
Swol Kat
Major Qualifying Project

Advised By:

PROF. NICHOLAS BERTOZZI
BRADLEY A. MILLER

PROF. ANDREW CLARK
PROF. HAICHONG ZHANG

Written By:

EZEKIEL T. ANDREASSEN
ARJUN GANDHI

MITCHELL R. JACOBS
ANDREW E. MULARONI

A Major Qualifying Project
WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of the Worcester Polytechnic Institute in
partial fulfillment of the requirements for the Degree of Bachelor
of Science in Robotics Engineering and Electrical Engineering.

This report represents the work of one or more WPI
undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes

these reports on the web without editorial or peer review.

AUGUST 2020 - MAY 2021

1

Abstract

As the focus in robotics is shifting from specialized robots in controlled envi-
ronments to generalized robots in unstructured environments, there is greater
demand for legged locomotion research platforms. Four-legged robots achieve a
balance between speed and stability. In this project, the team designed and fabri-
cated a highly maneuverable robot using 3-DOF legs powered by BLDC motors.
This quadruped is an extensible platform for future work in gait development,
computer vision, and more.

2

Table of Contents

1 Introduction 9
1.1 Current State of Research Quadrupeds 9
1.2 Proposed Objectives . 9

2 Background 10
2.1 Quadrupeds at WPI . 10
2.2 MIT Mini Cheetah . 10
2.3 ODrive Motor Controllers . 11
2.4 Quadruped Walking Gaits . 11

2.4.1 Intermittent Crawl Gait . 11
2.4.2 Crawl Gait . 12
2.4.3 Trot . 12

3 Methodology 13
3.1 Engineering Process . 13
3.2 Motor Selection . 13
3.3 BLDC Motor Torque Curves . 14
3.4 Initial Control System Topology . 15
3.5 COVID . 15

4 Design and Development of Single Leg 17
4.1 System Overview . 17
4.2 Mechanical . 17

4.2.1 Extremity Design . 17
4.2.1.1 First Design . 18
4.2.1.2 Second Design . 20
4.2.1.3 Third Design . 22

4.2.2 Shoulder Joint Design . 27
4.2.2.1 Capstan Prototype . 28
4.2.2.2 Determining the wraps necessary for the minor roller 29

4.3 Controls . 35
4.3.1 Forward Kinematics . 35
4.3.2 Inverse Kinematics . 36
4.3.3 Jacobian . 37
4.3.4 Current Limiting . 38
4.3.5 Quintic Trajectory Planning . 39

4.4 Software Stack . 39
4.4.1 ODrive Tuner . 40
4.4.2 Joint and Virtual Joint Class 40
4.4.3 Leg Class . 41
4.4.4 Leg Stick Plot . 41
4.4.5 Leg UI . 42

4.5 Communication . 42

3

5 Design/Development of Quadruped 43
5.1 System overview . 43
5.2 Mechanical . 43
5.3 Communication . 43

5.3.1 Multi Threading . 44
5.3.2 ODrive Firmware . 45

5.4 Controls . 47
5.4.1 World To Robot Transformation 47
5.4.2 Robot To Leg Frame Transformation 47
5.4.3 Leg Swing Phase Control . 48
5.4.4 Foot Ground Phase Control . 49

5.5 Software Stack . 50
5.5.1 Robot Class . 50
5.5.2 Gait Class . 50
5.5.3 Virtual Robot . 51
5.5.4 Utility . 52

5.6 Gaits . 53
5.6.1 Wiggle Gait . 53
5.6.2 Crawl Gait . 53
5.6.3 Trot . 54
5.6.4 Intermittent Crawl . 54

5.7 Electrical . 56
5.7.1 ODrive Holder PCB . 56
5.7.2 CPU PCB . 57
5.7.3 Encoder PCB . 58
5.7.4 Hall Effect Homing Sensor . 59
5.7.5 Inertial Measurement Unit . 59
5.7.6 Battery Calculations . 59

6 System Testing and Validation 60
6.1 Overview . 60
6.2 Single Motor Testing . 61
6.3 Bandwith Measurement . 61
6.4 Single Leg Testing . 61
6.5 Dual Leg Testing . 61
6.6 Virtual Gait Testing . 62
6.7 Gait Testing . 62
6.8 Suspended Testing . 62

6.8.1 Lowering . 63
6.8.2 Body Positioning . 63
6.8.3 Crawl . 63
6.8.4 Trot . 63
6.8.5 Intermittent Crawl . 64

6.9 Encoder Problems . 64
6.10 ODrive Problems . 64

4

7 Discussion 64
7.0.1 Mechanical . 64
7.0.2 Electrical . 65
7.0.3 ODrives . 65
7.0.4 Code . 66
7.0.5 Controls . 67

8 Conclusion 67

9 Appendix 69
9.1 UI Pictures . 69
9.2 PCB Pictures . 70

5

List of Tables

1 Known Constants for FBD in Figure: 17 23
2 Known Constants for FBD in Figure: 21 25
3 DH table for first configuration . 36
4 DH table for second configuration . 36
5 Rotation of Each Leg on Robot . 48
6 Position of Each Leg on Robot . 48
7 Bezier Curve Control Points . 49

6

List of Figures

1 Foot Contact Patterns for Intermittent Crawl Gait 12
2 Foot Contact Patterns for Crawl Gait 12
3 Foot Contact Patterns for Trot Gait . 13
4 Calculated torque curve for selected BLDC motor 15
5 Initial Control System Topology Diagram 16
6 Full Single Leg Development System 17
7 Upper and Lower Extremity are the Green and Red Segments Re-

spectively . 18
8 CAD of First Draft of Extremity . 18
9 MOI of First Leg about the Extremity Axle. The total MOI and

weight of the first leg was 66.57 lb*in2 and 3.09 lb respectively . . . 19
10 Partially Assembled First Version of Leg 19
11 Version 2 CAD . 20
12 Leg Version 2 without electronics or belts 20
13 Cross Sectional View of the interior of the arm 21
14 Extremity MOI about axle . 21
15 CAD and Diagram of Extremity . 22
16 Lower Extremity . 22
17 FBD of Lower Extremity . 23
18 Equations of Equilibrium for Lower Extremity 24
19 Torque Reduction Calculations for Lower Extremity 24
20 Upper Extremity . 24
21 FBD of Upper Extremity . 25
22 Equations of Equilibrium for Upper Extremity 26
23 Torque Calculation of Elbow Pulley . 26
24 Torque Reduction Calculations for Lower Extremity 26
25 Extremity MOI about axle. The MOI of the total extremity was

