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Abstract
This article reviews publications related to the use of student data as features in

educational systems. As education becomes more and more digital, systems are able to collect
and analyze different types of student data. These features can be used to improve the teaching
materials or student’s learning experiences. This review investigates methods of collecting,
processing, and using student data. This review covers the knowledge tracing problem and
method and its extensions and alternatives, as well as systems measuring students’ affect and
behavior such as wheel spinning, gaming the system, and stopout. Topics relating to problem
features and content are reviewed, as well as students’ written responses. This review also
covers research about the quality and learning outcome of feedback types as well as
demographics and socioeconomic status and their impact on student’s learning. In each section,
this review describes methods from publications using each type of data or features.
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Introduction
Many learning platforms, both online and offline, collect data on their students. The

amount and nature of this data can be varied, but often they consist of numeric or categorical
features relating to a student’s learning experience. These features can be used to analyze and
represent student preferences, traits, learning speed or competency, and features from learning
materials among other things. These features can be extracted from a student’s interactions
with a system, from the correctness and patterns in their responses, or the written content of
their feedback or answers to questions. Developing automated methods of gathering and
analyzing these features can be useful to improve the quality of education if the systems can be
shown to be accurate. Much research has been done on the subject of student data and
modeling, and a vast amount of literature has been published.

In this review, we cover topics relating to the extraction and use of student data as
features. We review student modeling techniques for predicting short-term performance and the
use of student performance in the selection of learning material. Similarly, we investigated the
use of the performance and quality of feedback and hint material, including crowdsourced hints.
We also explored the use of student affect and behaviors such as stopout (quitting) and gaming
(exploiting systems). We discuss how student demographics and socioeconomic status have
also been used as features of student modeling. We explore the use of natural language
processing techniques to analyze both problem content and student responses. The review is
sectioned by the publications’ subject, with subsections for commonly studied subsets of each
subject.

Methodology
To ensure sufficient breadth, we selected 100 publications covering topics related to

student modeling and behaviors. Publications were sourced through Google Scholar searches
and from Worcester Polytechnic Institute Professor Neil Heffernan’s publications site. Professor
Heffernan’s publications website was used due to its large number of publications focusing on
subjects of interest to our goal and usually featuring implementations or data from the
ASSISTments online learning platform. We broadened the scope of our review using Google
Scholar. We conducted searches for publications matching a variety of combinations of domain
and method keywords relating to various forms of student modeling or behaviors and methods
of using data. A sample of keywords used is shown below.
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Domain Keywords Method Keywords

Knowledge Tracing Deep Learning

Affect Detection Dimensionality Reduction

Sentiment Analysis Autoencoder

Difficulty Prediction Anomaly Detection

Success Prediction Principal Component Analysis

Mastery-Based Learning Independent Component Analysis

Personalized Learning Linear Discriminant Analysis

Gaming Behavior Clustering

Wheel Spinning Manifold Learning

Student Modeling Feature Engineering

Performance Factors Analysis Text Classification

Knowledge Components Natural language processing

Table 1: Domain and Method keywords used to find relevant publications. Combinations of
keywords were used as query terms in Google Scholar.

Literature Review

Short Term Performance

Knowledge Tracing
One of the most commonly used and studied methods of evaluating student

performance is knowledge tracing (KT). First described by Corbett and Anderson in 1994 [4], KT
uses a Bayesian network to track the probabilities that a student has mastered a particular skill
based on the binary correctness of their answers to a skill’s questions. As originally described,
KT only allows skills to move from the unlearned state to the learned state. It maintains
parameters for the probability that a student may slip and incorrectly apply a learned skill, or
guess and correctly apply an unlearned skill. Corbett and Anderson applied the KT model to the
ACT Programming Tutor and used it to predict students’ performance on test exercises. The
model achieved mean absolute errors of 0.09, 0.11, and 0.18 across three experiments [4].
Knowledge tracing is a well-studied and used baseline model for student performance
prediction.

While knowledge tracing is already a powerful tool, efforts have been made to improve it.
A significant portion of these efforts have focused on adding more context to the model. Pardos
and Heffernan [10] in 2010 individualized the prior knowledge parameter of KT, showing that
using a student’s prior correctness across all skills is a better starting point for this parameter
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than using all students’ correctness on the skill. The improved model achieved a better mean
absolute error than KT on 33 of 42 problem sets using the overall percent correctness heuristic
[10]. Pardos and Heffernan [46] integrated item difficulty in 2011, effectively individualizing the
guess and slip parameters for each problem. They reported that while accuracy was improved
for problems with large numbers of data points, it may be beneficial to not individualize for
problems without a large amount of data [46]. Wang and Heffernan [48] utilized the amount of
assistance a student used to enhance KT accuracy. They created a table defining parameters
based on 3 discrete values of how many attempts the student used, and how many hints the
student used. This table dictates that in general, the more hints and attempts used, the lower
the probability the student will get subsequent questions correct. This prediction was combined
with KT’s prediction using linear regression. The combination of the assistance model and KT
achieved a lower MAE and RMSE, and higher AUC than just KT [48]. Hawkins et al. [31]
calculated empirical probabilities of when a student learned a skill and used the probability of
when the skill was used instead of correctness. They used a simple heuristic that calculated the
differences between the real data and all possibilities. This achieved an MAE of 0.3742, slightly
lower than but very similar to the baseline of 0.3830. Ultimately, the two models performed
similarly [31]. In 2012, Wang and Heffernan [41] personalized all the parameters of knowledge
tracing, using student and skill level data to influence the values of the KT parameters. This
method showed increased accuracy over the base KT model when the number of students and
skills was large, achieving an RMSE of 0.4199 compared to KT’s 0.4331 [41]. Wang and
Heffernan [35] modified KT in 2013, applying a similar idea by integrating continuous partial
credit instead of binary correctness. This increased the accuracy of the model, achieving a
root-mean-square error (RMSE) of 0.28 when using partial credit compared to KT’s 0.41 [35].
Hawkins et al. [33] extended the assistance model, introducing a general framework for the use
of any raw data in a KT model. They describe tabling models which can be used for any type of
data and then integrated into KT using means or regression as previously described or using
random forest or decision tree models. All models achieved better MAE and very similar RMSE
and AUC scores compared to KT [33]. In 2014, Khajah et al. [55] integrated KT with a
latent-factors model, producing a single LFKT network. This new model achieved the lowest
negative log-likelihood when compared to KT with and without latent student ability or problem
difficulty [55]. In 2016, Huang et al. [82] explored the use of KT on problems that cover a
combination of skills. They propose a model where individual skills are connected to the
combination skills they are a part of and have their masteries influenced by all the combinations
they appear in. The new model showed comparable accuracy but higher predictive performance
when compared to KT [82]. The introduction of other features in knowledge tracing, especially
personalization, is of interest in improving student modeling.

It is also possible to incorporate temporal information into knowledge tracing. Wang and
Heffernan [43] integrated student first response time into the KT, creating a simple model to
predict student performance based on first response time and combining it with KT predictions
using a linear regression model. They found that first response time had a small influence on
the final result, but that the combined model had an RMSE of 0.4213, slightly lower than KT’s
0.4251 [43]. Qiu et al. [44] added the concept of forgetting and rust to KT. They proposed that
students may either forget knowledge from the previous day or need some time to remove rust
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or warm-up and may slip on their first problem of the day. They used a split model to allow
different parameters for forgetting or slipping on questions answered on a new day. Testing
showed that the forget model performed better than KT, which in turn performed better than the
slip model. The forget model achieved an AUC of 0.7003 as opposed to the 0.6416 and 0.6110
achieved by KT and the slip model, respectively. These results show that modeling students’
tendency to forget over time can improve KT substantially [44]. Ghosh et al. [16] created
attentive knowledge tracing (AKT), an approach to the knowledge-tracing problem using
attention-based neural networks with human-interpretable components. They use autoencoders
to create a context-aware encoding of each question and question-answer pair based on a
monotonic attention mechanism that takes into account previous answers and the length of time
between the present and previous questions. The AKT model outperformed all baseline models
[16]. These results show that temporal representations of data in a knowledge tracing context
are useful in improving student modeling, and show that time has a large impact on students’
applications of skills, perhaps more than some systems account for.

