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Abstract

We present a new extension to the Hominy model finding utility, allowing it to be used
interactively. This extension provides a command line interface with a read-eval-print
loop (REPL) and a Web-based graphical interface. These allow the user to interactively
discover the consequences of applying particular augmentations to models. We define a
query language to facilitate this exploration. The semantics of this query language are
defined in terms of a directed graph structure on the space of finite models of a geometric

theory.
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Chapter 1

Introduction

1.1 Model Finding

Model finding [[14] [25] [21] [3]] is an approach within formal methods. Its purpose is to
discover properties of something that can be formally specified, such as security policies,
protocols, and software designs. Model finding is an alternative to logical deduction;
instead of directly determining the logical consequences of a formal theory, the problem
is framed as finding scenarios, or models, which are consistent with that theory.

Historically, most formal methods tools have not been readily usable by non-experts
in formal logic, but in recent years there has been an emerging class of formal methods
tools designed to be usable by non-experts; this area is known as lightweight formal
methods [10] [8]. Model finding is a useful approach in lightweight formal methods
because it benefits from concreteness.

Previous work in lightweight model finding has included the Alloy Analyzer [9], the

Margrave Policy Analyzer (based on Alloy) [7]] [16], and Aluminum [15]].



1.2 Hominy

Hominy is a lightweight model finding utility. It offers three advantages over other model-

finding tools:

e Hominy can find first-order models of unbounded size. Other model-finding tools
such as Alloy require a maximum model size to be specified; these tools work by
reducing first-order theories to propositional theories (which can be done only if the
model size is bounded), and then finding models using an off-the-shelf SAT solver.
Hominy instead uses the Chase algorithm, which does not require the model size to

be bounded.

e Hominy can trace the provenance of a fact or domain element in a model; that is,
it can identify which components of the theory require that fact or element to be

present in the model.

e Hominy provides interactivity. The focus of this project has been to add this func-

tionality.

1.3 This Project

This project adds to Hominy an interactive mode, wherein users can navigate different
possible models of a theory after that theory has been specified. Given a particular model,
the user can augment that model by adding new observations or model elements. Hominy
will then follow the logical consequences of these augmentations and present the user with
the resulting augmented model, if one can be generated. Observations can be specified in
the language of the theory, with the additional facility of being able to reference specific

elements of the model to be augmented.



Hominy is part of a long-term project on model-finding at Worcester Polytechnic In-
stitute. The current generation of this work in represented in the Razor tool [19]. The
innovations described in this project have been incorporated into Razor, though some-

times in slightly altered form.



Chapter 2

Models and Theories

Definitions 1-7, 11-16, and 17 can be found in any standard reference on mathematical

logic, such as Enderton [6]].

2.1 Syntax

Definition 1. In first-order logic, a signature L is specified by a tuple (R, F,4), where:
(6]

e R is a finite set of relation symbols.
e F is a finite set of function symbols.
e A4, the arity function, is a function of type X U F — N.

For a relation or function symbol s, we refer to A(s) as the arity of s. A function
symbol whose arity is O is also known as a constant symbol.

Given a signature L = (R, F,4), we can define a number of syntactic forms over L.

Definition 2. We assume an infinite set v of variables. A term, defined inductively, is

either:



e a variable; or

e a function application of the form f(t1,...,t,), where f € F, 4(s) = n, and each t;

is a term.
Definition 3. An atom is either:

e a relation application of the form r(ty,...,t,), where r € R, A4(r) = n, and each ¢,

is a term; or
e an equation of the form ¢| = to, where ¢ and t, are terms.
Definition 4. A formula, defined inductively, is either:

o truth (T); or

falsehood (L); or

e an atom; or

e anegation —a, where a is a formula; or

e a conjunction a) N\ a>, where a; and a, are formulas; or

e adisjunction ay V a, where a; and a; are formulas; or

e an implication ay = aj, where a; and a, are formulas; or

e a universal quantification Yv.a, where v is a variable and a is a formula; or
e an existential quantification 3v.a, where v is a variable and a is a formula.

Definition 5. A term or formula has a set F' of free variables. The set of free variables of

a term is calculated as follows:

o F(4) = {v}



o F(f(t1,....tn)) =U;F(t;)

The set of free variables of a formula is calculated as follows:

e F(ajNay) = F(a))UF(ay)
o F(a1Vay) =F(a1) UF(a)
o Flay = a») = F(a1)UF(a2)
o F(¥v.a)=F(a)\ {v}
o F(3v.a)=F(a)\ {v}
Definition 6. A sentence is a formula with no free variables (F (a) = ).

Definition 7. A theory is a set of sentences.

2.1.1 Geometric Logic

Hominy does not support unrestricted first-order logic; instead, it uses a restricted subset

of it called geometric logic [20] [22] [23] [24].
Definition 8. A positive existential formula, defined inductively, is either:

o truth (T); or



falsehood (L); or

an atom; or

e a conjunction ay A\ a>, where aj and a; are positive existential formulas; or

a disjunction a V ap, where a; and a; are positive existential formulas; or

e an existential quantification 3v.a, where v is a variable and a is a positive existential

formula.

Definition 9. A geometric sentence is a sentence of the form Vvy,...,v,.a0 = [}, where

o and [ are positive existential formulas.

By convention, the leading universal quantifier may be omitted; all variables which

are not explicitly existentially quantified are implicitly universally quantified.
Lemma 10. Every first-order theory is equisatisfiable with some geometric theory.

Proof: To convert an arbitrary theory to a geometric theory, first convert each sentence
to conjunctive normal form [6]]. Each such sentence is then expressible as a conjunction
of zero or more clauses of the forma; V---Va, V—-b; V---V-b,, where each a; and each
b; is an atom. (If both m and n is zero, L is used for the empty disjunction.) Each such
clause is then converted to an equivalent geometric sentence of the form by A---Ab, =
ayV---Vay. (If nis zero, T is used for the empty conjunction.)

Note that, traditionally, converting a first-order sentence to conjunctive normal form
involves removing all existential quantifiers through skolemization; however, because ex-
istential quantifiers are allowed on the right-hand side of the implication in a geometric
sentence, those existential quantifiers which will be placed there do not need to be skolem-

ized.



2.1.2 Converting Functions to Relations

Any theory using function symbols can be converted to an equisatisfiable theory without

function symbols. This is done as follows:

1. For each sentence in the theory, if that sentence contains a function application that
is an argument to a function or relation or is on the right-hand side of an equa-
tion, rewrite that sentence by replacing the atom containing that application with
W.f(...) =v = a, where v is an otherwise unused variable, f(...) is the func-
tion application, and a is the atom except that the function application is replaced
with v. Repeat this process until the only function applications are directly on the

left-hand side of equations.

2. Change each function symbol in the signature into a relation symbol and increase
its arity by 1. Replace each equation of the form f(vy,...,v,) = v, with a relation

application of the form f(vy,...,v,,v,).

3. For each n-ary function symbol that was changed into an n + 1-ary relation symbol,

add to the theory a sentence of each of the following forms:

o Wi, ...,vp.3x.f(Vi,...,vp,X)

L4 vxa)’yvl;---7Vn-f(Vla--wvmx)/\f("'l»n-y"m)’) = X:y

2.2 Models

Definition 11. Given a signature £ = (R, ¥, 4), a model M for L is specified by a tuple
(U, I), where: [6]

o U, the universe, is a set.



e [, the interpretation function, maps each relation symbol r € & _to a relation that is

a subset of A",

Although mathematical logic traditionally requires universes to be nonempty, it will
be useful for purposes described later to consider the empty model & 4,. The universe of
the empty model is the empty set. The interpretation function of the empty model maps

every relation symbol to the empty set.

Definition 12. Given a model M = (U, I), an environment for M is a function of type

vV — U
Definition 13. A substitution M[x — e] of an element e € U for a variable x onto an

environment 1 for an environment 1 for M is defined such that

e V=X

n) v#x

N = el(v) =

Definition 14. Satisfaction (|=) is a relation between models, environments, and formu-
las. Given a signature L = (R, ¥, 4), foramodel M = (U, I) for L and an environment

n for M, satisfaction is defined as follows (with all formulas assumed to be over £):

e For truth: M =, T.

For falsehood: M =y L.

For relation applications: M =y r(t1,...,t,) iff (e1,...,e,) € I(r), where each

e = T](l‘,').

For equations: M =y 11 =t iff n(t1) =n(r2).

For conjunctions: M =y aj Aay iff M =y a1 and M =y as.

For disjunctions: M |=n a1V ay iff M =y aj or M =y as.

9



e For existential quantifications: M |=y v.a iff there exists an element e € U such

that M }Zn[v»—m] a.
e For implications: M = o0 = B iff M |=y o implies M =y B.

Definition 15. Universal satisfaction is a relation between models and formulas. Given
a signature L, for a model M for L and « as a formula over L, M |= x iff M =, x for

every environment 1 for M.

2.3 Homomorphism and Minimality

Definition 16. Given a signature £ = (R, F,4), for two models M; = (U, I;) and
M, = (U, ) for L, a homomorphism from M, to M, is a function h: Uy — U
such that, for every r € R and every (ey,...,e,) € ‘ll{q(r), if (e1,...,e,) € I1(r), then

(h(er),...,h(en)) € L(r).

Definition 17. Existence of homomorphisms defines a preorder over models for a given
signature [19]. M; < M, iff a homomorphism exists from M| to M,. A model M is

minimal iff, for every model M’ for that signature, M < M.

