

Doldrum
A Major Qualifying Project
Submitted to the Faculty of

Worcester Polytechnic Institute
in partial fulfillment of the requirements for the

Degree in Bachelor of Science
in

Interactive Media and Game Development
By

David Allen

Kent Fong

Matt Szpunar

Henry Wheeler-Mackta

Kelly Zhang

Date: 4/26/18

Project Advisors:

Professor Gillian Smith, Advisor

Professor Ralph Sutter, Advisor

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a
degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review.

For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

i

ABSTRACT
Doldrum is a Virtual Reality rhythm game that provides the player with a sense of flow and a feeling

of triumph as they overcome a towering boss. The game mixes traditional rhythm game elements with

reaction-based combat. The player battles a villainous, animated Cuckoo Boss via beating on a mystical

xylophone. They must keep rhythm, avoid enemy attacks, and perform specific actions to combat their

opponent.

This report describes the design process, production, and testing results of the game. Doldrum

underwent significant changes to its design over the course of its development. The final product is

ultimately a vertical slice that demonstrates the concept of a rhythm-action game. Playtesters enjoyed

Doldrum’s mix of rhythm and action game elements while complimenting its visual and audio

components.

Doldrum was developed during the 2017 – 2018 academic year at Worcester Polytechnic Institute.

The game was developed in Unreal Engine 4 for use with the HTC Vive virtual reality headset.

ii

TABLE OF CONTENTS
Abstract .. i

Table of Contents .. ii

List of Figures .. vi

1 Introduction ... 1

2 Background ... 2

2.1 Unreal Engine 4 .. 4

2.2 Game Inspirations ... 4

2.2.1 Space Pirate Trainer .. 5

2.2.2 Audio Shield ... 5

2.2.3 Thumper .. 6

2.2.4 Taiko no Tatsujin .. 6

2.2.5 Patapon .. 7

2.2.6 Guitar Hero ... 7

2.3 Art Inspirations ... 8

2.3.1 Horror Games .. 9

2.3.2 Various Anime .. 10

2.3.3 Guillermo Del Toro’s House of Horrors ... 11

3 Gameplay .. 11

3.1 Experience Goal .. 11

3.2 Gameplay Loop ... 11

3.3 Progression .. 13

3.4 End Condition ... 15

4 Design ... 15

4.1 Platform... 15

4.2 Mallets... 15

4.3 Notes ... 15

4.4 Note Highway ... 16

4.5 Xylophone ... 17

4.6 Cuckoo .. 17

4.7 Chimes .. 18

4.8 User Interface .. 19

4.8.1 Main Menu .. 19

iii

4.8.2 Tutorial .. 20

4.8.3 Pause Menu ... 21

4.8.4 HUD .. 21

4.9 Original Scope .. 23

4.9.1 PlayStation VR .. 23

5 Artistic Implementation .. 24

5.1 Cuckoo .. 24

5.2 Note Highway ... 30

5.3 Notes ... 30

5.4 Platform... 33

5.5 Mallets... 34

5.6 Xylophone ... 35

5.7 Environment .. 36

5.7.1 Chimes .. 38

5.7.2 Lighting ... 39

5.8 User Interface .. 40

6 Technical Implementation... 40

6.1 Metronome .. 40

6.2 Cuckoo .. 42

6.3 Note Highway ... 44

6.4 Notes ... 45

6.4.1 Popping ... 46

6.4.2 Guaranteeing On-Beat Sound ... 46

6.5 Note Generation .. 47

6.5.1 Procedural Generation ... 47

6.5.2 Grammar-based generation ... 48

6.5.3 Scripted Generation... 51

6.5.4 Original System... 53

6.6 Phases .. 54

6.7 Player .. 55

6.7.1 VR Interfacing... 55

6.7.2 Platform ... 55

6.7.3 Walking Out of Bounds .. 55

6.7.4 Mallets ... 55

iv

6.7.5 Height Calibration ... 56

6.8 Xylophone ... 56

6.8.1 Note Hitting .. 57

6.8.2 Actions .. 59

6.9 User Interface .. 61

7 Sound .. 62

8 Music... 63

9 Project Management .. 66

9.1 Trello ... 66

9.2 Perforce ... 67

9.3 Google Drive ... 67

9.4 Slack .. 68

9.5 Discord .. 68

10 Testing... 68

10.1 Methodology ... 68

10.1.1 Overview of the Experiment/Design ... 68

10.1.2 Population ... 68

10.1.3 Location .. 69

10.1.4 Restrictions ... 69

10.1.5 Technique .. 69

10.1.6 Materials ... 70

10.1.7 Entrance and Setup Procedure .. 70

10.1.8 Study Procedure .. 71

10.1.9 Ending Procedure .. 71

10.1.10 Variables ... 71

10.1.11 Statistical Treatment ... 72

10.2 Results ... 72

10.2.1 Playtesting Demographics ... 72

10.2.2 Physical Assessment ... 72

10.2.3 Usability Assessment .. 73

10.2.4 Gameplay Assessment .. 74

10.2.5 Emotional Assessment .. 77

10.2.6 Sentiment Analysis ... 77

10.2.7 Improvements Made ... 80

v

10.2.8 PAX East ... 80

10.3 Release .. 81

11 Post-mortem .. 82

11.1 Design ... 82

11.2 Future Work .. 83

11.3 What Went Wrong .. 83

11.4 What Went Right .. 83

12 References ... 85

13 Appendix ... 87

13.1 Additional Concept Art ... 87

13.1.1 Trumpet Boss .. 87

13.1.2 Audience Boss Environment ... 87

13.1.3 Owl Mentor Environment ... 88

13.1.4 Note Highway Player View .. 88

13.1.5 Note Highway Side View ... 89

13.1.6 Menu Concept ... 90

13.1.7 Logo Iterations .. 90

13.2 Playtest Informed Consent Form .. 91

13.3 Post-Playtest Survey Questions .. 95

13.4 Header Files .. 97

13.4.1 BossCharacter.h .. 97

13.4.2 BossState.h .. 99

13.4.3 BossStateMachine.h .. 101

13.4.4 MetronomeController.h ... 102

13.4.5 MetronomeListenerComponent.h ... 104

13.4.6 NoteActor.h ... 105

13.4.7 NoteGeneratorFunctionLibrary.h .. 107

13.4.8 NoteGrammar.h... 108

13.4.9 PhaseChangeListenerComponent.h .. 112

vi

LIST OF FIGURES
Figure 1: Screenshot of Unreal Engine 4's Blueprint logic ... 4
Figure 2: Promotional Image for Space Pirate Trainer (2016) ... 5
Figure 3: Promotional image for Audio Shield (2016) ... 5
Figure 4: Screenshot of Thumper (2016) .. 6
Figure 5: Screenshot of Taiko no Tatsujin (2001) .. 6
Figure 6: Screenshot of Patapon (2007) .. 7
Figure 7: Screenshot of Guitar Hero 3 (2007) .. 8
Figure 8: Screenshot of Silent Hill 2 ... 9
Figure 9: Example of a "boss" in Puella Magi Madoka Magica (2011) ... 10
Figure 10: Photograph of one room of Guillermo Del Toro's House of Horrors .. 11
Figure 11: The first view that players will see when they start the game ... 12
Figure 12: The Cuckoo Boss readying an attack .. 13
Figure 13: Chimes surrounding the Cuckoo Boss... 14
Figure 14: Note Highway with Beat Bar (left) and Input Bar (right) ... 16
Figure 15: Unity Editor view of BossAttackState instance .. 18
Figure 16: The Main Menu ... 19
Figure 17: The first slide of the tutorial .. 20
Figure 18: The Pause Menu .. 21
Figure 19: The full health display ... 22
Figure 20: The Note Streak Display ... 22
Figure 21: Fully depleted frenzy meter (left) and fully charged frenzy meter (right)................................. 22
Figure 22: Concept art for two abandoned boss designs... 23
Figure 23: Hydra boss concept art .. 25
Figure 24: Early concept art of the Cuckoo Boss ... 25
Figure 25: Concept art of the Cuckoo Boss redesign .. 26
Figure 26: Final render of the Cuckoo Boss model .. 26
Figure 27: Iterations of the Cuckoo Boss’ wings .. 27
Figure 28: Texture sets for the Cuckoo's diffuse, normal, and specular maps .. 27
Figure 29: Rigged and skinned Cuckoo mesh in 3ds Max.. 28
Figure 30: The Cuckoo wing's range of motion .. 29
Figure 31: The Cuckoo attack animation flow .. 29
Figure 32: Notes travelling down the Note Highway ... 30
Figure 33: Default Note (left) and Healing Note (right) ... 31
Figure 34: Material graph for the base Note material ... 31
Figure 35: Note material viewed in the Unreal material editor .. 32
Figure 36: Final render of Platform mesh ... 33
Figure 37: Comparison between the original unicorn-head mallets (left) and the final mallet model (right)
 .. 34
Figure 38: Concept art of unicorn head mallets(right) with Monster Hunter and Alice inspirations (left) 35
Figure 39: Early concept for the drums .. 35
Figure 40: Final render of a singular xylophone key .. 36
Figure 41 Final render of entire xylophone .. 36

vii

Figure 42: Concept art of the Cuckoo's environment ... 37
Figure 43: Grayboxed stage by Laurie Mazza .. 37
Figure 44: The full environment ... 38
Figure 45: The Cuckoo readying an attack, surrounded by the Chimes ... 39
Figure 46: Early stage layout with basic lighting ... 39
Figure 47: Screenshot of a MetronomeController's editable properties .. 41
Figure 48: Screenshot of an actor's MetronomeListener component listening to a MetronomeController
actor .. 41
Figure 49: OnBeat delegate as seen in Blueprints .. 42
Figure 50: Screenshot of the Cuckoo's state transition map property ... 43
Figure 51: Screenshot of a part of the Cuckoo's attack logic in Blueprints .. 44
Figure 52: Note's MoveDown Timeline Blueprint node ... 45
Figure 53: The Highway Valves that the Notes are struck by .. 46
Figure 54: Sequences generated by Tracery prototype ... 49
Figure 55: JSON ruleset for Doldrum's note generation ... 50
Figure 56: Early prototype of the Note Editor .. 52
Figure 57: Screenshot of MIDI sequence in Maschine 2 .. 53
Figure 58: Screenshot of the Note Editor's final version .. 53
Figure 59: DrumInputStruct Blueprint node with all values set to the default ... 58
Figure 60: The player's lightning attack orb ... 59
Figure 61: The five move locations as seen from above. .. 60
Figure 62: The UI Flowchart .. 61
Figure 63: "Cuckoo Hurt" sound effect, created in Reaper... 62
Figure 64: Maschine 2 Digital Audio Workstation ... 64
Figure 65: Music arrangement in Bitwig Studio 2 .. 65
Figure 66: A screenshot of the Doldrum Trello board .. 66
Figure 67: Circle of Affect used to categorize and measure positive and negative words and moods of user
 .. 70
Figure 68: Post-Playtest Survey, Physical Assessment Results: Headset comfort 73
Figure 69: Post-Playtest Survey, Usability Results: Performing attack action ... 74
Figure 70: Post-Playtest Survey, Usability Results: Performing dodge action ... 74
Figure 71:Post-Playtest Survey, Gameplay Results: Note predictability .. 75
Figure 72: Post-Playtest Survey, Gameplay Results: Pacing .. 75
Figure 73: Chart on the number of tries per playtester ... 76
Figure 74: Post-Playtest Survey--Emotional Assessment, chart on moods felt during gameplay 77
Figure 75: Chart of playtester's sentiment during audio recording ... 78
Figure 76: Post-Playtest Survey--Chart of playtester's sentiment on game visuals 79
Figure 77: Post-Playtest Survey--Chart of playtester's sentiment on game music 79
Figure 78: Post-Playtest Survey--Chart of playtester's sentiment on gameplay ... 80
Figure 79: itch.io Analytics Panel, Visits to Doldrum's itch.io page from the following sites 81

1

1 INTRODUCTION
Doldrum is a virtual reality rhythm-action game for the HTC Vive. Above all else, Doldrum attempts

to be a fun and continuously engaging rhythm game. By utilizing mechanics typically found in combat-

centric games, we were able to achieve these goals. The player stands in a fixed location and battles a

massive Cuckoo Boss. Procedurally generated note sequences travel down a note highway towards the

player. The player uses the Vive motion controllers to strike a xylophone-like instrument in time with the

approaching notes. At a consistent interval, flashing input bars travel down the highway. These allow the

player to interact with the boss in one of two ways: they can either attack the boss or dodge the boss’s

incoming fireballs. As the game progresses, the notes become more rapid and more complex.

Furthermore, additional mechanics are introduced such as targets that the player must strike in specific

locations in order to damage the boss.

Doldrum was designed specifically to utilize the HTC Vive’s motion controllers and the added full-

body engagement of VR. [36] Our goal was to induce a flow state for players using music and rhythm as

the means of action. In Mihaly Csikszentmihalyi’s talk on Flow, The Secret to Happiness, he defines flow

as a state in which a person is in intense focus and when they know exactly what to do from one moment

to the other. This heightened state of cognitive focus can make gameplay more engaging. [5, 10] Taking

inspiration from the game Thumper (2017) we wanted to capture the excitement of an action game using

the heightened engagement of VR. [14] Unlike Thumper, which was originally designed as a non-VR

game and then ported to VR, Doldrum is a rhythm game specifically for VR. Doldrum functions better as

a VR game than a non-VR game as it relies on precise motion controls.

Original sound effects and music were created by the project team’s sound designer. As with all

rhythm games, the music is crucial for the experience. Rather than creating a complex and intricate

soundtrack, the backing track is simple and accessible with a strong focus on rhythmic elements. As the

backing track plays, the player performs randomly generated melodies over it. The notes are all a part of a

pentatonic scale: a scale that will not create dissonant harmonies when played over the backing track.

Additionally, the notes of the scale can be played in any order while still sounding melodic. All sound

effects were created by layering and processing samples and synthesis.

Doldrum was built using Unreal Engine 4, via C++ and Blueprint scripting. The systems were built

on two levels. The C++ level contains most of the systems that drive the abstracted behavior of the game

such as note generation, boss state, and phase state. The Blueprint level contains the majority of the logic

for gameplay, presentation, and player input handling. Utilizing Unreal’s C++ API, the systems level of

2

the game includes reflected functions that can be called as Blueprint nodes, bridging the communication

between the two levels. While the technical implementations of the game’s components are conceptually

interconnected, they are designed and built in a modular manner for ease of fixing and changing

functionality.

During production of Doldrum, we faced a number of challenges related to scoping and time

constraints. Despite these issues, we were able to make a complete and polished vertical slice of the

game’s original design. Following production of our game, we performed user playtesting on the WPI

campus and showcased our game at the WPI PAX East booth. During this testing, we noticed aspects of

our game that could be improved upon; primarily the user experience and the user interface. Many people

chose to play Doldrum multiple times and found the gameplay to be difficult but rewarding when

successful. With the overall positive reception of our game, we consider the final product a success.

2 BACKGROUND
We wanted to develop a Virtual Reality game in order to experiment and gain familiarity with the

medium as we were inexperienced with it. The project was initially pitched to be a VR game but we were

given creative control to dictate what type of VR game we would make. We were excited to develop a

game with this novel technology.

There were a variety of challenges that must be considered when designing a Virtual Reality game.

Virtual Reality games have limited player movement due to many locomotion methods causing

simulation sickness [25]. Additionally, VR games focus on motion controls in order to heighten

engagement through physical action. Ultimately, the final product was a result of us attempting to create

an engaging action-oriented game within the constraints of the medium.

In order to not restrict ourselves to the limited performance of smartphone powered head mounted

displays (HMDs), we initially narrowed our headset selection to the Oculus Rift, PlayStation VR (PSVR),

and HTC Vive. Early complications related to obtaining a PSVR dev-kit ruled out that platform as a

possibility. We ultimately chose the Vive over the Rift due to its superior technology. The Vive offers

room-scale virtual reality while the Rift is restricted to a single standing location. While Doldrum does

not utilize room-scale VR, we did not want to restrict ourselves. The final deciding factor was certain

team members’ previous familiarity with the Vive.

 While some Vive games are designed for a traditional gamepad, most are designed for the

included motion controllers. Because of this, we self-imposed a constraint to use the motion controllers.

3

We chose to not use the motion controllers’ touch pads as core control due to their poor haptic feedback

and their inferiority to a traditional joystick. In order to match the expectations of the platform, we

attempted to make a game that was controlled significantly through motion controls.

We wanted to use the full-body engagement offered by VR to induce a heightened flow state in

players. In order to achieve this, another self-imposed constraint for the game was to make it combat-

centric. We believed that players would be more engaged if there was a physical consequence to their

actions (i.e. the player character taking damage). Many VR games are already combat-heavy, but the

primary means of action is either melee combat or shooting guns. We chose to avoid melee combat as it

can problematic as the player’s weapon could phase through the enemies, causing inconsistency and

potentially breaking immersion. We decided against using guns in the game early on as the current VR

market is saturated with shooting games. The desire to make an action game while avoiding traditional

means of combat lead us to the rhythm game design. We are able to elicit the same emotions as a

traditional combat game without needing to adhere to the conventions of the genre.

A significant consideration in current VR design is artificial locomotion. [25] The most common

solution for locomotion limitations is teleportation. [30] Typically, a player will point at the ground and

press a button; the screen will briefly fade to and from a black screen and then the player will be in the

location they had pointed to. According to Oculus, a leading VR hardware and VR software developer,

this locomotion method significantly improves comfort with a majority of players. [30] Though it helps

reduce nausea, it can make players spatially disoriented and adversely affect the balance of game actions.

As we wanted to avoid the problems of teleportation and the discomfort of other types of artificial

locomotion, we chose to design Doldrum as a standing-only game. Standing-only refers to a VR game

which is played standing but involves no movement of the player’s legs.

Another best practice for VR developers is clear haptic feedback. Haptic feedback is essential for

an immersive VR experience as it conveys object interaction. [30] Both motion controllers vibrate when a

xylophone face is struck in order to give the illusion of the player striking a solid object.

We decided to use simple colors and shapes rather than more realistic graphics early in the creative

process. Due to the low effective resolution of HMDs, we believe that stylized aesthetics are more

readable than realistic ones. [16] We adhered to this in creating the visuals for Doldrum by using bright,

flat colors and basic shapes. Basic shapes were used to achieve the stylized aesthetic as it is less realistic.

4

2.1 UNREAL ENGINE 4
Two primary engines were considered during pre-development for Doldrum: Unity and Unreal

Engine 4. The latter was chosen due to increased team familiarity and because it featured an immediately

ready project template for VR support. Additionally, Unreal Engine 4’s Blueprinting, material, and

particle systems allowed for accelerated development. While much of the game is programmed in C++,

the majority is implemented exclusively in Blueprints.

In Unreal Engine 4, Blueprints are a visual scripting system that can be used as an alternative to

more traditional programming. Most of the game’s VR functionality and visual elements are implemented

via blueprints due to their ease of implementation and quick compilation time. The latter allowed for the

game’s intractable elements, particularly VR, to be implemented and fine-tuned quickly and efficiently.

Figure 1: Screenshot of Unreal Engine 4's Blueprint logic

 Several elements of the Unreal Engine 4 development process are unique to the engine. For

instance, all Blueprints that are placeable in the game world are considered Actors. Examples of Actors in

Doldrum include the player, the mallets that they hold, the xylophone that they hit, etc.

2.2 GAME INSPIRATIONS
In preparation for designing Doldrum, we researched other games in order to determine best

practices for VR and rhythm design.

