
1

Measuring the Performance of Post-Quantum

Cryptography on Embedded Systems

A Major Qualifying Project Report

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the degree of Bachelor of Science

By:

Elçin Ӧnder

A. Ungerer

Date:

March 18, 2021

WPI Faculty Advisor:

Professor Yarkin Doroz

This report represents work of WPI undergraduate students submitted to the faculty as evidence

of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects.

2

Abstract

Post-quantum cryptography is becoming more important as quantum computers get

closer to becoming part of our daily lives. Understanding this need, the NIST organized a

competition-based system in 2019 to find public key encryption and digital signature algorithms

that could be used in future standardizations. Currently the competition is in the third round. Our

project will consist of using and modifying the finalist’s code to compare the timing between

Linux and the Raspberry Pi 4 Model B.

3

Table of Contents

Table of Figures 5

Table of Tables 6

1. Introduction 8

2. Background Information 10
2.1 Cryptography 10

2.1.1. Public Key Cryptography 10
2.2 Quantum Computers 12
2.3 Problem: Classic Cryptography 13
2.4 Solution: Quantum vs Post-Quantum Cryptography 14
2.5 NIST Safety Levels and Standards 14
2.6 NIST Competition/Competitors 15

2.6.1 Classic McEliece 16
2.6.2 CRYSTALS-Kyber 17
2.6.3 NTRU 18
2.6.4 SABER 19
2.6.5 CRYSTALS-Dilithium 19
2.6.6 Rainbow 20
2.6.7 FALCON 21

2.6 Embedded System Comparison 22
2.7 Raspberry Pi 4B 22

3. Algorithm Implementation 24
3.1 Linux Remote Machine Results 24

3.1.1 Classic McEliece 24
3.1.2 CRYSTALS-Kyber 25
3.1.3 NTRU 25
3.1.4 SABER 26
3.1.5 CRYSTALS-Dilithium 26
3.1.6 Rainbow 27
3.1.7 FALCON 27

3.2 Raspberry Pi 4B Implementations 28
3.2.1 Classic McEliece 28
3.2.2 CRYSTALS-Kyber 29
3.2.3 NTRU 29
3.2.4 SABER 30
3.2.5 CRYSTALS-Dilithium 31

4

3.2.6 Rainbow 31
3.2.7 FALCON 32

4. Comparison 33
4.1 Encryption Algorithm Comparison 33
4.2 Digital Signature Algorithm Comparison 38

5. Findings and Conclusion 44

Bibliography 45

Appendix A: Raw Data for Linux Implementations 49

Appendix B: Code Modifications for Linux 51
B.1 Classic McEliece 51
B.2 Rainbow 55

Appendix C: Code Modifications for Raspberry Pi 4 60
C.1 CRYSTALS-Kyber 60
C.2 NTRU 67
C.3 SABER 72
C.4 CRYSTALS-Dilithium 77

5

Table of Figures

Figure 1. Setting Up RSA 11

Figure 2. RSA Encryption with Public Key 11

Figure 3. RSA Decryption 12

6

Table of Tables

Table 1. NIST Standards for Security Levels, Size and Comparisons 15

Table 2. Classic McEliece: Security Levels and Parameter Sizes 17

Table 3. CRYSTALS-Kyber: Security Levels and Parameter Sizes 18

Table 4. NTRU: Security Levels and Parameter Sizes 18

Table 5. SABER: Security Levels and Parameter Sizes 19

Table 6. CRYSTALS-Dilithium: Security Levels and Parameter Sizes 20

Table 7. Rainbow: Security Levels and Parameter Sizes 21

Table 8. FALCON: Security Levels and Parameter Sizes 21

Table 9. Classic McEliece: Average Measurements on Linux 25

Table 10. CRYSTALS-Kyber: Average Measurements on Linux 25

Table 11. NTRU: Average Measurements on Linux 26

Table 12. SABER: Average Measurements on Linux 26

Table 13. CRYSTALS-Dilithium: Average Measurements on Linux 27

Table 14. Rainbow: Average Measurements on Linux 27

Table 15. FALCON: Average Measurements on Linux 28

Table 16. Classic McEliece: Average Measurements on Raspberry Pi 4B 29

Table 17. CRYSTALS-Kyber: Average Measurements on Raspberry Pi 4B 29

Table 18. NTRU: Average Measurements on Raspberry Pi 4B 30

Table 19. SABER: Average Measurements on Raspberry Pi 4B 30

Table 20. CRYSTALS-Dilithium: Average Measurements on Raspberry Pi 4B 31

Table 21. Rainbow: Average Measurements on Raspberry Pi 4B 31

Table 22. FALCON: Average Measurements on Raspberry Pi 4B 32

Table 23. Classic McEliece Timings Ratio 33

7

Table 24. CRYSTALS-Kyber Timings Ratio 34

Table 25. NTRU Timings Ratio 34

Table 26. SABER Timings Ratio 35

Table 27. Encryption Comparison on Linux Machine 35

Table 28. Encryption Comparison on Raspberry Pi 4B 36

Table 29. High Security Level Encryption Comparison on Linux 37

Table 30. High Security Level Encryption Comparison on Raspberry Pi 4B 38

Table 31. CRYSTALS-Dilithium Timings Ratio 39

Table 32. Rainbow Timings Ratio 39

Table 33. FALCON Timings Ratio 40

Table 34. Digital Signature Comparison on Linux Machine 40

Table 35. Digital Signature Comparison on Raspberry Pi 4B 41

Table 36. High Security Level Digital Signature Comparison on Linux 42

Table 37. High Security Level Digital Signature Comparison on Raspberry Pi 4B 42

8

1. Introduction

Everyday there are many cyber attack attempts to access private information of

individuals and organizations. We use cryptography to protect that information by embedding

algorithms in our code to prevent attackers from reaching the intended data [1]. Post-quantum

cryptography is an extension of that. It uses principles from quantum mechanics in order to

encrypt data and transmit it securely so that it cannot be hacked [2], and is centered around

algorithms that are designed to secure data in a quantum computer [3]. As post-quantum

cryptography is being developed it is intended to become “cryptographic systems that are secure

against both quantum and classical computers, and can interoperate with existing

communications protocols and networks” [4]. All over the world, researchers are rushing to

develop algorithms that could protect the public-key infrastructure under post-quantum

cryptography.

With the increase of research done on quantum computers, the closer society gets to

implementing it into our everyday lives. However, with this development, our security within

and between devices that will need modifications to accommodate for the differing cybersecurity

techniques that quantum and non-quantum computers use. Cybersecurity typically uses number

theory-base cryptography to help us send and share information. With quantum computing, that

concept will no longer work since the computers will be able to solve the basic number theory,

thus potentially breaching privacy. Luckily, studies have shown that matrix manipulation

cryptography is not able to be deciphered by quantum computers. [5]

The National Institute of Standards and Technology (NIST) understands that this could be

an issue and is currently working on making quantum-safe cryptography more widely used by

the industry and government. It is devoting its work to standardizing public-key encryption and

key-establishment algorithms. Knowing that it took decades to implement current standards,

there is no time to wait as the newer technology is steadily approaching [6]. Therefore, they have

organized a competition-based system in 2019 to determine post-quantum cryptography methods

that could be used in future standardizations and are compatible with both classical and quantum

computers [7]. With this, the organization hopes that in a couple years, there will be some

submissions that are usable to standardize in the industry, and that it will help promote safety and

security in technology.

https://www.zotero.org/google-docs/?xQkce8
https://www.zotero.org/google-docs/?cCmTQ8
https://www.zotero.org/google-docs/?63RYEV
https://www.zotero.org/google-docs/?1o2Nfu
https://www.zotero.org/google-docs/?anYp6j
https://www.zotero.org/google-docs/?CftvFd
https://www.zotero.org/google-docs/?lZxH1b

9

Our project will use ‘Encryption Algorithms’ and ‘Digital Signature Algorithms’

submissions that were named finalists and alternatives in the competition. Both of these are

Public-key algorithms which is a cryptographic system that uses two keys: a public key and a

private key. Public key is known to everyone and a private key which is known only to the

recipient of the message. Encryption is a method in cryptography by which cryptographic keys, a

piece of information, are exchanged between two parties [8], [9]. Digital signatures are the

public-key primitives of message authentication using signatures to authenticate the message. It

is a cryptographic value that is calculated from the data and a secret key known only by the

signer. [10]

We will be testing the finalists’ algorithms submitted to the NIST competition through a

Linux remote machine, then document if there are any additional libraries needed, their security

levels and validate that the signatures are being properly read. Afterwards, we will compare

embedded systems to find one that will be compatible with the programs. Finally, the programs

will go through the chosen embedded system, which in our case will be the Raspberry Pi 4

Model B. Here, we will document timing for the encryption and digital signature algorithms, and

record any necessary libraries or errors found. If necessary, we will have to restructure some of

the existing code to allow for processing through the embedded system. At the end, the goal is to

learn how the latest versions of post-quantum cryptography works on current embedded systems.

https://www.zotero.org/google-docs/?8bXLry
https://www.zotero.org/google-docs/?WpIDiy

10

2. Background Information
2.1 Cryptography

Cryptography has roots throughout history where people used variations of it to encode

and decode messages. A notable time it was used was during World War II when Alan Turning,

an English mathematician, played a major role in speeding up the process of deciphering German

communications. These days, cryptography still plays a major role in the way we communicate

with others and is integrated in our technology in order to deliver a message from one device to

another safely and privately.

We can define cryptography as a science of concealing communication to hide the

meaning [11]. It is based on mathematical algorithms through the notion that they are

complicated and hard to decipher by others [12]. By using cryptography in our day-to-day

messaging, it can give us the security to do our daily tasks whether it be sending money for rent

or having personal conversations with our friends. Cryptography is the basis of how we keep our

communications safe and is the foundation of cybersecurity. [5] For our project, we will focus on

looking into Public-Key Cryptography, specifically into Encryption and Digital Signature

Algorithms.

2.1.1. Public Key Cryptography

Public-key cryptography, also known as asymmetrical cryptography is a newer developed

cryptography that encompasses creating secret keys that can decode encoded messages.

Mentioned previously, the cryptography that has been with us throughout history is symmetrical,

which means that it uses the same key for encryption and decryption, but that can pose issues if

the key itself is not secure, thus others can interfere, and simply the number of keys needed. To

ease this situation, asymmetrical cryptography was created that first prioritizes creating a safe

key on one end, then the receiver has a matching key. We can show RSA encryption as a

public-key encryption example. RSA algorithm is used for digital signatures and public

encryption. It is a simple algorithm based on modular exponentiation of large integers. The idea

of RSA is straightforward.

https://www.zotero.org/google-docs/?pjgbFK
https://www.zotero.org/google-docs/?o3y2or
https://www.zotero.org/google-docs/?CU1zV4

11

Figure 1. Setting Up RSA [13]

First, we choose two large prime numbers p and q that are bigger than 2^512. For step 4, we

choose a random number called b that is between 0 and the number we computed in the third

step. Later, we take inverse mod to find which is one of the inputs of the private key. Last step

shows us to find the key generation for public key and private key.

RSA’s encryption is done by using a public key which is shown as kpub in Figure 2.

Figure 2. RSA Encryption with Public Key [13]

https://www.zotero.org/google-docs/?U4lsWF
https://www.zotero.org/google-docs/?FWVPrt

12

The encrypted message is shown as x in Figure 2. y equation is to calculate the encrypted

message. After finding y, we can find the decrypted message by using the equation shown in

Figure 3 below.

Figure 3. RSA Decryption [13]

In the programs we will be using in our project, each one creates a key and uses algorithms to

decode a message. This method has improved the way communications are delivered and the

added algorithm in the mix makes it more complicated for other parties to access information.

The programs we will use for this project involve Encryption and Digital Signature Algorithms.

[8]

● Encryption Algorithms: This type of algorithm involves creating a public key that

anyone can use to encrypt and a private key that can only be used between the parties.

The private key is transferred to the other party using a one-way algorithm. The message

is protected because the corresponding private key is needed to decrypt the message [9]

● Digital Signature Algorithms: This algorithm provides a different level of security that

protects parties from each other. This is done by generating a signature on the end of a

message. The signature is a means of authentication and is used to prove who wrote the

message. It will need to be verified. This asymmetric algorithm is able to distinguish the

actions of different party members, thus ensuring the authenticity of the message. [10]

2.2 Quantum Computers
Although a fully-functioning quantum computer does not exist yet, researchers are still

looking into ways to advance that technology of a quantum computer and are coming up with

safety measures for its debut into our daily lives [14].

Fundamentally, a quantum computer should be able to take multiple inputs at once and

process them simultaneously while factoring in the other inputs, similar to how we process many

different functions at once in our brains. This large amount of processing is done on a singular

computer system. This makes quantum computing vastly different from classical computing. In

classic computing, computers are only able to use one decision at a time in a logical and series

https://www.zotero.org/google-docs/?INSaEb
https://www.zotero.org/google-docs/?lTgupM
https://www.zotero.org/google-docs/?HqwzTr
https://www.zotero.org/google-docs/?JT6HpG
https://www.zotero.org/google-docs/?yJM6sv

13

method [15]. The future of quantum computers suggest that the development could lead to major

improvement in many areas including health and safety for it’s capability to be used with

Artificial Intelligence. [14]

The basis of quantum computing comes from quantum theory. Quantum theory is still in

development, but summarily, it consists of looking into a quantum world that contrasts the

physical world and science we see everyday. In the quantum world, there are three distinct

properties:

● Wave Particle Duality: Where waves and particles would behave as the other would in

physical science.

● Quantum Tunneling: The idea that matter can move from one point to another without the

use of space.

● Quantum Teleportation: The idea that information can move from one point to another

without space.

What quantum theory intends to explain is how matter and energy interact in the quantum

world through mathematics, and is still being developed today. [16]

2.3 Problem: Classic Cryptography
Quantum computers work significantly differently than classic computers. As a result,

updates to our cybersecurity are necessary to make sure that it is able to protect us from outside

parties that try to intercept our information. But what makes our current system unusable? Let’s

discuss it.

Classic computers are protected by classic cryptography, also known as modern

cryptography. The foundations in classic cryptography lies in number theory, which can include

abstract algebra, elementary number theory, discrete logarithms and elliptic curve discrete

logarithms to name a few [17]. To simplify it, modern algorithms will integrate number theory in

order to make it challenging for attackers to solve. For example, a program can have it’s security

dependent on the ability to factor large integers (think about 2048-bit numbers) [5]. The system

relies on the fact that there are no algorithms that can beat it, and aims to make it not only

challenging, but infeasible to solve [18]. However, that may not always be the case and cannot be

guaranteed [19].

https://www.zotero.org/google-docs/?YZr0nG
https://www.zotero.org/google-docs/?ynBdSf
https://www.zotero.org/google-docs/?UEUHPm
https://www.zotero.org/google-docs/?rsY5x3
https://www.zotero.org/google-docs/?L5lfYK
https://www.zotero.org/google-docs/?3nb6cx
https://www.zotero.org/google-docs/?wb2Glz

14

We can see this particularly in the way classic cryptography interacts with quantum

computers. Because quantum computers are able to take in many inputs while factoring in the

others inputted, they are able to solve and break classical cryptography with ease. Knowing that

classic cryptography took years to develop, it is clear that there is a potential for a security issue

as quantum technology becomes more well-known and eventually integrated into our lives.

Next, is the comparison of the two proposed solutions for protecting quantum computers.

2.4 Solution: Quantum vs Post-Quantum Cryptography
With the increasing need for cybersecurity protections, two different solutions were

found: quantum cryptography and post-quantum cryptography. In this portion, we will briefly

discuss both of them and how each impacts quantum computing, then why post-quantum

cryptography is more effective. Each statement is brief because there is still much research

needed on both options as quantum computers are developed into a fully functioning machine.

Quantum cryptography uses a quantum channel in order to send quantum bits, the storage

for communication, from one location to another. This process is ideal for short distances, but in

long-distance communications, facilities such as quantum satellites and repeaters will be needed

to allow for communication all over the world. [5]

On the other hand, post-quantum cryptography uses ciphers and matrix mathematics.

Matrix mathematics is believed to be protected from quantum attacks in comparison to

classically used methods (e.g. discrete mathematics and factoring) which quantum computers are

able to decipher. Matrix manipulation provides more dimensions that will make it difficult for a

quantum attack to occur despite the multiple processes it uses. [5], [12]

Although both options are useful to have, post-quantum cryptography provides for less

facilities built and is able to reach long distances easily, albeit computation assumptions are

necessary to get it working; therefore, it was decided by the National Institute of Standards and

Technology (NIST) that there needs to be a process to standardize post-quantum cryptography so

when the devices come out, we are prepared to handle quantum attacks.