Another useful extension of knowledge tracing is the reduction of complexity, through the
implementation of clustering or otherwise. Clustering seeks to maintain or improve the model’s
predictive accuracy while decreasing the parameter space. Ritter et al. [54] utilized a strict
k-means algorithm to cluster skills that have similar representations in the KT model. They
assumed that there would be a reasonable number of skill groups that could be given
meaningful names, like “hard to learn but easy to guess”, and could use the reduced parameter
space to more accurately estimate starting parameters for new learning materials. The clustered
parameters produced a slightly higher mean squared error at 0.1245 as opposed to the best fit’s
0.1204, and the systems behaved similarly. For skills with a small amount of data, it was shown
that the clustering model provided a substantially better fit [54]. Pardos et al. [40] performed
clustering based on students’ interactions with the tutoring system, finding student groups
instead of skill groups. They compared the use of a k-means clustering algorithm and a spectral
clustering algorithm, training a KT model for each cluster. For each number of clusters, they
blended the predictions of each cluster’s model. They then averaged predictions over the
models produced for K-1 to 1 clusters. The ensemble models achieved lower RMSE overall,
with RMSE generally falling as the cluster count increased. However, some datasets showed
better results when only using user features rather than including all features [40]. Nooraei et al.
[45] explored the idea of reducing KT’s complexity by limiting the number of past opportunities
used. They found that not limiting the amount of data achieved an RMSE of 0.289123. Limiting
the number of problems used as data points to 75 achieved the best RMSE (0.288648), while
taking one-fifth the time to train. Limiting the number of data points to 10 resulted in an accuracy
loss of 0.6% compared to a model trained on all the data. The paper concluded that the
accuracy gained from training on a large number of data points is likely not worth the large
increases in training time [45]. Clustering is often a powerful tool, and the benefits of complexity
reduction are not wasted on the knowledge tracing problem.

An alternative solution to the knowledge tracing problem is Deep Knowledge Tracing
(DKT). Created by Piech et al. [12], DKT uses recurrent neural networks to model student
learning. The network takes an input consisting of the correctness of a student’s answers to all
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problems and outputs the student’s probability of correctly answering each question.  They
tested DKT against KT on data from Khan Academy and ASSISTments and found that while KT
achieved an AUC of 0.68 and 0.67, respectively, DKT achieved 0.85 and 0.86. This is a
substantial gain [12]. Zhang et al. [53] extended DKT, incorporating problem-level features. They
encoded features like correctness, the z-score of the first response time, attempt count, and first
action type as sparse one-hot vectors, concatenated them together, and used these as the input
for each question. They discuss methods of encoding this information in a lower-dimensional
space to reduce computation time, then test their methods on real problem data. On the
ASSISTments data, the new model with the autoencoder achieved an AUC of 86.7 compared to
base DKT’s AUC of 85.8. On the OLI Statics data, the new model achieved 73.5 compared to
DKT’s 73.1 [53]. Scruggs et al. [67] modified DKT to directly produce estimates of student
knowledge instead of problem correctness. They took the predicted values of correctness for all
problems in a skill and averaged them. This method was applied to DKT, PFA, KT, and Dynamic
Key-Value Memory Networks for Knowledge Tracing, and it produced accurate results [67].
These publications suggest that deep learning is a viable method for solving the knowledge
tracing problem. While it differs significantly in nature, the above publications show it is equally
useful and extensible.

The knowledge tracing method has also been used for goals other than predicting
student performance. For example, Qiu et al. [39] used linear regression to determine which
sets of features produced the best models. The features considered were percent correct of a
student and skill, time intervals between responses, the number of days spent trying to master a
skill, and the number of practice opportunities (problems) completed for the skill. At the
opportunity level, the time interval feature achieved the lowest RMSE at 0.3891 compared to
KT’s 0.3934. At the skill level, it again had the lowest RMSE at 0.3898 while KT achieved
0.3934. Finally, at the student level, the time interval feature again achieved the lowest RMSE
with 0.3892 compared to KT’s 0.3934 [39]. Pardos and Heffernan [38] upended the KT model,
creating a model which determined the probability of learning between two specific questions.
They allowed every question to have an individual guess and slip rate to account for problem
difficulties. The same method could be applied to control for other problem-level features. They
did not conduct experiments to test the method [38]. Thus, the knowledge tracing model has
proven it applies to problems outside its intended one.

Alternative Performance Models
Knowledge tracing is not the only method of modeling a student's knowledge. Pavlik Jr

et al. [5] introduced Performance Factor Analysis (PFA). PFA is built on the Rasch item
response model, modified to take correctness and incorrectness as parameters. It makes use of
a standard logistic regression. The use of both correctness and incorrectness allows the model
to be sensitive not only to the quantities of each but the ratios of correct to incorrect responses.
They compared PFA to KT and showed that PFA was more accurate and overcompensated less
in the case of a single slip [5]. Minn et al. [81] proposed a system for the Dynamic Student
Classification on Memory Networks (DSCMN). They encoded a vector of a student’s prior
performance which is updated at every time interval. These vectors were used to cluster
students based on learning ability in both training and testing at each time interval using a
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k-means clustering algorithm. They include a metric of problem difficulty. In three of four
datasets, the DSCMN model outperformed all other tested models when comparing AUC [81].
Abdi et al. [85] built on the knowledge tracing machine (KTM) framework to include data from
learner-sourced contributions as features. They used an encoder to allow multiple types of tasks
to be included in the input. It encodes the type of task, the resources and concepts used, the
task itself, and the outcome. They evaluated their method on data from the RiPPLE educational
system and found that on the two datasets, the new model achieved an AUC of 0.723 and
0.778, while PFA achieved only 0.551 and 0.625 [85]. Botelho et al. [8] proposed a method of
modeling students' knowledge of skills based on their mastery of prerequisite skills. They
calculated each student’s speed of mastery in a skill using the number of problems required to
learn a skill. To calculate a student’s first problem correctness in a skill, they binned the students
by mastery speeds of the prerequisite skills and calculated the average first problem
correctness for each bin. They called the process Prerequisite Binning (PB). They compared the
PB model to KT using data from ASSISTments and found that PB achieved a higher AUC  than
KT, scoring 0.651, compared to KT’s 0.626 [8]. Baker et al. [50] modeled the moment at which
concepts are learned using correctness and other student data, exploring which skills are
gradually learned or having “eureka” moments. The model uses linear regression to predict the
probability that a student learned the skill at a specific step based on metrics of correctness
within the skill, time taken, and hint usage. On Cognitive Tutor data, the model achieved a
correlation coefficient of 0.446 between the training labels and the model’s predictions, while on
the ASSISTments data it achieved a correlation coefficient of 0.446. Predictions made by the
model can be plotted with problem count as the dependent variable to visualize how a concept
is learned. A plot showing a large spike indicated a skill learned by a “eureka” moment, while a
steady curve indicated gradual learning [50]. These models achieve the same task as
knowledge tracing with significant accuracy but with alternate methods.

An often explored concept in student modeling is partial credit. Van Inwegen et al. [20]
utilized partial credit to create a new student modeling method. Using attempt count, hint count,
usage of the final “bottom-out” hint, and first action type, students were grouped into 5 distinct
“SuperBins”. Two-tailed t-tests revealed that there were only five significantly different bins. To
predict student success, they used the progression between bins, comparing the impact of
looking at the current bin (method 1), previous and current bins (method 2), previous and
current with opportunity count (method 3), and the last two and the current bin (method 4).
When testing on ASSISTments data, the average of methods 3 and 4 scored an AUC of 0.728
and RMSE of 0.406, compared to KT’s 0.710 and 0.413. The model proved to be an
improvement over KT [20]. Ostrow et al. [28] proposed a method of tabling a student’s
correctness and a problem’s difficulty in an attempt to predict next-problem correctness on not
only a binary basis but also a partial credit one. Partial credit was determined using an algorithm
that places the answer in one of five partial credit bins from 0 (completely incorrect) to 1
(completely correct) by considering first action type, attempt use, and hint use. Problem difficulty
was calculated by the average correctness rate for that problem. These tables were then
combined and probabilities of correctness were trained for each possible outcome. When
compared to KT and PFA, the new model performed similarly to KT but was outperformed by
PFA. The authors argue that the computational simplicity of the new method and its similar
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performance to KT are worth noting [28]. It seems that partial credit does provide valuable
insight into student learning and its use as a feature can enhance a model.

