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ABSTRACT 
Doldrum is a Virtual Reality rhythm game that provides the player with a sense of flow and a feeling 

of triumph as they overcome a towering boss. The game mixes traditional rhythm game elements with 

reaction-based combat. The player battles a villainous, animated Cuckoo Boss via beating on a mystical 

xylophone. They must keep rhythm, avoid enemy attacks, and perform specific actions to combat their 

opponent.  

This report describes the design process, production, and testing results of the game. Doldrum 

underwent significant changes to its design over the course of its development. The final product is 

ultimately a vertical slice that demonstrates the concept of a rhythm-action game. Playtesters enjoyed 

Doldrum’s mix of rhythm and action game elements while complimenting its visual and audio 

components. 

Doldrum was developed during the 2017 – 2018 academic year at Worcester Polytechnic Institute. 

The game was developed in Unreal Engine 4 for use with the HTC Vive virtual reality headset. 
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1 INTRODUCTION 
Doldrum is a virtual reality rhythm-action game for the HTC Vive. Above all else, Doldrum attempts 

to be a fun and continuously engaging rhythm game. By utilizing mechanics typically found in combat-

centric games, we were able to achieve these goals. The player stands in a fixed location and battles a 

massive Cuckoo Boss. Procedurally generated note sequences travel down a note highway towards the 

player. The player uses the Vive motion controllers to strike a xylophone-like instrument in time with the 

approaching notes. At a consistent interval, flashing input bars travel down the highway. These allow the 

player to interact with the boss in one of two ways: they can either attack the boss or dodge the boss’s 

incoming fireballs. As the game progresses, the notes become more rapid and more complex. 

Furthermore, additional mechanics are introduced such as targets that the player must strike in specific 

locations in order to damage the boss.  

Doldrum was designed specifically to utilize the HTC Vive’s motion controllers and the added full-

body engagement of VR. [36] Our goal was to induce a flow state for players using music and rhythm as 

the means of action. In Mihaly Csikszentmihalyi’s talk on Flow, The Secret to Happiness, he defines flow 

as a state in which a person is in intense focus and when they know exactly what to do from one moment 

to the other. This heightened state of cognitive focus can make gameplay more engaging. [5, 10] Taking 

inspiration from the game Thumper (2017) we wanted to capture the excitement of an action game using 

the heightened engagement of VR. [14] Unlike Thumper, which was originally designed as a non-VR 

game and then ported to VR, Doldrum is a rhythm game specifically for VR. Doldrum functions better as 

a VR game than a non-VR game as it relies on precise motion controls.  

Original sound effects and music were created by the project team’s sound designer. As with all 

rhythm games, the music is crucial for the experience. Rather than creating a complex and intricate 

soundtrack, the backing track is simple and accessible with a strong focus on rhythmic elements. As the 

backing track plays, the player performs randomly generated melodies over it. The notes are all a part of a 

pentatonic scale: a scale that will not create dissonant harmonies when played over the backing track. 

Additionally, the notes of the scale can be played in any order while still sounding melodic. All sound 

effects were created by layering and processing samples and synthesis. 

Doldrum was built using Unreal Engine 4, via C++ and Blueprint scripting. The systems were built 

on two levels. The C++ level contains most of the systems that drive the abstracted behavior of the game 

such as note generation, boss state, and phase state. The Blueprint level contains the majority of the logic 

for gameplay, presentation, and player input handling. Utilizing Unreal’s C++ API, the systems level of 
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the game includes reflected functions that can be called as Blueprint nodes, bridging the communication 

between the two levels. While the technical implementations of the game’s components are conceptually 

interconnected, they are designed and built in a modular manner for ease of fixing and changing 

functionality. 

During production of Doldrum, we faced a number of challenges related to scoping and time 

constraints. Despite these issues, we were able to make a complete and polished vertical slice of the 

game’s original design. Following production of our game, we performed user playtesting on the WPI 

campus and showcased our game at the WPI PAX East booth. During this testing, we noticed aspects of 

our game that could be improved upon; primarily the user experience and the user interface. Many people 

chose to play Doldrum multiple times and found the gameplay to be difficult but rewarding when 

successful. With the overall positive reception of our game, we consider the final product a success.  

2 BACKGROUND 
We wanted to develop a Virtual Reality game in order to experiment and gain familiarity with the 

medium as we were inexperienced with it. The project was initially pitched to be a VR game but we were 

given creative control to dictate what type of VR game we would make. We were excited to develop a 

game with this novel technology.  

There were a variety of challenges that must be considered when designing a Virtual Reality game. 

Virtual Reality games have limited player movement due to many locomotion methods causing 

simulation sickness [25]. Additionally, VR games focus on motion controls in order to heighten 

engagement through physical action. Ultimately, the final product was a result of us attempting to create 

an engaging action-oriented game within the constraints of the medium. 

In order to not restrict ourselves to the limited performance of smartphone powered head mounted 

displays (HMDs), we initially narrowed our headset selection to the Oculus Rift, PlayStation VR (PSVR), 

and HTC Vive. Early complications related to obtaining a PSVR dev-kit ruled out that platform as a 

possibility. We ultimately chose the Vive over the Rift due to its superior technology. The Vive offers 

room-scale virtual reality while the Rift is restricted to a single standing location. While Doldrum does 

not utilize room-scale VR, we did not want to restrict ourselves. The final deciding factor was certain 

team members’ previous familiarity with the Vive.  

 While some Vive games are designed for a traditional gamepad, most are designed for the 

included motion controllers. Because of this, we self-imposed a constraint to use the motion controllers. 
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We chose to not use the motion controllers’ touch pads as core control due to their poor haptic feedback 

and their inferiority to a traditional joystick. In order to match the expectations of the platform, we 

attempted to make a game that was controlled significantly through motion controls. 

We wanted to use the full-body engagement offered by VR to induce a heightened flow state in 

players. In order to achieve this, another self-imposed constraint for the game was to make it combat-

centric. We believed that players would be more engaged if there was a physical consequence to their 

actions (i.e. the player character taking damage). Many VR games are already combat-heavy, but the 

primary means of action is either melee combat or shooting guns. We chose to avoid melee combat as it 

can problematic as the player’s weapon could phase through the enemies, causing inconsistency and 

potentially breaking immersion. We decided against using guns in the game early on as the current VR 

market is saturated with shooting games. The desire to make an action game while avoiding traditional 

means of combat lead us to the rhythm game design. We are able to elicit the same emotions as a 

traditional combat game without needing to adhere to the conventions of the genre. 

A significant consideration in current VR design is artificial locomotion. [25] The most common 

solution for locomotion limitations is teleportation. [30] Typically, a player will point at the ground and 

press a button; the screen will briefly fade to and from a black screen and then the player will be in the 

location they had pointed to. According to Oculus, a leading VR hardware and VR software developer, 

this locomotion method significantly improves comfort with a majority of players. [30] Though it helps 

reduce nausea, it can make players spatially disoriented and adversely affect the balance of game actions. 

As we wanted to avoid the problems of teleportation and the discomfort of other types of artificial 

locomotion, we chose to design Doldrum as a standing-only game. Standing-only refers to a VR game 

which is played standing but involves no movement of the player’s legs.  

Another best practice for VR developers is clear haptic feedback. Haptic feedback is essential for 

an immersive VR experience as it conveys object interaction. [30] Both motion controllers vibrate when a 

xylophone face is struck in order to give the illusion of the player striking a solid object.  

We decided to use simple colors and shapes rather than more realistic graphics early in the creative 

process. Due to the low effective resolution of HMDs, we believe that stylized aesthetics are more 

readable than realistic ones. [16] We adhered to this in creating the visuals for Doldrum by using bright, 

flat colors and basic shapes. Basic shapes were used to achieve the stylized aesthetic as it is less realistic.  
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2.1 UNREAL ENGINE 4 
Two primary engines were considered during pre-development for Doldrum: Unity and Unreal 

Engine 4. The latter was chosen due to increased team familiarity and because it featured an immediately 

ready project template for VR support. Additionally, Unreal Engine 4’s Blueprinting, material, and 

particle systems allowed for accelerated development. While much of the game is programmed in C++, 

the majority is implemented exclusively in Blueprints.  

In Unreal Engine 4, Blueprints are a visual scripting system that can be used as an alternative to 

more traditional programming. Most of the game’s VR functionality and visual elements are implemented 

via blueprints due to their ease of implementation and quick compilation time. The latter allowed for the 

game’s intractable elements, particularly VR, to be implemented and fine-tuned quickly and efficiently.  

 

Figure 1: Screenshot of Unreal Engine 4's Blueprint logic 

 Several elements of the Unreal Engine 4 development process are unique to the engine. For 

instance, all Blueprints that are placeable in the game world are considered Actors. Examples of Actors in 

Doldrum include the player, the mallets that they hold, the xylophone that they hit, etc.  

2.2 GAME INSPIRATIONS 
In preparation for designing Doldrum, we researched other games in order to determine best 

practices for VR and rhythm design. 
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2.2.1 Space Pirate Trainer 

 
Figure 2: Promotional Image for Space Pirate Trainer (2016) [22] 

Space Pirate Trainer is a polished VR shooter in which the player shoots increasingly dangerous 

waves of flying robots. [22] Space Pirate Trainer is a simple wave-shooter, a genre that we did not want 

to develop. Notably, the game gives the player many different weapons that enable different strategies 

despite the player not being able to move. Despite Space Pirate Trainer featuring simple gameplay, the 

experience is highly engaging due to the elegance of the mechanics and the game’s polish. The gunplay is 

responsive with satisfying audiovisual feedback. The game also features small details such as dynamic 

lighting and a slowdown effect when dodging enemy projectiles. When creating Doldrum, we wanted to 

achieve same level of polish and elegance found in Space Pirate Trainer. 

2.2.2 Audio Shield 

 
Figure 3: Promotional image for Audio Shield (2016) [21] 

Audio Shield is a VR rhythm game in which the player uses their controllers as shields to block 

incoming projectiles in beat with the music of the game. The player remains stationary while playing this 

game. Audio Shield's usage of motion controls have the player to move physically in time with the game's 
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music. The game's usage of motion controls to encourage rhythmic actions was a heavy inspiration for the 

gameplay of Doldrum. [39] 

2.2.3 Thumper 
 

 
Figure 4: Screenshot of Thumper (2016) [11] 

Thumper is a rhythm action game where the player guides a space beetle on a track through an 

abstract void to confront an enemy. The player presses buttons in beat as they run down the track, 

occasionally fighting large enemies. [11, 14] Thumper can be played in or out of VR. The aesthetics, 

music, and boss components appealed to us and influenced the design of Doldrum. In particular, we drew 

influence from percussion-heavy music and the dark environment with abstract visuals. Additionally, we 

found that the boss battle levels would increase the intensity of the gameplay. We played Thumper both in 

and out of VR. We noted that the VR version was more immersive and intense as it blocked out external 

distractions and cause players to befocused on the game.  

2.2.4 Taiko no Tatsujin 
 

 
Figure 5: Screenshot of Taiko no Tatsujin (2001) [6] 
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Taiko no Tatsujin is a rhythm game where the player hits notes scrolling across the screen in time 

with specific music pieces. Notes come in mainly two colors, red and blue. Red notes require a hit on the 

drum face while blue notes require a hit on the rim. [6] 

Arcade versions of Taiko no Tatsujin features an electronic Taiko drum and drumsticks as input 

controls for the player. As a team, we liked the idea of a more tactile game feel through the use of a 

physical percussion instrument. We attempted to emulate the feeling of a percussion instrument in VR 

using motion controls. [6] 

2.2.5 Patapon 
 

 
Figure 6: Screenshot of Patapon (2007) [31] 

Patapon is a rhythm game released on the PSP. The player controls a tribe of warriors via specific 

drum sequences. Different input sequences made by the player determines what the tribe of warriors do. 

[31] 

Specific drum inputs that determine what happens was part of the early design of Doldrum. 

However, these proved overly complicated during the production stage and were scrapped. Instead, we 

settled on having three specific but simple input controls for the player. The first is hitting the middle 

xylophone key with both mallets to perform an attack. The other inputs are dodging left and right which is 

two hits on either the leftmost or rightmost xylophone key. 

2.2.6 Guitar Hero  
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Figure 7: Screenshot of Guitar Hero 3 (2007) [28] 

Guitar Hero is a rhythm game in which the player uses a guitar-styled controller to hit notes that 

come towards them on a Note Highway. These notes are five different colors that correspond to their 

position on the highway. Upon reaching the player, the player must hit the note by holding down the 

corresponding button and strumming their guitar controller. This game was a major inspiration for 

Doldrum and we implemented a similar Note Highway for it. [28] 

2.3 ART INSPIRATIONS 
Art from several mediums have inspired the overall aesthetic of Doldrum. The initial aesthetic goal 

was to introduce horror elements into the game. Therefore, several horror games, movies, and TV shows 

were referenced. When looking through references, we found that the surreal aspect of these works was 

much more desirable than their scare factor. 
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2.3.1 Horror Games 

 
Figure 8: Screenshot of Silent Hill 2 [24] 

 Other inspirations came from various survival horror games, specifically the Silent Hill series and 

Rule of Rose. The team played through Silent Hill 2 to gather artistic and narrative inspiration for 

Doldrum. One of the major takeaways from the game was the monster design. [24, 34] While many of the 

monster designs were fleshy and grungy, the core theme was that the designs were reflections of the main 

character’s inner psyche. In the original design of the game, the bosses also reflected the player 

character’s inner worries. However, the element of surrealism is still present in the final game.   

 Similarly, the monster designs from the Shin Megami Tensei: Persona series also played a part in 

inspiring the boss designs. Though the genre is not horror, many of artistic designs have uniquely surreal 

elements that can elicit a feeling of unease. [3] 
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2.3.2 Various Anime 

 
Figure 9: Example of a "boss" in Puella Magi Madoka Magica (2011) [29] 

 Other inspirations with surreal aesthetics were from various anime such as Puella Magi Madoka 

Magica. [29] The general theme of these shows are main characters that face against a “boss.” In Madoka, 

the boss fights turned the surrounding environment into that of a dark fairy tale. These two shows 

influenced the stage design of the game, where the area the player plays in an enclosed area where the 

elements are thematic to the boss’ design. 
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2.3.3 Guillermo Del Toro’s House of Horrors 

 
Figure 10: Photograph of one room of Guillermo Del Toro's House of Horrors [33] 

 Guillermo Del Toro’s House of Horrors also served as inspiration for the general aesthetic and 

feel of the Cuckoo and the stage. The house is filled with many unique objects; some are props from his 

own directed films and others are his favorite characters from other media. Pictures of Guillermo’s house 

influenced the Cuckoo’s body shape and color.  The brown and red color palette along with gold accents 

can be seen on the Cuckoo’s body. The Cuckoo’s body also features wood paneling similar to the wood 

that is visible throughout the furniture pieces in his house. 

3 GAMEPLAY 

3.1 EXPERIENCE GOAL 
Doldrum’s experience goals are to provide the player with a sense of rhythmic flow and a feeling 

of triumph as they overcome a towering boss.  

3.2 GAMEPLAY LOOP 
When the player puts on the HTC Vive headset and starts the game, they are surrounded by a dark 

environment. The only visible elements in front of them are a xylophone and a pair of mallets. The player 
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then grabs the mallets with the trigger buttons on the Vive controllers. If the player does not do this 

within a short amount of time, the game will prompt them to grab the mallets.  

 
Figure 11: The first view that players will see when they start the game 

Once the player grabs the mallets, a main menu screen will appear in front of them. In front of the 

xylophone faces are menu options: xylophone height calibration, tutorial, and starting the game. Hitting 

the faces of the xylophone correspond to entering its menu option.  

When the player hits the “Start Game” option, the music begins playing and the environment 

lights up, revealing the Cuckoo Boss. Notes will then begin coming down the Note Highway. 

From now until the end condition of the game, players are to hit the Notes as they reach the 

player by striking against the faces of a in-game xylophone using their motion controllers. Successful hits 

will build the player’s Note Streak Display and special attack meter. When players miss a Note, a small 

amount of health is lost and both meters reset to zero. Occasionally, health Notes come down the Note 

Highway. Successfully striking these Notes restores a small amount of player health.  

Every four measures, a colorful bar spawns. When it reaches the player, they can perform an 

Action Input by hitting both mallets on one of the xylophone faces. The actions that the player performs 

allows them to interact with the boss in front of them. These actions include attacking the boss with a 

lighting ball and relocate the player. If the player’s special attack meter is full when they perform an 

attack action, a powerful lighting attack is shot from the player towards the boss, dealing more damage 

than the regular attack. 
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Figure 12: The Cuckoo Boss readying an attack 

Every couple of measures, before the bar spawns, the boss will begin to charge a fireball attack. 

When this happens, the fog in the stage turns orange, further telegraphing the attack. After charging for a 

measure, the boss will launch the fireball towards the player. If the player performs a dodge action at the 

end of the measure, they will move away from the attack and avoid the fireball. 

3.3 PROGRESSION 
The player’s battle with the Cuckoo is broken down into nine phases. Each phase will loop until the 

player damages the boss down to a certain threshold. When the boss health is equal to or below that 

threshold, the game will transition to the next phase. It should also be noted that these thresholds are 

predefined. 

There are three distinct phase types: pre-scripted, generated, and chime. Pre-scripted phases will 

output a note sequence that will stay the same between gameplay sessions. A pre-scripted phase ends 

when the note sequence ends. There is one pre-scripted phase that plays at the very beginning of the game 

to introduce players to hitting notes at a slow pace. 
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Figure 13: Chimes surrounding the Cuckoo Boss 

Chime phases are similar to generated phases, except the condition to transition to the next phase is 

for the player to hit specific Chimes. These phases add variety to the gameplay as it forces the player to 

move around the stage in particular directions. Without the Chime phases, movement would exclusively 

be used for dodging boss attacks. Chime phases happen twice in the game-- once in the middle of the 

game and another one at the very end of the game.  

