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Abstract 

Test Driven Development (TDD), Model-Driven Development (MDD), and Test 

Case Generation with their associated practices and tools each in their own right 

promise to deliver robust higher quality code more economically then other 

approaches.  These process are not mutually exclusive but are not typically used 

together.  This thesis develops a combined approach using complimentary aspects 

of each of the above three process.  Test cases are described, generated, and then 

injected back into the model, which is then used to produce the test and 

production code. 

We have enhanced a model-driven tool to support the approach, adding a test 

case generator, capable of understanding augmented MDD software model and 

utilizing the constraints captured in our test-centric language to generate model-

level test cases back into the model.  Our results show that, with a reduction in 

overall effort one can produce a tested model-based system in which its test and 

implementation for multiple platforms such as C and Java, using one of multiple 

test xUnit frameworks. 
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Chapter 1Introduction 

The software engineering community continues to develop new practices and 

development strategies around improving productivity and quality.  These 

approaches intend to mitigate problems inherent in software development, such 

as increasing code complexity, unintended gaps between requirements and 

implementation, multiple target platforms, and human error.  Experts in the 

community present a wide number of practice focused and tool aided 

methodologies as solutions, each with the promise of simplifying software 

development. 

This research investigates if generating test cases from requirements based 

constraints prior to feature implementation is effective, given a platform-

independent model foundation for development.  If effective, the advantages of 

such a tool-aided methodology will manifest themselves in the following ways: 

1. The software created during development more accurately reflects the 

requirements. 

2. The quality of test development is improved with an overall reduction in 

required effort. 

3. Time to market on multiple platforms is reduced with reuse of test and 

application development efforts. 
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1.1. The Problem  

Modeling the major portion of software testing has received support [1][2], but 

there has not been a successful paradigm in which generated model-based 

systems take full advantage of test-driven development utilizing test case 

generation, instead of the common coverage based generation approaches post 

implementation artifacts such as system models and source code.  Other 

approaches tend to suffer from the following issues: 

 Model-based testing of hand-coded systems requires continuing 

synchronization between the model and the implemented system, 

introducing maintenance challenges. 

 Most test case generation tools do not incorporate the test first nature of 

TDD, instead relying on an existing code base. 

 Independent model-based test generation requires significant 

customization to integrate with existing source bases. 

 Testing existing code or models derived from existing code can create 

disconnects between requirements and tests. 

The goal of this work is to determine if it is effective to generate test cases based 

on applying Requirements-Driven Constraints prior to implementation in a MDD 

Environment. 

1.2. Test Driven Development 

One of these practice-based methodologies, Test Driven Development (TDD) 

intendeds to improve quality while increasing code confidence and team 
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productivity.  The approach involves the development of appropriate test case(s) 

prior to the implementation of each part of a feature.  TDD aims to help improve 

a number software architecture “ilities" including quality, simplicity, and 

testability. 

1.2.1. Red-Green-Refactor 

The driving philosophy of TDD is “Red-Green-Refactor" which is an iterative 

development micro-cycle in which the tests and behavior are implemented[3].  

First, newly written test cases test the unwritten code and as such fail (Red).  

Once the developer implements the feature in the simplest manner, the 

corresponding tests should pass (Green).  Before starting with the next feature 

developers refactor their code for clarity and simplicity, with confidence provided 

by the ability to rerun the previously implemented test (Refactor). 

1.2.2. Benefits of TDD 

Testability 

Testability of the system is improved through the act of writing tests first, 

requiring developers to think about how the code can be tested and design to 

that, no longer leaving testing as an afterthought[3][4].   This, in turn, leads to a 

common reduction in effort required to test components developed using TDD.  
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Simplicity 

During the implementation of a feature, the test-driven developer performs the 

simplest activity to result in turning all test Green.  This approach to development 

has the effect of simplifying code design [3] and achieving the results that come 

with that including improved readability and understandability.  

Quality 

Quality improves through the development of a regression test base rooted in the 

requirements.  Building the regression tests from the beginning allows for the 

continual verification of the impact due to changes, giving developers and 

product owners a greater confidence that when changes are made, there are no 

negative side effects.[5][6] 

1.2.3. Barriers to Adoption 

The primary barrier to adoption is the perception of testing as tedious or non-

value adding by developers and project managers.  In combination with the now 

increased cost of refactoring, test-driven developers may tend to revert to an 

implementation first focus and testing again becomes a secondary activity[1].  

Test-centric methodologies strive to mitigate this barrier, as Grenning describes 

how a quick turnaround time of the TDD micro-cycle is critical to its adoption[7].  

We pose the question of whether a test-driven approach augmented by test case 

generation, can become a successful part of the application specification and 

design phase improving adoption.  
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1.3. Model-Driven Development 

Model-Driven Development (MDD) is a maturing software development practice 

of documenting and producing software systems as models.  MDD is built upon 

Model-Driven Architecture (MDA) as outlined by the Object Model Group (OMG) 

utilizes their modeling language, the Unified Modeling Language (UML) to provide 

a high-level framework for which to document software architectures.  By raising 

the level of abstraction away from the implementation details of a system, 

modelers are able to easily capture and document the architectural patterns of 

the modeled systems in regards to providing a solution the defined problem 

space[8].  MDD transforms the Platform Independent UML models using a set of 

mappings into the corresponding system implementation (source code).   

To produce these executable systems MDD extends MDA, augmenting  the 

architecture models with abstract behavioral representations or action languages, 

such as the UML Action Language (UAL)[9] and Platform-Independent Action 

Language (PAL)[10].  Benefiting from a high level of software abstraction, MDD 

models when combined with efficient code generation tools, promise to reduce 

software complexity by allowing the architectural and behavioral aspects of an 

application to be directly mapped to the implementation.  The advantage is that 

unlike with MDA models, which require manual effort to synchronize the models 

and implementation, MDD automates the process. 

Additionally by utilizing this abstract representation, software testers can define 

their testing parameters and test cases, to reflect the expected behavior and 

documented interfaces of the system instead of the current or expected 
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implementation.  This reduces the influence of a number of implementation 

specific details, such as storage structures on test development. 

1.3.1. Platform Independence 

Software development groups building complex and high performance shared 

components for multiple product lines face substantial difficulties, including 

varying programming languages across products and time.  While it is possible to 

share common architectures and design patterns across development groups, 

there is no realization of true productivity gains until we reduce parallel 

development, debugging, and testing of mirrored components for separate 

platforms to a single development activity. 

We can capture this activity in the development of Platform-Independent (PI) 

UML models to deliver multiple products for various platforms (such as having 

both C and Java variations) from a single modeled source.  For further 

productivity improvements, one must incorporate the test base into these PI 

models, allowing the generation of the base for the target platform.  

1.3.2. Development through Code Transformation 

The ability to generate both the application code and test code from the same 

augmented UML models provides several key benefits.  First, the test 

infrastructure can properly access the application elements independent of the 

generated language or coding patterns utilized.  Eliminating or minimizing the 
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maintenance requirements placed on the test base during refactoring or re-

work/structuring activities. 

The second is the ability to instrument or augment the generated application 

code with various test aids, including tools such as test spies (see glossary) or 

mock objects (see glossary).  Test aids such as spies and mocks allow testers 

additional options for validating a components behavior based upon internal state 

and execution flow.  The ability to generate such tools provides another avenue 

for testing effort reduction. 

The last benefit of generating test cases is that while xUnit (see glossary) and 

mocking frameworks can share a common approach/style, the model level testing 

capabilities provide a generic interface allowing generation to various test 

frameworks.  This interface is important to abstract away the slight nuance that 

come with individual test frameworks on multiple platforms.  This allows us to 

keep testing and development, platform independent. 