5

2.2.1 Space Pirate Trainer

Figure 2: Promotional Image for Space Pirate Trainer (2016) [22]

Space Pirate Trainer is a polished VR shooter in which the player shoots increasingly dangerous

waves of flying robots. [22] Space Pirate Trainer is a simple wave-shooter, a genre that we did not want

to develop. Notably, the game gives the player many different weapons that enable different strategies

despite the player not being able to move. Despite Space Pirate Trainer featuring simple gameplay, the

experience is highly engaging due to the elegance of the mechanics and the game’s polish. The gunplay is

responsive with satisfying audiovisual feedback. The game also features small details such as dynamic

lighting and a slowdown effect when dodging enemy projectiles. When creating Doldrum, we wanted to

achieve same level of polish and elegance found in Space Pirate Trainer.

2.2.2 Audio Shield

Figure 3: Promotional image for Audio Shield (2016) [21]

Audio Shield is a VR rhythm game in which the player uses their controllers as shields to block

incoming projectiles in beat with the music of the game. The player remains stationary while playing this

game. Audio Shield's usage of motion controls have the player to move physically in time with the game's

6

music. The game's usage of motion controls to encourage rhythmic actions was a heavy inspiration for the

gameplay of Doldrum. [39]

2.2.3 Thumper

Figure 4: Screenshot of Thumper (2016) [11]

Thumper is a rhythm action game where the player guides a space beetle on a track through an

abstract void to confront an enemy. The player presses buttons in beat as they run down the track,

occasionally fighting large enemies. [11, 14] Thumper can be played in or out of VR. The aesthetics,

music, and boss components appealed to us and influenced the design of Doldrum. In particular, we drew

influence from percussion-heavy music and the dark environment with abstract visuals. Additionally, we

found that the boss battle levels would increase the intensity of the gameplay. We played Thumper both in

and out of VR. We noted that the VR version was more immersive and intense as it blocked out external

distractions and cause players to befocused on the game.

2.2.4 Taiko no Tatsujin

Figure 5: Screenshot of Taiko no Tatsujin (2001) [6]

7

Taiko no Tatsujin is a rhythm game where the player hits notes scrolling across the screen in time

with specific music pieces. Notes come in mainly two colors, red and blue. Red notes require a hit on the

drum face while blue notes require a hit on the rim. [6]

Arcade versions of Taiko no Tatsujin features an electronic Taiko drum and drumsticks as input

controls for the player. As a team, we liked the idea of a more tactile game feel through the use of a

physical percussion instrument. We attempted to emulate the feeling of a percussion instrument in VR

using motion controls. [6]

2.2.5 Patapon

Figure 6: Screenshot of Patapon (2007) [31]

Patapon is a rhythm game released on the PSP. The player controls a tribe of warriors via specific

drum sequences. Different input sequences made by the player determines what the tribe of warriors do.

[31]

Specific drum inputs that determine what happens was part of the early design of Doldrum.

However, these proved overly complicated during the production stage and were scrapped. Instead, we

settled on having three specific but simple input controls for the player. The first is hitting the middle

xylophone key with both mallets to perform an attack. The other inputs are dodging left and right which is

two hits on either the leftmost or rightmost xylophone key.

2.2.6 Guitar Hero

8

Figure 7: Screenshot of Guitar Hero 3 (2007) [28]

Guitar Hero is a rhythm game in which the player uses a guitar-styled controller to hit notes that

come towards them on a Note Highway. These notes are five different colors that correspond to their

position on the highway. Upon reaching the player, the player must hit the note by holding down the

corresponding button and strumming their guitar controller. This game was a major inspiration for

Doldrum and we implemented a similar Note Highway for it. [28]

2.3 ART INSPIRATIONS
Art from several mediums have inspired the overall aesthetic of Doldrum. The initial aesthetic goal

was to introduce horror elements into the game. Therefore, several horror games, movies, and TV shows

were referenced. When looking through references, we found that the surreal aspect of these works was

much more desirable than their scare factor.

9

2.3.1 Horror Games

Figure 8: Screenshot of Silent Hill 2 [24]

 Other inspirations came from various survival horror games, specifically the Silent Hill series and

Rule of Rose. The team played through Silent Hill 2 to gather artistic and narrative inspiration for

Doldrum. One of the major takeaways from the game was the monster design. [24, 34] While many of the

monster designs were fleshy and grungy, the core theme was that the designs were reflections of the main

character’s inner psyche. In the original design of the game, the bosses also reflected the player

character’s inner worries. However, the element of surrealism is still present in the final game.

 Similarly, the monster designs from the Shin Megami Tensei: Persona series also played a part in

inspiring the boss designs. Though the genre is not horror, many of artistic designs have uniquely surreal

elements that can elicit a feeling of unease. [3]

10

2.3.2 Various Anime

Figure 9: Example of a "boss" in Puella Magi Madoka Magica (2011) [29]

 Other inspirations with surreal aesthetics were from various anime such as Puella Magi Madoka

Magica. [29] The general theme of these shows are main characters that face against a “boss.” In Madoka,

the boss fights turned the surrounding environment into that of a dark fairy tale. These two shows

influenced the stage design of the game, where the area the player plays in an enclosed area where the

elements are thematic to the boss’ design.

11

2.3.3 Guillermo Del Toro’s House of Horrors

Figure 10: Photograph of one room of Guillermo Del Toro's House of Horrors [33]

 Guillermo Del Toro’s House of Horrors also served as inspiration for the general aesthetic and

feel of the Cuckoo and the stage. The house is filled with many unique objects; some are props from his

own directed films and others are his favorite characters from other media. Pictures of Guillermo’s house

influenced the Cuckoo’s body shape and color. The brown and red color palette along with gold accents

can be seen on the Cuckoo’s body. The Cuckoo’s body also features wood paneling similar to the wood

that is visible throughout the furniture pieces in his house.

3 GAMEPLAY

3.1 EXPERIENCE GOAL
Doldrum’s experience goals are to provide the player with a sense of rhythmic flow and a feeling

of triumph as they overcome a towering boss.

3.2 GAMEPLAY LOOP
When the player puts on the HTC Vive headset and starts the game, they are surrounded by a dark

environment. The only visible elements in front of them are a xylophone and a pair of mallets. The player

12

then grabs the mallets with the trigger buttons on the Vive controllers. If the player does not do this

within a short amount of time, the game will prompt them to grab the mallets.

Figure 11: The first view that players will see when they start the game

Once the player grabs the mallets, a main menu screen will appear in front of them. In front of the

xylophone faces are menu options: xylophone height calibration, tutorial, and starting the game. Hitting

the faces of the xylophone correspond to entering its menu option.

When the player hits the “Start Game” option, the music begins playing and the environment

lights up, revealing the Cuckoo Boss. Notes will then begin coming down the Note Highway.

From now until the end condition of the game, players are to hit the Notes as they reach the

player by striking against the faces of a in-game xylophone using their motion controllers. Successful hits

will build the player’s Note Streak Display and special attack meter. When players miss a Note, a small

amount of health is lost and both meters reset to zero. Occasionally, health Notes come down the Note

Highway. Successfully striking these Notes restores a small amount of player health.

Every four measures, a colorful bar spawns. When it reaches the player, they can perform an

Action Input by hitting both mallets on one of the xylophone faces. The actions that the player performs

allows them to interact with the boss in front of them. These actions include attacking the boss with a

lighting ball and relocate the player. If the player’s special attack meter is full when they perform an

attack action, a powerful lighting attack is shot from the player towards the boss, dealing more damage

than the regular attack.

13

Figure 12: The Cuckoo Boss readying an attack

Every couple of measures, before the bar spawns, the boss will begin to charge a fireball attack.

When this happens, the fog in the stage turns orange, further telegraphing the attack. After charging for a

measure, the boss will launch the fireball towards the player. If the player performs a dodge action at the

end of the measure, they will move away from the attack and avoid the fireball.

3.3 PROGRESSION
The player’s battle with the Cuckoo is broken down into nine phases. Each phase will loop until the

player damages the boss down to a certain threshold. When the boss health is equal to or below that

threshold, the game will transition to the next phase. It should also be noted that these thresholds are

predefined.

There are three distinct phase types: pre-scripted, generated, and chime. Pre-scripted phases will

output a note sequence that will stay the same between gameplay sessions. A pre-scripted phase ends

when the note sequence ends. There is one pre-scripted phase that plays at the very beginning of the game

to introduce players to hitting notes at a slow pace.

14

Figure 13: Chimes surrounding the Cuckoo Boss

Chime phases are similar to generated phases, except the condition to transition to the next phase is

for the player to hit specific Chimes. These phases add variety to the gameplay as it forces the player to

move around the stage in particular directions. Without the Chime phases, movement would exclusively

be used for dodging boss attacks. Chime phases happen twice in the game-- once in the middle of the

game and another one at the very end of the game.

Phase Number Phase Type

1 Pre-scripted Phase

2 Generated Phase

3 Generated Phase

4 Generated Phase

5 Chime Phase

6 Generated Phase

7 Generated Phase

8 Chime Phase

9 Game End
Table 1: Game's phase progression

Generated phases will output note sequences that are procedurally generated by the game. The

game will continue to generate Notes until the boss’ health goes below a threshold. Phases that are not

pre-scripted or chime phases are by generated phases.

15

3.4 END CONDITION
In order to win the game, players must reduce the boss’s health to zero by performing attack actions.

If the player’s health reaches zero from missing Notes, getting hit by boss attacks, or a combination of

both, they lose. When the player reaches either end condition, they are provided the option to return to the

main menu, where they can choose to play the game again.

4 DESIGN
For the first two terms, our team focused heavily on the design of Doldrum. Our goal was to create a

game that put players in a rhythmic state while still engaged in the gameplay. We went through several

iterations in designing the rhythm aspect of the game, and boss fight structure. During this process, many

gameplay elements were made, then redesigned. Because our team had a very large scope in the very

beginning, we were also very conscientious in cutting any elements that were not core to the experience

goal.

4.1 PLATFORM
Doldrum features a platform that the player stands on at all times. This platform conveys the

player’s limited play space and the player, xylophone, and Highway are all bound to. When the player

moves via the respective input command, the platform and all of its bound components will move--

carrying the player and xylophone with it. Likewise, the Highway, Boss, and some stage elements will

rotate to ensure that they are always facing the platform and thus the player.

4.2 MALLETS
As Doldrum is primarily a game about hitting a xylophone, the players’ hands are instead represented

as mallets. These mallets serve several purposes:

1. Hitting the xylophone faces

2. Indicating when the player is doing well

3. Providing haptic feedback when the player hits the xylophone

4.3 NOTES
Notes are the small circular objects that travel down the Note Highway. When Notes reach the

player, they must strike the respective xylophone face. With Note hitting as the main action players are

doing, successful hits needed to elicit strong player feedback. For visual feedback, Notes are “popped” off

16

of the Note Highway. For audio feedback, an airy and tonal xylophone sound effect is played. For haptic

feedback, the Vive controllers vibrate.

4.4 NOTE HIGHWAY
Doldrum features a standard gameplay loop that is similar to that of other rhythm games such as

Guitar Hero. In both games, small circular notes travel from their spawn point towards the player and the

player must hit these notes as they reach them. These notes spawn at the base of the Cuckoo Boss and

travel along what is referred to as the Note Highway. The Highway is one of the core elements of

Doldrum’s design and implementation due to the Note Highway moving generated notes to the player.

The Note Highway was designed to fulfill three distinct purposes. First, it had to provide the player

with easily identifiable rhythmic actions to perform. Second, the Note Highway had to provide a stable

platform for the player to be able to more easily identify the musical timing of the note. Finally, it needed

to clearly indicate when the player can make either an attack or move action. These three tasks were all

accomplished in a similar way. Rhythmic actions are indicated via the Notes. Musical timing is indicated

via thin Beat Bars that travel down the highway. A Beat Bar reaches the player on every beat of the

Metronome. Additionally, certain Beat Bars spawn as Input Bars. These Input Bars allow the player to

make an Action Input when they reach the player.

Figure 14: Note Highway with Beat Bar (left) and Input Bar (right)

The highway is a long, linear path that stretches from the Cuckoo Boss to the player. Its

subcomponents travel along its path from the Cuckoo Boss to the player, thus allowing the Highway to

serve as a visual bridge between the player and their opponent. Its major interactable subcomponents

include the Notes and Input Bars.

Oncoming Notes provide the player with constant rhythmic actions to perform. Their purpose is

to reduce downtime between the player’s Action Inputs. The Notes require that the player constantly hits

the xylophone. A given Note will correlate to exactly one of the player’s five xylophone faces.

17

When an Input Bar is spawned and travels down the Highway, it is an indicator to the player that

they must make an Action Input. These bars are visually flashy, colorful, and noticeably larger than the

Notes and decorative Beat Bars. They were designed this way to indicate that the player is able to interact

with the Cuckoo Boss.

In early designs, Doldrum did not feature a Note Highway. Rather, all of the player’s rhythmic

actions were dictated by the player. This was abandoned and the Note Highway was implemented in order

to provide more structure for the gameplay.

4.5 XYLOPHONE
The player strikes a xylophone using motion controls. As Notes travel down the Note Highway, the

player must strike the corresponding xylophone face. This is conveyed through the color of the xylophone

matching the color of the Note. Additionally, the Notes travel down linear lanes of the Highway. Each

lane leads to the corresponding xylophone key.

Initially, the xylophone was planned to be a cube-like entity that the player could strike to activate

different actions. In this early design, the cube’s faces acted as the individual faces of a drum, such that

the top and sides of the cube were all separate faces. This structure was quickly abandoned in favor of a

more traditional drum kit-like structure due to the difficulty of reliably hitting flat surfaces that faced

different directions. However, when building out the Note Highway, we found multiple issues with using

the drum kits. By emulating the positioning of a real drum kit, some faces of the drum were harder to hit

than others. We attempted to make the drum faces surround the player at a uniform distance but ran into

issues with aligning the faces to the Highway’s lanes. With Notes coming down the Note Highway, it was

hard to discern which face went with which Note. Later, the drum kit design was replaced with the current

xylophone appearance. With the xylophone design, all of the faces the players hit is at a uniform height

and neatly lines up with each lane in the Note Highway, allowing for overall neatness and readability.

4.6 CUCKOO
The boss character, the Cuckoo Boss, is the singular opponent the player plays against in Doldrum.

The Cuckoo constantly faces the player and attacks them randomly when an input bar spawns. It also has

an internal health bar. As its health depletes from player attacks, it advances the progression of the game.

As the game progresses, the procedurally generated note sequences become more challenging and Chimes

are introduced as a mechanic.

The initial prototype for the behavior setup was built in Unity. Unity was more familiar to Kelly

Zhang and she was able to program basic boss behavior in a few hours. This prototype featured a top-

18

down perspective of the boss character, a player, and three lanes representing the Note Highway. The

player was able to attack, dodge, shield, and parry using keyboard controls. The boss was able to turn to

face the player, attack, and parry. Since the prototype was played from a top-down view, gameplay did

not provide much insight on how players would feel performing the same actions in virtual reality with a

first-person view. Though the gameplay between the boss and the player were not useful, the main

takeaway ended up being how the boss’ behavior could be technically implemented.

Figure 15: Unity Editor view of BossAttackState instance

4.7 CHIMES
During chime phases, a circular set of chimes descend from the top of the game’s level and

surround the Cuckoo. These chimes protect the Cuckoo from getting hurt by player attacks. However, the

game will select one chime as vulnerable to the player’s attack. When a defined number of vulnerable

chimes are damaged, the game will progress to the next phase. Players will have to perform dodge actions

for their attacks to reach the vulnerable chime. When designing the boss fight mechanics, we wanted

players to utilize the actions that they have in response to the boss’s actions. The shield action was

originally the action that encouraged players to shift their platform around the stage to attack vulnerable

areas on the boss. Since cutting the shield action from the Cuckoo, we incorporated our original design

goals into an environment piece, the chimes.

19

4.8 USER INTERFACE
The player interacts with the user interface (UI) in Doldrum by striking the xylophone faces. Each

face is labeled with a menu command such as “left”, “right”, and “select”. UI elements such as text and

images are displayed to the player on a 3D panel in the game world.

In non-VR games, the UI is typically positioned so that it is constantly rendered in the foreground of

the screen. This approach does not work in VR, as our eyes are unable to focus on text and UI elements

that are close to the camera. [40] Therefore, the UI had to be displayed in the game world as a 3D

element. The simplest way to implement this was to create 2D panels that would display our UI and place

them in a 3D space.

Additionally, we wanted a way for the players to interface with UI elements without having to

teach them additional controls for menu navigation. The solution to this problem was to integrate menu

navigation to the existing xylophone faces.

4.8.1 Main Menu

Figure 16: The Main Menu

The main menu is the interface the player sees upon booting the game. The player enters the

game in a dark room. The only items visible are the xylophone and the mallets. The mallets are encased in

a floating bubble above the xylophone. This interface is to encourage the player to reach their controllers

to grab the mallets. Once the player grabs both mallets, they will stay attached to the player’s hands for

the remainder of the gameplay duration. The main menu interface will then automatically open,

20

introducing the player to the game’s title. In the main menu, the player can select from the following

options:

● Start Game

● Tutorial

● Calibrate Drum

 The start game option is purposefully not set to the center, forcing the player to get used to hitting

the xylophone faces before playing the actual game, instead of potentially and accidentally hitting the

center to start.

4.8.2 Tutorial

Figure 17: The first slide of the tutorial

 The tutorial menu is accessed via the main menu and is a series of slides with images of how to

play the game. The player toggles between pages by hitting the leftmost and rightmost faces of the

xylophone. When the player is satisfied with reading the contents of the tutorial, they hit the center face to

go back to the main menu. Originally, the tutorial section was intended to be interactive and walked the

player through the controls of the game. Due to time constraints, it was scrapped for the slides.

21

4.8.3 Pause Menu

Figure 18: The Pause Menu

 The pause menu is accessed by pressing the menu button on the HTC Vive controller. This menu

button is located above the touchpad. This menu is only accessible when the player has already started the

game to avoid collisions with other menus. As the name indicates, the menu pauses the current game and

provides the following menu options:

● Resume Game

● Main Menu

● Calibrate

4.8.4 HUD
To inform the player on how well they’re performing during the game, a HUD (heads-up display)

was created. The HUD is placed to the left of the player’s peripheral vision, in order to not obscure the

Note Highway or xylophone. A consequence of placing the HUD outside direct vision is that they are

forced to look away from the Note Highway in order to see it. This may lead to undesired behavior from

the player where they only focus on the highway and do not notice their performance. While it’s a

minimal amount of impact to the overall gameplay experience, the HUD should supply the player

information in a comfortable manner rather than a stressful one.

22

4.8.4.1 Health Display

Figure 19: The full health display

The health display is a red bar that depletes when the player misses a note and when it is attacked

by the boss. A heart is displayed to the left of the bar, indicating to the player that it represents health. The

heart plays a beating animation, and it serves a secondary purpose of indicating the rhythm of the game.

4.8.4.2 Note Streak Display

Figure 20: The Note Streak Display

The Note Streak Display indicates how many consecutive notes a player has hit without missing.

It resets to zero when the player misses a note. While it does not impact gameplay, it was added with the

intent of providing a sense of satisfaction to players who are performing well.

4.8.4.3 Frenzy Meter Display

Figure 21: Fully depleted frenzy meter (left) and fully charged frenzy meter (right)

The frenzy meter is a blue zig-zag meter that indicates how close the player is to entering the

Frenzied State. Since Frenzied attacks are lightning-based, the appearance of this meter is jagged. In

addition, when the meter is filled, a lightning effect appears on the meter to indicate that it is “charged

up”. A sound effect also plays in case the player’s active gaze is not on the HUD.

23

4.9 ORIGINAL SCOPE
Doldrum has changed greatly over the course of development. The game originally featured five

boss fights, each of which would represent a person or step in a musician’s journey towards becoming

great. This theme was inspired by the film Whiplash, and was meant to be unsettling to the player, leaving

them with a feeling of inadequacy. [37] The idea was to create a horror game that played on existential

fears instead of traditional scare techniques.

During the fights, the player would be able to play along with the rhythm of the song to build up

power for their next action. The actions would be triggered by a measure-long series of drum hits that

would trigger an action. The actions included: a multi-directional attack, relocation of the player, and a

shield that would form around the player. The player would choose which action they wanted to perform

based on the current situation. The act of performing a series of inputs in order to trigger a discrete action

was inspired by Patapon.

