Glossary 

Abstract Job 

Refers to a job in a Concrete Workflow.  

 

Abstract Job Statistics 

Refers to the statistics of all the job instances of the specified Abstract Job aggregated across 

workflow instances. 

 

Aggregate Job 

Aggregation of all job instances that share the same workflow instance, resource and job 

name.  

 

Concrete Workflow 

A workflow that is configured for execution 

 

Concrete Workflow Statistics 

Refers to the statistics of all the executions (Workflow Instance) of the specified Concrete 

Workflow. 

 

DCI 

Distributed Computing Infrastructure, a collection of virtual organizations that from which 

computing resources can be accessed. 

 

DCI Statistics 

Refers to the statistics of all jobs and workflows executed on the given DCI. 

 

Google Chart Tools 

API used to generate diagrams from the statistics. 

 

Job Instance 

A job that is executed on the grid. 

 



53 

 

Level Of Statistics 

Portal, DCI, Resource, User, Concrete Workflow, Workflow Instance, Abstract Job. Refers to 

what it is possible for the user to view statistics on. 

 

Portal Statistics 

Refers to the statistics of all jobs and workflows executed using the instance of the WS-

PGRADE Grid Portal.  

 

Resource 

A single computing resource. A set of these make up a DCI. 

 

Resource Statistics 

Refers to the statistics of all jobs and workflows executed on the given Resource queue.  

 

Stored Procedure (SPROC) 

Executable database code that is stored in and run on the database. 

 

Trigger 

Executable database code that is automatically executed on some database event such as 

the insertion into a table. 

 

User 

The user that is using the portal, or the user that is interacting with our system. 

 

User Statistics 

Refers to the statistics of all jobs and workflow executed by a given user. 

 

Workflow Instance 

A single execution of a Concrete Workflow. 

 

Workflow Instance Statistics 

Refers to the statistics of all the job instances that were executed for this workflow instance. 

Also provides the time of execution overall. 



54 

 

Appendix A: Job State Table 

This is a table of the possible states that a job instance can enter  on the portal or on a 

resource. Of particular note is our grouping of them as shown in the state type column, 

which was discussed in the paper. If it becomes necessary to change any of these values or 

add additional values you must change the enumeration that is in the calculator service 

project, StatAggregator.jobState.JobState. If it becomes necessary to add terminal states you 

also have to change the ToJobInstance trigger on stat_running. 

Also, this table is subject to change as control of some of the states is given to the grid 

middlewares. Also, note state 55 which currently only exists in our system to represent the 

final running state the produced results. 

Table 3 Job States 

Name Identifier Terminal State Type Assignment 

INIT  1  false  StateType.PORTAL 

SUBMITTED  2  false  StateType.QUEUE 

WAITING  3  false  StateType.QUEUE 

SCHEDULED  4  false  StateType.QUEUE 

RUNNING  5  false  StateType.RUN 

FINISHED  6  true  StateType.TERMINAL 

ERROR  7  true  StateType.FAIL 

NO_FREE_SERVICE  8  false  StateType.PORTAL 

DONE  9  true  StateType.TERMINAL 

READY  10  false  StateType.QUEUE 

CANCELLED  11  true  StateType.TERMINAL 



55 

 

CLEARED  12  false  StateType.OTHER 

PENDING  13  false  StateType.OTHER 

ACTIVE  14  false  StateType.OTHER 

SUSPENDED  16  false  StateType.PORTAL 

UNSUBMITTED  17  true  StateType.TERMINAL 

STAGE_IN  18  false  StateType.OTHER 

STAGE_OUT  19  false  StateType.OTHER 

UNKNOWN_STATUS  20  false  StateType.OTHER 

TERM_IS_FALSE  21  true  StateType.FAIL 

NO_INPUT  25  false  StateType.FAIL 

CANNOT_BE_RUN  99  true  StateType.FAIL 

SUCCESS_RUN  55  false  StateType.SUCCESSRUN 

 



56 

 

Appendix B: Class Diagrams 

Appendix B.1: Calculator Service 

This class diagram describe the structure of the calculator service that calculates the 

statistics based off of the aggregate job data.  