1.4. Assumptions 

Based upon the author’s experience in industry developing embedded systems 

and for the simplification of the TFMDD tool and scoping, we make several 

assumptions in this work.  These assumptions include: 

 To aid in the generation of off-nominal test cases, the generator treats 

Boolean return parameters as pass/fail values based upon expected as 

defined in the constraints expected.  For an off-nominal case, which 
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violates the preconditions, the non-expected (fail) value will be the 

expected output of running the test. 
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Chapter 2Model-Based Testing Approaches 

This chapter presents an overview of several different model-based testing 

approaches highlighting aspects taken into account in developing the TFMDD 

approach presented at the end. 

2.1. Sequence Diagrams Based Test Generation 

Javed et al. present a tool supported methodology providing an approach to 

translating sequence diagrams into system level tests through a series of vertical 

and horizontal transformations using a variety of toolkits[11].  The authors define 

two terms to describe different transformation; a horizontal transformation is 

when a PIM is transformed into another altered PIM and a vertical transformation 

is when PIM is transformed into a PSM[11].  The rationale behind the approach is 

that utilizing sequence diagrams produced during system analysis, “can initiate 

software-testing activities in an early stage of software development process.” 

[11]  Choosing this type of development artifact allows the approach to produce 

results quickly and usable throughout the complete process. 

The methodology presented by Javed et al. bases test validation on two different 

criteria; xUnit style validation and comparison of execution tracing captured.  The 

xUnit test generator combines provided test data, including inputs and expected 

outputs for method invocations with the extracted sequence information to 
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produce test cases.  Additionally, the generated xUnit test cases facilitate driving 

the execution of the system producing the execution logs required for the system 

level validation against previously captured logs.  

The authors claim that a major advantage to their approach, as compared to 

others based upon sequence diagrams is the ability to quickly redeploy their tool 

to various xUnit platforms, citing a 85% code reuse between their JUnit and SUnit 

(for Smalltalk) test generators[11]. 

2.2. Constraint Based Test Generation  

Aichernig and Salas present an approach to constraint based test generation 

drawing on the principles of Mutation Testing (see Glossary) to test a system for 

nominal behavior and attempt to detect possible faults[12].  The authors claim 

that when provided a program specification, “[t]esting can show the absence of 

faults, if we have a knowledge of what can go wrong.”[12]  The authors present a 

version of their tool, which analyzes OCL constraints to solve the Constraint 

Satisfaction Problem (see Glossary) to support their claim. 

Their work presents several interesting aspects around generating constraints 

from OCL specifications.  In addition to handling the nominal cases, their tool 

attempts to mutate the specification to create test cases against an alternate 

incorrect specification.  The generation of off-nominal test cases provides a 

foundation for the authors’ goal of detecting possible faults through Fault Based 

Testing (see Glossary).  The version of the system created by mutating constraints, 

allows the tool to generate test cases that would specifically exercise the 
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potential fault exposed by the mutation and determine its presence in the code.  

Their solution provides an interesting approach for developing off-nominal test 

cases in addition to the straightforward nominal cases. 

Aichernig and Salas also remind the reader that “a faulty design may be correctly 

refined into an implementation” [12] implying the need for a careful and strong 

refinement of system constraints from requirements. 

2.3. Use Case Based Test Generation 

Nebut et al. present an approach utilizing model use cases and scenarios to 

generate test scenarios from which test cases can be generated[13].  Similar to 

the goals of this project, their approach focuses on the development of these use 

cases during requirements analysis, resulting in a tight relationship between the 

requirements and generated test cases.  Additionally, Nebut et al. consider that 

“[t]o allow seamless industrial acceptance, the contract language must be simple, 

so that it can be easily used during the requirements analysis.”[13] 

Use cases provide the authors approach with a foundation for capturing free-

language (natural language) requirements in a standardized approach that is 

semi-machine readable format and easy to develop.  In addition to keeping the 

process simple, use cases are utilized in well-established development life cycles 

unlike formal methods[13]. The authors point out the need for converting 

requirements into more machine-readable formats to simplify the test generation 

process.  Additionally, their test generation technology (the UCTS tool[13]) 

attempts to further simplify the test generation problem by allowing the modeled 



 12 

 

use cases to be augmented with contracts (similar to constraints) containing pre 

and post conditions.   

The contract language allows for the usage of predicates in a definition in an 

effort to allow a richer semantic meeting in the contracts.  The semantic 

definition of each predicate exists in an external artifact known to the UTCS tool.  

The contract language utilizes these predicates to become more flexible and in 

essence develop a Domain Specific Language (see Glossary) or “vocabulary”[13] 

for defining contracts.  However, the authors state that the growth of the 

predicate base becomes hard to manage requiring tool support.  

The tools presented in [13] also provided the ability for simulating modeled use 

case execution and validation in addition to JUnit test case generation. 

2.4. Specification Based Model Validation 

Gogolla et al. present the tool USE (UML Specification Environment) for providing 

UML validation through specifications derived from requirements[14].  USE 

utilizes UML models augment with OCL based constraints and provides a java 

based toolkit to support modelers.  USE accomplishes this in two ways; it checks 

the consistency of provided pre and post conditions, and invariants. It has the 

ability to validate produced snapshots against the defined constraints. 

USE evaluates a provided UML model to determine whether the consistency of 

invariants in regards to being contradictory, independent, or implied[14].  

Contradictory constraints produce a situation in which no system state is possible 

that satisfies one constraint without invalidating the other one.  USE provides the 
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ability to determine the ability to produce a system state satisfying all invariants 

but the one under test, showing an invariant to be independent of all others.  

Snapshot generation produces all the various plausible system states based upon 

the test procedure provided.  Documented in a proprietary language, each 

procedure contains executable semantics and containing nested test data sets.  

By parsing a test procedure the USE engine has the ability to simulate every valid 

path through the procedure, using each applicable entry in the data set to report 

the resulting system state as a snapshot[14].  These combinatorial-based 

snapshots provide the validation basis equivalent to execution of unit tests.  After 

simulation, USE validates these snapshots against the specified OCL constraints 

(valid criteria) reporting if any invalid states were found[14].   

Overall, the consistency checking of USE is a feature applicable to any full-

featured constraint based model validator.  The snapshot generation provides an 

interesting opportunity for validating a constrained model through simulation 

with requiring the production of executable code; however, the authors do not 

present a path forward for an application applicable to testing executable 

systems. 

2.5. TFMDD 

The work presented in this thesis draws on constraint solving with a focus on 

translating requirements into testable constraints through the development and 

translation of user stories and generating both nominal and off nominal cases as 

determined through constraint solving.  TFMDD relies heavily on pre and post 
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conditions defined in a customized constraint language similar to the works 

mentioned here.  Similar to several of the works, TFMDD focuses on execution 

based validation instead of simulation, through the translation of MDD models 

into both executable system and test implementations. 

However, TFMDD differs from the previously mentioned works by focusing on the 

holistic combination and integration of TDD and test generation technologies into 

MDD.  The two key differentiating aspects of this work to the others described are 

the combination of test generation into TDD and the generation of test cases back 

into the original MDD model.  By combining a TDD approach with the use of test 

case generation we attempt to achieve software quality improvements[3] with a 

further reduction in required effort, easing the barriers of adoption to TDD.  

Without the need to transform the constrained PIM into another PIM containing 

test specific information or transformation into a system specific test execution 

framework we believe that the final transformation to implementation from one 

complete model produces a richer test set. 

Additionally, this work presents the practice of nested variations inside modeled 

constraints as a method for producing combinations of constraints in an approach 

seemingly unique to this work.  
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Chapter 3Your First Test Case using TFMDD 

The following example takes us through the development of a feature in the 

School Management System, adding a Student to the system.  