Ultimately, four of the five bosses were removed due to time constraints. With the removal of the

bosses, the narrative was no longer needed. Additionally, the complex action system was replaced with a

simpler system with less possible actions.

Figure 22: Concept art for two abandoned boss designs

4.9.1 PlayStation VR
Originally, we wanted to gain experience and develop for a console system. The only headset that

can be used with a console is the PlayStation VR, a peripheral to the PlayStation 4. There are kits

24

available to develop for the device using the Unreal Engine. The game would have a potentially larger

audience of players and a smaller pool of games to compete against.

When investigating how we could obtain a development kit from Sony, we found out that it was

difficult to achieve as a student team. The registration process required us to either be a corporate entity

or a university program. Upon requesting assistance from the IMGD department for a development kit at

the beginning of summer 2017, we ran into issues primarily due to miscommunication. The PSVR

equipment was purchased but there was no word on whether or not an application was submitted. If we

were to continue pursuing a development kit, it would have significantly cut into our development time.

As a result, we did not use the PSVR. This was a misuse of the IMGD program’s budget and we sent a

formal apology to the department head, Professor deWinter.

5 ARTISTIC IMPLEMENTATION
With specific aesthetic goals in mind, it was necessary for there to be a uniform artistic direction.

The process generally starts off with Kelly Zhang creating 2D concept art for the asset to be created in

3D. The concept is then passed to Kent Fong to model and texture. If the asset required animation, it was

then rigged and animated. During the various stages of the 3D production pipeline, several passes of the

asset were imported into Unreal to make sure it looked right in engine. Once it was in engine, Matt

Szpunar worked on the lighting that set the tone and mood for the game.

When designing the visuals, we decided to create very few objects of concern for the player in order

to provide clarity and prevent confusion. For example, the notes are bright and contrast the dark highway.

The Cuckoo is mainly warm colored, with browns and dark reds. The xylophone contrasts the Cuckoo

with cool colors like turquoise and blue. Additionally, when the player has to react the Cuckoo’s attack,

the entire scene begins to glow red as a signifier. The simple colors and shapes provide a clear experience.

Over the course of two terms, Laurie Mazza also helped us with 3D modeling environmental assets,

allowing Kent to focus on the Cuckoo.

5.1 CUCKOO
The Cuckoo Boss design can be broken down into three sections. The body is based off a cuckoo

clock, the wings and feet are based off birds, and the head and arms were inspired from one of our

scrapped bosses as shown in Figure 23. We liked the look and feel of this scrapped boss so we decided to

incorporate into with our Cuckoo Boss.

25

Figure 23: Hydra boss concept art

Figure 24: Early concept art of the Cuckoo Boss

Early concept art of the Cuckoo shows a very symmetrical and stiff boss model. A redesign early

in the modelling process was proposed to introduce more curves into the body. A curvier body makes the

boss more interesting to look at and also makes it a more organic creature.

26

Figure 25: Concept art of the Cuckoo Boss redesign

 The Cuckoo body started out as a rectangle in Autodesk Maya with simple extrusions to block out

the clock face, mouth, and roof. It was then brought into Pixologic Zbrush to add finer details and

variance to the body for a more organic feel. Inside Zbrush, various tools were utilized to create the

curves and wood panel texture on the body. The roof was done by duplicating and layering a single

rectangle tile multiple times. Since the extremities were based on living creatures, they were done entirely

in Zbrush for an organic look.

Figure 26: Final render of the Cuckoo Boss model

 For the Cuckoo, bad wing deformation could ruin the animation. Therefore, special attention went

into the wings. The wings went through several iterations. The wings first started out as a single complete

27

mesh with modelled feathers but did not look realistic. In Zbrush, nanomesh was used to populate the

wings with feathers that did look nice, but still did not achieve the desired deformation during animation.

The single mesh did not bend in a convincing way for the player to understand. These wings were

eventually scrapped after studying birds and seeing how they have layered feathers. The layered feathers

were mimicked during modelling. Four different feathers were created in Maya and Zbrush to give

variation between the primary and secondary feathers. The final wings with individual feathers resulted in

aesthetically pleasing wings that correctly deformed.

Figure 27: Iterations of the Cuckoo Boss’ wings

 Textures for the Cuckoo were done entirely in Zbrush. All diffuse textures for the Cuckoo were

hand painted for a unique and cartoon-like design. The body wood panels were painted with a tileable

wood texture that was manipulated in Adobe Photoshop to match the overall aesthetic. Diffuse maps for

different components were painted and generated in Zbrush. Normal maps were baked from high poly

meshes using xNormal. Specular maps were made in Photoshop.

Figure 28: Texture sets for the Cuckoo's diffuse, normal, and specular maps

28

 Rigging for the Cuckoo was done entirely in 3ds Max utilizing their CATRig system. 3ds Max

was chosen over other software because Kent already had experience with it. Also, CATRigs are fairly

intuitive to create and they work seamlessly for animating with 3ds Max.

First, the pelvic bone is placed around the Cuckoo’s center and then the spine and other

extremities follow. CATRigs are simple to use and come with built-in Inverse Kinematics and Forward

Kinematics for the arms and feet. In the Cuckoo’s case, the wings were rigged as an extra set of arms,

with extra bones for each feather group. The head and neck are rigged as a second spine while the roof

panels are just extra bones. After placing the bones in the correct places, the mesh was ready to be

skinned.

Figure 29: Rigged and skinned Cuckoo mesh in 3ds Max

The skin weighting process took a few days due to both the asymmetrical shape of the Cuckoo

and the fact that each feather had to be skinned to a specific bone. Each primary feather is skinned to a

specific bone because it allows for greater control of the feathers while also providing realistic

29

deformation of the wing. This method of skinning each feather was inspired by a wing rig test by the

YouTube user 3D_guy_2008 [1], who created wings with individual feathers.

Figure 30: The Cuckoo wing's range of motion

 The animations were done in 3ds Max because a CATRig was used. Animations for the Cuckoo

included an idle, attack, hit, and death. All animations besides the death are done with the Cuckoo

hanging from a bar. This meant most of the core motions came from the hips and spread outwards. The

idle is a simple sway from left to right that loops and is what the player sees the majority of the time. The

attack animation was inspired slightly by both Ho-oh from Pokemon and the Hadouken from Street

Fighter[18, 23]. The attack had to be split into buildup, attack loop, and follow through. Splitting the

animation allowed the programmers to decide the length of the attack for any attack variations. In engine,

the animations gradually blend depending on the game event. Animations were done in 96 frames per

second because the HTC Vive’s refresh rate is 90 hertz.

Figure 31: The Cuckoo attack animation flow

30

5.2 NOTE HIGHWAY

Figure 32: Notes travelling down the Note Highway

The Note Highway’s appearance was designed to be easily noticeable by the player without being

too visually loud. Additionally, its appearance had to convey a sense of musical time to the player. This

was accomplished via the Beat Bars, with one bar reaching the player on every quarter-note of the

metronome.

Beat Bars are visually distinct from the Highway’s base color of semi-transparent black. They are

thin, fully-opaque white bars. However, the bars are not overly bright nor do they glow. The Highway’s

simple and dark color scheme was chosen due to it being visually distinct from its surroundings without

taking the attention away from the Boss, Notes, and other interactables. Likewise, the bars’ white color

was chosen to ensure that the player notices them.

The Highway itself is made up of five distinct lanes that each correlate to a given xylophone face.

These lanes are separated by colorful dividers that mirror the coloration of the xylophone faces. A given

lane’s dividers share a color with that lane’s respective Notes, thus allowing for players to easily

distinguish which Xylophone face an oncoming Note correlates to.

5.3 NOTES
The visual design of the Notes accomplishes two primary goals. First, the Notes’ simplistic

spherical appearance and light border ensures that they are easily noticeable. Second, a given Note’s color

will match its target xylophone face. Thus, players can easily discern which xylophone face to hit from

Note appearance alone.

31

Figure 33: Default Note (left) and Healing Note (right)

Healing notes have a unique shape and color regardless of their assigned lane. All healing notes

are bright red and shaped like a simple heart. This drastically different appearance ensures that players are

aware of which Notes are healing notes. Similarly, the player’s own health bar features a bright red heart,

thus allowing for players to easily associate the uniquely shaped Notes with health restoration.

 The appearance of the Notes was accomplished by applying a material instance to a basic sphere

mesh. The material instance is derived from a base material that features a definable color, a Fresnel that

gives the Note its colored border, and a constantly fluctuating emissive intensity. This base material has

several child instances that allow for easy modification to the material’s base color, Fresnel color, and

intensity. There is a separate instance for each of the five lanes and additional instances for missed notes

and healing notes.

Figure 34: Material graph for the base Note material

32

 These material instances are dynamically applied to a given Note when that Note is spawned.

When a note is spawned, it is assigned a target lane and whether-or-not it is a healing note. If it is a

healing note, the Note’s color and shape are changed to a bright red heart. If the Note is not a healing

note, its color is set to the color of its respective xylophone face and lane.

Figure 35: Note material viewed in the Unreal material editor

33

5.4 PLATFORM
Visually, the platform matches the brass appearance of the xylophone and Highway valves. The

platform is designed to imitate the appearance of a brass instrument in order to match the musical

aesthetic of the game. It has piping that borders the edges of the platform that meets and joins into a bell

which resembles one of a brass instrument. These pipes act as railings that serve as indicators of where

the playspace ends. Additionally, the attacks exit through the opening of the bell.

Figure 36: Final render of Platform mesh

34

5.5 MALLETS

Figure 37: Comparison between the original unicorn-head mallets (left) and the final mallet model (right)

The mallets were modeled to appear identical to real xylophone mallets. While the design fits with

the aesthetic of the game, we original experimented with a louder and more intricate design . Since the

Cuckoo Boss was bird themed with fire elements, we experimented with the player representing an

animal that fit with the lightning element. When browsing inspiration for lightning elemental creatures,

we found the Kirin from the Monster Hunter series, as well as weapons from Alice: Madness Returns as

examples of unicorns with lightning.

35

Figure 38: Concept art of unicorn head mallets(right) with Monster Hunter and Alice inspirations (left)

 Unfortunately, while making the mallets in 3D, we felt that the unicorn mallets would be too

distracting and it was unclear how the mallets should hit the xylophone faces. Following this concept, we

ended up reverting to a more traditional mallet.

5.6 XYLOPHONE
Early renditions of the xylophone were rectangular before changing to a more traditional circular

look.

Figure 39: Early concept for the drums

 The decision was made to move forward with a more rectangular drum face and we decided on a

xylophone-inspired drum. Following the xylophone theme, the three drum faces and two cymbals were

36

turned into five simple xylophone keys. We decided on a cool color palette for the xylophone bars as a

contrast for the warm colors of the Cuckoo.

Figure 40: Final render of a singular xylophone key

Figure 41 Final render of entire xylophone

5.7 ENVIRONMENT
The goal of the environment in Doldrum is to emphasize and complement the Cuckoo Boss. To

achieve this, the centerpiece of the game world is a large stage where the Cuckoo hangs.

37

Figure 42: Concept art of the Cuckoo's environment

This stage is modeled after a theater. It consists of the stage floor and the backdrop. The floor is

wooden with a raised metal platform in the center. On the outside ring of this stage, two spotlights are

placed, pointed at the Cuckoo. The backdrop is a half-dome structure where the Cuckoo and chimes hang.

All meshes that make up the stage (i.e. chimes, spotlights, backdrop) were created in Maya by Laurie

Mazza.

Figure 43: Grayboxed stage by Laurie Mazza

38

Figure 44: The full environment

Between the inner and outer sections of the stage there is empty space which is filled with a purple

fog effect. The fog clouds provide a feeling of mystery and malevolence. These cloud effects were created

using a material that uses noise in conjunction with the Time node to create a material that resembles a

cloud when applied to a sphere. A constant rotation was then applied to these cloud objects which gives

the appearance of an ever-shifting layer of fog when placed next to each other in large volumes.

5.7.1 Chimes
The chimes hang from the backdrop of the stage and are used by the Cuckoo during certain stages

of the fight. These are designed to look like the chimes of a grandfather clock and are arranged to mimic

the bars of a bird cage. The chimes are surrounded by an orange vortex of fire. These elements come

together to match the visual design of the Cuckoo.

39

Figure 45: The Cuckoo readying an attack, surrounded by the Chimes

5.7.2 Lighting
The lighting was designed to frame the Cuckoo as the focal point of the scene. The overall

environmental lighting is dim with the exception of two spotlights that are aimed directly the Cuckoo.

These emit a light indigo colored light towards the Cuckoo, illuminating the Cuckoo and casting shadows

onto the backdrop of the stage.

Until the player begins the fight, all of the lights are off. Only the fog, xylophone, and mallets are

visible. Once the game has begun, the rest of the lights turn on and reveal the environment and Cuckoo.

Figure 46: Early stage layout with basic lighting

40

5.8 USER INTERFACE
The appearance of the HUD was meant to be simple and stylistic for player readability. We

wanted players to be able to understand the UI at a glance. Despite efforts to blend the UI with the

environmental aesthetic, the use of a painted UI and stylized serif fonts for the HUD made elements

harder to read from a distance.

6 TECHNICAL IMPLEMENTATION
The approach to implementing features into Doldrum was iterative. We would often build a small

piece of a large concept. Then we would test the piece to make sure the piece was functional and adhered

to our design guidelines. Most importantly, if the piece was a gameplay attribute it had to feel good to

play.

Additionally, by drawing the technical strengths from each programmer, Henry with Blueprints and

Kelly with C++, we were able to construct two technical levels that neatly separated out gameplay logic

and systems logic. By separating the logic, we were able to iterate on existing functionality with ease and

break existing features. In this section, we will address the various systems, gameplay, and player

interactions. For systems components such as the Phase System, Note Generation System and Cuckoo

behavior, we will explain the inner workings and how it drives the gameplay loop. Gameplay components

such as the Note Highway and Notes will cover techniques used to enhance game feel. With features

involving player interaction, we will address how we ensured that VR interactions worked smoothly and

reliably for all players.

6.1 METRONOME
 Nearly all of Doldrum’s events and interactions with the player are dependent on musical timing.

As such, it was very important that we develop a flexible and robust metronome system early in the

development process.

The metronome system needed to satisfy the following core requirements:

1) Reliable timing

2) Ability to broadcast to objects when a beat happens

3) Easy to fix and change based on future design changes

To ensure reliable timing, we decided to depend on Unreal’s Time Management system. The

system allows programmers to set timers that would reliably countdown in real time, and have a custom

41

function be called when the timer reaches zero. While we could write our own timers, we would have to

account for factors such as jumps in framerate. To keep the system implementation as simple as possible,

using the Time Manager was our best option.

 To satisfy the second requirement, an observer pattern was used. There is a

MetronomeController object that controls the timing. MetronomeListener objects can register to a

controller and a developer can assign custom functions to be called through the listener’s OnBeat

delegate. When the MetronomeController starts to countdown seconds for each beat, it iterates

through its list of registered listeners and calls the OnBeat delegate. This pattern ensured that all objects

dependent on beat-based timing are being triggered from the same source(s). It also allowed for flexibility

for changes in implementation, since it would only need to change functionality in two objects. The

flexibility here satisfies our third requirement.

The metronome system was implemented primarily in C++ and makes use of Unreal’s C++ API.

MetronomeController is derived from the AActor class, whereas the MetronomeListener is derived

from the UActorComponent class. This allows the system’s components to be implemented and

managed on the Blueprint level, while still having access to Unreal C++ API commands.

Figure 47: Screenshot of a MetronomeController's editable properties

Figure 48: Screenshot of an actor's MetronomeListener component listening to a MetronomeController actor

For example, a programmer working on the Blueprints level begins by creating a Blueprint that

derives from the MetronomeController class. The class will reflect its properties that are flagged as

editable onto the Blueprint’s property window. Moving this Blueprint actor to the active level will allow

listener objects in the same level to register to it.

42

To enable objects to listen to the controller, the programmer attaches the MetronomeListener

as a component of the objects. In the Blueprint Event Graph, they can initialize the OnBeat event as an

event node.

Figure 49: OnBeat delegate as seen in Blueprints

As development continued, we realized that getting OnBeat calls from the listener is often not

enough. Sometimes the game receives player input that is offbeat. The game needs to respond to this

feedback such that is still on beat. This is explored further in the Notes section. The Unreal Time

Management system offers useful function calls like GetTimerElapsed and GetTimerRemaining to

get time values of when the next beat is or how long it has been since a beat event has been fired.

Wrapping these calls around functions in MetronomeListener allows us to expose our wrapper

functions for Blueprint use, where most of the game logic for Doldrum is. All objects that have the

MetronomeListener attached will now have access to these functions.

6.2 CUCKOO
The Cuckoo acts and reacts to the following game events: metronome ticks, phase changes, and

player actions (e.g. Attack, Dodge). The core of the Cuckoo’s gameplay logic is built from Blueprints and

extended from a class called BossCharacter. Its primary goal is to keep track of the boss’ state.

The state machine in the base BossCharacter class was designed in a way to allow as much

flexibility as possible for Blueprints to implement custom state behavior that was specific to a boss. This

was before our team decided to scope the boss count down to one but is still viable to extend from if we

were to continue implementing more boss characters.

At a high level, state objects dictate how long the boss takes to transition into the state, how long

the boss stays in a state, and how long the boss takes to transition out. It also has a list of possible states to

transition to. In the prototype, it also held a list of states it can traverse from. That was removed during

the actual implementation into Unreal. Keeping a list of parent states added complexity to the state

machine. Based on the boss design, it was only necessary for the state machine to know which states it

43

needed to traverse to. In the Unity prototype, there were parameters specific to a state, as shown in Figure

28. In the Unreal implementation, this was translated into a two-level system. These two levels are the

C++ systems level and the Blueprints level. The systems level runs the transitioning of one state to

another based on preset transition rules. The system can then make calls up to the Blueprints level which

runs custom logic.

To define state transition rules, BossCharacter uses a state transition map, where the key is a

Boss’ starting state and the value is a custom data structure. This data structure holds the number of

metronome ticks for a state to enter a transition, to stay in a transition, and to exit in a transition. This

structure also allows us to have fine control over the timing of state transitions.

Figure 50: Screenshot of the Cuckoo's state transition map property

This map as shown in Figure 29 can be exposed to Blueprints, allowing programmers and

designers to easily adjust timing values and transition rules from the Unreal editor. When the state

machine begins during runtime, these values can be referenced on the systems level and the state

machine. It will begin at the defined root state and make the appropriate transitions as defined in the map.

When the machine changes to a different state, it will make calls up to the Blueprints level with additional

parameter values such as sub-state and transition stage. For the Cuckoo, we only made use of the

44

transition stages. Based on design decisions made during the implementation of the state machine, we

decided not to introduce additional mechanics tied to sub-states.

Figure 51: Screenshot of a part of the Cuckoo's attack logic in Blueprints

An example seen in the game is the Cuckoo’s attack. When the state machine begins to transition

to the ATTACK state, we set its enter transition duration to 48 ticks (3 measures). In its Blueprint, the logic

for entering the ATTACK state is the following:

1) Play Cuckoo’s buildup animation

2) Spawn a fireball object

3) Play buildup sound effect

4) Change environment colors and lighting

As the Cuckoo’s attack is primarily buildup and fire, there was no need for us to implement additional

logic for the DURING transition stage. When the Cuckoo is about to transition out of attacking the

following is run:

1) Play Cuckoo’s launch animation

2) Launch the spawned fireball object at Player’s location

3) Play fireball launch sound effect

4) Reset environment colors and lighting

5) Object cleanup

6.3 NOTE HIGHWAY
The NoteHighwayBP class contains the functionality of the Note Highway. The Note Highway

has five lanes in which Notes travel down. These lanes are constructed using Unreal’s splines. By using

the splines, we are able to dynamically change the shape of the Highway without needing an artist to

45

create a static Highway mesh. Elements such as Notes also make use of this mechanism by aligning

themselves to positioning of the splines in the level’s world space.

