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Abstract 
 

The objective of this project was to design a dynamic suspension system that 

minimizes the vertical oscillations of the vehicle’s body regardless of different road 

conditions. A series of five modules were designed to achieve this goal. The modules 

generate a force similar to the effects of an uneven road that creates oscillations in the 

vehicle’s body. The vertical velocity of the body was calculated and processed through a 

controller to achieve the required signal to suppress these oscillations. This process was 

implemented through the use of electromagnetic circuitry.  
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Executive Summary 
 

The main goal of this project is to design a superior suspension system for the 

automobile market. Due to the restrictions of the common vehicle suspensions systems, 

there is a need for a more reliable and efficient systems. Our research shows that there 

exist active suspensions systems that adapt to the road conditions instantaneously and are 

highly efficient but are also high in cost. Due to these factors we created a new suspensions 

system that uses dynamic electromagnetic shock absorbers. The system performance is 

efficient, affordable and performs the tasks established by the goals of this project. 

The mechanism and theory of the current suspensions system was analyzed to 

achieve a better understanding. A mechanical representation of a suspension system was 

designed based on these analyses. Coils and magnets were incorporate in the design of this 

model necessary to achieve an electromagnetic shock absorber. The dynamic equations of 

the system were derived using this model and Newton’s laws. These equations represent 

the reaction of the suspension system to the inconsistency of the road. Through them the 

equivalent electrical circuit of the suspension system was drawn.  Analysis of this circuit 

was done using the PSPICE simulation program to achieve a better understanding of how a 

suspension system reacts to different types of road conditions. These analyses were 

essential to determine the necessary reforms that the circuit needed to achieve constant 

stability. The information was used to design a new electrical circuit that represents our 

dynamic electromagnetic suspension system.  

This circuit helped us identify the necessary modules to achieve our desired results. 

These modules were represented in a block diagram to better understand the composition 

of the system and the necessary steps required. There are four main modules in the block 

diagram shown in Figure i: Detailed Block Diagram: Road Condition, Signal Conditioning, 

Controller, Current Driver and the AC to DC Converter. The road condition module is used 

to simulate the different conditions encountered on the road. Through the use of an 

oscillator and a transistor a triangular wave current was produced that gave the model a 

certain movement to a desired frequency. The signal conditioning module will record the 

acceleration of the model and represent it as a voltage signal. With the use of an integrator 
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circuit the signal will be converted to give the model’s velocity. This is then used in the 

controller module where it is modified to drive an H-Bridge. The modifications of the signal 

include amplification, integration and pulse width modulation. The H-Bridge is connected 

to the damper coil and the signal that it supplies is responsible for attaining constant 

displacement of the model (automobile’s body). The circuitry of some of these modules 

requires to be supplied with DC voltage. In this case the AC-to-DC converter module is used 

to change the AC voltage that is supplied by the wall outlet to a required DC voltage. The 

description of each individual module includes circuit design, analysis and simulation with 

the help of programs such as MULTISIM and PSPICE. Also included are the physical 

requirements of each individual module and their prototypes. 

The simulation results obtained for the overall system were positive and the system 

seems to behave almost as desired. The following report outlines more detail descriptions 

of the design process and results obtained for the dynamic electromagnetic suspension 

system of an automobile. 
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Introduction 
 

There are different components that make the automobile performance reliable and 

secure for the driver. Even though the customer is attracted to how powerful the car is or 

how fast it can go, it would be nothing if the driver couldn’t control the car. That is why a 

reliable suspension system is crucial in the engineering of a vehicle. The important tasks 

that this systems should accomplish is to support the vehicle weight, isolate the body from 

the vibrations caused by the unevenness of the road and keep a firm contact between the 

tires and the road. Most suspension systems are composed of springs and dampers which 

limit the systems performance due to their physical constraints. These restrictions apply to 

the systems parameters which are fixed and are chosen on the typical operation of the 

vehicle and the safety of the passengers. Therefore the quality of the vehicle comfort is 

restricted.  

To resolve these problems different types of suspension systems have been created. 

The most reliable are the active suspensions systems. These systems adapt to the road 

conditions instantaneously due to the use of sensors. Microcontrollers are also used to 

store the control gains corresponding to various conditions of the road. Although they are 

highly efficient, the use of these systems is limited to few expensive models due to their 

high price. There are also medians of these two suspension systems that are less expensive. 

In these semi-active systems, an active force generator is replaced by a damper that can 

vary its characteristic with sufficient speed. However these systems are not adapted for 

low frequency inputs as well as breaking, accelerations and cornering maneuvers.   

This paper deals with a new suspension system that uses a dynamic electromagnetic 

shock absorber. With the use of electronic circuits, the system will analyze the wheel’s 

movement and adapt the vehicle to maintain constant stability. In effect, the vehicle’s body 

will stay at the same vertical position at all times regardless of the road conditions. This 

system is a modification of the suspension system already used by the vehicle. If the 

electrical circuitry loses power or has a malfunction, the regular suspension system will 

work normally. Analysis of the behavior of this system is done using a variety of changes in 
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the parameters to achieve maximum efficiency. This model is applied to each individual 

shock absorber. This paper provides in details with the behavior of this system in different 

types of road conditions to assure its efficiency and reliability. The system will have a low 

cost and will be controllable. (1) 
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1. Electrical Transformation of the Suspension System 
 

The mechanism of a generic shock absorber is shown in Figure 1.1 .  The 

components of the shock absorber are attached at the end of a piston rod that works 

against the hydraulic fluid of the pressure tube. While the suspension system moves up and 

down the hydraulic fluid is forced through tiny holes inside the piston creating a damping 

effect on the movement. This will reduce the speed of the piston which as a result will slow 

down the springs and the suspension movement reducing the effect of these vibrations on 

the vehicle’s body. (2) 

 

Figure 1.1: Shock Absorber (2) 

 

This concept is applied to the construction of a new model. Analysis and 

construction will be done for only one wheel of the suspension systems to simplify the 

problem to a one dimensional spring-damper system.  The diagram of a general suspension 

system is shown in Figure 1.2.  
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Figure 1.2: Generic Suspension System representation 

The suspension system is represented in relation to the spring’s constants (K1 and 

K2), damping coefficients (d1 and d2) and masses of the body and suspension system (Mb 

and Ms). The new model was drawn and built based on this representation. The Figure 1.3 

shows the mechanical representation of the model with its components.   

 

Figure 1.3: Mechanical Representation of New Suspension System 

The suspension system includes among the common parameters two coils (coil-1 

and coil-2) and permanent magnets. The excitation coil (coil-1) produces the road vibration 

while the damper coil (coil-2) produces the control force that will keep the vehicles body 

from moving. The coils are of copper material. The parameters of the suspension model 

and their values are:  

𝑀𝑏 = 𝑉𝑒𝑕𝑖𝑐𝑙𝑒 𝑏𝑜𝑑𝑦 𝑚𝑎𝑠𝑠 = 1.8𝑘𝑔 

𝑀𝑠 = 𝑉𝑒𝑕𝑖𝑐𝑙𝑒𝑠 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑚𝑎𝑠𝑠 = 1.6𝑘𝑔 
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𝑘1 = 𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑤𝑕𝑒𝑒𝑙 𝑎𝑛𝑑 𝑡𝑖𝑟𝑒 = 1600𝑁/𝑚 

𝑘2 = 𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 = 1400𝑁/𝑚 

𝑑1 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑤𝑕𝑒𝑒𝑙 𝑎𝑛𝑑 𝑡𝑖𝑟𝑒 = 10𝑁𝑠/𝑚 

𝑑2 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 = 15𝑁𝑠/𝑚 

𝑋 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 

𝑌 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑣𝑒𝑕𝑖𝑐𝑙𝑒′𝑠 𝑏𝑜𝑑𝑦 

The mass of the suspension and the vehicle’s body were measured using a regular 

scale.  To measure the spring constants an apparatus was used that graphed the masses 

that we attached to the spring versus the spring displacement. Since 𝐹 = 𝑘𝑥 = 𝑚𝑔, where k 

is the spring constant, x is the displacement and g is the gravitational constant, the ratio 

obtained is 
𝑘

𝑔
=

𝑚

𝑥
. Therefore; the slope of the graph is multiplied with g to get the value of 

the spring constants. The values of the damping coefficients are chosen to achieve a 

minimal oscillation in the vehicles body. Different suspension systems have diverse 

damping coefficient which depend on the type of terrain the vehicle is used.   

The unevenness of the road will give the wheel a vibration. This vibration will be 

represented as a force 𝐹 𝑡 , that will disturb the equilibrium of the system. In our model 

the road conditions will be simulated and represented as a current signal which will be 

applied to coil-1. In the following the existence of 𝐹 𝑡  is assumed in the system to derive 

its counteractive forces. This will help to derive the differential equations necessary to 

represent this system as an electrical circuit. To facilitate the understanding of these 

derivations the free body diagrams were constructed for each of the masses with the 

corresponding forces that are acting upon them. These diagrams are shown in the Figure 

1.4.  
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Figure 1.4: Free Body Diagrams of System 

The forces acting on the suspension system shown above and their descriptions are 

listed in Table 1.1.   