Similarity Metrics
Deciding what content best serves a learner or group of learners is an important part of

teaching, and the use of a student’s performance to recommend content automatically is a
useful idea. To this end, Brigui-Chtioui et al. [57] created an agent-based recommendation
system to find the best next piece of learning content for a student. The recommender agent
calculates the similarities between users based on their previous interactions with the systems
and selects a learning resource based on similar users. The filtering agent takes outputs from
the recommendation agent and determines which is best for the learner, and the management
agent decides if the recommender agent needs to update its rating of a resource based on the
results [57]. Zhao et al. [59] utilized KT to provide personalized recommendations for the next
learning activity. They used an encoding of learner attributes alongside problem correctness
with an attention mechanism to predict the performance of certain learning materials. The model
matches the student’s attributes and performance on specific materials with the most similar
activity sequences from other learners and provides a recommendation for the next activity,
taking the most popular next activity from the similar students [59]. Such recommender systems
show a promising start to improving the quality of chosen learning materials.

Clustering has been explored as an effective way to identify opportunities for
personalization. Kausar et al. [63] presented a recommender system that could be based on
clustering using the Clustering by Fast Search and Finding of Density Peaks via Heat Diffusion
(CFSFDP-HD) algorithm. They clustered based on attendance and grades in quizzes,
assignments, and exams. They describe how the clusters could be used by an instructor to
provide certain interventions to groups of the class [63]. Zhou et al. [64] presented a system for
generating personalized learning paths using clustering and long short-term memory (LSTM)
neural networks. They used features about resource type and student preferences. Data
relating to a learner’s interactions with the systems were also recorded, namely facial
expressions, time spent on resources, the evaluation rank of the resources, what learning
impact the resource had, and what impact the overall path had. They use a clustering algorithm
to determine what group a student belongs to, predict the learning outcomes of various paths
using an LSTM, and select content based on feature similarity between students. On a dataset
from Junyi Academy, the clustering + LSTM method achieved better precision than other
models [64]. Also seeking to generate learning paths, Kardan et al. [65] proposed a two-stage
algorithm called ACO-Map. ACO-Map uses a two-stage approach. In the first stage, students
are given a pretest and clustered using a k-means algorithm based on concept knowledge. In
the second phase, an ant colony optimization (ACO) method is used to identify optimal learning
paths [65]. Another way to cluster is by formalized learning styles. Jyothi et al. [66] clustered
students based on the result of the Felder-Silverman learning style model (FSLSM). In their
model, an instructor specifies which resources are good for which learning styles, and the
instructor creates clusters of students with similar styles by defining characteristics that should
be grouped. The system uses proficiency in individual course modules to allow the instructor to
develop learning paths by specifying what types of services/activities should be provided. They
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implemented the recommender in an e-learning system and found that it “complements the
in-house training activities in providing learning content and in offering learning services” [66].

Actions, Behavior, Affect

Affect
Affect is a term describing a person's emotional state and mood. In the educational

context, it can describe a student as bored, confused, engaged and concentrating, and other
states. [22] As a student's affect state can greatly influence their learning, teachers must take
note of when their teaching produces certain states. This is a task that takes significant effort
and would benefit greatly from automation. Botelho et al. [6] used deep learning to create an
affect detector using only data from an online educational system. They broke up a student’s
use of the system into small time windows, for which they predicted affect state. Features used
included the sum, minimum, maximum, and mean values across the time window for a student’s
response behavior, response time, and hint and scaffold usage, with 204 total features. They
trained a Gated Recurrent Unit (GRU) neural network, an RNN, and an LSTM network each with
and without resampling on these features. They measured performance using AUC, Cohen’s
Kappa, and Fleiss’ Kappa. The best performing network under AUC was the RNN without
resampling, with an AUC of 0.78. The best performing under both Kappas was the LSTM
without resampling, with a Cohen’s Kappa of 0.21 and a Fleiss’ Kappa of 0.27. They argue that
the deep learning models performed well and can be effectively used [6]. Yang et al. [23]
employed active machine learning to improve the detection of student affect on small amounts
of data. They used data consisting of 88 unique features such as time spent on problems, hint
use, and response correctness in a 20-second time interval. They achieved an AUC of 0.685 for
predicting the presence of engaged concentration with 45 observations and concluded that
active learning methods can increase the accuracy of affect detectors on low numbers of
observations [23]. Studying a student’s time management skills can also be useful. Bosch [9]
used AutoML methods to automatically create feature sets to predict efficiency and therefore
time management skills for the National Assessment of Educational Progress competition. They
used Featuretools and TSFRESH (Time Series FeatuRe Extraction on basis of Scalable
Hypothesis tests), two methods for automating the feature engineering process on data from
logs of student interactions with the educational system. To compare accuracy, they trained
Extra-Trees models, an extension of the random forest model, to predict student efficiency. They
compared Featuretools, TSFRESH, and expert-engineered features by comparing per-feature
AUC. TSFRESH was the most accurate, with an AUC of 0.530, followed by the expert selected
features at 0.512, and Featuretools with 0.502. They investigated the interpretability of
automatically generated features and concluded that they were difficult to understand and gave
instructors less insight into a student’s learning [9]. These publications show it is possible to
automate affect detection with significant accuracy.

Once known, affect state can be used to study other aspects of a student’s educational
experience. Hawkins et al. [32] analyzed the causes of boredom in students to determine if
problem content or student predisposition is more responsible for boredom. They used students’
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problem data labeled by an existing boredom detector to fit two linear regression models, one
predicting boredom by student ID and one predicting boredom by problem ID. They found that
problem ID had a significantly higher correlation than student ID, with an r-squared of 0.0516
compared to 0.0061, indicating that problem content is significantly more indicative of boredom
[32]. Gurung et al. [14] examined student effort and used it to predict performance. They
analyzed the time spent between actions for two action-pair types, based on the next action
after requesting a hint: hint request into hint request and hint request into answer attempt. They
found that the hint request, answer attempt pair had a unimodal distribution, but the hint
request, hint request pair was bimodal, with a large number of students taking a small amount of
time before requesting another hint and another large amount of students taking a markedly
longer time before requesting another hint. They describe the former as “low effort” behavior,
and the latter as “high effort” behavior. Since students in the high-effort section spend a similar
amount of time as students who requested a hint then submitted an answer, they chose to look
at all action pairs and use Gaussian Mixture Models (GMM) to estimate the mean time of high
and low effort behavior, using the means and standard deviation to classify a student’s effort
based on the time between actions. They then trained a logistic regression model to predict
next-problem correctness based on effort and achieved an r-squared of 0.048. They state that
low effort behavior was a significant predictor of correctness. They also trained a logistic
regression on wheel spinning behavior and achieved similar results [14]. Botelho et al. [24]
analyzed the changes in affect state over time to determine relationships between states. They
computed D’Mello’s L for each student and affect state change, and compared the set of
changes using a one-sample two-tailed t-test. They find that the most common transitions are
between confusion to engaged concentration and frustration to engaged concentration and that
transitions between boredom and engaged concentration are more likely than chance. They
observe that there are no states that transition to confusion more likely than chance [24]. San
Pedro et al. [34] applied affect detectors to test Csikszentmihalyi’s Flow theory, which states that
adequately challenging material leads to engaged concentration while material that is too easy
leads to boredom and material that is too hard leads to frustration and anxiety. They analyzed
the correlations of student knowledge and affect on a problem as determined by ASSISTments’
existing detectors. They found that boredom got less common as student knowledge increased,
contrary to Flow theory. Frustration appeared most often when student knowledge was at the
high or low extremes, partially agreeing with flow theory, but disagreeing for students with high
skill. Engaged concentration was directly proportional to student skill, being highest for high skill
students. The authors note that engaged concentration is the most common affect state in
general [34]. These papers prove that affective state does influence student learning to a
significant extent.

Using affect to predict a student’s performance beyond a single course or skill is useful
to allow advisors and teachers to provide higher-level guidance. San Pedro et al. [22] predicted
scores on the Massachusetts Comprehensive Assessment System (MCAS), a standardized test
administered throughout a student’s K-12 education, using measures of affect and behavior. For
features, they used existing detectors of student affect and KT from the ASSISTments platform.
They obtained entropy scores for fluctuations in student affect, behavior, and knowledge series,
describing if the student’s behavior was predictable or not. Hurst exponents were calculated
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using Detrended Fluctuation Analysis for fine-grained encodings of how each moment in the
time series influences the next. They trained a linear regression to predict a student’s MCAS
score, and this model achieved an RMSE of 7.862 [22]. San Pedro et al. [29] used student
engagement to predict enrolment in a post-secondary STEM program. Training labels came
from a survey that asked past students to detail their education/career path after high school.
Features used were the results of the ASSISTments system’s pre-existing detectors of
knowledge (using KT), carelessness, gaming, or other off-task behavior, and student affect, as
well as students’ usage of the system. The presence of behaviors and affect were averaged
across each student. They fitted a logistic regression on the features to predict STEM major
enrolment and achieved a mean accuracy of 0.663 [29]. Ramesh et al. [58] used student
engagement to predict course completion with a Probabilistic Soft Logic (PSL) model. The
behavioral features used were a student’s posting, viewing, and voting activity on the class
forum, and their reputation on the forum. They used an automated tool called OpinionFinder to
qualify forum posts as subjective/objective and define their polarity. A post’s thread and forum
location were also used. For temporal features, they used a discrete classification of the last
time a student posted, voted, or viewed the forum, and the last time they took a quiz or attended
a lecture. There were three values for these, “start”, “mid”, and “end”. They created two PSL
models, a “flat” one that makes a direct prediction, and a “latent” one that calculates predicted
student engagement and uses that to predict course completion. The latent model scored best
with AUCs of 0.969, 0.983, and 0.944 across three classes [58]. Affect again proves itself a
powerful indicator of student performance.