 

 

 

 

 



57 

 

 

Figure 22 StatAggregator Class Diagram Part 1 



58 

 

  

 

 

Figure 23 StatAggregator Class Diagram Part 2 



59 

 

Appendix B.2: Portlet Data Access Layer 

This diagram describes the structure of the data access layer for the statistics 

portlet. 

 

Figure 24 Portlet Data Access Layer Class Diagram 



60 

 

Appendix C: stat_metric_description Table 

This table describes the presentation of the metrics we make available to the user 

on the portlet. 

Table 4 stat_metric_description table 

Column 

Name 

Pretty Name C
a

te
g

o
ry

 

Units P
e

rcisio
n

 

Source Table for 

level 

State Type ID 

Average Job Average 

Execution Time 

3 s 1 stat_statistics all NULL 2 

delta Workflow Instance 

Execution Time 

6 s 1 stat_WorkflowI

nstance 

work

flowi

nstan

ce 

NULL 3 

FailureRat

e 

Failure Rate 1 % 2 stat_statistics all NULL 4 

NumFailed

Jobs 

Total Number of 

Failed Jobs 

1 jobs 0 stat_statistics all NULL 5 

NumJobs Total Number of Jobs 3 jobs 0 stat_statistics all NULL 6 

StdDev Standard Deviation of 

Job Average 

Execution Time 

3 s 3 stat_statistics all NULL 7 

TotalJobTi

me 

Total Running Time 0 s 1 stat_statistics all NULL 8 

Average Average Time Spent 

in the Failed Run 

State 

2 s 2 stat_JobStateT

ypeStatistics 

all RUN 10 

Average Average Time Spent 

in the Queue State 

2 s 2 stat_JobStateT

ypeStatistics 

all QUEUE 11 



61 

 

Average Average Time Spent 

in the Portal State 

2 s 2 stat_JobStateT

ypeStatistics 

all PORTAL 12 

Average Average Time Spent 

in the Terminal State 

0 s 2 stat_JobStateT

ypeStatistics 

all TERMINAL 13 

Average Average Time Spent 

in the Fail State 

0 s 2 stat_JobStateT

ypeStatistics 

all FAIL 14 

Average Average Time Spent 

in the Run State 

2 s 2 stat_JobStateT

ypeStatistics 

all SUCCESSRU

N 

15 

Average Average Time Spent 

in the Other State 

2 s 2 stat_JobStateT

ypeStatistics 

all OTHER 16 

StdDev Standard Deviation of 

Time Spent in the 

Failed Run State 

4 s 2 stat_JobStateT

ypeStatistics 

all RUN 17 

StdDev Standard Deviation of 

Time Spent in the 

Queue State 

4 s 2 stat_JobStateT

ypeStatistics 

all QUEUE 18 

StdDev Standard Deviation of 

Time Spent in the 

Portal State 

4 s 2 stat_JobStateT

ypeStatistics 

all PORTAL 19 

StdDev Standard Deviation of 

Time Spent in the 

Terminal State 

0 s 2 stat_JobStateT

ypeStatistics 

all TERMINAL 20 

StdDev Standard Deviation of 

Time Spent in the Fail 

State 

0 s 2 stat_JobStateT

ypeStatistics 

all FAIL 21 

StdDev Standard Deviation of 

Time Spent in the 

Run State 

4 s 2 stat_JobStateT

ypeStatistics 

all SUCCESSRU

N 

22 

StdDev Standard Deviation of 4 s 2 stat_JobStateT all OTHER 23 



62 

 