Definition 18. An isomorphism between M| and M, is a homomorphism from M to M,

that is a bijective function whose inverse is a homomorphism from A, to M.

Definition 19. A set of support for a set S of models is a subset Sy of S such that for every

model M € S there exists a model M € Sy such that My < M.

2.4 The Chase

Given a geometric theory 7 and a model M with the same signature as 7, the Chase

algorithm calculates [19] a set of support for { M| =T | M < M, }.

10



The function chase(Z, M) is calculated as follows [[1] [4] [12]:
1. Check if M |= 7. If so, yield M, then halt.

2. Select a geometric sentence &« = P in 7" and an environment 1 such that M =

o = P.

3. If B = L, then halt with failure. Otherwise, select an existentially quantified con-
junction

y...vp.a; A--- Aay, from B.
4. For each v;, generate a new domain element e;.
5. For each a;:

e Ifg;is arelation application (r(t, . ..,t,)), mutate M by adding that r(zy, ..., 1)

to it as a fact.

e If g; is an equation (¢; = 1), mutate M by replacing each instance of n'(;)

with 1]/ (t 1 ) .
6. Repeat from step 1.

Previous publications on Hominy have presented the Chase as a nondeterministic al-
gorithm [18]. However, the interactive component of Hominy introduced in this project
requires that the models yielded by the Chase be ordered consistently. Therefore, the
selections in steps 2 and 3 must be made according to some well-defined deterministic
procedure. The choice of selection procedure is arbitrary.

A theory 7 is satisfiable iff the Chase does not fail when run on that model. Fur-
thermore, for every model M of a theory 7', there exists a model M, € chase(M,Dq/),
and there exists a homomorphism from M, to M;. These results are demonstrated in

Saghafi [19].

11



The Chase is not guaranteed to terminate. Since every formula in first-order logic is
equisatisfiable with some geometric theory, no algorithm that finds models for geometric
theories can be guaranteed to halt, as the satisfiability of an arbitrary formula in first-order

logic is undecidable [19].

12



Chapter 3

Augmentations and the Model-Space
Graph

In this chapter, we define a directed graph structure on the space of finite models of a
geometric theory. It will provide a formal semantics for the augmentation operations of

Hominy.

3.1 Augmentations (Informal)

Prior to this project, Hominy was capable only of finding the set of support for its input
theory. However, if the initial input model is nonempty, the Chase can also be used to
augment existing models of a theory that were generated by a previous run of the Chase
on that same theory.

In order to do this, one must first specify exactly how the model is to be augmented.
Two kinds of augmentations are supported: specifying a new logical fact which is required
to be true in the new model (but is not true in the existing model), and requiring a new

element to be added to the model.
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When specifying a new logical fact that will be required to be true (called an observa-
tion [[19]]), existing elements of the model to be augmented may be referred to. To make
this possible, observations are sentences in an expanded language that includes special
symbols for existing model elements, in addition to the symbols defined in the original
signature.

Once a model has been augmented in this way, it may no longer satisfy the original
theory. So the next step is to run the Chase again, using the original theory and the
augmented model as inputs. All models which are output by this run of the Chase will
satisfy the theory, as the Chase always requires; furthermore, the augmented model will
be a submodel of every model output this way.

From a user’s perspective, this capability is useful because it means that the initial
set of support generated by the Chase need not be the end of the story. A user can ask
what happens if one of the models is augmented in a particular way, and the Chase will
demonstrate the consequences of this. This allows the user to gain a more concrete un-

derstanding of why a given model contains the facts and elements that it does.

3.2 Augmentations (Formal)

Definition 20. We assume a countably infinite set ‘E of model element symbols. For every
countable model M = (U, I), we define a one-to-one correspondence p : S — U, where

SCE.

Definition 21. A fact is of the form r(ey,...,e,), where r € R, A(r) = n, and ¢; € U for

each e;.

Every model can be written as a universe and a set of facts which are true in that

model.

14



Definition 22. An observation for a model M is a positive existential formula not con-
taining _L or disjunctions, written in an expanded signature that adds each model element
symbol in § as a constant (nullary function) symbol. (Disjunctions are disallowed be-
cause it is not useful for the user to specify that one of two facts should be added to a
model; they might as well specify which fact should be added [19]].) The interpretation
I/ (e) of a model element symbol is p(e). An observation must be a sentence and does

not implicitly universally quantify any variables; they must all be existentially quantified.

Because an observation has no free variables, satisfaction of it is independent of envi-
ronment.

We define two operations to augment models: add and new _element.

Definition 23. Given a model M = (U, F), new_element(M ) = (UU{e},F), where e

is a new element such that e ¢ U.

Definition 24. Given a model M = (U, F) and an observation o, add(M ,0) is defined as

follows:

e For truth: add(M,T) =M

For relation applications: add(M ,r(eq,...,en)) = (U, FU{r(ei,...,en)})

For equations: add(M,e; = ep) = (U\ {p(e2)}, Fn),

where Fy is F with each instance of e; replaced with ej.

For conjunctions: add(M ,a; Aay) = add(add(M ,a,),az)

For existential quantifications:

M = Fva
add(new_element(M ),ay) : M [~ Jv.a

add(M, Iv.a) =

15



where ay is a with each instance of v replaced with the model element symbol for

the new element added with new _element.

(Note that, because all variables in an observation must be existentially quantified, and
add replaces existentially quantified variables with model elements, all terms in relation

applications and equations that are inputs to add will be model elements.)

3.3 The Model-Space Graph (Informal)

When a new fact or element is added directly to a model of a theory, the new model may
no longer satisfy that theory. However, running the Chase on the new model generates a
stream of new models, each of which satisfies the theory.

The space of all models satisfying a theory can be thought of as an infinite graph.
Each model is a node in the graph, and each possible augmentation of a model provides
an edge from that model to a the first of a new set of models, which corresponds to the
stream produced by applying that augmentation to a model.

One can think of this model-space graph as being organized into rows. A single model
corresponds to a node in the graph, and a stream of models corresponds to a row. The
bottom row of the graph is the set of support for the theory. Rows with augmentations are
above the models they originated from. Because there are many possible augmentations
that can be applied to any model, each model is connected to many rows above it.

For instance, the above diagram shows part of the model-space graph for the following

theory:

T — 3f.File(f)
File(f) = Symlink(f) V Regular(f)

Symlink(s) = 3f.LinkTo(s, f)

16



{er, ez, 65}
File(e,)

{er. e}
File(e;)

{er ez}

File(e;) . File(e,)

, File(e,) .
Symlink(e;) Symlink(e,) Sym]mk(el)
Regular(e;) Symlink(e,)

Regular(e,)

LinkTo(ey, e,) LinkTo(e,, €5)

LinkTo(e,, e5)

LinkTo(eq, e5)

File(e,)

Symlink (e;)

T + 3f.File(f) {eq, e}

File(f) + Symlink(f) v {er} Fillé(s )
Regular(f) File(e,) Symlirllk(e )

Symlink(s) + Regular(e;) LinkTo(e 1e )
af.LinkTo(s, f) o

Figure 3.1: Part of the graph representing the space of all models of a theory that might
be used for a filesystem.

Hominy’s user interfaces are centered around exploration of the model-space graph.
Users are able to navigate back and forth between models within a stream, and to move
up and down in the graph by applying and removing augmentations.

A model in the graph can be specified by a sequence of augmentations to apply and
indices associated with each step. To find the model so specified, Hominy generates
the given theory’s set of support and identifies the model at the starting index. For each
augmentation, it then applies that augmentation, generating a new model stream, and uses

the model at the corresponding index in that stream as the basis for the next augmentation.

3.4 The Model-Space Graph (Formal)

The Chase outputs a countable set of models. Consequently, we can assume a function

index(S,n), where S is a set of models output by the Chase and 7 is a natural number less

17



than the cardinality of S. It returns an element of S, and provides a one-to-one mapping
between S and the natural numbers less than the cardinality of S. The exact definition of

index is arbitrary and not specified here.

Definition 25. A graphloc is specified by a tuple (‘7 ,io, ((a1,i1),-- -, (an,in))), where thy
is a geometric theory, each i; is a natural number, and each g; is either new_element or

add(o), where o is an observation.
Definition 26. Given a graphloc G, model _at(G) is recursively defined as follows:
e model at((7,ip,())) = index(chase(T, D q,),i0)

e model at((7,io, ((a1,i1),---,(an—1,in—1),(an,in)))) =
index(chase(7,a,(model _at((‘Z,io, ((a1,i1),---,(an—1,in-1)))))),in)

The function model at is partial; if any #; is greater than or equal to the cardinality of

the output from the corresponding run of the Chase, the value is undefined.