Phase Number Phase Type 

1 Pre-scripted Phase 

2 Generated Phase 

3 Generated Phase 

4 Generated Phase 

5 Chime Phase 

6 Generated Phase 

7 Generated Phase 

8 Chime Phase 

9 Game End 
Table 1: Game's phase progression 

Generated phases will output note sequences that are procedurally generated by the game. The 

game will continue to generate Notes until the boss’ health goes below a threshold. Phases that are not 

pre-scripted or chime phases are by generated phases. 
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3.4 END CONDITION 
In order to win the game, players must reduce the boss’s health to zero by performing attack actions. 

If the player’s health reaches zero from missing Notes, getting hit by boss attacks, or a combination of 

both, they lose. When the player reaches either end condition, they are provided the option to return to the 

main menu, where they can choose to play the game again.  

4 DESIGN 
For the first two terms, our team focused heavily on the design of Doldrum. Our goal was to create a 

game that put players in a rhythmic state while still engaged in the gameplay. We went through several 

iterations in designing the rhythm aspect of the game, and boss fight structure. During this process, many 

gameplay elements were made, then redesigned. Because our team had a very large scope in the very 

beginning, we were also very conscientious in cutting any elements that were not core to the experience 

goal.  

4.1 PLATFORM 
Doldrum features a platform that the player stands on at all times. This platform conveys the 

player’s limited play space and the player, xylophone, and Highway are all bound to. When the player 

moves via the respective input command, the platform and all of its bound components will move-- 

carrying the player and xylophone with it. Likewise, the Highway, Boss, and some stage elements will 

rotate to ensure that they are always facing the platform and thus the player. 

4.2 MALLETS 
As Doldrum is primarily a game about hitting a xylophone, the players’ hands are instead represented 

as mallets. These mallets serve several purposes: 

1. Hitting the xylophone faces 

2. Indicating when the player is doing well 

3. Providing haptic feedback when the player hits the xylophone 

4.3 NOTES 
Notes are the small circular objects that travel down the Note Highway. When Notes reach the 

player, they must strike the respective xylophone face. With Note hitting as the main action players are 

doing, successful hits needed to elicit strong player feedback. For visual feedback, Notes are “popped” off 



 

  

16 

 

of the Note Highway. For audio feedback, an airy and tonal xylophone sound effect is played. For haptic 

feedback, the Vive controllers vibrate. 

4.4 NOTE HIGHWAY 
Doldrum features a standard gameplay loop that is similar to that of other rhythm games such as 

Guitar Hero. In both games, small circular notes travel from their spawn point towards the player and the 

player must hit these notes as they reach them. These notes spawn at the base of the Cuckoo Boss and 

travel along what is referred to as the Note Highway. The Highway is one of the core elements of 

Doldrum’s design and implementation due to the Note Highway moving generated notes to the player.  

The Note Highway was designed to fulfill three distinct purposes. First, it had to provide the player 

with easily identifiable rhythmic actions to perform. Second, the Note Highway had to provide a stable 

platform for the player to be able to more easily identify the musical timing of the note. Finally, it needed 

to clearly indicate when the player can make either an attack or move action. These three tasks were all 

accomplished in a similar way. Rhythmic actions are indicated via the Notes. Musical timing is indicated 

via thin Beat Bars that travel down the highway. A Beat Bar reaches the player on every beat of the 

Metronome. Additionally, certain Beat Bars spawn as Input Bars. These Input Bars allow the player to 

make an Action Input when they reach the player.  

 

Figure 14: Note Highway with Beat Bar (left) and Input Bar (right) 

The highway is a long, linear path that stretches from the Cuckoo Boss to the player. Its 

subcomponents travel along its path from the Cuckoo Boss to the player, thus allowing the Highway to 

serve as a visual bridge between the player and their opponent. Its major interactable subcomponents 

include the Notes and Input Bars.  

Oncoming Notes provide the player with constant rhythmic actions to perform. Their purpose is 

to reduce downtime between the player’s Action Inputs. The Notes require that the player constantly hits 

the xylophone. A given Note will correlate to exactly one of the player’s five xylophone faces.  
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When an Input Bar is spawned and travels down the Highway, it is an indicator to the player that 

they must make an Action Input. These bars are visually flashy, colorful, and noticeably larger than the 

Notes and decorative Beat Bars. They were designed this way to indicate that the player is able to interact 

with the Cuckoo Boss.  

In early designs, Doldrum did not feature a Note Highway. Rather, all of the player’s rhythmic 

actions were dictated by the player. This was abandoned and the Note Highway was implemented in order 

to provide more structure for the gameplay.  

4.5 XYLOPHONE 
The player strikes a xylophone using motion controls. As Notes travel down the Note Highway, the 

player must strike the corresponding xylophone face. This is conveyed through the color of the xylophone 

matching the color of the Note. Additionally, the Notes travel down linear lanes of the Highway. Each 

lane leads to the corresponding xylophone key.  

Initially, the xylophone was planned to be a cube-like entity that the player could strike to activate 

different actions. In this early design, the cube’s faces acted as the individual faces of a drum, such that 

the top and sides of the cube were all separate faces. This structure was quickly abandoned in favor of a 

more traditional drum kit-like structure due to the difficulty of reliably hitting flat surfaces that faced 

different directions. However, when building out the Note Highway, we found multiple issues with using 

the drum kits. By emulating the positioning of a real drum kit, some faces of the drum were harder to hit 

than others. We attempted to make the drum faces surround the player at a uniform distance but ran into 

issues with aligning the faces to the Highway’s lanes. With Notes coming down the Note Highway, it was 

hard to discern which face went with which Note. Later, the drum kit design was replaced with the current 

xylophone appearance. With the xylophone design, all of the faces the players hit is at a uniform height 

and neatly lines up with each lane in the Note Highway, allowing for overall neatness and readability. 

4.6 CUCKOO 
The boss character, the Cuckoo Boss, is the singular opponent the player plays against in Doldrum. 

The Cuckoo constantly faces the player and attacks them randomly when an input bar spawns. It also has 

an internal health bar. As its health depletes from player attacks, it advances the progression of the game. 

As the game progresses, the procedurally generated note sequences become more challenging and Chimes 

are introduced as a mechanic.  

The initial prototype for the behavior setup was built in Unity. Unity was more familiar to Kelly 

Zhang and she was able to program basic boss behavior in a few hours. This prototype featured a top-
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down perspective of the boss character, a player, and three lanes representing the Note Highway. The 

player was able to attack, dodge, shield, and parry using keyboard controls. The boss was able to turn to 

face the player, attack, and parry. Since the prototype was played from a top-down view, gameplay did 

not provide much insight on how players would feel performing the same actions in virtual reality with a 

first-person view. Though the gameplay between the boss and the player were not useful, the main 

takeaway ended up being how the boss’ behavior could be technically implemented.  

 
Figure 15: Unity Editor view of BossAttackState instance 

4.7 CHIMES 
During chime phases, a circular set of chimes descend from the top of the game’s level and 

surround the Cuckoo. These chimes protect the Cuckoo from getting hurt by player attacks. However, the 

game will select one chime as vulnerable to the player’s attack. When a defined number of vulnerable 

chimes are damaged, the game will progress to the next phase. Players will have to perform dodge actions 

for their attacks to reach the vulnerable chime. When designing the boss fight mechanics, we wanted 

players to utilize the actions that they have in response to the boss’s actions. The shield action was 

originally the action that encouraged players to shift their platform around the stage to attack vulnerable 

areas on the boss. Since cutting the shield action from the Cuckoo, we incorporated our original design 

goals into an environment piece, the chimes. 
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4.8 USER INTERFACE 
The player interacts with the user interface (UI) in Doldrum by striking the xylophone faces. Each 

face is labeled with a menu command such as “left”, “right”, and “select”. UI elements such as text and 

images are displayed to the player on a 3D panel in the game world. 

In non-VR games, the UI is typically positioned so that it is constantly rendered in the foreground of 

the screen. This approach does not work in VR, as our eyes are unable to focus on text and UI elements 

that are close to the camera. [40] Therefore, the UI had to be displayed in the game world as a 3D 

element. The simplest way to implement this was to create 2D panels that would display our UI and place 

them in a 3D space.  

Additionally, we wanted a way for the players to interface with UI elements without having to 

teach them additional controls for menu navigation. The solution to this problem was to integrate menu 

navigation to the existing xylophone faces. 

4.8.1 Main Menu 

 
Figure 16: The Main Menu 

The main menu is the interface the player sees upon booting the game. The player enters the 

game in a dark room. The only items visible are the xylophone and the mallets. The mallets are encased in 

a floating bubble above the xylophone. This interface is to encourage the player to reach their controllers 

to grab the mallets. Once the player grabs both mallets, they will stay attached to the player’s hands for 

the remainder of the gameplay duration. The main menu interface will then automatically open, 
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introducing the player to the game’s title. In the main menu, the player can select from the following 

options: 

● Start Game 

● Tutorial 

● Calibrate Drum 

 The start game option is purposefully not set to the center, forcing the player to get used to hitting 

the xylophone faces before playing the actual game, instead of potentially and accidentally hitting the 

center to start. 

4.8.2 Tutorial 

 
Figure 17: The first slide of the tutorial 

 The tutorial menu is accessed via the main menu and is a series of slides with images of how to 

play the game. The player toggles between pages by hitting the leftmost and rightmost faces of the 

xylophone. When the player is satisfied with reading the contents of the tutorial, they hit the center face to 

go back to the main menu. Originally, the tutorial section was intended to be interactive and walked the 

player through the controls of the game. Due to time constraints, it was scrapped for the slides. 
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4.8.3 Pause Menu 

 
Figure 18: The Pause Menu 

 The pause menu is accessed by pressing the menu button on the HTC Vive controller. This menu 

button is located above the touchpad. This menu is only accessible when the player has already started the 

game to avoid collisions with other menus. As the name indicates, the menu pauses the current game and 

provides the following menu options: 

● Resume Game 

● Main Menu 

● Calibrate 

4.8.4 HUD 
To inform the player on how well they’re performing during the game, a HUD (heads-up display) 

was created. The HUD is placed to the left of the player’s peripheral vision, in order to not obscure the 

Note Highway or xylophone. A consequence of placing the HUD outside direct vision is that they are 

forced to look away from the Note Highway in order to see it. This may lead to undesired behavior from 

the player where they only focus on the highway and do not notice their performance. While it’s a 

minimal amount of impact to the overall gameplay experience, the HUD should supply the player 

information in a comfortable manner rather than a stressful one. 
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4.8.4.1 Health Display 

 
Figure 19: The full health display 

The health display is a red bar that depletes when the player misses a note and when it is attacked 

by the boss. A heart is displayed to the left of the bar, indicating to the player that it represents health. The 

heart plays a beating animation, and it serves a secondary purpose of indicating the rhythm of the game. 

4.8.4.2 Note Streak Display 

 
Figure 20: The Note Streak Display 

The Note Streak Display indicates how many consecutive notes a player has hit without missing. 

It resets to zero when the player misses a note. While it does not impact gameplay, it was added with the 

intent of providing a sense of satisfaction to players who are performing well. 

4.8.4.3 Frenzy Meter Display 

 
Figure 21: Fully depleted frenzy meter (left) and fully charged frenzy meter (right) 

The frenzy meter is a blue zig-zag meter that indicates how close the player is to entering the 

Frenzied State. Since Frenzied attacks are lightning-based, the appearance of this meter is jagged. In 

addition, when the meter is filled, a lightning effect appears on the meter to indicate that it is “charged 

up”. A sound effect also plays in case the player’s active gaze is not on the HUD. 
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4.9 ORIGINAL SCOPE 
Doldrum has changed greatly over the course of development. The game originally featured five 

boss fights, each of which would represent a person or step in a musician’s journey towards becoming 

great. This theme was inspired by the film Whiplash, and was meant to be unsettling to the player, leaving 

them with a feeling of inadequacy. [37] The idea was to create a horror game that played on existential 

fears instead of traditional scare techniques. 

During the fights, the player would be able to play along with the rhythm of the song to build up 

power for their next action. The actions would be triggered by a measure-long series of drum hits that 

would trigger an action. The actions included: a multi-directional attack, relocation of the player, and a 

shield that would form around the player. The player would choose which action they wanted to perform 

based on the current situation. The act of performing a series of inputs in order to trigger a discrete action 

was inspired by Patapon.  

Ultimately, four of the five bosses were removed due to time constraints. With the removal of the 

bosses, the narrative was no longer needed. Additionally, the complex action system was replaced with a 

simpler system with less possible actions.  

 
Figure 22: Concept art for two abandoned boss designs 

4.9.1 PlayStation VR 
Originally, we wanted to gain experience and develop for a console system. The only headset that 

can be used with a console is the PlayStation VR, a peripheral to the PlayStation 4. There are kits 
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available to develop for the device using the Unreal Engine. The game would have a potentially larger 

audience of players and a smaller pool of games to compete against. 

When investigating how we could obtain a development kit from Sony, we found out that it was 

difficult to achieve as a student team. The registration process required us to either be a corporate entity 

or a university program. Upon requesting assistance from the IMGD department for a development kit at 

the beginning of summer 2017, we ran into issues primarily due to miscommunication. The PSVR 

equipment was purchased but there was no word on whether or not an application was submitted. If we 

were to continue pursuing a development kit, it would have significantly cut into our development time. 

As a result, we did not use the PSVR. This was a misuse of the IMGD program’s budget and we sent a 

formal apology to the department head, Professor deWinter. 

5 ARTISTIC IMPLEMENTATION 
With specific aesthetic goals in mind, it was necessary for there to be a uniform artistic direction. 

The process generally starts off with Kelly Zhang creating 2D concept art for the asset to be created in 

3D. The concept is then passed to Kent Fong to model and texture. If the asset required animation, it was 

then rigged and animated. During the various stages of the 3D production pipeline, several passes of the 

asset were imported into Unreal to make sure it looked right in engine. Once it was in engine, Matt 

Szpunar worked on the lighting that set the tone and mood for the game. 

When designing the visuals, we decided to create very few objects of concern for the player in order 

to provide clarity and prevent confusion. For example, the notes are bright and contrast the dark highway. 

The Cuckoo is mainly warm colored, with browns and dark reds. The xylophone contrasts the Cuckoo 

with cool colors like turquoise and blue. Additionally, when the player has to react the Cuckoo’s attack, 

the entire scene begins to glow red as a signifier. The simple colors and shapes provide a clear experience.  

Over the course of two terms, Laurie Mazza also helped us with 3D modeling environmental assets, 

allowing Kent to focus on the Cuckoo. 

5.1 CUCKOO 
The Cuckoo Boss design can be broken down into three sections. The body is based off a cuckoo 

clock, the wings and feet are based off birds, and the head and arms were inspired from one of our 

scrapped bosses as shown in Figure 23. We liked the look and feel of this scrapped boss so we decided to 

incorporate into with our Cuckoo Boss.  
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Figure 23: Hydra boss concept art 

 
Figure 24: Early concept art of the Cuckoo Boss 

Early concept art of the Cuckoo shows a very symmetrical and stiff boss model. A redesign early 

in the modelling process was proposed to introduce more curves into the body. A curvier body makes the 

boss more interesting to look at and also makes it a more organic creature.  
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Figure 25: Concept art of the Cuckoo Boss redesign  

 The Cuckoo body started out as a rectangle in Autodesk Maya with simple extrusions to block out 

the clock face, mouth, and roof. It was then brought into Pixologic Zbrush to add finer details and 

variance to the body for a more organic feel. Inside Zbrush, various tools were utilized to create the 

curves and wood panel texture on the body. The roof was done by duplicating and layering a single 

rectangle tile multiple times. Since the extremities were based on living creatures, they were done entirely 

in Zbrush for an organic look. 

 
Figure 26: Final render of the Cuckoo Boss model 

 For the Cuckoo, bad wing deformation could ruin the animation. Therefore, special attention went 

into the wings. The wings went through several iterations. The wings first started out as a single complete 
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mesh with modelled feathers but did not look realistic. In Zbrush, nanomesh was used to populate the 

wings with feathers that did look nice, but still did not achieve the desired deformation during animation. 

The single mesh did not bend in a convincing way for the player to understand. These wings were 

eventually scrapped after studying birds and seeing how they have layered feathers. The layered feathers 

were mimicked during modelling. Four different feathers were created in Maya and Zbrush to give 

variation between the primary and secondary feathers. The final wings with individual feathers resulted in 

aesthetically pleasing wings that correctly deformed. 

 

Figure 27: Iterations of the Cuckoo Boss’ wings  

 Textures for the Cuckoo were done entirely in Zbrush. All diffuse textures for the Cuckoo were 

hand painted for a unique and cartoon-like design. The body wood panels were painted with a tileable 

wood texture that was manipulated in Adobe Photoshop to match the overall aesthetic. Diffuse maps for 

different components were painted and generated in Zbrush. Normal maps were baked from high poly 

meshes using xNormal. Specular maps were made in Photoshop. 

 
Figure 28: Texture sets for the Cuckoo's diffuse, normal, and specular maps 
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 Rigging for the Cuckoo was done entirely in 3ds Max utilizing their CATRig system. 3ds Max 

was chosen over other software because Kent already had experience with it. Also, CATRigs are fairly 

intuitive to create and they work seamlessly for animating with 3ds Max.  