2.5 NIST Safety Levels and Standards
To ensure safety of cryptography, the NIST has developed standards with increasing

security levels that are based on key sizes, or Advanced Encryption Standard (AES) and has

https://www.zotero.org/google-docs/?5Hvw1t
https://www.zotero.org/google-docs/?tbJtrq

15

function sizes or, Secure Hash Algorithm (SHA) methods [20]. They work as the following in

the Table 1 below. This will be relevant to the next chapter where security standards will still

need to be upheld in the post-quantum cryptography competition.

Level Size Comparable to

1 128-bit key AES128

2 256-bit hash function SHA256/SHA3-256

3 192-bit key AES192

4 384-bit hash function SHA384/SHA3-384

5 256-bit key AES256

Table 1. NIST Standards for Security Levels, Size and Comparisons [21]

2.6 NIST Competition/Competitors
NIST requests algorithms in three categories: public-key encryption, key exchange or key

encapsulation mechanisms (KEMs), and digital signatures. As mentioned before, the NIST

believed that it was important to standardize post-quantum cryptography to be used in the public

and has started implementing that process through a competition-based submission. The first set

of criteria was the following:

● Options for reference and optimized C code.

● Known answer tests for encoding and decoding each algorithm.

● Written reports that describe the specifications of each algorithm.

● Intellectual property statements to allow for use. [7]

The competition is held in rounds, and currently the competition is in its third phase. The

first phase included 82 package submissions that were put under minimal criteria for code

implementation, known-answer test, specification document and intellectual property

declarations. [22]

The next evaluation criteria used included “security”, “cost and performance”, and

“algorithm and implementation characteristics.” Security involved providing proofs of security

efforts, and estimating the security strengths. Cost and performance used the size of keys, text

and signatures, how effective the key generation was in the private and public end and the

https://www.zotero.org/google-docs/?KHKxH4
https://www.zotero.org/google-docs/?jbgQMA
https://www.zotero.org/google-docs/?ST6JMw
https://www.zotero.org/google-docs/?TdrugK

16

probability of failures. Finally, algorithm and implementation characteristics were considered

that favored simpler designs that were multifaceted and could encompass multiple platforms. [7]

Using these criteria, in the second round, 26 algorithms were selected and the breakdown

of these were 17 Public Key Encryption and 9 Digital Signatures. Currently, at the end of the

third round, out of the 26 algorithms, 15 have advanced. Within the finalists, there are four

Public-Key Encryption algorithms (Classic McEliece, CRYSTALS-Kyber, NTRU and SABER),

and three Digital Signature algorithms (CRYSTALS-Dilithium, Rainbow and Falcon). For our

project, we will be attempting to use the algorithms that have passed as the finalists to take

timing measurements. [22]

2.6.1 Classic McEliece

Classic McEliece uses a One Way against Chosen Plaintext Attacks (OW-CPA) public

key encryption (PKE) within a KEM to create a IND-CCA2 security level. Indistinguishability

against chosen-ciphertext attacks (IND-CCA) secure KEM is a concept where the attacker would

get a decryption oracle and be able to ask for as many decryptions as possible up to a challenge

ciphertext [23]. The IND-CCA2 security level is the adaptive version, where it will allow queries

even after the challenge ciphertext is given assuming it won’t pass [23], [24].

The algorithm creates a keypair by generating a uniform random monic irreducible

polynomial and selecting a uniform random sequence to compute a matrix. That matrix has the

Gaussian elimination applied to generate a random s-bit string which is used as part of the

private and public key. After, encapsulation is done by computation using the public key and

encoding subroutine on a uniform random vector. This process is undone for decapsulation. [25]

Classic McEliece contains five versions: mceliece348864, mceliece460896,

mceliece6688128, mceliece6960119, and mceliece8192128. The breakdown of the levels and

parameter sizes are shown below in Table 2.

https://www.zotero.org/google-docs/?Pe9rz0
https://www.zotero.org/google-docs/?VQIQDW
https://www.zotero.org/google-docs/?RGc0eN
https://www.zotero.org/google-docs/?YPdWLi
https://www.zotero.org/google-docs/?JUwtF0

17

NIST Security
Level

Public Key (pk)
size (bytes)

Secret Key (sk)
size (bytes)

Ciphertext (ct)
size (bytes)

mceliece348864 1 261120 6492 128

mceliece460896 3 524160 13608 188

mceliece6688128 5 1044992 13931 240

mceliece6960119 5 1047319 13948 226

mceliece8192128 5 1357824 14120 240

Table 2. Classic McEliece: Security Levels and Parameter Sizes [25]–[27]

2.6.2 CRYSTALS-Kyber

"Cryptographic Suite for Algebraic Lattices'' (CRYSTALS) encompasses two

cryptographic primitives: Kyber, and Dilithium. The Kyber algorithm consists of two parts: “an

IND-CPA-secure public-key encryption scheme encrypting messages of a fixed length of 32

bytes” [23] and “a slightly tweaked Fujisaki–Okamoto (FO) transform to construct the

IND-CCA2-secure KEM” [23].

The first part of this algorithm, the IND-CPA-secure public key, works where the

algorithm is able to interact with any outside attacks, but the message received will be encoded

with a random key every time so there is no distinction which key will decrypt the message [24].

In this case, the CRYSTALS-Kyber will use learning with errors (LWE) encryption scheme.

Their scheme is similar to learning with errors over rings (R-LWE) where an attacker would look

for the correct ring out of many random noisy rings that are reinforced with error factors, but

instead they use the same ring with varying dimensions of ring module making it learning with

errors over modules (MLWE) [23], [28].

The second part of the algorithm has IND-CCA2 security implemented through a

variation of a FO transform, which combines a one-way secure asymmetric encryption scheme

and a one-time secure encryption scheme [29], [30]. The variation includes hashing the public

key into the random generator seed and shared key, ciphertext into the shared key, and use of

Keccak-based functions [31].

CRYSTALS-Kyber has three different parameter sets: KYBER512, KYBER768 and

KYBER1024. Specifications are shown in Table 3.

https://www.zotero.org/google-docs/?aAOrLl
https://www.zotero.org/google-docs/?fW9LuE
https://www.zotero.org/google-docs/?WMG8SL
https://www.zotero.org/google-docs/?TLz0kf
https://www.zotero.org/google-docs/?LMoWhQ
https://www.zotero.org/google-docs/?qyM9hm
https://www.zotero.org/google-docs/?Ock0zZ

18

NIST Security
Level

Public Key (pk)
size (bytes)

Secret Key (sk)
size (bytes)

Ciphertext (ct)
size (bytes)

KYBER512 2 736 1632 800

KYBER768 3 1088 2400 1152

KYBER1024 4 1440 3168 1540

Table 3. CRYSTALS-Kyber: Security Levels and Parameter Sizes [23]

2.6.3 NTRU

N-th degree Truncated polynomial Ring Units (NTRU) is an over 20 year old encryption

scheme that was implemented for post-quantum cryptography to achieve IND-CCA2 security

[32]. The NTRU algorithm originally uses polynomial algebra and reduction modulo for

encryption and elementary probability theory for decryption [33]. With the original design, it is a

partially correct probabilistic public key encryption scheme (partially correct PPKE), but can be

made into a correct deterministic public key encryption scheme (DPKE) using transformations

since it is lattice based [32], [34].

NTRU’s NIST submission included four sets of parameters: ntruhps2048509,

ntruhrss701, ntruhps2048677 and ntruhps4096821 which are shown in Table 4. Looking at each

of the names, we can see there are two versions of NTRU: hps and hrss where hps uses

fixed-weight sample spaces and hrss uses arbitrary weight [33]–[35].

NIST Security
Level

Public Key (pk)
size (bytes)

Secret Key (sk)
size (bytes)

Ciphertext (ct)
size (bytes)

ntruhps2048509 1 699 935 699

ntruhrss701 3 1138 1450 1138

ntruhps2048677 3 930 1234 930

ntru4096821 5 1230 1590 1230

Table 4. NTRU: Security Levels and Parameter Sizes [32]

https://www.zotero.org/google-docs/?ZuwTmr
https://www.zotero.org/google-docs/?N3J8l3
https://www.zotero.org/google-docs/?agPD7i
https://www.zotero.org/google-docs/?J84AUQ
https://www.zotero.org/google-docs/?IsnVoq
https://www.zotero.org/google-docs/?UgZrd7

19

2.6.4 SABER

SABER is another lattice-based algorithm that was submitted to NIST with IND-CCA2

security [36]. The algorithm consists of Saber.PKE and Saber.KEM. Saber.PKE is the public-key

encryption algorithm that uses Module Learning with Rounding (MLWR) that is a variation of

LWE [28], [36]. MLWR works differently from LWE where the program rounds the samples to

create “noise” instead of adding error to them [28], [37]. However, the developers of SABER

mentioned that Saber.PKE alone cannot fight off chosen-ciphertext attacks, so “Saber.PKE can

be compiled into Saber.KEM using a post-quantum variant of the Fujisaki-Okamoto (FO)

transformation” [36]. [30]

There are three levels of security, LightSABER, SABER and FireSABER which are

described in Table 5.

NIST Security
Level

Public Key (pk)
size (bytes)

Secret Key (sk)
size (bytes)

Ciphertext (ct)
size (bytes)

LightSABER 1 672 1568 736

SABER 3 992 2304 1088

FireSABER 5 1312 3040 1472

Table 5. SABER: Security Levels and Parameter Sizes [38]

2.6.5 CRYSTALS-Dilithium

CRYSTALS-Dilithium utilizes the “Fiat-Shamir with Aborts” approach that emphasizes

security that is based on difficulty in finding short vectors in lattices. In the key generation

portion, the algorithm consists of creating a matrix of polynomials, then sampling random secret

key vectors and creating a public key from that. All of the mathematics used for this also uses a

ring. To create the signature, the algorithm uses a vector of polynomials with coefficients so that

the key could not be revealed and forged. For further protection, rejection sampling is used

where “given the ability to sample according to some probability distribution P, one is asked to

produce samples from some other distribution S” [39]. Finally for the verification, the high order

bits are computed and accepted if the coefficients and hash is valid. [22], [40], [41]

CRYSTALS-Dilithium provides four sets of parameters shown in Table 6. They provide

Strong Unforgeability under Chosen Message Attack (SUF-CMA) security. For UF-CMA

https://www.zotero.org/google-docs/?ZgqsF0
https://www.zotero.org/google-docs/?SDosho
https://www.zotero.org/google-docs/?aqRl4G
https://www.zotero.org/google-docs/?3dlQnp
https://www.zotero.org/google-docs/?oOGziX
https://www.zotero.org/google-docs/?eY5ySJ
https://www.zotero.org/google-docs/?Jaj3Uu
https://www.zotero.org/google-docs/?y1QKtB

20

security, “the adversary gets the public key and has access to a signing oracle to sign messages of

his choice. The adversary’s goal is to come up with a valid signature of a new message” [40].

SUF-CMA follows the same principle, but includes a false win for the adversary. [40]

NIST Security
Level

Public Key (pk) size
(bytes)

Signature (sig) size (bytes)

DILITHIUM2 1 1184 2044

DILITHIUM3 2 1472 2701

DILITHIUM4 3 1760 3366

Table 6. Crystals-DILITHIUM: Security Levels and Parameter Sizes [40]

2.6.6 Rainbow

Rainbow is a multivariate public key cryptosystem (MPKC) which uses polynomials that

are both non-linear and multivariate over an infinite field to generate a key for a message.

Rainbow’s security is dependent on the difficulty to solve those polynomials. The signature is

generated from hash functions and then computed by inverting the central map with choosing

random values, Gaussian Elimination on polynomials and substitution of the random values. The

signature is then verified using the hash function to find the value, then comparing to see if

accepted. [42]

Rainbow is based on Existential Unforgeability under Chosen Message Attack

(EUF-CMA) that upgrades UF-CMA security by applying a transform that uses a salt to generate

the signature [42]. For the case of this project, we will only be working with Rainbow Classic,

but there are other versions: Cyclic and Compressed Cyclic. There are three levels for Rainbow

Classic: I, III and V, and their security levels and parameters are shown in Table 7.

https://www.zotero.org/google-docs/?WH8rcO
https://www.zotero.org/google-docs/?wq7cTF
https://www.zotero.org/google-docs/?t1OJFy
https://www.zotero.org/google-docs/?GDlcc3
https://www.zotero.org/google-docs/?z8QWQI

21

NIST Security
Level

Public Key (pk)
size (kB)

Secret Key (sk)
size (kB)

Signature (sig)
size (bytes)

Classic I 1 and 2 157.8 101.2 528

Classic III 3 and 4 861.4 611.3 1312

Classic V 5 1885.4 1375.5 1632

Table 7. Rainbow: Security Levels and Parameter Sizes [43]

2.6.7 FALCON

Fast Fourier lattice-based compact signatures over NTRU, or FALCON, is a lattice based

algorithm based on compactness. For the key generation part, FALCON describes it in two parts:

solving for NTRU and computing a FALCON tree. In the first part, NTRU is mapped over a ring

in a tower of rings, and for the second part, the FALCON tree is used to process compact and fast

signature generation. A FALCON tree uses recursion to break diagonal elements in a matrix to

place in another one over small rings so that subtrees are created. In signature creation, the

algorithm computes a hash value from the original message and a salt, which is similar to a

password to hashes information in a singular direction [44]. The resulting hash value is then used

with the secret key to create two short values that become the signature. The signature is verified

at the end is calculated comparing the public key, message and signature to an acceptance bound.

[45]

FALCON has three implementations, FALCON-256, FALCON-512 and FALCON-1024,

but provides the public key and signature parameters for the latter two since they fulfill NIST

security requirements. This is shown in Table 8.

NIST Security
Level

Public Key (pk) size
(bytes)

Signature (sig) size (bytes)

FALCON-512 1 897 666

FALCON-1024 5 1793 1280

Table 8. FALCON: Security Levels and Parameter Sizes [45]

https://www.zotero.org/google-docs/?lbfHxj
https://www.zotero.org/google-docs/?KFrMvP
https://www.zotero.org/google-docs/?z7lOhe
https://www.zotero.org/google-docs/?jP0gCT

22

2.6 Embedded System Comparison
An embedded system is a microcontroller based, software driven, reliable, real-time

control system. It is a combination of computer software and hardware which is either fixed in

capability or programmable. Embedded systems are designed to perform a dedicated function,

either as an independent system or as a part of a large system. For all its features we are

implementing these algorithms to an embedded system and measure its encryption and

decryption in real time. [46]

We had few criterias choosing our embedded system which included the embedded

system to be able to process Linux and run Ubuntu. Additionally, we needed enough RAM so

that the CPU could handle the compilation of the algorithms and run them faster. Another

specification was to have a display port to see the results of the tests in the algorithms which

show the time that takes to encapsulate and decapsulate a message. We took Texas Instruments

EK-TM4C123GXL, Arduino Yún Rev 2, Raspberry Pi 3 Model B (Raspberry Pi 3B), and

Raspberry Pi 4 Model B (Raspberry Pi 4B) into our consideration. The Texas Instruments

EK-TM4C123GXL board wouldn’t be feasible to process Linux. Comparing the rest of the

embedded systems, Raspberry Pi Models are more widely common than the Arduino board.

Therefore, more sources are provided in terms of downloading the Linux operating system and

using the board in general. The Arduino board also has a low RAM and clock speed compared to

Raspberry Pi boards. It has 64 MB RAM and clock speed at 400 MHz which could affect the

process of work and the results significantly. Between the two Raspberry Pi boards, we decided

to go with Raspberry Pi 4B mainly because it had a higher random-access memory (RAM) with

8 GB while Raspberry Pi 3B has 1 GB. Raspberry Pi 4B also has 1.5GHz which is a little higher

than Raspberry 3B’s speed. That was a priority since there are many algorithms to run and we

wanted to measure and compare the run times. Otherwise, both models have the same amount of

HDMI ports and same power ratings and sources which is 1.25 A at 5V with USB-C port.

[47]–[50]

2.7 Raspberry Pi 4B
After comparing the embedded systems we researched, we decided to go with Raspberry

Pi 4 Model B with 8GB RAM. We marked some important differences compared to other boards

and Raspberry Pi being used more commonly also affected our decision since there are more

https://www.zotero.org/google-docs/?YzuDPM
https://www.zotero.org/google-docs/?GmtkQL

23

resources available about it. The Raspberry Pi 4 has a Quad core Cortex-A72 and 8GB SDRAM.

It also has some USB ports and micro-HDMI ports that are enough for us to display the test

results of the algorithms.The Raspberry Pi has a powerful processor and is eligible to install and

run Ubuntu. Raspberry Pi 4 is more reliable when running the tests for algorithms than other

boards we considered. [49]

https://www.zotero.org/google-docs/?lg03zz

24

3. Algorithm Implementation
To test the timing of post-quantum cryptography, we ran the key-establishment and

digital signature algorithms on a remote Linux server hosted by WPI and a Raspberry Pi 4 to get

the averages of each phase of the program. Unless specified within the section, each program is

repeated 1000 times within the average.