Table 1.1: Forces acting on Ms and Mb and their description 

Ms: 𝐹 𝑡 = 𝑓𝑜𝑟𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑡𝑕𝑒 𝑢𝑛𝑒𝑣𝑒𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑟𝑜𝑎𝑑 

 𝑘1𝑋 = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑤𝑕𝑒𝑒𝑙 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘1 ∗ 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

 𝑑1𝑋 = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑤𝑕𝑒𝑒𝑙 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 
 𝑀𝑠𝑋 = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑚𝑎𝑠𝑠 ∗ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
 𝑘2 𝑌 − 𝑋 = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘2 ∗ 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

 𝑑2 𝑌 − 𝑋  = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

Mb: 𝑘2 𝑌 − 𝑋 = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑠𝑝𝑟𝑖𝑛𝑔 
 𝑑2 𝑌 − 𝑋  = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 

 𝑀𝑏𝑌 = 𝑓𝑜𝑟𝑐𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡𝑕𝑒 𝑣𝑒𝑕𝑖𝑐𝑙𝑒 𝑏𝑜𝑑𝑦 
The k1 and k2 represent the spring constants of the system. From the free body 

diagrams and the knowledge that to achieve equilibrium the sum of all forces must equal to 

zero, the equations of the motion of a suspension system are derived.  

𝐹 𝑡 = 𝑀𝑠𝑋 + 𝑘1𝑋 + 𝑑1𝑋 + 𝑘2 𝑌 − 𝑋 + 𝑑2 𝑌 − 𝑋    (1) 

𝑀𝑏𝑌 = 𝑘2 𝑌 − 𝑋 +  𝑑2 𝑌 − 𝑋                                 (2) 

Equations (1) and (2) are similar to the ones used to describe the sum of the 

voltages in an electrical circuit that consists of resistors, inductors and capacitors. The 

supply voltage of the circuit is the F(t) force since it is the one responsible for the presence 

of the others. If the main currents of the system were represented as 𝑋  𝑎𝑛𝑑 𝑌  then the 
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electrical circuit will be a combination of resistors capacitors and inductors connected in 

series and parallel with each other. The voltage drop across a resistor is 𝑉 = 𝐼 ∗ 𝑅 and since 

𝐼 = 𝑋  𝑜𝑟 𝑌  then the damping coefficients will be resistors in the electrical circuit. The same 

knowledge was applied to the other variables of the equations. Knowing that the voltage 

drop of an inductor is 𝑉 = 𝐿
𝑑𝐼

𝑑𝑡
 and of the capacitor is 𝑉 =

1

𝐶
 𝐼, the masses of the system 

were represented as inductors and the 
1

𝑘
 as capacitors where k is equal to the spring 

constant. Therefore from the equations above it was possible to derive an electrical circuit 

to demonstrate the movement of a vehicle suspension system. The equivalent electrical 

circuit schematic of the system is shown in Figure 1.5. 

 

Figure 1.5: Electrical Representation of the Suspension System 

This electrical circuit will help to derive a reliable control system that will achieve 

stability for the body of the vehicle regardless of road conditions. This means that 

modification will be done to the circuit so that the current 𝑌  is minimal. The analysis and 

simulations of this circuit for different types of road conditions were done using the PSPICE 

program. The circuit above is converted into the appropriate Code 1 used by the program. 

Code 1: PSPICE Code of the Electrical Circuit 

Suspension System 

Vroad 1   0   PULSE(0V 1V 1s 1us 1us 20s 40s)  

Ck1   1   2   0.000714285714 

Lms   2   3   1.6 

Rd1   3   4   10 

Lmb   4   0   1.8 

Ck2   4   5   0.000862068966 

Rd2   5   0   15 

.PROBE 

.TRAN 6 6 0 100m 

.END 
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First the suspension system is given a step input for the F(t). The input signal and 

the current that goes through the inductor Mb is show in Figure 1.6.  

 

Figure 1.6: Step Input signal F(t) and Current through Inductor Mb Y ̇ 

 

Figure 1.7 shows that the step input of the road (F(t)) will produce large vibrating 

velocity to the vehicles body (𝑌 ). The 𝑌  velocity will slow down and it will take up to 4 

seconds for the vehicle’s body to stop moving which is a long time. Next is shown how the 

circuit reacts to an impulse signal. The F(t) signal will represent a bump in the road and the 

results describe the response of the suspension system. The code in this case will remain 

the same except for the input voltage which is written in Code 2: 

Code 2: Impulse Signal Representing a Bump in the Road 

Vroad 1   0   PULSE(0V 1V 1s 1us 1us 0.5s 40s) 

The response of the system due to this input is shown in Figure 1.7.  
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Figure 1.7: Impulse Input Signal V(1) [ F(t)] and Current through Inductor Mb I(Lmb) [Y ̇] 

 

The figure shows that the system will have a greater vibration in the beginning but 

the time of recovery will be slightly different.  

An important parameter to calculate is the resonance frequency of the system. In 

this frequency the suspension system oscillates at its maximum amplitude. This frequency 

is used to coordinate the control system to give a signal that will revolve around this value. 

To find this frequency an AC analysis of the circuit is done using PSPICE. To determine the 

resonance frequency, the system is fed with a sinusoidal sweep voltage that ranges from 

the smallest to the highest possible frequency that the system is expected to operate on. 

The Code 3 for this type of analysis is shown.  

Code 3: Frequency Analysis of the Suspension System 

Suspension System 

Vroad 1   0   AC 1  

Ck1   1   2   0.000714285714 

Lms   2   3   1.6 

Rd1   3   4   10 

Lmb   4   0   1.8 

Ck2   4   5   0.000862068966 

Rd2   5   0   15 

.AC OCT 1000 0.0001 15 

.PROBE 

.END 

 

The current that flows through inductor Mb vs. frequency is shown in the Figure 1.8. 
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Figure 1.8: Current through Mb with Respect to Frequency 

The graph above shows in distinction the value of the resonance frequency when 

the body of the vehicle achieves maximum oscillation. The system will resonate at around 

2.7Hz and at this frequency the velocity of the vehicle’s oscillations can grow up to 0.1m/s 

with a force of just 1N peak produced by the road.  

The results of this section are necessary in the development of the control system 

used to eliminate the vibrations of the vehicles body. The electrical circuit derived will be 

used in the following sections as a reference for the different types of circuitry needed to 

achieve this goal.  
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2. System Design: Block Diagram 

After analyzing the system an overall block diagram was designed to have a general 

view of the signal flow of the shock absorber system.  This signal path was designed based 

on the mechanical system previously shown. The overall block diagram of the system 

design is shown in Figure 2.1. Specific parameter for each of the modules will be provided 

in a later section. 

Current Dirver 

AC to DC 

Converter 

Signal 

Conditioning

Controller

Coil

Road Condition

Road Effect

Signal

Velocity

Signal

Control

Voltage

Controlled Current

DC Voltage

 

Figure 2.1: Overall Block Diagram 

The road condition module generates a force similar to the effects of a bumpy road. 

The signal condition module records the movement provided by the road condition module 

and provides a modified output signal. This output is processed by the controller to achieve 

the necessary control signal. The current driver uses this signal to control the current 

flowing through the coil. The controlled current flowing through the coil will then cause the 

necessary effects to opposite the force produces by the road condition module. As a result, 

the body of the vehicle will not have any vertical movement regardless of road conditions. 

The AC-to-DC converter module is used to supply the necessary power to the system. 
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3. Road Condition Module 
 

Different road conditions simulations are needed to help construct a control circuit 

for the suspension system. The road system has to produce a variety of forces at different 

frequencies. The road conditions module will be connected to the excitation coil (coil-1) of 

the lower block. The module will create a signal similar to the effect of the road on the 

suspension system and will be controlled by a current source flowing through the 

excitation coil. A magnetic field is created around the suspension mass, Ms , due to the 

interaction between the magnet and the electric field generated at the excitation coil when 

current flows through it. When those fields enter into contact, they attract each other if the 

polarities are opposite and repeal if the polarities are equal moving the model accordingly. 

A DC voltage supply is used to supply this circuit and the coil with the necessary current 

and voltage. Figure 3.1 shows a generic representation of this system.  

Road Condition

 

Figure 3.1: Road Condition and Its Corresponding Connections 

3.1 Prior Art Research 

After an extensive research, many useful way and techniques were encountered to 

implement the Road Condition module. A function generator or oscillator is necessary to 

generate the varying signal. This circuit will produce a variable sine, triangular or 

rectangular signal to represent the different road conditions. The current flowing through 

the excitation coil can be controlled by connecting a transistor in series with it. The 

transistor can then be driven by the output signal of the oscillator which can be manually 

or automatically adjusted.   
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3.1.1 Oscillator 

Different types of oscillators were taken into consideration for our system. First the 

rectangular oscillator was tested. This oscillator did not work properly for this application 

due to the fact that during the high or low states, the step response remained constant for a 

period of time. This caused a large amount of current flowing through the coil consequently 

sinking most of the voltage supplied by the DC power supply. 

Many methods and ICs were found that generated a sine wave such as a digitally 

controlled sine wave generator. It was able to produce an accurate sine wave with an 

adjustable frequency. This generator however, required different IC components to 

produce the desired output which were expensive and not simple to implement. The 

system schematic required to produce the sine wave generator is shown in Figure 3.2. 

 

Figure 3.2: Digital Controlled Sine Wave Generator (3) 

After a more carefully analysis of the system it was concluded that a triangular wave 

was more suitable to implement as part of the road condition module. Continuing with the 

research, many techniques were found to generate triangular waves. One triangular wave 

generator technique in particular called the attention. It only uses two op-amps, one 

capacitor and a few resistors. This means it will be inexpensive and very simple to 

implement. From the generic schematic shown in Figure 3.3 it is clear that this particular 

wave generator seems to be appropriate for the system. 
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Figure 3.3: Generic Triangular Wave Generator 

This triangular wave generator can be implemented with two main circuit blocks. 

One is an integrator circuit which is composed of one op-amp, one capacitor and one 

resistor with a negative feedback configuration. The second circuit block is a comparator or 

similarly known as a Schmitt Trigger which is composed of one op-amp and one resistor 

configured in a positive feedback. The result of combining those two circuit blocks gives a 

triangular and a square wave. The triangular wave is the output of the integrator circuit 

block and the rectangular wave is the output of the Schmitt Trigger circuit block.  