18



Chapter 4

User Interfaces

4.1 The Command-Line Interface

4.1.1 Syntax

The Hominy command language has the following syntax:
(command) := (expression) | (assignment) | ‘exit’
(assignment) ::= (identifier) ‘:=" (expression) | ‘save’ (identifier)

e~

(expression) ::= (theory_literal) | (string _literal)

‘@’ (identifier)

| [ (expression) ‘.’ ] (operation) | (quantified)

(operation) ::= ‘add’ (quantified) | ‘new_element’ | ‘next’ | ‘previous’ | ‘first’

| ‘remove_last’ | ‘remove_all’

(theory_literal) ::= [’ (sequent) *;’ (sequent) ‘1’
(sequent) ::= [ (conjunction) ‘=>"] (disjunction)
(disjunction) ::= ‘Falsehood’ | (quantified) ‘|’ (quantified)

(quantified) ::= [ ‘exists’ (identifier) (identifier) ‘.’ | (conjunction)

19



(conjunction) ::= ‘Truth’ | (atom) ‘&’ (atom)

(atom) ::= (relational_fact) | (equality)

(relational _fact) := (identifier) [ < (" [ (term) *,” (term) ]1°)’ ]
(equality) := (term) ‘=" (term)

(term) ::= (identifier) | (function_value) | ‘#* (natural number)

13 b

(function value) ::= (identifier) * (’ [ {term) °,” (term) ]°)’

The lexical syntax of the Hominy command language, including the definitions of
(identifier) and (string literal), is the same as that of Haskell except that a command
cannot span more than one line. (natural number) is a lexeme defined as a sequence of

one or more ASCII decimal digits.

4.1.2 Formal Semantics

The semantics of the Hominy query language map expressions, as defined in the above
concrete syntax, onto graphlocs as defined in the previous chapter. This is a partial map-
ping; some expressions have undefined values. This mapping connects the operational
semantics of the Hominy query language to the denotational semantics specified in the

previous chapter.
Definition 27. This mapping, ¢, is defined as follows:

o O((theory_literal)) = (T ,0,()), where 7 is the theory specified by (theory_literal).
For ¢ ((expression) . (operation)), let (T iy, ((a1,i1),...,(an,in))) = 0({expression)). Then:

o O((expression).add (quantified)) = (T iy, ((a1,i1),...,(an,in),(add(0),0))),

where o is the observation specified by (quantified).

o O(({expression).new_element) = (T ,ip,((ay,i1),-..,(an,in), (new_element,0))).

20



o O((expression).next) = (7 ,io, ((a1,i1),--.,(an,in+1))),
or,if n=0, (7,ip+1,()).

o O((expression).previous) = (7T ,io,((a1,i1),...,(an, i, —1))),

or,if n=0, (7,ip—1,()). If i, = 0, it is undefined.

e O({expression).first) = (T,io,((ai,i1),...,(an,0))),
or,ifn=0, (7,0,()).

o O({expression).remove_last) = (T,io,((ai,i1),...,(@n—1,in—1)))-

If n =0, it is undefined.

o O((expression).remove all) = (7,0,()).

4.1.3 REPL Behavior

The Hominy command-line interface takes the form of a read-eval-print loop, or REPL.
Users are prompted to enter a command in the terminal, the command is executed, and
the results are displayed in the terminal if applicable. This process repeats until the user
exits with the exit command.

An expression entered by itself is a display command. The expression is interpreted
as a graphloc as specified above, the model at function is used to calculate a model from
that graphloc, and that model is output to the console. If either the graphloc or the model
is undefined, an error message is displayed instead.

An assignment command interprets the given expression as a graphloc and then saves
that graphloc under the specified name. If the graphloc is undefined, an error message is
displayed instead.

", @(identifier), and (string _literal), are all expressions interpreted as graphlocs.

21



~ refers to the graphloc from the most recently entered display command that was
interpreted as a defined graphloc. Its value is undefined if no such display command has
been entered.

@ (identifier) refers to the graphloc most recently saved under the given name by an
assignment command. Its value is undefined if no graphloc has been assigned to that
name.

(string _literal), when evaluated, opens the file whose path is the specified string and
attempts to read a geometric theory from it, using the same syntax as (theory literal)
except that sequents may be separated by either newlines or semicolons. If a theory
is successfully read this way, (string_literal) is equivalent to a (theory literal) of that
theory. Otherwise, its value is undefined.

Some features of the Hominy command language syntax are syntactic sugar:

e save (identifier) is equivalent to (identifier) :=
e (operation), as a command by itself, is equivalent to ~. (operation).

e (quantified), as a command by itself, is equivalent to ~.add (quantified).

4.2 The Web Interface

Hominy offers a Web-based graphical user interface. A user can access it by running the
software as a local web server on the user’s own computer, or the Web service can be
hosted on an external server. The server-side code is written in pure Haskell using the
Happstack framework [5].

The Hominy Web interface is completely stateless; it does not use cookies or any other
mechanism for including state over HTTP, and no data is stored on the server except for

caching, which is not relied on to ensure correctness. Each node in the model-space
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graph has its own URL; a text representation of that model’s 3-tuple is passed as a query
parameter in the URL. Visiting the same URL (relative to the host) always returns the
same page, regardless of how much time has passed or whether the same instance of the
server process is running. As a result, a user who uses the Back button in their browser
will find that it works as expected, and users can bookmark model pages and (if Hominy
is hosted on an external server) send model URLSs to one another, and these URLs will
return the same results in the future and for other users as they did the first time.

At the home page, the user can enter a theory or upload it as a file. When the theory
is submitted, if it is a syntactically valid theory, the user is redirected to the page for the
first model in the initial stream for that theory. If not, they are redirected to an error page.

At the page for a node in the model-space graph, if there is a model at that node,
that model’s domain and a list of all facts true in that model are displayed. If there is no
model at that node, a message is displayed to this effect. In addition, buttons are displayed
corresponding to the operations in section 2; the Add button is accompanied by a text box
to allow the user to enter an augmentation, and the Previous and Remove Last buttons are
disabled if these respective operations cannot be applied to the current node. Each button
redirects the user to the page for the model that would be returned by that operation.

To prevent unnecessary recalculation of previously calculated models, the Hominy
web server caches the model corresponding to each model URL requested. If the same
URL is requested again, the server generates the page based on the cached model instead
of running the Chase again. If the server has been restarted or the cache is otherwise
unavailable, the server will run the Chase again and the same results will be returned;

caching serves only to speed up responses to multiple requests for the same model.
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Chapter 5

Implementation

Our work was implemented in Haskell [13]], on top of the existing Hominy codebase
developed by Salman Saghafi.

A benefit of using a functional language with strong data types was that the actual code
to perform the various operations specified in our formalism was often closely analogous

to the formal definitions of those operations as given in this report.

5.1 Organization of the Codebase

As is typically the case for software projects of significant size, the code is organized into
a hierarchical set of modules. The modules that already existed before this project were

organized as follows:

e Chase, which defines the high-level implementation of the Chase.

e CC, a directory containing alternative implementations of the Chase, based on con-

gruence closure.

— CC.CC, an interface module which specifies which implementation should be

used.
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— CC.Incremental, an implementation which uses incremental string rewrit-
ing.
— CC.Naive, an implementation which also uses string rewriting transforma-

tions.

— CC.RelAlg, an implementation which uses the relational algebraic libraries

used in the RelAlqg directory.

— CC.Shostak, an implementation which uses Shostak’s algorithm.

e Formula, a directory containing datatype definitions for formulas and parsers for

those datatypes.

— Formula.SyntaxFol, which defines unrestricted first-order formulas.

— Formula.SyntaxGeo, which defines geometric formulas.

e Problem, a directory containing datatype definitions related to models and opera-

tions on those datatypes.

Problem.BaseTypes, which defines datatypes for unique identifiers used in

computing the results of the Chase.

Problem.Model, which defines the datatype for a model.

Problem.Observation, which defines the datatype for an observation.

Problem.Operations, which defines operations on a model performed as

part of the Chase.

— Problem.Provenance, which defines datatypes used for tracing what caused

a fact to be added to the model.

— Problem.Structures, which defines datatypes used internally by the Chase.
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— Problem.RelAlg, a directory containing operations for the Chase implemen-

tation based on relational algebra.

* Problem.RelAlg.Operations, which provides relational-algebraic im-

plementations of the operations underlying Problem.Operations.

* Problem.RelAlg.RelAlg, which defines the basic relational-algebraic

datatypes used by this implementation and basic operations on them.

e Test, a directory containing test code modules corresponding to the other modules

listed here.

e Tools, a directory containing miscellaneous functionality.

— Tools.Config, which defines configuration options specifiable by the user.

— Tools.FolToGeo, which converts arbitrary first-order formulas to geometric

ones.

— Tools.GeoUnification, which implements a unification algorithm used in

the handling of equations.

— Tools.Herbrand, which implements Herbrandization in order to remove uni-

versal quantifiers from formulas.
— Tools.Logger, which implements logging.

— Tools.Narrowing, which provides an alternate implementation of unifica-

tion.

— Tools.Skolem, which implements Skolemization in order to remove existen-

tial quantifiers from formulas.

e Utils, a directory containing utility functions used throughout the system.
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— Utils.FolUtilities, which provides utility functions for arbitrary first-

order formulas.

— Utils.GeoUtilities, which provides utility functions for geometric formu-

las.

— Utils.Trace, a wrapper around Utils.Utils that exports only tracing-related

functionality.

— Utils.Utils, which provides utility functions for tracing and pretty-printing.

e WeaklyAcyclic, a directory containing an alternate implementation of the Chase

designed to deal with the special case of weakly-acyclic theories.

— WeaklyAcyclic.WeaklyAcyclic, which defines this implementation.

In many cases, modules were separated into an implementation module, which con-
tains the actual code, and an interface module, which selectively exports only a subset of
the names defined in the implementation module. Only the interface module is imported
by other code, and the subset of names that it exports constitutes the API that other code
is written against; this aids in the separation of interface and implementations. In cases
where modules are divided this way, only the interface module is named in the above
list. For example, the actual file Chase.hs is an interface module; it contains no code
except for imports from the corresponding implementation module, IChase.hs, which is
located in the same directory and is not listed separately above.