3.1 Linux Remote Machine Results
To get the Linux run times, we used the WPI run servers on PuTTY and used the speed

capturing files in each of the programs to get the run times for each step of the encryption and

digital signature algorithms. Many of the original files used implementations that used CPU

cycles to run. The raw data for that will be listed in Appendix A. For the purposes of comparing,

we converted the cycles to seconds using the Linux clock cycles for our particular machine.

We are running Linux hosted on a server that uses the CPU model 45, specifically the

Intel (R) Xeon (R) CPU E5-4617 0 @ 2.90GHz. It is running at ~1196.757 MHz, but has a

minimum of 1200 MHz and a maximum of 3400 MHz. The architectural structure is x86_64 and

there are 12 CPUs total in the machine. There is a total memory of ~264.1 kB.

3.1.1 Classic McEliece

Classic McEliece [51] was one run with the reference implementation at all levels. When

first trying to run the code, we initially got an issue with missing files so we needed the

following libraries to be added:

● xstlproc

● libssl-dev

● KeccackCodePackage [52]

With KeccakCodePackage, we generated the Keccak library, libkeccak.a, then shared it in the

system directory with the header files. The libkeccak.a version was “generic64”. The original

code did not have timing implementations, so we used the internal timer, which will be described

more in Raspberry Pi 4 Implementation chapter. The modified code can be seen in Appendix B.1

The results of the code are shown in Table 9.

https://www.zotero.org/google-docs/?ZDlRNx
https://www.zotero.org/google-docs/?K5nfXR

25

mceliece
348864
(ms)

mceliece
460896
(ms)

mceliece
6688128
(ms)

mceliece
6960119
(ms)

mceliece
8192128
(ms)

Keypair 202.24 466.74 1305.24 1144.09 1135.47

Encapsulation 0.11 0.16 0.27 0.56 0.29

Decapsulation 29.36 72.85 136.13 132.07 164.47

Table 9. Classic McEliece: Average Measurements on Linux

3.1.2 CRYSTALS-Kyber

CRYSTALS-Kyber [53] was run with it’s reference implementations at all levels. Below,

on Table 10 is the measured results of the keypair, encapsulation, and decapsulation times for

each level. To get these times, we downloaded the software package, and made the overall speed

file, “test_speed.c”, then ran it’s branching files for each of the levels: “test_speed512”,

“test_speed768” and “test_speed1024”. Each of those files took the average of 1000 repeats for

each step. There were no code modifications needed to run.

Kyber512 (ms) Kyber768 (ms) Kyber1024 (ms)

Keypair 0.14 0.25 0.37

Encapsulation 0.20 0.30 0.39

Decapsulation 0.24 0.35 0.44

Table 10. CRYSTALS-Kyber: Average Measurements on Linux

3.1.3 NTRU

To run NTRU [54], there were no specific libraries needed for installation not currently

on the machine. When running this program, there were four implementations, two of them at

NIST Level 3 standards. Table 11 displays the results of the average measurements for keypair

generation, encapsulation and decapsulation in milliseconds. These measurements were found by

running the reference implementation version of each of the files and taking the average of 1000

repeats for each step of the encryption algorithm.

https://www.zotero.org/google-docs/?XdAVLk
https://www.zotero.org/google-docs/?yG3ajq

26

ntruhps2048509
(ms)

ntruhrss701
(ms)

ntruhps2048677
(ms)

ntruhps4096821
(ms)

Keypair 9.96 17.27 17.44 19.71

Encapsulation 0.60 0.83 0.85 1.23

Decapulation 1.55 2.45 2.28 3.33

Table 11. NTRU: Average Measurements on Linux

3.1.4 SABER

Similarly to the previous two programs, SABER [55] did not need extra files to run it’s

programs. To get the SABER measurements, we ran the “test_kex” file in the reference

implementation of the algorithm. To get each of the levels, the SABER definition in

“SABER_params.h” needed to be modified for each run, which displays the average time for

keypair, encapsulation, and decapsulation for all levels. Table 12 below displays the average

measurements for the keypair generation, encapsulation and decapsulation for 1000 repeats on

each level.

LightSABER (ms) SABER (ms) FireSABER (ms)

Keypair 0.17 0.21 0.35

Encapsulation 0.23 0.28 0.38

Decapsulation 0.23 0.28 0.41

Table 12. SABER: Average Measurements on Linux

3.1.5 CRYSTALS-Dilithium

CRYSTALS-Dilithium [56] was run with its reference implementations at levels one, two

and three [40]. Below, on Table 13 is the measured results of the keypair, encapsulation, and

decapsulation times for each level. To get these times, we downloaded the software package, and

made the overall speed file, “test_speed.c”, then ran it’s branching files for each of the levels:

“DILITHIUM2”, “DILITHIUM3” and “DILITHIUM4” which correspond to “test_speed2”,

https://www.zotero.org/google-docs/?aG8WyV
https://www.zotero.org/google-docs/?JdQXzS
https://www.zotero.org/google-docs/?gI6BUY

27

“test_speed3”, “test_speed4”. Each of those files took the average of 1000 repeats for each step.

There were no extra libraries needed to run this or code modifications needed.

.

DILITHIUM2 (ms) DILITHIUM3 (ms) DILITHIUM4 (ms)

Keypair 0.29 0.46 0.62

Signature 1.45 2.21 2.02

Verification 0.28 0.41 0.57

Table 13. CRYSTALS-Dilithium: Average Measurements on Linux

3.1.6 Rainbow

Rainbow [57] runs in NIST security levels one and two which is represented by Classic I,

three and four by Classic III, and five by Classic V. In the Table 14 below, we entered the timings

we measured for generating keypair, signature, and verification. To do so, we added a C file

called test-time.c which takes the “rainbow-genkey.c”, “rainbow-sign.c”, “rainbow-verify.c”

functions and calculates the timing. That can be found in Appendix B.2. Each of these took an

average of 1000 repeats. In order to choose which file to test, the necessary change was done

through setting up the Makefile accordingly.

Classic I (ms) Classic III (ms) Classic V (ms)

Keypair 9.64 93.161 263.87

Signature 4.27 15.57 23.87

Verification 0.009 0.26 0.04

Table 14. Rainbow: Average Measurements on Linux

3.1.7 FALCON

FALCON was run using its reference implementation for FALCON-256, FALCON-512

and FALCON-1024. FALCON uses their own timing method in ‘speed.c’ that measures one

cycle, but trains the machine first with blanks before collecting that data. Unlike most of the

other programs, FALCON does not use the CPU RAM cycles to get it’s measurements, but uses

https://www.zotero.org/google-docs/?1PVW3Z

28

benchmarks. Additionally, there are no other libraries needed. Table 15 below shows the results

from running the program.

FALCON-256 (μs) FALCON-512 (μs) FALCON-1024 (μs)

Keypair 4.34 9.47 26.26

Signature 58.90 122.40 253.77

Verification 191.64 384.91 776.59

Table 15. FALCON: Average Measurements on Linux

3.2 Raspberry Pi 4B Implementations
The Raspberry Pi 4 Model B has a Quad core Cortex-A72 (ARM v8) and 8GB SDRAM

and runs at 1.5GHz [49]. To get the measurements, Linux Ubuntu was downloaded into a

microSD card as a means to run the code, similarly to how we did it in the Linux

implementation.

However, for the majority of the implementations, we struggled to get the timed

measurements since many of the algorithms used the CPU’s cycles based off a Linux machine,

and that code was not compatible with a Raspberry Pi, which uses a different kind of CPU. To

fix this, we used the system time (sys/time) and the function “gettimeofday()” to collect the time

difference between after and before a step of the algorithm ran, and ran that in a loop to get the

average for 1000 cycles. Additionally, the Makefile had to be edited to remove instances of the

original CPU cycle measurement code or else the program would fail to run. Any different

implementations than this will be discussed in it’s program-specific section.

3.2.1 Classic McEliece

Classic McEliece [51] was run with the reference implementation at all levels. When first

trying to run the code, we also initially got an issue with missing files so we installed the same

libraries as needed for the Linux implementation. The generated Keccak library, libkeccak.a, was

shared in the system directory with the header files. However, the libkeccak.a version was

“reference” because “generic64” was not compatible with a Raspberry Pi 4. This is because the

https://www.zotero.org/google-docs/?CeldqH
https://www.zotero.org/google-docs/?mBF47M

29

CPU architecture is different. The code itself did not change between the Linux and Raspberry Pi

4B implementations, so it can be found in Appendix A.1.

mceliece
348864 (ms)

mceliece
460896 (ms)

mceliece
6688128 (ms)

mceliece
6960119 (ms)

mceliece
8192128 (ms)

Keypair 404.63 2134.48 15018.66 12300.12 13558.86

Encapsulation 0.49 0.83 1.36 2.44 1.42

Decapsulation 0.05 110.57 209.51 202.78 0.26

Table 16. Classic McEliece: Average Measurements on Raspberry Pi 4B

3.2.2 CRYSTALS-Kyber

Similarly to its Linux implementation, CRYSTALS-Kyber [53] was run with its reference

implementations at levels one, three and five. Table 17 displays the measured results of each step

of the key-establishment algorithm, the keypair, encapsulation, and decapsulation times, at each

level. Prior to running, we downloaded the software package, and re-made the overall speed file,

“test_speed.c”, to include the time/sys program and edited the make file so that it would not use

the CPU cycles from the RAM that causes errors. Running the new implementation, then created

branching files for each of the levels: “test_speed512”, “test_speed768” and “test_speed1024”

which took the average of 1000 repeats. The files with modified code are in Appendix C.1.

.

kyber512 (ms) kyber768 (ms) kyber1024 (ms)

Keypair 0.10 0.17 0.25

Encapsulation 0.12 0.19 0.29

Decapsulation 0.14 0.22 0.32

Table 17. CRYSTALS-Kyber: Average Measurements on Raspberry Pi 4B

3.2.3 NTRU

In the Raspberry Pi runthrough of NTRU [54], there were no specific libraries needed for

installation. In NTRU, there were four implementations, two of them at NIST Level 3 standards.

Table 18 displays the results of the average measurements for keypair generation, encapsulation

https://www.zotero.org/google-docs/?pdq51D
https://www.zotero.org/google-docs/?RklijG

30

and decapsulation in milliseconds with 1000 repeats. These measurements were found by

creating a new speed file that utilized the “gettimeofday()” command in each of the reference

implementations, updating each makefile, then running each one to get our timing. The files with

modified code are in Appendix C.2.

ntruhps2048509
(ms)

ntruhrss701
(ms)

ntruhps2048677
(ms)

ntruhps4096821
(ms)

Keypair 3.29 5.85 5.81 8.30

Encapsulation 0.20 0.15 0.28 0.35

Decapulation 0.15 0.25 0.23 0.31

Table 18. NTRU: Average Measurements on Raspberry Pi 4B

3.2.4 SABER

SABER [55] did not need extra files to run it’s programs. To get the SABER

measurements, we created a new speed file based on their “test_kex” file in the reference

implementation of the algorithm. Similar to the Linux implementation, to get each of the levels,

the SABER definition in “SABER_params.h” needed to be modified for each run. Another thing

that needed to change was the makefile to remove the CPU cycle code that took measurements

from the RAM and caused issues. At the end, we were able to display the average time for

keypair, encapsulation, and decapsulation for all levels. Table 19 shows the average

measurements of 1000 repeats for the keypair generation, encapsulation and decapsulation for

each level. The files with modified code are in Appendix C.3.

.

LightSABER (ms) SABER (ms) FireSABER (ms)

Keypair 0.1 0.18 0.29

Encapsulation 0.12 0.21 0.33

Decapsulation 0.13 0.23 0.37

Table 19. SABER: Average Measurements on Raspberry Pi 4B

https://www.zotero.org/google-docs/?W1m0xF

31

3.2.5 CRYSTALS-Dilithium

To be consistent, CRYSTALS-Dilithium [56] was run with it’s reference implementations

with no additional libraries needed. To get these times, we downloaded the software package,

and re-made the overall speed file, “test_speed.c”, and the Makefile. After, we ran it’s branching

files for each of the levels: “DILITHIUM2”, “DILITHIUM3” and “DILITHIUM4” which

correspond to “test_speed2”, “test_speed3”, “test_speed4”. Table 20 shows the measured results

of the keypair, encapsulation, and decapsulation times for each level through taking an average

of 1000 repeats for each step. The files with modified code are in Appendix C.4.

DILITHIUM2 (ms) DILITHIUM3 (ms) DILITHIUM4 (ms)

Keypair 0.23 0.34 0.45

Signature 1.30 1.35 1.81

Verification 0.02 0.25 0.47

Table 20. CRYSTALS-Dilithium: Average Measurements on Raspberry Pi 4B

3.2.6 Rainbow

Like its Linux implementation, Rainbow [57] runs in NIST security levels one and two

which is represented by Classic I, three and four by Classic III, and five by Classic V. In the

Table 21 below, we entered the timings we measured for generating keypair, signature, and

verification. To do so, we added a C file called test-time.c which takes the “rainbow-genkey.c”,

“rainbow-sign.c”, “rainbow-verify.c” functions and calculates the timing. Each of these took an

average of 1000 repeats on Raspberry Pi 4B as well.

Classic I (ms) Classic III (ms) Classic V (ms)

Keypair 32.38 36.00 993.90

Signature 12.48 56.15 88.33

Verification 0.02 0.07 0.14

Table 21. Rainbow: Average Measurements on Raspberry Pi 4B

https://www.zotero.org/google-docs/?LbuWza
https://www.zotero.org/google-docs/?P8rRRi

32

3.2.7 FALCON

With the Raspberry Pi, FALCON [58] was also run using its reference implementation for

FALCON-256, FALCON-512 and FALCON-1024. For FALCON, they use their own timing

method that uses one cycle, but trains the machine first with blanks before collecting that data.

FALCON does not initially use the CPU RAM cycles so we did not need to create any new code

for this program, additionally no libraries were needed. Table 22 belows shows the result of the

measurements.

.

FALCON-256 (μs) FALCON-512 (μs) FALCON-1024 (μs)

Keypair 11.59 23.43 68.79

Signature 157.29 333.58 704.59

Verification 501.12 1042.00 2261.03

Table 22. FALCON: Average Measurements on Raspberry Pi 4B

https://www.zotero.org/google-docs/?C1ga5O

33

4. Comparison

Looking at the average measurements for each algorithm, we saw that in general, when

the security level increases, it takes longer for them to generate keypair, and doing the

encapsulation and decapsulation, or signature and verification. When we compared the results

from both timings, we realized that most of the algorithms run faster on the Raspberry Pi 4

Model B than the Linux server. From Encryption, Classic McEliece, and from Digital Signature,

FALCON, and Rainbow which are the exceptions. For the other algorithms, they run faster on

the Raspberry Pi 4B. We compared Encryption and Digital Signature separately for each

program. We then took the ratios of each algorithm. We divided the higher timings to smaller

ones to see how many times faster the smaller timing ran. At the end, we ran a comparison of

how much faster each program ran within Linux or Raspberry Pi 4B by finding the speed factor

based on the highest speed.

4.1 Encryption Algorithm Comparison
As mentioned before, Classic McEliece, CRYSTALS-Kyber, NTRU, SABER are under

the Encryption Algorithms. First, we are going to compare the timings of each algorithm with the

different security levels addressed to.

mceliece
348864

mceliece
460896

mceliece
6688128

mceliece
6960119

mceliece
8192128

Keypair 2.00 4.57 11.51 10.75 11.94

Encapsulation 4.49 5.05 4.98 4.32 4.98

Decapsulation 1.60 1.58 1.54 1.54 1.56

Table 23. Classic McEliece Timings Ratio

Looking at Classic McEliece’s timing on Table 23, we concluded that it runs faster on the

Linux machine than Raspberry Pi 4B. For the security levels 1 and 3 (mceliece348864 and

mceliece460896), we see that the encapsulation timing has a bigger difference compared to

others. Comparing all security level 5s (mceliece6688128, mceliece6960119 and

34

mceliece8192128), the biggest ratio occurs during generating keypair while the smallest happens

during decapsulation.

kyber512 kyber768 kyber1024

Keypair 1.42 1.5 1.46

Encapsulation 1.62 1.57 1.37

Decapsulation 1.67 1.58 1.37

Table 24. CRYSTALS-Kyber Timings Ratio

CRYSTALS-Kyber’s timings, on Table 24, are around 1.5 times longer on Linux

compared to its timings on the Raspberry Pi 4B. This is the case for all of its security levels.

Here, we see Raspberry Pi 4B being faster in running this algorithm. The highest difference in

ratio is 1.67 for kyber512 decapsulation and the lowest is 1.37 for the timing of kyber1024

decapsulation. While this is one of the small differences for an algorithm, we see a bigger

difference for NTRU.

ntruhps2048509 ntruhrss701 ntruhps2048677 ntruhps4096821

Keypair 3.03 2.95 3.00 2.37

Encapsulation 3.05 5.65 3.08 3.48

Decapulation 10.42 10.02 9.84 10.68

Table 25: NTRU Timings Ratio

Comparing Table 11 and Table 18, NTRU takes 9.96 ms to generate keypair on Linux

while it takes only 3.29 ms for its security level 1. We can see the same difference in

encapsulation and decapsulation timings not only in security level 1, but also in other security

levels. If we look at Table 25, the timings that the Linux machine gave us are almost triple of

what we measured in Raspberry Pi 4 for all of its security levels. However, for all the

decapsulation timings of each NTRUs run about 10 times faster on Raspberry Pi 4B than the

35

Linux machine. For the decapsulation timings, the ratio increases for all the security levels which

is 10.24.