To provide the player with easily identifiable rhythmic actions, the NoteHighwayBP makes use of

the MetronomeListenerComponent attached. On every beat, the Note Highway receives an

OnBeatEvent, various calls are made, depending on which beat in the measure the game is in. On every

fourth beat, beat bars are spawned to convey a sense of musical timing to the player. On every beat, the

Note Highway will check to make sure the timing is in sync. If the timing is in sync, it will pull a

NoteStruct produced by the Note Generation system, mentioned in a later section. When a

NoteStruct gets pulled, a NoteHighwayNoteBP object is spawned, further discussed in the Notes

implementation.

6.4 NOTES
Note objects are spawned as a NoteHighwayNoteBP by the Note Highway. A Note moves down

the Highway via a Blueprint timeline node that begins when that Note is spawned into the game world.

Each Note has its own timeline that updates the Note’s location and color intensity over its duration.

Additionally, the timeline features several individual event notifiers that trigger additional functionality

when they are reached.

Figure 52: Note's MoveDown Timeline Blueprint node

 The timeline features three separate alpha values for the Note’s location along the Highway, its

color over the course of its journey, and for its gradual increase in emissive intensity. The timeline also

has three separate event calls for when the Note reaches the end of the Highway, when it should tell the

46

xylophone to expect a player input, and when it should play its musical sound. These events are all called

at explicitly defined times.

 The event that tells the xylophone to expect a player input is called significantly earlier than when

the Note finishes its movement down the Highway. This is because players are expected to hit the

xylophone faces when a given Note reaches a line of bronze valves, thus allowing for the Note to travel

past these valves if the player misses.

Figure 53: The Highway Valves that the Notes are struck by

 If the Note’s respective xylophone face is not hit by the player when the Note reaches the valves,

the Note will continue down the Highway. When the timeline finishes and the Note is at the bottom of

the Highway, it is despawned and the player loses some health. However, if the player does hit the

xylophone face successfully, the Note’s timeline is stopped and the Note is instead popped upwards.

6.4.1 Popping
Whenever a note is correctly hit a combination of visual effects occurs, known as Note Popping.

The act of popping cancels the Note’s movement down the Highway and instead causes the Note to

launch into the air. This launch is handled by Unreal Engine 4’s native physics support. Thus, after the

note is airborne for a few seconds the Note will fall back down.

 Normally, Notes are not considered to be physics objects; they do not abide by gravity nor do

they have any collision with other objects. Until a Note is popped, it is only moved via its movement

timeline. When a Note is popped, the Note’s physics properties are enabled for a short time to allow

for the launch effect. Additionally, the Note is also set to gradually shrink in size after it is popped. This

allows for the Note to smoothly exit the game world after it is no longer needed.

6.4.2 Guaranteeing On-Beat Sound
Successful Note hits result in a xylophone sound. The player has approximately one-third of a

second to hit the respective xylophone face when a Note reaches the valves. Thus, it is possible for

players to hit the Notes slightly earlier or slightly later than what would be considered to be on-beat. To

47

prevent the resulting sound from sounding off-beat due to imperfect timing, the xylophone sound plays

on-beat and independently from player input.

When a Note reaches the valves its xylophone sound is automatically played regardless of player

input. This sound component is then stored as a temporary variable within the Note. If the player does not

successfully hit the Note, this sound component is stopped and a missed note sound is played. All

subsequent Notes will not automatically play their xylophone sound until a note is successfully hit. This

sound system ensures that players are rewarded despite having imperfect reaction time. Through this

system, successful Note hits will always sound as if they are being played on beat.

6.5 NOTE GENERATION
The generation of the note sequences in Doldrum is mostly procedural. It relies on a set of rules and

patterns to dictate Notes placement and frequency on the Note Highway. However, the beginning of the

game features a simple hand-written sequence for the player to play out. This simple sequence is done

through the note generator’s pre-scripted system.

The Note Generation system interfaces with other game components by using Blueprint Function

Libraries. Unlike the Metronome System, and the Boss State Machine, Blueprint Function Libraries can

be accessed by any Blueprint in the project. The libraries do not need to be instantiated as an actor or

component in the game’s level. Typically, the libraries are used to contain complex helper functions. The

Note Generator was a single entity and its sole purpose was to generate Note sequences and provide them

to other systems, both on the Blueprints level and the C++ level. On the C++ level, we can simply

reference the system by getting its static instance. Blueprint Function Library acts as the bridge to access

the instance on the Blueprints level.

Using Blueprint Function Libraries, we were also able to write C++ functions that were especially

useful to the Note Highway. Such functions like PeekNextNoteSet allowed the Highway to do a sync

check on the next note before popping it from the queue.

6.5.1 Procedural Generation
With procedural generation of Note sequences, we were able to provide variability to the

gameplay’s linear structure. From a design perspective, we had already scoped down gameplay to a

guided experience where players are to strike Notes when they reach a certain point on the Note Highway.

Since we had already scoped down the project significantly e, there was little room to introduce

variability for the experience to feel fresh every playthrough. By procedurally generating the Note

sequences, players can play different sets of melodies in each session. The trade-off to procedurally

48

generating sequences, is that some sets of Notes may sound out of place while others sound as if a human

had composed it.

6.5.2 Grammar-based generation
Tracery, a tool built by Kate Compton, was used to prototype the ruleset language used for

Doldrum’s Note generation [12]. The language uses context-free grammars to generate text. This

grammar entails a start symbol, production rules, terminal, and non-terminal symbols. Non-terminal

symbols can be replaced by other rules, and terminal symbols generate pieces of the final result.

For the purpose of creating sets of Notes that adhered to design goals, the following ruleset was built:

<<start>> -> <measureA><measureB>

<measureA> -> <four>

<measureB> -> <three><action>

<four> -> {<three><one>, <one><three>, <two><two>}

<three> -> {<two><one>, <one><two>}

<two> -> <one><one>

<one> -> <fourth>

<fourth> -> {<eighth><eighth>, fourthNote}

<eighth> -> {<sixteenth><sixteenth>, eighthNote}

<sixteenth> -> sixteenthNote

<action> -> actionBar

Code Listing 1: Production rules for Note generation

To enhance readability, the terminating symbols fourthNote, eighthNote, and

sixteenthNote were replaced with Unicode note symbols to emulate sheet music. The following sets

were generated using the above ruleset. All sets are valid measures.

49

Figure 54: Sequences generated by Tracery prototype

Following the prototyping, a C++ system was built that reads a JSON ruleset, creates a graph, and

traverses through it in order to generate Note.

6.5.2.1 Writing to C++
The core requirements needed for Doldrum’s Note generation are the following:

1. Ability to read in a ruleset

2. Ability to generate Notes based on ruleset

3. Have parameters that factor difficulty into generation

4. Ability to pass generated Notes to other systems (such as Note Highway)

 To read in a ruleset, we first needed to figure out how the ruleset was structured. Since the

prototype’s ruleset was fairly easy to create and modify, it was used as an inspiration. The ruleset built in

Tracery was also in JSON format. A similar JSON format was used for the C++ version. Unreal’s C++

API had a JSON parsing library, which helped parse the ruleset data. Following parsing, for each rule

found in the ruleset, it was mapped to custom defined data structures. One of the structures represented

the non-terminating symbol (@) and held information about its sub-rules (also referred to as tokens in the

code) and probability for being generated. The other represented the terminating symbol (*) and held

information about the note type it was supposed to represent.

50

Figure 55: JSON ruleset for Doldrum's note generation

Once the rules were mapped, the next step was to build the algorithm that generates the Note sets.

The high-level pseudo-code for the algorithm is the following:

Define Result as empty array of notes

Recurse into start rule

For each token in rule’s token list

 If token is non-terminating (@):

 Select a subrule based on additional parameters

Recurse into subrule and define result as sublist

Append sublist to current list

 If token is terminating (*):

Initialize note based on sub-rule type

Add note to the current list

51

Return Result

Code Listing 2: Procedural Note Generation Algorithm Pseudocode

In selecting a subrule, a helper function is called to run a heuristic function based on: desired Note

density (game difficulty), and probability of rule getting selected. This function is run on all possible rules

that derive from the current evaluated rule. The rule with the highest heuristic is then selected. In many

cases when testing the system, there were rules that had the same heuristic value. The solution was to then

randomly select from this list, so that there was still some randomness involved in the algorithm. The end

product of the algorithm will produce a list of Note objects that are then pushed into a queue for use by

other systems like the Note Highway.

6.5.3 Scripted Generation
While making the entire gameplay procedurally generated is an option, there are moments where

we want the melodies generated to follow the music or be scripted in a specific fashion for the players to

get used to gameplay. Using the same NoteGrammar system, it loads in a JSON file with the sequence of

Notes, parses the sequence, and loads the sequence into memory. When the game needs to use the

scripted sequence, the system clears out of the queue of existing notes and pushes the scripted note

sequence in. From the Note Highway’s perspective, there is no difference in which kinds of Notes are

being generated, and therefore can use the same system to spawn them.

6.5.3.1 Note Editor
To write scripted sequences, a possible option would be to write them out note by note in a text

editor, but this option is very tedious and error prone. To simplify this process, a web-based note editor

was built. Kelly had previous knowledge of building web-based applications, so it took less time to build

it than it would have taken if it were made as an Unreal plugin. In the Note Editor, a team member could

select which notes they want to play and when. A graph on the left side will display the sequence. The

user can then press Save JSON, to save the scripted sequence in JSON format. They can then drag the file

into the Unreal project’s Contents/Data folder, where the note generation system looks for scripted

sequence files.

52

Figure 56: Early prototype of the Note Editor

6.5.3.2 JSON Generation
The purpose of the editor was for the team to be able to construct a visual sequence of Notes into

a structure that the Note Generator is able to understand. To do that, JSON conversion functions were

implemented in addition to the visual editing. While it was desirable for everything to be done client-side,

modern browsers only allow for the saving of files to be done via the server. Due to this constraint, the

conversion functions were moved onto a simple Node.js based web server.

When the client makes a download call, it sends the scripted sequence of notes. The server takes

that data, converts it to the structure the Note Generation system uses, saves it as a JSON file, and pushes

that file to the client for download. When making an upload call from the client, the opposite is done. The

server takes in the JSON file, parses it, and converts it to the data structure the editor uses, and sends the

parsed and converted data back to the client for it to display.

6.5.3.3 MIDI Parsing
MIDI parsing was added to the Note Editor upon the sound designer, David Allen’s suggestion.

This sped up the workflow of making pre-scripted files and allowed for flexibility on the audio

implementer’s end.

53

Figure 57: Screenshot of MIDI sequence in Maschine 2

To implement, midi-parser-js was used on the server side. [9] On upload, the server will receive

the uploaded MIDI file as part of the client’s request. The server then runs it through the parser and sends

a JSON back to the client in the response call. The client then goes through the contents of the object,

extracts the necessary information, and populates the editor for display. The user can decide to make

additional changes to the sequence via the interface and save it as a JSON file.

Figure 58: Screenshot of the Note Editor's final version

6.5.4 Original System
Originally, generation of music by players would be dependent on a MIDI file containing chord

information at various timestamps. This MIDI file would correspond to the soundtrack playing in the

game. To keep track of which possible notes could play at any given time, there would be a system that

holds a map of the timestamps, with a list of valid notes to play. A MidiManager was then built to hold

54

this information. To save time on parsing the data, we used a C++ MIDI parsing library, Midifile. [8] This

library parsed out the information in our file, and provided information on the duration of the track, when

each note was played, and which notes were being played. The intention, was to use this library to hold a

collection of possible notes to play at a given timestamp. Whenever the player would strike their

instrument, it would play a random note within the collection, ensuring that it sounds correct with the

backing soundtrack. However, due to scoping and having the main gameplay be less freeform and more

guided, we moved towards a grammar-based system.

6.6 PHASES
Doldrum’s Phase System is responsible for the game’s progression. It acts similarly to the Boss

State Machine system in that there are requirements defined by a designer on how to progress.

Structurally, it is similar to the Metronome System as there is a manager object with listeners attached to

it. The Phase System’s ruleset is tied to a BossCharacter, so if the game was to progress to the next

boss, a new set of phase rules specific to that boss would come into play.

Additional requirements for the Phase System were the following:

● Ability to delay changing of phases to allow for object cleanup and subsequent transition

effects.

● Rules to allow for phase progression could differ depending on the phase

The Cuckoo listens to phase changes since there are specific phases that either trigger

environmental changes (e.g. Chimes) or the Cuckoo’s state behavior. The Note Highway listens to phase

changes to know when to clear the Highway of Notes, as well as knowing what type of Notes to generate

for the next phase.

To satisfy the requirements defined for the Phase System in an efficient manner, much of the

previously implemented systems were referenced (Boss State Machine, Metronome). The difference with

the Phase System is that its controller object is a singleton, since the game will only need one running at

all times.

 To implement the delaying of phases, a listener is attached to an actor. Every listener is called by

the Phase System when it leaves a phase and when it enters a phase. When leaving the phase, the

blueprint logic must explicitly tell the Phase System that it is ready to proceed to the next phase. The

caveat to this approach, is that all objects using the PhaseControllerListener needed the

programmer to implement the call that tells the system that it is ready to go to next phase. This meant that

any object that did not implement the call would prevent the PhaseSystem from progressing.

55

6.7 PLAYER
The PlayerBP class handles all interfacing between the HTC Vive and the game world.

Additionally, the platform is used both in player movement and to indicate to the game’s play space to the

player. All Unreal VR interfacing support is contained within the PlayerBP class.

6.7.1 VR Interfacing
 The HTC Vive features three trackable components: The headset and the two motion controllers.

The majority of basic motion tracking and other Vive-specific functionality was provided by the VR

Template starter project. This project was officially introduced in version 4.13 of Unreal Engine [15]. The

template also provided functions for both attaching hand actors to the controllers’ locations and making

the controllers vibrate.

6.7.2 Platform
Functionally, the platform is the actor that moves when the player makes a movement input

command. Several actors, including the player and xylophone, have their locations parented to the

platform. Thus, when the platform moves, they also move. Additionally, the platform also handles

collision checking for whenever the player is standing outside of the playspace. The movement of the

platform and what happens when the player walks outside of the playspace are handled by the xylophone

blueprint and player blueprint, respectively.

6.7.3 Walking Out of Bounds
When the player steps outside of the playspace the game will automatically pause. This playspace

is represented as an invisible collision box that contains the platform that the player stands on. If the

player leaves that collision box then the game will automatically pause until they walk back into the box.

6.7.4 Mallets
The mallets are long and narrow which allows players to easily hit xylophone faces in a natural

and realistic way. The mallets’ size and length were modelled after real xylophone mallets. Only the

spherical tip of the mallet can hit the xylophone faces.

 In addition to providing the player with a way to hit the xylophone faces, the spherical tip will

also glow with electrical sparks when the player is doing well. After hitting a certain number of

consecutive Notes, the player will enter the Frenzy state. During this state, electrical particles will spawn

from and follow the tip of the mallet.

 Whenever the mallets collide with the xylophone faces the motion controllers will vibrate. As the

xylophone only exists in the game world, there is no way to prevent players from moving their controllers

56

straight through the xylophone faces. Therefore, the vibration is the only way for players to discern when

the mallets collide with the xylophone.

 VR functionality such as allowing the player to rotate their head to look around was provided by

the VR template and was not significantly modified. The hands, however, were significantly adjusted to

act as mallets.

6.7.5 Height Calibration
Doldrum features an option to adjust the height of the xylophone based on the current height of the

Vive headset. This allows for players of all heights to easily hit the xylophone with the mallets without

having to overreach.

Height calibration is accomplished via updating the xylophone’s current location to be a set

distance on the z-axis—the vertical axis in Unreal Engine 4—from wherever the player’s camera is

located. This camera is bound to the current location of the Vive headset. Headset rotation and location

aside from its position on the z-axis is ignored.

6.8 XYLOPHONE
The xylophone actor is where the majority of the player-specific logic and functionality is

contained. This actor blueprint is titled NewDrumBP due to a significant overhaul to how the xylophone

works that occurred early on in development. The reason for the name discrepancy is because the

xylophone was a drum for a majority of the game’s development. NewDrumBP contains logic and

functionality for: receiving and responding to incoming Note notifications from the Highway, action

inputting, handling of gameplay systems such as health and Frenzy, and handling collisions with the

player’s mallets. NewDrumBP is one of the largest blueprints in Doldrum, and it has undergone significant

changes and modifications over the course of the game’s development.

While the player class handles most VR interfacing, the NewDrumBP handles most game-specific

logic. This includes health, Frenzy handling, and Note handling.

 The player begins the game with a certain amount of health and certain events can reduce it. If the

health ever reaches zero, the boss stops performing actions, the Highway stops sending Notes, and the

player sees a “Game Over” screen. Health loss and gain both have their own respective functions within

NewDrumBP that must be called within the actor in response to certain game events. These functions

modify the actor’s health variable while also calling other events that result from the loss or gain of

health. For example, losing health will reset the player’s Frenzy counter.

57

 Frenzy is a system contained within the NewDrumBP actor. This system rewards the player for

correctly striking Notes without missing. On every successful Note hit, the Frenzy counter is incremented.

When that counter surpasses the defined FrenzyMax variable the player will enter the frenzied state.

During this state, player attacks gain additional visual effects and deal increased damage. If the player

ever takes damage from any source, their Frenzy is reset back to zero and they lose all benefits from high

frenzy.

 Functions that add or subtract health or frenzy also update the player’s HUD (heads-up display).

Additionally, the function that reduces player health also causes the Note Highway to briefly pulse red.

6.8.1 Note Hitting
The NewDrumBP contains several functions that pertain to incoming Notes. The xylophone contains

a Boolean variable for each of its five faces that refers to whether that specific xylophone face is

expecting an input. The act of setting a xylophone to expect an input is referred to as “priming”. When a

Note arrives at the xylophone, that primed Boolean is set to true and the player is expected to hit that

face within a set amount of time. When a Note arrives at the xylophone, the following sequence of events

occur:

1. The PrimeDrum function is called. This function takes the target xylophone face as an

input and sets the respective primed Boolean to true.

2. A timer for that respective xylophone face is started. After a set duration, the timer is

completed and another function is called

a. If the player hits the xylophone face before the timer concludes, the timer is

cancelled and the respective Note is popped. This is considered a successful hit.

b. If the timer concludes, the player is considered to have missed the Note and the

player is dealt a small amount of damage.

3. After either outcome, the primed Boolean for that xylophone face is set to false until

another Note arrives at that face.

The primed Boolean for a respective xylophone face is used for when the player’s mallets collide

with a given xylophone face. If that xylophone face is primed then the respective timer is stopped. The

player is determined to have successfully hit that Note. Player hits to a given xylophone face that are

performed while that xylophone face is primed will also increment the Frenzy counter.

58

6.8.1.1 Action Input Checking
The player’s sole way of interacting with the Boss is via the action inputs that can be performed

whenever an Input Bar reaches the player. These action inputs require that the player hit a single

xylophone face with both mallets. Depending on the face hit, one of three actions can occur:

1. Two hits on the center face will result in an attack. A lightning orb will travel towards the

boss and deal damage to it

2. Two hits on the leftmost xylophone face will cause the player to move left. This can be

used to dodge attacks or reposition their attacking point

3. Two hits on the rightmost xylophone face will cause the player to move right.

Action Input checking is done in several steps. Firstly, hitting any xylophone face after an Input

Bar has reached the player will create a DrumInputStruct, a struct that contains information pertaining

to a possible action.

Figure 59: DrumInputStruct Blueprint node with all values set to the default

 A DrumInputStruct represents a single beat’s worth of information. The DrumInputStruct

contains a Boolean for whether-or-not the beat features a hit xylophone, an enumeration for which face

was hit, whether-or-not the beat featured another simultaneous hit, and an enumeration for which

xylophone face was simultaneously hit.