First, the pelvic bone is placed around the Cuckoo’s center and then the spine and other 

extremities follow. CATRigs are simple to use and come with built-in Inverse Kinematics and Forward 

Kinematics for the arms and feet. In the Cuckoo’s case, the wings were rigged as an extra set of arms, 

with extra bones for each feather group. The head and neck are rigged as a second spine while the roof 

panels are just extra bones. After placing the bones in the correct places, the mesh was ready to be 

skinned.  

 
Figure 29: Rigged and skinned Cuckoo mesh in 3ds Max 

The skin weighting process took a few days due to both the asymmetrical shape of the Cuckoo 

and the fact that each feather had to be skinned to a specific bone. Each primary feather is skinned to a 

specific bone because it allows for greater control of the feathers while also providing realistic 
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deformation of the wing. This method of skinning each feather was inspired by a wing rig test by the 

YouTube user 3D_guy_2008 [1], who created wings with individual feathers.  

 

Figure 30: The Cuckoo wing's range of motion 

 The animations were done in 3ds Max because a CATRig was used. Animations for the Cuckoo 

included an idle, attack, hit, and death. All animations besides the death are done with the Cuckoo 

hanging from a bar. This meant most of the core motions came from the hips and spread outwards. The 

idle is a simple sway from left to right that loops and is what the player sees the majority of the time. The 

attack animation was inspired slightly by both Ho-oh from Pokemon and the Hadouken from Street 

Fighter[18, 23]. The attack had to be split into buildup, attack loop, and follow through. Splitting the 

animation allowed the programmers to decide the length of the attack for any attack variations. In engine, 

the animations gradually blend depending on the game event. Animations were done in 96 frames per 

second because the HTC Vive’s refresh rate is 90 hertz. 

 

Figure 31: The Cuckoo attack animation flow 
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5.2 NOTE HIGHWAY 

 
Figure 32: Notes travelling down the Note Highway 

The Note Highway’s appearance was designed to be easily noticeable by the player without being 

too visually loud. Additionally, its appearance had to convey a sense of musical time to the player. This 

was accomplished via the Beat Bars, with one bar reaching the player on every quarter-note of the 

metronome.  

Beat Bars are visually distinct from the Highway’s base color of semi-transparent black. They are 

thin, fully-opaque white bars. However, the bars are not overly bright nor do they glow. The Highway’s 

simple and dark color scheme was chosen due to it being visually distinct from its surroundings without 

taking the attention away from the Boss, Notes, and other interactables. Likewise, the bars’ white color 

was chosen to ensure that the player notices them.  

The Highway itself is made up of five distinct lanes that each correlate to a given xylophone face. 

These lanes are separated by colorful dividers that mirror the coloration of the xylophone faces. A given 

lane’s dividers share a color with that lane’s respective Notes, thus allowing for players to easily 

distinguish which Xylophone face an oncoming Note correlates to.  

5.3 NOTES 
The visual design of the Notes accomplishes two primary goals. First, the Notes’ simplistic 

spherical appearance and light border ensures that they are easily noticeable. Second, a given Note’s color 

will match its target xylophone face. Thus, players can easily discern which xylophone face to hit from 

Note appearance alone. 
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Figure 33: Default Note (left) and Healing Note (right)  

Healing notes have a unique shape and color regardless of their assigned lane. All healing notes 

are bright red and shaped like a simple heart. This drastically different appearance ensures that players are 

aware of which Notes are healing notes. Similarly, the player’s own health bar features a bright red heart, 

thus allowing for players to easily associate the uniquely shaped Notes with health restoration. 

 The appearance of the Notes was accomplished by applying a material instance to a basic sphere 

mesh. The material instance is derived from a base material that features a definable color, a Fresnel that 

gives the Note its colored border, and a constantly fluctuating emissive intensity. This base material has 

several child instances that allow for easy modification to the material’s base color, Fresnel color, and 

intensity. There is a separate instance for each of the five lanes and additional instances for missed notes 

and healing notes.  

 

Figure 34: Material graph for the base Note material 
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 These material instances are dynamically applied to a given Note when that Note is spawned. 

When a note is spawned, it is assigned a target lane and whether-or-not it is a healing note. If it is a 

healing note, the Note’s color and shape are changed to a bright red heart. If the Note is not a healing 

note, its color is set to the color of its respective xylophone face and lane.  

 

Figure 35: Note material viewed in the Unreal material editor 
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5.4 PLATFORM 
Visually, the platform matches the brass appearance of the xylophone and Highway valves. The 

platform is designed to imitate the appearance of a brass instrument in order to match the musical 

aesthetic of the game. It has piping that borders the edges of the platform that meets and joins into a bell 

which resembles one of a brass instrument. These pipes act as railings that serve as indicators of where 

the playspace ends. Additionally, the attacks exit through the opening of the bell.  

 
Figure 36: Final render of Platform mesh 
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5.5 MALLETS 

 
Figure 37: Comparison between the original unicorn-head mallets (left) and the final mallet model (right) 

 

The mallets were modeled to appear identical to real xylophone mallets. While the design fits with 

the aesthetic of the game, we original experimented with a louder and more intricate design . Since the 

Cuckoo Boss was bird themed with fire elements, we experimented with the player representing an 

animal that fit with the lightning element. When browsing inspiration for lightning elemental creatures, 

we found the Kirin from the Monster Hunter series, as well as weapons from Alice: Madness Returns as 

examples of unicorns with lightning. 
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Figure 38: Concept art of unicorn head mallets(right) with Monster Hunter and Alice inspirations (left)   

 Unfortunately, while making the mallets in 3D, we felt that the unicorn mallets would be too 

distracting and it was unclear how the mallets should hit the xylophone faces. Following this concept, we 

ended up reverting to a more traditional mallet. 

5.6 XYLOPHONE 
Early renditions of the xylophone were rectangular before changing to a more traditional circular 

look.  

 
Figure 39: Early concept for the drums 

 The decision was made to move forward with a more rectangular drum face and we decided on a 

xylophone-inspired drum. Following the xylophone theme, the three drum faces and two cymbals were 
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turned into five simple xylophone keys. We decided on a cool color palette for the xylophone bars as a 

contrast for the warm colors of the Cuckoo.  

 

Figure 40: Final render of a singular xylophone key 

 
Figure 41 Final render of entire xylophone 

5.7 ENVIRONMENT 
The goal of the environment in Doldrum is to emphasize and complement the Cuckoo Boss. To 

achieve this, the centerpiece of the game world is a large stage where the Cuckoo hangs. 
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Figure 42: Concept art of the Cuckoo's environment 

This stage is modeled after a theater. It consists of the stage floor and the backdrop. The floor is 

wooden with a raised metal platform in the center. On the outside ring of this stage, two spotlights are 

placed, pointed at the Cuckoo. The backdrop is a half-dome structure where the Cuckoo and chimes hang. 

All meshes that make up the stage (i.e. chimes, spotlights, backdrop) were created in Maya by Laurie 

Mazza. 

 
Figure 43: Grayboxed stage by Laurie Mazza 
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Figure 44: The full environment 

Between the inner and outer sections of the stage there is empty space which is filled with a purple 

fog effect. The fog clouds provide a feeling of mystery and malevolence. These cloud effects were created 

using a material that uses noise in conjunction with the Time node to create a material that resembles a 

cloud when applied to a sphere. A constant rotation was then applied to these cloud objects which gives 

the appearance of an ever-shifting layer of fog when placed next to each other in large volumes. 

5.7.1 Chimes 
The chimes hang from the backdrop of the stage and are used by the Cuckoo during certain stages 

of the fight. These are designed to look like the chimes of a grandfather clock and are arranged to mimic 

the bars of a bird cage. The chimes are surrounded by an orange vortex of fire. These elements come 

together to match the visual design of the Cuckoo.  



 

  

39 

 

 
Figure 45: The Cuckoo readying an attack, surrounded by the Chimes 

5.7.2 Lighting 
The lighting was designed to frame the Cuckoo as the focal point of the scene. The overall 

environmental lighting is dim with the exception of two spotlights that are aimed directly the Cuckoo. 

These emit a light indigo colored light towards the Cuckoo, illuminating the Cuckoo and casting shadows 

onto the backdrop of the stage. 

Until the player begins the fight, all of the lights are off. Only the fog, xylophone, and mallets are 

visible. Once the game has begun, the rest of the lights turn on and reveal the environment and Cuckoo. 

 
Figure 46: Early stage layout with basic lighting 
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5.8 USER INTERFACE 
The appearance of the HUD was meant to be simple and stylistic for player readability. We 

wanted players to be able to understand the UI at a glance. Despite efforts to blend the UI with the 

environmental aesthetic, the use of a painted UI and stylized serif fonts for the HUD made elements 

harder to read from a distance. 

6 TECHNICAL IMPLEMENTATION 
The approach to implementing features into Doldrum was iterative. We would often build a small 

piece of a large concept. Then we would test the piece to make sure the piece was functional and adhered 

to our design guidelines. Most importantly, if the piece was a gameplay attribute it had to feel good to 

play. 

Additionally, by drawing the technical strengths from each programmer, Henry with Blueprints and 

Kelly with C++, we were able to construct two technical levels that neatly separated out gameplay logic 

and systems logic. By separating the logic, we were able to iterate on existing functionality with ease and 

break existing features. In this section, we will address the various systems, gameplay, and player 

interactions. For systems components such as the Phase System, Note Generation System and Cuckoo 

behavior, we will explain the inner workings and how it drives the gameplay loop. Gameplay components 

such as the Note Highway and Notes will cover techniques used to enhance game feel. With features 

involving player interaction, we will address how we ensured that VR interactions worked smoothly and 

reliably for all players. 

6.1 METRONOME 
 Nearly all of Doldrum’s events and interactions with the player are dependent on musical timing. 

As such, it was very important that we develop a flexible and robust metronome system early in the 

development process.  

The metronome system needed to satisfy the following core requirements: 

1) Reliable timing 

2) Ability to broadcast to objects when a beat happens 

3) Easy to fix and change based on future design changes 

To ensure reliable timing, we decided to depend on Unreal’s Time Management system. The 

system allows programmers to set timers that would reliably countdown in real time, and have a custom 
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function be called when the timer reaches zero. While we could write our own timers, we would have to 

account for factors such as jumps in framerate. To keep the system implementation as simple as possible, 

using the Time Manager was our best option. 

 To satisfy the second requirement, an observer pattern was used. There is a 

MetronomeController object that controls the timing. MetronomeListener objects can register to a 

controller and a developer can assign custom functions to be called through the listener’s OnBeat 

delegate. When the MetronomeController starts to countdown seconds for each beat, it iterates 

through its list of registered listeners and calls the OnBeat delegate. This pattern ensured that all objects 

dependent on beat-based timing are being triggered from the same source(s). It also allowed for flexibility 

for changes in implementation, since it would only need to change functionality in two objects. The 

flexibility here satisfies our third requirement. 

The metronome system was implemented primarily in C++ and makes use of Unreal’s C++ API. 

MetronomeController is derived from the AActor class, whereas the MetronomeListener is derived 

from the UActorComponent class. This allows the system’s components to be implemented and 

managed on the Blueprint level, while still having access to Unreal C++ API commands.  

 
Figure 47: Screenshot of a MetronomeController's editable properties 

 
Figure 48: Screenshot of an actor's MetronomeListener component listening to a MetronomeController actor 

For example, a programmer working on the Blueprints level begins by creating a Blueprint that 

derives from the MetronomeController class. The class will reflect its properties that are flagged as 

editable onto the Blueprint’s property window. Moving this Blueprint actor to the active level will allow 

listener objects in the same level to register to it. 
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To enable objects to listen to the controller, the programmer attaches the MetronomeListener 

as a component of the objects. In the Blueprint Event Graph, they can initialize the OnBeat event as an 

event node. 

 
Figure 49: OnBeat delegate as seen in Blueprints 

As development continued, we realized that getting OnBeat calls from the listener is often not 

enough. Sometimes the game receives player input that is offbeat. The game needs to respond to this 

feedback such that is still on beat. This is explored further in the Notes section. The Unreal Time 

Management system offers useful function calls like GetTimerElapsed and GetTimerRemaining to 

get time values of when the next beat is or how long it has been since a beat event has been fired. 

Wrapping these calls around functions in MetronomeListener allows us to expose our wrapper 

functions for Blueprint use, where most of the game logic for Doldrum is. All objects that have the 

MetronomeListener attached will now have access to these functions. 

6.2 CUCKOO 
The Cuckoo acts and reacts to the following game events: metronome ticks, phase changes, and 

player actions (e.g. Attack, Dodge). The core of the Cuckoo’s gameplay logic is built from Blueprints and 

extended from a class called BossCharacter. Its primary goal is to keep track of the boss’ state. 

The state machine in the base BossCharacter class was designed in a way to allow as much 

flexibility as possible for Blueprints to implement custom state behavior that was specific to a boss. This 

was before our team decided to scope the boss count down to one but is still viable to extend from if we 

were to continue implementing more boss characters.  

At a high level, state objects dictate how long the boss takes to transition into the state, how long 

the boss stays in a state, and how long the boss takes to transition out. It also has a list of possible states to 

transition to. In the prototype, it also held a list of states it can traverse from. That was removed during 

the actual implementation into Unreal. Keeping a list of parent states added complexity to the state 

machine. Based on the boss design, it was only necessary for the state machine to know which states it 
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needed to traverse to. In the Unity prototype, there were parameters specific to a state, as shown in Figure 

28. In the Unreal implementation, this was translated into a two-level system. These two levels are the 

C++ systems level and the Blueprints level. The systems level runs the transitioning of one state to 

another based on preset transition rules. The system can then make calls up to the Blueprints level which 

runs custom logic. 

To define state transition rules, BossCharacter uses a state transition map, where the key is a 

Boss’ starting state and the value is a custom data structure. This data structure holds the number of 

metronome ticks for a state to enter a transition, to stay in a transition, and to exit in a transition. This 

structure also allows us to have fine control over the timing of state transitions.  

 
Figure 50: Screenshot of the Cuckoo's state transition map property 

This map as shown in Figure 29 can be exposed to Blueprints, allowing programmers and 

designers to easily adjust timing values and transition rules from the Unreal editor. When the state 

machine begins during runtime, these values can be referenced on the systems level and the state 

machine. It will begin at the defined root state and make the appropriate transitions as defined in the map. 

When the machine changes to a different state, it will make calls up to the Blueprints level with additional 

parameter values such as sub-state and transition stage. For the Cuckoo, we only made use of the 
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transition stages. Based on design decisions made during the implementation of the state machine, we 

decided not to introduce additional mechanics tied to sub-states. 

 
Figure 51: Screenshot of a part of the Cuckoo's attack logic in Blueprints 

An example seen in the game is the Cuckoo’s attack. When the state machine begins to transition 

to the ATTACK state, we set its enter transition duration to 48 ticks (3 measures). In its Blueprint, the logic 

for entering the ATTACK state is the following: 

1) Play Cuckoo’s buildup animation 

2) Spawn a fireball object 

3) Play buildup sound effect 

4) Change environment colors and lighting 

As the Cuckoo’s attack is primarily buildup and fire, there was no need for us to implement additional 

logic for the DURING transition stage. When the Cuckoo is about to transition out of attacking the 

following is run: 

1) Play Cuckoo’s launch animation 

2) Launch the spawned fireball object at Player’s location 

3) Play fireball launch sound effect 

4) Reset environment colors and lighting 

5) Object cleanup 

6.3 NOTE HIGHWAY 
The NoteHighwayBP class contains the functionality of the Note Highway. The Note Highway 

has five lanes in which Notes travel down. These lanes are constructed using Unreal’s splines. By using 

the splines, we are able to dynamically change the shape of the Highway without needing an artist to 
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create a static Highway mesh. Elements such as Notes also make use of this mechanism by aligning 

themselves to positioning of the splines in the level’s world space. 

To provide the player with easily identifiable rhythmic actions, the NoteHighwayBP makes use of 

the MetronomeListenerComponent attached. On every beat, the Note Highway receives an 

OnBeatEvent, various calls are made, depending on which beat in the measure the game is in. On every 

fourth beat, beat bars are spawned to convey a sense of musical timing to the player. On every beat, the 

Note Highway will check to make sure the timing is in sync. If the timing is in sync, it will pull a 

NoteStruct produced by the Note Generation system, mentioned in a later section. When a 

NoteStruct gets pulled, a NoteHighwayNoteBP object is spawned, further discussed in the Notes 

implementation. 

6.4 NOTES 
Note objects are spawned as a NoteHighwayNoteBP by the Note Highway. A Note moves down 

the Highway via a Blueprint timeline node that begins when that Note is spawned into the game world. 

Each Note has its own timeline that updates the Note’s location and color intensity over its duration. 

Additionally, the timeline features several individual event notifiers that trigger additional functionality 

when they are reached. 

 
Figure 52: Note's MoveDown Timeline Blueprint node 

 The timeline features three separate alpha values for the Note’s location along the Highway, its 

color over the course of its journey, and for its gradual increase in emissive intensity. The timeline also 

has three separate event calls for when the Note reaches the end of the Highway, when it should tell the 
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xylophone to expect a player input, and when it should play its musical sound. These events are all called 

at explicitly defined times.  

 The event that tells the xylophone to expect a player input is called significantly earlier than when 

the Note finishes its movement down the Highway. This is because players are expected to hit the 

xylophone faces when a given Note reaches a line of bronze valves, thus allowing for the Note to travel 

past these valves if the player misses.  

 
Figure 53: The Highway Valves that the Notes are struck by 

 If the Note’s respective xylophone face is not hit by the player when the Note reaches the valves, 

the Note will continue down the Highway. When the timeline finishes and the Note is at the bottom of 

the Highway, it is despawned and the player loses some health. However, if the player does hit the 

xylophone face successfully, the Note’s timeline is stopped and the Note is instead popped upwards. 