LightSABER SABER FireSABER

Keypair 1.75 1.19 1.23

Encapsulation 1.93 1.26 1.14

Decapsulation 1.83 1.20 1.12

Table 26. SABER Timings Ratio

SABER also has a small difference compared to NTRU. The smallest ratio for SABER is

1.12 from FireSABER for decapsulation timings. On the other hand, the biggest difference is

1.93 from LightSABER which is from the encapsulation timings of LightSABER. This is seen in

Table 26.

We also created a comparison table below (Table 27) to see visually how each

key-encryption timings differ from each other. To be able to calculate the speed factors more

efficiently, we converted Classic McEliece results from s to ms so that they are all in the same

unit. Our comparison table below is based on the NIST security level 3 which is common for all.

Since NTRU had two files in security level 3, we chose the one with the biggest public size. For

this comparison, we used mceliece460896, ntruhrss701, kyber768, and SABER.

Level 3 Keypair Level 3 Encapsulation Level 3 Decapsulation Public
Key Size

Time (ms) Speed Factor Time (ms) Speed Factor Time (ms) Speed Factor (bytes)

Cl.McEliece 466.74 1x 0.16 5x 72.85 1x 524160

NTRU 17.27 27x 0.83 1x 2.45 30x 1138

CRY.-Kyber 0.25 1,867x 0.30 3x 0.35 208x 1088

SABER 0.21 2,223x 0.28 3x 0.28 260x 992

Table 27. Encryption Comparison on Linux Machine

36

In Table 27, we compared the Key-Encryption algorithms for NIST security level 3. One

of the first things that is remarkable is that among all these algorithms run on the Linux machine

in the table above, we see that Classic McEliece is the one that takes longer to run and occupies

the most space with its public key size with 524160. With that size of a post-quantum algorithm,

it would be hard to use it for an embedded system with a small RAM size such as MSP430 with

512 kB flash memory. SABER, on the other hand, is the one that runs faster and has the smallest

public key size with 992 bytes. When we compare the timing of Classic McEliece’s generating

keypair and SABER’s, we see that SABER is 2,223 times faster. Looking at encapsulation

timings, it is noticeable that NTRU with public key size 1138 bytes which is the second greatest,

takes almost five times longer than Classic McEliece which is the fastest doing the

encapsulation. Classic McEliece is again the one that runs the slowest during decapsulation and

SABER is again the fastest. SABER runs about 260 times faster than Classic McEliece.

The timings change for the same algorithms on Raspberry Pi4B. However, we see that

Classic McEliece is still the slowest in general.

Level 3 Keypair Level 3 Encapsulation Level 3 Decapsulation Public
Key Size

Time (ms) Speed
Factor

Time (ms) Speed Factor Time (ms) Speed
Factor

(bytes)

Cl.McEliece 2134.48 1x 0.83 1x 110.57 1x 524160

NTRU 5.85 365x 0.15 6x 0.25 442x 1138

SABER 0.18 11,856x 0.21 4x 0.23 481x 992

CRY.-Kyber 0.17 12,556x 0.19 4x 0.22 503x 1088

Table 28. Encryption Comparison on Raspberry Pi 4B

Looking at Table 28, we realized that Classic McEliece runs the slowest on Raspberry Pi

4B among all in each category for NIST security level 3. CRYSTALS-Kyber is the fastest in

generating keypair and decapsulation key. CRYSTALS-Kyber runs around 12,556 faster than

Classic McEliece which is immediately recognizable. We see that the speed factor is less high for

37

decapsulation which is 503. There is not a noticeable difference for the encapsulation timings,

however, we see that NTRU runs approximately six times faster than Classic McEliece.

Finally, we compared these algorithms’ highest security levels. While this is the security

level 5 for Classic McEliece, SABER, and NTRU, for CRYSTALS-Kyber it is security level 4.

Since Classic McEliece has three available algorithms for the security level 5, we chose the one

that has the largest public key size which is mceliece6960119. We are using the timing

measurements for KYBER1024, ntru4096821, and FireSABER. The results are shown in Table

29.

Level 5 Keypair
Level 4 for CRY.-Kyber

Level 5 Encapsulation
Level 4 for CRY.-Kyber

Level 5 Decapsulation
Level 4 for CRY.-Kyber

Public
Key Size

Time (ms) Speed
Factor

Time (ms) Speed Factor Time (ms) Speed
Factor

(bytes)

Cl.McEliece 1144.09 1x 0.56 2x 132.07 1x 1047319

NTRU 19.71 58x 1.23 1x 3.33 40x 1230

SABER 0.35 3,269x 0.38 3x 0.41 322x 1312

CRY.-Kyber 0.37 3,092x 0.39 3x 0.44 300x 1440

Table 29. High Security Level Encryption Comparison on Linux

From Table 29, we see that Classic McEliece’s level 5 algorithm is again the one that has

the largest public key size. It is larger than its other security level public key sizes and has a big

difference with NTRU, SABER and CRYSTALS-Kyber. Also, Classic McEliece, like security

level 3 comparison in the Table 27, runs the slowest during the generation of keypair and

decapsulation. By looking at the speed factor under the keypair, SABER is about 3,269 times

faster than Classic McEliece which is also the biggest difference in this table among the speed

factors. While Classic McEliece runs in 132.07 ms to decapsulate, SABER, on the other hand,

runs in 0.41 ms which is 322 times faster. We don’t see a big difference in algorithms’

encapsulation timings. NTRU takes up the most time however doing the encapsulation while the

slowest is CRYSTALS-Kyber. However, SABER runs almost about the same time with

CRYSTALS-Kyber, which shows us that there is no big difference when they are compared.

38

CRYSTALS-Kyber is the only one with security level 4 yet, still not the fastest in most of the

categories above. We see that SABER is the fastest among all these categories.

Level 5 Keypair
Level 4 for CRY.-Kyber

Level 5 Encapsulation
Level 4 for CRY.-Kyber

Level 5 Decapsulation
Level 4 for CRY.-Kyber

Public
Key Size

Time (ms) Speed
Factor

Time (ms) Speed Factor Time (ms) Speed
Factor

(bytes)

Cl.McEliece 12,300.12 1x 2.44 1x 202.78 1x 1047319

NTRU 8.3 1,482x 0.35 7x 0.31 654x 1230

SABER 0.29 42,414x 0.33 7x 0.37 548x 1312

CRY.-Kyber 0.25 49,200x 0.29 8x 0.32 634x 1440

Table 30. High Security Level Encryption Comparison on Raspberry Pi 4B

When we look at the same algorithms’ timings on Raspberry Pi 4B in Table 30 for their

highest security level, McEliece is again the slowest to generate a keypair, encapsulate and

decapsulate key. The biggest difference strikes us under the keypair category. While

CRYSTALS-Kyber only takes 0.25 ms to generate, Classic McEliece runs 49,200 times longer

which gives us the average result of 12,300.12 ms. For encapsulation, we see that NTRU,

SABER, and CRYSTALS-Kyber run in less than 1 ms. Classic McEliece is 8 times longer to

encapsulate than the CRYSTALS-Kyber which is relatively smaller than other speed factors but

higher than the factor on the Table 29.

4.2 Digital Signature Algorithm Comparison
We also observed some differences with the Digital Signature algorithms. We again first

took the timing ratios of each tested in Linux and Raspberry Pi 4B and did the comparison. Later,

we compared NIST security level 1 results of the algorithms with each other by showing in the

table the speed factors for keypair, signature, and verification.

39

DILITHIUM2 DILITHIUM3 DILITHIUM4

Keypair 1.29 1.37 1.37

Signature 1.12 1.63 1.12

Verification 11.62 1.67 1.2

Table 31. CRYSTALS-Dilithium Timings Ratio

CRYSTALS-Dilithium, on Table 31, also has some big differences in its timings on

Linux versus Raspberry Pi 4B. While the lowest difference is between the signature timing of

DILITHIUM4 which is measured 2.02 ms on Linux and 1.806 ms on Raspberry Pi 4B. While

these timings ratio is 1.12, which is one of the smallest differences and the highest timing

difference is observed in DILITHIUM2 during its verification with a ratio of 11.62.

Classic I Classic III Classic V

Keypair 3360 390 3770

Signature 2930 3610 3700

Verification 2220 280 3300

Table 32. Rainbow Timings Ratio

By looking at the table above (Table 32) for Rainbow, in general each Raspberry Pi4B is

slower than the Linux machine. However, it is possible to observe the Linux machine being

faster for generating keypair and doing verification for Rainbow Classic III. From Table 32, we

see that Rainbow takes the shortest time creating keypair for Classic V in Linux and runs 3770

times faster than it runs on Raspberry Pi 4B.

40

FALCON-256 FALCON-512 FALCON-1024

Keypair 2.67 2.47 2.62

Signature 2.67 2.73 2.78

Verification 2.61 2.71 2.91

Table 33. FALCON Timings Ratio

FALCON, shown in Table 33, runs faster in the Linux machine than the Raspberry Pi 4B.

Its 256-bit security level generates keypair in 4.34 μs in the Linux machine while it takes 11.59

μs in Raspberry Pi 4. While it is taking 58.9 μs in order to create the signature key on the Linux

machine, on Raspberry Pi 4B, it takes 157.29 μs which is more than twice of the time that took

on Linux. Verification time taken in both also has the same difference. More we look into it, it is

possible to observe the same pattern for FALCON’s other security levels as well. The highest

ratio is between the timing of the decapsulation of FALCON-1024 and the lowest difference is

between the timings of the generation of keypair for the second security level.

For Digital Signature, we also created a table to see the difference by including the speed

factor for keypair, signature, and verification. We took the timings for Rainbow Classic I,

DILITHIUM2, and FALCON-512. It is shown below on Table 34.

Level 1 Keypair Level 1 Signature Level 1 Verification Public Key
Size

Time (ms) Speed
Factor

Time (ms) Speed
Factor

Time (ms) Speed
Factor

(bytes)

Rainbow 9.64 1x 4.27 1x 0.01 38x 157800

CRY.-Dilithium 0.29 33x 1.45 3x 0.28 1x 1184

FALCON 0.01 964x 0.12 36x 0.38 1x 897

Table 34. Digital Signature Comparison on Linux

To compare Digital Signature algorithms in the same security level, we chose Rainbow

Classic I, DILITHIUM2, and FALCON-1024. When we compare the digital signature

algorithms’ NIST security level 1, which is common for all, we see that Rainbow takes more

41

time generating keypair and signature than others. For this part of comparison, we converted

FALCON’s timings from μs to ms in order to see the difference clearer. With 0.01 ms, FALCON

takes about 964 times faster to generate keypair than Rainbow and is the fastest among three. We

again see that FALCON is also the fastest in creating signatures. With 0.12 ms, it is 36 times

faster than Rainbow which takes 4.27 ms. While Rainbow takes the most time in generating

keypair and creating signature, it is also the fastest in verification with 0.01 ms. However,

Rainbow Classic I, which runs the security level 1 has the largest public key size among all yet,

it is still less than Classic McEliece.

Level 1 Keypair Level 1 Signature Level 1 Verification Public Key
Size

Time (ms) Speed
Factor

Time (ms) Speed
Factor

Time (ms) Speed
Factor

(bytes)

Rainbow Clas 32.38 1x 12.48 1x 0.02 5x 157800

CRY.-Dilithium 0.23 167x 1.30 10x 0.02 5x 1184

FALCON 0.02 1,619x 0.33 38x 1.04 1x 897

Table 35. Digital Signature Comparison on Raspberry Pi 4B

When we run the same algorithms on Raspberry Pi4B, we observed the similar results

which are seen in Table 33. Rainbow is again the slowest to generate keypair and create

signatures while it is one of the fastest in verification with CRYSTALS-Dilithium. On the

contrary, FALCON, again, is the fastest to generate keypair and create signatures. We see that the

speed factor increased between Rainbow and FALCON. While FALCON was 964 times faster

than Rainbow to generate keypair in Linux, running it on Raspberry Pi 4B, it increased to 1,619.

This is similar to the speed factor of creating a signature. While there is no big difference

between them, it is still remarkable seeing differences increasing.

Like we did for key-encryption algorithms, we also compared digital signature

algorithms’ timings run in their highest security levels. For this, we used DILITHIUM4,

Rainbow Classic V, and FALCON-1024. While the highest security level for Rainbow and

FALCON is 5, CRYSTALS-Dilithium is level 3.

42

Level 5 Keypair
Level 3 for
CRY.-Dilithium

Level 5 Signature
Level 3 for
CRY.-Dilithium

Level 5 Verification
Level 3 for
CRY.-Dilithium

Public
Key Size

Time
(ms)

Speed Factor Time (ms) Speed
Factor

Time (ms) Speed
Factor

(bytes)

CRY.-Dilithium 0.62 426x 2.02 12x 0.57 1x 1760

Rainbow 263.87 1x 23.87 1x 0.04 20x 1632

FALCON 0.03 8,796x 0.26 92x 0.78 1x 1280

Table 36. High Security Level Digital Signature Comparison on Linux

Comparing the high security level algorithms for digital signature, we can say that

Rainbow takes the most time to generate keypair and signature key while FALCON is the fastest

in these categories. Rainbow runs approximately 8,796 times slower than FALCON to generate

For the signature, the fastest and slowest are again Rainbow and FALCON. Rainbow runs in

23.87 ms while FALCON only takes 0.26 ms. When we check the speed factor, we see that

FALCON is faster by 92 times. However, for the verification we see that it is the opposite. In this

case, we see that Rainbow is faster in verification. It is important to mention again that

CRYSTALS-Dilithium’s security level is 3 which is lower than the other two so this might have

affected the results too.

Level 5 Keypair
Level 3 for
CRY.-Dilithium

Level 5 Signature
Level 3 for
CRY.-Dilithium

Level 5 Verification
Level 3 for
CRY.-Dilithium

Public
Key Size

Time
(ms)

Speed Factor Time (ms) Speed
Factor

Time (ms) Speed
Factor

(bytes)

CRY.-Dilithium 0.45 2,209x 1.81 49x 0.47 5x 1760

Rainbow 993.9 1x 88.33 1x 0.14 16x 1632

FALCON 0.07 14,199x 0.7 126x 2.3 1x 1280

Table 37. High Security Level Digital Signature Comparison on Raspberry Pi 4B

43

Similarly to the comparison made in Table 36, algorithm timings from Raspberry Pi 4B

show us that Rainbow is again the slowest to generate keypair and signature while FALCON is

the fastest. We see that the speed factor for these two categories increased when we run it on

Raspberry Pi 4B. FALCON became 14,199 faster than Rainbow to generate keypair on

Raspberry Pi 4B. The speed factor also increased for the signature. We see that FALCON runs

here 126 times faster than Rainbow. However, for the verification, like in Table 36, FALCON

became the slowest among them all.

44

5. Findings and Conclusion

Through comparing each of the sets of code we have for the Linux and Raspberry Pi 4B

implementations, we see that most of the code runs faster on the Raspberry Pi 4B in comparison

to Linux. There were some factors that contributed to this. First, the speeds of the CPU. Linux

ran at ~1197 MHz while the Raspberry Pi runs at ~1.5 GHz. A faster CPU speed for the

Raspberry Pi 4B will decrease the amount of time it takes to run each program. Another factor

would be the age of the CPU. The Linux machine is run on an older server while the Raspberry

Pi 4B is a newer model. Being a newer model, even with similar CPU clock cycles does impact

how well the CPU will perform when being run on the program.

However, there are two clear outliers. The programs FALCON, and Classic McEliece,

had the speeds reversed where the Raspberry Pi implementation took longer than the Linux

implementation. We looked into some factors that could contribute to that. One of them may be

the way the FALCON measures speed. Unlike the other programs, FALCON’s original program

was compatible with both Linux and Raspberry Pi, so we did not have to be concerned about

different methods of measurement being an issue, but it varied in that FALCON ran all security

levels of the program within one program iteration.

For Classic McEliece, there was a significant increase in time when creating the keypair

on Raspberry Pi 4B. Part of this issue could be the way it was generated. Classic McEliece had

the largest sizes for public keys at each security level within encryption algorithms. Because of

its size, it takes significantly longer to generate the key. The Raspberry Pi 4B likely did not have

the same CPU power to process such large bits of information, and took a longer time running

than the Linux.

With more time permitted, we wanted to look into multiple embedded systems,

specifically ones with singular or dual cores, however, we had difficulty finding one that had the

capacity to run Linux Ubuntu, and that was necessary to operate the program. We would also

have liked to look into the alternative place winners since they also had interesting post-quantum

algorithms with much potential to become a standardization.