Before any of these steps, an example project provides the initial development 

environment in Rational Software Architect™ (RSA) with PathMATE including the 

corresponding project, system models, and testing tools configured for code 

generation and testing, for more information see Appendix A. 

3.1. Analyze the Task and Add Model Element to Constrain 

As this is the first feature to implement in the system we need to add several 

model elements to house the test constraints, generated test cases, and future 

implementation. 

1. Identify a Domain (see Glossary) based 

on the most likely subject matter 

addressed by this feature (Remembering 

that this Domain can be 

restructured/organized later as a 

refactoring effort).  

For example, we add a “Registrar” Domain to the system as seen in Figure 1. 

Figure 1-Modeled 

Domain 
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2. A Domain Service (see Glossary) needs to be added as the starting point for 

defining the constraints and new functionality.  

For example, we add the Domain Service CreateStudent() . 

3. In RSA, the next step is to add a Body 

Constraint UML Element, which stores the 

test constraints as seen in Figure 2.  

4. Then roughly identify a number of constraints present in the requirements. 

For this example, some of the requirements are: 

 A return value indicates TRUE on success  

 The provided student id must be valid (Positive non-zero 7 digit 

number) 

 The provided id must be unique to the new student 

3.2. First Test Case – Return Value Validation 

Starting with the simplest activity the first test case we walk through constraining 

that the return value is true when all preconditions are satisfied. 

3.2.1. Add Test Constraints to the Service (RED) 

The next step is to model the requirement as a set of constraints on the model 

behavior.  These constraints serve a dual purpose, one of which is to help the 

developer analyze the problem space in regards to the requirements and the 

second is for test case generation.  

Figure 2-Modeled Constraint 
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1. In the Body Constraint element, developers will define the constraints 

based upon the requirement under development using the tool’s test 

language. 

Following TDD guidelines, in this example we will first specify that the 

provided return value is TRUE for successful execution as seen in Figure 3. 

 

Figure 3 Constrain that a Student’s Name is not empty 

3.2.2. Generate Test Cases (RED) 

After constraining the new system behavior, the user can generate the test Cases 

using the TFMDD tool.  The generated tests are automatically added “Unit Test” 

package within the domain and each domain service will have its own Domain 

Interface defined in the new package to organize and store the related tests. 
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1. Use the TFMDD tool to generate positive and negative test cases from the 

defined constraints. 

For this example without any defined preconditions, we will only see one 

positive test generated.  The generated test case is available in Appendix B. 

3.2.3. Add Model Elements Identified by the Constraints (RED 

– Model Structure) 

Developing testing constraints, helps identify necessary parameters of the 

Domain Service in addition to classes and other model elements.  In our example, 

we further highlight this fact with an attempted model transformation.  The test 

cases fail to transform because of the missing required return status.  

1. Add the identified model elements to address the transformation errors. 

For this example, we add the Boolean return parameter to the 

CreateStudent Domain Service. 

2. Additionally, when adding return parameters the implementation body of 

the service will need to return a stubbed value.  

Given that is the case with this example; we add a standard failure stub 

returning false into the CreateStudent Domain Service. 

RETURN FALSE; 
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3.2.4. Run the Test Cases (RED - Implementation) 

After implementing the model structure, the next step is to transform the system 

and test cases into code.  We compile and execute the generated code, resulting 

in the test cases failing. 

1. Run the generated code using the JUnit Test Runner and observe the 

results, which given TDD practice should include several failures. 

For this example, we see that returning FALSE as a placeholder resulted in a 

failing test. 

 

Figure 4 TFMDD Example Part 1 RED 

3.2.5. Implement the Behavior (GREEN) 

The second step of the TDD micro-cycle is Green, where we implement the 

simplest version of the intended behavior in order to have all test cases pass.  For 

our example, this involves implementing the CreateStudent Domain Service in the 
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simplest manner, which requires changing the method to return TRUE for success.  

The following syntax is an example of how this could look. 

RETURN TRUE; 

 

Now we rerun the tests to ensure that the implementation correctly satisfies the 

current constraints.

 

Figure 5 TFMDD Example Part 1 GREEN 

3.2.6. Refactor the Model (REFACTOR) 

Given that this is the first test case/feature, no refactoring is required.  However, 

this is the point where we would refactor the model going forward.  
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3.3. Second Test Case – Input Parameter Validation 

The second test case we will walk through adds a precondition regarding the 

supplied parameter values, as the next constraint is that the provided student id 

is valid.  The constraints on AddStudent now read: 

PRE: 

    PARAM (id) > 0; 

    PARAM (id) <10000000; 

POST: 

    RETVAL == TRUE; 

Adding preconditions to this example expands the functionality covered by 

existing test cases as well as generating off-nominal test cases, validated by 

checking that the return value is not TRUE. 

Red 

With this second constraint, we go through similar steps to the first, fixing 

transformation errors before compiling, executing the test, and continuing on to 

implementation. 

1. To solve the transformation error, we add the student id integer input 

parameter to the AddStudent Domain Service. 

2. Next, running the generated JUnit test cases shows that while the nominal-

test case still passes the off-nominal cases for out of bound ids fails to catch 

a failure.  The generated test cases are in Appendix B. 
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Figure 6 TFMDD Example Part 2 RED 

Green 

Now we update the implementation to check the incoming parameter value and 

report error cases.  The following syntax is an example of this: 

Boolean ret = FALSE; 
 
IF(student_id > 0 && student_id < 10000000) 
{ 
    ret = TRUE; 
} 
 
RETURN ret; 

 

Now we rerun the tests to ensure that the implementation correctly satisfies the 

current constraints. 
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Figure 7 TFMDD Example Part 2 GREEN 

3.4. Third Test Case – Model State Validation 

The third test case introduces requirements about pre-existing system state 

required for proper execution.  The next constraint is to have unique student ids, 

which results in the condition that previously supplied student ids have been 

stored and used in parameter validation.  We add the constraint that a student 

with the provided id does not already exists in the system.  

PRE: 

    PARAM (id) > 0; 

    PARAM (id) <10000000; 

    NOT EXISTS Student WHERE (id == PARAM (id)) 

POST: 

    RETVAL == TRUE; 
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Adding state-based pre or post conditions expands the complexity of the 

generated test case to either modify the pre-existing state or validate the state 

prior and post execution. 

Red 

The stateful nature of the recently added constraint causes the transformation 

process to fail due to a reference of an unidentified test class in the test case 

action language.  

1. To solve the transformation errors, add 

“Student” class with an id attribute to the 

system.  

2. Next, running the generated JUnit test cases 

shows that while the previously executing test cases still pass, the new off-

nominal cases around uniqueness will fail to catch a failure.  The generated 

test cases are in Appendix B.  

 

Figure 8 TFMDD Example Part 3 RED 
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Green 

Continuing, updates to the implementation add checks for an existing student 

with the supplied id and if one is found, return an error condition.  The following 

syntax is an example of this. 

Boolean ret = FALSE; 
 
IF(student_id > 0 && student_id < 10000000) 
{ 
    Ref<Student> student = FIND CLASS Student WHERE (id == student_id); 
    IF(student == NULL) 
    {  
        ret = TRUE; 
    } 
} 
 
RETURN ret; 

 

Now we rerun the tests to ensure that the implementation correctly satisfies the 

current constraints. 

 

Figure 9 TFMDD Example Part 3 GREEN 
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Refactor 

While the introduction of this constraint early in the system development does 

not require any refactoring, the introduction of a class can lend itself to 

refactoring efforts moving forward.  For example, pushing the majority of the 

domain service logic down into the class, if deemed necessary is possible without 

affecting the generated test cases’ validity.  
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Chapter 4TFMDD Supporting Tools 

Testing the concepts presented in this thesis requires the development of a proto-

type test case generator.  The goal of this tool is to analyze the constraints added 

to a platform independent UML model, then produce and inject unit test cases 

back into the model as presented in Figure 10.  In this regard, the test-driven 

process resides completely within the model.  The supporting tools include a test-

centric constraint language and test generation engine containing a 

corresponding parser and integration into a modeled environment. 