Part of the work on this project was to separation of concerns in the codebase. This
separation was made more important by the presence of multiple different interactive
interfaces, which caused tight coupling to be less viable than it had been when only batch
processing of theories was supported. In particular, adding a particular observation to a

model previously required working directly with the Chase’s internal data structures that
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contain internal state for that algorithm; this was not a problem when only the Chase
itself would perform such additions, but would have made it awkward to do so with user-
specified observations from the REPL or Web interface.

To this end, new APIs were created for specifying models, theories, and augmenta-
tions, and for calling the Chase. Because it was not feasible to refactor all the existing
code at once, the existing code was moved into its own module tree, in a top-level direc-
tory named Chase. An API layer was written to translate models and theories from the
new data structures into the preexisting ones, and vice versa. The design was such that
new code would call the preexisting Chase code only through this layer, allowing it to be
written using the new APIs while the old ones still existed for the benefit of preexisting
code.

The following new modules were written:

e Datatypes, which defines data structures to represent models, geometric theories,
and their logical components. These were designed to reflect the logical structure
of geometric theories and models, as they might be exposed to the user, rather
than reflecting implementation details of the Chase. The datatypes for theories are
specific to geometric theories and are not designed to support unrestricted first-
order logic. Graphlocs and the basic operations on them are also specified here.

This module exports the following definitions:

Sequent, a datatype for geometric sentences.

TAtom, a datatype for atomic expressions in theories.

TTerm, a datatype for term expressions in theories.

MAtom, a datatype for atomic expressions in user-specified observations.

MTerm, a datatype for term expressions in user-specified observations.

Model, a datatype for models.
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— Fact, a datatype for facts within models.
— GraphLoc, a datatype for graphlocs.

— VariableSymbol, a datatype for variables in theories and user-specified ob-

servations.

— PredicateSymbol, a datatype for relation symbols in facts, theories, user-

specified observations.

— FunctionSymbol, a datatype for function symbols in theories and user-specified

observations.

— ModelElementSymbol, a datatype for model element symbols in user-specified

observations.
— add, which implements the operation add on graphlocs.
— undoConstraint, which implements the operation remove_last on graphlocs.
— previousLoc, which implements the operation previous on graphlocs.
— nextLoc, which implements the operation next on graphlocs.
— origin, which implements the operation remove all on graphlocs.
e Chase, which provides an interface to the existing implementation of the Chase
using the new APIs. This module exports the following definitions:
— chase, which implements model _at, resolving a graphloc into a model.

— chasifySequent, which translates a geometric sentence as defined in Datatypes

into the data structures used by Chase.Formula.SyntaxGeo.

— chasifyDisj, which is analogous to chasifySequent but operates on dis-

junctions.
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— chasifyConj, which is analogous to chasifySequent but operates on con-

junctions.

chasifyConnective, a helper function that abstracts out operations common

to chasifyDisj and chasifyConi.

— chasifyExQuant, which is analogous to chasifySequent but operates on

existential quantifications.

— chasifyAtomicFormula, which is analogous to chasifySequent but oper-

ates on atoms.

— chasifyTAtom, which is similar to chasifyAtomicFormula, but returns the
datatype used specifically for atoms in Chase.Formula.SyntaxGeo, which is

distinct from the one used for formulas in general.

— chasifyTTerm, which is analogous to chasifySequent but operates on terms

in theories.

— chasifyMTerm, which is analogous to chasifySequent but operates on terms

in user-specified constraints.

— chasifyConstraint, which translates an observation as defined in Datatypes

into the data structures used by Chase.Problem.Observation.

— dechasifyModel, which takes a model, as expressed in the data structures
used by Chase.Problem.Structures, and translates it back into a Model as
defined in Datatypes.

— dechasifyModelElement, which takes a model element symbol, as expressed
in the data structures used by Chase.Formula.SyntaxGeo, and translates it

back into a ModelElement Symbol as defined in Datatypes.

e Utility, which provides helper functions used in other modules. This module

exports the following definition:
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— (!!!), an infix operator similar to the list indexing operator (!!), but which

handles out-of-bounds lookups using Maybe.

e WebParse, which implements a protocol for serializing graphlocs as concise strings
of characters which are permitted in URL query string parameters. Parsec, a monadic
parser combinator library for Haskell [11]], was used to implement this. This mod-

ule exports the following definitions:

pGraphLoc, a deserializer for graphlocs.

— pSequent, a deserializer for geometric sentences.

— pTAtom, a deserializer for atoms as used in theories.

— pTPredicate, a deserializer for relation applications as used in theories.
— pTEquality, a deserializer for equations as used in theories.

— pTTerm, a deserializer for terms as used in theories.

— pIVariable, a deserializer for references to variables in theories.

— pTFunction, a deserializer for function applications as used in theories.
— pMAtom, a deserializer for atoms as used in user-specified observations.

— pMPredicate, a deserializer for relation applications as used in user-specified

observations.

— pMEquality, a deserializer for equations as used in user-specified observa-

tions.
— pMTerm, a deserializer for terms as used in user-specified observations.

— pMvariable, a deserializer for references to variables in user-specified obser-

vations.
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pMFunction, a deserializer for function applications as used in user-specified

observations.

pModelElement, a deserializer for references to model element symbols in

user-specified observations.

pVariableSymbol, a deserializer for variables.

pPredicateSymbol, a deserializer for predicate symbols.
pFunctionSymbol, a deserializer for function symbols.
pModelElementSymbol, a deserializer for model element symbols.
pInt, a deserializer for natural numbers used in model element symbols.
encodeGraphLoc, a function that serializes graphlocs.

encodeSequent, a function that serializes geometric sentences.
encodeTAtom, a function that serializes atoms as used in theories.
encodeTTerm, a function that serializes terms as used in theories.

encodeMAtom, a function that serializes atoms as used in user-specified obser-

vations.

encodeMTerm, a function that serializes terms as used in user-specified obser-

vations.

encodeVariableSymbol, a function that serializes variables.
encodePredicateSymbol, a function that serializes relation symbols.
encodeFunctionSymbol, a function that serializes function symbols.

encodeModelElement Symbol, a function that serializes model element sym-

bols.
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e WebServ, which implements the Web interface. This is a Main module and is ex-

ecutable as a program, which binds to a local port and runs a Web server which

serves the Hominy web interface. This module exports the following definitions:

main, which starts the Web server.

awi, the router which handles the different possible URLs which can be served.
find, the handler for the /find URL.

add, the handler for the /add URL.

error_, the handler for the /error URL.

home, the handler for the / URL.

template, a helper function which provides boilerplate HTML that all re-

sponses are wrapped in.

1ocURL, a helper function that generates an absolute URL for a given graphloc.

e hominy.hs, which implements the command-line interface. This is a Main module

and is executable as a program, which starts the read-eval-print loop. This module

exports the following definitions:

main, which starts the REPL.

modelLoop, the main loop function which processes a single iteration of the

REPL, then recursively calls itself until the program exits.

resolveModelExpr, which implements ¢ as defined in the previous chapter,
resolving an expression in the Hominy query language into a graphloc. This
function also takes an environment of bound names as input, in order to re-

solve @-expressions.

resolveGraphLoc, which implements model at, resolving a graphloc into a

full model.

33



— geoFormulas, which reads and parses a geometric theory from a file.

5.2 Handling Graphlocs

When a user is visiting a particular model, in order for them to navigate back and forth
in the stream and downwards (i.e., removing previously applied augmentations), it is
necessary to keep track not only of which model the user is visiting, but also of how they
got there. This is why a graphloc stores the entire sequence of augmentations that have
been applied, and the index corresponding to each one.

Parsec, a monadic parser combinator library for Haskell [11]], was used to implement
a parser for the Hominy query language, as used in the command line interface. Parsec
was also used to implement a serializer that encodes a graphloc as a series of characters
legal in URL query parameters. This allows the current graphloc to be stored in the query
string of the URL for the web interface, obviating the need for cookies or server-side

storage.

5.3 Implementing the Web Interface

The Web interface was implemented using Happstack [3]]; specifically, happstack-lite was
used to handle basic request routing, and the Blaze HTMLS combinator library (included
as part of Happstack) was used to render the HTML content of each page. Bootstrap [17]]
was used for the front-end. Models and theories were embedded in the HTML in LaTeX
format; the MathJax library [[2] was used to render these on the client side, in a way which
offered cross-browser compatibility.

The Hominy Web service recognizes the following URLs:

e /: The homepage, which offers a text box in which the user enters an initial theory.
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e /find: The page corresponding to a particular graphloc. Accepts a single query
parameter, g, which is expected to contain a graphloc serialized by the URL-safe
algorithm implemented in the WebParse module. Redirects to /error if this param-
eter does not contain a syntactically valid serialized graphloc. Otherwise, displays
the model found at that graphloc through model at, and provides buttons for op-
erations on that graphloc, including a text box for adding observations. These are

simply hyperlinks to other /find pages, except for the add operation.

e /add: The target of the form where additional observations can be entered. Accepts
two query parameters, 1oc, which is expected to contain a serialized graphloc, and
constraint, which is expected to contain a quantified expression as specified by
the concrete syntax for the Hominy command language. This expression is parsed
and the resulting observation is added to the graphloc through the add operation; the
page then redirects to the /find page for the new graphloc. The primary purpose

of this URL is to handle the parsing for the concrete syntax of observations.

e /error: Displays an error message. The user is redirected here if a syntax error

occurs.
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Chapter 6

Conclusions

The work presented here transforms Hominy from a batch-mode-only model finding util-
ity into an interactive one. This interactivity works by imposing a graph structure onto
the space of all finite models of a given geometric theory, then providing a command
language which the user can use to navigate this graph. In this way, the user can explore
the logical consequences of applying a particular augmentation to an existing model. We
have developed a command-line interface for Hominy with a read-eval-print loop, and a

Web-based graphical interface.