The configuration of the Schmitt Trigger consists of an op-amp and a resistive 

voltage divider connected in a positive feedback path. The negative input of the op-amp is 

connected to ground. When an op-amp is connected for positive feedback, its output can be 

either high (positive) or low (negative) if there is a slight change in Vin. When the op-amp is 

connected to the voltage supplies +Vss and -Vss, only two stable states are expected from 

this op-amp configuration. When the input voltage exceeds few positive mV the output 

voltage becomes positive. When the input falls below a few negative mV the output voltage 

becomes negative. The Schmitt trigger and its output are shown in Figure 3.4 .   
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Figure 3.4: Schmitt Trigger Circuit and its Output 

The configuration of the integrator consists of an op-amp connected with a 

capacitor in a negative feedback loop. The signal is entered into the negative input of the 

op-amp which is connected to a resistor. The positive input of the op-amp is connected to 

ground. When an op-amp is connected in a negative feedback with a capacitor the output 

signal is the integral of the input one. This occurs because the capacitor current and voltage 

change with respect to time. This means that if we add a constant positive voltage to the 

input, we expect to see a ramp with positive slope as time changes at the output. An 

example of the integrator operation is shown in Figure 3.5 when a square signal is applied 

to its negative input while the positive input is connected to ground. 

 

Figure 3.5: Integrator circuit and its output 

The combination of these two circuits gives an overall operation that is ideal for 

application in the system. The expected behavior of this oscillator and its diagram are 

shown in Figure 3.6. 
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Figure 3.6: Triangular Wave Generator and its Outputs 

3.1.2 Controlled Voltage Source 

After careful analysis it was concluded that a transistor is able to control the current 

needed to drive the excitation coil. A Bipolar Junction Transistor (BJT) will be able to drive 

this current efficiently. The design of the road condition module is described in the 

following section.  

3.2 Road Condition Block Diagram 

Using the information gathered from the previous section the block diagram of our 

Road Condition module is shown in Figure 3.7. 

 

Road

Condition

Triangular Oscillator

Voltage Controlled Source

Coil

 

Figure 3.7: Road Condition Block Diagram 
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Using this diagram and the information gathered we constructed our module to 

simulate the road conditions in our model. In the following we will describe the design and 

construction of each of the sub-modules.  

3.2.1 Oscillator Design 
 

As we discussed in the previous sections a triangular wave generator is going to be 

used to represent the road conditions of the system. To achieve this it was concluded a 

circuit that consists of a Schmitt trigger and an integrator needed to be constructed. From 

the previous analysis the resonance frequency of the system was found to be around 2.7 

Hz. Therefore the frequency range of the signals should include this value. Also the output 

signal was chosen to have maximum amplitude of 10V to limit the number of power 

supplies. The circuit of the triangular wave generator is shown in the Figure 3.8.  

 

 

Figure 3.8: Final Triangular Wave Generator Schematic 

The components of the circuit are supplied by a 10V DC source labeled VCC. The 

negative rails of the op-amps are connected to ground to limit the number of voltage 

supplies to one. Due to this change a 5V DC reference voltage was added to the negative 

input of the Schmitt Trigger and to the positive input of the integrator to represent virtual 
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ground. This means that the oscillations will be riding at a 5V DC. The resistors R5 and R7 

are used as a voltage divider to achieve this desired voltage from the 10V DC source. 

Two potentiometers were added to control the amplitude and frequency of the 

output signal.  Potentiometer R2 in series with the resistor R1 will achieve variety in the 

amplitude of the oscillations. The maximum value of R2 was chosen to be 5kΩ to limit the 

maximum frequency range of the output signal to 20 Hz. In order for the circuit to generate 

oscillations, the condition (R1 + R2) ≥ R5 ≥ 1 is required by the frequency equation shown in 

Equation (3). This means that when potentiometer R2 is off, the minimum value of (R1 + R2) 

= 5kΩ therefore meeting the required condition (R1 + R2) ≥ R5 ≥ 1 to generate oscillations. 

(4) 

𝑓 =
1

4∗𝐶1∗ 𝑅3+𝑅4 
∗

𝑅1+𝑅2

𝑅5
        (3)  

Potentiometer R3 was added in series with the resistor R4 to vary the frequency of 

the signal. The maximum value of R3 is chosen to be 1MΩ to limit the minimum frequency 

range of the output signal to 0.244 Hz. The same reasoning was used to determine the 

values of R1 and R4. The capacitor C1 was chosen 1µF to allow the circuit to work in low 

frequencies. Calculations of these frequencies using the frequency equation are shown 

below. 

 

When the potentiometer R2 = 5KΩ: 

 

 

 

 
 
When the potentiometer R2 = 0Ω: 
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Simulation Results 

The results above were used to simulate the triangular wave oscillator. To verify the 

proper operation of this circuit both potentiometers were set to their maximum values and 

simulated for about 500mS. The signal at the outputs of the Schmitt Trigger and integrator 

are shown in Figure 3.9. 

 

 

Figure 3.9: Wave Generator Simulation Outputs of Node-4 & Node-V7 

The figure shows that the desired voltage was achieved. Once the proper operation 

of the circuit was proved, its maximum and minimum frequencies were tested when R2 = 

5KΩ. This time only the output signal of the circuit was observed. The results obtained are 

shown in Figure 3.10. The simulations showed that 𝑓𝑚𝑖𝑛 ≅ 0.4 𝐻𝑧 𝑎𝑛𝑑 𝑓𝑚𝑎𝑥 ≅ 20 𝐻𝑧 which 

are the same frequencies estimated by the frequency equation.  

 

Figure 3.10: Min Frequency when R2 = 5KΩ and Max Frequency when R2 = 0Ω 
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Next the circuit was tested for varying amplitude. This time potentiometer R2 was 

adjusted. The results are shown in Figure 3.11. The simulations showed that as R2 was 

adjusted, the amplitude of the output signal changed with respect to time.  

  

Figure 3.11; Varying Amplitude at Min & Max Frequency 

 The results of the simulations also show that the circuit will perform efficiently and 

give the adequate signal to be used by the current controller. Examples of different output 

signals due to randomly adjusting the two potentiometers are shown in Table 3.1.   

Table 3.1: Varying Amplitude at Different Frequencies 

  

  
 



28 
 

Prototype  

Research for the components needed to build the circuit was done after the desired 

behavior was obtained from the simulation results. These components were located 

through the use of websites like Dig-key and Mouser. The TL082 op-amp is shown in  

Figure 3.12.  

 

Figure 3.12: TL082 op-amp (4) 

The behavior of the output voltage with respect to different loads and the bode plot 

diagram of this component are shown in the Figure 3.13.  

 

Figure 3.13: Characteristics of TL082 op-amp (4) 

The 5KΩ (53C15K) and 1MΩ (381N1MEG) potentiometers that we needed for the 

circuit are shown in Figure 3.14. The complete oscillator circuit including all its 

components is also shown in Figure 3.14. 
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Figure 3.14: Triangular Wave Generator Circuit 

After the circuit was built, it was tested extensively for various real road scenarios. 

To do this, the potentiometers were manually adjusted to a random value to test the 

reliability and efficiency of the circuit. The results were positive and some of these are 

shown in the following figures. Figure 3.15 shows the maximum and minimum frequencies 

produced by the circuit. Figure 3.16 shows the results when the potentiometers are 

adjusted to a random value. 

 

Figure 3.15: Oscillator at Maximum and Minimum Frequency 
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Figure 3.16: Oscillator at a Random Frequency 

 

3.2.2 Voltage Controlled Source Design 

 The signal from the triangular oscillator is used to drive our voltage controlled 

source. The design for this module consisted of a BJT that is able to handle the current 

flowing through coil-1. A Darlington connection was used due to the magnitude of the 

current. The connection of this circuit is shown in the Figure 3.17.  

Triangular Oscillator
L1
500uH

R8
300mΩ

4
D1
1BH62

Q2
BCX38B

VCC

5V

1

0

2

 

Figure 3.17: Voltage Controlled Schematic and Its Corresponding Connections 

 The figure shows that the signal from the triangular oscillator is connected to the 

base of the Darlington. The collector is connected to coil-1 which is supplied with the 

necessary signal by a DC voltage supply. A diode is connected in parallel with the coil for 
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protection and safety precaution. The excitation coil internal resistance is labeled R8 which 

was measured to be close to 300mΩ and its inductance is labeled L1. The value of L1 was 

calculated by connecting a resistor in series with the coil and a function generator. Figure 

3.18 shows this connection.  

 

Figure 3.18: Comparison of voltages VZ and VL (6) 

The circuit is supplied with a sinusoidal wave. To simplify the calculation, ω (2πf ) 

and R are chosen such that R >> ωL >> r or ωL >> R >> r. This is accomplished by choosing 

R = 24kΩ and f = 50 kHz.  An oscilloscope is used to measure the peak-to-peak voltage 

across Z (Vz ) and R (VR ). Since 𝑉𝐿 = 𝐼 ∗ 𝑋𝐿  equation (4) is derived. (6) 

𝑉𝐿 =
𝑉𝑍

𝑍
𝑤𝐿 =

𝑉𝑍𝑤𝐿

 𝑅2+ 𝑤𝐿 2
≈

𝑉𝑍

𝑅
𝑤𝐿      (4) 

The value for ω was calculated to be about 314E+3 rads/sec as it shown in the 

following calculation. 