45

Bibliography

[1] “Post-quantum Cryptography,” Microsoft Research.
https://www.microsoft.com/en-us/research/project/post-quantum-cryptography/ (accessed
Mar. 07, 2021).

[2] D. R. T. D. R. is a freelance writer, content developer who lives in Kennebunk, and Maine.,
“What Is the Difference Between Quantum Cryptography and Post-Quantum
Cryptography?,” Technology Solutions That Drive Government.
https://fedtechmagazine.com/article/2020/03/what-difference-between-quantum-cryptograph
y-and-post-quantum-cryptography-perfcon (accessed Mar. 07, 2021).

[3] “Post-Quantum Cryptography Definition & Meaning,” Webopedia, Dec. 11, 2020.
https://www.webopedia.com/definitions/post-quantum-cryptography-definition-meaning/
(accessed Mar. 07, 2021).

[4] I. T. L. Computer Security Division, “Post-Quantum Cryptography | CSRC | CSRC,” CSRC |
NIST, Jan. 03, 2017. https://content.csrc.e1c.nist.gov/projects/post-quantum-cryptography
(accessed Mar. 07, 2021).

[5] M. Mosca, “Cybersecurity in an era with quantum computers: will we be ready?,” 1075,
2015. Accessed: Oct. 26, 2020. [Online]. Available: http://eprint.iacr.org/2015/1075.

[6] L. Chen et al., “Report on Post-Quantum Cryptography,” National Institute of Standards and
Technology, NIST IR 8105, Apr. 2016. doi: 10.6028/NIST.IR.8105.

[7] G. Alagic et al., “Status report on the first round of the NIST post-quantum cryptography
standardization process,” National Institute of Standards and Technology, Gaithersburg, MD,
NIST IR 8240, Jan. 2019. doi: 10.6028/NIST.IR.8240.

[8] C. Paar and J. Pelzl, “Introduction to Public-Key Cryptography,” in Understanding
Cryptography: A Textbook for Students and Practitioners, C. Paar and J. Pelzl, Eds. Berlin,
Heidelberg: Springer, 2010, pp. 149–171.

[9] C. Paar and J. Pelzl, “Key Establishment,” in Understanding Cryptography: A Textbook for
Students and Practitioners, C. Paar and J. Pelzl, Eds. Berlin, Heidelberg: Springer, 2010, pp.
331–357.

[10] C. Paar and J. Pelzl, “Digital Signatures,” in Understanding Cryptography: A Textbook
for Students and Practitioners, C. Paar and J. Pelzl, Eds. Berlin, Heidelberg: Springer, 2010,
pp. 259–292.

[11] C. Paar and J. Pelzl, “Introduction to Cryptography and Data Security,” in Understanding
Cryptography: A Textbook for Students and Practitioners, C. Paar and J. Pelzl, Eds. Berlin,
Heidelberg: Springer, 2010, pp. 1–27.

[12] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer,” ArXivquant-Ph9508027, Jan. 1996, doi:
10.1137/S0097539795293172.

[13] Köksal Muş, “Chapter 8: RSA,” presented at the Lecture for WPI’s ECE4802 Course.
[14] E. B. Kania and J. K. Costello, “The Second Quantum Revolution,” Center for a New

American Security, 2018. Accessed: Oct. 26, 2020. [Online]. Available:
http://www.jstor.org/stable/resrep20450.5.

[15] G. M. Palma, K.-A. Suominen, and A. K. Ekert, “Quantum Computers and Dissipation,”
Proc. Math. Phys. Eng. Sci., vol. 452, no. 1946, pp. 567–584, 1996.

[16] Y. Wang, “Quantum Computation and Quantum Information,” Stat. Sci., vol. 27, no. 3,
pp. 373–394, 2012.

https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM

46

[17] S. Y. Yan, Computational Number Theory and Modern Cryptography. John Wiley &
Sons, 2013.

[18] O. Goldreich, “The Foundations of Modern Cryptography,” in Modern Cryptography,
Probabilistic Proofs and Pseudorandomness, vol. 17, Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 1–37.

[19] H. Zbinden, H. Bechmann-pasquinucci, N. Gisin, and G. Ribordy, “Quantum
cryptography,” in Applied Physics B Lasers and Optics, Springer-Verlag, 1998, pp. 743–748.

[20] N. A. Fauziah, E. H. Rachmawanto, D. R. I. M. Setiadi, and C. A. Sari, “Design and
Implementation of AES and SHA-256 Cryptography for Securing Multimedia File over
Android Chat Application,” in 2018 International Seminar on Research of Information
Technology and Intelligent Systems (ISRITI), Nov. 2018, pp. 146–151, doi:
10.1109/ISRITI.2018.8864485.

[21] “Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography
Standardization Process.” NIST, [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standa
rdization/call-for-proposals.

[22] D. Moody et al., “Status report on the second round of the NIST post-quantum
cryptography standardization process,” National Institute of Standards and Technology,
Gaithersburg, MD, NIST IR 8309, Jul. 2020. doi: 10.6028/NIST.IR.8309.

[23] R. Avanzi et al., “CRYSTALS-KYBER Algorithm Specifications And Supporting
Documentation,” p. 32, 2017.

[24] J. Katz and Y. Lindell, Introduction to modern cryptography : principles and protocols.
Boca Raton : CRC PRESS, 2007.

[25] Daniel J. Bernstein et al., “Classic McEliece: conservative code-based cryptography,”
Nov. 2017. [Online]. Available: https://classic.mceliece.org/nist/mceliece-20171129.pdf.

[26] Martin R. Albrecht et al., “Classic McEliece: conservative code-based cryptography,”
Oct. 2020. [Online]. Available: https://classic.mceliece.org/nist/mceliece-20201010.pdf.

[27] Daniel J. Bernstein et al., “Classic McEliece: conservative code-based cryptography,”
Mar. 2019. [Online]. Available: https://classic.mceliece.org/nist/mceliece-20190331.pdf.

[28] O. Regev, “Learning with Errors over Rings,” in Algorithmic Number Theory, vol. 6197,
G. Hanrot, F. Morain, and E. Thomé, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 3–3.

[29] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A Modular Analysis of the
Fujisaki-Okamoto Transformation,” in Theory of Cryptography, Cham, 2017, pp. 341–371,
doi: 10.1007/978-3-319-70500-2_12.

[30] E. E. Targhi and D. Unruh, “Quantum Security of the Fujisaki-Okamoto and OAEP
Transforms,” 1210, 2015. Accessed: Mar. 04, 2021. [Online]. Available:
http://eprint.iacr.org/2015/1210.

[31] P. Schwabe, “CRYSTALS-Kyber,” Apr. 12, 2018, [Online]. Available:
https://pq-crystals.org/kyber/data/slides-nistpqc18-schwabe.pdf.

[32] C. Chen et al., “NTRU Algorithm Specifications And Supporting Documentation,” 2019.
[33] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key

cryptosystem,” in Algorithmic Number Theory, vol. 1423, J. P. Buhler, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 267–288.

[34] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman, “NTRU: A new high speed public
key cryptosystem,” Brown University. [Online]. Available:

https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM

47

https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf.
[35] A. Hülsing, J. Rijneveld, J. Schanck, and P. Schwabe, “High-speed key encapsulation

from NTRU,” p. 21.
[36] M. V. Beirendonck, J.-P. D’Anvers, A. Karmakar, J. Balasch, and I. Verbauwhede, “A

Side-Channel Resistant Implementation of SABER,” 733, 2020. Accessed: Oct. 26, 2020.
[Online]. Available: http://eprint.iacr.org/2020/733.

[37] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs, “Learning with Rounding, Revisited:
New Reduction, Properties and Applications,” 098, 2013. Accessed: Mar. 04, 2021. [Online].
Available: http://eprint.iacr.org/2013/098.

[38] “SABER: LWR-based KEM.” https://www.esat.kuleuven.be/cosic/pqcrypto/saber/
(accessed Mar. 04, 2021).

[39] M. Ozols, M. Roetteler, and J. Roland, “Quantum rejection sampling,” Proc. 3rd Innov.
Theor. Comput. Sci. Conf. - ITCS 12, pp. 290–308, 2012, doi: 10.1145/2090236.2090261.

[40] L. Ducas et al., “CRYSTALS-Dilithium Algorithm Specifications And Supporting
Documentation,” p. 32, Mar. 2019.

[41] V. Lyubashevsky, “Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based
Signatures,” in Advances in Cryptology – ASIACRYPT 2009, vol. 5912, M. Matsui, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 598–616.

[42] Jintai Ding et al., “Rainbow - Algorithm Specification and Documentation,” The 3rd
Round Proposal.

[43] “PQCRainbow.” https://www.pqcrainbow.org/ (accessed Feb. 21, 2021).
[44] P. Gauravaram, “Security Analysis of salt||password Hashes,” in 2012 International

Conference on Advanced Computer Science Applications and Technologies (ACSAT), Nov.
2012, pp. 25–30, doi: 10.1109/ACSAT.2012.49.

[45] P.-A. Fouque et al., “Falcon: Fast-Fourier Lattice-based Compact Signatures over
NTRU,” p. 67.

[46] “What is an Embedded System? Definition and FAQs | OmniSci.”
https://www.omnisci.com/technical-glossary/embedded-systems (accessed Feb. 14, 2021).

[47] “Arduino Yún Rev 2 | Arduino Official Store.”
https://store.arduino.cc/usa/arduino-yun-rev-2 (accessed Feb. 28, 2021).

[48] The Raspberry Pi Foundation, “Buy a Raspberry Pi 3 Model B,” Raspberry Pi.
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ (accessed Feb. 28, 2021).

[49] “Raspberry Pi 4 Computer Model B Product Brief.” Raspberry Pi Trading Ltd., Jan.
2021, [Online]. Available:
https://datasheets.raspberrypi.org/rpi4/raspberry-pi-4-product-brief.pdf.

[50] “TivaTM TM4C123GH6PM Microcontroller Data Sheet.” Texas Instruments Incorporated,
Jun. 12, 2014.

[51] Lawrence E. Bassham et al. (2020), mceliece-20201010 (NIST Round 3) [Source Code].
https://classic.mceliece.org/nist/mceliece-20201010.tar.gz.

[52] Ko- (2018), Ko-/KeccakCodePackage (forked from XKCP/XKCP) [Source Code].
https://github.com/Ko-/KeccakCodePackage.

[53] Roberto Avanzi et al. (2020), pq-crystals/kyber (NIST Round 3) [Source Code].
https://github.com/pq-crystals/kyber.

[54] J. Schanck et al. (2020), jschanck/ntru (NIST Round 3) [Source Code].
https://github.com/jschanck/ntru.

[55] Jan-Pieter D’Anvers et al. (2020), KULeuven-COSIC/SABER (NIST Round 3) [Source

https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM

48

Code]. KU Leuven - COSIC. https://github.com/KULeuven-COSIC/SABER.
[56] Léo Ducas et al. (2020), pq-crystals/dilithium. (NIST Round 3) [Source Code].

https://github.com/pq-crystals/dilithium.
[57] Jintai Ding et al. (2020), fast-crypto-lab/rainbow-submission-round2 (NIST Round 3)

[Source Code]. Fast Crypto Lab.
https://github.com/fast-crypto-lab/rainbow-submission-round2.

[58] Pierre-Alain Fouque et al. (2020), FALCON (NIST Round 3) [Source Code].
https://falcon-sign.info/falcon-round3.zip.

https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM
https://www.zotero.org/google-docs/?duyBXM

49

Appendix A: Raw Data for Linux Implementations

Repeats = 1000 cycles (for each program)

1. CRYSTALS-Kyber (units are CPU cycles)

Level 1 (kyber512) Level 3 (kyber768) Level 5 (kyber1024)

Keypair median: 168180
average: 168650

median: 295976
average: 297788

median: 466652
average: 438888

Encapsulation median: 242528
average: 239032

median: 363480
average: 364821

median: 468861
average: 471802

Decapsulation median: 289392
average: 284423

median: 414340
average: 415964

median: 526357
average: 528385

2. NTRU (units are CPU cycles)

Level 1
(2048509)

Level 3 (701) Level 3
(2048677)

Level 5 (4096821)

Keypair median:
10876050
average:
11912411

median:
20070928
average:
20669804

median:
19498166
average:
20866148

median: 23313031
average: 23581402

Encapsulation median: 708538
average: 710936

median: 992059
average: 994478

median: 1017747
average: 1021620

median: 1458174
average: 1463140

Decapulation median:
1844876
average:
1857940

median:
2924214
average:
2936811

median: 2712136
average: 2729136

median: 3967731
average: 3986273

3. SABER (units are in CPU cycles)

Level 2
(LightSABER)

Level 3 (SABER) Level 4 (FireSABER)

Keypair Average times
key_pair:
207730

Average times
key_pair:
256479

Average times
key_pair:
423619

Encapsulation Average times enc: Average times enc: Average times enc:

50

270520 330302 453343

Decapsulation Average times dec:
279593

Average times dec:
335166

Average times dec:
489642

4. CRYSTALS-Dilithium (units are in CPU cycles)

Level 2
(DILITHIUM2)

Level 3
(DILITHIUM3)

Level 4
(DILITHIUM4)

Keypair median: 367436
average: 350920

median: 553308
average: 555878

median: 738912
average: 743010

Signature median: 1370959
average: 1734800

median: 2030460
average: 2641179

median: 1944139
average: 2414323

Verification median: 338247
average: 340612

median: 487551
average: 489695

median: 662992
average: 667353

51

Appendix B: Code Modifications for Linux

B.1 Classic McEliece
/mceliece-20201010/Reference_Implementation/kem/mceliece348864/build

For this program, mceliece348864 was referenced, but this code was applied as well to
mceliece460896, mceliece6688128, mceliece6960119 and mceliece8192128. [51]
#!/bin/sh
gcc -O3 -march=native -mtune=native -Wall -I. -Isubroutines -DKAT -
L /home/xxxxx/KeccakCodePackage/bin/generic64/ -$

/mceliece-20201010/Reference_Implementation/kem/mceliece348864/nist/kat_kem.c

For this program, mceliece348864 was referenced, but this code was applied as well to
mceliece460896, mceliece6688128, mceliece6960119 and mceliece8192128. Here, KATNUM
indicates the repeats and is set to 1000. [51]
/*

PQCgenKAT_kem.c
Created by Bassham, Lawrence E (Fed) on 8/29/17.
Copyright © 2017 Bassham, Lawrence E (Fed). All rights reserved.
+ mods from djb: see KATNOTES

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "rng.h"
#include "crypto_kem.h"
#include <sys/time.h>

#define KAT_SUCCESS 0
#define KAT_FILE_OPEN_ERROR -1
#define KAT_CRYPTO_FAILURE -4

void fprintBstr(FILE *fp, char *S, unsigned char *A, unsigned long long L);

unsigned char entropy_input[48];
unsigned char seed[KATNUM][48];

int
main()
{

struct timeval start;
struct timeval end;
struct timeval total;
struct timeval total_new_key;
struct timeval total_prev_key;
struct timeval total_new_enc;

https://www.zotero.org/google-docs/?yz5Fxi
https://www.zotero.org/google-docs/?bHxHey

52

struct timeval total_prev_enc;
struct timeval total_new_dec;
struct timeval total_prev_dec;

double total_sum_key = 0.0;
double total_sum_enc = 0.0;
double total_sum_dec = 0.0;

FILE *fp_req, *fp_rsp;
int ret_val;
int i;
unsigned char *ct = 0;
unsigned char *ss = 0;
unsigned char *ss1 = 0;
unsigned char *pk = 0;
unsigned char *sk = 0;

for (i=0; i<48; i++)
entropy_input[i] = i;

randombytes_init(entropy_input, NULL, 256);

for (i=0; i<KATNUM; i++)
randombytes(seed[i], 48);

fp_req = fdopen(8, "w");
if (!fp_req)

return KAT_FILE_OPEN_ERROR;

for (i=0; i<KATNUM; i++) {
fprintf(fp_req, "count = %d\n", i);
fprintBstr(fp_req, "seed = ", seed[i], 48);
fprintf(fp_req, "pk =\n");
fprintf(fp_req, "sk =\n");
fprintf(fp_req, "ct =\n");
fprintf(fp_req, "ss =\n\n");

}

fp_rsp = fdopen(9, "w");
if (!fp_rsp)

return KAT_FILE_OPEN_ERROR;

fprintf(fp_rsp, "# kem/%s\n\n", crypto_kem_PRIMITIVE);

for (i=0; i<KATNUM; i++) {
if (!ct) ct = malloc(crypto_kem_CIPHERTEXTBYTES);
if (!ct) abort();
if (!ss) ss = malloc(crypto_kem_BYTES);
if (!ss) abort();
if (!ss1) ss1 = malloc(crypto_kem_BYTES);
if (!ss1) abort();
if (!pk) pk = malloc(crypto_kem_PUBLICKEYBYTES);
if (!pk) abort();
if (!sk) sk = malloc(crypto_kem_SECRETKEYBYTES);
if (!sk) abort();

randombytes_init(seed[i], NULL, 256);