 After the DrumInputStruct is constructed from the xylophone faces that the player hits, it is

compared to the entries in an array of other DrumInputStructs. This array contains a separate struct for

each of the three possible inputs. Each struct within this array is compared to the newly created

DrumInputStruct. If it matches any entry in that array, the respective action is performed and no

further entries in the array are compared.

 Comparing one DrumInputStruct to another is facilitated via a helper function titled

CompareDrumInputStruct. This function is used several times throughout the Action Input system.

59

Specifically, comparisons occur when the struct is first made and when it is being compared to the array

of action inputs. The DrumInputStruct is immediately created as soon as the player makes any hit

while an input is expected. Thus, due to players always hitting one xylophone face slightly before another

even on simultaneous hits, the hit that occurs after the initial will instead result in a check to see if a

DrumInputStruct already exists. If that struct exists, NewDrumBP will instead only populate the

variables of the struct that pertain to simultaneous hits. Likewise, if the struct’s variables are all equal to

the default, it can be assumed that this is the first hit of the input.

6.8.2 Actions
After the DrumInputStruct is successfully compared to one of the three given actions, the

respective action is performed. This action occurs immediately after the player’s input.

Figure 60: The player's lightning attack orb

The Attack action fires a lightning orb that travels directly to the Boss. When it collides with the

Boss, it takes damage and its health depletes. If the player is Frenzied, this Attack will deal increased

damage and have the added visual effects of some arcing lightning beams.

The Move actions will relocate the Platform that the player stands on in whichever direction was

inputted. The player can move either left or right. Movement will smoothly relocate the player to one of

five MoveLocation actors that are statically placed in the game world.

60

Figure 61: The five move locations as seen from above.

MoveLocation actors are invisible during gameplay but are represented in the Unreal Engine 4

editor as small white spheres with red arrows. The chosen MoveLocation actor is dependent on which

actor the Platform is currently located on. For instance, in the above image, the Platform is currently at

the centermost MoveLocation actor. If they were to move right, the Platform would travel to the closest

actor towards the right.

61

6.9 USER INTERFACE
Figure 51 outlines the flow of the game via the UI interface. The UI is mostly linear with a few

options that allow the player to navigate to other menus.

Doldrum uses Unreal’s Motion Graphics (UMG) UI to display UI elements to the player. Three UI

widget Blueprints are hooked up to the xylophone’s NewDrumBP. One widget, the HUD, is always active

in world space. The other two are only active whenever NewDrumBP is called to display the menu UI.

When the menu UI is active, all drum hit events that occur will redirect to the menu widget Blueprints,

triggering menu-specific logic.

Figure 62: The UI Flowchart

62

7 SOUND
The sound of the game was wholly original. Sound effects can be broken down into a few

categories. First, there are the player-centric sounds. This includes the xylophone, the Notes, the damage

sounds, and the movement sounds. Another category would be the sounds related to the Cuckoo Boss

which includes a death sound clip which is synced to an animation. Finally, we have the non-diegetic

sounds such as UI.

Figure 63: "Cuckoo Hurt" sound effect, created in Reaper

The process of creating sound effects was entirely based on editing, layering, and modulating

existing sample or synthesizers. None of the sound effects were recorded through field recording or

Foley. The typical process for creating sound effects began with browsing a sample library for a base

sound. Examples of base sounds include impacts or a texture. The base sound would serve as a

foundation. Then, additional sound effects would be added on top of the foundational sound effect,

depending on what was needed. For example, a stronger impact, a longer tail, or textures such as

63

brightness or warmth would be needed. From there, effects plugins would alter some or all of the sounds.

Software used included Reaper as the digital audio workstation, and various plugins from the following

developers: Soundtoys, Fabfilter, Izotope, Cockos, and Native Instruments. Typically, equalization and

compression would be applied to the tracks followed by a “creative” effect such as distortion or pitch

shifting. Through the creative effects, the sounds would unify into a distinct sound effect.

 After creation of the sounds, they were implemented into Unreal. The sound designer, David

Allen, imported the sounds into the engine and created a “Sound Cue” for each sound. Sound Cues are a

type of asset in Unreal. They function similarly to small Blueprints but are innately cast as sound assets.

Within them, a sound designer can set up modulations for sound effects such as randomizing pitch or

volume. More advanced actions include the concatenation of consecutive sounds or the random selection

of a single sound from a pool. Using Cues, the sound designer configured exactly how sounds should

behave without touching any of the blueprints. Once the cues were created, he worked with one of the

programmers to find where to trigger the cues inside of the blueprints.

 During play, the player plays five different notes, based on the pentatonic scale. The pentatonic

scale consists of the 1st, 3rd, 4th, 5th, and 7th tones of a scale. These notes will typically not conflict with

the game’s backing track and will sound correct in any sequence. We originally had the five tones of the

pentatonic scale corresponding to each of the five xylophone keys. However, we found that the 7th tone

would create unresolvable tension as the player could never hit the octave (8th tone). Because of this, we

removed the 7th tone and replaced it with the octave, which removed those issues.

 Rather than use real xylophone samples for the instrument, we used synthesized sounds mixed

with drum samples. The reasoning for this was to unify the sound of the instrument with the

instrumentation of the backing track. As the backing track is nearly entirely comprised of synthesizers, a

real xylophone would sound out of place. Rather, a short synthesizer was designed in Native Instruments’

Massive and paired with the attack of a kick drum, making the sound appear both percussive and tonal.

For testing, the sound designer would improvise to the backing track using the designed sounds to ensure

they fit.

8 MUSIC
The game features an original backing track to accompany the player’s procedurally generated

melodies. The music was composed with a few constraints in mind: a strong emphasis on beats, simple

rhythms, and unobtrusive melodies. In order to help the players maintain their rhythm, the whole beats

were emphasized in the backing track. The song begins with a strong pulse on the whole beats from a kick

64

drum. This plays for two measures with a simple bass track accompanying it before the player has to play

any notes. This gives the player enough to time to develop a firm grasp on the beat, allowing them to stay

on-beat for the rest of their playtime.

 The music features four distinct sections that loop until another section begins. The four two-

minute long sections feature many of the same instruments and melodic sequences. However, the

intensity of the arrangement increases with subsequent sections. Each section is used for two consecutive

phases of the boss fight for a total of eight phases. As mentioned, the phases always transition upon the

Cuckoo’s health hitting a certain threshold and the Cuckoo’s health will only change upon taking damage

from an Attack input. As the Attack input will always come at the end of a musical phrase, the phase will

always transition at the end of a phrase, creating a seamless transition between musical sections.

The music was written to be fun and upbeat while maintaining a serious and focused tone. In

order to achieve this, inspiration was drawn from jazz music and features a typical jazz drum kit. As the

game’s only track and the foundation for the player’s performance, the music had to be accessible and

digestible. It features a catchy and repetitive bass line which is iterated on across the different sections.

The lead synthesizers were meant to be more rhythmic than melodic. While there is a clear tone to all of

them, they feature a significant punchiness, adding to the rhythmic pulse of the other tracks. Additionally,

there are sampled mechanical toys and pot lids which create a playful and hypnotic tone. This track plays

quick, staccato rhythms and add to the playful goal of the track. Later sections of the music feature a fast

hi-hat which imitates a bird quickly chirping through heavy modulation. This sound is not particularly

melodic but was another way to impart a pulse and the beat to the player.

Figure 64: Maschine 2 Digital Audio Workstation

65

All music was composed in the Maschine 2 DAW (digital audio workstation) with dedicated

Maschine mk3 hardware and later arranged in Bitwig Studio 2. All of the music was performed live into

the DAW using the hardware. Sections of the song would loop and each individual instrument would be

sequenced on top of each other. The continuous play of the music and the organic means of creating the

layers heightened the improvised feeling of the music. [2]

Figure 65: Music arrangement in Bitwig Studio 2

66

9 PROJECT MANAGEMENT
We used a variety of project management software to facilitate productivity and clarity for the team.

9.1 TRELLO
We chose to use Trello as our task list and issue tracking software. It was selected due to ease of use.

Additionally, several members of the team already had experience with Trello and it was picked up

quickly by those who did not. While we had decided to use the software at the beginning of the project,

we did not strictly use it until approximately halfway through the project. Once this transition happened,

we noticed a significant increase in productivity and a decrease in confusion about objectives.

Figure 66: A screenshot of the Doldrum Trello board

Trello is a web-based organization application which imitates the act of moving sticky notes on a

whiteboard. Tasks are represented by “cards” which are organized into “lists” which are named columns.

A given card can have a variety of attributes including comments, organizational tags, checklists, and an

assigned team member. We chose to organize our cards primarily by priority levels but also had lists for

“bugs”, “needs implementation”, and “awaiting review”. Cards 'can be freely moved between columns,

allowing us to easily move items up and down in priority. Cards were further organized by tags. The tags

would both list what component the card was addressing (e.g. “Cuckoo Boss”, “Note Highway”) and

67

what type of work had to be done (e.g. “Animation”, “Functionality”). With this organization system, it

was easy to understand what a card was describing when looking at the title and the tags.

9.2 PERFORCE
Perforce was our chosen source control platform. A private Perforce server was maintained by a

team member. Most of the project team had no experience with Perforce. Despite this, Perforce was easy

to learn and performed incredibly. The decision to use Perforce over Git or SVN was due to its robust

integration with Unreal Engine 4. There are a few distinct advantages to using Perforce over other source

control options with Unreal. One significant advantage is the ability to diff between Blueprints when

comparing versions. This functionality is built into Unreal and is not present with other source control

options due to their inability to handle large binary files (i.e. Blueprints).

The Perforce integration in Unreal is intuitive. Whenever someone edits a file, it is “checked-out”

by that member. The checked-out file will be read-only for all other team members and have a small lock

icon on the file. This prevents file conflicts and the need to merge changes. Other features include the

ability to sync individual files from within the Unreal editor. The use of Perforce made development

smooth and we did not encounter any issues with Perforce after initial setup.

9.3 GOOGLE DRIVE
Documents and other non-project files were hosted on Google Drive. Google Drive was chosen

over similar platforms such as Dropbox due to the collaboration features. It was easy to collaboratively

write design documents, meeting agendas, and other documents together rather than one person editing a

file. This made document creation easy and fast. In addition to documents, many art assets were uploaded

to the Drive as a means for file sharing. Art assets were often shared this way instead of through Perforce

as it was typically the programmer’s responsibility to implement the assets. Because of this, it was

simpler for the programmers to decide where the assets should be located in the file structure of the

Unreal project. The other reason this happened was because the artists would often use a variety of

campus computers which did not have Perforce installed on them. As Google Drive is web-based, they

could easily upload their work from any computer.

68

9.4 SLACK
Most online communication was done through Slack. The ability to create channels allows

conversation to be organized and to make context-switching effortless. Most of our channels were

categorized by types of work, e.g. “programming”, “visuals”, “audio”, or “paper”. However, we also had

channels such as “meetings”, “resources”, and “brainstorming” for other specific needs. Slack was a

valuable tool which facilitated fast, organized, and rapid communication.

9.5 DISCORD
Discord was occasionally used for online communication. Discord is set up similarly to Slack but

also features voice channels. When working from home, members of the team would occasionally work

while in a Discord voice channel, so we could quickly communicate with each other. It also boosted

productivity and comradery as it would give the feeling of working beside each other in an office setting.

The other use for Discord was to have some impromptu meetings online. If it we wanted to meet and the

meeting was either planned last minute or would simply be very brief, we would talk in a voice channel

on Discord.

10 TESTING

10.1 METHODOLOGY

10.1.1 Overview of the Experiment/Design
The goal of playtesting was to observe and analyze user behaviors when engaging with Doldrum.

Users were fitted with an HTC Vive virtual reality headset and a pair of HTC Vive wireless controllers.

When the Investigator began the game, they observed the subject from the start of the game until the very

end, or whenever the subject decided to opt out. When the playtest was complete, subjects were asked to

complete a post-test survey on their thoughts and observations.

Observed behaviors and results from the post-test survey were used to improve the design of our game.

10.1.2 Population
The population consisted of WPI students. The team had considered populations from

demonstration events and high-traffic events such as Worcester Game Pile and Penny Arcade Expo East.

Neither were chosen as explained in the Location section.

69

10.1.3 Location
Playtesting was conducted on the WPI campus in the Digital Art Studio in Fuller Laboratories.

The location was already fitted with the necessary virtual reality equipment needed to conduct this study.

We had also considered conducting playtesting at events mentioned in the Population section but decided

that managing the logistics of formal playtesting for these events would be difficult. These logistical

difficulties may have resulted in the data being less detailed compared to playtesting in a private and

controlled environment like the Digital Art Studio.

10.1.4 Restrictions
The time limit for a single playtest session was 30 minutes long.

10.1.5 Technique
During the playtest portion of the study, the data collected by the investigators were observable

actions, reactions, questions, and comments subjects had while playing the game. Data points that the

team considered to be important to how well the game played were the following:

1. Time user takes to complete the game

2. Subject sentiments

3. Number of times subjects played the game

The post-test survey consisted of a series of questions that assessed the subject’s physical and

emotional attitude during the playtest. The post-survey allowed subjects to provide and anonymize any

remaining information they had for the investigator(s) that they did not mention during the playtest.

Attitudes were measured using Likert scales so investigators could assess the direction and intensity of a

subject’s opinions towards a particular event in the game the game overall. When asking for subject

moods, a selection of moods from a mood chart were listed as checkboxes for the user to check if they

experienced a listed mood. This helped investigators gauge how the game affected players.

70

Figure 67: Circle of Affect used to categorize and measure positive and negative words and moods of user [13]

General demographic information such as age was asked in order to provide additional context to

the collected data. The survey included questions asking of previous exposure. For example, it was asked

if the subject had used virtual reality equipment as well as if they have played rhythm games before may

also affect how they behave towards the equipment and the game. The survey provided the subject several

text input sections to voice specific thoughts, observations, and recommendations.

10.1.6 Materials
Playtest subjects were given an informed consent form which detailed the process and procedure

of the study, as well as potential risks. Playtest subjects were fitted with a cleaned HTC Vive virtual

reality headset and a pair of motion controllers. Investigators had note sheets for each individual subject

to record observations. Investigators also had a digital post-study survey on a laptop that subjects had the

option to take after playtesting.

10.1.7 Entrance and Setup Procedure
When a playtest subject entered the testing premises, they were given an informed consent form

to read. If the playtest subject consented and signed, they were directed to the Play Area where the

playtest was conducted. The Investigator gave a brief overview of what to expect. Subjects were

encouraged to speak out their thoughts to assist investigators with observational data collection. To assist

with observational data collection, a portable audio recorder recorded the entire playtest. Subjects were

informed of when the recording began and ended. With the assistance of an Investigator, the subject was

71

fitted with a headset, a pair of controllers, and a pair of headphones. Once the subject was comfortable

with the setup, an investigator began the playtest by opening the game for the subject.

10.1.8 Study Procedure
From here, the subject acted and reacted to our game anyway they chose. The investigator noted

down these actions and reactions in conjunction to what the subject saw in the headset. The investigator

also noted any questions and comments the subject had during playtesting. If a subject directed a question

to the investigator regarding the study and/or the setup (i.e. unable to see anything in the headset), the

investigator was allowed to intervene.

10.1.9 Ending Procedure
Once the subject finished the game, either through early withdrawal, winning, or defeat, the

investigator stopped the game and assisted with the removal of the equipment from the subject. The

subject was then asked to complete an anonymous post-test survey. The survey was to collect data on

subject attitudes and observations during playtesting. Once the subject completed the survey, they were

free to leave.

10.1.10 Variables
The outcomes that we considered important were the following:

From audio data:

1. Subject sentiments
From observational data:

1. Time user takes to complete the game

2. Number of tries user takes to play game before quitting

From data gathered from post-test survey responses:

1. Physical comfort level

2. Usability/Interface difficulty

3. Gameplay difficulty

4. Subject mood

These outcomes gave the team a general understanding of how a player felt towards the game’s

aesthetics and gameplay on a physical and emotional level. This also allowed us to pinpoint areas that

caused subjects to engage and/or disengage in our game in a way that does not align with our goal. We

were then able to iterate upon those areas as needed.

72

10.1.11 Statistical Treatment
Observations seen in more than 50% of subjects was considered as a general finding in our report.

Observations seen between 10% and 50% was seen as a unique finding, and any observations seen below

10% was considered as an outlier but was still noted in findings. These percentages were obtained from

our desired sample size of 20 subjects. With 10%, we were considering a subject count of less than or

equal to two as outliers. With 50% of our sample size, there would be at least 10 subjects.

For post-test survey results, written responses were treated similarly to observation data. Data from

Likert scale responses were compiled into charts. Any correlation found between certain attitudes and

observed subjects’ behavior were noted in the report. Any correlation found between certain attitudes and

general demographics were noted in the report. Any correlation found between observed subjects’

behavior and general demographics were also noted in the report.

10.2 RESULTS

10.2.1 Playtesting Demographics
Though we had originally intended for 20 subjects to playtest our game, only 11 subjects

playtested due to poor planning. On analyzing the demographics, our subject population was not diverse.

All of the subjects were in the 18-24 year-old range and a majority were white and male. Our subject

population was also familiar with rhythm games before playtesting-- having played either Guitar Hero or

Rock Band, which made the game easier to understand. However, the data is not representative of

audiences who are not yet exposed to game mechanics found in Guitar Hero.

During playtesting, our subjects encountered a few game-breaking bugs that we fixed between

testing sessions. This may have affected the data in terms of assessing usability and subject emotion.

Aside from this, overall gameplay and design stayed the same over the course of the playtests. We

organized the evaluated data into the following categories: Physical, Usability, Gameplay, and Emotional.

A majority of the data evaluated was from the Post-Playtest Survey.

10.2.2 Physical Assessment
On a physical level, a majority of our subjects were comfortable with wearing the HTC Vive

headset and holding the controllers. The majority also did not experience simulation sickness after

playing. Since 63.6% of our subjects had prior experience with VR before playing our game, and 85.7%

of that group had exposure to an HTC Vive before, it is likely they have been well-adjusted to the headset

already.

73

Figure 68: Post-Playtest Survey, Physical Assessment Results: Headset comfort

on a scale of 1-4 with 1 as Very Uncomfortable and 4 as Very Comfortable

10.2.3 Usability Assessment
On a usability level, our menus were easy to navigate. A majority of subjects found it neither very

easy nor very hard to hit the notes, though some vocalized during gameplay that they were very bad at

hitting them. There were mixed responses when it came to difficulty performing actions. For performing

attacks, some subjects found it hard, while some found it very easy. On the other hand, more subjects

found performing movement actions to be very hard than very easy. In audio recordings, subjects

expressed confusion on how they were supposed to move.

74

Figure 69: Post-Playtest Survey, Usability Results: Performing attack action

on a scale of 1-4 with 1 as Very Hard and 4 as Very Easy

Figure 70: Post-Playtest Survey, Usability Results: Performing dodge action

on a scale of 1-4 with 1 as Very Hard and 4 as Very Easy

10.2.4 Gameplay Assessment
On a gameplay level, subjects had mixed reactions toward various gameplay elements. A

majority found the xylophone intuitive to use. They also found the boss’s actions to be neither hard nor

easy to interpret. Subjects felt similarly about interpreting notes coming down the Note Highway. In

75

recordings, a few subjects vocalized that they were unable to focus on both the notes coming down and

the boss. As such, they did not realize that the boss was firing attacks at them. As for the pacing of the

game, most subjects found it to be fast. Similar to how subjects vocalized how difficult it was to hit notes,

the same subjects mentioned how there were too many notes coming down at the very start of the game.

In the iteration that the subjects were playing on, our team did not yet remove a difficult test sequence that

played at the very beginning of the game.