𝑤 = 2 ∗ 𝜋 ∗ 𝑓 ≅ 314 ∗ 103        

The results from the oscilloscope readings are: 𝑉𝐿 = 0.26 𝑉 𝑎𝑛𝑑 𝑉𝑍 = 38 𝑉.  This 

gave all the information needed to calculate the inductance of the excitation coil. The value 

obtained after the calculation was performed was about 523µH. For simplicity, the value L1 

= 0.5mH was chosen to be used in the simulations. 

𝐿 =
𝑉𝐿𝑅

𝑉𝑍𝑤
≅ 0.523 𝑚𝐻         
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The voltage drop across the transistor changes if the current applied to its base 

changes. This causes a change in the current flowing through the inductor L1 which varies 

its electric field. As a result, the magnitudes of the oscillations on the suspension system 

also change. 

Simulation Results 

 The circuit was simulated using the MULTISIM program to analyze its output 

signals. The Darlington was supplied with a 5V DC voltage source for simulation purposes. 

The results obtained are shown on Figure 3.19.  

 

 

Figure 3.19: Input and Output Signals of the Voltage Controlled Source at Minimum Frequency 

The simulation results showed that when the transistor was driven by a triangular 

wave at a frequency of about 0.4Hz the current in the coil ranges from about 0A to about 

10A at the same frequency. This changing current will then generate the required electrical 

field to create the effect of a bumpy road on the wheel. When the transistor experiences a 

triangular wave at a frequency of about 20Hz the current in the coil also ranges from about 

0A to about 10A at the same frequency as it shown in Figure 3.20.  
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Figure 3.20: Input and Output Signals of the Voltage Control Source at Maximum Frequency 

Prototyping 

 The components needed to build the designed circuit were researched after the 

desired behavior was obtained from the simulation results. The inductor labeled L1 for the 

circuit was the excitation coil from the mechanical system. The Darlington transistor used 

for this circuit is the QM50DY-2H and the type of diode used is the 1BH62.  Figure 3.21 and 

Figure 3.22 below show the transistor and its characteristics respectively.  

 

Figure 3.21: QM50DY-2H transistor (6) 
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Figure 3.22: Characteristics of the transistor (6) 

The circuit built for the voltage controlled source is shown in Figure 3.23. Only one 

of the diodes is used in a parallel connection with the transistor. The figure also shows the 

heat sinks used to keep the transistors and diodes from overheating. The complete circuit 

of the road condition module is shown in the appendix A.  

 

Figure 3.23: Voltage Control Source Circuit 

 The results aquired from the circuit built were similar to the ones produces by the 

simulations. A major difference was the amount of current that the coil and the BJT drew 

from the power supply. Simulations showed that the circuit needed up to 10A of current to 

operate. In reality the circuit drew around 20A which is twice as much as the predicted 

current from the power supply. The voltage needed to drive this current flunctuated 

between 15V to 3V. 
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4. Signal Conditioning  

The signal condition module will record and modify the movements of the vehicle’s 

body produced by the road condition module. Its objective is to read these vibrations 

caused by the bumpy road and transform them into a signal. The detailed block diagram of 

this module is shown in Figure 4.1. 

Signal 

Conditioning Accelerometer 

Integrator

Acceleration

Signal

Velocity

Signal

 

Figure 4.1: Block Diagram of the Signal Conditioning Module 

The figure shows that an accelerometer and an integrator are used in this module. The 

accelerometer will provide with the acceleration signal of vehicle’s body while the 

integrator circuit will produce its velocity. These sub-modules are described in details in 

the following sections.  

4.1.  Accelerometer 

After some accurate research, the DE-ACCM3D accelerometer was used to measure the 

time variant acceleration of the model. Figure 4.2 shows the accelerometer and its 

dimensions. 
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Figure 4.2: Accelerometer (7) 

 

The DE-ACCM3D's features include: 

 - Ability to measure up to ±
360𝑚𝑉

𝑔
 (𝑔 = 𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 9.81

𝑚

𝑠2) 

 - A wide range operating voltage (3.5 to 15V with an onboard regulator)  

 - Reverse voltage protection  

 - Output short protection 

 -integrated power supply decoupling  

 -Triple axis measurement 

The accelerometer also allows the control of its sensitivity by varying the supply 

voltage provided to power it.  Table 4.1 shows the typical sensitivities at deferent operating 

voltages  

Table 4.1: Sensitivity of Accelerometer for each Operating Voltage 

Operating Voltage Sensitivity 

3.6V 360 mV/g 

3.33V (Default when using onboard regulator) 333 mV/g 

3.0V 300 mV/g 

2.0V 195 mV/g 

 

Any operating voltage above 3.6 V will produce a sensitivity of 360 mV/g. Since the 

sensitivity of the device varies significantly with the supply voltage, a voltage regulator is 
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needed to keep the supply voltage constant and hence eliminate variations in the 

sensitivity of the accelerometer. 

The onboard regulator of the accelerometer was used in this case to reduce the 

number of the components needed. A bypass capacitor of about 100pF was connected to 

the output of the regulator pin as directed by the manufacturer of the accelerometer. The 

regulator was supplied with 5V DC by choice since the sensitivity will remain 360mV/g. 

This will give the output signal of the accelerometer a virtual ground at 2.5V DC.  

The accelerometer has three output ports that measure the acceleration depending 

on the way it is tilted. Since for this application there are only vertical movements, the X 

and Y outputs are left open and only the Z output is used. The output signal of the 

accelerometer is the acceleration of the model. This signal is then supplied to an integrator 

for modifications.  Figure 4.3 shows this output signal. 

 

Figure 4.3: Accelerator Output Signal 

The accelerometer is powered up by a 4V DC for proper operation. The accelerometer is 

quaked vertically and the Z output is connected to the oscillator to show the output signal 

in Figure 4.3. The output signal of the accelerometer is the acceleration of the model. This 

signal is then fed to an integrator circuit for desired modifications as it is explained in the 

following section.   
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4.2.  Integrator  
 

After obtaining a voltage signal that represents the acceleration of the vehicle’s body 

modifications to this signal are done to obtain the velocity of the system. Using the 

knowledge that velocity is the integral of acceleration, an integrator circuit is needed to 

find the time variant velocity of the suspension system. Equation (5) shows the calculation 

that will be represented by this circuit.   

 

𝑣 𝑡 =  𝐴  𝑎 𝑡 𝑑𝑡       (5) 
 

The integrator circuit will be similar to the one used in the oscillator for the road 

condition module. An analog approach for implementing this circuit was chosen because it 

was cheap and easy to implement. Figure 4.4 shows the schematic diagram of the 

integrator that was built.  

 

Figure 4.4: Integrator Circuit 

The LM348N op-amp rails were powered with a 15V DC voltage and ground to 

eliminate the need of using two independent voltage supplies. Since the output signal of the 

accelerator has a DC offset of 2.5V the output of the integrator will always be at its 

maximum peak. In the beginning a coupling capacitor was added at the input of the 

integrator to block the DC offset. A large capacitor is needed because the signal that is 
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integrated runs at very low frequencies. However using large capacitors was very 

unpractical and inefficient. Therefore a decision was made to subtract out the DC offset 

instead.  

The voltage divider at the non inverting input of the op-amp will not only subtract 

out the DC offset but also bring the DC level of the output down to 7.501V which is 

approximately halfway of VCC. This produces a wider range of voltages for the input to 

swing without hitting the rails on the output. An important observation was that the 

integrator requires that the DC level of the input signal remains constant or it will give the 

wrong output signal.   

The AC analysis of the integrator was performed to help find out how it performs 

over the appropriate frequency range. The frequency range that the integrator should 

perform is more or less between 0.2Hz to 20Hz. However it was almost impossible to 

design an integrator that would work properly in that frequency range. Therefore the 

specifications of the integrator were modified so it worked properly between 0.8Hz and 

10Hz. The problem with the integrator designed was that its gain fell very fast with 

increasing frequency. As a result the output of the integrator at the maximum frequency is 

greatly diminished.  Figure 4.5 and Figure 4.6 shows the frequency response of the 

integrator.  

 

Figure 4.5: Magnitude Plot of the Frequency Response 
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Figure 4.6: Phase Plot of the Frequency Response 

A function generator was used to supply the integrator to show its performance at 

different frequencies. The integrator was supplied with square wave signals at different 

frequencies to represent the output signal of the accelerometer. The input voltage had an 

offset of 2.5V to represent the virtual ground of the accelerometer output signal. Figure 4.7 

shows the input and output of the integrator operating at 10 Hz frequency.  

 

Figure 4.7: Input and Output Signals of the Integrator at 10Hz Frequency 
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As shown the integrator is able to produce a perfect triangular wave but the 

magnitude of the output waveform is greatly diminished. Figure 4.8 shows the output of 

the integrator when the input signal is a square wave at 0.8Hz. 

 

 

Figure 4.8: Input and Output Signal of Integrator at 0.8Hz Frequency 

The quality of the output signal at 0.8 Hz is not as good as that at 10Hz because the 

capacitor is charging and discharging faster than the square wave is running. But 

increasing the value of the capacitor greatly reduces the magnitude of the output wave at 

10Hz so we decided to keep the capacitor value at 200uF. Figure 4.9 shows the output of 

the integrator at a frequency halfway between the operating range 5Hz. 
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Figure 4.9: Input and Output Signal of Integrator at 5Hz Frequency 

 

The integrator circuit was constructed and analyzed using the simulation program 

MULTISIM. Unfortunately; the actual construction of the circuit was unsuccessful. The 

signal from the accelerometer had much distortion and ranged in very low frequency which 

made the performance of the integrator inefficient. Therefore due to time consumption and 

after many tries the construction of the integrator was not concluded. The simulations 

performed in this part were valid and were used in the subsequent parts of this report.  
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5. Controller  

The goal of the controller was to produce the desired action to completely eliminate the 

movement in the vehicle’s body.  In section 1 of this paper the suspension system was 

represented through two differential equations (1) and (2) and the electrical circuit shown 

in Figure 1.5. The damping coefficients, spring constants and the masses of the suspension 

system and vehicle’s body were represented by resistors, capacitors and inductors 

respectively. The forced produced by the road condition F(t), was the supply voltage of this 

circuit while the currents 𝑋  and 𝑌  represented the vertical velocities the system moved.  