53

fprintf(fp_rsp, "count = %d\n", i);
fprintBstr(fp_rsp, "seed = ", seed[i], 48);

// Start of Keypair

gettimeofday(&start, NULL);
if ((ret_val = crypto_kem_keypair(pk, sk)) != 0) {

fprintf(stderr, "crypto_kem_keypair returned <%d>\n", ret_val);
return KAT_CRYPTO_FAILURE;

}
gettimeofday(&end, NULL);
timersub(&end, &start, &total);

if (i==0) {
total_prev_key = total;

}
else {

timeradd(&total, &total_prev_key, &total_new_key);
total_prev_key = total_new_key;

}

fprintBstr(fp_rsp, "pk = ", pk, crypto_kem_PUBLICKEYBYTES);
fprintBstr(fp_rsp, "sk = ", sk, crypto_kem_SECRETKEYBYTES);

// Start of Encryption
gettimeofday(&start, NULL);
if ((ret_val = crypto_kem_enc(ct, ss, pk)) != 0) {

fprintf(stderr, "crypto_kem_enc returned <%d>\n", ret_val);
return KAT_CRYPTO_FAILURE;

}
gettimeofday(&end, NULL);
timersub(&end, &start, &total);

if (i==0) {
total_prev_enc = total;

}
else {

timeradd(&total, &total_prev_enc, &total_new_enc);
total_prev_enc = total_new_enc;

}

fprintBstr(fp_rsp, "ct = ", ct, crypto_kem_CIPHERTEXTBYTES);
fprintBstr(fp_rsp, "ss = ", ss, crypto_kem_BYTES);

fprintf(fp_rsp, "\n");

// Start of Decryption
gettimeofday(&start, NULL);
if ((ret_val = crypto_kem_dec(ss1, ct, sk)) != 0) {

fprintf(stderr, "crypto_kem_dec returned <%d>\n", ret_val);
return KAT_CRYPTO_FAILURE;

}
gettimeofday(&end, NULL);
timersub(&end, &start, &total);

54

if (i==0) {
total_prev_dec = total;

}
else {

timeradd(&total, &total_prev_dec, &total_new_dec);
total_prev_dec = total_new_dec;

}

if (memcmp(ss, ss1, crypto_kem_BYTES)) {
fprintf(stderr, "crypto_kem_dec returned bad 'ss' value\n");
return KAT_CRYPTO_FAILURE;

}
}

total_sum_key = (double)total_new_key.tv_sec +
((double)total_new_key.tv_usec * 0.000001);

total_sum_key /= KATNUM;

total_sum_enc = (double)total_new_enc.tv_sec +
((double)total_new_enc.tv_usec * 0.000001);

total_sum_enc /= KATNUM;

total_sum_dec = (double)total_new_dec.tv_sec +
((double)total_new_dec.tv_usec * 0.000001);

total_sum_dec /= KATNUM;

printf("Repeat is: %1d\n", KATNUM);
printf("Average times key_pair: %fs\n", total_sum_key);
printf("Average times enc: %fs\n", total_sum_enc);
printf("Average times dec: %fs\n", total_sum_dec);

return KAT_SUCCESS;
}

void
fprintBstr(FILE *fp, char *S, unsigned char *A, unsigned long long L)
{

unsigned long long i;

fprintf(fp, "%s", S);

for (i=0; i<L; i++)
fprintf(fp, "%02X", A[i]);

if (L == 0)
fprintf(fp, "00");

fprintf(fp, "\n");
}

55

B.2 Rainbow

rainbow-submission-round2/Reference_Implementation/test-time.c [57]
/// @file test-time.c
/// @brief A command-line tool for timing.
///

//#define _BSD_SOURCE
#define _DEFAULT_SOURCE

#include <stdio.h>
#include <stdint.h>

#include "rainbow_config.h"

#include "utils.h"

#include "api.h"

#include <sys/time.h>
#include <stdlib.h>
#include <time.h>

#define NTESTS 1000

int main()
{
// unsigned char key_a[32], key_b[32];
//poly r, a, b;
//unsigned char* sl = (unsigned char*) malloc(NTESTS*CRYPTO_ALGNAME);
unsigned char* pks = (unsigned char*) malloc(NTESTS*CRYPTO_PUBLICKEYBYTES);
unsigned char* sks = (unsigned char*) malloc(NTESTS*CRYPTO_SECRETKEYBYTES);
//unsigned long long t[NTESTS];
// uint16_t a1 = 0;
int i;
printf("-- api --\n\n");

// for(i=0; i<NTESTS; i++)
// {

struct timeval start;
struct timeval end;
struct timeval total;
struct timeval total_new;
struct timeval total_prev;
double total_sum = 0.0;
unsigned long long smlen = 0;
unsigned long long mlen = 0;
unsigned char * msg = NULL;
unsigned char *_sl = malloc(CRYPTO_ALGNAME);
uint8_t *_sk = (uint8_t*)malloc(CRYPTO_SECRETKEYBYTES);
uint8_t * pk = (uint8_t *) malloc(CRYPTO_PUBLICKEYBYTES);
unsigned char * signature = malloc(mlen + CRYPTO_BYTES);

https://www.zotero.org/google-docs/?WQqIU1

56

/*
* KEYPAIR
*/
for (i=0; i<NTESTS; i++) {

gettimeofday (&start, NULL);
crypto_sign_keypair(pks+CRYPTO_PUBLICKEYBYTES,

sks+CRYPTO_SECRETKEYBYTES);
gettimeofday (&end, NULL);

timersub(&end, &start, &total); // needed &
// printf("keypair time taken: %d.%06ds\n", total.tv_sec,

total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("keypair time taken avg: %fs\n", total_sum);

/*
* ENC
*/
total_sum = 0.0; // reset total sum value;
for (i=0; i<NTESTS; i++) {

gettimeofday (&start, NULL);
//insert the function where it uses the signature
crypto_sign(signature, &smlen, msg , mlen , _sk);
gettimeofday (&end, NULL);

timersub(&end, &start, &total); // needed &
// printf("encoder time taken: %d.%06ds\n", total.tv_sec,

total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("creating signature time taken avg: %fs\n", total_sum);

/*
* verification

57

*/
total_sum = 0.0; // reset total sum value;
printf("%f\n", total_sum);
for (i=0; i<NTESTS; i++) {

gettimeofday (&start, NULL);
//printf("%s\n", CRYPTO_ALGNAME);
//insert the function where it uses the verification
crypto_sign_open(msg , &mlen , signature , mlen + CRYPTO_BYTES, pk);

gettimeofday (&end, NULL);
timersub(&end, &start, &total);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("doing verification time taken avg: %fs\n", total_sum);

return 0;
}

rainbow-submission-round2/Reference_Implementation/Makefile [57]
CC= gcc
LD= gcc

#
The variable `$PROJ_DIR' controls the variant(corresponding to a specific
directory) will be built.
To build a specific variant, set the $PROJ_DIR to a specific name of the
directory.
#
For example of building the `Ia_Classic' variant,
one have to set $PROJ_DIR = Ia_Classic.
The makefile will compile codes in the `Ia_Classic' directory only.
No code changes have to be made.
#
All possible variants are listed as followings.
#

ifndef PROJ_DIR
#PROJ_DIR = Ia_Classic
#PROJ_DIR = Ia_Circumzenithal
#PROJ_DIR = Ia_Compressed
#PROJ_DIR = IIIc_Classic

https://www.zotero.org/google-docs/?aai4XH

58

#PROJ_DIR = IIIc_Circumzenithal
#PROJ_DIR = IIIc_Compressed
PROJ_DIR = Vc_Classic
#PROJ_DIR = Vc_Circumzenithal
#PROJ_DIR = Vc_Compressed
endif

CFLAGS= -O3 -std=c11 -Wall -Wextra -fno-omit-frame-pointer
INCPATH= -I/usr/local/include -I/opt/local/include -I/usr/include
-I$(PROJ_DIR)
LDFLAGS=
LIBPATH= -L/usr/local/lib -L/opt/local/lib -L/usr/lib
LIBS= -lcrypto

ifeq ($(shell pwd | tail -c 5),avx2)
CFLAGS += -mavx2
CXXFLAGS += -mavx2
endif

ifeq ($(shell pwd | tail -c 6),ssse3)
CFLAGS += -mssse3
CXXFLAGS += -mssse3
endif

SRCS = $(wildcard $(PROJ_DIR)/*.c)
SRCS_O = $(SRCS:.c=.o)
SRCS_O_ND = $(subst $(PROJ_DIR)/,,$(SRCS_O))

OBJ = $(SRCS_O_ND)

EXE= rainbow-genkey rainbow-sign rainbow-verify PQCgenKAT_sign test-time

CSRC= $(wildcard *.c)

ifdef DEBUG
CFLAGS= -D_DEBUG_ -g -O1 -mavx2 -std=c99 -Wall -Wextra

-fsanitize=address -fno-omit-frame-pointer
CXXFLAGS= -D_DEBUG_ -g -O1 -mavx2 -Wall -Wextra -fno-exceptions

-fno-rtti -nostdinc++
endif

ifdef GPROF
CFLAGS += -pg
CXXFLAGS += -pg
LDFLAGS += -pg

endif

.PHONY: all tests tables clean

all: $(OBJ) $(EXE)

59

%-test: $(OBJ) %-test.o
$(LD) $(LDFLAGS) $(LIBPATH) -o $@ $^ $(LIBS)

%-benchmark: $(OBJ) %-benchmark.o
$(LD) $(LDFLAGS) $(LIBPATH) -o $@ $^ $(LIBS)

rainbow-genkey: $(OBJ) rainbow-genkey.o
$(LD) $(LDFLAGS) $(LIBPATH) -o $@ $^ $(LIBS)

rainbow-sign: $(OBJ) rainbow-sign.o
$(LD) $(LDFLAGS) $(LIBPATH) -o $@ $^ $(LIBS)

rainbow-verify: $(OBJ) rainbow-verify.o
$(LD) $(LDFLAGS) $(LIBPATH) -o $@ $^ $(LIBS)

PQCgenKAT_sign: $(OBJ) PQCgenKAT_sign.o
$(LD) $(LDFLAGS) $(LIBPATH) -o $@ $^ $(LIBS)

test-time: $(OBJ) test-time.o
$(LD) $(LDFLAGS) $(LIBPATH) -o $@ $^ $(LIBS)

%.o: %.c
$(CC) $(CFLAGS) $(INCPATH) -c $<

%.o: $(PROJ_DIR)/%.c
$(CC) $(CFLAGS) $(INCPATH) -c $<

clean:
rm *.o *-test *-benchmark rainbow-genkey rainbow-sign rainbow-verify

PQCgenKAT_sign test-time;

60

Appendix C: Code Modifications for Raspberry Pi 4
C.1 CRYSTALS-Kyber

kyber\ref\test_speed.c [53]
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "api.h"
#include "kex.h"
#include "params.h"
#include "indcpa.h"
#include "polyvec.h"
#include "poly.h"
#include "cpucycles.h"
#include "speed_print.h"
#include <sys/time.h>

#define NTESTS 1000

uint64_t t[NTESTS];
uint8_t seed[KYBER_SYMBYTES] = {0};

int main()
{
unsigned int i;
unsigned char pk[CRYPTO_PUBLICKEYBYTES];
unsigned char sk[CRYPTO_SECRETKEYBYTES];
unsigned char ct[CRYPTO_CIPHERTEXTBYTES];
unsigned char key[CRYPTO_BYTES];
unsigned char kexsenda[KEX_AKE_SENDABYTES];
unsigned char kexsendb[KEX_AKE_SENDBBYTES];
unsigned char kexkey[KEX_SSBYTES];
polyvec matrix[KYBER_K];
poly ap;

struct timeval start;
struct timeval end;
struct timeval total;
struct timeval total_new;
struct timeval total_prev;
double total_sum = 0.0;

/** KEYPAIR **/
for(i=0;i<NTESTS;i++) {
gettimeofday (&start, NULL);
crypto_kem_keypair(pk, sk);
gettimeofday (&end, NULL);
timersub(&end, &start, &total); // needed &

// printf("keypair time taken: %d.%06ds\n", total.tv_sec, total.tv_usec);

https://www.zotero.org/google-docs/?m9Z3JZ

61

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("keypair time taken avg: %fs\n", total_sum);

//print_results("kyber_keypair: ", t, NTESTS);

/** ENCODE **/
total_sum = 0.0; // reset total sum value;
for(i=0;i<NTESTS;i++) {
gettimeofday (&start, NULL);
crypto_kem_enc(ct, key, pk);

gettimeofday (&end, NULL);
timersub(&end, &start, &total); // needed &

// printf("encoder time taken: %d.%06ds\n", total.tv_sec,
total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("encoder time taken avg: %fs\n", total_sum);

//print_results("kyber_encaps: ", t, NTESTS);

/** DECODE **/
total_sum = 0.0; // reset total sum value;
for(i=0;i<NTESTS;i++) {
gettimeofday (&start, NULL);
crypto_kem_dec(key, ct, sk);
gettimeofday (&end, NULL);

timersub(&end, &start, &total); // needed &

// printf("decoder time taken: %d.%06ds\n", total.tv_sec,
total.tv_usec);

if (i == 0) {
total_prev = total;

62

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("decoder time taken avg: %fs\n", total_sum);

//print_results("kyber_decaps: ", t, NTESTS);

return 0;
}

kyber\ref\Makefile [53]
CC ?= /usr/bin/cc
CFLAGS += -Wall -Wextra -Wpedantic -Wmissing-prototypes -Wredundant-decls \
-Wshadow -Wpointer-arith -O3 -fomit-frame-pointer

NISTFLAGS += -Wno-unused-result -O3
RM = /bin/rm

SOURCES = kem.c indcpa.c polyvec.c poly.c reduce.c ntt.c cbd.c verify.c
SOURCESKECCAK = $(SOURCES) fips202.c symmetric-shake.c
SOURCESNINETIES = $(SOURCES) sha256.c sha512.c aes256ctr.c symmetric-aes.c
HEADERS = params.h api.h indcpa.h polyvec.h poly.h reduce.h ntt.h cbd.h \
verify.h symmetric.h randombytes.h

HEADERSKECCAK = $(HEADERS) fips202.h
HEADERSNINETIES = $(HEADERS) aes256ctr.h sha2.h

.PHONY: all speed shared clean

all: \
test_kyber512 \
test_kyber768 \
test_kyber1024 \
test_kex512 \
test_kex768 \
test_kex1024 \
test_vectors512 \
test_vectors768 \
test_vectors1024 \
test_kyber512-90s \
test_kyber768-90s \
test_kyber1024-90s \
test_kex512-90s \
test_kex768-90s \
test_kex1024-90s \
test_vectors512-90s \
test_vectors768-90s \
test_vectors1024-90s \
PQCgenKAT_kem

https://www.zotero.org/google-docs/?i41XeP

63

speed: \
test_speed512 \
test_speed768 \
test_speed1024 \
test_speed512-90s \
test_speed768-90s \
test_speed1024-90s

shared: \
libpqcrystals_kyber512_ref.so \
libpqcrystals_kyber768_ref.so \
libpqcrystals_kyber1024_ref.so \
libpqcrystals_kyber512-90s_ref.so \
libpqcrystals_kyber768-90s_ref.so \
libpqcrystals_kyber1024-90s_ref.so \
libpqcrystals_fips202_ref.so \
libpqcrystals_sha2_ref.so

libpqcrystals_fips202_ref.so: fips202.c fips202.h
$(CC) -shared -fPIC $(CFLAGS) fips202.c -o libpqcrystals_fips202_ref.so

libpqcrystals_sha2_ref.so: sha256.c sha512.c sha2.h
$(CC) -shared -fPIC $(CFLAGS) sha256.c sha512.c -o

libpqcrystals_sha2_ref.so

libpqcrystals_kyber512_ref.so: $(SOURCES) $(HEADERS) symmetric-shake.c
$(CC) -shared -fPIC $(CFLAGS) -DKYBER_K=2 $(SOURCES) symmetric-shake.c

-o libpqcrystals_kyber512_ref.so

libpqcrystals_kyber768_ref.so: $(SOURCES) $(HEADERS) symmetric-shake.c
$(CC) -shared -fPIC $(CFLAGS) -DKYBER_K=3 $(SOURCES) symmetric-shake.c

-o libpqcrystals_kyber768_ref.so

libpqcrystals_kyber1024_ref.so: $(SOURCES) $(HEADERS) symmetric-shake.c
$(CC) -shared -fPIC $(CFLAGS) -DKYBER_K=4 $(SOURCES) symmetric-shake.c

-o libpqcrystals_kyber1024_ref.so

test_kyber512: $(SOURCESKECCAK) $(HEADERSKECCAK) test_kyber.c randombytes.c
$(CC) $(CFLAGS) -DKYBER_K=2 $(SOURCESKECCAK) randombytes.c test_kyber.c