31.14 lb*in2 and had a weight of 1.02 lb 27
26 Prototype 1 of Swol Kat Capstan Shoulder 28
27 String Tensile Strength Requirement 28
28 Factor of Safety(FOS) on Dyneema . 29
29 Calibration of Weight . 29
30 Full Dyneema NylonX Friction Test Setup 30
31 Calibrated Weight, Dyneema, NylonX Sample Stack 30
32 Force Gauge Reading when the Static Friction Force Was Broken . . 30
33 FBD of Dyneema under Weight on NylonX 31
34 Solution For Coefficient of Static Friction 31
35 The Capstan Equation[1] . 32
36 Solving the Capstan Equation for Wrap 32
37 Number of Wraps Necessary Given Pretension of 3 lb-f 32
38 First Capstan Prototypes . 33
39 Number of Wraps Necessary Given Pretension of 0.25 lb-f 33
40 CAD of Final Capstan Prototype . 34

7

41 Final Capstan Prototype . 34
42 Arm Home in First Configuration . 35
43 Arm Home in Second Configuration 35
44 Single Arm Overview . 40
45 Stick Plot Of Leg . 41
46 Render of Final Quadruped . 43
47 Initial control system diagram (top) and final control system dia-

gram (bottom) . 44
48 Results from a program that runs the main loop for 5 seconds to

determine the loop frequency. 45
49 SPI read data frame and EF bit description from the AS5047P en-

coder datasheet.[2] . 46
50 Leg Frame Locations on Robot . 47
51 Bezier curves generated for various step heights and lengths 48
52 Full Quadruped Code Overview . 50
53 Basic Structure for all gaits . 51
54 Plotted Robot . 52
55 Logic For Single Loop of Wiggle Gait 53
56 Step Pattern for Crawl Gait . 53
57 Logic For Single Loop of Crawl and Trot Gait 54
58 Step Pattern for Trot Gait . 54
59 Step Pattern for Intermittent Crawl Gait 55
60 Logic For Single Loop of Intermittent Crawl Gait 55
61 Picture of Various PCB’s Made . 56
62 ODrive Holder PCB Revision 1 . 57
63 ODrive Holder PCB Final Revision . 57
64 CPU PCB Revision 1 . 58
65 CPU PCB Revision 2 . 58
66 AS5047P Development Board (left) Designed AS5047P PCB (cen-

ter) US Quarter (right) . 59
67 Robot suspended on testing jig . 63
68 Fully Assembled Robot . 68
69 Odrive Tuner UI . 69
70 Leg Control UI . 70
71 Encoder PCB Schematic . 70
72 Encoder PCB Layout . 71
73 ODrive Holder PCB Schematic . 71
74 ODrive Holder PCB Layout . 72
75 CPU PCB Layout . 73

8

1 Introduction

1.1 Current State of Research Quadrupeds
Quadruped development has been popular in industry and academia for over a
decade. Until recently most high powered quadrupeds relied upon hydraulic or
large electric actuators. One notable historic example includes the General Elec-
tric Walking Truck which used hydraulic actuators. This robot was developed in
1968. The robot had a mass of 1300kg and a maximum speed of 5 miles per hour.
A more recent hydraulic quadruped is Boston Dynamics BigDog robot developed
in 2004. This robot weighed approximately 109 kg and can reach speeds of 2 me-
ters per second (5 miles per hour). BigDog’s most notable feature is its ability to
carry 50kg of payload on any terrain and up to 154kg of payload on flat terrain
[3].

When investigating the early history of electrically driven legged robots it was
determined that most required more than 4 legs. This is due to the low speeds at
which traditional electric actuators needed to operate at to provide the required
torque. One such robot was the Ambler hexapod developed from 1988 to 1991 [3].

Currently, Boston Dynamics’s Spot robot represents the most advanced quad-
ruped research. Spot has a 14KG payload capacity, robust dynamics, and the abil-
ity to recover from falls. MIT has Mini Cheetah[4], a 20lb robot with a great range
of motion, and enough torque to perform a backflip. Stanford has 3 quadruped
projects: Doggo, Woofer, and Pupper. Doggo has the highest vertical jumping abil-
ity of any quadruped robot produced, weighing in at only 5kg. Woofer is a scaled
up version of Pupper, a 12 dof quadruped designed to learn and experiment with
walking dynamics. Recently the Open Dynamic Robot Initiative was started by a
collaboration of teams from NYU and Germany, The project demonstrates the use
of a modular robotic limb in a variety of legged configurations. Each leg module
consists of a brushless motor and encoder surrounded by 3d printed enclosure.
Most of these research quadrupeds rely on the power density of BLDC actuators
to achieve their impressive statistics.

Quadruped research has become a focal point of the robotics industry as the
demand for quadrupeds has been rapidly increasing. A main cause of this in-
crease is the introduction of Spot [5] to the industrial marketplace. Quadrupeds
are no longer seen solely as research platforms. Instead, they are seen as useful
tools to work in environments that are too dangerous for humans. These envi-
ronments range from power plants and construction sites, all the way to SpaceX’s
drone ships to inspect landed rocket boosters. These commercial applications con-
tinue to grow as more development is accomplished on quadruped platforms.

1.2 Proposed Objectives
The three main objectives for this project are: design a mechanical platform

that can be used for future legged robot research at WPI, implement a high-speed
control loop to control the actuators of the robot and respond to feedback from the
environment, and to implement a dynamic walking gait. The first two objectives

9

are necessary to build a performant platform to develop the dynamic walking gait
and the last objective is the primary goal for this project. The dynamic walking
gait occurs when a quadruped robot walks by taking two of its legs off the ground
at once, rather than always being statically stable with 3 legs on the ground. In
nature, four legged animals usually walk in this dynamic gait because it is more
maneuverable than a static gait. Having a quadruped capable of this dynamic
walking gait is much more difficult as the robot must balance between two legs
during the step, leaving it far less stable. The dynamic walking gait is a goal for
many quadruped projects as it is what separates a quadruped that walks in a
slow, awkward way from a maneuverable and fast machine.