Gaming The System.
Gaming the system (here “gaming”) in the context of educational systems is the practice

of abusing hints and scaffolding to arrive at the correct answer without thinking through and
learning/applying required skills [7]. This behavior is not conducive to learning. If an instructor or
system can detect gaming behavior, they can provide interventions or targeted instruction to
help. Walonoski and Heffernan [7] developed machine learning models for the detection of
gaming behavior in students. To create training data, they manually observed students'
classroom behavior. They broke interaction data from ASSISTments into time windows, with
each window recording the number of student’s actions on problems that occurred during the
window, the total number of attempts, correct and incorrect (first) attempts, time taken for each
type of attempt, number of hints and answers given, how much time it took to request hints, the
number of questions and scaffold questions answered, multiple choice and short response
questions answered, problems replayed, and prior knowledge as described by overall percent
correct. Problem difficulty statistics were included, with measures for min/max, average, and
standard deviation. Ratios of attempts per problem, correct and incorrect attempts per problem,
hints and bottom-out hints per problem, and the number of replays per problem were included.
The models were also provided with all 1378 pairwise interactions between features. 12 different
models were trained, none of which performed significantly differently from each other, but the
authors chose to focus on the J48 decision tree algorithm. The average accuracy was 96%,
suggesting a strong ability to detect gaming behavior [7]. Adjei et al. [90] used clustering with
school-level data to explore student behavior patterns and predict end-of-year exam scores.
Features used for each student consisted of averages of problem features such as percent
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correctness, hint use, assignment completion, and problem counts and time use. Attached to
the student features were school-level features, including continuous data and categorical
features like location. K-means clustering was used to create four clusters of students based on
these features, and separate regressions were fitted on each cluster to predict end-of-year
exam performance. The paper concludes that the models did not achieve significant accuracy,
but clustering in this way is still useful for the goal of personalization. They stated that the four
clusters represented distinct learning behaviors, “struggling”, “proficient”, “learning”, and
“gaming”. Gaming was an identifiable behavioral cluster, meaning it can be identified and
intervention can be provided based on these features [90]. Prihar et al. [2] sought to identify
behaviors that negatively impact learning. They used pairs of an action and its previous action
from the ASSISTments system as features to train logistic regression, neural network, decision
trees, and Bernoulli naive Bayes models. To detect anomalous behavior, they created an
“anomaly score” which was the average error of the model’s predictions when compared to the
student’s real actions.  The students with the top 95% of anomaly scores were labeled as
exhibiting abnormal behavior, and they compared the correlation between anomaly score and
performance as well as the behavior of students with abnormal behavior. They found that
anomaly scores correlated negatively with correctness. They find that students with higher
anomaly scores spend slightly less time on problems on average, but get significantly more
problems wrong. They also find that students with high anomaly scores spend less time before
requesting help, spend less time reading help, and spend less time between getting help and
submitting an answer. They claim that this is highly indicative of gaming behavior. Gaming
detection in educational systems can be automated and used as an indicator for students who
require assistance [2].

Wheel Spinning
In learning, wheel spinning is a type of behavior where a student spends their time

practicing a skill but makes no progress towards learning. The student may spend an excessive
amount of time on problems but still not learn. This behavior is undesirable, and being able to
intervene can help improve a student’s learning experience. Gong and Beck [93] sought to
predict wheel spinning using linear regression models with features that are easily accessible in
most educational systems. For the skill in question, they used the total number of questions, the
skill id, number of correct responses, length of the current streak of first-attempt correctness,
z-score of average response time, the number of correct responses that required a hint first, and
the number of correct responses that required at least five hints first, and the current streak of
questions that required one or more than 5 hints. They also recorded the number of problems
over one standard deviation below, within one standard deviation of, and over one standard
deviation above the average response time for both correct and incorrect responses. They
trained logistic regressions for each of the educational systems they evaluated the models on.
On test data, the model received accuracies of 85% and 86% and an AUC of 88% on both [93].
Similarly, Kai et al. [96] used decision trees to distinguish between productive persistence and
wheel spinning. They extended the definition of wheel spinning to include students who had
completed more than 10 problems but either not successfully answered three problems
correctly in a row afterward or failed a post-test. The features they used were the number of
unique problems tried, how many of the past five attempts were wrong, the attempt count, the
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amount of time since a problem in this set was last seen, the total number of hints used, and the
number of bottom-out hints used in the last 8 problems. They then trained a decision tree
model, which achieved an AUC of 0.684 with student-skill level cross-validation. Under only
student-level cross-validation, it achieved an AUC of 0.636. They note a distinct tradeoff
between precision and recall [96]. Botelho et al. [95] used deep learning to identify wheel
spinning behavior and low persistence behavior, known as stopout. The features consisted of
action type, attempt and hint count, problems seen so far, the probability of the current action,
probability of a response, z-score of time taken (compared to other students on the same action
type and problem), usage of the penultimate and bottom-out hints, correctness, the last three
actions excluding the current one, and the last three actions including the current one. The
labels used were same-assignment wheelspin/stopout and cross-assignment
wheelspin/stopout. They trained an LSTM network, logistic regression, and decision tree model
on each of the four target labels. The LSTM performed best in all labels. In current-assignment
wheel spinning, it achieved an AUC of 0.887 and RMSE of 0.313. In cross-assignment wheel
spinning, it achieved an AUC of 0.6 and RMSE of 0.251 [95]. These publications prove that
automatic gaming detectors are possible and could be put into use.

Once automated detectors are built, it is worthwhile investigating the phenomenon
further. Wang et al. [97] explored the number of practice opportunities required to detect wheel
spinning. They used decision tree models trained which used data from the first three to the first
ten questions in the problem set. The features used were from ASSISTments data relating to
hint usage, number of practice opportunities in a skill, number of practice opportunities in a
problem set, and the time between actions. For each feature, the sum, minimum, maximum,
average, and standard deviation were used as input to the model, resulting in 25 total core
features. They applied a forward feature selection algorithm and found that the most used
features related to hint use and time. They state that their model was able to differentiate
wheel-spinning from productive persistence with only three problems and differentiate
wheel-spinning from non-persistence after the first five [97]. Beck and Rodrigo [94] investigated
the relationship between wheel spinning behavior and affect state. They computed partial
correlations between wheel spinning and affect state, partialling by student’s knowledge as
determined by a pretest score. They found that wheel spinning was negatively correlated with
flow and positively correlated with confusion and gaming the system (correlations of -0.523,
0.476, and 0.437 respectively), and not significantly correlated with boredom or delight
(correlations of 0.145 and 0.053 respectively). They conclude that students are more likely to
wheelspin if they are not understanding the work and are stuck rather than based on their mood
or motivation [94]. As previously mentioned, Gurung et al. [14] predicted wheel spinning
behavior based on student effort with a logistic regression model. They achieved a correlation of
0.091, and state that low-effort behavior is a strong predictor of wheel-spinning behavior [14].

Stopout
Studying students’ ability to complete assignments is crucial in ensuring they are getting

as much practice as is necessary to learn their material. Dropping assignments before
completion is referred to as stopout. Detecting a student who is struggling to complete an
assignment and might exhibit stopout can help instructors provide aid and encouragement to
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help a student’s understanding or motivate them to complete the assignment. Botelho et al. [18]
sought to analyze student stopout behavior. They grouped students into six clusters based on
the percent correct excluding the current assignment, and the last action the student performed
before stopping out and analyzed which problem opportunity students stopped out on. They
found that the majority of students stopped out before taking an action and that a
disproportionate number of students stopped out on the first learning opportunity. This occurred
at all knowledge levels. They define this behavior as “refusal”. They analyzed student
confidence by a survey and found that students who exhibited refusal also were significantly
less confident of their knowledge [18]. As previously mentioned, Botelho et al. [95] created
machine learning models to predict students’ wheel spinning behavior. They also predicted
stopout. The LSTM model performed best at predicting stopout, achieving an AUC of 0.7589
and RMSE of 0.223 on current assignment stopout, and an AUC of 0.557 and RMSE of 0.221
on cross-assignment stopout [95].