 

Figure 10 TFMDD Development Overview 
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4.1. Constraint Language 

The constraint language developed for this thesis loosely draws on OCL for its 

general structure, but was developed to map constraints to directly to Model 

Structure and behavioral specification that could be used to generate test cases. 

4.1.1. Overview 

The language is broken into two sets of keywords.  First are the organizational 

aspects to the language, the pieces that identify scope.  Next is the set that 

specifies the behavioral requirements of the system functionality being 

constrained.  The next section describes the keywords currently supported in the 

constraint grammar. 

4.1.2. Key Words 

This section presents the organization of keywords available in the constraint 

language: 

Constraint Organization  

 VARNT – A Variant used in conjunction with {} to scope multi-level 

nested constraints. 

 PRE – Used to designate the beginning of a precondition definition. 

 POST – Used to designate the beginning of a post condition definition. 

Behavioral Specification 
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 [NOT] EXISTS – Used to specify the existence or absence of a class 

instance. 

 PARAM – Used to define valid input and output value sets. 

 Standard Comparison Operators – Including >, >=, <, <=, ==, and != used 

for the definition of a condition through the comparison two elements. 

 WHERE – The WHERE specification is used in conjunction with the 

EXISTS to specify which class instance is referenced. 

 RETVAL – Designates the value returned from the invocation of the 

constrained operation. 

Additionally optional annotations designated by the symbol @ provide assistance 

to the test case generator.  The following sections will outline which annotations 

are available to modify different keywords and statements. 

4.1.2.1. [NOT] EXISTS 

The EXISTS keyword is used define whether class instances exist.  NOT is an 

additional modifier available for this keyword to designate when an instance 

should not exist.  The class references by this keyword should exist within the 

same-modeled component as the constrained service. 

Precondition:  When used in a precondition, the EXISTS constraints define the 

required system state prior to execution.  In testing these constraints provided 

the information necessary to generate the existing state of the system, necessary 

to complete nominal and off-nominal testing. 



 30 

 

Post condition:  The post condition usage of EXISTS constrains how the state of 

the system is modified, by the execution of the operation given all preconditions 

are met.  

Example:  In the following example, a post condition of a cleanup operation is 

that no instances of the Registration class exist. 

POST: 

 NOT EXISTS Registration (); 

Available Annotations 

When there exists a precondition that a class must exists, an annotation can be 

provided to specify the creation syntax (in PathMATE Action Language) to use 

when creating an instance in the appropriate test cases.  The following example 

specifies the create statement to use when it is necessary to create an instance of 

the Registration class in associated tests: 

@CREATE Registration (id = 10, callback = EMPTY_SERVICE_HANDLE);  

EXISTS Registration; 

4.1.2.2. VARNT 

Variants (VARNT) constrain behavioral requirements based upon the combination 

preconditions that are satisfied.  Each path through the constraints results in a 

different combination of expected preconditions and corresponding execution 

behavior. 



 31 

 

Example: In the following example precondition, A must hold true and if the 

parameter value is zero or greater X and Y will occur, otherwise X and Z will occur. 

PRE: A 

POST: X 

VARNT { 

  PRE: PARAM (value) >=0; 

  POST: Y 

} 

VARNT { 

  PRE: PARAM(value) <0; 

  POST: Z 

} 

4.1.2.3. PARAM 

The PARAM keyword references the parameter value when defining operation 

constraints.  When used in conjunction with a standard comparison operator and 

another value, PARAM constrains input and output values.  A string parameter to 

the keyword specifies the name of the constrained parameter.  Additionally, other 

constraints use PARAM within their definitions to access the parameter values 

supplied to a function. 

Precondition: As a precondition, PARAM defines the acceptable inputs in an 

operation. 
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Post condition:  Only output parameters can be constrained in the post 

conditions, specifying the expected values returned from execution. 

Example:  The flowing example constrains the id parameter to be a nonzero 

positive number. 

PRE: 

 PARAM (id) > 0; 

4.1.2.4. PRE 

PRE designates the beginning of defined preconditions. 

Example:  In the following example constraint A is defined as precondition of the  

PRE: 

 Constrain A  

4.1.2.5. POST 

POST designates the beginning of defined post conditions. 

Example:  In the following example constraint, A must be the result of executing 

the function.  

POST: 

 Constrain A  
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4.1.2.6. RETVAL 

RETVAL is a special keyword referring to any value returned from the constrained 

parameter.  When a return parameter is of type Boolean and is constrained, 

generated error case use the expected the opposite value to be returned. 

Precondition: Not Available. 

Post condition: Using RETVAL with standard comparison operators constrains the 

acceptable output of services.  

Example:  The flowing defines success criteria.  

POST: 

 RETVAL == TRUE; 

4.1.2.7. Standard Comparison Operators 

The standard array of comparisons are available: >, >=, <, <=, !=, and ==.  When 

used outside of constraint clause in conjunction with PARAM statement, the use 

of comparison operators signifies a constraint on those parameters.   

4.1.2.8. WHERE 

The where clause is used in conjunction with an EXIST statement to specify 

whether a specific Class instance should or should not exist as either a pre or post 

condition. 
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Example: After the service executes there exists an instance of the Student class 

where its id is equal to the student_id parameter. 

POST: 

 EXISTS Student WHERE (id == PARAM(student_id); 

4.2. The Engine 

The following section describes the TFMDD Engine including its integration into a 

UML Modeler, constraint parser, and test generation capability. 

4.2.1. Modeler Integration 

This project plugs into the Eclipse Framework and utilizes the Rational Software 

Architect (RSA) tool as a UML Editor. 
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Figure 11 Menu Option Provided by the Integration into the RSA (Eclipse) Tool 

4.2.1.1. Eclipse Technology 

The Eclipse Framework provides a rich plug and play architecture, allowing for 

easy extension[15].  The plug-ins are written in Java, allowing for integration of 

the developed constraint parser and test case generator of which both are 

generated into Java. 

4.2.1.2. Rational Software Architect  

We decided that any modeling tool must fulfill two requirements to support the 

prototype development.  First, the modeling tool must provide the ability to 

specify constraints with-in the model.  Secondly, the information must be 
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accessible from an external tool through an API available to plugins executing in 

the same Eclipse environment.  The RSA tool met both of these requirements. 

4.2.2. Parser 

After extracting the modeled constraints, the next step is for the engine to pass 

the constraints into a parser.  This requires the engine to have a Constraint Parser 

which we develop using the ANTLR toolkit.  The resulting parser provides a multi-

pass process, in which it syntactically verifies the constraints and converts them 

into a more usable intermediate structure, and by invoking, the appropriate APIs 

populating the Semantic Test Repository.  

4.2.2.1. ANTLR Technology 

ANTLR (ANother Neat Tool for Language Recognition) is a tool that provides 

parser generation from a set of grammar and rules files[16].  This project takes 

advantage of the ANTLR’s Java generation feature to produce our parser.  ANTLR’s 

ability to embed java code into almost any aspect of the grammar files and 

subsequently the generated parse provides the mechanism for populating the 

test repository from the parser. 

4.2.3. Semantic Test Repository/Generation 

This project utilizes MDD within the RSA with PathMATE environment to develop 

the Semantic Test Repository (STR).  The modeled system publishes enough 

domain services so that the test information may be populated during constraint 
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parsing, storing the primary aspects of the constraints in equivalent model 

structures.  The classes located in two semantic groups have the appropriate 

support services to generate test cases as described in the following.   