6.1 Future Work

Potential future improvements to the interactive scenario generation facilities of Hominy

could include the following:

e The Web interface is currently fairly primitive and could be substantially improved
with respect to user experience. In particular, it would be useful to provide graphical
representations of models instead of only offering relatively user-unfriendly lists of

facts. Graphical representations of logical models are an area of ongoing research.
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e Visit Pataranutaporn has done work in tracing the provenance of a fact or element
in a model, so as to answer the question of what part of the theory logically requires
that fact or element to be present in the model. If this were integrated into the inter-
active facilities of Hominy, users could query the provenance of facts or elements

of models.

e Users might wish to attach names to model elements and refer to them in augmen-

tations by these names instead of by not-particularly-meaningful numbers.

e Users might wish to see the consequences of removing a fact or element from a
model, similarly to how they can currently see the consequences of adding a fact or
element. The major work to be done here is in determining what the semantics of

such an operation would be, as it is not immediately clear.
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Appendix A

Code Listing

—— hominy. hs

{—| This module is the primary interface

-}

module
import
import
import
import
import

import

import

import

import
import

import

Main where
System . Environment
System . Console . GetOpt

System . Console. Readline

System . Exit (exitWith, ExitCode (..))

System .10 (hPutStrLn, stderr,
Text.Read (readMaybe)

Control . Monad

Control. Applicative

Data . Maybe
Data . List

qualified Data.Map as Map
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import Chase.Formula.SyntaxGeo (Theory, Sequent, Term(..), Elem(..) ,
parseSequent ,
Formula (..) , parseCommand, Command(..) ,
ModelExpr (..) ,
ModelOperation (..) , Atom(..))
import Chase. Utils. Utils (isRealLine, isNonEmptyLine)
import Chase.Tools.Config
import Chase.Tools.FolToGeo
import qualified Chase.Problem.Model as Model
import Chase.Chase (chase, chase’, chaseWithModel, runChase,
runChaseWithProblem , deduceForFrame)
import Chase.Problem. Observation
import Chase.Problem. Operations
import Chase.Problem.Provenance

import Chase.Problem. Structures

import qualified Codec.TPTP as TP
import Chase.TPTP.TPTPToGeo as T2G

— Preexisting option parsing code omitted

main :: I0 ()

main = do

— get the arguments

args <— getArgs

—— Parse options, getting a list of option actions

let (actions, nonOptions, errors) = getOpt RequireOrder options args

— Here we thread startOptions through all supplied option actions
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config <— foldl (>>=) (return defaultConfig) actions

modelLoop config Map.empty Nothing

data GraphLoc = GraphLoc Theory Int [(Maybe Formula, Int)]

modelLoop :: Config —> Map.Map String GraphLoc —> Maybe GraphLoc —> IO
0
modelLoop config bindings lastLoc = do
let loop = modelLoop config
continue = loop bindings lastLoc
userLine <— readline 7>_7
case userLine of
Nothing —> return ()
Just userInput —> if Chase. Utils. Utils.isNonEmptyLine userInput
then
addHistory userInput >> case (parseCommand userlnput) of

’9

Nothing —> putStrLn ”Syntax.error.” >> continue
Just cmd —> case cmd of
Display expr —> do
maybeLoc <— resolveModelExpr expr bindings lastLoc
case maybelLoc of

2

Nothing —> putStrLn "Invalid._.expression.” >> continue
Just loc —> case resolveGraphLoc config loc of
Nothing —> putStrLn ”Model_not_.found.” >> continue
Just (prob, ) —> putStrLn (show $ problemModel prob) >>
loop bindings maybeLoc
Assign var expr —> do
maybeLoc <— resolveModelExpr expr bindings lastLoc
case maybeLoc of

Nothing —> putStrLn ”Invalid_.expression.” >> continue

Just loc —> loop (Map.insert var loc bindings) lastLoc
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Exit —> return ()

else continue

resolveModelExpr :: ModelExpr — Map.Map String GraphLoc —> Maybe
GraphLoc — I0 (Maybe GraphLoc)
resolveModelExpr expr bindings lastLoc = case expr of
ThyLiteral thy —> return $ Just $ GraphLoc thy 0 []
LoadFromFile filename —> do
maybeThy <— geoFormulas filename
return $§ case maybeThy of
Nothing —> Nothing
Just thy —> Just $ GraphLoc thy 0 []
ApplyOp preExpr op —> do
maybeLoc <— resolveModelExpr preExpr bindings lastLoc
return $ case maybeLoc of
Nothing —> Nothing
Just (GraphLoc thy initiallndex steps) —> case op of
AddConstraint aug —> Just $ GraphLoc thy initiallndex (steps ++
[(Just aug,0)])
NewElement —> Just $ GraphLoc thy initiallndex (steps ++ [(
Nothing ,0) ])
RemoveConstraint —> case steps of
[] — Nothing
_ —> Just $ GraphLoc thy initiallndex $ init steps
NextModel —> Just $ case steps of
[] — GraphLoc thy (succ initiallndex) []
~ —> let (aug,lastlndex) = last steps in
GraphLoc thy initiallndex (init steps ++ [(aug,succ
lastIndex)])
PreviousModel —> case steps of

[l —> case initiallndex of
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0 — Nothing
~ —> Just $ GraphLoc thy (pred initiallndex) []

~ —> let (aug,lastIndex) = last steps in
case lastIndex of

0 — Nothing

_ —> Just $ GraphLoc thy initiallndex (init steps ++ [(

aug ,pred lastIndex)])

FirstModel —> case steps of
[] — Just $ GraphLoc thy 0 []

_ —> let (aug, ) = last steps in

Just $ GraphLoc thy initiallndex (imit steps ++ [(aug,0)])

Origin —> Just $ GraphLoc thy 0 []

LastResult —> return lastLoc

ModelVar var —> return $ Map.lookup var bindings

resolveGraphLoc Config —> GraphLoc —> Maybe (Problem, FrameMap)

resolveGraphLoc config (GraphLoc thy initiallndex steps) =

case steps of

[] — let (frms,initialProblem) = buildProblem thy

stream = runChase config Nothing frms initialProblem in

stream > initiallndex then Just ((stream !!

if length

initiallndex ) ,frms) else Nothing

~ —> case resolveGraphLoc config (GraphLoc thy initiallndex (init

steps)) of
Nothing —> Nothing

Just (prob@Problem {problemModel = oldModel, problemLastConstant

= oldConst},frms) —>

let (aug,lastIndex) = last steps
(preDeducedObs, ) = processHead $ case aug of

Just fmla —> fmla

Nothing —> Exists ”x” $ Atm $ R ”=" [Var ”x”, Var ”x”]
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([postDeducedObs],intermediateConst) = case aug of
Just _ —> deduceForFrame oldConst oldModel preDeducedObs
Nothing —> deduceForFrame (succ oldConst) oldModel
preDeducedObs
(newModel, ,newConst) = Model.add oldModel oldConst
postDeducedObs UserProv
stream = runChaseWithProblem config frms prob {problemModel
= newModel, problemLastConstant = newConst} in
if length stream > lastIndex then Just ((stream !! lastlndex),

frms) else Nothing

geoFormulas :: String —> 10 (Maybe Theory)
geoFormulas fName = do
src <— readFile fName
let inputLines = lines src
reallLines = filter isRealLine inputLines
inputFmlas = mapM (parseFolToSequent False) realLines

return $§ concat <$> inputFmlas
— Chase. hs
module Chase where
import Control. Applicative ((<$>))
import qualified Data.Map as Map
import qualified Text.Parsec as Parsec
import qualified Datatypes
import qualified Chase.Chase as Chase

import qualified Chase.Formula.SyntaxGeo as SyntaxGeo

import qualified Chase.Problem.Model as Model

43



import qualified Chase.Problem.Observation as Observation
import qualified Chase.Problem.Operations as Operations
import qualified Chase.Problem.Provenance as Provenance
import qualified Chase.Problem. Structures as Structures
import qualified Chase.Problem.RelAlg.RelAlg as RelAlg
import qualified Chase.RelAlg.DB as DB

import qualified Chase.Tools.Config as Config

import Utility ((!!!))