Demographic and Socioeconomic Status
Student demographics have been investigated as predictors of performance and can be

used to provide targeted instruction to certain groups. For example, Zhong et al. [27] tracked
student performance across three months in a mathematics course on the ASSISTments
platform in an attempt to understand if students learned at a similar rate or if there was a
difference between male and female students. They tracked student gender, id, and
performance on exams in three consecutive months. They performed a one-way multivariate
ANOVA test to determine if there was a difference between the two groups and concluded that
there was none (p=0.3974529). They performed an analysis on the growth between months to
determine if there were differences and found none (p=0.3974529). Both tests were conducted
at a significance level of 0.05 [27]. Kupczynski et al. [102] examined the relationship between
gender and final letter grade in an online course when holding GPA constant. They used simple
main effect tests to analyze the potential differences between genders in three different GPA
groups, split by percentile. The difference was significant for the low-GPA group, but not
significant for the mid and high-GPA groups. The tests showed that female students in the
low-GPA group scored higher than their male counterparts on average, while there was no
significant difference for the others [102]. These studies show that while gender has no
significant role overall, struggling students may behave differently based on their gender.

It is important to measure the impact of demographics other than gender. Students have
many characteristics which might determine their learning outcomes such as socioeconomic
status and race. Bahar [91] examined the relation of perceived social support, social status, and
gender on academic performance. Social status was measured by surveying students for a list
of the three other students they liked spending time with the most, and the three they liked
spending time with the least, in order. The listed students were assigned points from 3 for the
most liked to -3 for the most disliked. A student’s popularity was determined by summing the
points they were assigned by all other students. Perceived social support from family, friends,
and a special person was measured with the 12 Item Multi-Dimensional Perceived Social
Support Scale. Gender was also used as a feature. A multiple linear regression was fitted to the
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features to predict an unspecified academic success score. It was found that the features
predicted 15% of academic success. All features contributed, but for perceived social support,
only support from family impacted success. Perceived support from friends and someone
special had no impact [91]. Battle and Lewis [100] measured the impact of race and
socioeconomic status on academic achievement. Academic achievement as measured was
composed of test scores from 12th grade and the level of post-secondary education achieved
two years after high school graduation, from none to studying for a degree to having achieved a
degree. Features used were 8th-grade exam scores, race, gender, school setting (urban or not),
if the school is public or private, family size, amount of parental control, Cultural Capital (access
to classes or events/museums in music, arts, history), Social Capital (parental support of
academics), the percentage of students at the school eligible for free or reduced-price lunch,
and Socioeconomic Status. The effects of these features were analyzed with regression models.
They found that race, public/private schools, cultural capital, and socioeconomic status played a
significant impact at all times. Gender was found to have significant differences in 8th grade and
two years after graduation, but not for 12th grade. Family size and percentage eligible for free or
reduced-price lunch played a role only in 12th grade. Social Capital was found to play a
significant role only two years after graduation. Urbanicity had no significant impact. Overall,
they conclude that socioeconomic status is three times more significant a predictor than race
and that students of African American descent “don’t perform as well as their white
counterparts”, but performed better when controlling for socioeconomic status, and that white
students benefited more from increased socioeconomic status [100]. As previously mentioned,
Adjei et al. utilized demographics alongside student behavior to measure end-of-year exam
scores [90]. Based on these studies, demographic characteristics play a much lower role in
predicting a student’s success than available resources and socioeconomic status.

Problem Content
Often, methods of modeling educational progress focus primarily on student data.

However, there is substantial value in incorporating problem features into student modeling. The
content of educational resources, from content tags to linguistic data, can provide important
insight useful to understanding and improving student education. Student engagement can
provide insight into the educational process. If the content is not engaging enough, students
may not learn as well or efficiently as they could. In 2016, Slater et al. [19] explored the
relationship between problem content and student learning and engagement. Problem content
features were word count, semantic features in the form of base and appended tags created by
the Wmatrix text analysis and comparison tool, the count of mathematical elements, and certain
HTML tags used in the questions. To create training labels, existing detectors of learning and
engagement were used with the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP) to
identify affect states and measure learning. Then, the correlations between each problem
feature and the training labels were measured, and the Benjamini and Hochberg post-hoc
procedure was applied to statistical tests to prevent false findings of significance. They found
that 41.3% of all possible correlations between features and the dependent variables were
significant. Confusion had the most features correlated with it, while gaming the system,
frustration, and concentration all also had large numbers of features correlated with them. They

14



propose that the features used could be used to help improve the learning quality of problems,
reworking them to remove features correlated with unwanted behavior and low learning growth
[19]. Similarly, Slater et al. [25] used natural language processing (NLP) to measure student
learning and engagement while exploring the effects of different linguistic features. Training
labels were again created using BROMP. Linguistic features were generated using Wmatrix for
content tagging, and the Tool for the Automatic Analysis of Lexical Sophistication (TAALES) for
sophistication. They also included information about the presence of mathematical symbols in
the HTML and the amount of assistance available to the student in the problem as well as
problem type and average correctness. They fitted a regression model for each affect state and
investigated the quality of each model’s fit. The model for confusion performed the best,
achieving an RMSE of 0.042, followed by frustration at 0.078, boredom at 0.138, and
concentration scored the worst at 0.441. They investigated the influence of individual linguistic
features on each affect state and found relations between features that predict concentration
and confusion, with similar relations found between frustration and boredom. Again, they
conclude that the features analyzed could be used to enhance problems for learning [25]. These
studies suggest that the textual content of a problem is related to student engagement on that
problem, implying that problems with low engagement can be improved to enhance learning.

Text classification in the context of education is not necessarily limited to just problem
contents. It can be beneficial to explore methods of classifying other types of texts for other
goals, as these could be applied to problems like the methods discussed in the above
paragraph. Kurdi [68] analyzed the linguistic contents of a text to classify its complexity for use
in English Second Language teaching. They used phenological, morphological, lexical,
syntactic, inter-sentential, and psycholinguistic features, as well as using formulas designed to
measure text readability. They then trained five machine learning models to predict text
complexity as one of three classes based on these features. Models used were logistic
regression, multi-layer perceptron networks, AdaBoost, bagging, and a random forest algorithm.
Logistic regression performed the best, with all other models performing similarly except for
AdaBoost. AdaBoost performed significantly worse than all other models tested [68]. Vajjala and
Meurers [75] created models for differentiating two texts by relative reading level. They used
metrics of lexical richness based on Second Language Acquisition research and complexity,
utilizing variation in and densities of parts of speech. For complexity, the mean lengths of units
of text, coordination and subordination, use of certain structures, the occurrence of and length of
types of phrases, the height of the parse tree. They also used the morphological and syntactical
components of lemmas from the Celex Lexical Database, a database describing various
properties of words and their frequency in a large corpus, as features. From the MRC
Psycholinguistic Database, a database cataloging psycholinguistic features of words, they used
the average across the entire text of familiarity, concreteness, imageability, meaningfulness, and
age of word acquisition, as well as the average number of senses per word. They then applied a
document-level model, a sentence-level binary classification model to classify sentences
between easy and hard, and a relative model using the document-level one applied to the
sentence level. The first model achieved an RMSE of 0.53, the best out of all tested models.
The sentence-level binary classification model only achieved an accuracy of 66%, and the
authors applied the document-level model to sentences because of this low accuracy. The
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document-level model applied to sentences had difficulty identifying the simplified version of an
already simple sentence, achieving an accuracy of between 65 and 75%, but for sentences
where the difference was large, it achieved accuracy between 80 and 95% [75]. These papers
show that classifying other aspects of a text can lead to metrics about the text that can be useful
in an educational context.