-o test_kyber512

test_kyber768: $(SOURCESKECCAK) $(HEADERSKECCAK) test_kyber.c randombytes.c
$(CC) $(CFLAGS) -DKYBER_K=3 $(SOURCESKECCAK) randombytes.c test_kyber.c

-o test_kyber768

test_kyber1024: $(SOURCESKECCAK) $(HEADERSKECCAK) test_kyber.c randombytes.c
$(CC) $(CFLAGS) -DKYBER_K=4 $(SOURCESKECCAK) randombytes.c test_kyber.c

-o test_kyber1024

test_kex512: $(SOURCESKECCAK) $(HEADERSKECCAK) test_kex.c randombytes.c kex.c
kex.h

$(CC) $(CFLAGS) -DKYBER_K=2 $(SOURCESKECCAK) randombytes.c kex.c
test_kex.c -o test_kex512

test_kex768: $(SOURCESKECCAK) $(HEADERSKECCAK) test_kex.c randombytes.c kex.c
kex.h

64

$(CC) $(CFLAGS) -DKYBER_K=3 $(SOURCESKECCAK) randombytes.c kex.c
test_kex.c -o test_kex768

test_kex1024: $(SOURCESKECCAK) $(HEADERSKECCAK) test_kex.c randombytes.c kex.c
kex.h

$(CC) $(CFLAGS) -DKYBER_K=4 $(SOURCESKECCAK) randombytes.c kex.c
test_kex.c -o test_kex1024

test_vectors512: $(SOURCESKECCAK) $(HEADERSKECCAK) test_vectors.c
$(CC) $(CFLAGS) -DKYBER_K=2 $(SOURCESKECCAK) test_vectors.c -o

test_vectors512

test_vectors768: $(SOURCESKECCAK) $(HEADERSKECCAK) test_vectors.c
$(CC) $(CFLAGS) -DKYBER_K=3 $(SOURCESKECCAK) test_vectors.c -o

test_vectors768

test_vectors1024: $(SOURCESKECCAK) $(HEADERSKECCAK) test_vectors.c
$(CC) $(CFLAGS) -DKYBER_K=4 $(SOURCESKECCAK) test_vectors.c -o

test_vectors1024

test_speed512: $(SOURCESKECCAK) $(HEADERSKECCAK) test_speed.c randombytes.c
kex.c kex.h

$(CC) $(CFLAGS) -DKYBER_K=2 $(SOURCESKECCAK) randombytes.c kex.c
test_speed.c -o test_speed512

test_speed768: $(SOURCESKECCAK) $(HEADERSKECCAK) test_speed.c randombytes.c
kex.c kex.h

$(CC) $(CFLAGS) -DKYBER_K=3 $(SOURCESKECCAK) randombytes.c kex.c
test_speed.c -o test_speed768

test_speed1024: $(SOURCESKECCAK) $(HEADERSKECCAK) test_speed.c randombytes.c
kex.c kex.h

$(CC) $(CFLAGS) -DKYBER_K=4 $(SOURCESKECCAK) randombytes.c kex.c
test_speed.c -o test_speed1024

libpqcrystals_kyber512-90s_ref.so: $(SOURCES) $(HEADERS) symmetric-aes.c
$(CC) -shared -fPIC $(CFLAGS) -DKYBER_K=2 -DKYBER_90S $(SOURCES)

symmetric-aes.c -o libpqcrystals_kyber512-90s_ref.so

libpqcrystals_kyber768-90s_ref.so: $(SOURCES) $(HEADERS) symmetric-aes.c
$(CC) -shared -fPIC $(CFLAGS) -DKYBER_K=3 -DKYBER_90S $(SOURCES)

symmetric-aes.c -o libpqcrystals_kyber768-90s_ref.so

libpqcrystals_kyber1024-90s_ref.so: $(SOURCES) $(HEADERS) symmetric-aes.c
$(CC) -shared -fPIC $(CFLAGS) -DKYBER_K=4 -DKYBER_90S $(SOURCES)

symmetric-aes.c -o libpqcrystals_kyber1024-90s_ref.so

test_kyber512-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_kyber.c
randombytes.c

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=2 $(SOURCESNINETIES)
randombytes.c test_kyber.c -o test_kyber512-90s

test_kyber768-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_kyber.c
randombytes.c

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=3 $(SOURCESNINETIES)
randombytes.c test_kyber.c -o test_kyber768-90s

65

test_kyber1024-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_kyber.c
randombytes.c

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=4 $(SOURCESNINETIES)
randombytes.c test_kyber.c -o test_kyber1024-90s

test_kex512-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_kex.c
randombytes.c fips202.c fips202.h kex.c kex.h

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=2 $(SOURCESNINETIES)
randombytes.c fips202.c kex.c test_kex.c -o test_kex512-90s

test_kex768-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_kex.c
randombytes.c fips202.c fips202.h kex.c kex.h

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=3 $(SOURCESNINETIES)
randombytes.c fips202.c kex.c test_kex.c -o test_kex768-90s

test_kex1024-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_kex.c
randombytes.c fips202.c fips202.h kex.c kex.h

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=4 $(SOURCESNINETIES)
randombytes.c fips202.c kex.c test_kex.c -o test_kex1024-90s

test_vectors512-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_vectors.c
$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=2 $(SOURCESNINETIES)

test_vectors.c -o test_vectors512-90s

test_vectors768-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_vectors.c
$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=3 $(SOURCESNINETIES)

test_vectors.c -o test_vectors768-90s

test_vectors1024-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_vectors.c
$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=4 $(SOURCESNINETIES)

test_vectors.c -o test_vectors1024-90s

test_speed512-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_speed.c
randombytes.c kex.c kex.h fips202.c fips202.h

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=2 $(SOURCESNINETIES)
randombytes.c kex.c fips202.c test_speed.c -o test_speed512-90s

test_speed768-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_speed.c
randombytes.c kex.c kex.h fips202.c fips202.h

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=3 $(SOURCESNINETIES)
randombytes.c kex.c fips202.c test_speed.c -o test_speed768-90s

test_speed1024-90s: $(SOURCESNINETIES) $(HEADERSNINETIES) test_speed.c
randombytes.c kex.c kex.h fips202.c fips202.h

$(CC) $(CFLAGS) -D KYBER_90S -DKYBER_K=4 $(SOURCESNINETIES)
randombytes.c kex.c fips202.c test_speed.c -o test_speed1024-90s

PQCgenKAT_kem: $(SOURCESKECCAK) $(HEADERSKECCAK) PQCgenKAT_kem.c rng.c rng.h
$(CC) $(NISTFLAGS) -o $@ $(SOURCESKECCAK) -I. rng.c PQCgenKAT_kem.c

$(LDFLAGS) -lcrypto

clean:
-$(RM) -rf *.gcno *.gcda *.lcov *.o *.so
-$(RM) -rf test_kyber512
-$(RM) -rf test_kyber768

66

-$(RM) -rf test_kyber1024
-$(RM) -rf test_kex512
-$(RM) -rf test_kex768
-$(RM) -rf test_kex1024
-$(RM) -rf test_vectors512
-$(RM) -rf test_vectors768
-$(RM) -rf test_vectors1024
-$(RM) -rf test_speed512
-$(RM) -rf test_speed768
-$(RM) -rf test_speed1024
-$(RM) -rf test_kyber512-90s
-$(RM) -rf test_kyber768-90s
-$(RM) -rf test_kyber1024-90s
-$(RM) -rf test_kex512-90s
-$(RM) -rf test_kex768-90s
-$(RM) -rf test_kex1024-90s
-$(RM) -rf test_vectors512-90s
-$(RM) -rf test_vectors768-90s
-$(RM) -rf test_vectors1024-90s
-$(RM) -rf test_speed512-90s
-$(RM) -rf test_speed768-90s
-$(RM) -rf test_speed1024-90s
-$(RM) -rf PQCgenKAT_kem

67

C.2 NTRU

ntru\ref-hps2048509\test\time_test.c

For this program, ref-hps2048509 was referenced, but this code was applied as well to
ref-hps2048677, ref-hps4096821 and ref-hrss701. [54]
#include "../kem.h"
#include "../params.h"
// Not needed - #include "../cpucycles.h"
#include "../randombytes.h"
#include "../poly.h"
#include "../sample.h"
#include <stdlib.h>
#include <stdio.h>

// new
#include <sys/time.h>

#define NTESTS 1000

int main()
{
unsigned char key_a[32], key_b[32];
poly r, a, b;
unsigned char* pks = (unsigned char*) malloc(NTESTS*NTRU_PUBLICKEYBYTES);
unsigned char* sks = (unsigned char*) malloc(NTESTS*NTRU_SECRETKEYBYTES);
unsigned char* cts = (unsigned char*) malloc(NTESTS*NTRU_CIPHERTEXTBYTES);
// Not needed - unsigned char fgbytes[NTRU_SAMPLE_FG_BYTES];
// Not needed - unsigned char rmbytes[NTRU_SAMPLE_RM_BYTES];
unsigned long long t[NTESTS];
uint16_t a1 = 0;
int i;

printf("-- api --\n\n");

// for(i=0; i<NTESTS; i++)
// {

struct timeval start;
struct timeval end;
struct timeval total;
struct timeval total_new;
struct timeval total_prev;
double total_sum = 0.0;

/*
* KEYPAIR
*/

for (i=0; i<NTESTS; i++) {
gettimeofday (&start, NULL);
crypto_kem_keypair(pks+NTRU_PUBLICKEYBYTES, sks+NTRU_SECRETKEYBYTES);
gettimeofday (&end, NULL);

https://www.zotero.org/google-docs/?dp9M11

68

timersub(&end, &start, &total); // needed &

// printf("keypair time taken: %d.%06ds\n", total.tv_sec,
total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("keypair time taken avg: %fs\n", total_sum);

/*
* ENCODER
*/
total_sum = 0.0; // reset total sum value;

for (i=0; i<NTESTS; i++) {
gettimeofday (&start, NULL);
crypto_kem_enc(cts+i*NTRU_CIPHERTEXTBYTES, key_b,

pks+i*NTRU_PUBLICKEYBYTES);
gettimeofday (&end, NULL);

timersub(&end, &start, &total); // needed &

// printf("encoder time taken: %d.%06ds\n", total.tv_sec,
total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("encoder time taken avg: %fs\n", total_sum);

/*
* DECODE
*/
total_sum = 0.0; // reset total sum value;

for (i=0; i<NTESTS; i++) {
gettimeofday (&start, NULL);
crypto_kem_dec(key_a, cts+i*NTRU_CIPHERTEXTBYTES,

69

sks+i*NTRU_SECRETKEYBYTES);
gettimeofday (&end, NULL);

timersub(&end, &start, &total); // needed &

// printf("decoder time taken: %d.%06ds\n", total.tv_sec,
total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("decoder time taken avg: %fs\n", total_sum);

return 0;
}

ntru\ref-hps2048509\Makefile

For this program, ref-hps2048509 was referenced, but this code was applied as well to
ref-hps2048677, ref-hps4096821 and ref-hrss701. [54]
NTRU_NAMESPACE ?= ntru_

CC ?= /usr/bin/cc
CFLAGS = -O3 -fomit-frame-pointer -march=native -fPIC -fPIE -pie
CFLAGS += -Wall -Wextra -Wpedantic
CFLAGS += -DCRYPTO_NAMESPACE\(s\)=${NTRU_NAMESPACE}\#\#s

SRC = cmov.c \
crypto_sort_int32.c \
fips202.c \
kem.c \
owcpa.c \
pack3.c \
packq.c \
poly.c \
poly_lift.c \
poly_mod.c \
poly_r2_inv.c \
poly_rq_mul.c \
poly_s3_inv.c \
sample.c \
sample_iid.c

https://www.zotero.org/google-docs/?A0EYev

70

HDR = cmov.h \
crypto_hash_sha3256.h \
crypto_sort_int32.h \
kem.h \
owcpa.h \
params.h \
poly.h \
sample.h

SRC_URAND = $(SRC) randombytes.c
HDR_URAND = $(HDR) randombytes.h

SRC_KAT = $(SRC) rng.c PQCgenKAT_kem.c
HDR_KAT = $(HDR) rng.h api.h

all: test/decap \
test/encap \
test/keypair \
test/speed \
test/test_gp_compat \
test/test_ntru \
test/test_owcpa \
test/test_pack \
test/test_time

test/test_gp_compat: $(SRC_URAND) $(HDR_URAND) test/test_gp_compat.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/test_gp_compat.c

test/test_ntru: $(SRC_URAND) $(HDR_URAND) test/test_ntru.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/test_ntru.c

test/test_time: $(SRC_URAND) $(HDR_URAND) test/test_time.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/test_time.c

test/test_owcpa: $(SRC_URAND) $(HDR_URAND) test/test_owcpa.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/test_owcpa.c

test/test_pack: $(SRC_URAND) $(HDR_URAND) test/test_pack.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/test_pack.c

test/speed: $(SRC_URAND) $(HDR_URAND) cpucycles.h cpucycles.c test/speed.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) cpucycles.c test/speed.c

test/gen_owcpa_vecs: test/gen_owcpa_vecs.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/gen_owcpa_vecs.c

test/encap: $(SRC_URAND) $(HDR_URAND) test/encap.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/encap.c

test/decap: $(SRC_URAND) $(HDR_URAND) test/decap.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/decap.c

test/keypair: $(SRC_URAND) $(HDR_URAND) test/keypair.c
$(CC) $(CFLAGS) -o $@ $(SRC_URAND) test/keypair.c

PQCgenKAT_kem: $(SRC_KAT) $(HDR_KAT)

71

$(CC) $(CFLAGS) -o $@ $(SRC_KAT) -lcrypto $(LDFLAGS)

.PHONY: clean test

test: all
./test/speed
./test/test_gp_compat | gp -q
./test/test_ntru
./test/test_pack
./test/test_time

clean:
-$(RM) *.o
-$(RM) -r test/decap
-$(RM) -r test/encap
-$(RM) -r test/keypair
-$(RM) -r test/speed
-$(RM) -r test/test_gp_compat
-$(RM) -r test/test_ntru
-$(RM) -r test/test_pack
-$(RM) -r test/test_time
-$(RM) PQCgenKAT_kem
-$(RM) PQCkemKAT_*.req
-$(RM) PQCkemKAT_*.rsp

72

C.3 SABER

SABER\Reference_Implementation_KEM\test\test_time.c [55]
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <string.h>

#include "../api.h"
#include "../poly.h"
#include "../rng.h"
#include "../SABER_indcpa.h"
#include "../verify.h"

uint64_t clock1,clock2;
uint64_t clock_kp_mv,clock_cl_mv, clock_kp_sm, clock_cl_sm;

static int test_kem_cca()
{

uint8_t pk[SABER_PUBLICKEYBYTES];
uint8_t sk[SABER_SECRETKEYBYTES];
uint8_t c[SABER_BYTES_CCA_DEC];
uint8_t k_a[SABER_KEYBYTES], k_b[SABER_KEYBYTES];

unsigned char entropy_input[48];

uint64_t i, j, repeat;
repeat=1000;
uint64_t CLOCK1,CLOCK2;
uint64_t CLOCK_kp,CLOCK_enc,CLOCK_dec;

CLOCK1 = 0;
CLOCK2 = 0;

CLOCK_kp = CLOCK_enc = CLOCK_dec = 0;
clock_kp_mv=clock_cl_mv=0;
clock_kp_sm = clock_cl_sm = 0;

time_t t;
// Intializes random number generator
srand((unsigned) time(&t));

for (i=0; i<48; i++){
//entropy_input[i] = rand()%256;
entropy_input[i] = i;

}
randombytes_init(entropy_input, NULL, 256);

https://www.zotero.org/google-docs/?Q9yQuy

73

printf("SABER_INDCPA_PUBLICKEYBYTES=%d\n", SABER_INDCPA_PUBLICKEYBYTES);
printf("SABER_INDCPA_SECRETKEYBYTES=%d\n", SABER_INDCPA_SECRETKEYBYTES);
printf("SABER_PUBLICKEYBYTES=%d\n", SABER_PUBLICKEYBYTES);
printf("SABER_SECRETKEYBYTES=%d\n", SABER_SECRETKEYBYTES);
printf("SABER_KEYBYTES=%d\n", SABER_KEYBYTES);
printf("SABER_HASHBYTES=%d\n", SABER_HASHBYTES);
printf("SABER_BYTES_CCA_DEC=%d\n", SABER_BYTES_CCA_DEC);
printf("\n");

struct timeval start;
struct timeval end;
struct timeval total;
struct timeval total_new_key;
struct timeval total_prev_key;
struct timeval total_new_enc;
struct timeval total_prev_enc;
struct timeval total_new_dec;
struct timeval total_prev_dec;

double total_sum_key = 0.0;
double total_sum_enc = 0.0;
double total_sum_dec = 0.0;

for(i=0; i<repeat; i++)
{

//printf("i : %lu\n",i);