import qualified WebParse

import Datatypes

chase :: Datatypes.GraphLoc —> Maybe Datatypes.Model
chase (Datatypes.GraphLoc theory index steps) =
let (frms,initialProblem) =
Operations.buildProblem $ map chasifySequent theory
nextStep row steplndex stepsLeft = do
currentNode <— row !!! stepIndex
case stepsLeft of
[T — return currentNode
(constraint ,nextIndex):restSteps —>
let (newModel, ,newConst) =
(Model.add (Structures.problemModel currentNode)
(Structures . problemLastConstant currentNode)
[chasifyConstraint constraint] Provenance.UserProv)
in
(nextStep
(Chase.runChaseWithProblem Config.defaultConfig frms
currentNode {Structures.problemModel = newModel,
Structures . problemLastConstant = newConst })

nextIndex restSteps) in
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dechasifyModel <$>
nextStep (Chase.runChase Config.defaultConfig Nothing frms
initialProblem)

index steps

chasifySequent :: Datatypes.Sequent —> SyntaxGeo.Sequent
chasifySequent (Datatypes.Sequent premises consequents) = SyntaxGeo.
Sequent {

chasifyConj chasifyAtomicFormula premises,

SyntaxGeo.sequentBody

SyntaxGeo .sequentHead = chasifyDisj chasifyExQuant consequents

}

chasifyDisj :: (a —> SyntaxGeo.Formula) —> [a] —> SyntaxGeo.Formula

chasifyDisj f = chasifyConnective f SyntaxGeo.Or SyntaxGeo.Fls

chasifyConj :: (a —> SyntaxGeo.Formula) —> [a] —> SyntaxGeo.Formula

chasifyConj f = chasifyConnective f SyntaxGeo.And SyntaxGeo.Tru

chasifyConnective :: (a —> SyntaxGeo.Formula)
—> (SyntaxGeo.Formula —> SyntaxGeo.Formula
—> SyntaxGeo.Formula)

—> SyntaxGeo.Formula —> [a] —> SyntaxGeo.Formula

chasifyConnective = base [] = base

chasifyConnective func connective = xs = foldrl connective $ map func
XS

chasifyExQuant :: ([ Datatypes.VariableSymbol], [Datatypes.TAtom])

—> SyntaxGeo.Formula
chasifyExQuant (vars ,atom) =
foldr SyntaxGeo.Exists (chasifyConj chasifyAtomicFormula atom) $ do

Datatypes . VariableSymbol symname <— vars
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return symname

chasifyAtomicFormula :: Datatypes.TAtom —> SyntaxGeo.Formula

chasifyAtomicFormula = SyntaxGeo.Atm . chasifyTAtom

chasifyTAtom :: Datatypes.TAtom —> SyntaxGeo.Atom
chasifyTAtom atom = case atom of
Datatypes . TPredicate (Datatypes.PredicateSymbol symname) args —>
SyntaxGeo .R symname $ map chasifyTTerm args

Datatypes. TEquality terml term2 —>

SyntaxGeo.R ”=" [chasifyTTerm terml ,chasifyTTerm term?2]
chasifyTTerm :: Datatypes.TTerm —> SyntaxGeo.Term
chasifyTTerm term = case term of

Datatypes.TVariable (Datatypes.VariableSymbol symname) —>
SyntaxGeo . Var symname
Datatypes . TFunction (Datatypes.FunctionSymbol symname) args —>

SyntaxGeo .Fn symname $ map chasifyTTerm args

chasifyConstraint :: Datatypes.MAtom —> Observation.QObs
chasifyConstraint constraint = case constraint of
Datatypes . MPredicate (Datatypes.PredicateSymbol symname) args —>
Observation.Fct $ SyntaxGeo.R symname $ map chasifyMTerm args
Datatypes . MEquality terml term2 —>

Observation.Eql (chasifyMTerm terml) (chasifyMTerm term2)

chasifyMTerm :: Datatypes.MTerm —> SyntaxGeo.Term
chasifyMTerm term = case term of
Datatypes.MVariable (Datatypes. VariableSymbol symname) —>
SyntaxGeo . Var symname

Datatypes . MFunction (Datatypes.FunctionSymbol symname) args —>
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SyntaxGeo .Fn symname $ map chasifyMTerm args
Datatypes.ModelElement (Datatypes.ModelElementSymbol symnum) —>

SyntaxGeo .Elm $ SyntaxGeo.Elem $ “e#” ++ show symnum

dechasifyModel :: Structures.Problem —> Datatypes.Model
dechasifyModel Structures.Problem {Structures.problemModel = mdl} =
Datatypes.Model (map dechasifyModelElement $ Model. modelDomain mdl) $
do
(ref ,tbl) <— Map.assocs $ Model. modelTables mdl
let rels = map (map dechasifyModelElement) $ DB.toList tbl
case ref of
RelAlg.ConTable symname —> let [[constValue]] = rels in
return $
Datatypes. FunctionFact (Datatypes.FunctionSymbol symname) []
constValue
RelAlg.RelTable ('@ : ) — []
RelAlg . RelTable symname —> Datatypes.PredicateFact (Datatypes.
PredicateSymbol symname) <$> rels
RelAlg . FunTable symname —> do
row <— rels
return $ Datatypes.FunctionFact (Datatypes.FunctionSymbol
symname) (init row) (last row)

RelAlg.DomTable —> []
dechasifyModelElement :: SyntaxGeo.Elem —> Datatypes.ModelElementSymbol
dechasifyModelElement (SyntaxGeo.Elem (’e’:’#’:symnum)) =
Datatypes.ModelElementSymbol $ read symnum

— Datatypes. hs

module Datatypes where
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import Data.List (intercalate)

data Sequent = Sequent [TAtom] [([ VariableSymbol], [TAtom]) ]
instance Show Sequent where
show (Sequent premises consequents) =
(if null premises then ”” else

29

intercalate ”_A_.” (map show premises) ++ "_F_") ++
if null consequents then ”1” else intercalate ".v.” $ do
(vars ,atoms) <— consequents
return $
(if null vars then 7”7 else

”34.” ++ intercalate ”,.” (map show vars) ++ 7..7) ++

(if null atoms then ”T” else intercalate ”_A.” $ map show atoms

)

data TAtom = TPredicate PredicateSymbol [TTerm] | TEquality TTerm TTerm
instance Show TAtom where
show (TPredicate symbol args) =
show symbol ++ ”(” ++ intercalate ”,.” (map show args) ++ 7)”

’

show (TEquality terml term2) = show terml ++ ”.=_" ++ show term2

data TTerm = TVariable VariableSymbol | TFunction FunctionSymbol [TTerm
1
instance Show TTerm where
show (TVariable symbol) = show symbol
show (TFunction symbol args) =
(show symbol ++

9999

(if null args then else ”(” ++ intercalate 7 ,.” (map show args)

)
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data MAtom = MPredicate PredicateSymbol [MTerm] | MEquality MTerm MTerm
instance Show MAtom where

show (MPredicate symbol args) =

EL) EL)

show symbol ++ ”(” ++ intercalate ,.” (map show args) ++ 7)”

29 Lt}

show (MEquality terml term2) = show terml ++ ”.=_" ++ show term2

data MTerm = MVariable VariableSymbol | MFunction FunctionSymbol [MTerm
] | ModelElement ModelElementSymbol
instance Show MTerm where
show (MVariable symbol) = show symbol
show (MFunction symbol args) =

(show symbol ++

9999 EL) 2

(if null args then else 7(” ++ intercalate ”,.” (map show args)

)

show (ModelElement symbol) = show symbol

data Model = Model [ModelElementSymbol] [Fact] deriving Show

data Fact = PredicateFact PredicateSymbol [ModelElementSymbol] |
FunctionFact FunctionSymbol [ModelElementSymbol] ModelElementSymbol
instance Show Fact where

show (PredicateFact symbol args) =

tt) Lt}

show symbol ++ ”(” ++ intercalate 7 ,.” (map show args) ++ 7)”
show (FunctionFact symbol args value) =

(show symbol ++

EIRT)

(if null args then else

ER) LR}

”(” 4+ intercalate ,.” (map show args) ++

LR}

)”?) ++

Lt} 29

.=." ++ show value)

data GraphLoc = GraphLoc [Sequent] Int [(MAtom, Int)] deriving Show
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newtype VariableSymbol = VariableSymbol String
instance Show VariableSymbol where show (VariableSymbol symname) =

symname

newtype PredicateSymbol = PredicateSymbol String
instance Show PredicateSymbol where show (PredicateSymbol symname) =

symname

newtype FunctionSymbol = FunctionSymbol String
instance Show FunctionSymbol where show (FunctionSymbol symname) =

symname

newtype ModelElementSymbol = ModelElementSymbol Int
instance Show ModelElementSymbol where

show (ModelElementSymbol symnum) = ”#” ++ show symnum

add :: GraphLoc —> MAtom —> GraphLoc
add (GraphLoc theory startinglndex steps) constraint =

GraphLoc theory startinglndex (steps ++ [(constraint ,0)])

undoConstraint :: GraphLoc —> Maybe GraphLoc
undoConstraint (GraphLoc = []) = Nothing
undoConstraint (GraphLoc theory startinglndex steps) =

Just $ GraphLoc theory startinglndex $ init steps

previousLoc :: GraphLoc —> Maybe GraphLoc

previousLoc (GraphLoc = 0 []) = Nothing

previousLoc (GraphLoc theory startinglndex []) =
Just $ GraphLoc theory (pred startinglndex) []

previousLoc (GraphLoc theory startinglndex steps) =

let (constraint ,index) = last steps in
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if index == then Nothing else
(Just $

GraphLoc theory startinglIndex (init steps ++ [(constraint ,pred

index) ]))

nextLoc :: GraphLoc —> GraphLoc

nextLoc (GraphLoc theory startinglndex []) =
GraphLoc theory (succ startinglndex) []

nextLoc (GraphLoc theory startinglndex steps) =
let (constraint ,index) = last steps in

GraphLoc theory startinglndex (init steps ++ [(constraint ,succ index)