2 Background

2.1 Quadrupeds at WPI
WPI’s research into quadrupeds began in 2011 with the Sabertooth MQP [6].
This project produced a 300lb robot that was cable of carrying a 30lb payload.
The team was able to simulate a walking gait for their robot. Since then, there
have been 5 other MQP’s on quadrupeds. The most notable of these is Small
Kat [7], a RC servo based, 16 DOF quadruped, which was capable of a static
walking gait. Mechanical limitations in size and motor power prevented them
from achieving a dynamic walking gait. WPI has also experimented in some non-
traditional areas of quadruped design. The HydroDog [8] project used hydraulic
muscles to preform bounding and hopping gaits. Low Cost Quadruped [9] while
limited in mobility was able to perform SLAM and facial recognition on the robot.
Even with all this research, WPI has yet to produce a stable quadruped platform
easily usable for research.

2.2 MIT Mini Cheetah
The MIT Biomimetic Robotics Lab developed Mini Cheetah as a small, robust and
inexpensive robot in 2019. Achievements of Mini Cheetah include successfully
implementing numerous dynamic gaits at speeds of up to 2.45 meters per second
and executing 360 degree backflips. Mini Cheetah is an extension of previous
research at MIT that has produced several highly capable quadrupeds. [4].

Mini Cheetah served as an inspiration for this project as it implemented cus-
tom BLDC actuators, demonstrating their viability at a similar scale to ours.
Mini Cheetah also focused on low inertia limbs, which minimized the dynamic
forces acting on the robot. Additionally, Mini Cheetah needed to maintain a 1khz
control loop per actuator, which we used as a benchmark when choosing and test-
ing components.

Our project differs from Mini Cheetah in many ways. The cost of actuators
alone for Mini Cheetah was $3600. This cost would make the project not viable
as an MQP. Instead, our project uses off the shelf components, along with 3D
printing and carbon fiber plates to dramatically reduce the cost. Additionally, our

10

project uses a wider base than that of the Mini Cheetah to create a more stable
stance, as well as creating additional space to house the of the shelf components.

2.3 ODrive Motor Controllers
For a long time, hobbyists have had access to high power brushless direct-current
(BLDC) motors that are meant for quadcopters, but due to the current offerings of
BLDC motor controllers these motors have only been useable for high RPM, con-
tinuous rotation tasks. Recently, a motor controller has emerged called ODrive
that implements a field-oriented control algorithm on BLDC motors. This allows
for the low cost, high power BLDC motors to be controlled like servos. We decided
to use this new motor controller on the robot because power density is incredibly
important for a quadruped robot.

Field-oriented control is a strategy for controlling brushless motors that uses
the magnetic field created by the currents in the motor coils and their inter-
actions with the magnetic field produced by the rotor. Maximum torque for a
BLDC motor is produced when the magnetic field produced by the current flow-
ing through the motor coils is perpendicular to the field produced by the rotor.
This form of control measures the rotor position and drives current through the
correct coils so that maximum torque is produced. Varying the magnitude of the
current controls the amount of torque being produced.

2.4 Quadruped Walking Gaits
Dogs and other 4 legged animals use a variety of different gaits based on speed,
terrain, maneuverability and energy efficiency [10]. Gaits fall into one of 2 cate-
gories. Symmetric Gaits are gaits where the right and left limbs alternate. Asym-
metric Gaits are those where the legs move in unison. For this project the team
focused on implementing the 3 gaits below.

2.4.1 Intermittent Crawl Gait

In this asymmetric gait 3 legs always remain in contact with the ground. The
center of mass of the robot is shifted to keep the center of mass within the triangle
of contact. All 4 legs are in contact with the ground while the body is moving
forward. As the center of mass of the robot is always within the triangle of contact
for the robot this gait is incredibly stable. It also minimizes dynamic loads on the
robot as the foot taking the step is generally under little to no load.

11

Figure 1: Foot Contact Patterns for Intermittent Crawl Gait

2.4.2 Crawl Gait

The asymmetric crawl gait keeps 3 legs in contact in the ground and alternates
which leg is in the air at any time. The crawl moves the center of mass in a
straight line in the direction of motion. This like the Intermittent Crawl Gait this
gait is considered stable as the robots center of mass never leaves the triangle
of contact. This gait has the potential to reach a much higher speed than the
Intermittent Walking Gait however in doing so this increases the dynamic load
on the quadruped.

Figure 2: Foot Contact Patterns for Crawl Gait

2.4.3 Trot

The Trot Gait is a symmetric gait where the two opposite legs move in unison.
This gait unlike the previous two is inherently unstable. When both feet are
raised in the air the robot needs to balance on the other two legs. If active balanc-
ing is not present the robot needs to step very quickly in order to avoid tipping
over. However what this gait sacrifices in stability it gains in speed. The trot gait
is significantly faster than both Crawl and Intermittent Crawl and in nature is
often used by 4 legged animals to travel long distances quickly.

12

Figure 3: Foot Contact Patterns for Trot Gait

3 Methodology

3.1 Engineering Process
Going into this project, we were aware that we were taking on a task that teams
have failed to succeed at in the past at WPI. We set out with an ambitious time-
line, spreading the work out throughout the entire year. We began by simulta-
neously developing the basis of the control system and building the first set of
leg prototypes. This included steps such as building up the control system to con-
trol one motor all the way through controlling multiple ODrives. This allowed a
few different leg revisions to be created and tested by hand before the electronics
could control an entire leg. Once the electronics were functional, we began test-
ing individual legs and using single legs to develop the control software. Once
the design of a single leg was validated, the rest of the quadruped was designed.
Simultaneously, a visualization system was created to continue development of
the control system. Once the quadruped was assembled the visualized code was
ported onto the final quadruped. The robot control system was validated using
suspended testing. This testing was followed by lowering the robot to test the
mechanical system.

3.2 Motor Selection
Having a high power to weight ratio is critical to create a maneuverable robot.
Therefore a motor with a high power output and high peak torque that is in
the weight budget is required. Motor power directly contributes to the power to
weight ratio, so having a high power output is optimum. A high motor torque
output allows for a lower and lighter reduction. With 12 motors needed to build 4
legs, the price of each motor was considered while choosing a motor for the robot.

There are three parameters that are focused on while selecting a motor for
this application: the continuous power rating, Kt and Kv. The continuous power
rating is an indicator as to how much current can continuously run through the
motor without causing overheating or damage. Due to the variation in methods of
measuring the continuous power rating, this parameter is only used when com-
paring motors made by the same manufacturer. The motor Kt and Kv parameters
describe how the motor torque and speed relate to the current and voltage being

13

supplied to it. Kt is the torque constant and in our case has units Nm/A. Kt is
multiplied by the current flowing through the motor to obtain the torque applied
at any instant. Kv is the motor speed constant and has the units RPM/V. The
motor Kv is multiplied by the bus voltage to find the maximum unloaded speed
of the motor.