6.4.1 Popping 
Whenever a note is correctly hit a combination of visual effects occurs, known as Note Popping. 

The act of popping cancels the Note’s movement down the Highway and instead causes the Note to 

launch into the air. This launch is handled by Unreal Engine 4’s native physics support. Thus, after the 

note is airborne for a few seconds the Note will fall back down.  

 Normally, Notes are not considered to be physics objects; they do not abide by gravity nor do 

they have any collision with other objects. Until a Note is popped, it is only moved via its movement 

timeline. When a Note is popped, the Note’s physics properties are enabled for a short time to allow 

for the launch effect. Additionally, the Note is also set to gradually shrink in size after it is popped. This 

allows for the Note to smoothly exit the game world after it is no longer needed.  

6.4.2 Guaranteeing On-Beat Sound 
Successful Note hits result in a xylophone sound. The player has approximately one-third of a 

second to hit the respective xylophone face when a Note reaches the valves. Thus, it is possible for 

players to hit the Notes slightly earlier or slightly later than what would be considered to be on-beat. To 
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prevent the resulting sound from sounding off-beat due to imperfect timing, the xylophone sound plays 

on-beat and independently from player input. 

When a Note reaches the valves its xylophone sound is automatically played regardless of player 

input. This sound component is then stored as a temporary variable within the Note. If the player does not 

successfully hit the Note, this sound component is stopped and a missed note sound is played. All 

subsequent Notes will not automatically play their xylophone sound until a note is successfully hit. This 

sound system ensures that players are rewarded despite having imperfect reaction time. Through this 

system, successful Note hits will always sound as if they are being played on beat.  

6.5 NOTE GENERATION 
The generation of the note sequences in Doldrum is mostly procedural. It relies on a set of rules and 

patterns to dictate Notes placement and frequency on the Note Highway. However, the beginning of the 

game features a simple hand-written sequence for the player to play out. This simple sequence is done 

through the note generator’s pre-scripted system. 

The Note Generation system interfaces with other game components by using Blueprint Function 

Libraries. Unlike the Metronome System, and the Boss State Machine, Blueprint Function Libraries can 

be accessed by any Blueprint in the project. The libraries do not need to be instantiated as an actor or 

component in the game’s level. Typically, the libraries are used to contain complex helper functions. The 

Note Generator was a single entity and its sole purpose was to generate Note sequences and provide them 

to other systems, both on the Blueprints level and the C++ level. On the C++ level, we can simply 

reference the system by getting its static instance. Blueprint Function Library acts as the bridge to access 

the instance on the Blueprints level. 

Using Blueprint Function Libraries, we were also able to write C++ functions that were especially 

useful to the Note Highway. Such functions like PeekNextNoteSet allowed the Highway to do a sync 

check on the next note before popping it from the queue. 

6.5.1 Procedural Generation 
With procedural generation of Note sequences, we were able to provide variability to the 

gameplay’s linear structure. From a design perspective, we had already scoped down gameplay to a 

guided experience where players are to strike Notes when they reach a certain point on the Note Highway. 

Since we had already scoped down the project significantly e, there was little room to introduce 

variability for the experience to feel fresh every playthrough. By procedurally generating the Note 

sequences, players can play different sets of melodies in each session. The trade-off to procedurally 
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generating sequences, is that some sets of Notes may sound out of place while others sound as if a human 

had composed it.  

6.5.2 Grammar-based generation 
Tracery, a tool built by Kate Compton, was used to prototype the ruleset language used for 

Doldrum’s Note generation [12]. The language uses context-free grammars to generate text. This 

grammar entails a start symbol, production rules, terminal, and non-terminal symbols. Non-terminal 

symbols can be replaced by other rules, and terminal symbols generate pieces of the final result. 

For the purpose of creating sets of Notes that adhered to design goals, the following ruleset was built: 

<<start>>   -> <measureA><measureB> 

<measureA>  -> <four> 

<measureB>  -> <three><action> 

<four>   -> {<three><one>, <one><three>, <two><two>} 

<three>   -> {<two><one>, <one><two>} 

<two>   -> <one><one> 

<one>   -> <fourth> 

<fourth>   -> {<eighth><eighth>, fourthNote} 

<eighth>   -> {<sixteenth><sixteenth>, eighthNote}  

<sixteenth>  -> sixteenthNote 

<action>   -> actionBar 

Code Listing 1: Production rules for Note generation 

To enhance readability, the terminating symbols fourthNote, eighthNote, and 

sixteenthNote were replaced with Unicode note symbols to emulate sheet music. The following sets 

were generated using the above ruleset. All sets are valid measures. 
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Figure 54: Sequences generated by Tracery prototype 

Following the prototyping, a C++ system was built that reads a JSON ruleset, creates a graph, and 

traverses through it in order to generate Note. 

6.5.2.1 Writing to C++ 
The core requirements needed for Doldrum’s Note generation are the following: 

1. Ability to read in a ruleset 

2. Ability to generate Notes based on ruleset 

3. Have parameters that factor difficulty into generation 

4. Ability to pass generated Notes to other systems (such as Note Highway) 

 To read in a ruleset, we first needed to figure out how the ruleset was structured. Since the 

prototype’s ruleset was fairly easy to create and modify, it was used as an inspiration. The ruleset built in 

Tracery was also in JSON format. A similar JSON format was used for the C++ version. Unreal’s C++ 

API had a JSON parsing library, which helped parse the ruleset data. Following parsing, for each rule 

found in the ruleset, it was mapped to custom defined data structures. One of the structures represented 

the non-terminating symbol (@) and held information about its sub-rules (also referred to as tokens in the 

code) and probability for being generated. The other represented the terminating symbol (*) and held 

information about the note type it was supposed to represent.  
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Figure 55: JSON ruleset for Doldrum's note generation 

Once the rules were mapped, the next step was to build the algorithm that generates the Note sets. 

The high-level pseudo-code for the algorithm is the following: 

Define Result as empty array of notes 

Recurse into start rule 

For each token in rule’s token list 

 If token is non-terminating (@):  

  Select a subrule based on additional parameters 

Recurse into subrule and define result as sublist 

Append sublist to current list 

 If token is terminating (*):  

Initialize note based on sub-rule type 

Add note to the current list 
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Return Result 

Code Listing 2: Procedural Note Generation Algorithm Pseudocode 

In selecting a subrule, a helper function is called to run a heuristic function based on: desired Note 

density (game difficulty), and probability of rule getting selected. This function is run on all possible rules 

that derive from the current evaluated rule. The rule with the highest heuristic is then selected. In many 

cases when testing the system, there were rules that had the same heuristic value. The solution was to then 

randomly select from this list, so that there was still some randomness involved in the algorithm. The end 

product of the algorithm will produce a list of Note objects that are then pushed into a queue for use by 

other systems like the Note Highway.  

6.5.3 Scripted Generation 
While making the entire gameplay procedurally generated is an option, there are moments where 

we want the melodies generated to follow the music or be scripted in a specific fashion for the players to 

get used to gameplay. Using the same NoteGrammar system, it loads in a JSON file with the sequence of 

Notes, parses the sequence, and loads the sequence into memory. When the game needs to use the 

scripted sequence, the system clears out of the queue of existing notes and pushes the scripted note 

sequence in. From the Note Highway’s perspective, there is no difference in which kinds of Notes are 

being generated, and therefore can use the same system to spawn them. 

6.5.3.1 Note Editor 
To write scripted sequences, a possible option would be to write them out note by note in a text 

editor, but this option is very tedious and error prone. To simplify this process, a web-based note editor 

was built. Kelly had previous knowledge of building web-based applications, so it took less time to build 

it than it would have taken if it were made as an Unreal plugin. In the Note Editor, a team member could 

select which notes they want to play and when. A graph on the left side will display the sequence. The 

user can then press Save JSON, to save the scripted sequence in JSON format. They can then drag the file 

into the Unreal project’s Contents/Data folder, where the note generation system looks for scripted 

sequence files. 
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Figure 56: Early prototype of the Note Editor 

6.5.3.2 JSON Generation 
The purpose of the editor was for the team to be able to construct a visual sequence of Notes into 

a structure that the Note Generator is able to understand. To do that, JSON conversion functions were 

implemented in addition to the visual editing. While it was desirable for everything to be done client-side, 

modern browsers only allow for the saving of files to be done via the server. Due to this constraint, the 

conversion functions were moved onto a simple Node.js based web server.  

When the client makes a download call, it sends the scripted sequence of notes. The server takes 

that data, converts it to the structure the Note Generation system uses, saves it as a JSON file, and pushes 

that file to the client for download. When making an upload call from the client, the opposite is done. The 

server takes in the JSON file, parses it, and converts it to the data structure the editor uses, and sends the 

parsed and converted data back to the client for it to display. 

6.5.3.3 MIDI Parsing 
MIDI parsing was added to the Note Editor upon the sound designer, David Allen’s suggestion. 

This sped up the workflow of making pre-scripted files and allowed for flexibility on the audio 

implementer’s end.  
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Figure 57: Screenshot of MIDI sequence in Maschine 2 

To implement, midi-parser-js was used on the server side. [9] On upload, the server will receive 

the uploaded MIDI file as part of the client’s request. The server then runs it through the parser and sends 

a JSON back to the client in the response call. The client then goes through the contents of the object, 

extracts the necessary information, and populates the editor for display. The user can decide to make 

additional changes to the sequence via the interface and save it as a JSON file. 

 
Figure 58: Screenshot of the Note Editor's final version 

6.5.4 Original System 
Originally, generation of music by players would be dependent on a MIDI file containing chord 

information at various timestamps. This MIDI file would correspond to the soundtrack playing in the 

game. To keep track of which possible notes could play at any given time, there would be a system that 

holds a map of the timestamps, with a list of valid notes to play. A MidiManager was then built to hold 
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this information. To save time on parsing the data, we used a C++ MIDI parsing library, Midifile. [8] This 

library parsed out the information in our file, and provided information on the duration of the track, when 

each note was played, and which notes were being played. The intention, was to use this library to hold a 

collection of possible notes to play at a given timestamp. Whenever the player would strike their 

instrument, it would play a random note within the collection, ensuring that it sounds correct with the 

backing soundtrack. However, due to scoping and having the main gameplay be less freeform and more 

guided, we moved towards a grammar-based system. 

6.6 PHASES 
Doldrum’s Phase System is responsible for the game’s progression. It acts similarly to the Boss 

State Machine system in that there are requirements defined by a designer on how to progress. 

Structurally, it is similar to the Metronome System as there is a manager object with listeners attached to 

it. The Phase System’s ruleset is tied to a BossCharacter, so if the game was to progress to the next 

boss, a new set of phase rules specific to that boss would come into play.  

Additional requirements for the Phase System were the following: 

● Ability to delay changing of phases to allow for object cleanup and subsequent transition 

effects. 

● Rules to allow for phase progression could differ depending on the phase 

The Cuckoo listens to phase changes since there are specific phases that either trigger 

environmental changes (e.g. Chimes) or the Cuckoo’s state behavior. The Note Highway listens to phase 

changes to know when to clear the Highway of Notes, as well as knowing what type of Notes to generate 

for the next phase. 

To satisfy the requirements defined for the Phase System in an efficient manner, much of the 

previously implemented systems were referenced (Boss State Machine, Metronome). The difference with 

the Phase System is that its controller object is a singleton, since the game will only need one running at 

all times.  

 To implement the delaying of phases, a listener is attached to an actor. Every listener is called by 

the Phase System when it leaves a phase and when it enters a phase. When leaving the phase, the 

blueprint logic must explicitly tell the Phase System that it is ready to proceed to the next phase. The 

caveat to this approach, is that all objects using the PhaseControllerListener needed the 

programmer to implement the call that tells the system that it is ready to go to next phase. This meant that 

any object that did not implement the call would prevent the PhaseSystem from progressing. 
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6.7 PLAYER 
The PlayerBP class handles all interfacing between the HTC Vive and the game world. 

Additionally, the platform is used both in player movement and to indicate to the game’s play space to the 

player. All Unreal VR interfacing support is contained within the PlayerBP class. 

6.7.1 VR Interfacing 
 The HTC Vive features three trackable components: The headset and the two motion controllers. 

The majority of basic motion tracking and other Vive-specific functionality was provided by the VR 

Template starter project. This project was officially introduced in version 4.13 of Unreal Engine [15]. The 

template also provided functions for both attaching hand actors to the controllers’ locations and making 

the controllers vibrate. 

6.7.2 Platform 
Functionally, the platform is the actor that moves when the player makes a movement input 

command. Several actors, including the player and xylophone, have their locations parented to the 

platform. Thus, when the platform moves, they also move. Additionally, the platform also handles 

collision checking for whenever the player is standing outside of the playspace. The movement of the 

platform and what happens when the player walks outside of the playspace are handled by the xylophone 

blueprint and player blueprint, respectively. 

6.7.3 Walking Out of Bounds 
When the player steps outside of the playspace the game will automatically pause. This playspace 

is represented as an invisible collision box that contains the platform that the player stands on. If the 

player leaves that collision box then the game will automatically pause until they walk back into the box. 

6.7.4 Mallets 
The mallets are long and narrow which allows players to easily hit xylophone faces in a natural 

and realistic way. The mallets’ size and length were modelled after real xylophone mallets. Only the 

spherical tip of the mallet can hit the xylophone faces.  

 In addition to providing the player with a way to hit the xylophone faces, the spherical tip will 

also glow with electrical sparks when the player is doing well. After hitting a certain number of 

consecutive Notes, the player will enter the Frenzy state. During this state, electrical particles will spawn 

from and follow the tip of the mallet. 

 Whenever the mallets collide with the xylophone faces the motion controllers will vibrate. As the 

xylophone only exists in the game world, there is no way to prevent players from moving their controllers 
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straight through the xylophone faces. Therefore, the vibration is the only way for players to discern when 

the mallets collide with the xylophone.  

 VR functionality such as allowing the player to rotate their head to look around was provided by 

the VR template and was not significantly modified. The hands, however, were significantly adjusted to 

act as mallets.  

6.7.5 Height Calibration 
Doldrum features an option to adjust the height of the xylophone based on the current height of the 

Vive headset. This allows for players of all heights to easily hit the xylophone with the mallets without 

having to overreach.  

Height calibration is accomplished via updating the xylophone’s current location to be a set 

distance on the z-axis—the vertical axis in Unreal Engine 4—from wherever the player’s camera is 

located. This camera is bound to the current location of the Vive headset. Headset rotation and location 

aside from its position on the z-axis is ignored. 

6.8 XYLOPHONE 
The xylophone actor is where the majority of the player-specific logic and functionality is 

contained. This actor blueprint is titled NewDrumBP due to a significant overhaul to how the xylophone 

works that occurred early on in development. The reason for the name discrepancy is because the 

xylophone was a drum for a majority of the game’s development. NewDrumBP contains logic and 

functionality for: receiving and responding to incoming Note notifications from the Highway, action 

inputting, handling of gameplay systems such as health and Frenzy, and handling collisions with the 

player’s mallets. NewDrumBP is one of the largest blueprints in Doldrum, and it has undergone significant 

changes and modifications over the course of the game’s development.  

While the player class handles most VR interfacing, the NewDrumBP handles most game-specific 

logic. This includes health, Frenzy handling, and Note handling.  

 The player begins the game with a certain amount of health and certain events can reduce it. If the 

health ever reaches zero, the boss stops performing actions, the Highway stops sending Notes, and the 

player sees a “Game Over” screen. Health loss and gain both have their own respective functions within 

NewDrumBP that must be called within the actor in response to certain game events. These functions 

modify the actor’s health variable while also calling other events that result from the loss or gain of 

health. For example, losing health will reset the player’s Frenzy counter. 
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 Frenzy is a system contained within the NewDrumBP actor. This system rewards the player for 

correctly striking Notes without missing. On every successful Note hit, the Frenzy counter is incremented. 

When that counter surpasses the defined FrenzyMax variable the player will enter the frenzied state. 

During this state, player attacks gain additional visual effects and deal increased damage. If the player 

ever takes damage from any source, their Frenzy is reset back to zero and they lose all benefits from high 

frenzy.  

 Functions that add or subtract health or frenzy also update the player’s HUD (heads-up display). 

Additionally, the function that reduces player health also causes the Note Highway to briefly pulse red. 

6.8.1 Note Hitting 
The NewDrumBP contains several functions that pertain to incoming Notes. The xylophone contains 

a Boolean variable for each of its five faces that refers to whether that specific xylophone face is 

expecting an input. The act of setting a xylophone to expect an input is referred to as “priming”. When a 

Note arrives at the xylophone, that primed Boolean is set to true and the player is expected to hit that 

face within a set amount of time. When a Note arrives at the xylophone, the following sequence of events 

occur: 

1. The PrimeDrum function is called. This function takes the target xylophone face as an 

input and sets the respective primed Boolean to true.  

2. A timer for that respective xylophone face is started. After a set duration, the timer is 

completed and another function is called 

a. If the player hits the xylophone face before the timer concludes, the timer is 

cancelled and the respective Note is popped. This is considered a successful hit. 

b. If the timer concludes, the player is considered to have missed the Note and the 

player is dealt a small amount of damage. 

3. After either outcome, the primed Boolean for that xylophone face is set to false until 

another Note arrives at that face. 

The primed Boolean for a respective xylophone face is used for when the player’s mallets collide 

with a given xylophone face. If that xylophone face is primed then the respective timer is stopped. The 

player is determined to have successfully hit that Note. Player hits to a given xylophone face that are 

performed while that xylophone face is primed will also increment the Frenzy counter. 
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6.8.1.1 Action Input Checking 
The player’s sole way of interacting with the Boss is via the action inputs that can be performed 

whenever an Input Bar reaches the player. These action inputs require that the player hit a single 

xylophone face with both mallets. Depending on the face hit, one of three actions can occur: 

1. Two hits on the center face will result in an attack. A lightning orb will travel towards the 

boss and deal damage to it 

2. Two hits on the leftmost xylophone face will cause the player to move left. This can be 

used to dodge attacks or reposition their attacking point 

3. Two hits on the rightmost xylophone face will cause the player to move right.  

Action Input checking is done in several steps. Firstly, hitting any xylophone face after an Input 

Bar has reached the player will create a DrumInputStruct, a struct that contains information pertaining 

to a possible action.  