Time Spent in the 

Other State 

ypeStatistics 

Num Number of Times the 

Job Entered the 

Failed Run State 

5 entri

es 

0 stat_JobStateT

ypeStatistics 

all RUN 24 

Num Number of Times the 

Job Entered the 

Queue State 

5 entri

es 

0 stat_JobStateT

ypeStatistics 

all QUEUE 25 

Num Number of Times the 

Job Entered the 

Portal State 

5 entri

es 

0 stat_JobStateT

ypeStatistics 

all PORTAL 26 

Num Number of Times the 

Job Entered the 

Terminal State 

0 entri

es 

0 stat_JobStateT

ypeStatistics 

all TERMINAL 27 

Num Number of Times the 

Job Entered the Fail 

State 

0 entri

es 

0 stat_JobStateT

ypeStatistics 

all FAIL 28 

Num Number of Times the 

Job Entered the Run 

State 

5 entri

es 

0 stat_JobStateT

ypeStatistics 

all SUCCESSRU

N 

29 

Num Number of Times the 

Job Entered the Other 

State 

5 entri

es 

0 stat_JobStateT

ypeStatistics 

all OTHER 30 

FailureRat

e 

Failure Rate 8 % 0 stat_statistics all NULL 31 

TotalTimeI

nStates 

Failed Run 7 s 2 stat_JobStateT

ypeStatistics 

all RUN 34 

TotalTimeI

nStates 

Run 7 s 2 stat_JobStateT

ypeStatistics 

all SUCCESSRU

N 

35 



63 

 

TotalTimeI

nStates 

Queue 7 s 2 stat_JobStateT

ypeStatistics 

all QUEUE 36 

TotalTimeI

nStates 

Portal 7 s 2 stat_JobStateT

ypeStatistics 

all PORTAL 37 

TotalTimeI

nStates 

Terminal 0 s 2 stat_JobStateT

ypeStatistics 

all TERMINAL 38 

TotalTimeI

nStates 

Fail 0 s 2 stat_JobStateT

ypeStatistics 

all FAIL 39 

TotalTimeI

nStates 

Other 7 s 2 stat_JobStateT

ypeStatistics 

all OTHER 40 

average Average Workflow 

Execution Time 

6 s 2 stat_Concrete

Workflow 

concr

etew

orkfl

ow 

NULL 41 

 



64 

 

Appendix D: Installation Manual  

In order to deploy the statistics system there are three components that must be 

deployed. 

Appendix D.1: Database Deployment 

 To modify the database with our schema changes, please run the provided scripts:  

 GUSE_stat_statistics.sql 

 GUSE_stat_running.sql 

 GUSE_stat_WorkflowInstance.sql 

 GUSE_stat_JobInstance.sql  

 GUSE_stat_JobInstanceStatus.sql  

 GUSE_stat_AggregateJob.sql 

 GUSE_stat_AggregateJobStatus.sql 

 GUSE_stat_AbstractJob.sql  

 GUSE_stat_JobStateTypeStatistics.sql 

 GUSE_stat_portal.sql 

 GUSE_stat_ConcreteWorkflow.sql 

 GUSE_stat_resource.sql 

 GUSE_stat_DCI.sql  

 GUSE_stat_metric_description.sql 

 GUSE_stat_user.sql 

 GUSE_routines.sql  

Once these scripts are executed, confirm that there are 15 new tables [or 14  if there 

was already the stat_running table installed, in which case confirm that it was modified]. 

Also confirm that the following triggers and stored procedures are present.  

Triggers 

BEFORE INSERT ON stat_running     

BEFORE UPDATE ON stat_JobInstance   TOAGGJOB   

BEFORE UPDATE ON stat_ConcreteWorkflow calculate_workflow_  



65 

 

BEFORE INSERT ON stat_ConcreteWorkflow calculate_workflow_delta   

BEFORE UPDATE ON stat_WorkflowInstance calculate_workflow_delta   

BEFORE UPDATE ON stat_statistics calc_statistics_stats_update  

BEFORE UPDATE ON stat_JobStateTypeStatistics  

calc_statetype_stats_update  

BEFORE INSERT ON stat_statistics  calc_statistics_stats_insert  

BEFORE INSERT ON stat_JobStateTypeStatistics   

calc_statetype_stats_insert  

Stored Procedures 

JobInstanceToAggregateJob  

CreateOrAddToJobInstance    

See database description section for a brief description of the use of each of these 

elements. 