Figure 71:Post-Playtest Survey, Gameplay Results: Note predictability

on a scale of 1-4 with 1 as Not Predictable and 4 as Very Predictable

Figure 72: Post-Playtest Survey, Gameplay Results: Pacing

on a scale of 1-4 with 1 as Too Slow and 4 as Too Fast

76

Despite difficulty of playing, some subjects ended up wanting to play the game more than once.

As we took notes on subjects during the playtest, we also tallied down the amount of times they played

the game before wanting to quit.

Figure 73: Chart on the number of tries per playtester

Multiple playthroughs demonstrated that our game does have some replayability with some

players. During playtesting, most of the subjects that did replay did so because they had a better grasp of

how the game worked and wanted to progress to a further point in the game compared to the previous

attempt.

As for gameplay predictability, subjects found note predictability and boss behavior to be on the less

predictable side. Lack of predictability is part of the goal of the note generation system and boss behavior

as we want gameplay to vary in between sessions.

77

10.2.5 Emotional Assessment

Figure 74: Post-Playtest Survey--Emotional Assessment, chart on moods felt during gameplay

Subjects experienced a wide range of emotions. During the playtest, subjects expressed

frustration when trying to learn how to play the game. In the Post-Playtest Survey, many subjects said

they were “Excited”, “Happy”, “Content”, “Stressed”, and “Tense”. In asking when the subject

experienced the moods they have selected, a majority responded with feeling positive when they were

able to hit Notes and negative when missing Notes or when they got attacked by the boss.

10.2.6 Sentiment Analysis
When running sentiment analysis on the audio recordings of the subjects, around half of them

outputted a negative sentiment. It is likely that the subject vocally expressing confusion while learning the

controls of the game led to an overall negative result. However, when looking at the transcript, many of

the negative results point to subjects vocalizing that they have died in-game, thus skewing the data to be

overall negative.

78

Figure 75: Chart of playtester's sentiment during audio recording

In Figure 73, subjects whose sentiment is zero is considered neutral as they had both positive and

negative responses to the game.

When looking at subject comments in the post-playtest survey, many of the subjects’ comments

outputted a positive sentiment. For components of the game such as visuals and music, all subjects

responded positively, expressing interest and delight. For gameplay, a majority responded positively,

mentioning that it was fun and easy to learn. Subjects who expressed neutrally or negatively mentioned

mechanics that they struggled with such as hitting Notes and moving.

79

Figure 76: Post-Playtest Survey--Chart of playtester's sentiment on game visuals

Figure 77: Post-Playtest Survey--Chart of playtester's sentiment on game music

80

Figure 78: Post-Playtest Survey--Chart of playtester's sentiment on gameplay

10.2.7 Improvements Made
 Based on subject observations and feedback, the major takeaways our team received were that the

game was too difficult for players and that there needed to be more player feedback when certain events

were occurring in-game (e.g. boss attacking). Following the playtests, we made the following

improvements and changes:

● Increased the window for which notes can be hit

● Removed sixteenth notes altogether

● Added additional indicators for when the Cuckoo charging an attack (coloring fog orange)

● Added sound effects for player feedback

● Changed intro sequence so that it had predictable patterns

● Removed scripted sequences that were after the intro

10.2.8 PAX East
Doldrum was selected to be showcased at the WPI booth during PAX 2018. The team agreed to

not conduct any formal playtesting due to the sheer volume of players and difficulty in setting up surveys

for the number of players. Even without formal playtesting at PAX, we did ask players for the feedback

on their experience. Many players were unfamiliar with VR and even fewer had played a VR rhythm

game. Despite the unfamiliarity surrounding our game, Doldrum was received positively by those who

played it.

There were a few minor bugs and problems with our game. Navigating the UI, specifically trying

to get from main menu to tutorial, was a struggle for many players. However, people understood the game

81

quickly after being taught. The difficulty of the game was also an issue for many players. Not many

players reached the chime phase of the game and many lost without ever utilizing our input bars. There

was also a bug where the “damage dealt” would output 0 at the end of the game which discouraged many

players who thought they were doing well. Additionally, many players seemed to read the tutorial without

understanding what it meant. Usually, players fared better on subsequent attempts. Despite this, two

players were able to defeat the Cuckoo Boss. This was achieved only after giving them a hint on how to

get past the chime stage. Overall, we learned a lot from the players and discovered a few bugs. PAX was

a success.

10.3 RELEASE
Following PAX East, the overall reception from those who played Doldrum at PAX was positive.

Some asked if there were any plans for releasing the game. There were no plans originally to release on

major content distributors such as Steam, mostly due to the amount of additional development time

required to make the game marketable. Itch.io ended up as the favored alternative, where we were able to

put up our game for distribution in less than an hour.

On April 15th 2018, we put Doldrum up for free download on itch.io. The download is a zip file

containing the game’s executable. Though playing the game using the HTC Vive is highly recommended,

we have provided keyboard instructions for players who do not own the hardware.

Figure 79: itch.io Analytics Panel, Visits to Doldrum's itch.io page from the following sites

Using itch.io’s analytics page, we are able to view user engagement data from users on the site.

Since then, the game page has received a small but steady amount of views as well as downloads. Within

a week of release, the game has been downloaded 27 times. As seen in Figure 78, most engagement has

been from user searches. Particularly, the download page has received the most traffic from people

searching for free virtual reality games.

82

 The itch.io game page has also received one user comment since release. Based on the comment,

the user played the game without VR equipment. They found the keyboard controls to be unintuitive.

However, the user found the art, music, and atmosphere enjoyable. Since the keyboard controls were

strictly for debugging purposes, we did not formally playtest on keyboard controls. Therefore, this an

expected criticism. We are glad that the response towards the art and music were similar to that in our

formal playtesting data.

11 POST-MORTEM

11.1 DESIGN
Ultimately, Doldrum’s final iteration was an enjoyable yet fairly derivative rhythm game. Despite

its attempts to tie together the action and rhythm game genre, the final design was extremely similar to

other popular rhythm games such as Guitar Hero or Rock Band. While we wanted to experiment with

players performing music in a freeform fashion, there was not enough guidance in showing what the

player was supposed to do. This lack of structure resulted in a design that we believe would be confusing

and unintuitive for players. Because of this, we found it safer to look upon the mechanics of successful

rhythm games and iterate upon them. We incorporated a note highway as foundation and then used the

action system to expand on the typical rhythm game design. The primary unique element of Doldrum

ended up being the fact that it was VR rather than the boss fight. This was primarily due to the player’s

ability to interact with the boss being limited both in terms of what they could do and when they had the

opportunity to make meaningful choices.

The Input Bar system combined with the player’s ability to either attack or dodge meant that

whenever the player was provided with the opportunity to make an action they only needed to react to

what the boss was currently doing. If the boss was readying an attack, the player always had to dodge. If

the boss was not readying an attack, the player could always safely make an attack input themselves.

Thus, the Input Bar system was fairly simplistic and did not adequately allow for an engaging combat

experience.

Despite the ambitious departure from conventional rhythm games in early designs, it was

concluded that the conventions exist for a reason. Without the strict requirement to continuously hit notes

on beat, there is little incentive for the player to engage with the game’s rhythm. While we made many

attempts to break the conventions to allow for more player improvisation, we found that the designs were

too open-ended to create engaging gameplay.

83

However, the significant reduction in scope that Doldrum experienced allowed us to focus on

polish and game feel rather than sheer content.

11.2 FUTURE WORK
As important as working on this project was as an experience, our team does not have any plans on

continuing work on it after graduating. The members of our team are heading in different directions

following graduation as we begin our professional careers. However, there is a great amount of potential

in the base mechanics and the scrapped content. Thus, we may return to Doldrum in the future.

11.3 WHAT WENT WRONG
The most significant problems we encountered were with scoping and communication. The

combination of this delay and overscoping led to much of the initial game being cut back or removed.

Additionally, communication was an issue for our team in the early terms of the year. While individual

team members worked on their respective tasks, there was a lack of cohesion in team-wide goals. This

resulted in a disorganized project. Later, we established multiple weekly meeting times to reinforce team

cohesion.

An additional problem was with the lab equipment. The computer in the IMGD VR lab was not

setup properly to facilitate development in Unreal Engine 4. There were a number of programs that

required administrative privileges in order to install or run. This significantly hindered our initial

development. As a result, we were forced to develop without a VR system until late B-Term. This meant

that all VR testing and adjustments were delayed until the beginning of C-Term.

We encourage teams to build a vertical slice rather than attempt to create a larger game. By taking

this approach, we were able to polish the game to our standards. Additionally, we encourage teams to fail

fast and cut any content that does not fit with the game's experience goals. We spent too much time

iterating on the design in the first half of the academic year. If we had decided on a design earlier, we

could have had more time to add more polish and content to Doldrum.

11.4 WHAT WENT RIGHT
Despite early difficulties, we ultimately created a fun and compelling rhythm-action game.

Doldrum is a polished vertical slice of an ambitious concept. All of the challenges we overcame gave us

valuable experience that we can bring into future work we take on.

84

 It was very useful for the entire team to play games together. We were able to discuss aspects of

gameplay as they were happening and decide whether or not to incorporate elements into Doldrum. More

importantly, these playthroughs brought the team together, boosting morale and camaraderie.

 Through development, the team gained a myriad of technical skills. Programmers gained

experience with C++, Unreal Engine 4, and Perforce. David experimented with performance-based

composition and learned how to use the Maschine mk3 hardware. Kent gained experience with rigging

and 3D animation. The most significant achievement was learning how to develop for VR. Designers had

to consider the unique benefits and constraints of VR. Programmers and artists had to optimize to meet

the high performance impact of the Vive. Finally, we learned how to develop a game which was larger in

scope than any game we had ever made. We accomplished this through frequent meetings and a variety of

software. Despite communication problems and a slow start to development, Doldrum is a polished and

engaging virtual reality game.

85

12 REFERENCES
[1] 3D_Guy_2008. 2010. wing Rig Animation Test. Video. (October 2010). Retrieved from

https://www.youtube.com/watch?v=YHKQTWI9qh0
[2] David Allen. 2018. Doldrum - Backing Tracks. Retrieved from https://soundcloud.com/fraud-

sound
[3] Atlus. 2008. Shin Megami Tensei: Persona 4. Game [PlayStation 2]. (10 July 2008). Played

September 2017.
[4] Gary Bailey. 2016. Celebrating 15 years of Silent Hill 2. (September 2016). Retrieved

http://www.godisageek.com/2016/09/celebrating-15-years-of-silent-hill-2/
[5] Sean Baron. 2012. Cognitive Flow: The Psychology of Great Game Design. (March 2012).

Retrieved from
https://www.gamasutra.com/view/feature/166972/cognitive_flow_the_psychology_of_.php

[6] Bass. 2017. Import Review: Taiko no Tatsujin: Drum Session! (November 2017). Retrieved from
https://www.destructoid.com/import-review-taiko-no-tatsujin-drum-session--471536.phtml

[7] Team Coco. 2016. YouTube VR Lab Outtake: Conan Plays "Space Pirate Trainer". Video.
(November 2016) Retrieved from http://teamcoco.com/video/conan-plays-space-pirates

[8] Craigsapp. 2018. Midifile. Retrieved from http://midifile.sapp.org/
[9] colxi. JSMIDIparser javascript Library: .MIDI file to JS Object. Retrieved from

http://www.colxi.info/portfolio/jsmidiparser-midi-binary-file-to-javascript-object-library/
[10] Mihaly Csikszentmihalyi. 2004. Flow, the secret to happiness. Video. (February 2004). Retrieved

from https://www.ted.com/talks/mihaly_csikszentmihalyi_on_flow
[11] Dustyn Bush. 2016. Thumper - Stage 6 Final Boss. (October 2016). Retrieved from

https://www.youtube.com/watch?v=eBfjIjQFrRw
[12] Kate Compton, Ben Kybartas, and Michael Mateas. 2015. Tracery: An Author-Focused

Generative Text Tool. Interactive Storytelling Lecture Notes in Computer Science (December
2015), 154–161. DOI:http://dx.doi.org/10.1007/978-3-319-27036-4_14

[13] Pieter Desmet and Paul Hekkert. 2007. Framework of Product Experience. International Journal
of Design 1, 1 (March 2007), 13–23.

[14] Drool. 2016. Thumper. Game [PC]. (10 October 2016). Played September 2017.
[15] Epic Games. 2018. Blueprints Visual Scripting. Retrieved from https://docs.unrealengine.com/en-

us/Engine/Blueprints
[16] Moby Francke and Randy Lundeen. 2008. How Valve Connects Art Direction to Gameplay.

(2008). Retrieved from
http://www.valvesoftware.com/publications/2008/GameFest08_ArtInSource.pdf

[17] Free Lives. 2017. Gorn. Game [PC]. (10 July 2017). Played September 2017.
[18] Gaming with Me. 2017. Ash's pikachu Vs Ho-Oh legendary Pokemon. Video. (December 2017).

Retrieved from https://www.youtube.com/watch?v=7ZBrt9N0oTc
[19] GeneralMcBadass. 2011. Patapon 3 Boss: The Great Gigante King w/ Cannogabang [1/3]. Video.

(May 2011) Retrieved from https://www.youtube.com/watch?v=DHw54llgZXY
[20] Google. 2018. A new dimension - Designing for Google Cardboard. Retrieved from

https://designguidelines.withgoogle.com/cardboard/designing-for-google-cardboard/a-new-
dimension.html

[21] Kyle Hanson. 2018. Audioshield Update Adds YouTube Support, Removes Soundcloud. (March
2018). Retrieved from https://attackofthefanboy.com/news/audioshield-update-adds-youtube-
support-removes-soundcloud/

https://www.youtube.com/watch?v=YHKQTWI9qh0
https://soundcloud.com/fraud-sound
https://soundcloud.com/fraud-sound
http://www.godisageek.com/2016/09/celebrating-15-years-of-silent-hill-2/
https://www.gamasutra.com/view/feature/166972/cognitive_flow_the_psychology_of_.php
https://www.destructoid.com/import-review-taiko-no-tatsujin-drum-session--471536.phtml
http://teamcoco.com/video/conan-plays-space-pirates
http://midifile.sapp.org/
http://www.colxi.info/portfolio/jsmidiparser-midi-binary-file-to-javascript-object-library/
https://www.ted.com/talks/mihaly_csikszentmihalyi_on_flow
https://www.youtube.com/watch?v=eBfjIjQFrRw
https://docs.unrealengine.com/en-us/Engine/Blueprints
https://docs.unrealengine.com/en-us/Engine/Blueprints
http://www.valvesoftware.com/publications/2008/GameFest08_ArtInSource.pdf
https://www.youtube.com/watch?v=7ZBrt9N0oTc
https://www.youtube.com/watch?v=DHw54llgZXY
https://designguidelines.withgoogle.com/cardboard/designing-for-google-cardboard/a-new-dimension.html
https://designguidelines.withgoogle.com/cardboard/designing-for-google-cardboard/a-new-dimension.html
https://attackofthefanboy.com/news/audioshield-update-adds-youtube-support-removes-soundcloud/
https://attackofthefanboy.com/news/audioshield-update-adds-youtube-support-removes-soundcloud/

86

[22] I-Illusions. 2017. Space Pirate Trainer. Game [PC]. (12 October 2017). Played September 2017.
[23] JUDOKATANOKA. 2014. Street Fighter sound Hadouken. Video. (January 2014). Retrieved

from https://www.youtube.com/watch?v=49jKoMbJyEo
[24] Konami. 2001. Silent Hill 2. Game [PlayStation 2]. (24 September 2001). Konami, Kyoto, Japan.

Played September 2017.
[25] Qiufeng Lin, John Rieser, and Bobby Bodenheimer. 2012. Stepping over and ducking

under. Proceedings of the ACM Symposium on Applied Perception - SAP 12 (2012).
DOI:http://dx.doi.org/10.1145/2338676.2338678

[26] Tom Looman. 2017. VR Template Guide for Unreal Engine 4. (November 2017). Retrieved
http://www.tomlooman.com/vrtemplate/

[27] Tony Lynch. 2014. Writing Up Qualitative Research. dissertation.
[28] Moby Games. 2018. Guitar Hero III: Legends of Rock. Retrieved from

https://www.mobygames.com/game/windows/guitar-hero-iii-legends-of-rock/
[29] Natalie Neumann. 2017. Puella Magi Madoka Magica Review. (June 2017). Retrieved from

https://nigmabox.wordpress.com/2012/11/29/threeweeksinthewaiting/
[30] Oculus. 2018. Introduction to Best Practices. Retrieved from

https://developer.oculus.com/design/latest/concepts/book-bp/
[31] PlayStation. 2018. Patapon™ Remastered. Retrieved from https://www.playstation.com/en-

us/games/patapon-remastered-ps4/
[32] RUST LTD. 2016. Hot Dogs, Horseshoes & Hand Grenades. Game [PC]. (5 April 2016). Played

September 2017.
[33] Melena Ryzik. 2015. Guillermo del Toro's House of Horrors. (October 2015). Retrieved from

https://www.nytimes.com/interactive/2015/10/07/movies/11guillermodeltoro-house.html
[34] SHN Survival Horror Network. 2015. Rule of Rose Full HD 1080p/60fps Longplay Walkthrough.

Video. (8 November 2015). Retrieved from https://www.youtube.com/watch?v=YZjnaTmhp3I
[35] Barbara Sommer. 2006. Measuring attitudes. Retrieved from

http://psc.dss.ucdavis.edu/sommerb/sommerdemo/scaling/attitude.htm
[36] Alex Schwartz and Devin Reimer. 2017. 'Rick and Morty: Virtual Rick-ality' Postmortem: VR

Lessons *Burrrp* Learned. Video. (September 2017). Retrieved from
https://www.youtube.com/watch?v=7aqIbeQQL8c

[37] Sony Picture Classics. 2014. Whiplash. Film. (16 January 2014). Retrieved April 2017.
[38] SUPERHOT Team. 2017. SUPERHOT VR. Game [PC]. (25 May 2017) Played September 2017.
[39] UEAKCrash. 2016. Audioshield (Vive VR Gameplay). Video. (May 2016). Retrieved from

https://www.youtube.com/watch?v=BWEC_MBB1pA
[40] Unity. 2015. User Interfaces for VR. Retrieved from

https://unity3d.com/learn/tutorials/topics/virtual-reality/user-interfaces-vr
[41] Gary Wolf. 2016. Measuring Mood – Current Research and New Ideas. (August 2016). Retrieved

from http://quantifiedself.com/2009/02/measuring-mood-current-resea/

http://www.tomlooman.com/vrtemplate/
https://www.mobygames.com/game/windows/guitar-hero-iii-legends-of-rock/
https://nigmabox.wordpress.com/2012/11/29/threeweeksinthewaiting/
https://developer.oculus.com/design/latest/concepts/book-bp/
https://www.playstation.com/en-us/games/patapon-remastered-ps4/
https://www.playstation.com/en-us/games/patapon-remastered-ps4/
https://www.nytimes.com/interactive/2015/10/07/movies/11guillermodeltoro-house.html
https://www.youtube.com/watch?v=YZjnaTmhp3I
http://psc.dss.ucdavis.edu/sommerb/sommerdemo/scaling/attitude.htm
https://www.youtube.com/watch?v=7aqIbeQQL8c
https://www.youtube.com/watch?v=BWEC_MBB1pA
https://unity3d.com/learn/tutorials/topics/virtual-reality/user-interfaces-vr
http://quantifiedself.com/2009/02/measuring-mood-current-resea/

87

13 APPENDIX

13.1 ADDITIONAL CONCEPT ART

13.1.1 Trumpet Boss

13.1.2 Audience Boss Environment

88

13.1.3 Owl Mentor Environment

13.1.4 Note Highway Player View

89

13.1.5 Note Highway Side View

90

13.1.6 Menu Concept

13.1.7 Logo Iterations

91

13.2 PLAYTEST INFORMED CONSENT FORM

Informed Consent Agreement for Participation in a Research Study

Investigator(s): VR Horror MQP Team

● David Allen (dpallen@wpi.edu)
● Kent Fong (kfong@wpi.edu)
● Matt Szpunar (mjszpunar@wpi.edu)
● Henry Wheeler-Mackta (hjwheelermackta@wpi.edu)
● Kelly Zhang (kezhang@wpi.edu)

Contact Information: vrpmqp@wpi.edu

Title of Research Study: DOLDRUM Playtesting

Introduction: You are being asked to participate in a research study. Before you agree,
however, you must be fully informed about the purpose of the study, the procedures to be
followed, and any benefits, risks or discomfort that you may experience as a result of your
participation. This form presents information about the study so that you may make a fully
informed decision regarding your participation.