 Parameter Constraints – Constraints used to generate the input 

values to drive the test down nominal and off-nominal path and used 

to validate the output from those test. 

 State Based Constraints – Constraints used to set up the state of the 

system for nominal and error path testing and used to validate the 

correct changes did or did not occur to the system state. 

Test case generation from the STR works recursively, traversing the instantiated 

constraint information with in the TestData domain, invoking a chain of instance-

based operations that chain together to form a test case.  Each class understands 

how to create the appropriate action language necessary for normal and error 

path test cases and precondition setup or post condition validation where 

applicable.   

The test case generation starts at the Operation class, which collects all test cases 

returned from invoking generateTestCases on each associated TestCases class.  

Each TestCases instance maps to a variant identified during parsing the 

constraints and is responsible for constructing well-formed test cases, with the 

four pieces identified early; setup, execution, validation, and cleanup, for 

example:   

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  1.0; 
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//Setup Initial State 

Ref<Student> _pre_Student = FIND CLASS Student WHERE (id== _student_id); 

TestFramework:CheckEqual(NULL, _pre_Student); 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

 Figure 12 Example Test Case Generated From Constraints 

Additionally, the TestCase instances are also responsible for generating off-

nominal test cases.  The algorithm for accomplishing this is to generate one test 

case for each precondition in which it is not satisfied, prior to invoking the service 

under test. 

Upon completion of test generation, the engine injects each element of the 

resulting group as an individual test case back into the model.  For organizational 

purposes, each domain service is mapped to one test container in the model were 

all test cases are stored.  One additional note is that the engine does not keep 

previously generated test cases synchronized with updated constraints; each run 

it deletes and recreates the corresponding test container each time tests. 

4.2.3.1. PathMATE Action Language 

As seen in Figure 12, the engine generates test cases in the PathMATE Action 

language.  We utilize PAL for test generation because it is a higher-level language 

utilizing a simpler syntax without as many nuances of the modern general-

purpose languages.  The additional benefit is that when implementing the model 

during the TDD process, the same PathMATE Action Language is used to 
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document behavior.  Keeping the implementation and test cases in the same 

model level language allows us to use the same transformation technology to 

produce both the system implementation and the test cases at the same time.  

4.2.3.2. PathMATE Test Framework Domain 

As seen in Figure 12, the PathMATE Test Framework domain provides an API for 

the modeled action language and generated test cases, to utilize the integrated 

xUnit style testing frameworks. 

4.2.3.3. JUnit Integration 

In order to develop using JUnit integration, it is necessary to add several JUnit 

specific code-generation templates to the PathMATE Framework for Java and the 

CheckNotEqual service to the TestFramework domain interface.  The JUnit 

extension to PathMATE facilitated the need to keep all development efforts in 

Java for comparison to the student-developed systems (see Chapter 5) and the 

additional test hook simplifies test case generation around instance existence and 

NULL checks.  
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Chapter 5Empirical Results 

To analyze the effectiveness of TFMDD we utilize multiple methods to develop 

the School Management System (SMS) introduced in Chapter 2.  The provided 

requirements focus on the establishing a set of API routines allowing the system 

state to be built up, for example the creation of information such as students and 

course offerings.  Each requirement presents a slightly different testing challenge, 

from simple object instantiation to complex relationships with different error 

path opportunities. 

We conduct the evaluation based on a comparison between three 

implementations of the SMS system, two of which were developed following 

standard TDD and the third developed using TFMDD practices and tools 

developed for this thesis. 

5.1. Evaluation Criteria 

The evaluation criterion compares the developed School Management systems 

focusing on the desired characteristics including quality, productivity, and 

complexity.  Code Quality measures of how correct the code is as it relates to 

requirements and absence of defects.  Productivity is a measurement of the time 

required to plan, test, develop, and refactor the system.  Code Complexity 

measures the code in terms of its Cyclomatic complexity. 



 41 

 

All development begins from a documented set of user stories provided to serve 

as a backlog of tasks for developers, as seen in Appendix D.  The provided 

background information attempts to place developers from either approach at an 

equivalent starting point. 

5.1.1. The Standard TDD Systems 

Two undergraduate students who recently completed a course in Software 

Engineering with a focus on TDD developed the first two systems (TDD1 and 

TDD2) in Java using JUnit as a testing harness.   

Developed independently these two systems present a number of different 

characteristics.  The largest difference comes in the form of error reporting 

approaches in which TDD1 chose to use an exception scheme, which allows for 

the precise validation of off-nominal paths, whereas TDD2 places the burden of 

validation on the caller, eliminating a majority of the development of off-nominal 

test cases.  With that, the design presented in TDD1 is more in line with the 

requirements, which require for example that a provided student id must be 

unique.  As tested TDD2 functions properly, showing that test coverage does not 

ensure requirement coverage. 

5.1.2. The TFMDD Developed System 

For comparison, we develop the TFMDD system (TFMDD1) using RSA with 

PathMATE and TFMDD Tool generating the implementation into Java with JUnit 

test cases.  Like the other two systems, it was developed as a single Domain (in 
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the case of TDD1 and TDD2 a single top-level package) with a central access point 

to the functionality through a Domain Interface.  Additionally, like the two TDD 

systems, TFMDD1 took its own path for error reporting in that each Domain 

Service returned a fail/pass Boolean result which provided a simple method of 

validation (as specific error codes or exceptions were not required) in turn 

improving testability through test case generation. 

5.2. Tools 

The following tools are utilized in collecting the data during and after the 

development cycles, presented later in this chapter. 

5.2.1. Software Process Dashboard 

 

Figure 13 Software Process Dashboard 

Software Process Dashboard provides a simple interface for capturing time spent 

in developing each feature of the system[17].  Using a template, each feature of 

the SMS has a corresponding an entry for which to log time.  The template activity 

entitled “TDD” contains four phases of activity: 

 Planning: This phase determines the next feature to implement and 

captures some initial thoughts of an approach to handling development.  
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 Test: Part of the micro-cycle, this phase includes all time spent developing 

test cases and constraints. 

 Code: Part of the micro-cycle, this phase accounts for all time spent 

implementing the system behavior. 

 Refactor: Part of the micro-cycle, this category is used to capture 

refactoring efforts associated with feature development. 

5.2.2. EclEmma 

Emma is a Java Code Coverage tool which instruments the compiled byte code, so 

that execution statistics can be captured during test execution[18].  Emma 

provides the ability to capture branch, line, method, and instruction coverage 

statistics and produce txt, csv, xml, and html reports.  Using EclEmma, an Eclipse 

integration which utilizes Emma we collect the code coverage metrics for the 

three systems and generate the corresponding reports [19].  Another reason we 

choose to use EclEmma, is its ability to provide Cyclomatic Complexity statistics. 

 

Figure 14 EclEmma Coverage View 
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5.3. Results 

We present the results of examining the collected data in regards to efficiency, 

simplicity, and quality in the following sections.  

5.3.1. Development Effort 

The captured development effort required for each of the three systems 

determines the overall efficiency of each approach.  Presented in Table 1 are the 

total development times collected by each developer during different phases of 

development, in minutes. 

Project Totals Planning Testing Coding Refactoring 

TDD 1 1254 10 696 446 102 

TDD 2 504 109 121 177 97 

TFMDD1 603 80 229 253 41 

Table 1 Empirical Data – Development Effort (in minutes) 

5.3.2. Code Complexity 

We measure code complexity against the following metrics: 

 The Source Lines of Code (SLOC, see Glossary) count, a measure of the size 

of a system, which is in turn an indicator of complexity, when a small 

component is extra-large. 