Of the motors that were looked at, the best option appeared to be the 9225
motor from Multistar. Two variants of the motor that are easily obtainable online
are the 160Kv and 90Kv motors. The 160Kv had a continuous power rating of
1100W and the 90Kv had a continuous power rating of 900W. The 90Kv motor
was more than double the price of the 160Kv motor.

With hobby BLDC motors, the Kt of the motor can estimated using the fol-
lowing equation from the Kv. [11]

K t = 8.27/Kv

With two motors that have similar continuous power ratings, the next crite-
ria is the torque output of the motor. The 160Kv motor has an estimated Kt of
0.05168 Nm/A and the 90Kv motor has an estimated Kt of 0.09188 Nm/A. For
this robot, the optimal motor is the 90Kv variant of the 9225 motor as it would
have a similar power rating with a higher torque constant, meaning less reduc-
tion is required. However, due to the higher price of the 90Kv variant the robot
was built with the 160Kv motors and a higher gear reduction.

3.3 BLDC Motor Torque Curves
Due to how the ODrive motor controller current limits the motor, the effective
torque curve of the BLDC motors used to control the robot differs from the motor
torque equation for a motor that is only voltage limited. There are two main
regions of the current limited motor torque curve that act differently: the current
limited region and the voltage limited region.

During the current limited region, the motor produces a constant torque re-
gardless of motor speed. This happens because the back EMF produced by the
rotor is not of a high enough voltage to prevent the desired current from flow-
ing through the coils. Since motor torque is proportional to the current flowing
through the coils, a constant torque can be achieved in this region.

In the voltage limited region, the magnitude of the back EMF is high enough
to prevent the motor controller from creating enough potential for the desired
current to flow through the motor. In this region the torque that can be produced
by the motor linearly decreases with speed, following what would happen with a
traditional brushed motor.

Due to the low resistance of the BLDC motors being used, a high voltage po-
tential is not needed to create a high current. It is relatively easy for the motor
controller to maintain the desired current through the coils. As a result, the mo-
tors used in the robot mostly operate in the current limited region of their torque
curve. Only rapid movements not in contact with the ground have the potential

14

to move fast enough to operate in the voltage limited region. In these rapid moves
the full motor torque is not needed. This allows us to assume that the maximum
motor torque for the robot is that of the current limited region for the mechanical
design of the legs.

Figure 4: Calculated torque curve for selected BLDC motor

3.4 Initial Control System Topology
We decided on a distributed approach for the control system to offload some tasks
such as trajectory planning and leg positioning. These tasks are well suited to a
microcontroller, rather than an embedded system, as they could be implemented
in C++ to run directly on the hardware. After looking at various Arduino and
Teensy microcontrollers, it was determined that a Teensy 4.1 has both the pro-
cessing speeds and GPIO required to connect and control half (3) of the ODrive
controllers.[12]

The central controller is responsible for the high-level tasks such as maintain-
ing the balance of the robot and determining setpoints for each leg. Additionally,
there should be additional computational capacity, allowing for further develop-
ment of high level control of the robot. Based upon these requirements, the two
main contenders are the Raspberry Pi 4 or the Jetson Nano. The Raspberry Pi
4 and Jetson Nano are very similar, except that the Jetson benefits from CUDA
Cores, and although we would not use them, they would have a lot of potential
for future projects.[13][14] Ultimately the Raspberry Pi 4 was chosen, as it is the
cheaper solution. The pinouts of the Jetson and Pi are identical allowing for the
controller to be swapped in the future.

3.5 COVID
While we are satisfied with the progress made throughout the project, there were
limitations imposed due to the COVID-19 pandemic. An important consideration
was making sure we could continue work should our access to campus be further

15

Figure 5: Initial Control System Topology Diagram

limited or eliminated. For the most part we were successful in this goal, however
there were still many delays caused by the pandemic.

Our timeline kept changing as the ability to work together drastically changed.
We were only together working in the same space during a few days throughout
the entirety of the project. This meant that communication amongst the team
took longer and led to misunderstandings which caused delays on the project.

Additionally, during the middle of B term we were making great progress un-
til most of the team got quarantined for two weeks, halting the progress. Restart-
ing after quarantine was immensely more difficult. Campus had increased re-
strictions which meant we could no longer meet as a team. This led to hand-
ing pieces of equipment back and forth numerous times as we made individual
progress, resulting in slower progress overall. These restrictions did not loosen
up until the end of winter, at which point the timeline had already drastically
shifted. We were only able to be successful by dedicating much of our time to the
project.

Throughout the project there were opportunities to switch manufacturing
processes to use the machining capability present on campus. Ultimately it was
determined not to make these changes. If the project relied upon campus for
manufacturing capability, the viability of the project would become entirely de-
pendent upon access to campus. Instead, the project continued to use 3D printing
and purchased carbon fiber plates, as the resources to manufacture these mate-
rials was independent to any COVID restrictions.

16

4 Design and Development of Single Leg

4.1 System Overview

Figure 6: Full Single Leg Development System

4.2 Mechanical
Swol Kat has 3 DOF legs. The robot requires reductions that are easily backdriv-
able and efficient so that the torque applied by the motor is a good representation
of the joint torque in the arm. The legs mass and moment of inertia (MOI) must
be kept to a minimum to minimize the impact of the leg movement on the center
of gravity (CG). This allows for the controls system to ignore the moving masses.

4.2.1 Extremity Design

The extremity is composed of three assemblies: the shoulder, the upper extremity
and the lower extremity. To reduce power requirements and increase the speed
of rapids when the leg is not loaded, the mass and moment of inertia around the
axis of rotation must be minimized.

17

Figure 7: Upper and Lower Extremity are the Green and Red Segments Respec-
tively

4.2.1.1 First Design

The first leg design of Swol Kat was done prior to deciding the extremity lengths
or the necessary reductions. The first leg served to give the team a weight esti-
mate of the leg, give leg design experience to the team, and get a minimum viable
product in the hands of the electrical and programming teams.