 
Figure 59: DrumInputStruct Blueprint node with all values set to the default 

 A DrumInputStruct represents a single beat’s worth of information. The DrumInputStruct 

contains a Boolean for whether-or-not the beat features a hit xylophone, an enumeration for which face 

was hit, whether-or-not the beat featured another simultaneous hit, and an enumeration for which 

xylophone face was simultaneously hit.  

 After the DrumInputStruct is constructed from the xylophone faces that the player hits, it is 

compared to the entries in an array of other DrumInputStructs. This array contains a separate struct for 

each of the three possible inputs. Each struct within this array is compared to the newly created 

DrumInputStruct. If it matches any entry in that array, the respective action is performed and no 

further entries in the array are compared.  

 Comparing one DrumInputStruct to another is facilitated via a helper function titled 

CompareDrumInputStruct. This function is used several times throughout the Action Input system. 
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Specifically, comparisons occur when the struct is first made and when it is being compared to the array 

of action inputs. The DrumInputStruct is immediately created as soon as the player makes any hit 

while an input is expected. Thus, due to players always hitting one xylophone face slightly before another 

even on simultaneous hits, the hit that occurs after the initial will instead result in a check to see if a 

DrumInputStruct already exists. If that struct exists, NewDrumBP will instead only populate the 

variables of the struct that pertain to simultaneous hits. Likewise, if the struct’s variables are all equal to 

the default, it can be assumed that this is the first hit of the input.  

6.8.2 Actions 
After the DrumInputStruct is successfully compared to one of the three given actions, the 

respective action is performed. This action occurs immediately after the player’s input. 

 
Figure 60: The player's lightning attack orb 

The Attack action fires a lightning orb that travels directly to the Boss. When it collides with the 

Boss, it takes damage and its health depletes. If the player is Frenzied, this Attack will deal increased 

damage and have the added visual effects of some arcing lightning beams.  

The Move actions will relocate the Platform that the player stands on in whichever direction was 

inputted. The player can move either left or right. Movement will smoothly relocate the player to one of 

five MoveLocation actors that are statically placed in the game world.  
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Figure 61: The five move locations as seen from above. 

MoveLocation actors are invisible during gameplay but are represented in the Unreal Engine 4 

editor as small white spheres with red arrows. The chosen MoveLocation actor is dependent on which 

actor the Platform is currently located on. For instance, in the above image, the Platform is currently at 

the centermost MoveLocation actor. If they were to move right, the Platform would travel to the closest 

actor towards the right.  
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6.9 USER INTERFACE 
Figure 51 outlines the flow of the game via the UI interface. The UI is mostly linear with a few 

options that allow the player to navigate to other menus. 

Doldrum uses Unreal’s Motion Graphics (UMG) UI to display UI elements to the player. Three UI 

widget Blueprints are hooked up to the xylophone’s NewDrumBP. One widget, the HUD, is always active 

in world space. The other two are only active whenever NewDrumBP is called to display the menu UI. 

When the menu UI is active, all drum hit events that occur will redirect to the menu widget Blueprints, 

triggering menu-specific logic. 

 
Figure 62: The UI Flowchart 
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7   SOUND 
The sound of the game was wholly original. Sound effects can be broken down into a few 

categories. First, there are the player-centric sounds. This includes the xylophone, the Notes, the damage 

sounds, and the movement sounds. Another category would be the sounds related to the Cuckoo Boss 

which includes a death sound clip which is synced to an animation. Finally, we have the non-diegetic 

sounds such as UI.  

 

Figure 63: "Cuckoo Hurt" sound effect, created in Reaper 

 

The process of creating sound effects was entirely based on editing, layering, and modulating 

existing sample or synthesizers. None of the sound effects were recorded through field recording or 

Foley. The typical process for creating sound effects began with browsing a sample library for a base 

sound. Examples of base sounds include impacts or a texture. The base sound would serve as a 

foundation. Then, additional sound effects would be added on top of the foundational sound effect, 

depending on what was needed. For example, a stronger impact, a longer tail, or textures such as 
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brightness or warmth would be needed. From there, effects plugins would alter some or all of the sounds. 

Software used included Reaper as the digital audio workstation, and various plugins from the following 

developers: Soundtoys, Fabfilter, Izotope, Cockos, and Native Instruments. Typically, equalization and 

compression would be applied to the tracks followed by a “creative” effect such as distortion or pitch 

shifting. Through the creative effects, the sounds would unify into a distinct sound effect. 

 After creation of the sounds, they were implemented into Unreal. The sound designer, David 

Allen, imported the sounds into the engine and created a “Sound Cue” for each sound. Sound Cues are a 

type of asset in Unreal. They function similarly to small Blueprints but are innately cast as sound assets. 

Within them, a sound designer can set up modulations for sound effects such as randomizing pitch or 

volume. More advanced actions include the concatenation of consecutive sounds or the random selection 

of a single sound from a pool. Using Cues, the sound designer configured exactly how sounds should 

behave without touching any of the blueprints. Once the cues were created, he worked with one of the 

programmers to find where to trigger the cues inside of the blueprints.  

 During play, the player plays five different notes, based on the pentatonic scale. The pentatonic 

scale consists of the 1st, 3rd, 4th, 5th, and 7th tones of a scale. These notes will typically not conflict with 

the game’s backing track and will sound correct in any sequence. We originally had the five tones of the 

pentatonic scale corresponding to each of the five xylophone keys. However, we found that the 7th tone 

would create unresolvable tension as the player could never hit the octave (8th tone). Because of this, we 

removed the 7th tone and replaced it with the octave, which removed those issues.  

 Rather than use real xylophone samples for the instrument, we used synthesized sounds mixed 

with drum samples. The reasoning for this was to unify the sound of the instrument with the 

instrumentation of the backing track. As the backing track is nearly entirely comprised of synthesizers, a 

real xylophone would sound out of place. Rather, a short synthesizer was designed in Native Instruments’ 

Massive and paired with the attack of a kick drum, making the sound appear both percussive and tonal. 

For testing, the sound designer would improvise to the backing track using the designed sounds to ensure 

they fit. 

8 MUSIC 
The game features an original backing track to accompany the player’s procedurally generated 

melodies. The music was composed with a few constraints in mind: a strong emphasis on beats, simple 

rhythms, and unobtrusive melodies. In order to help the players maintain their rhythm, the whole beats 

were emphasized in the backing track. The song begins with a strong pulse on the whole beats from a kick 



 

  

64 

 

drum. This plays for two measures with a simple bass track accompanying it before the player has to play 

any notes. This gives the player enough to time to develop a firm grasp on the beat, allowing them to stay 

on-beat for the rest of their playtime.  

 The music features four distinct sections that loop until another section begins. The four two-

minute long sections feature many of the same instruments and melodic sequences. However, the 

intensity of the arrangement increases with subsequent sections. Each section is used for two consecutive 

phases of the boss fight for a total of eight phases. As mentioned, the phases always transition upon the 

Cuckoo’s health hitting a certain threshold and the Cuckoo’s health will only change upon taking damage 

from an Attack input. As the Attack input will always come at the end of a musical phrase, the phase will 

always transition at the end of a phrase, creating a seamless transition between musical sections. 

The music was written to be fun and upbeat while maintaining a serious and focused tone. In 

order to achieve this, inspiration was drawn from jazz music and features a typical jazz drum kit. As the 

game’s only track and the foundation for the player’s performance, the music had to be accessible and 

digestible. It features a catchy and repetitive bass line which is iterated on across the different sections. 

The lead synthesizers were meant to be more rhythmic than melodic. While there is a clear tone to all of 

them, they feature a significant punchiness, adding to the rhythmic pulse of the other tracks. Additionally, 

there are sampled mechanical toys and pot lids which create a playful and hypnotic tone. This track plays 

quick, staccato rhythms and add to the playful goal of the track. Later sections of the music feature a fast 

hi-hat which imitates a bird quickly chirping through heavy modulation. This sound is not particularly 

melodic but was another way to impart a pulse and the beat to the player.  

 

Figure 64: Maschine 2 Digital Audio Workstation 
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All music was composed in the Maschine 2 DAW (digital audio workstation) with dedicated 

Maschine mk3 hardware and later arranged in Bitwig Studio 2. All of the music was performed live into 

the DAW using the hardware. Sections of the song would loop and each individual instrument would be 

sequenced on top of each other. The continuous play of the music and the organic means of creating the 

layers heightened the improvised feeling of the music. [2] 

 

Figure 65: Music arrangement in Bitwig Studio 2 
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9  PROJECT MANAGEMENT 
We used a variety of project management software to facilitate productivity and clarity for the team.  

9.1  TRELLO 
We chose to use Trello as our task list and issue tracking software. It was selected due to ease of use. 

Additionally, several members of the team already had experience with Trello and it was picked up 

quickly by those who did not. While we had decided to use the software at the beginning of the project, 

we did not strictly use it until approximately halfway through the project. Once this transition happened, 

we noticed a significant increase in productivity and a decrease in confusion about objectives.  

 

Figure 66: A screenshot of the Doldrum Trello board 

Trello is a web-based organization application which imitates the act of moving sticky notes on a 

whiteboard. Tasks are represented by “cards” which are organized into “lists” which are named columns. 

A given card can have a variety of attributes including comments, organizational tags, checklists, and an 

assigned team member. We chose to organize our cards primarily by priority levels but also had lists for 

“bugs”, “needs implementation”, and “awaiting review”. Cards 'can be freely moved between columns, 

allowing us to easily move items up and down in priority. Cards were further organized by tags. The tags 

would both list what component the card was addressing (e.g. “Cuckoo Boss”, “Note Highway”) and 
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what type of work had to be done (e.g. “Animation”, “Functionality”). With this organization system, it 

was easy to understand what a card was describing when looking at the title and the tags. 

 

9.2 PERFORCE 
Perforce was our chosen source control platform. A private Perforce server was maintained by a 

team member. Most of the project team had no experience with Perforce. Despite this, Perforce was easy 

to learn and performed incredibly. The decision to use Perforce over Git or SVN was due to its robust 

integration with Unreal Engine 4. There are a few distinct advantages to using Perforce over other source 

control options with Unreal. One significant advantage is the ability to diff between Blueprints when 

comparing versions. This functionality is built into Unreal and is not present with other source control 

options due to their inability to handle large binary files (i.e. Blueprints). 

The Perforce integration in Unreal is intuitive. Whenever someone edits a file, it is “checked-out” 

by that member. The checked-out file will be read-only for all other team members and have a small lock 

icon on the file. This prevents file conflicts and the need to merge changes. Other features include the 

ability to sync individual files from within the Unreal editor. The use of Perforce made development 

smooth and we did not encounter any issues with Perforce after initial setup.  

 

9.3 GOOGLE DRIVE 
Documents and other non-project files were hosted on Google Drive. Google Drive was chosen 

over similar platforms such as Dropbox due to the collaboration features. It was easy to collaboratively 

write design documents, meeting agendas, and other documents together rather than one person editing a 

file. This made document creation easy and fast. In addition to documents, many art assets were uploaded 

to the Drive as a means for file sharing. Art assets were often shared this way instead of through Perforce 

as it was typically the programmer’s responsibility to implement the assets. Because of this, it was 

simpler for the programmers to decide where the assets should be located in the file structure of the 

Unreal project. The other reason this happened was because the artists would often use a variety of 

campus computers which did not have Perforce installed on them. As Google Drive is web-based, they 

could easily upload their work from any computer. 
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9.4 SLACK 
Most online communication was done through Slack. The ability to create channels allows 

conversation to be organized and to make context-switching effortless. Most of our channels were 

categorized by types of work, e.g. “programming”, “visuals”, “audio”, or “paper”. However, we also had 

channels such as “meetings”, “resources”, and “brainstorming” for other specific needs. Slack was a 

valuable tool which facilitated fast, organized, and rapid communication.  

9.5 DISCORD 
Discord was occasionally used for online communication. Discord is set up similarly to Slack but 

also features voice channels. When working from home, members of the team would occasionally work 

while in a Discord voice channel, so we could quickly communicate with each other. It also boosted 

productivity and comradery as it would give the feeling of working beside each other in an office setting. 

The other use for Discord was to have some impromptu meetings online. If it we wanted to meet and the 

meeting was either planned last minute or would simply be very brief, we would talk in a voice channel 

on Discord.  

 

10 TESTING 

10.1 METHODOLOGY 

10.1.1 Overview of the Experiment/Design  
The goal of playtesting was to observe and analyze user behaviors when engaging with Doldrum. 

Users were fitted with an HTC Vive virtual reality headset and a pair of HTC Vive wireless controllers. 

When the Investigator began the game, they observed the subject from the start of the game until the very 

end, or whenever the subject decided to opt out. When the playtest was complete, subjects were asked to 

complete a post-test survey on their thoughts and observations. 

Observed behaviors and results from the post-test survey were used to improve the design of our game.    

10.1.2 Population  
The population consisted of WPI students. The team had considered populations from 

demonstration events and high-traffic events such as Worcester Game Pile and Penny Arcade Expo East. 

Neither were chosen as explained in the Location section. 
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10.1.3 Location 
Playtesting was conducted on the WPI campus in the Digital Art Studio in Fuller Laboratories. 

The location was already fitted with the necessary virtual reality equipment needed to conduct this study. 

We had also considered conducting playtesting at events mentioned in the Population section but decided 

that managing the logistics of formal playtesting for these events would be difficult. These logistical 

difficulties may have resulted in the data being less detailed compared to playtesting in a private and 

controlled environment like the Digital Art Studio. 

10.1.4 Restrictions 
The time limit for a single playtest session was 30 minutes long.  

10.1.5 Technique  
During the playtest portion of the study, the data collected by the investigators were observable 

actions, reactions, questions, and comments subjects had while playing the game. Data points that the 

team considered to be important to how well the game played were the following: 

1. Time user takes to complete the game 

2. Subject sentiments 

3. Number of times subjects played the game 

The post-test survey consisted of a series of questions that assessed the subject’s physical and 

emotional attitude during the playtest. The post-survey allowed subjects to provide and anonymize any 

remaining information they had for the investigator(s) that they did not mention during the playtest. 

Attitudes were measured using Likert scales so investigators could assess the direction and intensity of a 

subject’s opinions towards a particular event in the game the game overall. When asking for subject 

moods, a selection of moods from a mood chart were listed as checkboxes for the user to check if they 

experienced a listed mood. This helped investigators gauge how the game affected players. 
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Figure 67: Circle of Affect used to categorize and measure positive and negative words and moods of user [13] 

General demographic information such as age was asked in order to provide additional context to 

the collected data. The survey included questions asking of previous exposure. For example, it was asked 

if the subject had used virtual reality equipment as well as if they have played rhythm games before may 

also affect how they behave towards the equipment and the game. The survey provided the subject several 

text input sections to voice specific thoughts, observations, and recommendations. 

10.1.6 Materials  
Playtest subjects were given an informed consent form which detailed the process and procedure 

of the study, as well as potential risks. Playtest subjects were fitted with a cleaned HTC Vive virtual 

reality headset and a pair of motion controllers. Investigators had note sheets for each individual subject 

to record observations. Investigators also had a digital post-study survey on a laptop that subjects had the 

option to take after playtesting. 

10.1.7 Entrance and Setup Procedure 
When a playtest subject entered the testing premises, they were given an informed consent form 

to read. If the playtest subject consented and signed, they were directed to the Play Area where the 

playtest was conducted. The Investigator gave a brief overview of what to expect. Subjects were 

encouraged to speak out their thoughts to assist investigators with observational data collection. To assist 

with observational data collection, a portable audio recorder recorded the entire playtest. Subjects were 

informed of when the recording began and ended. With the assistance of an Investigator, the subject was 
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fitted with a headset, a pair of controllers, and a pair of headphones. Once the subject was comfortable 

with the setup, an investigator began the playtest by opening the game for the subject. 

10.1.8 Study Procedure 
From here, the subject acted and reacted to our game anyway they chose. The investigator noted 

down these actions and reactions in conjunction to what the subject saw in the headset. The investigator 

also noted any questions and comments the subject had during playtesting. If a subject directed a question 

to the investigator regarding the study and/or the setup (i.e. unable to see anything in the headset), the 

investigator was allowed to intervene. 

10.1.9 Ending Procedure 
Once the subject finished the game, either through early withdrawal, winning, or defeat, the 

investigator stopped the game and assisted with the removal of the equipment from the subject. The 

subject was then asked to complete an anonymous post-test survey. The survey was to collect data on 

subject attitudes and observations during playtesting. Once the subject completed the survey, they were 

free to leave.  

10.1.10 Variables  
The outcomes that we considered important were the following: 

From audio data: 

1. Subject sentiments 
From observational data: 

1. Time user takes to complete the game 

2. Number of tries user takes to play game before quitting 

From data gathered from post-test survey responses: 

1. Physical comfort level 

2. Usability/Interface difficulty 

3. Gameplay difficulty 

4. Subject mood 

These outcomes gave the team a general understanding of how a player felt towards the game’s 

aesthetics and gameplay on a physical and emotional level. This also allowed us to pinpoint areas that 

caused subjects to engage and/or disengage in our game in a way that does not align with our goal. We 

were then able to iterate upon those areas as needed. 
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10.1.11 Statistical Treatment 
Observations seen in more than 50% of subjects was considered as a general finding in our report. 