 Cyclomatic Complexity (see Glossary) represents the potential opportunity 

for error.  Additionally the Cyclomatic complexity also has a loose relation 
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to the number of required test cases to cover each path and the efficiency 

of the developed test cases (in regards to minimal required test base).  

 Cyclomatic Density is the ratio of SLOC to Cyclomatic Complexity used to 

determine the ratio of how many lines of code result in a different 

execution, the higher the density the more complex every portion of a 

component is. 

Project SLOC 
Cyclomatic 
Complexity 

Cyclomatic 
Density 

Classes Test Cases 

TDD 1 558 299 0.53 26 309 

TDD 2 365 185 0.51 13 37 

TFMDD1 1265 582 0.46 15 113 

Table 2 Empirical Data - Code Complexity 

5.3.3. Code Coverage 

Code coverage statistics are measures at the instruction, line, and branch levels.  

The coverage characteristic varies with each level of measurement: 

 Line and Instruction Coverage are as they sounds, the measure of exactly 

how many instructions or lines (which can contain multiple instructions) 

present in an application are covered, the most basic coverage 

measurements.  These measurements correlate to covering the complexity 

present in a system as it relates to SLOC. 

 Branch Coverage, which in turn relates to Cyclomatic Complexity, measures 

all paths through each decision point in the code.  
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Project Branch Line Instruction 

TDD 1 96% 99% 99% 

TDD 2 60% 95% 96% 

TFMDD11 68% 88% 90% 

Table 3 Empirical Data - Code Coverage 

  

                                                

 

1
 As a note, given the nature of generated code the TFMDD1 code coverage statistics apply only to the 

generated code related to the domain under test (DirectoryServices) the PathMATE portability layer and 
related framework pieces are not included in these statistics.  
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Chapter 6Evaluation 

6.1. Overview 

The goal of this thesis is to determine if a test generation approach in a modeled 

environment, such as TFMDD is efficient.  We examine efficiency in regards to 

both the development effort and the overall quality of the developed software 

artifact.  This chapter presents an analysis of the findings of our three-system 

comparison as they relate to the efficiency of TFMDD. 

6.1.1. TDD1 Analysis 

The TDD1 System closely matched the requirements and it is apparent that the 

developer developed the test cases in close relation to them.  Without an explicit 

requirement on how to report error conditions, the use of exceptions did the job 

and provided an easy avenue for validation.  Additionally with refactoring TDD1 

has a modular design without significant duplication of code. 

With 99% code coverage and utilizing a respectively large test base, there is a 

perceived code quality carrying a high level of confidence. 
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6.1.2. TDD2 Analysis 

In contrast, the TDD2 System only provides a partial match to the requirements, 

by providing only the high-level functionality without the restrictions found in the 

requirements.  This problem, the “gap” between requirements and 

implementation, is one of the primary drivers behind this thesis.  Rather than 

requiring the often-painful mapping of requirements to their implementation 

counterparts, the generated tests provide evidence of this mapping through their 

successful execution.  However, without the link to requirements standard TDD 

can suffer from the same disconnect as regular development using coverage 

based test case generation, having a fully working and covered system that is 

incorrect, such as TDD2. 

Once we inject the additional correct test cases into TDD2, the differences 

between requirements and implementation becomes apparent.  While error 

reporting is not required and thus its absence acceptable, its absence appears to 

have contributed to a system implementation that allows changes to the system 

state in a manner that violates the requirements.  For example in TDD2: 

 The system allows adding two students with the same unique id.(ADMIN 1) 

 A faculty member is incorrectly limited to three course offerings  instead of 

three course offerings a semester.(ADMIN 18) 

While the system had a high 95% line based code coverage, the 60% branch 

coverage highlights the lack of error path testing. 
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6.1.3. TFMDD1 Analysis 

Similar to TDD1, TFMDD1 maps closely to the provided requirements, given their 

translation into system constraints.  This helped to improve the code coverage of 

the application logic; however, to improve results the PathMATE java templates 

need to extend the test generation templates to cover errors paths in the 

infrastructure of the generated code, which modeled action language cannot 

easily exercise.  

6.2. The Effectiveness of TDD and MDD with Test Generation 

The following section inspects TFMDD for its effectiveness as compared to 

standard TDD. 

6.2.1. Simplicity 

By comparing cyclomatic density, we found that both approaches produced 

systems with a similar level of complexity with equivalent APIs.  While the class 

count of TDD1 was higher, these additional classes support the exception-driven 

error handling.  These additional classes serve as a possible indicator that without 

the specific requirement to report errors the development of this feature went 

against the practice of doing the simplest thing first.  TFMDD on the other hand 

plays to the strengths of doing the simplest thing first, without having default 

support for features such as throwing exceptions, PI-MDD models are initially 

built upon the base primitives with the introduction of complex types, only when 
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required.  This influences the design to keep things simple as seen in TFMDD1, 

using a Boolean to report errors. 

6.2.2. Quality 

In general, the code quality of the delivered code between all three approaches 

was acceptable as is expected with a test-driven approach.  Although TDD2 did 

not have sufficient error branch coverage and requirements satisfaction, the 

developed component performed as coded and without error.  Additionally, 

TFMDD has an advantage of the ability to generate complex reports from the 

models to facilitate code reviews and additional Quality controls where required 

(For an example report see the attached PathMATE provided sample). 

6.2.3. Testability 

Both approaches show the ability to produce testable systems.  The construction 

of all three systems allows state changes to be easily validated using white box 

testing (see Glossary).  TDD1 and TFMDD1 added simple forms of error reporting 

which facilitated the easy development of off-nominal test cases. 

6.2.4. Code Size 

In regards to code size, TFMDD1 illustrates one downside to automatic code 

generation; the fact that code generators are usually not as space efficient as 

hand written code.  However with an open generation framework, such as the 
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one provided by the PathMATE tool we have the ability to improve this in two 

ways: 

 The software developer has the ability to apply markings (see Glossary) to 

the model, influencing the code generator to take into account different 

implementation details that could result in a smaller code base. 

 Modify the code generation templates introducing optimizations   to 

generate the code with a smaller footprint.  

6.2.5. Requirements Compliance 

In regards to translating requirements into system implementation, TFMDD 

shows that the emphasis constraint development first from the requirements 

ensures a more correct translation, while TDD without a strict process around 

requirements mapping presents an increased opportunity for incorrect 

specification refinement.   

Without seeing a significant difference in time spent developing constraints as 

compared to developing test cases, there appears to be no negative effect on 

efficiency with the utilization of the test case generator.  
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Chapter 7Conclusions 

In this thesis, we compare the effectiveness of a standard test-driven process 

against a tool supported test generation based approach to MDD.  In support of 

this research and testing this thesis, we developed the TFMDD process including 

the supporting test centric constraint language and corresponding test case 

generation tool.  These developed tools facilitate the generation of test cases into 

the PI Model prior to implementation.  We presented the ability to construct a 

system using TFMDD and test case generation in a manner compliant with TDD 

practices.  In the development of this system, we grew confidence in TFMDD by 

iteratively building up each constraint and demonstrating the capability of the 

TFMDD approach to continually generate additional test cases and as such, result 

in continual validation of the resulting newly modeled behavior. 

Through the analysis of three independent system implementations, we found 

that it is approximately as effective to generate test cases from requirements 

based constraints prior to feature implementation developing the System in a 

platform-independent model as developing the system using traditional TDD.  

Additionally, TFMDD provides the following benefits: 

 The apparent reduction in the required refactoring effort, probably due to 

the Modeled nature of the software system, in which the number of 
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artifacts that have to be updated as part of a refactoring effort are 

minimized, and reduced to a small number of drag and drop between 

elements in the model outline. 