Figure 8: CAD of First Draft of Extremity

18

Figure 9: MOI of First Leg about the Extremity Axle. The total MOI and weight
of the first leg was 66.57 lb*in2 and 3.09 lb respectively

Figure 10: Partially Assembled First Version of Leg

The team learned from the first version of the arm as there are several is-
sues with it. The motors and transmission for both extremities are attached to
the upper extremity. This dramatically increases the size and weight of the up-
per extremity. The motors are not secured well enough in this iteration, causing
the tension on the belts to bend the motor mounting and cause the belt to slip.
The largest discovery from the first arm had to do with the layout of the joints.
The upper extremity joint has two hard end stops, limiting range of motion to
less than that required of the front legs. These issues are addressed in the next
iteration of the arm.

19

4.2.1.2 Second Design

Figure 11: Version 2 CAD

Figure 12: Leg Version 2 without electronics or belts

To solve the range of motion and weight issues with the first arm, the second
arm moves the extremity out of plane with the shoulder axis. This adds some
complexity controlling the arm as the lower extremity rotates differently, but
solves the mass, wiring and range of motion issues. The new layout of the arm
dramatically reduces the mass and MOI of both extremities. To prevent the leg
from tangling or destroying its own wiring, the encoder and motor wiring are now
run internal to the arm. The range of motion of this arm is improved as the end
stops are removed. The extremity can rotate continuously about its shaft without
limitation.

20

Figure 13: Cross Sectional View of the interior of the arm

Mounting the arm on the side of the shoulder housing adds some benefit and
novelty to Swol Kat. The extremity can now rotate continuously unrestricted.
Although this is not necessary, this could be used to perform behaviors other
quadrupeds would not be capable of. For typical robot arms, the angle of each
link to the ground is dependent on the angle of the link preceding it. A novelty
of Swol Kat’s transmission is the angle to the ground of the upper and lower
extremities are completely independent of one another.

Figure 14: Extremity MOI about axle

The MOI of the total extremity is 37.49 lb*in2 and has a weight of 0.95 lb.

21

This arm has a moment of inertia that is 70% less than the previous version.
This shows that moving the transmission and motors from the arm dramatically
reduces the MOI and mass of the extremity.

Figure 15: CAD and Diagram of Extremity

In the diagram above the leg is in a crouching position. A free body diagram
(FBD) was made to solve for the joint torques in this position. Based on the joint
torques in this scenario, the gear ratios for the upper and lower extremities were
determined. Although impossible, this analysis was performed on largest static
loading condition where both the links are parallel to the ground.

4.2.1.3 Third Design

Other successful quadruped projects[4] can independently lift up to 1.6 times the
weight of the total robot from the crouching position. The team set a goal that
the designed leg would be able to lift 1x the target weight of the robot from the
crouching position while not exceeding the motor current rating.

Figure 16: Lower Extremity

22

Figure 17: FBD of Lower Extremity

All the forces acting on the lower extremity are put onto the FBD and the
knowns and unknowns are identified. The unknowns are then solved for. One of
the unknown in the FBD is the tension in the belt. The elbow pulley diameter,
the mass estimate of Swol kat and length of the lower extremity are known.

LLower= 200 mm

MassSwolKat = 10 kg

DElbow = 44 mm

Table 1: Known Constants for FBD in Figure: 17

∑
Fy = 0

0=−Fy1 −Fweight

Fy1 =−Fweight

Fy1 =−Mquadruped ∗ g
Fy1 =−10kg∗9.8 m

s2

Fy1 =−98N

∑
Fx = 0

0=−Fbelt +Fx1

Fx1 = Fbelt

Fx1 = 890N

Fx1 = 890N

23

∑
Mz = 0

0=−Fweight ∗LLower +Fbelt ∗ Delbow
2

Fbelt = Fweight∗LLower
Delbow/2

Fbelt = Mquadruped∗g∗LLower
Delbow/2

Fbelt =
10kg∗9.8 m

s2 ∗200mm
44mm/2

Fbelt = 890N

Figure 18: Equations of Equilibrium for Lower Extremity

Using the tension in the belt and the known diameter of the elbow pulley, the
torque applied by the pulley is determined. Based on this torque and the desired
maximum torque of the motor the transmission speed ratio is found.

Speed Ratio = TLower Extremity
TMotor

∗ 1
e f f icencyNstages

= 19.6Nm
3.3Nm ∗ 1

0.93

= 8.15

≈ 9

Figure 19: Torque Reduction Calculations for Lower Extremity

The reduction for the lower extremity is solved for and the limb is determined
to need a minimum of an 8.15:1 speed ratio. This ratio was rounded up to 9:1 for
a whole number. Next, the same process was applied to the upper extremity to
find its gear ratio.

Figure 20: Upper Extremity

24

Figure 21: FBD of Upper Extremity

All the forces acting on the upper extremity are put onto the FBD and the
knowns and unknowns are identified. The shoulder pulley diameter and length of
the upper extremity are known prior to calculations. These equations are solved
for the torque applied by the pulley.

LU pper = 200 mm

DShoulder = 56.5 mm

Table 2: Known Constants for FBD in Figure: 21

∑
Fy = 0

0= Fy2 −FF y1

Fy2 = Fy1

Fy2 =−98N

Fy2 =−98N

∑
Fx = 0

0= Fx2 −Fx1 +Fbelt upper

Fx2 = Fx1 −Fbelt upper

Fx2 = 890N −694N
Fx2 = 197N

Fx2 = 197N

25

∑
Mz = 0

0=−Fy1 ∗LU pper −Fbelt upper ∗ Delbow
2

Fbelt upper ∗ Delbow
2 =−Fy1 ∗LU pper

Fbelt upper = −Fy1∗LU pper
Delbow/2

Fbelt upper = −98N∗200mm
56.5mm/2

Fbelt upper = 694N

Figure 22: Equations of Equilibrium for Upper Extremity

Using this torque and the desired maximum torque of the motor the speed
reduction is found.

TU pper Extermity = Fbelt upper ∗ Delbow
2 = 694N ∗ .0565m

2 = 19.6 Nm

Figure 23: Torque Calculation of Elbow Pulley

SpeedRatio = TU pper Extremity
TMotor

∗ 1
e f f icencyNstages

= 19.6Nm
3.3Nm ∗ 1

0.92

= 7.3

≈ 9

Figure 24: Torque Reduction Calculations for Lower Extremity

This shows that the minimum speed ratio of the upper extremity transmis-
sion is 7.3:1. This ratio was rounded up to 9:1 so that transmissions for the upper
and lower extremities are the same ratio.