Assigning Knowledge Components
Knowledge components (KCs) are the individual skills or concepts that are present or

tested in a resource, and it can be useful to systematically assign them to content, so the
content can be adequately organized and easily accessible. This task normally takes instructors
an excessive amount of time which could otherwise be used to enhance students' learning. On
top of this, it can be error-prone. To attempt to solve these issues, Kardian and Heffernan in
2006 [61] created a semi-automatic system for tagging KCs in questions based on a
NaiveBayes model. They focused only on questions that only had one KC component. They
used the words in the problem as features in a NaiveBayes model and achieved an accuracy of
40% when selecting from 78 skills, and 51% when selecting from only 39. They conclude that
the model can provide reasonably accurate suggestions to human coders, who would then have
to select the best one [61]. Karlovčec et al. [70] created a system based on support vector
machines (SVMs) and K-nearest neighbors (KNN) algorithms to suggest KCs to human coders.
The SVM model was trained on a set of labeled questions for a text mining approach. The KNN
model found the most similar texts from the training set and suggested their KCs. Models of
both types were trained on sets of problems with 109 KCs, 39 KCs, and 5 KCs. The SVM model
performed better than the KNN model, especially when suggesting more KCs [70]. Moore et al.
[83] experimented with crowdsourcing the identification of KC tags and attempted to evaluate
the effect of priming on KC choice. Crowdworkers were first either primed with two problems
similar in concept to the target question or directly shown the target question. Workers were
asked to identify three skills required for the target question. Generated tags were then
compared to expert-created tags. It was found that roughly a third of generated tags directly
matched the expert’s choices. Priming workers did not have a significant impact on accuracy.
They conclude that with the current method, crowd workers can generate a selection of KCs for
experts to choose from [83].

Slater et al. [26] automated the labeling of KCs for crowdsourced content using
Correlational Topic Modeling (CTM). They first preprocessed content text by removing HTML
tags and replaced mathematical content with distinct strings, such that expressions would be
detected as one string preserving meaning rather than many which are just numbers and
operators. They trained three CTM models, one which predicted 5 KCs per question, one which
predicted 15, and another which predicted 25. They measured accuracy through a perplexity
score, and the model predicting 25 KCs scored the best at 189.28, followed by the 15 KC model
at 227.40 and the 5 KC model at 319.91. They state that the model was not only able to identify
major skill categories, but also identify and separate common hints or phrases and
non-mathematical themes such as the contextual setting of a problem [26]. Yacobson [89] used
machine learning models to attach KCs to problems. They selected 50 mathematical keywords
which were commonly used in the problems and encoded the presence of each in the problem
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as a one-hot vector. Then, a Naive Bayes, Random Forest, and Logistic Regression model were
trained on the vectors. The Naive Bayes and Random Forest models achieved an accuracy of
95% [39].  Shen et al. [80] proposed a new method of classifying KC components using
Task-adaptive Pre-trained BERT as well as a method for correcting incorrect predictions.
Bidirectional Encoder Representations From Transformer (BERT) is a language processing
model that comes pre-trained on a large corpus of books. It is possible to do a custom
pre-training process to similar problems. Such a model is called Task-adaptive Pre-trained
BERT, or TAPT BERT. The features are the raw text, and the output consists of KCs which are
present in the text. They trained two models, a baseline BERT with only fine-tuning, and a TAPT
BERT model which was pre-trained on problem data and fine-tuned with labeled texts. Model
performance was measured as prediction accuracy on a test set. They then propose a metric
called TEXSTR for evaluating the fitness of KCs, which compares the similarity of  KCs
descriptions and titles. It uses semantic similarity to capture similarities in description and
structural similarity to capture how similar KCs are to each other based on prerequisites. TAPT
BERT performed the best, while the baseline BERT performed 2nd best in three of four
datasets. Then, they used TEXSTR to evaluate misclassifications, judging how correct or
incorrect a choice might be, and choosing a different one if needed. They were able to
reconsider up to 73% of misclassifications [80]. These papers suggest that machine learning
models can be used to classify the knowledge components contained in a resource.

Video recordings are becoming increasingly important in learning, and labeling KCs
accurately, especially with timestamps, can take even longer than for text content. To attempt to
solve this issue, Liu et al. [89] proposed ConceptScape, a collaborative system where learners
work together to crowdsource a concept map for video lectures. Each concept in the map links
to a specific timestamp in the lecture video where it is discussed. The ConceptScape system
consists of three steps, one where learners add the locations of concepts while watching, a
pruning step to remove duplicates, and an adjust step to modify existing entries. A similar
workflow was created for adding and labeling links between concepts. ConceptScape performed
significantly better than a novice at creating a map, and similar to an expert [89]. Chang et al.
[98] created the Keyword-based Video Summarization (KVSUM) model to generate summaries
for video lectures. The summaries consisted of a keyword cloud with video fragments and
transcripts for parts of the lecture attached to each keyword. The input for the model was raw
video, which was then split into individual frames, subtitles, and timestamps. The subtitles are
used to extract a weighted map of keywords and times of their use. They performed a study
where students were given a pretest, presented with either a video annotated with the KVSUM
model or a fast-forwarded and human-annotated video, then given a posttest. Fast-forwarded
video was used as a control, as the authors describe it is a method used by students who want
to obtain the information quicker. The KVSUM model performed significantly better with a mean
posttest score of 4.02 compared to fast-forwarding’s mean score of 1.47, even at a p-value of
0.001. This suggests that the KVSUM model is very useful to students [98]. These papers show
that the automatic classification of knowledge components in video content is not only possible
but creates useful content for students.
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Student Responses

Automated Grading of Essay Responses
Just as the content of problems can be used to extract meaningful information about

learning, so can students’ responses to problems or other educational content. Grading student
essays or short response answers is a time-consuming but necessary task. It is also one that is
not trivial to automate. If it can be automated, the time normally spent grading can be used to
improve learning materials or provide more personalized learning to students. Erickson et al.
[17] attempted to automate the grading of math open-response questions using deep and
machine learning NLP techniques. They tokenized student responses, splitting them up into
individual words by spaces, punctuation, and contractions, and recording the frequency of each
token in the response. They used the tokenized representations to train a random forest,
XGBoost, and LSTM model, using them in an ensemble with a baseline Rasch model. They
found that the Rasch model using student response length and the Random Forest model
achieved the highest AUC of 0.850, while all models incorporating machine or deep learning
models achieved AUCs of at least 0.827. They conclude that the models are reliably able to
predict a response’s grade [17]. Rosé et al. [71] created CarmelTC, a system that evaluates the
syntactic content of students’ responses to Physics open-response questions to predict
correctness. They aimed to classify each sentence in a student’s response as expressing one or
none of a set of components required for a correct answer. To accomplish this, they broke up
the answer into individual sentence strings, splitting run-on sentences. They then extract the
structure of the sentence using a parser, as well as run the sentence through a Naive Bayes
classification using a bag of words approach. They encode the results of these processes as a
vector and use a decision tree algorithm to determine the sentences’ classification. The authors
describe the approach as using the features provided by the syntax analysis to determine if the
bag-of-words classification is accurate, or what to look at instead. They state that CarmelTC
achieved a precision of 90% with a recall of 80%, the best of all tested models. They propose
that the model can be used to determine what feedback a student needs to see based on the
correctness of components in a potential answer [71]. Chuan et al. [72] created an automatic
grading system for determining the writing quality of a student’s argument. They used a
“Coh-metrix” to determine the coherence and cohesion of the writing and the occurrence of
n-gram patterns between a list of the connector and content words related to the problem
prompt. They then trained a decision tree, SVM, and k-nearest neighbors model on the
“Coh-metrix” data, and a k-nearest neighbors model on the n-gram data. They found that the
best model for multi-class classification was the n-gram model with an n of 3 achieved an
accuracy of 81.74% [72]. Nielsen et al. [76] developed models for recognizing when a student is
learning from tutor intervention based on their response content. They pre-processed data to fix
spelling mistakes, but not grammatical ones, and removed non-answers from consideration.
They utilized syntactic dependency parsing and syntactic parsing to generate features such as
the amount of content matching reference answers, the differences in the structure of the
student answer and the reference answer, and the number of negations and content words
present. They evaluated several machine learning models and concluded that the C4.5 model
produced the best results, with an accuracy of 75.5% on their Unseen Answers test, which they
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state is most similar to real ITS conditions [76]. These papers suggest that the automatic
classification of student essays based on their content and machine learning algorithms is a
viable method of grading.

User’s Ratings and Opinions of Content
Student feedback is crucial in understanding the efficacy of educational content.