The circuit was simulated and the results in Figure 1.6 showed that the vehicle’s body Mb 

will oscillate with a vertical velocity 𝑌  for different road conditions and it took 

approximately 4 seconds for this velocity to go to zero which is a long time.  These results 

confirmed that there is a need for a control signal that eliminates the movements of the 

vehicle’s body and therefore keep the 𝑌  as close to zero as possible. Figure 5.1 shows the 

circuit with the control source connected.  

 

Figure 5.1 Electrical Representation of Suspension System 

  

For the current in the inductor Mb to come to zero, the control voltage has to bring 

the voltage across it also to zero. In other words the Vcontrol source must supply a large 

enough voltage to create a short circuit in node 4 therefore making 𝑌  go to zero. The 
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control voltage source will be dependent on the current  𝑌  since it changes due to different 

road conditions (F(t)).  Through different analysis of the circuit in Figure 5.1 it was 

conluded that the proportional controller circuit shown in Figure 5.2 will achieve the 

desired voltage.  

 

Figure 5.2: Controller 

A proportional controller is a control loop feedback mechanism that attempts to 

correct the error between a measured variable and a desired set point. The controller will 

calculate and then output a corrective action that can keep the error recorded to a minimal. 

(9) The block diagram of the controller is shown in Figure 5.3.  

Controller

Difference

Proportional Signal

Target

Reference 

Voltage
Error

Signal

Control 

Voltage

 

Figure 5.3: Block Diagram of Controller 

The analysis and analog implementations of this type of controller are shown in the 

following sub-sections.  
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5.1. Difference Amplifier 

As mentioned in the previous section the controller is used to correct the error 

between a measured variable and a desired set point. The desired set point for this 

suspension system is the zero movement of the vehicle’s body. This means that the desired 

vertical velocity of Mb is zero.  In Figure 5.3 this is represented as the target sub-module. 

The measured variable in this case is the actual vertical velocity the vehicle’s body has due 

to different road conditions. The error signal is the difference between these two signals.  

Since the desired value of the velocity 𝑌  is zero the error signal will than be the inverse of 

the recorded velocity 𝑌 . This explain the reason of the Vcontrol source connection in Figure 

5.1.  

The error signal explained above will be applied only on the PSPICE simulations 

done to find Vcontrol. In reality the velocity  calculated and produced by the signal 

conditioning module has a DC offset of 7.5V. The signal is also inverted by the integrator 

that obtained the velocity in this module. Therefore the signal produced by the signal 

conditioning module is the error signal used in this controller. The figure 1 circuit is 

simulated in PSPICE using Code 4. 

Code 4:PSPICE Representation of Suspension System 

Suspension System 

Vroad 1   0   sin(0 1 3) 

Ck1   1   2   0.000714285714 

Lms   2   3   1.6 

Rd1   3   4   10 

Lmb   4   0   1.8 

Ck2   4   5   0.000862068966 

Rd2   5   0   15 

Vcontrol 0 6  0 

 

.PROBE 

.TRAN 500ms 500ms 0 10m  

.END 

 

The Vcontrol source is connected in reverse due to its dependence on the inverse of 

current 𝑌 . The Vroad source is the F(t) of force produced to the suspension system by 

different road conditions. The circuit is supplied with a sinusoidal signal of amplitude 1V 
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and 3Hz frequency. The supply signal and the current through the suspension and body of 

the vehicles are shown in Figure 5.4. 

 

Figure 5.4: Velocities (𝒀 ) I(Lmb) and (𝑿 ) I(Lms)  due to Force F(t) (V(1)) 

The simulation showed that when the system is supplied with a sinusoidal force of 

1N peak with 3 Hz frequency the velocity of the oscillations in the vehicle’s body (Mb) will 

be up 0.063 m/s peak while the suspension system will have a velocity of 0.033m/s peak. 

The Vcontrol of Figure 5.1 was given the value of the error signal to see the change that it 

would have to the  𝑌  velocity. The change in the PSPICE code is given in Code 5. The entire 

PSPICE code for this module is shown in appendix B.  

Code 5: Control Source with Error Signal as Value 

Econtrol 0 6  Value={I(Lmb)} 

Since the Vcontrol is a dependent source the name in the PSPICE code had to change 

to Econtrol to eliminate errors in the program. The code shows that this source is given the 

value of the 𝑌  current and connected in reverse to simulate the error signal. The results in 

the oscillation velocity of Mb were unnoticeable. This analysis concluded that the error 

signal obtained needs to be amplified to have any effect in the vertical velocity of the 

vehicle’s body.  
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5.2. Proportional Amplifier 

The proportional amplifier sub-block will amplify the error signal to a certain value. 

The circuit used for this amplifier is shown in Figure 5.5. 

 

Figure 5.5: Proportional Amplifier Circuit 

The circuit above is an inverting amplifier where E1p is the error signal and the 

resistors R1p and R2p are used to amplify the signal while R3p is used for reference. The 

output signal of this circuit is given from equation (8) 

𝑉 30 = 𝐾𝑃 ∗ 𝑉 10  𝑤𝑕𝑒𝑟𝑒 𝐾𝑃 = −
𝑅2𝑃

𝑅1𝑃
     (8) 

The PSPICE code of this circuit is given in Code 6. 

Code 6: Proportional Amplifier 

*Proptional Amplifier  

E1p  10  0   value={I(Lmb)} 

R1p  10  20  10k 

R2p  20  30  RMOD 1 

X1p  0   20  30  OPAMP 

R3p  30  0   100MEG 

*Determine the different constants  

.MODEL  RMOD  RES(R=1) 

.STEP  RES  RMOD(R)  10k,  5000k,  1000k 

 

Code 6 is added to the PSPICE Code 4 to display the performance of the suspension 

system after the modifications to the error signal. The resistor R2p was changed as a 

potentiometer to determine the constant Kp that will reduce the 𝑌  current the most. This 

resistor starts at 10kΩ and goes up to 5MΩ by a step of 1000. This will make the Kp 

constant start from 1 and go up to 400 with a step of 100.  Due to the fact that the 
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proportional amplifier inverts the error signal while amplifying it the Vcontrol connections 

in Figure 5.1Error! Reference source not found. change directions. The output voltage signal 

obtained from the proportional amplifier is now used as the Vcontrol voltage. Also the 

input signal was change to a step input to better determine which Kp to use.  This code 

changes are shown in Code 7.  

Code 7: New connection and value of Vcontrol 

Vroad 1   0   PULSE(0V 1V 1s 1us 1us 20s 40s) 

Econtrol  6   0  Value={V(30)} 

 

The simulation of the vertical velocity of the vehicle’s body 𝑌  for different values of Kp is 

shown in Figure 5.6.  

 

Figure 5.6: Vertical Velocity 𝒀  of Vehicle's Body 

The results show that the higher the Kp value the smaller the oscillations of the 

vehicle’s body. The value of Kp was chosen to be 400. This means that the R2p resistor was 

chosen to be 4 MΩ. The vertical velocities of the suspension system and vehicle’s body and 

the force F(t) supplied by the road condition are shown in Figure 5.7. 



49 
 

 

Figure 5.7: Input Voltage V(1) (F(t)) and Currents through Ms I(Lms) and Mb I(Lmb) 

The vertical velocity 𝑌  of the vehicle’s body in Error! Reference source not found.after 

the proportional amplification was reduced to 0.003 m/s which is 21 times smaller than 

0.063 m/s which is the velocity without the control action. To summarize the controller 

circuit the simulations of the input voltage, the control voltage and the current through the 

vehicle’s suspension and body are shown in Figure 5.8, Figure 5.9 and Figure 5.10.  

 

Figure 5.8: Suspension System Signals at 0.2Hz Frequency 
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Figure 5.9: Suspension System Signals at 2.7 Hz Resonance Frequency 

 

 

Figure 5.10: Suspension system at 20 Hz Frequency 

The control signal Vcontrol produce by this module will have a maximum value of 

1.5V when the input signal is 1V sinusoidal wave at resonance frequency of 2.7 Hz. The 

analog representation of the controller module is shown in Figure 5.11. 
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Figure 5.11: Analog Representation of Controller Module 

The controller was built using LM348 Op-Amps as shown in Figure 5.11.  To avoid 

using two independent supplies to power the controller, the circuit was designed so that it 

would run off 15V with a virtual ground set at 7.5V.   

To obtain the virtual ground, a voltage divider was used.  Large resistor values 

(100KΩ) were used in this case to reduce the amount of power dissipation. However, the 

large resistors produce a lot of high frequency noise. Therefore the 100nF capacitor was 

used to filter the noise created by these resistors. The op-amp U2B acts as a voltage 

follower. 

A function generator was used to obtain the error signal since the circuit in Figure 

5.11 does not include the feedback mechanism. The error signal was passed through two 

inverting amplifiers which amplified it by a magnitude of 400 which is the value of Kp 

obtained before.  The purpose of cascading two amplifiers was to produce a non inverted 

error signal and also to limit the amount of amplification in a single stage. This will prevent 

the distortion of the signal by the amplifiers.  The magnitude of the amplification by the 

controller can be obtained by equation (9).  