Purpose of the study: The goal is to observe and analyze how players behave and feel during
and after playing our game, DOLDRUM, while using virtual reality technology.

About the Game: DOLDRUM is a horror-esque, action, and rhythm virtual reality game. As the
player in the virtual world setting, you will be equipped with a set of drums and drumsticks. To
survive, Hit the notes as they come towards you by hitting the drums with your drumsticks.
Perform actions on the drums with your drumsticks to fight against the enemy in front of you.
Fight, drum and survive until the very end to win.

Procedures to be followed: The study is to be conducted within 30 minutes or less. You will be
seated during the playtest. You will also be fitted with an HTC Vive headset and controllers.
When comfortable, signal to the investigator(s) that you are ready to begin the playtest.

92

During the playtest, we encourage you to speak out your thoughts and actions. The
investigator(s) will be taking notes on your behavior during the procedure.

If at any moment during the playtest you feel uncomfortable and would like to withdraw early,
pause the game and tell the investigator(s) to stop the playtest.

Upon finishing the game, either through withdrawing early, or reaching the win/lose condition,
you will leave the play area with the virtual reality equipment. You are free to leave at this point.
There is a post-test survey you can take after the playtest. You have the right to choose to not
complete the survey.

Risks to study participants: Potential and foreseeable risks you may experience following this
study include: motion sickness during gameplay, contracting pink eye via headset. The
investigator(s) wipe down equipment following each study to mitigate the risk of pink eye.

Benefits to research participants and others: While there are no immediate benefits to you
on completing the playtest, your contributions to playtesting will help us, the investigator(s), to
understand user behaviors in virtual reality better and create more enjoyable virtual reality
experience in DOLDRUM.

Record keeping and confidentiality: Data recorded will be anonymous, with only
demographic info preserved, and stored in a Google Drive accessed only by the MQP team.
Records of your participation in this study will be held confidential so far as permitted by law.
However, the study investigators, the sponsor or it’s designee and, under certain circumstances,
the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be able to inspect
and have access to confidential data that identify you by name. Any publication or presentation
of the data will not identify you.

Compensation or treatment in the event of injury: In the event of injury during the playtest,
the investigator(s) will immediately call WPI EMS for medical assistance, but will be unable to
compensate costs regarding said injury. You do not give up any of your legal rights by signing
this statement.

For more information about this research or about the rights of research participants, or
in case of research-related injury, contact:

VR Horror MQP Team (Email: vrpmqp@wpi.edu)

VR Horror MQP Adviser (Ralph Sutter, Email: rsutter@wpi.edu)

93

VR Horror MQP Co-Adviser (Gillian Smith, Email: gmsmith@wpi.edu)

IRB Chair (Professor Kent Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu)

University Compliance Officer (Jon Bartelson, Tel. 508-831-5725, Email: jonb@wpi.edu)

Your participation in this research is voluntary. Your refusal to participate will not result in
any penalty to you or any loss of benefits to which you may otherwise be entitled. You may
decide to stop participating in the research at any time without penalty or loss of other benefits.
The project investigators retain the right to cancel or postpone the experimental procedures at
any time they see fit.

By signing below, you acknowledge that you have been informed about and consent to be a
participant in the study described above. Make sure that your questions are answered to your
satisfaction before signing. You are entitled to retain a copy of this consent agreement.

___________________________ Date: ___________________

Study Participant Signature

Study Participant Name (Please print)

____________________________________ Date: ___________________

Signature of Person who explained this study

Additional clauses to add to Consent Agreements, as appropriate:

94

The treatment or procedures used in this research may involve risks to the subject (or to an
embryo or fetus, if the subject is or may become pregnant), which are currently unknown or
unforeseeable.

Additional costs to the subject that may result from participation in this research include: None.

Significant new findings or information, developed during the research, may alter the subject’s
willingness to participate in the study. Any such findings will be promptly communicated to all
research participants.

Should a participant wish to withdraw from the study after it has begun, the following procedures
should be followed:

1. Pause the game OR Press the Vive Menu button on any of the controllers.

2. Vocally state to investigator(s) to withdraw and/or exit the game.

The consequences for early withdrawal for the subject and the research are: The Investigators
will still use data from the participant unless explicitly requested to discard data recorded during
the playtest.

Special Exceptions: Under certain circumstances, an IRB may approve a consent procedure
which differs from some of the elements of informed consent set forth above. Before doing so,
however, the IRB must make findings regarding the research justification for different
procedures (i.e. a waiver of some of the informed consent requirements must be necessary for
the research is to be “practicably carried out.”) The IRB must also find that the research
involves “no more than minimal risk to the subjects.” Other requirements are found at 45 C.F.R.
§46.116.

95

13.3 POST-PLAYTEST SURVEY QUESTIONS
1) Attitude Assessment (Likert scales 1-5 unless mentioned otherwise)

a. Physical Assessment
i. How comfortable was it to wear the headset?

(Very Uncomfortable - Very Comfortable)
ii. How comfortable was it to handle the controllers?

(Very Uncomfortable - Very Comfortable)
iii. How motion sick do you feel after playing the game?

(Very Uncomfortable - Very Comfortable)
b. Usability Assessment

i. How difficult was it to navigate the menu?
(Very Hard - Very Easy)

ii. How difficult was it to hit the notes?
(Very Hard - Very Easy)

iii. How difficult was it to perform the attack action?
(Very Hard - Very Easy)

iv. How difficult was it to perform the dodge action?
(Very Hard - Very Easy)

c. Gameplay Assessment
i. How difficult was it to understand how the drum worked?

(Very Hard - Very Easy)
ii. How difficult was it to understand what the boss did?

(Very Hard - Very Easy)
iii. How difficult was it to interpret the notes coming at you?

(Very Hard - Very Easy)
iv. How was the pacing of the game?

(Too slow - Too fast)
v. How predictable were the notes coming down the highway?

(Unpredictable - Very Predictable)
vi. How predictable were the boss’ actions?

(Unpredictable - Very Predictable)
d. Emotional Assessment

i. What moods did you feel while playing the game? (Check all that apply)
1. Excited
2. Elated
3. Happy
4. Content
5. Serene
6. Relaxed
7. Calm
8. Fatigued
9. Bored
10. Depressed
11. Sad
12. Upset
13. Stressed
14. Nervous
15. Tense

ii. When did you experience the moods that you have selected?

96

2) Subject Write-in Questions and Comments
a. What are your thoughts on the game’s visuals?
b. What are your thoughts on the game’s sounds?
c. What are your thoughts on the gameplay?
d. If you were to change something in the game, what would it be?
e. Do you have any additional feedback about the game?

3) General Demographic Information
a. Age
b. Have you played in VR before this playtest?

i. If so, which platform(s)? (HTC Vive, Oculus, etc.)
c. Have you played a rhythm game before (i.e. Guitar Hero, Rock Band)?

i. If so, list the title(s)

97

13.4 HEADER FILES

13.4.1 BossCharacter.h

UENUM(BlueprintType)
enum class ENoteLength : uint8
{
 One_Fourth UMETA(DisplayName = "1/4"),
 One_Eighth UMETA(DisplayName = "1/8"),
 One_Sixteenth UMETA(DisplayName = "1/16")
};

UCLASS()
class ORB_MQP_API ABossCharacter : public ACharacter, public IBossStateMachine
{
 GENERATED_BODY()

public:
 // Sets default values for this character's properties
 ABossCharacter();

#pragma region BP Properties
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings")
 bool startOnBeginPlay;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings")
 float startDelay;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings")
 bool showDebug;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings")
 int debugVerbosity;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State: Settings")
 ENoteLength noteLength;
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "Boss State: Settings")
 AMetronomeController *targetController;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State")
 EState RootState;
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "Boss State")
 EState CurrentState;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State")
 TMap<EState, FState> StateTransitionMap;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Boss State")
 TArray<FPhase> PhaseSequence;
#pragma endregion

#pragma region Actions
 UFUNCTION(BlueprintImplementableEvent, Category = "Boss State|Action")
 void Idle(const ESubStateIdle& subState, const EStateProgress& stage);
 UFUNCTION(BlueprintImplementableEvent, Category = "Boss State|Action")
 void Attack(const ESubStateAttack& subState, const EStateProgress& stage);
#pragma endregion Implement in BP

#pragma region State Machine Events
 virtual void Setup_Implementation() override;
 virtual void Start_Implementation() override;
 virtual void OnStateEnter_Implementation(const EState & from, const EState & to) override;
 virtual void OnState_Implementation(const EState & from, const EState & to) override;
 virtual void OnStateExit_Implementation(const EState & from, const EState & to) override;
 virtual bool isValidTransition_Implementation(const EState& from, const EState& to) override;
#pragma endregion Overridable in BP

#pragma region State Machine Actions
 // ExecuteAction: Runs the appropriate BlueprintImplementableEvent given state
 void ExecuteAction(const EState& state, const EStateProgress& stage = EStateProgress::SE_During);

 // ChangeState: Changes state of state machine given from and to states.

98

 // if shouldInterrupt is true, any states queued up will be emptied and desired
state
 // to change to will be added to run.
 UFUNCTION(BlueprintCallable, Category = "Boss State")
 EState ChangeState(EState to, bool forceChange = false);
 // ChangeRandomState: Changes state of state machine randomly. Values can be passed in to
influence random result
 // setting int values to -1 will cause that value to not influence the result
 UFUNCTION(BlueprintCallable, Category = "Boss State")
 EState ChangeRandomState(bool forceChange = false);
 UFUNCTION(BlueprintCallable, Category = "Boss State|Action")
 void StopMachine();
 UFUNCTION(BlueprintCallable)
 bool IsValidTransitionMap();
 UFUNCTION()
 void OnMetronomeBeat();

#pragma endregion

protected:
 // Flag in case we get an external call to the state machine (i.e. player input)
 bool bIsRunningAState;
 // Queued up states to be run by AsyncTask
 TQueue<EState> stateQueue;

 UMetronomeListenerComponent *listener;

 // AActor Functions //
 virtual void BeginPlay() override;
 virtual void BeginDestroy() override;

private:
 bool bIsStopping;
 bool bMachineStarted;
 EState mFromState;
 EState mToState;
 uint8 mSubstate;
 EStateProgress mCurrentStateProgress;
 int mBeatCounter;
 int mSubDivCounter;

 // Helper function to add transitions to StateTransitionMap
 void ADD_TRANSITION(FState t, FStateEntry s);
 void LogToScreen(FString s, FColor c, bool showDebug, int debugLevel);

 FStateEntry GetStateEntry(EState fromState, EState toState);
 EState GetNextState(EState fromState);

};

99

13.4.2 BossState.h
UENUM(BlueprintType)
enum class EState : uint8
{
 SE_Any UMETA(DisplayName = "Any"),
 SE_Idle UMETA(DisplayName = "Idle"),
 SE_Attack UMETA(DisplayName = "Attack"),
 SE_STOP UMETA(Hidden)
};

UENUM(BlueprintType)
enum class ESubStateAttack : uint8
{
 SE_Base UMETA(DisplayName = "Base Attack"),
 SE_Line UMETA(DisplayName = "Line Attack"),
 SE_Projectile UMETA(DisplayName = "Projectile Attack"),
 NUM_SUBSTATES UMETA(Hidden)
};
UENUM(BlueprintType)
enum class ESubStateIdle : uint8
{
 SE_SwapLeft UMETA(DisplayName = "Swap Left"),
 SE_SwapCenter UMETA(DisplayName = "Swap Center"),
 SE_SwapRight UMETA(DisplayName = "Swap Right"),
 NUM_SUBSTATES UMETA(Hidden)
};

UENUM(BlueprintType)
enum class EStateProgress : uint8
{
 SE_Enter UMETA(DisplayName = "Enter"),
 SE_During UMETA(DisplayName = "During"),
 SE_Exit UMETA(DisplayName = "Exit")
};

USTRUCT(BlueprintType)
struct ORB_MQP_API FStateEntry
{
 GENERATED_BODY()

 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 EState targetState;
 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 int enterFinishDuration;
 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 int duringFinishDuration;
 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 int exitFinishDuration;

 FStateEntry(EState state, float onEnterDuration, float duringDuration, float exitDuration) {
 targetState = state;
 enterFinishDuration = onEnterDuration;
 duringFinishDuration = duringDuration;
 exitFinishDuration = exitDuration;
 }

 FStateEntry(EState state) {
 targetState = state;
 enterFinishDuration = 0;
 duringFinishDuration = 0;
 exitFinishDuration = 0;
 }

 FStateEntry() {}
};

USTRUCT(BlueprintType)

100

struct ORB_MQP_API FState
{
 GENERATED_BODY()

 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 TArray<FStateEntry> entries;

 //UFUNCTION(BlueprintCallable, Category = "Boss State|Utility")
 static FString EStateToString(EState state);

 //UFUNCTION(BlueprintCallable, Category = "Boss State|Utility")
 static FString EStateProgressToString(EStateProgress state);
};

class ORB_MQP_API FRunStateTask : public FNonAbandonableTask
{
 friend class FAutoDeleteAsyncTask<FRunStateTask>;

public:
 typedef void(*FunctionPtrType)(void);
 FRunStateTask(TFunction<void(void)> function) :
 func(function) {}

protected:
 TFunction<void(void)> func;

 void DoWork();

 FORCEINLINE TStatId GetStatId() const
 {
 RETURN_QUICK_DECLARE_CYCLE_STAT(FMyTaskName, STATGROUP_ThreadPoolAsyncTasks);
 }

};

101

13.4.3 BossStateMachine.h
UINTERFACE(BlueprintType, Blueprintable)
class ORB_MQP_API UBossStateMachine : public UInterface
{
 GENERATED_UINTERFACE_BODY()
};

class ORB_MQP_API IBossStateMachine
{
 GENERATED_IINTERFACE_BODY()

public:

 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Event")
 void Setup();
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Action")
 void Start();
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Event")
 void OnStateEnter(const EState & from, const EState & to);
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Event")
 void OnState(const EState & from, const EState & to);
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State|Event")
 void OnStateExit(const EState & from, const EState & to);
 UFUNCTION(BlueprintNativeEvent, Category = "Boss State")
 bool isValidTransition(const EState & from, const EState & to);

};

102

13.4.4 MetronomeController.h
/**
 * MetronomeController.h
 * Metronome object that derives from the Actor class.
 * Multiple instances can be held in a level with their own designated BPM (Beats Per Minute)
 */
UCLASS()
class ORB_MQP_API AMetronomeController : public AActor
{
 GENERATED_BODY()

public:
 // Sets default values for this actor's properties
 AMetronomeController();

 // Constants
 const int MAX_BPM = 440;
 const int MIN_BPM = 20;
 const int MAX_LISTENERS = 20;

 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Metronome")
 bool bStartOnBeginPlay;

 // Starts metronome
 UFUNCTION(BlueprintCallable, Category = "Metronome")
 void Start();
 // Stops metronome
 UFUNCTION(BlueprintCallable, Category = "Metronome")
 void Stop(bool shouldClearListeners);

 // Getter & Setter for BPM
 UFUNCTION(BlueprintCallable, Category = "Metronome")
 int GetBPM() const;
 UFUNCTION(BlueprintCallable, Category = "Metronome")
 bool SetBPM(int newBPM);

 FTimerHandle GetTimerHandle() const;

 // Listener Registration
 // NOTE: Possible to expose these functions as BlueprintCallable in the future but only if
necessary
 AMetronomeController *RegisterListener(UMetronomeListenerComponent *comp);
 bool UnregisterListener(UMetronomeListenerComponent *comp);
 void ClearListeners();

 int BeatsUntilNextMeasure();

 ENoteType GetCurrentNoteType();
 ENoteType GetNextNoteType();

 // Converts BPM (Beats per Minute) into seconds
 float BpmToSeconds(int bpm);

protected:
 // Called when the game starts or when spawned
 virtual void BeginPlay() override;

 // Objects listening to this metronome
 TArray<UMetronomeListenerComponent*> listeners;

 // Calls all objects listening
 void SendBeatToListeners();

private:

 const int SUBDIVIDE_FOURTH_MAX = 4;
 const int SUBDIVIDE_EIGHTH_MAX = 2;

103

 const int SUBDIVIDE_SIXTEENTH_MAX = 1;

 // Internal bpm value
 int _bpm = 60;
 long _internalCount = 0;

 // Handle for timer
 FTimerHandle MemberTimerHandle;
};

104

13.4.5 MetronomeListenerComponent.h
DECLARE_DYNAMIC_MULTICAST_DELEGATE(FBeatDelegate);

UCLASS(ClassGroup=(Custom), meta=(BlueprintSpawnableComponent))
class ORB_MQP_API UMetronomeListenerComponent : public UActorComponent
{
 GENERATED_BODY()

public:
 // Sets default values for this component's properties
 UMetronomeListenerComponent();

 int64 BeatsSinceBeginPlay;

 /* MetronomeController to listen to */
 UPROPERTY(EditAnywhere, BlueprintReadWrite, Category = "Metronome")
 AMetronomeController *targetController;

 /* Blueprints uses this to listen for beats from MetronomeController */
 UPROPERTY(BlueprintAssignable, Category = "Metronome")
 FBeatDelegate OnBeatEvent;

 UFUNCTION(BlueprintCallable, Category = "Metronome")
 float TimeBeforeNextBeat();

 UFUNCTION(BlueprintCallable, Category = "Metronome")
 float TimeSincePreviousBeat();

 UFUNCTION(BlueprintCallable, Category = "Metronome")
 bool InProximityOfBeat(float offset);

 UFUNCTION(BlueprintCallable, Category = "Metronome")
 float GetSecondsPerBeat();

 UFUNCTION(BlueprintCallable, Category = "Metronome")
 int GetBeatsUntilNextMeasure();

 UFUNCTION(BlueprintCallable, Category = "Metronome")
 ENoteType CurrentNoteType();

 UFUNCTION(BlueprintCallable, Category = "Metronome")
 ENoteType NextNoteType();

 /*
 Internal call to trigger OnBeat.
 Broadcasts OnBeatEvent to Blueprints listeners
 */
 virtual void OnBeat();

protected:
 // Called when the game starts
 virtual void BeginPlay() override;
 virtual void BeginDestroy() override;
};

105

13.4.6 NoteActor.h
UCLASS()
class ORB_MQP_API ANoteActor : public AActor
{
 GENERATED_BODY()

public:
 // Sets default values for this actor's properties
 ANoteActor();

protected:
 // Called when the game starts or when spawned
 virtual void BeginPlay() override;

public:
 // Called every frame
 virtual void Tick(float DeltaTime) override;

};

UENUM(BlueprintType)
enum class ETargetFace : uint8 {
 TOP UMETA(DisplayName = "Top"),
 LEFT UMETA(DisplayName = "Left"),
 RIGHT UMETA(DisplayName = "Right"),
 CYMBAL_LEFT UMETA(DisplayName = "CymbalLeft"),
 CYMBAL_RIGHT UMETA(DisplayName = "CymbalRight"),
 NONE UMETA(DisplayName = "None")
};

UENUM(BlueprintType)
enum class ENoteType : uint8 {
 FOURTH UMETA(DisplayName = "1/4"),
 EIGHTH UMETA(DisplayName = "1/8"),
 SIXTEENTH UMETA(DisplayName = "1/16"),
 ACTION UMETA(DisplayName = "Action"),
 PRESCRIPTED_END UMETA(DisplayName = "Prescripted End"),
 EMPTY UMETA(DisplayName = "Empty")
};