Observations seen between 10% and 50% was seen as a unique finding, and any observations seen below 

10% was considered as an outlier but was still noted in findings. These percentages were obtained from 

our desired sample size of 20 subjects. With 10%, we were considering a subject count of less than or 

equal to two as outliers. With 50% of our sample size, there would be at least 10 subjects. 

For post-test survey results, written responses were treated similarly to observation data. Data from 

Likert scale responses were compiled into charts. Any correlation found between certain attitudes and 

observed subjects’ behavior were noted in the report. Any correlation found between certain attitudes and 

general demographics were noted in the report. Any correlation found between observed subjects’ 

behavior and general demographics were also noted in the report.  

10.2 RESULTS 

10.2.1 Playtesting Demographics 
Though we had originally intended for 20 subjects to playtest our game, only 11 subjects 

playtested due to poor planning. On analyzing the demographics, our subject population was not diverse. 

All of the subjects were in the 18-24 year-old range and a majority were white and male. Our subject 

population was also familiar with rhythm games before playtesting-- having played either Guitar Hero or 

Rock Band, which made the game easier to understand. However, the data is not representative of 

audiences who are not yet exposed to game mechanics found in Guitar Hero. 

During playtesting, our subjects encountered a few game-breaking bugs that we fixed between 

testing sessions. This may have affected the data in terms of assessing usability and subject emotion. 

Aside from this, overall gameplay and design stayed the same over the course of the playtests. We 

organized the evaluated data into the following categories: Physical, Usability, Gameplay, and Emotional. 

A majority of the data evaluated was from the Post-Playtest Survey. 

10.2.2 Physical Assessment 
On a physical level, a majority of our subjects were comfortable with wearing the HTC Vive 

headset and holding the controllers. The majority also did not experience simulation sickness after 

playing. Since 63.6% of our subjects had prior experience with VR before playing our game, and 85.7% 

of that group had exposure to an HTC Vive before, it is likely they have been well-adjusted to the headset 

already. 
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Figure 68: Post-Playtest Survey, Physical Assessment Results: Headset comfort  

on a scale of 1-4 with 1 as Very Uncomfortable and 4 as Very Comfortable 

 

10.2.3 Usability Assessment 
On a usability level, our menus were easy to navigate. A majority of subjects found it neither very 

easy nor very hard to hit the notes, though some vocalized during gameplay that they were very bad at 

hitting them. There were mixed responses when it came to difficulty performing actions. For performing 

attacks, some subjects found it hard, while some found it very easy. On the other hand, more subjects 

found performing movement actions to be very hard than very easy. In audio recordings, subjects 

expressed confusion on how they were supposed to move. 
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Figure 69: Post-Playtest Survey, Usability Results: Performing attack action  

on a scale of 1-4 with 1 as Very Hard and 4 as Very Easy 

 
Figure 70: Post-Playtest Survey, Usability Results: Performing dodge action  

on a scale of 1-4 with 1 as Very Hard and 4 as Very Easy 

10.2.4 Gameplay Assessment 
On a gameplay level, subjects had mixed reactions toward various gameplay elements. A 

majority found the xylophone intuitive to use. They also found the boss’s actions to be neither hard nor 

easy to interpret. Subjects felt similarly about interpreting notes coming down the Note Highway. In 
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recordings, a few subjects vocalized that they were unable to focus on both the notes coming down and 

the boss. As such, they did not realize that the boss was firing attacks at them. As for the pacing of the 

game, most subjects found it to be fast. Similar to how subjects vocalized how difficult it was to hit notes, 

the same subjects mentioned how there were too many notes coming down at the very start of the game. 

In the iteration that the subjects were playing on, our team did not yet remove a difficult test sequence that 

played at the very beginning of the game.  

 
Figure 71:Post-Playtest Survey, Gameplay Results: Note predictability  

on a scale of 1-4 with 1 as Not Predictable and 4 as Very Predictable 

 
Figure 72: Post-Playtest Survey, Gameplay Results: Pacing 

on a scale of 1-4 with 1 as Too Slow and 4 as Too Fast 
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Despite difficulty of playing, some subjects ended up wanting to play the game more than once. 

As we took notes on subjects during the playtest, we also tallied down the amount of times they played 

the game before wanting to quit.  

 
Figure 73: Chart on the number of tries per playtester 

Multiple playthroughs demonstrated that our game does have some replayability with some 

players. During playtesting, most of the subjects that did replay did so because they had a better grasp of 

how the game worked and wanted to progress to a further point in the game compared to the previous 

attempt.  

As for gameplay predictability, subjects found note predictability and boss behavior to be on the less 

predictable side. Lack of predictability is part of the goal of the note generation system and boss behavior 

as we want gameplay to vary in between sessions. 
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10.2.5 Emotional Assessment 
 

 
Figure 74: Post-Playtest Survey--Emotional Assessment, chart on moods felt during gameplay 

Subjects experienced a wide range of emotions. During the playtest, subjects expressed 

frustration when trying to learn how to play the game. In the Post-Playtest Survey, many subjects said 

they were “Excited”, “Happy”, “Content”, “Stressed”, and “Tense”. In asking when the subject 

experienced the moods they have selected, a majority responded with feeling positive when they were 

able to hit Notes and negative when missing Notes or when they got attacked by the boss.  

10.2.6 Sentiment Analysis 
When running sentiment analysis on the audio recordings of the subjects, around half of them 

outputted a negative sentiment. It is likely that the subject vocally expressing confusion while learning the 

controls of the game led to an overall negative result. However, when looking at the transcript, many of 

the negative results point to subjects vocalizing that they have died in-game, thus skewing the data to be 

overall negative. 
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Figure 75: Chart of playtester's sentiment during audio recording 

In Figure 73, subjects whose sentiment is zero is considered neutral as they had both positive and 

negative responses to the game. 

When looking at subject comments in the post-playtest survey, many of the subjects’ comments 

outputted a positive sentiment. For components of the game such as visuals and music, all subjects 

responded positively, expressing interest and delight. For gameplay, a majority responded positively, 

mentioning that it was fun and easy to learn. Subjects who expressed neutrally or negatively mentioned 

mechanics that they struggled with such as hitting Notes and moving.  
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Figure 76: Post-Playtest Survey--Chart of playtester's sentiment on game visuals 

 
Figure 77: Post-Playtest Survey--Chart of playtester's sentiment on game music 
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Figure 78: Post-Playtest Survey--Chart of playtester's sentiment on gameplay 

10.2.7 Improvements Made 
 Based on subject observations and feedback, the major takeaways our team received were that the 

game was too difficult for players and that there needed to be more player feedback when certain events 

were occurring in-game (e.g. boss attacking). Following the playtests, we made the following 

improvements and changes: 

● Increased the window for which notes can be hit 

● Removed sixteenth notes altogether 

● Added additional indicators for when the Cuckoo charging an attack (coloring fog orange) 

● Added sound effects for player feedback 

● Changed intro sequence so that it had predictable patterns 

● Removed scripted sequences that were after the intro 

10.2.8 PAX East 
Doldrum was selected to be showcased at the WPI booth during PAX 2018. The team agreed to 

not conduct any formal playtesting due to the sheer volume of players and difficulty in setting up surveys 

for the number of players. Even without formal playtesting at PAX, we did ask players for the feedback 

on their experience. Many players were unfamiliar with VR and even fewer had played a VR rhythm 

game. Despite the unfamiliarity surrounding our game, Doldrum was received positively by those who 

played it.  

There were a few minor bugs and problems with our game. Navigating the UI, specifically trying 

to get from main menu to tutorial, was a struggle for many players. However, people understood the game 
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quickly after being taught. The difficulty of the game was also an issue for many players. Not many 

players reached the chime phase of the game and many lost without ever utilizing our input bars. There 

was also a bug where the “damage dealt” would output 0 at the end of the game which discouraged many 

players who thought they were doing well. Additionally, many players seemed to read the tutorial without 

understanding what it meant. Usually, players fared better on subsequent attempts. Despite this, two 

players were able to defeat the Cuckoo Boss. This was achieved only after giving them a hint on how to 

get past the chime stage. Overall, we learned a lot from the players and discovered a few bugs. PAX was 

a success.  

10.3 RELEASE 
Following PAX East, the overall reception from those who played Doldrum at PAX was positive. 

Some asked if there were any plans for releasing the game. There were no plans originally to release on 

major content distributors such as Steam, mostly due to the amount of additional development time 

required to make the game marketable. Itch.io ended up as the favored alternative, where we were able to 

put up our game for distribution in less than an hour. 

On April 15th 2018, we put Doldrum up for free download on itch.io. The download is a zip file 

containing the game’s executable. Though playing the game using the HTC Vive is highly recommended, 

we have provided keyboard instructions for players who do not own the hardware.  

 

 
Figure 79: itch.io Analytics Panel, Visits to Doldrum's itch.io page from the following sites 

Using itch.io’s analytics page, we are able to view user engagement data from users on the site. 

Since then, the game page has received a small but steady amount of views as well as downloads. Within 

a week of release, the game has been downloaded 27 times. As seen in Figure 78, most engagement has 

been from user searches. Particularly, the download page has received the most traffic from people 

searching for free virtual reality games.  
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 The itch.io game page has also received one user comment since release. Based on the comment, 

the user played the game without VR equipment. They found the keyboard controls to be unintuitive. 

However, the user found the art, music, and atmosphere enjoyable. Since the keyboard controls were 

strictly for debugging purposes, we did not formally playtest on keyboard controls. Therefore, this an 

expected criticism. We are glad that the response towards the art and music were similar to that in our 

formal playtesting data. 

11 POST-MORTEM 

11.1 DESIGN 
Ultimately, Doldrum’s final iteration was an enjoyable yet fairly derivative rhythm game. Despite 

its attempts to tie together the action and rhythm game genre, the final design was extremely similar to 

other popular rhythm games such as Guitar Hero or Rock Band. While we wanted to experiment with 

players performing music in a freeform fashion, there was not enough guidance in showing what the 

player was supposed to do. This lack of structure resulted in a design that we believe would be confusing 

and unintuitive for players. Because of this, we found it safer to look upon the mechanics of successful 

rhythm games and iterate upon them. We incorporated a note highway as foundation and then used the 

action system to expand on the typical rhythm game design. The primary unique element of Doldrum 

ended up being the fact that it was VR rather than the boss fight. This was primarily due to the player’s 

ability to interact with the boss being limited both in terms of what they could do and when they had the 

opportunity to make meaningful choices. 

The Input Bar system combined with the player’s ability to either attack or dodge meant that 

whenever the player was provided with the opportunity to make an action they only needed to react to 

what the boss was currently doing. If the boss was readying an attack, the player always had to dodge. If 

the boss was not readying an attack, the player could always safely make an attack input themselves. 

Thus, the Input Bar system was fairly simplistic and did not adequately allow for an engaging combat 

experience.  

Despite the ambitious departure from conventional rhythm games in early designs, it was 

concluded that the conventions exist for a reason. Without the strict requirement to continuously hit notes 

on beat, there is little incentive for the player to engage with the game’s rhythm. While we made many 

attempts to break the conventions to allow for more player improvisation, we found that the designs were 

too open-ended to create engaging gameplay.  
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However, the significant reduction in scope that Doldrum experienced allowed us to focus on 

polish and game feel rather than sheer content.  

11.2 FUTURE WORK 
As important as working on this project was as an experience, our team does not have any plans on 

continuing work on it after graduating. The members of our team are heading in different directions 

following graduation as we begin our professional careers. However, there is a great amount of potential 

in the base mechanics and the scrapped content. Thus, we may return to Doldrum in the future. 

11.3 WHAT WENT WRONG 
The most significant problems we encountered were with scoping and communication. The 

combination of this delay and overscoping led to much of the initial game being cut back or removed. 

Additionally, communication was an issue for our team in the early terms of the year. While individual 

team members worked on their respective tasks, there was a lack of cohesion in team-wide goals. This 

resulted in a disorganized project. Later, we established multiple weekly meeting times to reinforce team 

cohesion.  

An additional problem was with the lab equipment. The computer in the IMGD VR lab was not 

setup properly to facilitate development in Unreal Engine 4. There were a number of programs that 

required administrative privileges in order to install or run. This significantly hindered our initial 

development. As a result, we were forced to develop without a VR system until late B-Term. This meant 

that all VR testing and adjustments were delayed until the beginning of C-Term.  

We encourage teams to build a vertical slice rather than attempt to create a larger game. By taking 

this approach, we were able to polish the game to our standards. Additionally, we encourage teams to fail 

fast and cut any content that does not fit with the game's experience goals. We spent too much time 

iterating on the design in the first half of the academic year. If we had decided on a design earlier, we 

could have had more time to add more polish and content to Doldrum. 

11.4 WHAT WENT RIGHT 
Despite early difficulties, we ultimately created a fun and compelling rhythm-action game. 

Doldrum is a polished vertical slice of an ambitious concept. All of the challenges we overcame gave us 

valuable experience that we can bring into future work we take on. 
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 It was very useful for the entire team to play games together. We were able to discuss aspects of 

gameplay as they were happening and decide whether or not to incorporate elements into Doldrum. More 

importantly, these playthroughs brought the team together, boosting morale and camaraderie.  

 Through development, the team gained a myriad of technical skills. Programmers gained 

experience with C++, Unreal Engine 4, and Perforce. David experimented with performance-based 

composition and learned how to use the Maschine mk3 hardware. Kent gained experience with rigging 

and 3D animation. The most significant achievement was learning how to develop for VR. Designers had 

to consider the unique benefits and constraints of VR. Programmers and artists had to optimize to meet 

the high performance impact of the Vive. Finally, we learned how to develop a game which was larger in 

scope than any game we had ever made. We accomplished this through frequent meetings and a variety of 

software. Despite communication problems and a slow start to development, Doldrum is a polished and 

engaging virtual reality game. 
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13 APPENDIX 

13.1 ADDITIONAL CONCEPT ART 

13.1.1 Trumpet Boss 

 

13.1.2 Audience Boss Environment 

 



 

  

88 

 

13.1.3 Owl Mentor Environment 

 

13.1.4 Note Highway Player View 
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13.1.5 Note Highway Side View 
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13.1.6 Menu Concept 

 

13.1.7 Logo Iterations 
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13.2 PLAYTEST INFORMED CONSENT FORM 
 

Informed Consent Agreement for Participation in a Research Study 
  

Investigator(s): VR Horror MQP Team 

● David Allen (dpallen@wpi.edu) 
● Kent Fong (kfong@wpi.edu) 
● Matt Szpunar (mjszpunar@wpi.edu) 
● Henry Wheeler-Mackta (hjwheelermackta@wpi.edu) 
● Kelly Zhang (kezhang@wpi.edu) 

  

Contact Information: vrpmqp@wpi.edu 

  

Title of Research Study: DOLDRUM Playtesting 

  

Introduction: You are being asked to participate in a research study. Before you agree, 
however, you must be fully informed about the purpose of the study, the procedures to be 
followed, and any benefits, risks or discomfort that you may experience as a result of your 
participation.  This form presents information about the study so that you may make a fully 
informed decision regarding your participation. 

  

Purpose of the study:  The goal is to observe and analyze how players behave and feel during 
and after playing our game, DOLDRUM, while using virtual reality technology. 

  

About the Game: DOLDRUM is a horror-esque, action, and rhythm virtual reality game. As the 
player in the virtual world setting, you will be equipped with a set of drums and drumsticks. To 
survive, Hit the notes as they come towards you by hitting the drums with your drumsticks. 
Perform actions on the drums with your drumsticks to fight against the enemy in front of you. 
Fight, drum and survive until the very end to win. 

  

Procedures to be followed: The study is to be conducted within 30 minutes or less. You will be 
seated during the playtest. You will also be fitted with an HTC Vive headset and controllers. 
When comfortable, signal to the investigator(s) that you are ready to begin the playtest. 
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During the playtest, we encourage you to speak out your thoughts and actions. The 
investigator(s) will be taking notes on your behavior during the procedure. 

If at any moment during the playtest you feel uncomfortable and would like to withdraw early, 
pause the game and tell the investigator(s) to stop the playtest. 

Upon finishing the game, either through withdrawing early, or reaching the win/lose condition, 
you will leave the play area with the virtual reality equipment. You are free to leave at this point. 
There is a post-test survey you can take after the playtest. You have the right to choose to not 
complete the survey. 

  

Risks to study participants: Potential and foreseeable risks you may experience following this 
study include: motion sickness during gameplay, contracting pink eye via headset. The 
investigator(s) wipe down equipment following each study to mitigate the risk of pink eye. 

  

Benefits to research participants and others:  While there are no immediate benefits to you 
on completing the playtest, your contributions to playtesting will help us, the investigator(s), to 
understand user behaviors in virtual reality better and create more enjoyable virtual reality 
experience in DOLDRUM. 

  

Record keeping and confidentiality: Data recorded will be anonymous, with only 
demographic info preserved, and stored in a Google Drive accessed only by the MQP team. 
Records of your participation in this study will be held confidential so far as permitted by law. 
However, the study investigators, the sponsor or it’s designee and, under certain circumstances, 
the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be able to inspect 
and have access to confidential data that identify you by name. Any publication or presentation 
of the data will not identify you. 

  

Compensation or treatment in the event of injury: In the event of injury during the playtest, 
the investigator(s) will immediately call WPI EMS for medical assistance, but will be unable to 
compensate costs regarding said injury. You do not give up any of your legal rights by signing 
this statement. 