D

origin :: GraphLoc —> GraphLoc
origin (GraphLoc theory ) = GraphLoc theory 0 []
— Utility . hs

module Utility ((!!!)) where

(!'rYy o [a] — Int —> Maybe a

xs !!! index = if index < 0 then Nothing else getIndex xs index

getlndex :: [a] —> Int —> Maybe a
getlndex xs index = case xs of
[l — Nothing
first:rest
| index == 0 —> Just first

| otherwise —> getIndex rest $ pred index

—— WebParse . hs
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{—# LANGUAGE OverloadedStrings #-}

module WebParse where

import Control. Applicative ((<$>))
import Data.List (intercalate)
import qualified Text.Parsec as P
import Text.Parsec ((<|>))

import Text.Parsec.Text.Lazy (Parser)

import qualified Datatypes

pGraphLoc :: Parser Datatypes.GraphLoc
pGraphLoc = do
theory <— P.sepByl pSequent $ P.char ’;’
P.char !’
initiallndex <— plnt
steps <— P.many $ do
P.char ’;°
constraint <— pMAtom
P.char !’
index <— plnt

return (constraint ,index)

return $§ Datatypes.GraphLoc theory initiallndex steps

pSequent :: Parser Datatypes.Sequent
pSequent = do
premises <— P.sepBy pTAtom $ P.char ’x’
P.char ’:’

consequents <— flip P.sepBy (P.char ’/’) $ do
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existentials <— P.option [] $ P.between (P.char

P.sepByl pVariableSymbol $ P.char ’,’
atoms <— P.sepBy pTAtom $ P.char ’x’
return (existentials ,atoms)

return $§ Datatypes.Sequent premises consequents

pTAtom :: Parser Datatypes.TAtom

pTAtom = pTPredicate <|> pTEquality

pTPredicate :: Parser Datatypes.TAtom

pTPredicate = do

symbol <— pPredicateSymbol

args <— P.between (P.char °(’) (P.char ’)’) $ P.sepByl pTTerm $ P.

LI
k)

char

return $§ Datatypes.TPredicate symbol args

pTEquality :: Parser Datatypes.TAtom
pTEquality = do

terml <— pTTerm

P.char ’=’

term2 <— pTTerm

return $§ Datatypes. TEquality terml term?2

pTTerm :: Parser Datatypes.TTerm

pTTerm = pTVariable <|> pTFunction

pTVariable :: Parser Datatypes.TTerm
pTVariable = do

P.char .’

symbol <— pVariableSymbol

return $ Datatypes.TVariable symbol
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pTFunction :: Parser Datatypes.TTerm
pTFunction = do
P.char '@
symbol <— pFunctionSymbol
args <— P.between (P.char ’(’) (P.char ’)’) $ P.sepByl pTTerm $ P.

char 7,

return $§ Datatypes.TFunction symbol args

pMAtom :: Parser Datatypes.MAtom
pMAtom = pMPredicate <|> pMEquality

pMPredicate :: Parser Datatypes.MAtom
pMPredicate = do
symbol <— pPredicateSymbol
args <— P.between (P.char °(’) (P.char ’)’) $ P.sepBy pMTerm $ P.char

s s
bl

return $§ Datatypes.MPredicate symbol args

pMEquality :: Parser Datatypes.MAtom
pMEquality = do

terml <— pMTerm

P.char =’

term2 <— pMTerm

return $§ Datatypes.MEquality terml term?2

pMTerm :: Parser Datatypes.MTerm

pMTerm = pMVariable <|> pMFunction <|> pModelElement

pMVariable :: Parser Datatypes.MTerm
pMVariable = do
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P.char .’
symbol <— pVariableSymbol

return $ Datatypes.MVariable symbol

pMFunction :: Parser Datatypes.MTerm
pMFunction = do

P.char '@

symbol <— pFunctionSymbol

args <— P.between (P.char °(’) (P.char ’)’) $ P.sepBy pMTerm $ P.char

s s
bl

return $§ Datatypes.MFunction symbol args

pModelElement :: Parser Datatypes.MTerm

pModelElement = Datatypes.ModelElement <$> pModelElementSymbol

pVariableSymbol :: Parser Datatypes. VariableSymbol

pVariableSymbol = Datatypes. VariableSymbol <$> P.manyl P.alphaNum

pPredicateSymbol :: Parser Datatypes.PredicateSymbol

pPredicateSymbol = Datatypes.PredicateSymbol <$> P.manyl P.alphaNum

pFunctionSymbol :: Parser Datatypes.FunctionSymbol

pFunctionSymbol = Datatypes.FunctionSymbol <$> P.manyl P.alphaNum

pModelElementSymbol :: Parser Datatypes.ModelElementSymbol
pModelElementSymbol = do

P.char %’

symnum <— plnt

return $§ Datatypes.ModelElementSymbol symnum

pInt :: Parser Int
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pInt = read <$> P.manyl P.digit

encodeGraphLoc :: Datatypes.GraphLoc —> String

encodeGraphLoc (Datatypes.GraphLoc theory initiallndex steps) =

3%, 9

intercalate ”;” (map encodeSequent theory) ++ 7!” ++ show

initiallndex ++

99, 9

concat [”;” ++ encodeMAtom constraint ++

)

++ show index |

(constraint ,index) <— steps]

encodeSequent :: Datatypes.Sequent —> String

encodeSequent (Datatypes.Sequent premises consequents) =

3% 9

intercalate ”x” (map encodeTAtom premises) ++

9, 9

++

intercalate ”/”

9999

[(if null existentials then else

EEEEE)

”?” ++4+ intercalate ”,” (map encodeVariableSymbol existentials) ++

LR}

)+

intercalate ”x” (map encodeTAtom atoms) |

(existentials ,atoms) <— consequents |

encodeTAtom :: Datatypes.TAtom —> String

encodeTAtom (Datatypes.TPredicate symbol args) =
encodePredicateSymbol symbol ++ 7 (7 ++
intercalate ”,” (map encodeTTerm args) ++ 7)”

encodeTAtom (Datatypes.TEquality terml term2) =

9 __ 9

encodeTTerm terml ++ ++ encodeTTerm term2

encodeTTerm :: Datatypes.TTerm —> String

encodeTTerm (Datatypes.TVariable symbol) = ”.” ++ encodeVariableSymbol
symbol

encodeTTerm (Datatypes.TFunction symbol args) =

”@” ++4+ encodeFunctionSymbol symbol ++ 7 (7 ++

56



3 9

intercalate ”,” (map encodeTTerm args) ++ 7)”

encodeMAtom :: Datatypes.MAtom —> String
encodeMAtom (Datatypes.MPredicate symbol args) =

encodePredicateSymbol symbol ++ 7 (7 ++

EEEEE]

intercalate ,” (map encodeMTerm args) ++ 7)”

encodeMAtom (Datatypes.MEquality terml term2) =

9 __ 9

encodeMTerm terml ++ ++ encodeMTerm term?2

encodeMTerm :: Datatypes.MTerm —> String
encodeMTerm (Datatypes.MVariable symbol) = ”.” ++ encodeVariableSymbol
symbol

encodeMTerm (Datatypes.MFunction symbol args) =
”@” ++ encodeFunctionSymbol symbol ++ 7 (7 ++
intercalate ”,” (map encodeMTerm args) ++ 7)”

encodeMTerm (Datatypes.ModelElement symbol) = encodeModelElementSymbol

symbol

encodeVariableSymbol :: Datatypes. VariableSymbol —> String

encodeVariableSymbol (Datatypes. VariableSymbol symname) = symname

encodePredicateSymbol :: Datatypes.PredicateSymbol —> String

encodePredicateSymbol (Datatypes.PredicateSymbol symname) = symname

encodeFunctionSymbol :: Datatypes.FunctionSymbol —> String

encodeFunctionSymbol (Datatypes.FunctionSymbol symname) = symname
encodeModelElementSymbol :: Datatypes.ModelElementSymbol —> String

encodeModelElementSymbol (Datatypes.ModelElementSymbol symnum) =

”$” ++ show symnum
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— WebServ. hs

{—# LANGUAGE OverloadedStrings #-}

module Main where

import Control. Applicative ((<$>))

import Data.List (intercalate)

import Happstack.Lite
(ServerPart ,Response ,serve ,msum, dir ,ok,toResponse ,lookText ,seeOther,
setResponseCode)

import qualified Text.Blaze.Html5 as H

import Text.Blaze.Html5 ((!))

import qualified Text.Blaze.Html5. Attributes as A

import Text.Parsec (parse)

import Chase (chase)
import qualified Datatypes

import WebParse (pGraphLoc ,pMAtom, encodeGraphLoc)

main :: I0 ()

main = serve Nothing awi

awi :: ServerPart Response
awi = msum [dir “find” $ find,6 dir “add” $ add,dir “error” $ error_ ,home

]

find :: ServerPart Response
find = do

locEncoded <— lookText ”q”
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case parse pGraphLoc ”” locEncoded of

Left —> seeOther (”/error” :: String) $ toResponse (7”7 String)
Right loc —> ok $ template $ do
case chase loc of
Just (Datatypes.Model domain facts) —> do
H.h2 ”Model_found.”
H.h3 ”Domain:”
H.p $ H.toHtml $ ”{” ++ intercalate ”,.” (map show domain) ++
H.h3 ”Facts:”