Using the results from the torque reduction calculations, the upper and lower
extremity were designed. Either side of the extremity sections are made of carbon
fiber which help maintain center distances of the upper extremity belt. Carbon
fiber was used as it has a similar strength to aluminum but lower density, result-
ing in a lighter assembly.

26

Figure 25: Extremity MOI about axle. The MOI of the total extremity was 31.14
lb*in2 and had a weight of 1.02 lb

4.2.2 Shoulder Joint Design

The shoulder joint of Swol Kat is challenging because a large reduction with low
backlash must fit into a small space. During the single arm prototyping, the arms
used a belted transmission that was not a high enough reduction nor fit in the
required space. This belt slipped very easily under load so it could not be used
on the final robot.. Rather than attempting to add tensioners and use a belt, a
different approach was taken.

There have been several novel approaches to fitting reductions into quadrupeds
that are highly efficient, light and compact. One caught the team’s attention be-
cause of its unique abilities: the capstan. The capstan operates similarly to a gear
in the sense that two circular parts roll against one another producing a change
in torque from one to the other. However, the tooth interface between gears puts
the blunt of the force on a small surface area. This is not friendly for 3d printing
as it will wear the teeth quickly. Capstans distribute the forces at the interface
over a much larger area allowing them to be 3D printed.

27

Figure 26: Prototype 1 of Swol Kat Capstan Shoulder

Capstans consists of a rope wrapped multiple times about a drum. The fric-
tion between the drum and the rope allows the drum to be rotated applying a
tensile load to one end of the rope while giving slack to the other. By attaching
either end of the rope to a driven cylinder the drum can essentially roll against
the driven cylinder allowing for a system to have minimal backlash and transmit
a large amount of torque. An added benefit to capstans is the two rollers draw
themselves together, unlike gears which actively push themselves apart.

4.2.2.1 Capstan Prototype

Unlike belts, which come in set sizes, the capstan is fully 3D printed and any
rollers can be made to work with any spacing. The ideal spacing of the joint in
the robot geometrically is 75mm so the driving and driven rollers have a diameter
of 15mm and 135mm respectively. This resulted in a 9:1 speed reduction.

Fmax tension in string = Tmotor stall
Ddriving roller

2

Fmax tension in string = 3.92Nm
0.15m

2

Fmax tension in string = 523N

Figure 27: String Tensile Strength Requirement

The string material chosen for the capstan was Dyneema. This is because of
its high tensile strength to weight ratio. Dyneema fiber has 15 times the tensile
strength of steel by weight[15]. To obtain a high factor of safety and increase the
ease of assembly, Dyneema that is 1/16” diameter is used even though its tensile
strength is far above the requirements.

28

Fd yneema yield tension = 450lb f ≈ 2001N

Factor of Saf ety= fd yneema yield tension
fmax tension in string

Factor of Saf ety= 2001N
523N

Factor of Saf ety= 3.826

Factor of Saf ety≈ 4

Figure 28: Factor of Safety(FOS) on Dyneema

4.2.2.2 Determining the wraps necessary for the minor roller

To determine the number of wraps necessary for the minor roller the coefficient
of static friction between the driving roller and the rope must be known. A test
was performed to determine the coefficient of static friction. The driving roller
is printed out of NylonX[16], so a sample was printed to act as a test surface.
A weight was calibrated to a mass of 1 kg. A loop of the Dyneema was placed
between the calibrated weight and the test surface and a force gauge pulled hor-
izontally on the Dyneema[17].

Figure 29: Calibration of Weight

29

Figure 30: Full Dyneema NylonX Friction Test Setup

Figure 31: Calibrated Weight, Dyneema, NylonX Sample Stack

Figure 32: Force Gauge Reading when the Static Friction Force Was Broken

30

Figure 33: FBD of Dyneema under Weight on NylonX

In the FBD above the Dyneema and weight are treated as a single object.
Friction between the Dyneema and weight is unopposed, so they do not move
relative to one another.

∑
Fy = 0

0= Fnormal −9.8N
Fnormal = 9.8N∑

Fx = 0

0=−3N +Fstatic

Fstatic = 3N
µs ∗Fnormal = 3N

µs ∗9.8N = 3N
µs = 3N/9.8N
µs = .41

Figure 34: Solution For Coefficient of Static Friction

The force applied by the spring scale at the point the Dyneema begins to slip
against the NylonX is approximately 3 Newtons. Using this information with the
known weight, and assuming the Dyneema’s mass is negligible, the coefficient of
static friction is calculated to be approximately 0.3.

31

The formula for the holding force of a capstan[1] is show in equation ??. Where
Tload is the loaded side tension. The three variables that change the holding
force of the capstan are: the slack side tension(Thold), the coefficient of static
friction between the roller and rope(µ), and the angle of wrap around the capstan
roller(φ).

TLoad = Thold(eµ∗φ)

Figure 35: The Capstan Equation[1]

Tload = Thold ∗ eµφ

Thold ∗ eµφ = Tload

eµφ = Tload
Thold

ln(eµφ)= ln(Tload
Thold

)

φ= ln(Tload
Thold

)/µ

Nwraps = φ
2π

Nwraps =
ln(

Tload
Thold

)/µ

2π

Figure 36: Solving the Capstan Equation for Wrap

A benefit of the capstan over timing belts is the ability to get multiple full
wraps of the driving roller. To determine the number of wraps necessary the
equation in Fig X can be rewritten to solve for radians of wrap given the other
parameters. The solution is then rounded to the next highest rotation. For the
first prototype the assumption was made that 3 lb of pretension could be held on
the slack side of the capstan.

NWraps = ln(Tload / Thold)
4∗2∗π

NWraps = ln(523N / 3lb f)
.3∗2π

= 1.95

≈ 2

Figure 37: Number of Wraps Necessary Given Pretension of 3 lb-f

32

In the first capstan prototype the driving and driven rollers has a diameter of
15mm and 135mm respectively. Either end of the capstan has the Dyneema tied
down to a screw threaded into the driven roller. This iteration has two wraps of
Dyneema around the driving roller.

Figure 38: First Capstan Prototypes

Proper pretension could not be kept on this iteration and the Dyneema slipped
on the driving roller. An additional 2 wraps were added to the driving roller,
bringing the total to four wraps. This brought the pretension requirements down
to approximately 1 oz-f. To increase ease of assembly a tensioning mechanism
was added.