It should also be possible for all of these components to be run on a separate 

database from the gUSE database if deemed pertinent. If so, please make sure that the 

connection information is changed appropriately. Also, make sure to test the portlet’s 

MenuPopulator.java as it does use some gUSE database tables in order to provide useful 

names for concrete workflows, jobs, and DCIs.  

Appendix D.2: Calculator Deployment 

There are several options to deploy the calculator service. It is set up as a web 

service which can be on the same server or on a distinct server from the portal. First step is 

to locate the statAggregator.properties file and set the values in there for the 

database connection, how long to wait for non-terminated jobs and stat_running entries, 

and for the frequency of the poll. Then, install the project as a web service on a server with 

access to the database with the configuration information given.  

 Once installed, go to the URL [SERVER]/StatAggregator which is currently 

set up to toggle the polling mechanism of the service. Alternate initialization may be 



66 

 

recommended using the web.xml file to set the service to start with the server. See the file 

stataggregate.java and index.jsp to see how to start the service if an alternate 

method is called for.  

The calculator service also uses information from the gUSE database. Specifically, it 

uses it in order to provide a resource URL to DCI name mapping. See Resource. 

populateDCI(). 

Appendix D.3: Portlet Deployment 

To deploy the portlet first set the values in the configuration file to give database 

access to the database where the statistics data is being stored and to set the locale and 

language (defaults to Hungary and Hungarian).  The configuration file also requires the 

URL of the portal. The language and locale is used for formatting of the values on the 

portlet.  

To deploy the portlet on Liferay go to the manage tab at the top of the page and 

select control panel. At the bottom of the list under server choose Plugins Installation. 

Under the Plugins Installation click the button Install More Portlets and choose Upload File. 

Select choose file and locate the .war file to be uploaded. Then click Install and wait for the 

success message to appear. 

Appendix D.4: Stopping Statistics 

 If it becomes necessary to stop the statistics functionality besides reverting the 

system, the simplest method is to toggle off the StatAggregator using the URL 

[SERVER]/StatAggregator toggle and drop the trigger on the stat_running 

table. This will prevent data from progressing through the system and will stop the polling 

mechanism of the calculator service. 



67 

 

Appendix E: Database Description  

Table 5 Database Table Descriptions 

Table Name Description 

stat_running Intermediate Data many entries/job instance - supplied by 

gUSE, modifications: entered column, default 0, when 1 - 

delete, database trigger 

stat_JobInstance Intermediate Data one entry/job instance 

stat_JobInstanceStatus Intermediate Data one entry per job state transition 

stat_AggregateJob One entry combining all JobInstance with same JobName, 

Resource, wrtID 

stat_AggregateJobStatus One entry per job state visited by any of the job instances 

combined into this 

stat_WorkflowInstance One entry per workflow instance 

stat_AbstractJob One entry per job in the DAG of a concrete workflow 

stat_ConcreteWorkflow One entry per concrete workflow 

stat_user One entry per user 

stat_WorkflowInstance One entry per workflow instance 

stat_portal One entry per portal 

stat_DCI One entry per DCI 

stat_resource One entry per resource queue 

stat_statistics Contains calculated statistics about jobs. One entry for each 

row in 

stat_user/portal/DCI/resource/AbstractJob/ConcreteWorkfl



68 

 