𝐾𝑝 =  
𝑅1

𝑅2
 ×  

𝑅14

𝑅16
 =

400𝐾Ω

10KΩ
×

100KΩ

10KΩ
= 400     (9) 
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6. Current Driver 

The controller output signal is now used by the current driver module to supply the 

damper coil with the required current to keep the vehicles’ body stable over time. The 

controller signal is fed to a pulse width modulator (PWM) where it is compared with a 

triangular wave signal produced by an oscillator. This oscillator is described in detail in the 

next section. The PWM will supply the H-Bridge with the appropriate pulse drive voltage to 

control the current supplied to the damper coil. Each of these sub-modules is also 

explained in detail in the subsequent sections. The circuitry that was used to achieve this 

goal is summarized in the block diagram shown in Figure 6.1. 

Current Driver

Pulse Width Modulation

H- Bridge

Triangular Wave Generator
Triangular 

Wave

Signal
Pulse

Signal

Coil

Controlled

Current

 

Figure 6.1: Current Driver Block Diagram 

 

6.1. Triangular Wave Oscillator  

To produce the necessary drive voltage the PWM needs to compare the control 

voltage from the controller to a triangular wave. To generate this triangular wave the 

circuit in Figure 6.2 was built. This triangular wave generator uses a 555-timer to produce 

a square wave which is then passed through an integrator circuit to obtain the necessary 

triangular wave.  
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Figure 6.2: Triangular Wave Generator 

 

The 555-timer is connected to generate a square wave of approximately 50% duty 

cycle. The duty cycle and frequency of the 555-timer is controlled by the R1 and R2 resistors 

and the capacitor C1. The output signal has to have a high frequency for accurate 

simulations of PWM module. The output can be controlled by the expressions defined in 

equation (10), (11) and (12).  Equation (10) defines the time for highest voltage point for 

the rectangular wave. Equation (11) defines the period for the lowest voltage point for the 

rectangular wave. Equation (12) expresses the frequency of the rectangular wave. (8) 

𝑡1 = 0.693 ∗ 𝑅1 ∗ 𝐶      (10) 

𝑡2 =  
𝑅1∗𝑅2

𝑅1+𝑅2
 ∗ 𝐶 ∗ ln  

𝑅2−2𝑅1

2𝑅2−𝑅1
     (11) 

𝑓 =
1

𝑡1+𝑡2
       (12) 

The components values used produced an output rectangular wave with t1 = 

0.3534ms, t2 = 0.3744ms and f = 1.37kHz. Equation (13) is used to calculate the duty cycle 

of this circuit.  

𝐷 =
𝑡1

𝑡1+𝑡2
       (13) 

Therefore, the duty cycle of the output signal of the 555 timer is D = 0.4856 ≈ 49% 

which is extremely close to the desired 50% duty cycle.  The output generated by the 555-
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timer is shown in Figure 6.3. The amplitude of the output signal is 12V which is the same 

voltage Vcc required to power up the 555-timer. The figure also shows that the output 

signals high and low periods are identical. This rectangular wave is then fed into an 

integrator circuit which converts this signal to obtain the desired triangular wave. 

 

Figure 6.3: 555-Timer Output 

The LM348N op-amp is used for the integrator circuit to obtain the desired output 

signal.  The positive input of the op-amp is connected to a reference voltage of 6V produced 

by the voltage divider network R5 and R6. This reference voltage was chosen so that the 

output triangular wave has the same DC offset as the control signal from the controller. 

This way the PWM will produce an accurate output to drive the H-Bridge.  The capacitor 

value for C2 was chosen to be 50nF due to the high frequency of the 555-timer output. The 

resistor R4 controls the DC gain of the output. Figure 6.4 shows the output signal of the final 

triangular wave oscillator sub-module. 
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Figure 6.4: Output of Triangular Wave Oscillator 

 

6.2. Pulse Width Modulation 

The pulse width modulation sub-module compares the control signal of the 

controller with the triangular wave produced by the oscillator. The output signal will 

control the H-Bridge current flow for the damper coil. Figure 6.5 shows the schematic of 

this sub-module.  

 

Figure 6.5: Schematic of PWM Module 

The output of comparator Xplus goes high every time the triangular signal is greater 

than the control signal, otherwise it’s low. For the complete operation description of the 

comparator, please refer to Section 3.1.1. The output of comparator Xneg is opposite to the 
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output of comparator Xplus. The circuit was simulated using the PSPICE program. The 

generated code presented in Code 8 shows the representation of this circuit in PSPICE.  

Code 8: PWM 

************************************************* 

* OPAMP MACRO MODEL, SINGLE-POLE                * 

* connections:      non-inverting input         * 

*                   |   inverting input         * 

*                   |   |   output              * 

*                   |   |   |                   * 

.SUBCKT OPAMP       P   N   T1                 ;* 

Rin P  N 100MEG                                ;* 

Ea A  0 TABLE {V(P,N)} = 0,0  1u 10 1000,10    ;* 

                                               ;* 

Rc   A  T1 100                                 ;* 

Co   T1  0 1000p                               ;* 

ROUT T1  0 10MEG                               ;* 

                                               ;* 

.ENDS                                          ;* 

************************************************* 

 

*THIS SECTION WILL GENERATE PULSES FOR H BRIDGE 

 

Vtriangle  Triangle  0 PULSE(2.5V 10V  0s 0.365ms  0.365ms .001ps   0.73ms)             

Voffset  Offset    0 6.75V    ;DC offset  

Vcontrol   Control   Offset SIN(0V 3V 100Hz) 

Xplus  Control     Triangle  P_Plus     OPAMP 

Xneg   Triangle    Control   P_minus    OPAMP 

Rplus  P_plus   0   10MEG         ;postive pulse output 

Rneg   P_minus  0   10MEG         ;negative pulse output 

 

.PROBE 

.TRAN 10m 10m 0 1m 

.END 

 

   The code labeled macro model represents the comparators used Figure 6.5. The 

triangular signal (Vtriangle) is simulated identical to the one obtained from the triangular 

wave generator. The controller signal (Vcontrol) is simulated as a sinusoidal wave with a 

magnitude of 3V at a frequency of 100Hz and a DC offset (Voffset) of 6.75V. The frequency 

of Vcontrol is set to 100Hz for simulation purposes. Due to the high frequency of the 

triangular wave the simulation is processed for 10mS. Figure 6.6 shows the input and 

outputs signals of the PWM sub-module. The P_plus signal is the output of comparator 

Xplus while P_minus is the output of comparator Xneg.  The simulations proved that the 

PWM module works as desired. These output signals are then used to control the current 

flow of the H-bridge.  
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Figure 6.6: Output and Input Signal of the PWM 

6.3. H-Brige  

The pulse signals P_plus and P_minus are used to control the current flow through 

the H-Bridge. The H-Bridge circuit allows to acquire a bipolar current flow through the 

damper coil when the pulse signals are applied to it as it is shown in Figure 6.7 schematic. 

 

Figure 6.7: H-Bridge Circuit 
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The circuit was built using power transistors capable of withstanding currents 

greater than 15A. Transistors Q1 and Q4 are driven by the signal from the comparator Xplus 

while transistors Q2 and Q3 are driven by the signal from comparator Xneg.  Q1 and Q4 are 

turned on when the pulse signal P_plus is applied to both while Q2 and Q3 are turned off. 

This forces the current through the coil to flow in a clockwise direction. On the other hand, 

Q2 and Q3 are turned on when the pulse signal P_minus is applied to both while Q1 and Q4 

are turned off. This forces the current through the damper coil to flow in an anticlockwise 

direction. However; the current that flows through the coil does not follow the same curve 

as the control voltage due to the internal resistance and the inductance of the damper coil. 

These values were obtained in Section 1 and in Section 3.2.2. They generate a small time 

delay tdelay between the voltage and the current curves in the H-Bridge. The time delay is 

defined as the ratio of the damper coil inductance and its internal resistance as it shown in 

Equation (14). 

𝑡𝑑𝑒𝑙𝑎𝑦 =
𝐿

𝑅
=

500𝑢𝐻

300𝑚Ω
= 1.667𝑚𝑆𝑒𝑐𝑜𝑛𝑑𝑠     (14) 

Diodes are connected across the transistors to allow a flow of any residual current 

during switching performance of the H-Bridge. The transistors used to build this circuit are 

the same Darlington BJTs as the one used in the excitation coil of the road condition 

module. Figure 6.8 shows the connections of these transistors to form the H-Bridge circuit.  

 

Figure 6.8: H-Bridge Connections using the Darlington BJTs 
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The PSPICE program was used once again to simulate the behavior of the H-Bridge 

circuit. The generated code is labeled Code 9 as it is subsequently shown.   

Code 9: H-Bridge Representation in PSPICE 

*************************************************************** 

* H-BRIDGE WITH DIODES CONNECTED                          ;* 

                                                             ;* 

* CONNECTIONS:      POSITIVE TURMINAL                        ;* 

*                   |   NEGATIVE TURMINAL                    ;* 

*                   |   |   TRANSISTER 1                     ;* 

*                   |   |   |   TRANSISTER 2                 ;* 

*                   |   |   |   |   TRANSISTER 3             ;* 

*                   |   |   |   |   |    TRANSITER 4         ;* 

*                   |   |   |   |   |    |                   ;* 

*                   |   |   |   |   |    |                   ;* 

.SUBCKT H_BRIDGE    M1  M2  Y1  Y2  Y3   Y4                  ;*   

                                                             ;* 

S1  10  M1  Y1  0 PTRA                                       ;* 

S2  M1  0   Y2  0 PTRA                                       ;* 

S3  10  M2  Y3  0 PTRA                                       ;* 

S4  M2  0   Y4  0 PTRA                                       ;* 

.MODEL PTRA VSWITCH (RON=1U ROFF=10MEG VON=.1)               ;* 

                                                             ;* 

** DIODE CONNECTIONS                                         ;* 

                                                             ;* 

DQA 0  M1  DIODE                                             ;* 

DQB M1  10  DIODE                                            ;* 

DQC 0  M2  DIODE                                             ;* 

DQD M2  10  DIODE                                            ;* 

.MODEL DIODE D(N=.0001 RS=2U BV=120000)                      ;* 

                                                             ;* 

*DC VOLTAGE CONNECTED TO THE H-BRIGE                         ;* 

CFILTER  10  0  10u                                          ;* 

VBIAS    10  0  6V                                           ;* 

.ENDS                                                        ;* 

 

The transistors of the H-Bridge are represented as switches in the PSPICE code. The 

DC voltage that supplies the transistors is chosen to be 6V since the desired current needed 

in the dumber coil is ±20A. The 6V voltage is supplied to the H-Bridge by an AC-to-DC 

converter which is described in the next section. The code generated to simulate the 

connections between the PWM output signals and the H-Bridge is expressed in Code 10. 