NWraps = ln(Tload / Thold)
4∗2∗π

NWraps = ln(523N / 0.25lb f)
.3∗2π

= 3.26

≈ 4

Figure 39: Number of Wraps Necessary Given Pretension of 0.25 lb-f

33

Figure 40: CAD of Final Capstan Prototype

Figure 41: Final Capstan Prototype

In the final capstan prototype the Dyneema did not slip against the driving
roller at any point during testing.

34

4.3 Controls
For control of the leg a joint tip position control operates alongside a joint tip
force limiting algorithm.

4.3.1 Forward Kinematics

The forward kinematics are used to convert from robot joint angles (θ1,θ2,θ3) to
robot task space (x,y,z). To calculate the forward kinematics the David Harden-
burgh [18] convention is used. The first step is assigning frames to the robot arm
in its zero configuration. Due to the orientation of the arms on the quadruped
(specifically where the zero positions of the legs are) the forward kinematics are
solved for two different zero positions.

Figure 42: Arm Home in First Configuration

Figure 43: Arm Home in Second Configuration

Using these frames the DH table for each solution can be calculated.

35

θ d a α

T1
0 θ1 D1 0 −π/2

T2
1 0 D2 A2 0

T3
2 θ3 −θ2 0 A3 0

Table 3: DH table for first configu-
ration

θ d a α

T1
0 θ1 D1 0 π/2

T2
1 0 D2 A2 0

T3
2 θ3 −θ2 0 A3 0

Table 4: DH table for second config-
uration

Each row of the DH table is then converted into a 4x4 transformation using
the homogeneous transform matrix (1).

Thomogeneous(θ,d,a,α)=



cos(θ) −sin(θ)∗cos(α) sin(θ)∗sin(α) a∗cos(θ)

sin(θ) cos(θ)∗cos(α) −cos(θ)∗sin(α) a∗sin(θ)

0 sin(α) cos(α) d

0 0 0 1


(1)

Multiplying each matrix together gives a transformation matrix that can con-
vert from joint space to task space.

T3
0 = T1

0 ∗T2
1 ∗T3

2

Plugging in our joint angles to T3
0 will give the orientation and position of the

end effector

4.3.2 Inverse Kinematics

Inverse Kinematics are used to convert from task space (x,y,z) to joint space
(θ1,θ2,θ3). There two typical to ways to calculate these equations: the algebraic
method and the geometric method. The team decided to go with the geometric
method as the configuration of the leg is similar to the shoulder offset manipu-
lator. [19] While the shoulder offset leg has up to 4 possible inverse kinematic
solutions as shown in picture (x) due to the configuration of the legs on the robot
each of the zero configurations only need to be solved for two of these solutions.

36

r =
√

x2 + y2 r =
√

x2 + y2

α= atan2(y, x) α= atan2(y, x)

u =−
√

r2 −D22 u =
√

r2 −D22

β= atan2(D2, u) β= atan2(D2, u)

θ1 =α−β θ1 =α+β

s = z−D1 s = z−D1

D = r22+ s2 − A22 − A32

2∗ A2∗ A3
D = r22+ s2 − A22 −a32

2∗ A2∗ A3
φ= atan2(s, r) φ= atan2(s, r)

γ= atan2(a3∗sin t3, a2+a3∗cos t3) γ= atan2(a3∗sin t3, a2+a3∗cos t3)

θ2 =−(φ+γ) θ2 =φ+γ

θ3 = θ2 −atan2(±
√

1−D2, D) θ3 = θ2 +atan2(±
√

1−D2, D)

4.3.3 Jacobian

The Jacobian is 6xn matrix used to translate between joint space velocities and
task space velocities.

ṗ = J(q)∗ q̇

q̇ = J(q)−1 ∗ ṗ

The Jacobian is also capable of translating between joint space torques and
task space forces. Solving the Jacobian allows us to do force control on the tip of
the leg.

τ= J(q)T ∗Ftip

Ftip = (J(q)T)−1 ∗τ

There two methods solving the Jacobian: the derivative method and the cross
product method. The cross product method was selected as it uses the transfor-
mation matrixes calculated in the forward kinematics. This allows for a single
method for solving the Jacobian that is not dependent on the zero configuration

37

of the leg.

J =

Jp

Jo



Jp and Jo represent the position and orientation halves of the Jacobian. Each
one is made up of a i columns where i corresponds to the ith joint on the robot.
Jpi and Joi can be calculated using the formulas below where zi is the z column
of the rotation matrix for the ith joint, pe is the position of the end effector and
pi is the position of the ith joint.

Jpi = zi × (pe − pi)

Joi = zi

4.3.4 Current Limiting

In each loop of the controller, the current limits of the motor can be adjusted to
limit the maximum torque that the motor will apply. In order to limit the damage
accidental collisions can cause the motors receive a new torque limit to prevent
the leg from applying too much force. To find the maximum torque values for
the motor the Jacobian, current tip position, and maximum desired tip force of
the arm are used in the calculation. To calculate the current limit of each leg
motor, first the contribution to the tip force by the torque of the other motors is
calculated. 

T1

T2

0

∗ (J(q)T)−1 = Ftip_2motor

Next, this force value is subtracted from the tip force limit, to find how much
more force can be applied by the tip without exceeding it. This remaining tip
force is then converted back into joint torques

Fremaining_min =−1∗Fmax +Ftip_2motor

Fremaining_max = Fmax +Ftip_2motor

Fremaining ∗ J(q)t =


T1

T2

T3



38

The resulting joint torque is then the minimum and maximum torque limits for
the motor. Due to how the ODrive motor controllers handle torque limiting, only
an absolute torque limit can be set. The torque limit that is sent to the ODrive
motor controller is shown below. Using this torque limiting algorithm allows the
maximum allowable tip force on the legs to be reduced, minimizing the damage
an accidental collision can cause.

Min(Abs(Tmin), Abs(Tmax))

4.3.5 Quintic Trajectory Planning

In order to test the forward and inverse kinematics of the single leg the team
implemented quintic trajectory planning allowing the arm to plan a path from
one point to another. Quintic trajectory planning is useful as it allows control over
end effector position, velocity, and acceleration. Traditionally the coefficients for a
the quintic polynomial function can be solved using the following matrix formula.