Students are the experts on their learning experience, Barrón-Estrada et al. [69] analyzed
students' written feedback to track their opinions on educational content. They utilized
Sentiment Analysis, an NLP technique, to track the positive or negative sentiment in feedback.
To accomplish this, they first preprocessed text by translating slang terms into consistent text
equivalents, removing modifications on words to get to their root, and filtering out common
words such as articles and prepositions. Then, they used the number of times each word was
used in a response and the number of documents in the training data that contain that word as
features. They then trained a Naive Bayes classifier to classify feedback as positive or negative
sentiment. The model achieved a  recall value of 0.81, which the authors consider substantially
good accuracy [69]. Oramas-Bustillos et al. [92] created a corpus of computer-science-related
texts for use with sentiment analysis and tested a sentiment analysis method on it. They allowed
students to access a series of learning materials associated with their course and gathered their
written (Spanish) feedback and opinion category for their selected resource. Then, they trained
a Bernoulli Naive Bayes classifier after pre-processing the text as in [69]. They achieved an
accuracy of 40.70%, and they note that while this is low they believe it is due to the small
sample size and the unbalanced nature of the data, where a vast minority of the opinions were
negative [92].  Wang et al. [84] created a crowdsourcing technique for evaluating students’
average opinions about the content. In their framework, a teacher sends surveys to students
about specific portions of lecture materials after they are presented. The questions ask students
to rate how well they think they learned the presented KC. Students’ response contents are then
converted into a set of linguistic 2-tuples, using a symbolic translation process, which is then
aggregated to determine the quality of teaching as indicated by the student response. Each
student’s score then updates the overall score for the question. They experimented with using
their system in a real class setting, and state that it proved resilient to abnormal behavior and
was able to provide an estimation of teaching quality [84]. These papers all present viable
methods of incorporating student sentiment into teaching using machine learning methods.

Personalizing and Generating Feedback
An interesting application of understanding students’ responses is the automatic

generation of feedback or hints. In the course of normal learning, an instructor must either
provide generalized hints for a problem and hope they apply to most situations a student will
encounter or actively look at a student’s responses to provide personalized hints. The former
method is not always useful as it is often impossible or impractical to provide hints for every
situation a student may find themselves in with a vast amount of problems. The latter is
exceptionally time-consuming, especially in the ever-growing space of online courses with large
enrollment. To alleviate this issue, Kochmar et al. [56] created a system to automatically
generate personalized hint text based on which aspects of an answer a student got wrong. They
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generated a collection of potential hints based on the contents of reference answers. They used
the spaCy tool to analyze the reference answers. They identified keywords and key phrases and
eliminated potential explanations that contain them. Hints were generated using
discourse-based modifications of phrases that did not contain overly specific keywords. They
created an algorithm to determine which generated hint is the best quality and most appropriate
for the current student. They trained a random forest classifier on features from the hint, student
performance, and the student’s previous interactions with the tutor. Hint-level features included
hint length, the proportion of the sentences with a complete subject-verb structure, a “perplexity
score” that encompassed the quality and grammatical correctness of the writing, word overlap
with the question, uniqueness of keywords compared to reference solutions, the ambiguity of
keywords, and proportions of various parts of speech. Performance features were the number of
questions and attempts the student has used, the proportion of correct and incorrect questions
both in total and at the current time, and the total length of the student’s use of the system.
Features from the student’s interactions with the tutor were the proportion of keywords present,
the topic overlap between questions and student statements, and the “perplexity score” for each
of the student’s last four interaction turns. The model incorporating all features achieved an
accuracy of approximately 86.71%. After performing a pilot study in the KORBIT ITS, they claim
that the results show that personalized hints generated with this method are helpful to students
and significantly increase performance [56].

Williams et al. [11] sought to alleviate the issues of hint creation by asking learners to
create their own explanations for problems. The system both asks users to generate their own
explanations while working on a problem and rate existing explanations by other students. The
system treats the selection of explanations as an instance of the multi-armed-bandits problem,
presenting options and measuring their effectiveness, and using a Thompson sampling
algorithm. They claim that explanations generated and curated by their system were
significantly better and showed a higher impact on learning than non-curated explanations [11].
Rosé et al. [62] created a system to select hints to encourage students to include components
of answers to physics problems that they may have missed. The system combines a
bag-of-words approach and features created by a parser by the use of a decision tree algorithm
to predict which components of the answer are present in the text. They found that their model
achieved a precision of 88%, and recall of 75%, while only having an 8% false-positive rate [62].
Rosé and VanLehn [73] explored the use of CarmelTC [71] for the selection of hints. CarmelTC
pre-processes student text into sentences, breaking run-on sentences, and extracting the
semantic structure using parsers. They combine these features with a Naive Bayes classifier to
determine which parts of the answer the sentence contains. They conclude that CarmelTC is an
appropriate method of evaluating the content of student answers and providing hints to improve
the answer [73]. Ye and Manoharan [86] grouped students’ answers by their correctness as
determined by the meaning of their writing, allowing teachers to provide a single piece of
feedback to cover an entire group’s mistake. They produced vector sentence embeddings that
would take into account the meaning and positioning of words in the answer using a 4-layer
bidirectional LSTM. They then used k-means clustering to group together students with similar
answers. They concluded that their model showed high accuracy in its grouping, though it made
mistakes on sentences that were very similar in structure and only differed in a few keywords
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[86]. These publications describe how generating and selecting hints automatically is viable
based either on natural language processing techniques or crowdsourcing.

Processing students’ written text can also be useful to provide effective feedback in peer
tutoring situations. Peer tutoring is a learning activity in which a learner guides another learner
through problems, providing their own interventions and help as needed. The quality of the
tutor’s help is important, as good help can not only increase the learners’ knowledge but also
the tutors. Walker et al. [74] proposed a system that automatically determines a tutor’s teaching
quality and provides teaching hints to the tutor. They classified the type and quality of the tutor’s
help using features from Taghelper Tools, a tool for automatically coding dialogue. They
augmented these features with the problem context, the presence of problem-specific dialogue,
such as the name of a mathematical operation, the use of problem-specific dialogue in previous
messages, and students' self-classification of the dialogue. They used these features to train
Taghelper’s classifier and achieved a kappa of 0.81 on the classification of help type. They
conclude that their system provides a solid argument for the use of such systems in improving
students’ peer tutoring [74]. Walker et al. [77] used the Taghelper Tools method to create an
adaptive peer tutoring system and investigated its effectiveness. The classifier achieved an
accuracy of 94% but only achieved a kappa of 0.53. They state that this is because it only
correctly identified the presence of conceptual help 50% of the time. They claim, however, that
the classifier is overall accurate in determining the quality of students' conceptual help. They
found that the adaptive system produced increased posttest scores compared to the control
(0.39 vs 0.28), as well as increased help quality [77]. These papers show that using natural
language processing to enhance users' peer-tutoring can provide valuable insight to tutors and
help students learn better.

Usage and Effectiveness of Feedback and Hints
Different types of feedback or interventions can have differing effects on students.

Studying their effects can allow instructors to better utilize and administer the different types of
feedback. Lang et al. [21] investigated the effect of questioning students about their confidence
as an intervention. Students were placed into a control and experimental group. Students in the
experimental group were asked to rate their confidence in solving problems in the topic before
starting an assignment, then after answering three questions. Students in the control group
were asked filler questions. They found that in most situations, there was no difference, but for
students who got the first question wrong, the probability of getting the second question wrong
was higher. They conclude that measuring student confidence may be useful in other modeling
tasks [21]. Kehrer et al. [36] investigated the effectiveness of immediate feedback during
assignments. Students were placed in either a control group that received correctness feedback
for homework on the next day or the experimental group that received immediate feedback on
completing a question. They found that students in the immediate feedback group learned 12%
more and that the difference was significant [36]. Singh et al. [47] confirmed prior findings that
immediate feedback was helpful, and extended them by questioning whether the quality of the
feedback was more important than its timeliness. They conducted a study in which students
were either given only feedback on their problem correctness or feedback containing
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correctness and tutoring. They found that “quality” feedback containing tutoring had a much
greater effect on learning than just correctness alone [47]. Razzaq and Heffernan [49] also
studied the timing of hints, comparing proactively giving students hints on incorrect answers and
waiting for students to ask for hints. Students in the study participated in a repeated-measure
experiment using the ASSISTments system, where they completed assignments with proactive
hints or on-demand hints. Gain between pre and post-tests was used to measure learning. They
report that students learned significantly more with on-demand hints [49]. Gong et al. [42]
experimented with providing pre-made hint feedback from external websites. They
hand-selected web resources that would be presented to students on demand. In cases where
there were multiple skills associated with a problem, the system selected the resource
associated with the most difficult skill. They split students into groups, one for students who got
a problem wrong and requested web help, and one for students who got a problem wrong but
did not request web help. They normalized next-problem correctness based on difficulty so that
an easier correct problem shows less learning than a difficult correct problem. Their results
showed that students who received web feedback learned more, averaging a learning value of
0.50 compared to 0.40 for regular feedback [42]. These studies show that feedback that does
more than just reveal the answer, even feedback from an external source, and which is provided
promptly as soon as a student requests it can have a significant positive impact on learning.