Code 10: PWM and H-Bridge Connections 

*THIS SECTION CONNECTS THE H-BRIDGE 

*------------------------------------------------------------------ 

Xbridge  M1  M2 P_Plus  P_minus  P_minus   P_Plus  H_BRIDGE 

Lcoil    M1  B1 0.5m 

Rcoil    B1  M2 0.3 
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To obtain more realistic results from the simulation, the control signal frequency 

was changed from 100Hz to 10 Hz. The simulation was performed for about 500ms and the 

results are shown in Figure 6.9. The simulations showed that the H-Bridge circuit worked 

as desired. However; there is a small ripple in the current signal but its frequency is much 

higher than the control signal frequency therefore it has a negligible effect in the 

performance of the system.   This proves that the control signal provided by the controller 

is successfully transformed into the required current needed by the damper coil to keep the 

vehicle’s body in a constant state regardless of the road conditions. The complete PSPICE 

code of the PWM and H-Bridge connections is shown in appendix B.   

 

Figure 6.9: Control Signal V(control) and Control Current of damper coil 
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7. AC to DC Converter 

Through the construction of the road condition module it was discovered that the 

coils need about 20A to interact with the magnets of our model.  At first a power supply 

capable of supplying this current was used to drive both coils. This produced problems 

because when it was used to power the excitation coil used in the road condition module, 

the supply voltage was dropping down from 15V to about 5V every time the Darlington BJT 

allowed current through the coil. Therefore the same power supply could not be used for 

the H-Bridge which produces the counter force to keep the vehicle’s body from moving. To 

solve this problem an AC to DC converter was build that generates the power supply 

needed using the wall outlet. The block diagram of this circuit is shown in Figure 7.1. 

AC to DC 

Converter 

Power Supply

Step Down 

Transformer

Rectifier 

DC Voltage

H-Bridge

 

Figure 7.1: AC-to-DC converter Block Diagram 

The block diagram shows that the signal coming from the wall outlet is then 

supplied to a step down transformer which reduces the voltage and amplifies the current to 

the desired values. This signal is then supplied to a rectifier circuit to transform it to a DC 

signal. The DC voltage signal supplies the H-Bridge with the appropriate amount to drive 
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the damper coil. The step down transformer and the rectifier circuit are explained in the 

following subsection.  

7.1. Transformer and Rectifier 

 

The transformer used in this module is a POWERSTAT Variable Transformer. These 

transformers take in utility lines voltage and produce controllable output voltages. “They 

provide excellent power regulation with negligible variation in output voltage from no-load to 

full-load current.” (9) The POWERSTAT used in this application is the 136B series shown in 

Figure 7.2. 

 

Figure 7.2: POWERSTAT Transformer 

This transformer takes in the 120V and produces a desired output voltage. The 

rating chart for this type of transformer is shown in Figure 7.3.  
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Figure 7.3: Rating Chart of POWERSTAT (9) 

The simulations of this transformer were not possible to perform since there is no 

representation for it in the MULTISIM program. The simulations shown in this part take 

into consideration that the transformer produced the desired output.  

To get the desired DC voltage the AC voltage obtained from the transformer is 

passed through a rectifier circuit. The rectifier circuit consists of four diodes connected in a 

bridge configuration with their correspondent heat sinks. This combination gives a full-

wave rectifier which will produce a better DC signal.  The diodes used in this circuit are the 

1N3766 diodes which datasheet is shown in the appendix C. The rectifier circuit that was 

built to achieve the desired DC voltage is shown in Figure 7.4. 

 

Figure 7.4: Rectifier Circuit 
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The circuitry of the transformer and rectifier has to meet certain specifications to 

produce the desired output.  Some of these specifications are shown below.  

Specification:  

 Safety. Built in mechanism to prevent current surges. 

 Able to provide a current of about 20A 

 Output voltage ripple kept below 30% of the DC voltage 

Calculations were made based on these specifications to derive the necessary components.   

A capacitor is connected in parallel with the damper coil to keep the ripple of the 

output voltage below 30%.  The resistance of the coil was measured to be about 0.3Ω. Since 

the current going through the coil needs to be around 20A the DC voltage required would 

be about 6V as Equation (15) shows. 

𝑅 ∗ 𝐴 = 0.3Ω × 20A = 6V            (15) 

Therefore the peak DC voltage required is obtained from Equation (16). In this case 

the Vdc = 6V which will make Vpeak = 9.424V 

𝑉𝑑𝑐 =
2𝑉𝑝𝑒𝑎𝑘

𝜋
        (16) 

Since the capacitor is connected in parallel with the coil it will have the same 

voltage.  If the ripple voltage is assumed to be a saw tooth wave the value of the capacitor is 

estimated using Equation (17). The VrRMS is the rms value of the ripple voltage. The wall 

outlet will provide a signal with a frequency of 60Hz. In this case RL is the coil resistance 

which is 0.3 Ω. Solving Equation (17) for C, the value of the capacitor needed to achieve this 

ripple is 𝐶 ≈ 27𝑚𝐹. (11) 

𝑉𝑟𝑟𝑚𝑠

𝑉𝑑𝑐
 =

1

4 3𝑅𝐿𝑓𝐶
= 30%      (17) 

For safety reasons a fuse is connected in the primary coil of the transformer to limit 

the current surges. To select the fuse for this application it is necessary to know the current 

that flows though the primary coil of the transformer.  For this calculation an ideal 
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transformer was assumed. Equation (18) is used in this case to calculate the current Ip in 

the primary coil.  

𝑁𝑃

𝑁𝑆
=  

𝐼𝑆

𝐼𝑃
=

𝑉𝑃

𝑉𝑆
=

120

9.42
= 12.7      (18) 

The primary voltage supplied by the wall outlet is 120V peak. Since IS = 20A DC, its 

peak value is calculated using Equation (16) except replacing the voltage values by current 

values.  

𝐼𝑆𝑃𝑒𝑎𝑘 = 20𝐴 ×
𝜋

2
= 31.4𝐴  

Now using Equation (18) the primary peak current will be about 2.47A as it is 

shown in the calculations performed. 

𝐼𝑃𝑃𝑒𝑎𝑘 =
𝐼𝑆

12.7
=

31.4

12.7
= 2.47 𝐴 

Therefore the IRMS current that will be flowing though the primary is about 1.75A. 

From these calculations a 2A fuse was chosen to limit the current surge in the primary coil 

of the transformer. 

𝐼𝑅𝑀𝑆 =
𝐼𝑝

 2
= 1.75𝐴 

The complete circuit schematic of the transformer and rectifier connected with the 

calculated component values are shown in Figure 7.5. In the figure the internal resistance 

of the damper coil is represented by the R1 value while C1 is the capacitor calculated 

previously. 
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Figure 7.5: AC-to-DC Converter 

The transient analysis of the output voltage and the output current of this circuit are 

shown in Figure 7.6 and Figure 7.7.  The simulations performed showed that the desired 

voltage and current was obtained from the circuit. The ripple maintained was kept at a 

30% value by the capacitor used.  These signals will supply the H-Bridge circuit of the 

current driver which will control the current that flows through coil-2 of the model.  

 

Figure 7.6: Output Voltage of the AC-to-DC Converter 
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Figure 7.7: Output Current of the AC-to-DC Converter 
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8. Conclusion 

Due to the inefficiency of the current suspension systems, the main goal of this 

project was to design a more efficient suspension system. After a careful evaluation it was 

found that a dynamic electromagnetic suspension system performs the tasks established to 

accomplish this goal.  

Once the mechanical system was designed and built, the equivalent electrical 

circuitry was derived to analyze and implement the design. This helped to attain a block 

diagram to further simplify the necessary steps to achieve the main goal. The block diagram 

helped establish the specific modules needed to achieve the desired behavior of the system. 

The main modules of the block diagram were identified as the Road Condition, Signal 

Conditioning, Controller, Current Driver and the AC-to-DC Converter. 

The road condition module was able to generate a triangular wave at different 

frequencies and amplitudes. The frequency and the amplitude were manually adjusted by 

the operator to manipulate the current flow through the coil connected in series with the 

BJT transistor. The result of this module showed similar effects to that of uneven road 

conditions. 

The signal conditioning module easily measured the model’s acceleration with the 

use of a highly sensitive accelerometer. An optimal velocity signal was obtained by feeding 

this signal to an integrator circuit. The overall result was an accurate and useable velocity 

signal as it was shown in the corresponding section. 

The controller module manipulated this velocity signal to obtain the necessary 

signal to achieve the main goal. The signal was inverted, amplified and integrated to reach 

the appropriate conditions. The controller simulation output behaved as expected since all 

of the sub-modules circuitry were simple to design and implement.  