USTRUCT(BlueprintType)
struct ORB_MQP_API FNoteStruct {

 GENERATED_BODY()

 UPROPERTY(BlueprintReadWrite)
 ETargetFace target;
 UPROPERTY(BlueprintReadWrite)
 ENoteType noteType;
 bool isSpreadNote;

 FNoteStruct() {
 target = ETargetFace::NONE;
 noteType = ENoteType::EMPTY;
 isSpreadNote = false;
 };
 FNoteStruct(ENoteType t) {
 target = static_cast<ETargetFace>(rand() % ((int) ETargetFace::NONE));
 noteType = t;
 isSpreadNote = false;
 };
 FNoteStruct(ETargetFace d, ENoteType t) {
 target = d;
 noteType = t;
 isSpreadNote = false;

106

 };
};

USTRUCT(BlueprintType)
struct ORB_MQP_API FNoteSet {

 GENERATED_BODY()

 UPROPERTY(BlueprintReadWrite, DisplayName = "Target A")
 FNoteStruct Target_A;
 UPROPERTY(BlueprintReadWrite, DisplayName = "Target B")
 FNoteStruct Target_B;

 FNoteSet() {
 Target_A = FNoteStruct();
 Target_B = FNoteStruct();
 }

 FNoteSet(FNoteStruct targetA) {
 Target_A = targetA;
 Target_B = FNoteStruct();
 }

 FNoteSet(FNoteStruct targetA, FNoteStruct targetB) {
 Target_A = targetA;
 Target_B = targetB;
 }

 void AddToSet(FNoteStruct ¬e, bool isTargetA = true) {
 if (isTargetA)
 Target_A = note;
 else
 Target_B = note;
 }
};

107

13.4.7 NoteGeneratorFunctionLibrary.h
UCLASS()
class ORB_MQP_API UNoteGeneratorFunctionLibrary : public UBlueprintFunctionLibrary
{
 GENERATED_BODY()

 UFUNCTION(BlueprintPure)
 static FNoteSet GetNextNoteSet();
 UFUNCTION(BlueprintPure)
 static FNoteSet PeekNextNoteSet();
 UFUNCTION(BlueprintCallable)
 static void RegenerateNotes();

 UFUNCTION(BlueprintPure)
 static bool IsOkToPop();
 UFUNCTION(BlueprintPure)
 static bool IsNextBeatAction();
 UFUNCTION(BlueprintCallable)
 static void SetDoubleNoteProbability(float Probability);
 UFUNCTION(BlueprintCallable)
 static float GetDoubleNoteProbability();
};

108

13.4.8 NoteGrammar.h

DECLARE_LOG_CATEGORY_EXTERN(NoteGrammarLog, Log, All);

enum NoteType {
 FOURTH,
 EIGHTH,
 SIXTEENTH
};

enum GrammarType {
 Test,
 MeasureA,
 MeasureB,
 Four,
 Three,
 Two,
 One,
 Fourth,
 Eighth,
 Sixteenth,
 Action,
 NONE
};

enum NoteDensity {
 LOW,
 MED,
 HIGH
};

/**
 NoteGrammarRule - Class containing info about a grammar rule
*/
class NoteGrammarRule
{
public:
 NoteGrammarRule() {};
 TArray<FString> Tokens;
 float Probability;
 TArray<int> Density;
};

/**
 NoteGrammarTerm - Class containing info about a grammar terminator
*/
class NoteGrammarTerm : public NoteGrammarRule
{
public:
 NoteType noteType;
 NoteGrammarTerm() {}
 NoteGrammarTerm(NoteType type) {
 noteType = type;
 }
};

/**
 FNoteGenTask - Task to run generation on separate thread
*/
class ORB_MQP_API FNoteGenTask : public FNonAbandonableTask
{
 friend class FAsyncTask<FNoteGenTask>;
public:
 FNoteGenTask(int count) :
 notesToGenerate(count)
 {}

109

 void SetNotesToGenerate(int count) {
 notesToGenerate = count;
 }

protected:
 int notesToGenerate;
 void DoWork();

 // This next section of code needs to be here. Not important as to why.

 FORCEINLINE TStatId GetStatId() const
 {
 RETURN_QUICK_DECLARE_CYCLE_STAT(FNoteGenTask, STATGROUP_ThreadPoolAsyncTasks);
 }
};

/**
 UE4 WRAPPER for NoteGenerator
*/
UCLASS(BlueprintType)
class ORB_MQP_API UNoteGenerator : public UObject {

 GENERATED_BODY()

public:
 UNoteGenerator(const FObjectInitializer & ObjectInitializer) {}

};

/**
 FNoteGrammarParams - Additional parameters that affect note generation
*/
struct ORB_MQP_API FNoteGrammarParams {

public:
 bool shouldGenerate;
 NoteDensity noteDensity;
 bool useDoubleNotes;
 TArray<ETargetFace> *currentTargetPattern;
 FNoteGrammarParams() {};
};

/**
 NoteGrammarGenerator - Singleton that generates notes
*/
class NoteGrammarGenerator {

 friend class FNoteGenTask;

public:

 static NoteGrammarGenerator &getInstance() {
 static NoteGrammarGenerator instance;
 return instance;
 }

 const int MAX_NOTES_IN_QUEUE = 500; // Maximum notes in queue at once
 const int MAX_LANES = 5; // Maximum number of lanes

 TMap<GrammarType, TArray<NoteGrammarRule*>*> Grammars; // Ruleset
 TArray<TArray<ETargetFace> *> TargetPatterns;
 bool mIsGraphBuilt; // Doesn't get destroyed in editor when end play so check for this
 bool mSetForClear;
 FNoteGrammarParams mParams; // Generator parameters

 bool BuildRuleGraph(); // Builds ruleset based on JSON file
 bool LoadNotesetFromFile(FString filename, TArray<FNoteSet> ¬esResult);
 void AsyncGenerate(int count);

110

 void StopGenerate();
 FNoteSet PopNextNoteSet(); // Pops off the oldest noteset out of the queue
 FNoteSet PeekNextNoteSet() const;
 void SetPrescripted(TArray<FNoteSet> notes);
 void UpdateParameters(FNoteGrammarParams newParams); // Updates parameters for when we
generate more notes
 void ClearQueue(bool shouldRegenerate = true);
 bool IsOkToPop();
 void SetDoubleNoteProbability(float newValue);
 float GetDoubleNoteProbability() const;

private:

 /* Tokens to parse thru ruleset */
 const FString PATTERNS_TOKEN = "#patterns";
 const FString NOTE_PATTERNS_TOKEN = "#notePatterns";
 const FString TARGET_PATTERNS_TOKEN = "#targetPatterns";
 const FString ORIGIN_TOKEN = "@origin";
 const FString M_ONE_TOKEN = "@measureOne";
 const FString M_TWO_TOKEN = "@measureTwo";
 const FString FOUR_TOKEN = "@four";
 const FString THREE_TOKEN = "@three";
 const FString TWO_TOKEN = "@two";
 const FString ONE_TOKEN = "@one";
 const FString ACTION_TOKEN = "@action";
 const FString FOURTH_TOKEN = "@fourth";
 const FString EIGHTH_TOKEN = "@eighth";
 const FString SIXTEENTH_TOKEN = "@sixteenth";
 const FString FOURTH_TERM_TOKEN = "*fourth";
 const FString EIGHTH_TERM_TOKEN = "*eighth";
 const FString SIXTEENTH_TERM_TOKEN = "*sixteenth";
 const FString FOURTH_REST_TOKEN = "*fourthRest";
 const FString EIGHTH_REST_TOKEN = "*eighthRest";
 const FString SIXTEENTH_REST_TOKEN = "*sixteenthRest";
 const FString SPREAD_THREE_TOKEN = "*spreadThree";
 const FString SPREAD_FOUR_TOKEN = "*spreadFour";
 const FString ACTION_TERM_TOKEN = "*action";

 const int NOTES_TO_GENERATE_WHEN_LOW = 5; / How many notes to generate when we run low

 const float DOUBLE_NOTE_PROBABILITY = 0.15f; // How often double notes show up
 const int MAX_NOTE_DENSITY = 28; // Measure 1: 16 (1/16th) notes
 // + Measure 2: 12 (1/16th) notes
 const int NOTE_DENSITY_HIGH_THRESHOLD = 8;
 const int NOTE_DENSITY_LOW_THRESHOLD = 1;
 const float NOTE_DENSITY_HEURISTIC = 2.0;
 const float NOTE_PROBABILITY_HEURISTIC = 0.5;

 FString mJsonPath; // JSON File path
 bool mShouldGenerateMoreNotes; // Should generator make more notes when running out
 TCircularQueue<FNoteSet> *mNoteQueue; // Notes that get generated go here
 float mDoubleNoteProbability;
 bool mIsReadyToPop;

 FAsyncTask<FNoteGenTask> *genTask;

 NoteGrammarGenerator();
 NoteGrammarGenerator(NoteGrammarGenerator const&); // Don't Implement
 void operator=(NoteGrammarGenerator const&); // Don't implement

 void Generate(int count); // Builds the noteset for the queue

 void GenerateNoteSet();
 /* HELPER: Starts generating a note set based on given grammar rules */
 TArray<FNoteStruct*> * GenerateGrammar();
 /* HELPER: Recurses down the ruleset and creates the note structure and patterns */

111

 TArray<FNoteStruct*> * GenerateGrammarHelper(NoteGrammarRule *rule, int noteCount);
 TArray<FNoteStruct*> * GenerateSpread(TArray<ENoteType> possibleNotes, int spreadCount);
 /* HEURISTIC FUNCTION: Gets a random index from a ruleset based on probability and current note
density rules */
 int GetNoteIndex(GrammarType t, int noteCount) const;
 /* HELPER: Gets a random target for a double note */
 FNoteStruct GetDoubleNote(FNoteStruct firstNote) const;
 /* HELPER: Gets note object from a given token */
 FNoteStruct GetNoteFromTermToken(FString token) const;
 /* HELPER: Gets grammar type from a given token */
 GrammarType GetGrammarTypeFromToken(FString token) const;
 /* HELPER: Gets target face from a given token/string */
 ETargetFace GetTargetFaceFromToken(FString token) const;
 /* HELPER: Determines if token is a rest note */
 bool IsRestToken(FString token) const;
 /* HELPER: Checks that the set generated has valid measures */
 bool isValidSet(int expectedMeasures, TArray<FNoteStruct*> notes);
 /* HELPER: Gets a random neighboring face */
 ETargetFace GetRandomNeighborFace(ETargetFace currentFace);
 /* HELPER: Prints out the set in readable format */
 void PrintLinearSet(TArray<FNoteStruct*> set);
 FString FormatNoteStruct(FNoteStruct note) const;
};

112

13.4.9 PhaseChangeListenerComponent.h
DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam(FPhaseChangeDelegate, int, NewPhase);

UCLASS(ClassGroup=(Custom), meta=(BlueprintSpawnableComponent))
class ORB_MQP_API UPhaseChangeListenerComponent : public UActorComponent
{
 GENERATED_BODY()

public:
 // Sets default values for this component's properties
 UPhaseChangeListenerComponent();

 /* Blueprints uses this to listen for phase change from Phase System */
 UPROPERTY(BlueprintAssignable, Category = "Phase Change")
 FPhaseChangeDelegate OnPhaseStartEvent;
 /* Blueprints uses this to listen for phase change from Phase System */
 UPROPERTY(BlueprintAssignable, Category = "Phase Change")
 FPhaseChangeDelegate OnPhaseEndEvent;

 /* Tells PhaseSystem that the Actor holding this component is ready to change phases */
 UFUNCTION(BlueprintCallable)
 void ReadyForNextPhase();

 /*
 Internal call to trigger OnPhaseChange.
 Broadcasts OnPhaseChangeEvent to Blueprints listeners
 */
 virtual void OnPhaseStart(int phaseToStart);
 virtual void OnPhaseEnd(int phaseToEnd);

protected:
 // Called when the game starts
 virtual void BeginPlay() override;
 virtual void BeginDestroy() override;
};

a. PhaseSystem.h
DECLARE_LOG_CATEGORY_EXTERN(PhaseSystemLog, Log, All);

USTRUCT(BlueprintType)
struct ORB_MQP_API FPhase {

 GENERATED_BODY()

public:
 FPhase() {
 dexTestCountThreshold = -1.0f;
 healthThreshold = -1.0f;
 }

 /* If set to true, Note Generator will make generated notes. If false, PhaseSystem will load the
provided ScriptedDexTest into NoteGenerator */
 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 bool useGeneratedDexTest;
 UPROPERTY(EditAnywhere, BlueprintReadWrite, meta=(DisplayName = "Pre-Generated file name"))
 FString fileName;
 /* Whether or not this phase will utilize chimes */
 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 bool useChime;
 /* If set to true, PhaseControllerComponent will check against the thresholds */
 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 bool doesPhaseLoop;
 /* If phase advances by how many dex tests have passed by, set to non-negative. */
 UPROPERTY(EditAnywhere, BlueprintReadWrite, meta = (ClampMin = "-1", ClampMax = "100.0", UIMin =
"0.0", UIMax = "100.0"))
 float dexTestCountThreshold;
 /* If phase advances by passing an HP threshold, set to non-negative. */

113

 UPROPERTY(EditAnywhere, BlueprintReadWrite, meta = (ClampMin = "-1", ClampMax = "100.0", UIMin =
"0.0", UIMax = "100.0"))
 float healthThreshold;
 /* How frantic/intense this phase should be */
 UPROPERTY(EditAnywhere, BlueprintReadWrite, meta = (ClampMin = "1", ClampMax = "5", UIMin = '1',
UIMax = '5'))
 int phaseIntensity;
};

class UPhaseChangeListenerComponent; //forward declaration

/**
 *
 */
class ORB_MQP_API PhaseSystem
{
public:

 static PhaseSystem &getInstance() {
 static PhaseSystem instance;
 return instance;
 }

 bool LoadPhaseSequence(TArray<FPhase> sequence);
 bool UnloadPhaseSequence();
 int GetCurrentPhase() const;
 int GetPhaseCount() const;
 TArray<FPhase> GetCurrentPhaseSequence();

 bool RegisterListener(UPhaseChangeListenerComponent *comp);
 bool UnregisterListener(UPhaseChangeListenerComponent *comp);

 void StartPhaseSequence();
 void NextPhase();
 void ReadyForNextPhase(UPhaseChangeListenerComponent *comp);
 void ResetPhaseSequence();

private:
 PhaseSystem();
 PhaseSystem(PhaseSystem const&);
 void operator=(PhaseSystem const&);
 ~PhaseSystem();

 int mCurrentPhase;
 int mReadyCount;
 TMap<int, TArray<FNoteSet>*> mCustomNoteMaps;
 TMap<UPhaseChangeListenerComponent*, bool> mListenerReadyMap;
 TArray<UPhaseChangeListenerComponent*> mListeners;
 TArray<FPhase> mCurrentPhaseSequence;

 void internal_NextPhase(int nextPhase);
};

b. PhaseSystemFunctionLibrary.h
UCLASS()
class ORB_MQP_API UPhaseSystemFunctionLibrary : public UBlueprintFunctionLibrary
{
 GENERATED_BODY()
 /*
 Gets the current phase the game is in
 */
 UFUNCTION(BlueprintCallable)
 static int GetCurrentPhaseIndex();

 UFUNCTION(BlueprintCallable)
 static FPhase GetCurrentPhase();

 UFUNCTION(BlueprintCallable)
 static void StartPhaseSequence();

114

 UFUNCTION(BlueprintCallable)
 static void GoToNextPhase();

 UFUNCTION(BlueprintCallable)
 static int GetPhaseCount();

 UFUNCTION(BlueprintCallable)
 static bool IsLastPhase();

};

	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	2 Background
	2.1 Unreal Engine 4
	2.2 Game Inspirations
	2.2.1 Space Pirate Trainer
	2.2.2 Audio Shield
	2.2.3 Thumper
	2.2.4 Taiko no Tatsujin
	2.2.5 Patapon
	2.2.6 Guitar Hero

	2.3 Art Inspirations
	2.3.1 Horror Games
	2.3.2 Various Anime
	2.3.3 Guillermo Del Toro’s House of Horrors

	3 Gameplay
	3.1 Experience Goal
	3.2 Gameplay Loop
	3.3 Progression
	3.4 End Condition

	4 Design
	4.1 Platform
	4.2 Mallets
	4.3 Notes
	4.4 Note Highway
	4.5 Xylophone
	4.6 Cuckoo
	4.7 Chimes
	4.8 User Interface
	4.8.1 Main Menu
	4.8.2 Tutorial
	4.8.3 Pause Menu
	4.8.4 HUD
	4.8.4.1 Health Display
	4.8.4.2 Note Streak Display
	4.8.4.3 Frenzy Meter Display

	4.9 Original Scope
	4.9.1 PlayStation VR

	5 Artistic Implementation
	5.1 Cuckoo
	5.2 Note Highway
	5.3 Notes
	5.4 Platform
	5.5 Mallets
	5.6 Xylophone
	5.7 Environment
	5.7.1 Chimes
	5.7.2 Lighting

	5.8 User Interface

	6 Technical Implementation
	6.1 Metronome
	6.2 Cuckoo
	6.3 Note Highway
	6.4 Notes
	6.4.1 Popping
	6.4.2 Guaranteeing On-Beat Sound

	6.5 Note Generation
	6.5.1 Procedural Generation
	6.5.2 Grammar-based generation
	6.5.2.1 Writing to C++

	6.5.3 Scripted Generation
	6.5.3.1 Note Editor
	6.5.3.2 JSON Generation
	6.5.3.3 MIDI Parsing

	6.5.4 Original System

	6.6 Phases
	6.7 Player
	6.7.1 VR Interfacing
	6.7.2 Platform
	6.7.3 Walking Out of Bounds
	6.7.4 Mallets
	6.7.5 Height Calibration

	6.8 Xylophone
	6.8.1 Note Hitting
	6.8.1.1 Action Input Checking

	6.8.2 Actions

	6.9 User Interface

	7 Sound
	8 Music
	9 Project Management
	9.1 Trello
	9.2 Perforce
	9.3 Google Drive
	9.4 Slack
	9.5 Discord

	10 Testing
	10.1 Methodology
	10.1.1 Overview of the Experiment/Design
	10.1.2 Population
	10.1.3 Location
	10.1.4 Restrictions
	10.1.5 Technique
	10.1.6 Materials
	10.1.7 Entrance and Setup Procedure
	10.1.8 Study Procedure
	10.1.9 Ending Procedure
	10.1.10 Variables
	10.1.11 Statistical Treatment

	10.2 Results
	10.2.1 Playtesting Demographics
	10.2.2 Physical Assessment
	10.2.3 Usability Assessment
	10.2.4 Gameplay Assessment
	10.2.5 Emotional Assessment
	10.2.6 Sentiment Analysis
	10.2.7 Improvements Made
	10.2.8 PAX East

	10.3 Release

	11 Post-mortem
	11.1 Design
	11.2 Future Work
	11.3 What Went Wrong
	11.4 What Went Right

	12 References
	13 Appendix
	13.1 Additional Concept Art
	13.1.1 Trumpet Boss
	13.1.2 Audience Boss Environment
	13.1.3 Owl Mentor Environment
	13.1.4 Note Highway Player View
	13.1.5 Note Highway Side View
	13.1.6 Menu Concept
	13.1.7 Logo Iterations

	13.2 Playtest Informed Consent Form
	13.3 Post-Playtest Survey Questions
	13.4 Header Files
	13.4.1 BossCharacter.h
	13.4.2 BossState.h
	13.4.3 BossStateMachine.h
	13.4.4 MetronomeController.h
	13.4.5 MetronomeListenerComponent.h
	13.4.6 NoteActor.h
	13.4.7 NoteGeneratorFunctionLibrary.h
	13.4.8 NoteGrammar.h
	13.4.9 PhaseChangeListenerComponent.h