ow/WorkflowInstance 

stat_JobStateTypeStatistics Contains calculated statistics about job states 

stat_metric_description Contains information about the access and grouping of 

metrics for display 

Table 6 Database Tigger Descriptions 

Name  Description 

BEFORE INSERT ON stat_running 

toJobInstance 

stat_running entries into stat_JobInstance 

and stat_JobInstanceStatus entries. Calls 

CreateOrAddToJobInstance 

BEFORE UPDATE ON stat_JobInstance  

TOAGGJOB 

stat_JobInstance and status entries to 

stat_AggregateJob and 

stat_AggregateJobStatus. Calls 

JobInstanceToAggregateJob 

BEFORE UPDATE ON 

stat_ConcreteWorkflow 

Calculate average and standard deviation  

BEFORE INSERT ON stat_ConcreteWorkflow Calculate average and standard deviation  

BEFORE UPDATE ON stat_WorkflowInstance

  

Calculate workflow execution time 

BEFORE UPDATE ON stat_statistics Calculate average and standard deviation  

BEFORE UPDATE ON 

stat_JobStateTypeStatistics 

Calculate average and standard deviation  

BEFORE INSERT ON stat_statistics   Calculate average and standard deviation  

BEFORE INSERT ON 

stat_JobStateTypeStatistics 

Calculate average and standard deviation  

 



69 

 

Table 7 Stored Procedures 

Name Description 

JobInstanceToAggregateJob Chooses to create new stat_AggregateJob 

entry or updates an existing one. Also 

inserts or updates stat_AggregateJobStatus 

with appropriate data from 

stat_JobInstanceStatus 

CreateOrAddToJobInstance Adds stat_running data to a stat_JobInstance 

row [or creates one if does not already exist] 

 



70 

 

Appendix F: User Manual 

 

Figure 25 User Interface 

F.1:  Introduction 

 The aim of the statistics portlet is to allow users to view metrics on seven levels, 

portal, user, DCI, resource, concrete workflow, workflow instance and abstract job. This is 

accomplished by allowing users to navigate to different pages to see the level of statistics 

they want. The statistics portlet is an addition to the pre-existing portlets on the WS-

PGRADE Grid Portal. The default page view upon clicking the statistics tab is the metrics for 

the portal. The other pages can be accessed through a menu at the top of the page. For any 

section a user can choose to expand and minimize the amount of data they wish to see by 

clicking on “expand” or “hide”. Descriptions and usage information can be found below.   

 



71 

 

 

F.2: DCI Metrics 

 

Figure 26 Selecting DCI Statistics 

 To navigate to DCI metrics the user clicks the DCI menu button at the top of any 

page. Once on the DCI page the user chooses from a drop down list of available DCI’s. Once 

chosen, the user clicks the “DCI” button next to it and the metrics will be displayed.  The DCI 

metrics can be useful for comparing different DCI’s and checking performance.  

F.3: Resource Metrics 

 

Figure 27 Selecting Resource 

 To navigate to resource metrics the user will need to have already choosen a DCI. 

Once a DCI is chosen, a new dropdown list of available resources on that DCI will become 

available. The user can choose the resource they wish to view.  



72 

 

 

F.4:  User Metrics 

 To navigate to user metrics the user clicks the User button at the top of any page, 

once clicked they will be directed to a page with all of the current users metrics. 

F.5:  Concrete Workflow Metrics 

 To navigate to concrete workflow metrics the user selects the Concrete Workflow 

button at the top of any page. Once the choice is made the user will need to choose which of 

their concrete workflows they wish to view. They can select up to three to view at a time by 

holding the shift or ctrl keys when selecting multiple. The statistics will be displayed below 

once the user clicks the button to the right of the selection menu, in order that the concrete 

workflows appear in the list.  

F.6: Workflow Instance and Abstract Job Metrics  

 

Figure 28 Concrete Workflow Metrics 

 To view metrics on workflow instances or abstract jobs, the user must have first 

chosen a concrete workflow. Once a concrete workflow is selected two drop down menus of 

available workflow Instances and abstract jobs will appear for each concrete workflow 

selected. The user will choose one to display and the metrics will appear in a pop-up 

window.  



73 

 

 

Figure 29 Pop Up Window for Workflow Instance 

 

 

 