The current driver module was able to supply the appropriate current to the coil to 

keep the vehicles body stable. The signal was modified to drive a H-Bridge in the correct 

way through the use of a pulse width modulator to achieve the needed current. The H-

Bridge circuit showed excellent results. 
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The AC to DC converter circuit transformed the wall outlet voltage to the necessary 

values used by damper coil of the mechanical system. The 120 V signal was converted to 

the desired value used to supply our circuit through the use of a step-down transform and a 

rectifier.  

The results of each individual module concluded that the system worked as desired. 

The results of the overall circuit modules were very promising as it was previously shown. 

The overall results for the dynamic electromagnetic suspension system designed indicated 

that the vehicles body will stay at the same vertical position at all times regardless of the 

road conditions. It is clear that an important phase in the design of new generation 

suspension system was accomplished. This design however has to go through many phases 

before it can be implemented in actual vehicles. 

  



70 
 

9. Bibliography  

 

1. S. Mirzaei, S.M. Saghaiannejad, V. Tahani and M. Moallem. Electromagnetic Shock 

Absorber. IEEEXPLORE. [Online] 2001. [Cited: March 17, 2009.] 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00939401. 

2. Shock_Absorbers. Types of Shock Absorbers. Shock Absorbers B2B Marketplace. [Online] 

[Cited: February Thurday, 2009.] http://www.shockabsorbersworld.com/shock-absorber-

types.html. 

3. Maxim_Innovation. Digitally Controlled Sine Wave Generator. Maxim Innovation 

Delivered Website. [Online] June 27, 2003. [Cited: January 5, 2009.] http://www.maxim-

ic.com/appnotes.cfm/an_pk/2081. 

4. National_Semiconductor. TL082 Datasheet. National Semiconductor. [Online] 

November 1994. [Cited: January 5, 2009.] 

http://www.datasheetcatalog.org/datasheet/nationalsemiconductor/DS008357.PDF. 

5. Mak, Se-yuen. Six Ways to Measure Inductance. IOP Sience. [Online] September 2002. 

http://iopscience.iop.org/0031-9120/37/5/411/pdf?ejredirect=.iopscience. 

6. Mitsubishi_Electric. QM50DY-2H Datasheet. Datasheet Catalog Website. [Online] 

February 1999. [Cited: Jan 5, 2009.] 

http://www.datasheetcatalog.org/datasheet/MitsubishiElectricCorporation/mXuswys.pdf. 

7. Dimmension_Engineering. DE-ACCM3D Buffered 3D Accelerometer. Dimmension 

Engineering. [Online] 2000. [Cited: January 5, 2009.] 

http://www.dimensionengineering.com/datasheets/DE-ACCM3D2.pdf. 

8. National_Semiconductor. LM555 Timer Datasheet. National Semiconductor. [Online] 

July 2006. [Cited: 03 15, 2009.] http://www.national.com/ds/LM/LM555.pdf. 

9. Superior_Electric. Powerstat Transformer Instructions. Superior Electric. [Online] 2000. 

http://www.superiorelectric.com/PDF/z30pwst_instr_002105-006g.pdf. 



71 
 

10. Bitar, Stephen J. SCHMITT-TRIGGER RELAXATION OSCILLATOR. Worcester, MA, 

U.S.A : s.n., November 12, 2007. 

11. Mouser_Electronics. 381N1MEG Datasheet. Mouser Electronics. [Online] [Cited: 

January 5, 2009.] 

http://www.mouser.com/Search/ProductDetail.aspx?qs=sGAEpiMZZMsEGgLEzQVydmFA

56OEN7E8RuD3qUFm7VY%3d. 

12. Wikimedia_Commons. BJT Symbol NPN. Wikimedia Commons. [Online] March 23, 

2008. [Cited: March 10, 2009.] 

http://commons.wikimedia.org/wiki/File:BJT_symbol_NPN.svg. 

13. Piclist. Triangular Wave Oscillator. PICLIST website. [Online] 2009. [Cited: February 20, 

2009.] http://www.piclist.com/images/www/hobby_elec/e_ckt16.htm. 

14. Arun, P. Electronics. Oxford : Alpha Science Int'l Ltd, 2005. 

 

 

 

  



72 
 

APPENDIX A1: SCHEMATICS 
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APPENDIX B.  PSPICE CODE 
 

************************************************* 

* OPAMP MACRO MODEL, SINGLE-POLE                * 

* connections:      non-inverting input         * 

*                   |   inverting input         * 

*                   |   |   output              * 

*                   |   |   |                   * 

.SUBCKT OPAMP       P   N   T1                 ;* 

Rin P  N 100MEG                                ;* 

Ea A  0 TABLE { V(P,N)} = 0,0  1u 10 1000,10   ;* 

                                               ;* 

Rc   A  T1 100                                 ;* 

Co   T1  0 1000p                               ;* 

ROUT T1  0 10MEG                               ;* 

                                               ;* 

.ENDS                                          ;* 

************************************************* 

 

*------------------------------------------------------------------ 

*************************************************************** 

* H-BRIDGE WITH DIODES CONNECTED                          ;* 

                                                             ;* 

* CONNECTIONS:      POSITIVE TURMINAL                        ;* 

*                   |   NEGATIVE TURMINAL                    ;* 

*                   |   |   TRANSISTER 1                     ;* 

*                   |   |   |   TRANSISTER 2                 ;* 

*                   |   |   |   |   TRANSISTER 3             ;* 

*                   |   |   |   |   |    TRANSITER 4         ;* 

*                   |   |   |   |   |    |                   ;* 

*                   |   |   |   |   |    |                   ;* 

.SUBCKT H_BRIDGE    M1  M2  Y1  Y2  Y3   Y4                  ;*                 

                                                             ;* 

S1  10  M1  Y1  0 PTRA                                       ;* 

S2  M1  0   Y2  0 PTRA                                       ;* 

S3  10  M2  Y3  0 PTRA                                       ;* 

S4  M2  0   Y4  0 PTRA                                       ;* 

                                                             ;* 

.MODEL PTRA VSWITCH (RON=1U ROFF=10MEG VON=.1)               ;* 

                                                             ;* 

                                                             ;* 

** DIODE CONNECTIONS                                         ;* 

                                                             ;*                          

DQA 0  M1  DIODE                                             ;* 

DQB M1  10  DIODE                                            ;* 

DQC 0  M2  DIODE                                             ;* 

DQD M2  10  DIODE                                            ;* 

.MODEL DIODE D(N=.0001 RS=2U BV=120000)                      ;* 

                                                             ;* 

*DC VOLTAGE CONNECTED TO THE H-BRIGE                         ;* 

CFILTER  10  0  10u                                          ;* 

VBIAS    10  0  6V                                            ;* 

.ENDS                                                        ;* 

*************************************************************** 

 

*THIS SECTION WILL GENERATE PULSES FOR H BRIDGE 
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*------------------------------------------------------------------ 

Vtriangle  Triangle  0 PULSE(2.5V 10V  0s 0.365ms  0.365ms .001ps   0.73ms)             

Voffset    Offset    0 6.75V    ;DC offset  

Vcontrol   Control   Offset SIN(0V 3V 10Hz) 

Xplus  Control     Triangle  P_Plus     OPAMP 

Xneg   Triangle    Control   P_minus    OPAMP 

Rplus  P_plus   0   10MEG         ;postive pulse output 

Rneg   P_minus  0   10MEG         ;negative pulse output 

 

*THIS SECTION CONNECTS THE H-BRIDGE 

*------------------------------------------------------------------ 

Xbridge  M1  M2 P_Plus  P_minus  P_minus   P_Plus  H_BRIDGE 

Lcoil    M1  B1 0.5m 

Rcoil    B1  M2 0.3 

*------------------------------------------------------------------- 

 

.PROBE 

.TRAN 500m  500m 0 10m 

.END 

 

CURRENT DRIVER 
  



75 
 

Suspension System 

Vroad  1   0   SIN(0 1 20) 

Ck1    1   2   0.000714285714 

Lms    2   3   1.6 

Rd1    3   4   10 

Lmb    4   0   1.8 

Ck2    4   5   0.000862068966 

Rd2    5   6   15 

Econtrol  6   0  Value={V(30)} 

 

 

*Proptional Amplifier  

E1p  10  0   value={I(Lmb)} 

R1p  10  20  10k 

R2p  20  30  4000K 

X1p  0   20  30  OPAMP 

R3p  30  0   100MEG 

 

* OPAMP MACRO MODEL, SINGLE-POLE WITH 50V OUTPUT CLAMP 

* Connections:      non-inverting input 

*                   |   inverting input 

*                   |   |   output 

*                   |   |   | 

.SUBCKT OPAMP     n   p   o 

* INPUT IMPEDANCE 

RIN n p 10MEG 

* DC GAIN=100K AND POLE1=100HZ 

* UNITY GAIN = DCGAIN X POLE1 = 10MHZ 

EGAIN a 0 n p 100K 

RP1 a b 100K 

CP1 b 0 0.0159UF 

* ZENER LIMITER  

D1 b d DZ 

D2 0 d DZ 

* OUTPUT BUFFER AND RESISTANCE 

EBUFFER c 0 b 0 1 

ROUT c o 10 

* 

.MODEL DZ D(Is=0.05u Rs=0.1 Bv=50 Ibv=0.05u) 

.ENDS 

 

 

.PROBE 

.TRAN 500m 500m 0 1m  

.END 

 

CONTROLLER PSPICE CODE  
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APPENDIX C: DATASHEETS 
1N3766 DATASHEET.
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TL08CN DATASHEET 

 



78 
 

 



79 
 

 

 

 



80 
 

LM348 DATASHEET 
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