H.ul $§ foldll (>>) $ map (H.li . H.toHtml . show) facts
Nothing —> H.h3 ”No.model_found.”
H.h2 ”Navigation”
H.ul $ do
case Datatypes.previousLoc loc of
Just prevLoc —>
H.li $ H.a ! A href (H.toValue $ locURL prevLoc) $ ”
Previous”
Nothing —> return undefined
H.1li $ H.a ! A.href (H.toValue $ locURL $ Datatypes.nextLoc loc
) $ "Next”
case Datatypes.undoConstraint loc of
Just upLoc —>
H.1i $ H.a ! A.href (H.toValue $ locURL upLoc) $ ”Undo.
Constraint”
Nothing —> return undefined
H.1li $ H.a ! A.href (H.toValue $ locURL $ Datatypes.origin loc)
$ ”Origin”
H.form ! A.action ”/add” $ do
H.input ! A.type “hidden” ! A.name “loc” ! A.value (H.toValue

$ encodeGraphLoc loc)
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H.label $ do
”Add_constraint:”
H.input ! A.type “text” ! A.name “constraint”

H.input ! A.type_ ”submit” ! A.value “Add”

add :: ServerPart Response
add = do
locEncoded <— lookText “loc”
constraintEncoded <— lookText “constraint”
let result = do
loc <— parse pGraphLoc ”” locEncoded

EIRT)

constraint <— parse pMAtom constraintEncoded
return $ Datatypes.add loc constraint
case result of
Left —> seeOther (”/error” :: String) $ toResponse (77
Right newLoc —> seeOther (locURL newLoc) $ toResponse (77

)

error  :: ServerPart Response
error = do
setResponseCode 400
return $§ template $ do
H.h2 ”Syntax_Error”

H.p "An_error._occurred._trying._.to_parse_the._request.”

home :: ServerPart Response
home = ok $ template $ do
H.form ! A.action ”/find” $ do
H.label $ do
“Enter._theory:”

99 9

H.input ! A.type “text” ! A.name "q
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H.input ! A.type_  “submit” ! A.value ”Find”

template :: H.Html —> Response

template body = toResponse $ H.docTypeHtml $ do

H.head $ do

—H.meta ! A.charset "UTF-8”

H. title “Hominy.Scenario._Generator”

H.link ! A.href “http://netdna.bootstrapcdn.com/bootstrap/3.1.1/css

/bootstrap .min.css” ! A.rel ”stylesheet”

H.link ! A.href “http://netdna.bootstrapcdn.com/bootstrap/3.1.1/css

/bootstrap —theme .min.css” | A.rel ”stylesheet”

H.script ! A.src “http ://ajax.googleapis.com/ajax/libs/jquery

/1.11.0/jquery .min. js”

H.script ! A.src “http :// netdna.bootstrapcdn.com/bootstrap/3.1.1/js

/bootstrap .min. js”

H.body $ do

H.hl ”"Hominy.Scenario.Generator”

body

H. hr

H.footer $ H.a ! A.href ”/” $ “Home”

locURL
locURL

Datatypes . GraphLoc —> String

loc = ”/find?q=" ++ encodeGraphLoc loc

—— Chase/Formula/SyntaxGeo . hs

module

import
import

import

Chase . Formula. SyntaxGeo where

qualified Data.Map as Map

Data .Map(Map)
Data . Maybe
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import Control.Exception — for assert
import Debug. Trace

import Data.List(intercalate)

import Control. Applicative hiding (many)

import Text.ParserCombinators.Parsec hiding ( (<|>) )

import Text.Parsec.Token ( TokenParser )

import qualified Text.Parsec.Token as Token

import Text.ParserCombinators.Parsec.Language ( haskellStyle )

import qualified Text.ParserCombinators.Parsec.Expr as Expr

import Data.Set ((\\))

—— Preexisting parsing code omitted

—— Query language stuff

data Command = Display ModelExpr | Assign String ModelExpr | Exit

data ModelExpr = ThyLiteral Theory | LoadFromFile String

| ApplyOp ModelExpr ModelOperation | LastResult |

ModelVar String

data ModelOperation = AddConstraint Formula | NewElement |

RemoveConstraint | NextModel

| PreviousModel | FirstModel | Origin

pCommand :: Parser Command

pCommand = pExit +++ pImplicitAssign +++ pAssign +++ pDisplay
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pDisplay :: Parser Command
pDisplay = Display <$> pModelExpr

pImplicitAssign :: Parser Command
pImplicitAssign = do

symbol ”save”

var <— identifier

return $ Assign var LastResult

pAssign :: Parser Command
pAssign = do
var <— identifier
symbol 7:="

expr <— pModelExpr

return $ Assign var expr

pExit :: Parser Command

pExit = symbol "exit” >> return Exit

pModelExpr :: Parser ModelExpr
pModelExpr = (pExplicitModelExpr <|> pImpliedOp) +++ pImpliedAdd

pExplicitModelExpr :: Parser ModelExpr

pExplicitModelExpr = do
base <— pThyLiteral <|> pLoadFromFile <|> pLastResult <|> pModelVar
ops <— many $ dot >> pModelOperation

return $§ foldl ApplyOp base ops

pIlmpliedOp :: Parser ModelExpr
pImpliedOp = foldl ApplyOp LastResult <$> sepByl pModelOperation dot
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pImpliedAdd :: Parser ModelExpr

pIlmpliedAdd = ApplyOp LastResult <$> AddConstraint <$> pFmla

pThyLiteral :: Parser ModelExpr

pThyLiteral = ThyLiteral <$> brackets (semiSepl pSequent)

pLoadFromFile :: Parser ModelExpr

pLoadFromFile = LoadFromFile <$> stringLiteral

pLastResult :: Parser ModelExpr

~ 9

pLastResult = symbol ” >> return LastResult
pModelVar :: Parser ModelExpr
pModelVar = do

symbol ”@” <|> symbol ”load”

ModelVar <$> identifier

pModelOperation :: Parser ModelOperation
pModelOperation = (pNewElement +++ pRemoveConstraint +++ pOrigin) <[>

pNextModel <|> pPreviousModel <|> pFirst <|> pAddConstraint

pAddConstraint :: Parser ModelOperation
pAddConstraint = do
symbol ~add”

AddConstraint <$> (parens pFmla <|> pFmla)

pNewElement :: Parser ModelOperation

pNewElement = symbol “new element” >> return NewElement

pRemoveConstraint :: Parser ModelOperation

pRemoveConstraint = symbol “remove_last” >> return RemoveConstraint

64



pNextModel :: Parser ModelOperation

pNextModel = symbol “next” >> return NextModel

pPreviousModel :: Parser ModelOperation
pPreviousModel = symbol ”previous” >> return PreviousModel
pFirst :: Parser ModelOperation

pFirst = symbol ”first” >> return FirstModel

pOrigin :: Parser ModelOperation

pOrigin = symbol “remove all” >> return Origin

parseCommand :: String —> Maybe Command

parseCommand input = case (parse pCommand ”parsing._Command” input) of

Left _ —> Nothing

Right val —> Just val

—— Chase/Formula/UserSyntax. hs

module Chase.Formula.UserSyntax where

import Control. Applicative

import Text.ParserCombinators.Parsec hiding ( (<|>) )

import Text.Parsec.Token ( TokenParser )

import qualified Text.Parsec.Token as Token

import Text.ParserCombinators.Parsec.Language ( haskellStyle )

import qualified Text.ParserCombinators.Parsec.Expr as Expr

import Chase.Formula.SyntaxGeo

import Chase.Problem.Observation
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— These are for interactive mode

natural = Token.natural lexer

parseUserFact :: String —> Obs

parseUserFact input = case parse pUserFact ”parsing._user_fact” input of

Left err —> error (show err)

Right val — val

pUserFact :: Parser Obs

pUserFact = pUserEquality <|> pUserAtom

pUserEquality :: Parser Obs
pUserEquality = do

tl <— pUserTerm

symbol 7="
t2 <— pUserTerm

return $§ Eql tl t2

pUserAtom :: Parser Obs
pUserAtom = do
name <— identifier
termList <— pUserTermList <|> return []

return $ Fct $ R name termList

pUserTermList :: Parser [Term]
pUserTermList = parens $ commaSep pUserTerm
pUserTerm :: Parser Term

pUserTerm = pUserElement <|> do
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name <— identifier

pUserFunction name <|> pUserConstant name <?> “user.term”

pUserElement :: Parser Term
pUserElement = do

symbol “e#”

n <— natural

return $ Elm $ Elem $ “e#” ++ show n

pUserFunction :: String —> Parser Term
pUserFunction name = pTermList >>= return . Fn name
pUserConstant :: String —> Parser Term

pUserConstant name = return $ Var name

—— Chase/Problem/IModel . hs

— Only two functions in this module are original to this project.

prettyModel2 :: Model —> String
prettyModel2 mdl@(Model tbls ) =
”Domain: .{” ++ intercalate ”,.” (map prettyElement2 (modelDomain mdl)
) ++ 7}\nFacts:.” ++
(intercalate ”;.” $ do
(ref ,tbl) <— Map. assocs $ modelTables mdl
let rels = DB.toList tbl
case ref of
ConTable symname —> let [[constValue]] = rels in
return $ symname ++ ”_=_" ++ prettyElement2 constValue

RelTable (@’ : ) —> []

RelTable symname —> do
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row <— rels
return $ symname ++ ”(” ++ intercalate ”,.” (map prettyElement2
row) ++ 7)”
FunTable symname —> do
row <— rels
return $ symname ++ ”(” ++ intercalate ”,.” (map prettyElement2
(init row)) ++ ”)._.=." ++ show (last row)

DomTable —> [])

prettyElement2 = init . tail . tail . show
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