 The PI nature of both the implementation and the test cases provides the 

ability to generate the system and corresponding test cases to different 

deployments (such as implementation language or tasking/process 

assignments).  While providing the opportunity for significant re-use gains 

the efficiency measurement of the TFMDD approach, does not consider this 

capability.  For example if a team, who developed their component in Java 

received a request to deliver a C version, would be required to undertake a 

major re-work effort.  This benefit presents itself with first TDD example, as 

there is no simple conversion of the delivery to C as it relies on an 

exception mechanism, which would be no longer available.  However, the 

system developed using TFMDD could produce a C version of the 

component and its corresponding test base with the push of a button. 

7.1. Future Work 

As many authors have pointed out the TDD micro-cycle works due to an almost 

instantaneous turnaround time[3] [4][7], whereas the current implementation of 

TFMDD requires two additional phases as compared to standard TDD test case 

generation and code transformation.  Additionally, in the RSA environment we 

were required to perform a refresh after each transformation to trigger an instant 

recompile prior to execution of the new test cases and behavior, causing an 

additional time cost.  While the test case generation can be isolated to only the 
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constraint under development, a one-click option would be optimal to trigger all 

four steps, including any necessary refresh and resulting in the test results being 

displayed to the developer, enhancing the TFMDD micro-cycle and overall 

productivity. 

While there are opportunities to enrich the developed test-centric constraint 

language, two keywords jumped out during development of the TFMDD system.  

There is a need for a COUNT keyword to constrain instance counts in both pre and 

post conditions.  The other expansion would be to add MAY EXIST functionality 

which can be used in preconditions to facilitate richer test case generation with 

simpler constraints reducing the number of variant definitions. 

The TFMDD tool has the ability to integrate a number of features present in 

existing tools to further industry adoption.  One primary shortcoming is the lack 

of support for automatic and integrated state-machine testing.  Another feature 

key to industry adoption is the ability for mapping requirements directly to the 

constraints.  This would allow the tool to automate the connection between 

requirements and code, as all the pieces touched by the resulting test cases may 

be affected by changing requirements.  Currently there is no support for mocked 

objects, which could be facilitated utilizing the constraints of the other models. 
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 Project Setup 

Appendix A. Setup the Environment and Project 

In order to begin developing a system there are a number 

of required setup steps:  

1. Create an Eclipse project to house the system. 

2. Create a PathMATE System Model – to contain the 

modeled information 

3. Add the Appropriate PathMATE Testing Support 

Domains and Testing Profile to the Model 

4. Add PathMATE Java mechanisms to the project. 

5. Setup the Java Deployment 

6. Add Java/gc and mechanisms folder to the build path. 

7. Add JUnit 4 to the classpath  

 

  

Figure 15 Eclipse 
Project Explorer 
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 Generated Test Cases 

Appendix B. Supplement 

Constraint 1 – Generated Test Cases 

TestAddStudentCase_1 

//Setup Parameters 

Boolean _RETVAL; 

 

//Setup Initial State 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent(); 

 

//Validate 

TestFramework:CheckEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

Constraint 2 – Generated Test Cases 

TestAddStudentCase_1 

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  1.0; 

 

//Setup Initial State 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

 

TestAddStudentCase_2 

//Setup Parameters 
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Boolean _RETVAL; 

Integer _student_id =  9999999.0; 

 

//Setup Initial State 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

 

 

TestAddStudentCase_3 

//Negative Test Case for Parameter 

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  1.0; 

 

//Parameter Setup For Error Case 

_student_id =  0.0; 

 

//Setup Initial State 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckNotEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

 

TestAddStudentCase_4 

//Negative Test Case for Parameter 

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  1.0; 

 

//Parameter Setup For Error Case 

_student_id =  1.0E7; 

 

//Setup Initial State 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckNotEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 
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Constraint 3 – Generated Test Cases 

TestAddStudentCase_1 

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  1.0; 

 

//Setup Initial State 

Ref<Student> _pre_Student = FIND CLASS Student WHERE (id== _student_id); 

TestFramework:CheckEqual(NULL, _pre_Student); 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

 

TestAddStudentCase_2 

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  9999999.0; 

 

//Setup Initial State 

Ref<Student> _pre_Student = FIND CLASS Student WHERE (id== _student_id); 

TestFramework:CheckEqual(NULL, _pre_Student); 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

 

TestAddStudentCase_3 

//Negative Test Case for StateStudent 

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  1.0; 

 

//Setup Initial State 

Ref<Student> _pre_Student = CREATE Student(id=_student_id); //State Setup 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 
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//Validate 

//Cleanup Negative State 

IF(_pre_Student != NULL){ 

 DELETE _pre_Student; 

} 

TestFramework:CheckNotEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

 

TestAddStudentCase_4 

//Negative Test Case for Parameter 

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  1.0; 

 

//Parameter Setup For Error Case 

_student_id =  0.0; 

 

//Setup Initial State 

Ref<Student> _pre_Student = FIND CLASS Student WHERE (id== _student_id); 

TestFramework:CheckEqual(NULL, _pre_Student); 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckNotEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup 

 

TestAddStudentCase_5 

//Negative Test Case for Parameter 

//Setup Parameters 

Boolean _RETVAL; 

Integer _student_id =  1.0; 

 

//Parameter Setup For Error Case 

_student_id =  1.0E7; 

 

//Setup Initial State 

Ref<Student> _pre_Student = FIND CLASS Student WHERE (id== _student_id); 

TestFramework:CheckEqual(NULL, _pre_Student); 

 

//ExecuteTest 

RETVAL = Registrar:AddStudent( _student_id); 

 

//Validate 

TestFramework:CheckNotEqual(TRUE,RETVAL); //Validate the returned result 

//Cleanup  
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 The Test Generation Tool 

Appendix C. Constraint Grammar 

The following is the constraint grammar developed for this thesis (this as been 

adapted from its ANTLR form): 

//------ Constraint Header Section ------// 
constraints: (PRE precondition | POST post condition)*  variant* 
variant: VARNT LBRACE invariant_body RBRACE 
variant_body: (PRE precondition)? (POST post condition)? variant* 
 
precondition: preconstraint* 
post condition: postconstraint* 
 
preconstraint: (countConstraint | annotations? exsistenceConstraint | dataInput | 
parameterConstraint | associativeClassConstraint) SEMICOLON 
 
postconstraint: (returnConstraint | exsistenceConstraint | 
classAttributeConstraint | dataInput   | associativeClassConstraint) SEMICOLON 
 
parameters: Identifier (LBRACE annotations* constraints RBRACE)?; 
annotations: Annotation; 
 
//------ Constraint Types Section ------// 
countConstraint: COUNT^ classLookup 
exsistenceConstraint: NOTW? EXISTS classReference 
returnConstraint: rightComparison? RETVAL leftComparison? 
parameterConstraint: parameterReference leftComparison? 
 
associativeClassConstraint: Identifier DOT AssociationIdentifier DOT Identifier 
leftComparison 
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classAttributeConstraint: Identifier DOT Identifier leftComparison 
 
//------ Constraint Helper Section ------// 
classReference: classLookup (ARROW associationReference)?  
classLookup: elementIdentifiction attributeConstraint? 
associationReference: AssociationIdentifier attributeConstraint? 
 
attributeConstraint: WHERE LPAR  (attributeEqualityExpression (COMMA 
attributeEqualityExpression)*)? RPAR 
  
elementIdentifiction: Identifier 
parameterReference: PARAM LPAR (Identifier) RPAR 
constraintVariable: Identifier Identifier 
 
rightComparison: comparisonExpression comparisonOperator 
leftComparison: comparisonOperator comparisonExpression 
 