  

For more information about this research or about the rights of research participants, or 
in case of research-related injury, contact: 

VR Horror MQP Team (Email: vrpmqp@wpi.edu) 

VR Horror MQP Adviser (Ralph Sutter, Email: rsutter@wpi.edu) 
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VR Horror MQP Co-Adviser (Gillian Smith, Email: gmsmith@wpi.edu) 

IRB Chair (Professor Kent Rissmiller, Tel. 508-831-5019, Email:  kjr@wpi.edu) 

University Compliance Officer (Jon Bartelson, Tel. 508-831-5725, Email:  jonb@wpi.edu) 

  

Your participation in this research is voluntary.  Your refusal to participate will not result in 
any penalty to you or any loss of benefits to which you may otherwise be entitled.  You may 
decide to stop participating in the research at any time without penalty or loss of other benefits.  
The project investigators retain the right to cancel or postpone the experimental procedures at 
any time they see fit. 

  

By signing below, you acknowledge that you have been informed about and consent to be a 
participant in the study described above.  Make sure that your questions are answered to your 
satisfaction before signing.  You are entitled to retain a copy of this consent agreement. 

  

  

___________________________                             Date:  ___________________ 

Study Participant Signature 

  

  

  

  

___________________________                                      

Study Participant Name (Please print)                                  

  

  

  

____________________________________           Date:  ___________________ 

Signature of Person who explained this study 

  

Additional clauses to add to Consent Agreements, as appropriate: 
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The treatment or procedures used in this research may involve risks to the subject (or to an 
embryo or fetus, if the subject is or may become pregnant), which are currently unknown or 
unforeseeable. 

  

Additional costs to the subject that may result from participation in this research include:  None. 

  

Significant new findings or information, developed during the research, may alter the subject’s 
willingness to participate in the study.  Any such findings will be promptly communicated to all 
research participants. 

  

Should a participant wish to withdraw from the study after it has begun, the following procedures 
should be followed:   

1.    Pause the game OR Press the Vive Menu button on any of the controllers. 

2.    Vocally state to investigator(s) to withdraw and/or exit the game. 

The consequences for early withdrawal for the subject and the research are: The Investigators 
will still use data from the participant unless explicitly requested to discard data recorded during 
the playtest. 

  

  

Special Exceptions:  Under certain circumstances, an IRB may approve a consent procedure 
which differs from some of the elements of informed consent set forth above.  Before doing so, 
however, the IRB must make findings regarding the research justification for different 
procedures (i.e. a waiver of some of the informed consent requirements must be necessary for 
the research is to be “practicably carried out.”)  The IRB must also find that the research 
involves “no more than minimal risk to the subjects.”  Other requirements are found at 45 C.F.R. 
§46.116. 
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13.3 POST-PLAYTEST SURVEY QUESTIONS 
1) Attitude Assessment (Likert scales 1-5 unless mentioned otherwise) 

a. Physical Assessment 
i. How comfortable was it to wear the headset?  

(Very Uncomfortable - Very Comfortable) 
ii. How comfortable was it to handle the controllers?  

(Very Uncomfortable - Very Comfortable) 
iii. How motion sick do you feel after playing the game?  

(Very Uncomfortable - Very Comfortable) 
b. Usability Assessment 

i. How difficult was it to navigate the menu?  
(Very Hard - Very Easy) 

ii. How difficult was it to hit the notes?  
(Very Hard - Very Easy) 

iii. How difficult was it to perform the attack action?  
(Very Hard - Very Easy) 

iv. How difficult was it to perform the dodge action?  
(Very Hard - Very Easy) 

c. Gameplay Assessment 
i. How difficult was it to understand how the drum worked?  

(Very Hard - Very Easy) 
ii. How difficult was it to understand what the boss did?  

(Very Hard - Very Easy) 
iii. How difficult was it to interpret the notes coming at you?  

(Very Hard - Very Easy) 
iv. How was the pacing of the game?  

(Too slow - Too fast) 
v. How predictable were the notes coming down the highway? 

(Unpredictable - Very Predictable) 
vi. How predictable were the boss’ actions?  

(Unpredictable - Very Predictable) 
d. Emotional Assessment 

i. What moods did you feel while playing the game? (Check all that apply) 
1. Excited 
2. Elated 
3. Happy 
4. Content 
5. Serene 
6. Relaxed 
7. Calm 
8. Fatigued 
9. Bored 
10. Depressed 
11. Sad 
12. Upset 
13. Stressed 
14. Nervous 
15. Tense 

ii. When did you experience the moods that you have selected? 
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2) Subject Write-in Questions and Comments 
a. What are your thoughts on the game’s visuals? 
b. What are your thoughts on the game’s sounds? 
c. What are your thoughts on the gameplay? 
d. If you were to change something in the game, what would it be? 
e. Do you have any additional feedback about the game? 

3) General Demographic Information 
a. Age 
b. Have you played in VR before this playtest? 

i. If so, which platform(s)? (HTC Vive, Oculus, etc.) 
c. Have you played a rhythm game before (i.e. Guitar Hero, Rock Band)? 

i. If so, list the title(s) 
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13.4 HEADER FILES 

13.4.1 BossCharacter.h 
 
UENUM(BlueprintType) 
enum class ENoteLength : uint8 
{ 
 One_Fourth  UMETA(DisplayName = "1/4"), 
 One_Eighth  UMETA(DisplayName = "1/8"), 
 One_Sixteenth UMETA(DisplayName = "1/16") 
}; 
 
UCLASS() 
class ORB_MQP_API ABossCharacter : public ACharacter, public IBossStateMachine 
{ 
 GENERATED_BODY() 
 
public: 
 // Sets default values for this character's properties 
 ABossCharacter(); 
 
#pragma region BP Properties 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings") 
  bool startOnBeginPlay; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings") 
  float startDelay; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings") 
  bool showDebug; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings") 
  int debugVerbosity; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings") 
  ENoteLength noteLength; 
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "Boss State: Settings") 
  AMetronomeController *targetController; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State") 
  EState RootState; 
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "Boss State") 
  EState CurrentState; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State") 
  TMap<EState, FState> StateTransitionMap; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State") 
  TArray<FPhase> PhaseSequence; 
#pragma endregion 
 
#pragma region Actions 
 UFUNCTION(BlueprintImplementableEvent, Category = "Boss State|Action") 
  void Idle(const ESubStateIdle& subState, const EStateProgress& stage); 
 UFUNCTION(BlueprintImplementableEvent, Category = "Boss State|Action") 
  void Attack(const ESubStateAttack& subState, const EStateProgress& stage); 
#pragma endregion Implement in BP 
 
#pragma region State Machine Events 
 virtual void Setup_Implementation() override; 
 virtual void Start_Implementation() override; 
 virtual void OnStateEnter_Implementation(const EState & from, const EState & to) override; 
 virtual void OnState_Implementation(const EState & from, const EState & to) override; 
 virtual void OnStateExit_Implementation(const EState & from, const EState & to) override; 
 virtual bool isValidTransition_Implementation(const EState& from, const EState& to) override; 
#pragma endregion Overridable in BP 
  
#pragma region State Machine Actions 
 // ExecuteAction: Runs the appropriate BlueprintImplementableEvent given state 
 void ExecuteAction(const EState& state, const EStateProgress& stage = EStateProgress::SE_During); 
 
 // ChangeState: Changes state of state machine given from and to states. 
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 //  if shouldInterrupt is true, any states queued up will be emptied and desired 
state 
 //  to change to will be added to run. 
 UFUNCTION(BlueprintCallable, Category = "Boss State") 
  EState ChangeState(EState to, bool forceChange = false); 
 // ChangeRandomState: Changes state of state machine randomly. Values can be passed in to 
influence random result 
 // setting int values to -1 will cause that value to not influence the result 
 UFUNCTION(BlueprintCallable, Category = "Boss State") 
  EState ChangeRandomState(bool forceChange = false); 
 UFUNCTION(BlueprintCallable, Category = "Boss State|Action") 
  void StopMachine(); 
 UFUNCTION(BlueprintCallable) 
  bool IsValidTransitionMap(); 
 UFUNCTION() 
  void OnMetronomeBeat(); 
  
#pragma endregion 
 
protected: 
 // Flag in case we get an external call to the state machine (i.e. player input) 
 bool bIsRunningAState; 
 // Queued up states to be run by AsyncTask 
 TQueue<EState> stateQueue; 
 
 UMetronomeListenerComponent *listener; 
 
 // AActor Functions // 
 virtual void BeginPlay() override; 
 virtual void BeginDestroy() override; 
  
private: 
 bool bIsStopping; 
 bool bMachineStarted; 
 EState mFromState; 
 EState mToState; 
 uint8 mSubstate; 
 EStateProgress mCurrentStateProgress; 
 int mBeatCounter; 
 int mSubDivCounter; 
 
 // Helper function to add transitions to StateTransitionMap 
 void ADD_TRANSITION(FState t, FStateEntry s); 
 void LogToScreen(FString s, FColor c, bool showDebug, int debugLevel); 
  
 FStateEntry GetStateEntry(EState fromState, EState toState); 
 EState GetNextState(EState fromState); 
 
}; 
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13.4.2 BossState.h 
UENUM(BlueprintType) 
enum class EState : uint8 
{ 
 SE_Any  UMETA(DisplayName = "Any"), 
 SE_Idle  UMETA(DisplayName = "Idle"), 
 SE_Attack UMETA(DisplayName = "Attack"), 
 SE_STOP  UMETA(Hidden) 
}; 
 
UENUM(BlueprintType) 
enum class ESubStateAttack : uint8 
{ 
 SE_Base   UMETA(DisplayName = "Base Attack"), 
 SE_Line   UMETA(DisplayName = "Line Attack"), 
 SE_Projectile UMETA(DisplayName = "Projectile Attack"), 
 NUM_SUBSTATES UMETA(Hidden) 
}; 
UENUM(BlueprintType) 
enum class ESubStateIdle : uint8 
{ 
 SE_SwapLeft  UMETA(DisplayName = "Swap Left"), 
 SE_SwapCenter UMETA(DisplayName = "Swap Center"), 
 SE_SwapRight UMETA(DisplayName = "Swap Right"), 
 NUM_SUBSTATES UMETA(Hidden) 
}; 
 
UENUM(BlueprintType) 
enum class EStateProgress : uint8 
{ 
 SE_Enter UMETA(DisplayName = "Enter"), 
 SE_During UMETA(DisplayName = "During"), 
 SE_Exit  UMETA(DisplayName = "Exit") 
}; 
 
USTRUCT(BlueprintType) 
struct ORB_MQP_API FStateEntry 
{ 
 GENERATED_BODY() 
 
 UPROPERTY(EditAnywhere, BlueprintReadWrite) 
  EState targetState; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite) 
  int enterFinishDuration; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite) 
  int duringFinishDuration; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite) 
  int exitFinishDuration; 
 
 FStateEntry(EState state, float onEnterDuration, float duringDuration, float exitDuration) { 
  targetState = state; 
  enterFinishDuration = onEnterDuration; 
  duringFinishDuration = duringDuration; 
  exitFinishDuration = exitDuration; 
 } 
 
 FStateEntry(EState state) { 
  targetState = state; 
  enterFinishDuration = 0; 
  duringFinishDuration = 0; 
  exitFinishDuration = 0; 
 } 
 
 FStateEntry() {} 
}; 
 
USTRUCT(BlueprintType) 



 

  

100 

 

struct ORB_MQP_API FState 
{ 
 GENERATED_BODY() 
 
 UPROPERTY(EditAnywhere, BlueprintReadWrite) 
  TArray<FStateEntry> entries; 
 
 //UFUNCTION(BlueprintCallable, Category = "Boss State|Utility") 
  static FString EStateToString(EState state); 
 
 //UFUNCTION(BlueprintCallable, Category = "Boss State|Utility") 
  static FString EStateProgressToString(EStateProgress state); 
}; 
 
class ORB_MQP_API FRunStateTask : public FNonAbandonableTask 
{ 
 friend class FAutoDeleteAsyncTask<FRunStateTask>; 
 
public: 
 typedef void(*FunctionPtrType)(void); 
 FRunStateTask(TFunction<void(void)> function) : 
  func(function) {} 
 
protected: 
 TFunction<void(void)> func; 
 
 void DoWork(); 
 
 FORCEINLINE TStatId GetStatId() const 
 { 
  RETURN_QUICK_DECLARE_CYCLE_STAT(FMyTaskName, STATGROUP_ThreadPoolAsyncTasks); 
 } 
 
}; 
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13.4.3 BossStateMachine.h 
UINTERFACE(BlueprintType, Blueprintable) 
class ORB_MQP_API UBossStateMachine : public UInterface 
{ 
 GENERATED_UINTERFACE_BODY() 
}; 
 
class ORB_MQP_API IBossStateMachine 
{ 
 GENERATED_IINTERFACE_BODY() 
 
public:  
 
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Event") 
  void Setup(); 
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Action") 
  void Start(); 
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Event") 
  void OnStateEnter(const EState & from, const EState & to); 
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Event") 
  void OnState(const EState & from, const EState & to); 
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Event") 
  void OnStateExit(const EState & from, const EState & to); 
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State") 
  bool isValidTransition(const EState & from, const EState & to); 
 
}; 
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13.4.4 MetronomeController.h 
/** 
 * MetronomeController.h 
 * Metronome object that derives from the Actor class. 
 * Multiple instances can be held in a level with their own designated BPM (Beats Per Minute) 
 */ 
UCLASS() 
class ORB_MQP_API AMetronomeController : public AActor 
{ 
 GENERATED_BODY() 
 
public:  
 // Sets default values for this actor's properties 
 AMetronomeController(); 
 
 // Constants 
 const int MAX_BPM = 440; 
 const int MIN_BPM = 20; 
 const int MAX_LISTENERS = 20; 
 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Metronome") 
  bool bStartOnBeginPlay; 
 
 // Starts metronome 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  void Start(); 
 // Stops metronome 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  void Stop(bool shouldClearListeners); 
 
 // Getter & Setter for BPM 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  int GetBPM() const; 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  bool SetBPM(int newBPM); 
 
 FTimerHandle GetTimerHandle() const; 
 
 // Listener Registration 
 // NOTE: Possible to expose these functions as BlueprintCallable in the future but only if 
necessary 
 AMetronomeController *RegisterListener(UMetronomeListenerComponent *comp); 
 bool UnregisterListener(UMetronomeListenerComponent *comp); 
 void ClearListeners(); 
 
 int BeatsUntilNextMeasure(); 
 
 ENoteType GetCurrentNoteType(); 
 ENoteType GetNextNoteType(); 
 
 // Converts BPM (Beats per Minute) into seconds 
 float BpmToSeconds(int bpm); 
 
protected: 
 // Called when the game starts or when spawned 
 virtual void BeginPlay() override; 
  
 // Objects listening to this metronome 
 TArray<UMetronomeListenerComponent*> listeners; 
 
 // Calls all objects listening 
 void SendBeatToListeners(); 
 
private: 
 
 const int SUBDIVIDE_FOURTH_MAX = 4; 
 const int SUBDIVIDE_EIGHTH_MAX = 2; 
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 const int SUBDIVIDE_SIXTEENTH_MAX = 1; 
 
 // Internal bpm value 
 int _bpm = 60; 
 long _internalCount = 0; 
  
 // Handle for timer 
 FTimerHandle MemberTimerHandle; 
}; 
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13.4.5 MetronomeListenerComponent.h 
DECLARE_DYNAMIC_MULTICAST_DELEGATE(FBeatDelegate); 
 
UCLASS( ClassGroup=(Custom), meta=(BlueprintSpawnableComponent) ) 
class ORB_MQP_API UMetronomeListenerComponent : public UActorComponent 
{ 
 GENERATED_BODY() 
 
public:  
 // Sets default values for this component's properties 
 UMetronomeListenerComponent(); 
 
 int64 BeatsSinceBeginPlay; 
 
 /* MetronomeController to listen to */ 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Metronome") 
  AMetronomeController *targetController; 
  
 /* Blueprints uses this to listen for beats from MetronomeController */ 
 UPROPERTY(BlueprintAssignable, Category = "Metronome") 
  FBeatDelegate OnBeatEvent; 
 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  float TimeBeforeNextBeat(); 
 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  float TimeSincePreviousBeat(); 
 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  bool InProximityOfBeat(float offset); 
 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  float GetSecondsPerBeat(); 
 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  int GetBeatsUntilNextMeasure(); 
 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  ENoteType CurrentNoteType(); 
 
 UFUNCTION(BlueprintCallable, Category = "Metronome") 
  ENoteType NextNoteType(); 
 
 /* 
  Internal call to trigger OnBeat.  
  Broadcasts OnBeatEvent to Blueprints listeners 
 */ 
 virtual void OnBeat(); 
 
protected: 
 // Called when the game starts 
 virtual void BeginPlay() override; 
 virtual void BeginDestroy() override; 
}; 
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13.4.6 NoteActor.h 
UCLASS() 
class ORB_MQP_API ANoteActor : public AActor 
{ 
 GENERATED_BODY() 
  
public:  
 // Sets default values for this actor's properties 
 ANoteActor(); 
 
protected: 
 // Called when the game starts or when spawned 
 virtual void BeginPlay() override; 
 
public:  
 // Called every frame 
 virtual void Tick(float DeltaTime) override; 
 
  
  
}; 
 
UENUM(BlueprintType) 
enum class ETargetFace : uint8 { 
 TOP    UMETA(DisplayName = "Top"), 
 LEFT   UMETA(DisplayName = "Left"), 
 RIGHT   UMETA(DisplayName = "Right"), 
 CYMBAL_LEFT  UMETA(DisplayName = "CymbalLeft"), 
 CYMBAL_RIGHT UMETA(DisplayName = "CymbalRight"), 
 NONE   UMETA(DisplayName = "None") 
}; 
 