Videos can provide an alternate and often more engaging form of feedback than text. To
study this, Kelly et al. [37] investigated the addition of teacher-created motivational videos as
feedback. They performed two studies, one to measure the effect of videos on perceived
learning, and one to measure the effects on homework completion. The first study placed
students in one of three groups, one with no video, one with a control video encouraging the
student to continue, and an experimental group explaining the value of learning to the students’
future and learning. They found that the experimental value video had a significant positive
impact, while no impact was found for the control video. In the second study, they measured the
effect of the three video types on homework completion. They found the same results, with the
value video having a significant effect but the control having no effect [37]. Ostrow and
Heffernan [30] compared the effects of video and text feedback. Students participating in the
study were split into four groups, each one experiencing video and text feedback in different
orders. They analyzed performance on the second question for students who got the first
question wrong, comparing between feedback types. They found that students who received
video feedback performed significantly better than those who received text feedback.
Interestingly, they also found a much higher percentage of gamers in students who received text
feedback. Only 7.1% of students in the video feedback condition were removed from the data
for gaming, while 43.5% of students in the text feedback condition were removed for gaming
[30]. Zhao and Heffernan [52] created a model to predict whether a student would benefit more
from video or text feedback. They trained a Residual Counterfactual Network (RCN) using
ASSISTments data containing the students’ information, the intervention types they received
previously, and 15 other features such as student and class past performance. The RCN
performed best when compared to other models, achieving an RMSE of 1.1 [52]. These
publications reveal that video feedback can often provide a student with better learning than text
feedback and that it is possible to predict when a student would benefit more from each type.
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Crowdsourced Hints
The creation of hints can consume a lot of time that could be better spent helping

students in other ways. If crowdsourced hints can be created with equal quality to
teacher-created hints, and have a similar learning effect, it would certainly be beneficial to
remove the workload from individual teachers. Whitehill and Seltzer [87] crowdsourced math
tutorial videos from untrained web users to determine if crowdsourcing quality tutoring is
possible. They asked Amazon Mechanical Turk users to create short tutorial videos about
logarithms, and randomly sampled 40 of them to test. They had more Mechanical Turk users
take a pre-test, watch a randomly assigned video from the sample, and take a post-test to
measure learning gain. Two percent of the time, the users were randomly assigned to a control
video. They found that the average learning gain of 0.105 was significantly higher than the
control video’s 0.045, and not significantly different from an expert-created Khan Academy
video. They conclude that crowdsourced tutorial videos are feasible [87].  Patikorn and
Heffernan [15] tested the effectiveness of crowdsourced feedback using the ASSISTments
platform. They created a system for crowdsourcing content they dubbed TeacherASSIST. The
system allowed teachers to create assistance for problems they assigned to their students, and
have their hints distributed to other teachers using the same problems. They then conducted a
randomized controlled trial between students given the crowdsourced hints and students who
were simply given the answer. They measured the student’s behavior on the next problem,
categorizing the behaviors as getting the problem correct on the first try, asking for help,
stopping out, or the number of attempts needed. They grouped observations once by the
student and once by problem, and conducted paired t-tests. They conclude that students who
received the crowdsourced hints learned better, as they were less likely to require assistance on
the next problem [15]. Prihar et al. [3] tested the effectiveness of teacher-created crowdsourced
materials and presented a system for comparing effectiveness between teachers. Following up
on a previous study [15], they found that crowdsourced teacher-created content had a positive
effect on students' learning. To determine the relative quality of tutoring, they trained a
regression to predict next-problem correctness on student features, which teacher’s tutoring
they received, features of the problem they got wrong, and features of the next problem. They
were able to determine relative quality between teachers using a variance-covariance matrix
using each teacher’s mean and standard deviation for teaching quality. They found that only a
subset of teachers had a statistically significant impact on student learning. They also found that
while it was not possible to create a definitive ranking of teachers, it was possible to determine
whether or not a certain teacher’s content was better than a certain other teacher’s content.
They investigated the possibility of personalizing which teacher’s content was presented to a
student based on knowledge level, but did not find any significant effect. However, they
conclude that personalization based on other factors could be possible [3]. We conclude that
crowdsourcing is a valuable tool and can be leveraged to produce quality feedback and hints.

Limitations
This review is inherently limited in its scope. While we covered a broad swath of subjects

in the selected papers, there are many more which could not be included. Additionally, a number
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of the initially chosen papers turned out to be unsuited to the structure and purpose of the
review and had to be dropped. While it may be impractical to include every publication in a
single review, an increased number of publications can broaden the scope if the papers are well
selected. All publications in this review were written in English or received a quality translation
into English. There are many publications from universities and institutions which are not written
in English, or only have poor quality translations. These undoubtedly contain useful information
and interesting discoveries. However, it was impractical for us to translate foreign papers or
make sense of existing but poor-quality translations. Future reviews will undoubtedly help cover
more topics of interest and allow more depth to topics we have covered here.

Future Works
While we have reviewed a substantial amount of papers covering a broad sweep of

subjects, there is always room for more improvements. While knowledge tracing is a very
well-studied problem, we feel there is room for more research. The knowledge tracing problem
is often treated as a binary correctness problem based on student correctness. As such, any
effort to personalize its parameters could benefit from partial pooling. We believe [10], [41], and
[46] are good examples. We reviewed several publications proposing and testing systems for
the personalization of learning paths or selection of learning materials [57] [59] [63] [64] [65]. A
natural next step for this research is to apply similar systems to the selection of feedback at
each problem.

We have reviewed papers [36, 47, 52] that suggest that the right type of timely feedback
can enhance learning. We believe recommendation systems such as those described in [57]
[64] could be extended to select feedback for students. Similarly, clustering approaches like [86]
could be applied to automated hint selectors like [73] to potentially reduce complexity. [56] is a
paper of great interest, and we believe the methods discussed should be applied and tested in
other domains. Other publications related to the selection and generation of personalized hints
should have their performance in various domains explored. In particular, we would suggest
modifying the approach of [71] and [73] for a mathematical context. Automated grading systems
such as those described in [17] and [71] work well for objective facts like mathematical
questions or descriptions of real systems, but we would like to see these concepts applied to
more subjective problems such as essay questions relating to the understanding and
comprehension of literature.

Affect detection is another area of significant interest. We would also like to see more
investigations into the causes of student behavior and affect. For example, [18] and [95]
investigated the occurrence of Stopout but did not delve into its causes. We believe affect is
related to Stopout and would encourage future investigation. We believe investigations into the
presence of affect states before stopout or gaming behavior similar to the study of affect state
transitions in [24] would be useful. We would like to see investigations of how different
interventions impact affect state. [21], [36], [37], [42], and [47] all study the educational impact of
different feedback types. We would like to see investigations of the impact of types of feedback
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and learning materials on motivation, affect, and potentially behaviors like gaming,
wheel-spinning, or stopout.

Conclusion
Online educational systems naturally lend themselves to the collection and use of

student data. They can record and analyze data from a student’s correctness and learning, their
affect state, their use of feedback, and even the written content of their responses. We have
observed numerous extensions to the knowledge tracing method of student modeling, including
clustering, individualizing parameters, the method’s use in other problems, and a deep-learning
implementation of it. These methods provide accurate models of student performance, but we
have also reviewed alternative solutions to the knowledge tracing problem such as PFA. We
reviewed methods of using partial credit or prerequisites to inform more accurate knowledge
predictions. We reviewed the use of similarity metrics to create learning path recommendation
systems based on the performance of similar students. We have reviewed automated detectors
of student affect as well as gaming, wheel spinning, and stopout behaviors. These detectors can
provide insight into students' behaviors. We reviewed the impact demographics and
socioeconomic status may have on student learning to provide everyone with the support they
may need and discovered that a student’s socioeconomic status plays a major role in the quality
of their learning. We investigated the use of problem content and features as data, including
methods for automatically tagging knowledge components and connections between problem
features and student learning or affect. We reviewed methods of using student responses as
data, from using natural language processing to grade answers to automatically generating
quality personalized hints. Students’ opinions of and learning outcomes from educational
content have provided valuable insight into the creation of quality educational material. Overall,
these publications indicate that student data can be used to improve a student’s educational
experience to great effect. The methods we discussed should be useful to anyone looking to
utilize student data for personalization.
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