//------ Expresion Section ------// 
attributeEqualityExpression: Identifier (EQ|NEQ|LT|GT|LEQ|GEQ) (expression | 
RETVAL) 
 
comparisonExpression: expression; 
expression: logicalOrExpression 
logicalOrExpression: logicalAndExpression (COR logicalAndExpression)* 
logicalAndExpression: equalityExpression (CAND equalityExpression)* 
equalityExpression: relationalExpression ((EQ|NEQ)  relationalExpression)? 
relationalExpression: additiveExpression ((LT|GT|LEQ|GEQ) additiveExpression)? 
 
additiveExpression: multiplicativeExpression ((PLUS|MINUS) 
multiplicativeExpression)* 
 
multiplicativeExpression: exponentialExpression ((STAR|SLASH|MOD|DIV)^ 
exponentialExpression)* 
 
exponentialExpression: unaryExpression (EXP exponentialExpression)* 
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unaryExpression: (MINUS unaryExpression) | (NOT unaryExpression) | 
primaryExpression 
 
primaryExpression: LPAR expression RPAR |Integer | StringLiteral |FloatConstant 
| TRUE | FALSE | CharacterLiteral|Identifier |parameterReference 
 
comparisonOperator: EQ | NEQ | LT | LEQ | GT | GEQ 
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 School Management System 

Appendix D. Introduction 

This document describes the requirements of the School Management System. 

Instructions 

This example system is to be developed using test-driven development 

techniques, in that each task will be taken individually and be developed following 

the RED-GREEN-REFACTOR approach.   

To facilitate the collection of metrics we will be using the Process Dashboard tool.  

In which each feature will be added to the list as they are undertaken. During 

development all time spent should be recorded in the appropriate phase of each 

task. 

Assumptions 

 For this iteration of the requirements there is no user role validation. 

 The user interface will be developed independently. 

Backlog 

Directory Management  

This section describes task related to the management of human resources, 

students, employees, and faculty. 
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 As an administrator I would like to be able to create a Student in the 

System with a unique student id and name. (ADMIN1) 

o Name (Single Non Empty String) 

o Unique Faculty ID (Int - Provided) 

 As an administrator I would like to be able to create a Faculty in the System.  

(ADMIN2) 

o Name (Single Non Empty String) 

o Unique Faculty ID (Int - Provided) 

o Department (String) 

 All members of the community should be created with background 

information including. (ADMIN3) 

o Address (Single Non Empty String) 

o Birth-date (3 Ints representing month, day, and year) 

 As an administrator when I add Faculty member I must supply an extension. 

(ADMIN4) 

 As an administrator I can add an Employee. (ADMIN5) 

o A name(single non empty string) 

o A Unique Employee ID (int - Faculty are also employees) 

o A Employment Organization (such as Administration, Facilities, 

Athletic Department) 

 

Facility Management & Scheduling 

This section focuses on managing building resource management and scheduling. 
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 As an administrator I would like to be able to define campus buildings. 

(ADMIN6) 

o An unique Name 

o An unique Abbreviation (i.e. Fuller -> FUL or Olin -> OLIN) 

 As an administrator I would like to be able to assign classrooms to campus 

buildings with max student sizes. (ADMIN7) 

o An unique Name 

o An unique Abbreviation (i.e. Fuller -> FUL or Olin -> OLIN) 

 As an administrator I would like to be able to assign meeting to campus 

buildings with max attendance sizes. (ADMIN8) 

 As an administrator I would like to be able to assign offices buildings to 

campus which can be open or utilized. (ADMIN9) 

 As an administrator I would like to be able to assign a campus member to 

an office. (ADMIN10) 

 As an administrator I would like to be able to assign a building to a primary 

department. (ADMIN11) 

 As an administrator I would like to be able to assign a building to allow two 

secondary departments. (ADMIN12) 

 As user I would like to like to be able to request an available timeslot for 

class room. (ADMIN13) 

 

Registrar 
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The registrar requirements allow for the definition of degrees, courses, course 

offerings and there relation to students, professors, and facility resources. 

 

 As an administrator or department head I would like to be able to create 

catalog entries, including departments and courses. (ADMIN14) 

 As an administrator or department head I would like to be able disable or 

re-enable catalog entries, including departments and courses. (ADMIN15) 

 As an administrator or department head I would like to be able to create 

catalog entries, including departments and courses. (ADMIN16) 

 As an administrator or department head I would like to be able to create 

course offerings. (ADMIN17) 

 As an administrator I would like to be able to define degrees. (ADMIN18) 

 As an administrator or department head I would like to be able to define 

requirement bins for degrees in my department and the courses that go in 

them. (ADMIN19) 

 As a student I would like to register for an available course offering. 

(STUDENT2) 

 As a student I would like to sign up for the waitlist on a full course offering. 

(STUDENT3) 

 As a student I would like the ability to unregister from a course offering, 

freeing the spot for a waitlisted student. (STUDENT4) 

 As a student I would like to be automatically moved from the waitlist to the 

class as spots become available. (STUDENT5) 
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 As a professor I would like to be able to assign a course offering. (PROF1) 

 As a professor I would like to be able to accept individuals from the wait-

list, provided that the assigned classroom can support the increased 

occupancy. (PROF2) 

 As a user when I create a course offering I would like the system to assign it 

a room. (USER2) 

 As a user I would like to get list of all active courses with in a department  

(USER3) 
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Glossary 

This thesis uses the following terminology throughout; a number of these terms 

derive from Platform Independent Modeling methodology.  

Constraint Satisfaction Problem  

The problem of generating test cases from formal specification[12]. 

Cyclomatic Complexity 

The minimum number of linear paths that in combination, will exercise all 

possible paths through a method.[20]  Each path represents another potential 

opportunity for error.  Additionally the Cyclomatic complexity also has a loose 

relation to the number of test cases required to cover each path and the 

efficiency of the developed test cases (in regards to minimal required test base).  

Domain 

A subject matter domain is a logical grouping of software elements based upon 

common subject matter base opposed to the more traditional functional grouping 

and is similar to the concept of a software component. 

Domain Service 

A domain service is the common and exposed interaction point with to a 

Domain’s internals.  This form of data hiding is analogous to a black-box 

component API routine.   
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Domain Specific Language (DSL) 

A DSL is a language developed to address a specific problem, allowing developers 

to express the problem space in a simpler format without using a general-purpose 

language.  DSLs can include items such as the syntax of configurations files, shell 

languages, makefiles, XML schemas, and more. 

Fault Based Testing 

Fault based testing is the development of unit test cases around exposing 

potential faults in the system, by driving the system in various manners which 

would expose the potential fault.  A test execution in which the fault does not 

occur stands for validation of its absence.  

Marking 

A marking, also known as property can be applied to a modeled system during the 

transformation process as a way of coloring the system with different 

implementation aspects.  This coloring in turn effects how the generation of code.  

For example, when the MaxIndex marking is applied an array with a fixed size is 

utilized in-place of the standard linked list to store references to class instances. 

Mock Objects 

A test double that is substitutable for a real object to verify function calls, call 

order, parameter validation.  Additionally, mocks provide the ability to script 

return values.[4] 

Mutation Testing 
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A testing strategy where the insertion of small variations (mutants) into a 

program should be exposed by the subsequent execution of an existing test suite.  

If the mutant is not detected additional test cases or revisions to the test suite 

may be required.[1] 

Source Lines of Code (SLOC) 

SLOC is a measure of lines of code in a developed application.  For this paper, the 

term SLOC will refer to the logical (or actionable) lines, those containing 

instructions of Java code in a developed system. 

Test Spy 

A test spy is a testing tool that provides visibility into data members and state 

information that would otherwise be unavailable.  

White Box Testing 

A form of testing in which the internal state of the unit under test can be used for 

validation. 

xUnit  

xUnit is a style of assertion based testing. 
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