//Generation of secret key sk and public key pk pair
gettimeofday (&start, NULL);
crypto_kem_keypair(pk, sk);
gettimeofday (&end, NULL);

timersub(&end, &start, &total);
if (i == 0) {

total_prev_key = total;
}
else
{

timeradd(&total, &total_prev_key, &total_new_key);
total_prev_key = total_new_key;

}

//Key-Encapsulation call; input: pk; output: ciphertext c,
shared-secret k_a;

gettimeofday (&start, NULL);
crypto_kem_enc(c, k_a, pk);
gettimeofday (&end, NULL);

timersub(&end, &start, &total);
if (i == 0) {

total_prev_enc = total;
}

74

else
{

timeradd(&total, &total_prev_enc, &total_new_enc);
total_prev_enc = total_new_enc;

}

//Key-Decapsulation call; input: sk, c; output: shared-secret k_b;

gettimeofday (&start, NULL);
crypto_kem_dec(k_b, c, sk);
gettimeofday (&end, NULL);

timersub(&end, &start, &total);
if (i == 0) {

total_prev_dec = total;
}
else
{

timeradd(&total, &total_prev_dec, &total_new_dec);
total_prev_dec = total_new_dec;

}

// Functional verification: check if k_a == k_b?
for(j=0; j<SABER_KEYBYTES; j++)
{

//printf("%u \t %u\n", k_a[j], k_b[j]);
if(k_a[j] != k_b[j])
{

printf("----- ERR CCA KEM ------\n");
return 0;
break;

}
}

//printf("\n");
}

total_sum_key = (double)total_new_key.tv_sec +
((double)total_new_key.tv_usec * 0.000001);

total_sum_key /= repeat;

total_sum_enc = (double)total_new_enc.tv_sec +
((double)total_new_enc.tv_usec * 0.000001);

total_sum_enc /= repeat;

total_sum_dec = (double)total_new_dec.tv_sec +
((double)total_new_dec.tv_usec * 0.000001);

total_sum_dec /= repeat;

printf("Repeat is : %ld\n",repeat);
printf("Average times key_pair: \t %fs \n",total_sum_key);
printf("Average times enc: \t %fs \n",total_sum_enc);
printf("Average times dec: \t %fs \n",total_sum_dec);
return 0;

}

75

int main()
{

test_kem_cca();
return 0;

}

SABER\Reference_Implementation_KEM\Makefile

CC = /usr/bin/gcc
CFLAGS = -Wall -Wextra -Wmissing-prototypes -Wredundant-decls\

-O3 -fomit-frame-pointer -march=native
NISTFLAGS = -Wno-unused-result -O3 -fomit-frame-pointer -march=native
-std=c99
CLANG = clang -march=native -O3 -fomit-frame-pointer -fwrapv
-Qunused-arguments
RM = /bin/rm

all: test/PQCgenKAT_kem \
test/test_kex \
test/kem \

SOURCES = pack_unpack.c poly.c fips202.c verify.c cbd.c SABER_indcpa.c kem.c
HEADERS = SABER_params.h pack_unpack.h poly.h rng.h fips202.h verify.h cbd.h
SABER_indcpa.h

test/test_kex: $(SOURCES) $(HEADERS) rng.o test/test_kex.c
$(CC) $(CFLAGS) -o $@ $(SOURCES) rng.o test/test_kex.c -lcrypto

test/test_time: $(SOURCES) $(HEADERS) rng.o test/test_time.c
$(CC) $(CFLAGS) -o $@ $(SOURCES) rng.o test/test_time.c -lcrypto

test/PQCgenKAT_kem: $(SOURCES) $(HEADERS) rng.o test/PQCgenKAT_kem.c
$(CC) $(NISTFLAGS) -o $@ $(SOURCES) rng.o test/PQCgenKAT_kem.c -lcrypto

test/kem: $(SOURCES) $(HEADERS) rng.o test/kem.c
$(CC) $(CFLAGS) -o $@ $(SOURCES) rng.o test/kem.c -lcrypto

rng.o: rng.c
$(CC) $(NISTFLAGS) -c rng.c -lcrypto -o $@

fips202.o: fips202.c
$(CLANG) -c $^ -o $@

.PHONY: clean test

test:
./test/test_kex
./test/test_time
./test/PQCgenKAT_kem
./test/kem

76

clean:
-$(RM) -f *.o
-$(RM) -rf test/test_kex
-$(RM) -rf test/test_time
-$(RM) -rf test/kem
-$(RM) -rf test/PQCgenKAT_kem
-$(RM) -f *.req
-$(RM) -f *.rsp

77

C.4 CRYSTALS-Dilithium

dilithium\ref\test\test_speed.c [56]
#include <stdint.h>
#include "../sign.h"
#include "../poly.h"
#include "../polyvec.h"
#include "../params.h"
#include "cpucycles.h"
#include "speed_print.h"
#include <sys/time.h>

#define NTESTS 1000

uint64_t t[NTESTS];

int main(void)
{
unsigned int i;
size_t smlen;
uint8_t pk[CRYPTO_PUBLICKEYBYTES];
uint8_t sk[CRYPTO_SECRETKEYBYTES];
uint8_t sm[CRYPTO_BYTES + CRHBYTES];
uint8_t seed[CRHBYTES];
polyvecl mat[K];
poly *a = &mat[0].vec[0];
poly *b = &mat[0].vec[1];
poly *c = &mat[0].vec[2];

struct timeval start;
struct timeval end;
struct timeval total;
struct timeval total_new;
struct timeval total_prev;
double total_sum = 0.0;

/** KEYPAIR **/
for(i = 0; i < NTESTS; ++i) {
gettimeofday (&start, NULL);
crypto_sign_keypair(pk, sk);
gettimeofday (&end, NULL);
timersub(&end, &start, &total); // needed &

// printf("keypair time taken: %d.%06ds\n", total.tv_sec, total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}

https://www.zotero.org/google-docs/?kYZmo6

78

total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *
0.000001);

total_sum /= NTESTS;
printf("keypair time taken avg: %fs\n", total_sum);

// print_results("Keypair:", t, NTESTS);

/** SIGN **/
total_sum = 0.0; // reset total sum value;
for(i = 0; i < NTESTS; ++i) {
gettimeofday (&start, NULL);
crypto_sign(sm, &smlen, sm, CRHBYTES, sk);
gettimeofday (&end, NULL);

timersub(&end, &start, &total); // needed &

// printf("sign time taken: %d.%06ds\n", total.tv_sec, total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("sign time taken avg: %fs\n", total_sum);

//print_results("Sign:", t, NTESTS);

/** VERIFY **/
total_sum = 0.0; // reset total sum value;
for(i = 0; i < NTESTS; ++i) {
gettimeofday (&start, NULL);
crypto_sign_verify(sm, CRYPTO_BYTES, sm + CRYPTO_BYTES, CRHBYTES, pk);
gettimeofday (&end, NULL);

timersub(&end, &start, &total); // needed &

// printf("verify time taken: %d.%06ds\n", total.tv_sec, total.tv_usec);

if (i == 0) {
total_prev = total;

}
else
{

timeradd(&total, &total_prev, &total_new);
total_prev = total_new;

}
}
total_sum = (double)total_new.tv_sec + ((double)total_new.tv_usec *

0.000001);
total_sum /= NTESTS;
printf("verify time taken avg: %fs\n", total_sum);

//print_results("Verify:", t, NTESTS);

79

return 0;
}

dilithium\ref\Makefile [56]

CC ?= /usr/bin/cc
CFLAGS += -Wall -Wextra -Wpedantic -Wmissing-prototypes -Wredundant-decls \
-Wshadow -Wvla -Wpointer-arith -O3

NISTFLAGS += -Wno-unused-result -O3
SOURCES = sign.c packing.c polyvec.c poly.c ntt.c reduce.c rounding.c
HEADERS = config.h params.h api.h sign.h packing.h polyvec.h poly.h ntt.h \
reduce.h rounding.h symmetric.h randombytes.h

KECCAK_SOURCES = $(SOURCES) fips202.c symmetric-shake.c
KECCAK_HEADERS = $(HEADERS) fips202.h
AES_SOURCES = $(SOURCES) fips202.c aes256ctr.c symmetric-aes.c
AES_HEADERS = $(HEADERS) fips202.h aes256ctr.h

.PHONY: all speed shared clean

all: \
test/test_dilithium2 \
test/test_dilithium3 \
test/test_dilithium4 \
test/test_dilithium2aes \
test/test_dilithium3aes \
test/test_dilithium4aes \
test/test_vectors2 \
test/test_vectors3 \
test/test_vectors4 \
test/test_vectors2aes \
test/test_vectors3aes \
test/test_vectors4aes \
PQCgenKAT_sign2 \
PQCgenKAT_sign3 \
PQCgenKAT_sign4 \
PQCgenKAT_sign2aes \
PQCgenKAT_sign3aes \
PQCgenKAT_sign4aes

speed: \
test/test_mul \
test/test_speed2 \
test/test_speed3 \
test/test_speed4 \
test/test_speed2aes \
test/test_speed3aes \
test/test_speed4aes

shared: \
libpqcrystals_dilithium2_ref.so \
libpqcrystals_dilithium3_ref.so \
libpqcrystals_dilithium4_ref.so \
libpqcrystals_dilithium2aes_ref.so \

https://www.zotero.org/google-docs/?SvoBrU

80

libpqcrystals_dilithium3aes_ref.so \
libpqcrystals_dilithium4aes_ref.so \
libpqcrystals_fips202_ref.so \
libpqcrystals_aes256ctr_ref.so

libpqcrystals_fips202_ref.so: fips202.c fips202.h
$(CC) -shared -fPIC $(CFLAGS) -o $@ $<

libpqcrystals_aes256ctr_ref.so: aes256ctr.c aes256ctr.h
$(CC) -shared -fPIC $(CFLAGS) -o $@ $<

libpqcrystals_dilithium2_ref.so: $(SOURCES) $(HEADERS) symmetric-shake.c
$(CC) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=2 \
-o $@ $(SOURCES) symmetric-shake.c

libpqcrystals_dilithium3_ref.so: $(SOURCES) $(HEADERS) symmetric-shake.c
$(CC) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=3 \
-o $@ $(SOURCES) symmetric-shake.c

libpqcrystals_dilithium4_ref.so: $(SOURCES) $(HEADERS) symmetric-shake.c
$(CC) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=4 \
-o $@ $(SOURCES) symmetric-shake.c

libpqcrystals_dilithium2aes_ref.so: $(SOURCES) $(HEADERS) symmetric-aes.c
$(CC) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \

-o $@ $(SOURCES) symmetric-aes.c

libpqcrystals_dilithium3aes_ref.so: $(SOURCES) $(HEADERS) symmetric-aes.c
$(CC) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \

-o $@ $(SOURCES) symmetric-aes.c

libpqcrystals_dilithium4aes_ref.so: $(SOURCES) $(HEADERS) symmetric-aes.c
$(CC) -shared -fPIC $(CFLAGS) -DDILITHIUM_MODE=4 -DDILITHIUM_USE_AES \

-o $@ $(SOURCES) symmetric-aes.c

test/test_dilithium2: test/test_dilithium.c randombytes.c $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=2 \
-o $@ $< randombytes.c $(KECCAK_SOURCES)

test/test_dilithium3: test/test_dilithium.c randombytes.c $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=3 \
-o $@ $< randombytes.c $(KECCAK_SOURCES)

test/test_dilithium4: test/test_dilithium.c randombytes.c $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=4 \
-o $@ $< randombytes.c $(KECCAK_SOURCES)

test/test_dilithium2aes: test/test_dilithium.c randombytes.c $(AES_SOURCES) \
$(AES_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \
-o $@ $< randombytes.c $(AES_SOURCES)

test/test_dilithium3aes: test/test_dilithium.c randombytes.c $(AES_SOURCES) \

81

$(AES_HEADERS)
$(CC) $(CFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \
-o $@ $< randombytes.c $(AES_SOURCES)

test/test_dilithium4aes: test/test_dilithium.c randombytes.c $(AES_SOURCES) \
$(AES_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=4 -DDILITHIUM_USE_AES \
-o $@ $< randombytes.c $(AES_SOURCES)

test/test_vectors2: test/test_vectors.c rng.c rng.h $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=2 \
-o $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto

test/test_vectors3: test/test_vectors.c rng.c rng.h $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=3 \
-o $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto

test/test_vectors4: test/test_vectors.c rng.c rng.h $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=4 \
-o $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto

test/test_vectors2aes: test/test_vectors.c rng.c rng.h $(AES_SOURCES) \
$(AES_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \
-o $@ $< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

test/test_vectors3aes: test/test_vectors.c rng.c rng.h $(AES_SOURCES) \
$(AES_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \
-o $@ $< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

test/test_vectors4aes: test/test_vectors.c rng.c rng.h $(AES_SOURCES) \
$(AES_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=4 -DDILITHIUM_USE_AES \
-o $@ $< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

test/test_speed2: test/test_speed.c randombytes.c $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=2 \
-o $@ $< randombytes.c \
$(KECCAK_SOURCES)

test/test_speed3: test/test_speed.c randombytes.c $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=3 \
-o $@ $< randombytes.c \
$(KECCAK_SOURCES)

test/test_speed4: test/test_speed.c randombytes.c $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=4 \
-o $@ $< randombytes.c \
$(KECCAK_SOURCES)

82

test/test_speed2aes: test/test_speed.c randombytes.c $(AES_SOURCES)
$(AES_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \
-o $@ $< randombytes.c \
$(AES_SOURCES)

test/test_speed3aes: test/test_speed.c randombytes.c $(AES_SOURCES)
$(AES_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \
-o $@ $< randombytes.c \
$(AES_SOURCES)

test/test_speed4aes: test/test_speed.c randombytes.c $(AES_SOURCES)
$(AES_HEADERS)

$(CC) $(CFLAGS) -DDILITHIUM_MODE=4 -DDILITHIUM_USE_AES \
-o $@ $< randombytes.c \
$(AES_SOURCES)

test/test_mul: test/test_mul.c randombytes.c $(KECCAK_SOURCES)
$(KECCAK_HEADERS)

$(CC) $(CFLAGS) -UDBENCH -o $@ $< randombytes.c $(KECCAK_SOURCES)

PQCgenKAT_sign2: PQCgenKAT_sign.c rng.c rng.h $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=2 \
-o $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto

PQCgenKAT_sign3: PQCgenKAT_sign.c rng.c rng.h $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=3 \
-o $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto

PQCgenKAT_sign4: PQCgenKAT_sign.c rng.c rng.h $(KECCAK_SOURCES) \
$(KECCAK_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=4 \
-o $@ $< rng.c $(KECCAK_SOURCES) $(LDFLAGS) -lcrypto

PQCgenKAT_sign2aes: PQCgenKAT_sign.c rng.c rng.h $(AES_SOURCES) \
$(AES_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=2 -DDILITHIUM_USE_AES \
-o $@ $< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

PQCgenKAT_sign3aes: PQCgenKAT_sign.c rng.c rng.h $(AES_SOURCES) \
$(AES_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=3 -DDILITHIUM_USE_AES \
-o $@ $< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

PQCgenKAT_sign4aes: PQCgenKAT_sign.c rng.c rng.h $(AES_SOURCES) \
$(AES_HEADERS)

$(CC) $(NISTFLAGS) -DDILITHIUM_MODE=4 -DDILITHIUM_USE_AES \
-o $@ $< rng.c $(AES_SOURCES) $(LDFLAGS) -lcrypto

clean:
rm -f *~ test/*~ *.gcno *.gcda *.lcov
rm -f libpqcrystals_dilithium2_ref.so

83

rm -f libpqcrystals_dilithium3_ref.so
rm -f libpqcrystals_dilithium4_ref.so
rm -f libpqcrystals_dilithium2aes_ref.so
rm -f libpqcrystals_dilithium3aes_ref.so
rm -f libpqcrystals_dilithium4aes_ref.so
rm -f libpqcrystals_fips202_ref.so
rm -f libpqcrystals_aes256ctr_ref.so
rm -f test/test_dilithium2
rm -f test/test_dilithium3
rm -f test/test_dilithium4
rm -f test/test_dilithium2aes
rm -f test/test_dilithium3aes
rm -f test/test_dilithium4aes
rm -f test/test_vectors2
rm -f test/test_vectors3
rm -f test/test_vectors4
rm -f test/test_vectors2aes
rm -f test/test_vectors3aes
rm -f test/test_vectors4aes
rm -f test/test_speed2
rm -f test/test_speed3
rm -f test/test_speed4
rm -f test/test_speed2aes
rm -f test/test_speed3aes
rm -f test/test_speed4aes
rm -f test/test_mul
rm -f PQCgenKAT_sign2
rm -f PQCgenKAT_sign3
rm -f PQCgenKAT_sign4
rm -f PQCgenKAT_sign2aes
rm -f PQCgenKAT_sign3aes
rm -f PQCgenKAT_sign4aes