UENUM(BlueprintType) 
enum class ENoteType : uint8 { 
 FOURTH   UMETA(DisplayName = "1/4"), 
 EIGHTH   UMETA(DisplayName = "1/8"), 
 SIXTEENTH  UMETA(DisplayName = "1/16"), 
 ACTION   UMETA(DisplayName = "Action"), 
 PRESCRIPTED_END UMETA(DisplayName = "Prescripted End"), 
 EMPTY   UMETA(DisplayName = "Empty") 
}; 
 
USTRUCT(BlueprintType) 
struct ORB_MQP_API FNoteStruct { 
 
 GENERATED_BODY() 
 
 UPROPERTY(BlueprintReadWrite) 
  ETargetFace target; 
 UPROPERTY(BlueprintReadWrite) 
  ENoteType noteType; 
 bool isSpreadNote; 
 
 FNoteStruct() { 
  target = ETargetFace::NONE; 
  noteType = ENoteType::EMPTY; 
  isSpreadNote = false; 
 }; 
 FNoteStruct(ENoteType t) { 
  target = static_cast<ETargetFace>(rand() % ((int) ETargetFace::NONE)); 
  noteType = t; 
  isSpreadNote = false; 
 }; 
 FNoteStruct(ETargetFace d, ENoteType t) { 
  target = d; 
  noteType = t; 
  isSpreadNote = false; 
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 }; 
}; 
 
USTRUCT(BlueprintType) 
struct ORB_MQP_API FNoteSet { 
  
 GENERATED_BODY() 
 
 UPROPERTY(BlueprintReadWrite, DisplayName = "Target A") 
  FNoteStruct Target_A; 
 UPROPERTY(BlueprintReadWrite, DisplayName = "Target B") 
  FNoteStruct Target_B; 
 
 FNoteSet() { 
  Target_A = FNoteStruct(); 
  Target_B = FNoteStruct(); 
 } 
 
 FNoteSet(FNoteStruct targetA) { 
  Target_A = targetA; 
  Target_B = FNoteStruct(); 
 } 
 
 FNoteSet(FNoteStruct targetA, FNoteStruct targetB) { 
  Target_A = targetA; 
  Target_B = targetB; 
 } 
 
 void AddToSet(FNoteStruct &note, bool isTargetA = true) { 
  if (isTargetA) 
   Target_A = note; 
  else 
   Target_B = note; 
 } 
}; 
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13.4.7 NoteGeneratorFunctionLibrary.h 
UCLASS() 
class ORB_MQP_API UNoteGeneratorFunctionLibrary : public UBlueprintFunctionLibrary 
{ 
 GENERATED_BODY() 
 
 UFUNCTION(BlueprintPure) 
  static FNoteSet GetNextNoteSet(); 
 UFUNCTION(BlueprintPure) 
  static FNoteSet PeekNextNoteSet(); 
 UFUNCTION(BlueprintCallable) 
  static void RegenerateNotes(); 
 
 UFUNCTION(BlueprintPure) 
  static bool IsOkToPop(); 
 UFUNCTION(BlueprintPure) 
  static bool IsNextBeatAction(); 
 UFUNCTION(BlueprintCallable) 
  static void SetDoubleNoteProbability(float Probability); 
 UFUNCTION(BlueprintCallable) 
  static float GetDoubleNoteProbability(); 
}; 
  



 

  

108 

 

13.4.8 NoteGrammar.h 
 
DECLARE_LOG_CATEGORY_EXTERN(NoteGrammarLog, Log, All); 
 
enum NoteType { 
 FOURTH, 
 EIGHTH, 
 SIXTEENTH 
}; 
 
enum GrammarType { 
 Test, 
 MeasureA, 
 MeasureB, 
 Four, 
 Three, 
 Two, 
 One, 
 Fourth, 
 Eighth, 
 Sixteenth, 
 Action, 
 NONE 
}; 
 
enum NoteDensity { 
 LOW, 
 MED, 
 HIGH 
}; 
 
/** 
 NoteGrammarRule - Class containing info about a grammar rule 
*/ 
class NoteGrammarRule 
{ 
public: 
 NoteGrammarRule() {}; 
 TArray<FString> Tokens; 
 float Probability; 
 TArray<int> Density; 
}; 
 
/** 
 NoteGrammarTerm - Class containing info about a grammar terminator 
*/ 
class NoteGrammarTerm : public NoteGrammarRule 
{ 
public: 
 NoteType noteType; 
 NoteGrammarTerm() {} 
 NoteGrammarTerm(NoteType type) { 
  noteType = type; 
 } 
}; 
 
/** 
 FNoteGenTask - Task to run generation on separate thread 
*/ 
class ORB_MQP_API FNoteGenTask : public FNonAbandonableTask 
{ 
 friend class FAsyncTask<FNoteGenTask>; 
public: 
 FNoteGenTask(int count) : 
  notesToGenerate(count) 
 {} 
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 void SetNotesToGenerate(int count) { 
  notesToGenerate = count; 
 } 
 
protected: 
 int notesToGenerate; 
 void DoWork(); 
 
 // This next section of code needs to be here.  Not important as to why. 
 
 FORCEINLINE TStatId GetStatId() const 
 { 
  RETURN_QUICK_DECLARE_CYCLE_STAT(FNoteGenTask, STATGROUP_ThreadPoolAsyncTasks); 
 } 
}; 
 
/** 
 UE4 WRAPPER for NoteGenerator 
*/ 
UCLASS(BlueprintType) 
class ORB_MQP_API UNoteGenerator : public UObject { 
 
 GENERATED_BODY() 
 
public: 
 UNoteGenerator(const FObjectInitializer & ObjectInitializer) {} 
 
}; 
 
/** 
 FNoteGrammarParams - Additional parameters that affect note generation 
*/ 
struct ORB_MQP_API FNoteGrammarParams { 
 
public: 
 bool shouldGenerate; 
 NoteDensity noteDensity; 
 bool useDoubleNotes; 
 TArray<ETargetFace> *currentTargetPattern; 
 FNoteGrammarParams() {}; 
}; 
 
/** 
 NoteGrammarGenerator - Singleton that generates notes 
*/ 
class NoteGrammarGenerator { 
 
 friend class FNoteGenTask; 
 
public: 
 
 static NoteGrammarGenerator &getInstance() { 
  static NoteGrammarGenerator instance;  
  return instance; 
 } 
  
 const int MAX_NOTES_IN_QUEUE = 500; // Maximum notes in queue at once 
 const int MAX_LANES =  5; // Maximum number of lanes 
 
 TMap<GrammarType, TArray<NoteGrammarRule*>*> Grammars; // Ruleset 
 TArray<TArray<ETargetFace> *> TargetPatterns; 
 bool mIsGraphBuilt; // Doesn't get destroyed in editor when end play so check for this 
 bool mSetForClear; 
 FNoteGrammarParams mParams; // Generator parameters 
 
 bool BuildRuleGraph();  // Builds ruleset based on JSON file 
 bool LoadNotesetFromFile(FString filename, TArray<FNoteSet> &notesResult); 
 void AsyncGenerate(int count); 
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 void StopGenerate(); 
 FNoteSet PopNextNoteSet(); // Pops off the oldest noteset out of the queue 
 FNoteSet PeekNextNoteSet() const; 
 void SetPrescripted(TArray<FNoteSet> notes); 
 void UpdateParameters(FNoteGrammarParams newParams); // Updates parameters for when we 
generate more notes 
 void ClearQueue(bool shouldRegenerate = true); 
 bool IsOkToPop(); 
 void SetDoubleNoteProbability(float newValue); 
 float GetDoubleNoteProbability() const; 
 
private: 
 
 /* Tokens to parse thru ruleset */ 
 const FString PATTERNS_TOKEN = "#patterns"; 
 const FString NOTE_PATTERNS_TOKEN = "#notePatterns"; 
 const FString TARGET_PATTERNS_TOKEN = "#targetPatterns"; 
 const FString ORIGIN_TOKEN = "@origin"; 
 const FString M_ONE_TOKEN = "@measureOne"; 
 const FString M_TWO_TOKEN = "@measureTwo"; 
 const FString FOUR_TOKEN = "@four"; 
 const FString THREE_TOKEN = "@three"; 
 const FString TWO_TOKEN = "@two"; 
 const FString ONE_TOKEN = "@one"; 
 const FString ACTION_TOKEN = "@action"; 
 const FString FOURTH_TOKEN = "@fourth"; 
 const FString EIGHTH_TOKEN = "@eighth"; 
 const FString SIXTEENTH_TOKEN = "@sixteenth"; 
 const FString FOURTH_TERM_TOKEN = "*fourth"; 
 const FString EIGHTH_TERM_TOKEN = "*eighth"; 
 const FString SIXTEENTH_TERM_TOKEN = "*sixteenth"; 
 const FString FOURTH_REST_TOKEN = "*fourthRest"; 
 const FString EIGHTH_REST_TOKEN = "*eighthRest"; 
 const FString SIXTEENTH_REST_TOKEN = "*sixteenthRest"; 
 const FString SPREAD_THREE_TOKEN = "*spreadThree"; 
 const FString SPREAD_FOUR_TOKEN = "*spreadFour"; 
 const FString ACTION_TERM_TOKEN = "*action"; 
 
 
 const int NOTES_TO_GENERATE_WHEN_LOW = 5; / How many notes to generate when we run low 
  
 const float DOUBLE_NOTE_PROBABILITY = 0.15f; // How often double notes show up 
 const int MAX_NOTE_DENSITY = 28;   // Measure 1: 16 (1/16th) notes  
       // + Measure 2: 12 (1/16th) notes 
 const int NOTE_DENSITY_HIGH_THRESHOLD = 8; 
 const int NOTE_DENSITY_LOW_THRESHOLD = 1; 
 const float NOTE_DENSITY_HEURISTIC = 2.0; 
 const float NOTE_PROBABILITY_HEURISTIC = 0.5; 
 
 FString mJsonPath;   // JSON File path 
 bool mShouldGenerateMoreNotes;  // Should generator make more notes when running out 
 TCircularQueue<FNoteSet> *mNoteQueue; // Notes that get generated go here 
 float mDoubleNoteProbability; 
 bool mIsReadyToPop; 
 
 FAsyncTask<FNoteGenTask> *genTask; 
 
 
 NoteGrammarGenerator(); 
 NoteGrammarGenerator(NoteGrammarGenerator const&); // Don't Implement 
 void operator=(NoteGrammarGenerator const&);  // Don't implement 
 
 void Generate(int count);    // Builds the noteset for the queue 
  
 void GenerateNoteSet(); 
 /* HELPER: Starts generating a note set based on given grammar rules */ 
 TArray<FNoteStruct*> * GenerateGrammar(); 
 /* HELPER: Recurses down the ruleset and creates the note structure and patterns */ 
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 TArray<FNoteStruct*> * GenerateGrammarHelper(NoteGrammarRule *rule, int noteCount); 
 TArray<FNoteStruct*> * GenerateSpread(TArray<ENoteType> possibleNotes, int spreadCount); 
 /* HEURISTIC FUNCTION: Gets a random index from a ruleset based on probability and current note 
density rules */ 
 int GetNoteIndex(GrammarType t, int noteCount) const; 
 /* HELPER: Gets a random target for a double note */ 
 FNoteStruct GetDoubleNote(FNoteStruct firstNote) const; 
 /* HELPER: Gets note object from a given token */ 
 FNoteStruct GetNoteFromTermToken(FString token) const; 
 /* HELPER: Gets grammar type from a given token */ 
 GrammarType GetGrammarTypeFromToken(FString token) const; 
 /* HELPER: Gets target face from a given token/string */ 
 ETargetFace GetTargetFaceFromToken(FString token) const; 
 /* HELPER: Determines if token is a rest note */ 
 bool IsRestToken(FString token) const; 
 /* HELPER: Checks that the set generated has valid measures */ 
 bool isValidSet(int expectedMeasures, TArray<FNoteStruct*> notes); 
 /* HELPER: Gets a random neighboring face */ 
 ETargetFace GetRandomNeighborFace(ETargetFace currentFace); 
 /* HELPER: Prints out the set in readable format */ 
 void PrintLinearSet(TArray<FNoteStruct*> set); 
 FString FormatNoteStruct(FNoteStruct note) const; 
}; 
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13.4.9 PhaseChangeListenerComponent.h 
DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam(FPhaseChangeDelegate, int, NewPhase); 
 
UCLASS( ClassGroup=(Custom), meta=(BlueprintSpawnableComponent) ) 
class ORB_MQP_API UPhaseChangeListenerComponent : public UActorComponent 
{ 
 GENERATED_BODY() 
 
public:  
 // Sets default values for this component's properties 
 UPhaseChangeListenerComponent(); 
 
 /* Blueprints uses this to listen for phase change from Phase System */ 
 UPROPERTY(BlueprintAssignable, Category = "Phase Change") 
  FPhaseChangeDelegate OnPhaseStartEvent; 
 /* Blueprints uses this to listen for phase change from Phase System */ 
 UPROPERTY(BlueprintAssignable, Category = "Phase Change") 
  FPhaseChangeDelegate OnPhaseEndEvent; 
 
 /* Tells PhaseSystem that the Actor holding this component is ready to change phases */ 
 UFUNCTION(BlueprintCallable) 
  void ReadyForNextPhase(); 
 
 /* 
 Internal call to trigger OnPhaseChange. 
 Broadcasts OnPhaseChangeEvent to Blueprints listeners 
 */ 
 virtual void OnPhaseStart(int phaseToStart); 
 virtual void OnPhaseEnd(int phaseToEnd); 
 
protected: 
 // Called when the game starts 
 virtual void BeginPlay() override;  
 virtual void BeginDestroy() override; 
}; 

a. PhaseSystem.h 
DECLARE_LOG_CATEGORY_EXTERN(PhaseSystemLog, Log, All); 
 
USTRUCT(BlueprintType) 
struct ORB_MQP_API FPhase { 
 
 GENERATED_BODY() 
 
public: 
 FPhase() { 
  dexTestCountThreshold = -1.0f; 
  healthThreshold = -1.0f; 
 } 
 
 /* If set to true, Note Generator will make generated notes. If false, PhaseSystem will load the 
provided ScriptedDexTest into NoteGenerator */ 
 UPROPERTY(EditAnywhere, BlueprintReadWrite) 
  bool useGeneratedDexTest; 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, meta=(DisplayName = "Pre-Generated file name")) 
  FString fileName; 
 /* Whether or not this phase will utilize chimes */ 
 UPROPERTY(EditAnywhere, BlueprintReadWrite) 
  bool useChime; 
 /* If set to true, PhaseControllerComponent will check against the thresholds */ 
 UPROPERTY(EditAnywhere, BlueprintReadWrite) 
  bool doesPhaseLoop; 
 /* If phase advances by how many dex tests have passed by, set to non-negative. */ 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, meta = (ClampMin = "-1", ClampMax = "100.0", UIMin = 
"0.0", UIMax = "100.0")) 
  float dexTestCountThreshold; 
 /* If phase advances by passing an HP threshold, set to non-negative. */ 
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 UPROPERTY(EditAnywhere, BlueprintReadWrite, meta = (ClampMin = "-1", ClampMax = "100.0", UIMin = 
"0.0", UIMax = "100.0")) 
  float healthThreshold; 
 /* How frantic/intense this phase should be */ 
 UPROPERTY(EditAnywhere, BlueprintReadWrite, meta = (ClampMin = "1", ClampMax = "5", UIMin = '1', 
UIMax = '5')) 
  int phaseIntensity; 
}; 
 
class UPhaseChangeListenerComponent; //forward declaration 
 
/** 
 *  
 */ 
class ORB_MQP_API PhaseSystem 
{ 
public: 
  
 static PhaseSystem &getInstance() { 
  static PhaseSystem instance; 
  return instance; 
 } 
 
 bool LoadPhaseSequence(TArray<FPhase> sequence); 
 bool UnloadPhaseSequence(); 
 int GetCurrentPhase() const; 
 int GetPhaseCount() const; 
 TArray<FPhase> GetCurrentPhaseSequence(); 
 
 bool RegisterListener(UPhaseChangeListenerComponent *comp); 
 bool UnregisterListener(UPhaseChangeListenerComponent *comp); 
 
 void StartPhaseSequence(); 
 void NextPhase(); 
 void ReadyForNextPhase(UPhaseChangeListenerComponent *comp); 
 void ResetPhaseSequence(); 
 
private: 
 PhaseSystem(); 
 PhaseSystem(PhaseSystem const&); 
 void operator=(PhaseSystem const&); 
 ~PhaseSystem(); 
 
 int mCurrentPhase; 
 int mReadyCount; 
 TMap<int, TArray<FNoteSet>*> mCustomNoteMaps; 
 TMap<UPhaseChangeListenerComponent*, bool> mListenerReadyMap; 
 TArray<UPhaseChangeListenerComponent*> mListeners; 
 TArray<FPhase> mCurrentPhaseSequence; 
 
 void internal_NextPhase(int nextPhase); 
}; 

b. PhaseSystemFunctionLibrary.h 
UCLASS() 
class ORB_MQP_API UPhaseSystemFunctionLibrary : public UBlueprintFunctionLibrary 
{ 
 GENERATED_BODY() 
 /* 
  Gets the current phase the game is in 
 */ 
 UFUNCTION(BlueprintCallable) 
  static int GetCurrentPhaseIndex(); 
 
 UFUNCTION(BlueprintCallable) 
  static FPhase GetCurrentPhase(); 
 
 UFUNCTION(BlueprintCallable) 
  static void StartPhaseSequence(); 



 

  

114 

 

 
 UFUNCTION(BlueprintCallable) 
  static void GoToNextPhase(); 
 
 UFUNCTION(BlueprintCallable) 
  static int GetPhaseCount(); 
 
 UFUNCTION(BlueprintCallable) 
  static bool IsLastPhase(); 
 
}; 
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