1 t0 t2
0 t3

0 t4
0 t5

0

0 1 2t0 3t2
0 4t3

0 5t4
0

0 0 2 6t0 12t2
0 20t3

0

1 t f t2
f t3

f t4
f t5

f

0 1 2t f 3t2
f 4t3

f 5t4
f

0 0 2 6t f 12t2
f 20t3

f





a0

a1

a2

a3

a4

a5


=



q0

v0

a0

q f

v f

a f


However, while controlling the arm the formula is only solved for zero start

and end velocities and zero start and end accelerations. To save computation
time and simplify the code the quintic polynomial is pre-solved for a 1 second
movement from 0-1 as shown below.

p = 0+0t+0t2 +10t3 −15∗ t4 +6∗ t5

p is then solved for by plugging in the percentage of completed motion as t, p was
then scaled to an x, y, z position by using the equation below where pt was next
target position of the robot, p f is the goal position, and pi was start position.

pt = (p f − pi)∗ p+ pi

4.4 Software Stack
The software stack for the arm was designed to be directly usable in the final
control system. The software stack for a single arm was designed to be usable in
the test environment and the final robot.

39

Figure 44: Single Arm Overview

4.4.1 ODrive Tuner

At the start of the project, working with the ODrive command line tool proved
rather difficult, especially when it came to tuning the controller. For this reason
a web based interface was developed 69. The tool was based on Socket.io[20] and
Flask[21] which allows real time communication with the computer, and has a
variety of useful features:

• Connecting to, Rebooting and Clearing Errors of the ODrive.

• Live Reporting on any errors that occurred for the axis that was being
worked on.

• Live Readout of Encoder Position, Voltage, and Current State.

• Ability to set a variety of Axis States and Control Modes.

• Seeing and Setting Position, Velocity and Current setpoints.

• Seeing and Setting Gains and Config of the ODrive.

• Live Graphing of Position, Velocity, and Current setpoints and positions.

• A debugging log to display useful information.

4.4.2 Joint and Virtual Joint Class

The lowest level class developed were Joint and Virtual Joint. These classes are
responsible for managing all joint level information. They are responsible for
both communication with the ODrive as well as storing the position, velocity, and

40

torque data of each joint. The Joint class communicates with the ODrive to get
this information and takes in a ODrive Axis object during creation. The Virtual
Joint emulates communication with the ODrive and can be used in place of the
Joint class. This modular design allows for easy switching between a physical and
virtual testbed. Additionally, the physical and virtual components can be mixed
allowing for testing portions of the physical robot.

4.4.3 Leg Class

The Leg class controls 3 individual joints to make them function as a single
leg. This class is constructed with the 3 Joint (or Virtual Joint) objects, the link
lengths of the leg, and the corner of the robot that the leg belongs to. The legs are
configurable via a single JSON file.

4.4.4 Leg Stick Plot

A visualization of the leg was developed to test the inverse kinematics, forward
kinematics, and force sensing on the tip. The visualization is based on matplotlib
[22] and continuously plots the arms current angles using the forward kinemat-
ics.

Figure 45: Stick Plot Of Leg

41

4.4.5 Leg UI

In order to test a leg a web based UI for leg control was developed 70. This UI
was also based on Socket.io [20] and a Flask Server [21]. This system offloaded
rendering of the leg to the client, freeing up resources on the central controller.
The Leg UI also has a variety of other features:

• Communicate wirelessly over a LAN between the Raspberry Pi and a users
computer using a web browser

• Visualize the current position of each limb of the robot leg

• Calibrate, Home, and Enable the robot leg

• Individually jog each joint or the tip of the robot in x,y,z

• Display Current, Status, and Errors of the System.

Include Picture of the GUI may also need to go into appendix.

4.5 Communication
The distributed design requires development of communication links between
controllers. The first link that was designed was between the ODrive and Teensy.
This link needed to be high bandwidth (1khz) to ensure the link did not throttle
the control system. A control library and protocol already existed to communicate
with the ODrive over the UART interface. When testing the ODriveArduino C++
library, which uses ODrive’s ASCII Protocol, there were many shortcomings such
as a lack of flexibility in the types of control messages supported, and a lack of
feedback. This resulted in rewriting the majority of the library to add support for
the ODrive functionality we required. The rewritten library is designed to allow
for more independent control of each ODrive channel, and allows for the Teensy
to simultaneously control 3 ODrives.

42

5 Design/Development of Quadruped

5.1 System overview

Figure 46: Render of Final Quadruped

The final quadruped is the result of combining the independent components pre-
viously developed. This required fully implementing the communication and con-
trol system, as well as incorporating all the systems components into a neat form
factor.

5.2 Mechanical

5.3 Communication
In order to control all 4 limbs simultaneously the Teensy to Raspberry Pi commu-
nication link had to be developed. When outlining the requirements of this link,
the role of the Teensy was to receive tip position setpoints from the Raspberry
Pi, perform inverse kinematics and send joint position setpoints to the ODrives.
For testing purposes, an additional requirement was that the Teensy could also
receive motor positions directly from the Raspberry Pi and communicate them to
the ODrives.

After looking at the additional overhead required to build the link with in-
dividual control for each motor, it was determined that the best solution was to
bypass the Teensy and connect the ODrives directly to the Raspberry Pi. This
decision also took into account the faster development speed of python, rather
than splitting development between python and C++.

43

The ODrive Python SDK that the new communication system is built upon
can use a higher default baudrate, along with smaller packets. It was also deter-
mined that the ODrive and motor respond to position setpoints with a cutoff fre-
quency of 17hz, reducing the requirements of the communication link. Removing
the Teensy comes at the cost of increasing the processing done by the Raspberry
Pi, limiting the remaining resources for future development. There were plenty
of resources for the current project goals.

When connecting the ODrives to the Raspberry Pi, we started by using a sin-
gle USB hub that could connect to all 6 ODrives. This caused random dropouts,
which were determined to be caused by overloading the USB Bus. This was solved
by using two USB hubs in the robot, one for each half of the robot, and connecting
them to USB ports that were on separate USB controllers.

Figure 47: Initial control system diagram (top) and final control system diagram
(bottom)

5.3.1 Multi Threading

Due to how the ODrive communication library is structured, each time a value
is changed on an ODrive a blocking function must be called. If each ODrive is
sequentially written to in a single thread, the loop speed of the program sits at
only 8hz. To speed up the communication process, a thread was created for each
ODrive that handles communication with the single controller. This allows for the
blocking functions of each ODrive to be handled separately from the main loop.
By separating the ODrive communication functions from the main loop, the loop

44

speed was increased from 8hz to about 45hz. Running the main loop at 45hz is
more than double the position control bandwidth of the motors so there is almost
no performance loss due to the main loop speed.

Figure 48: Results from a program that runs the main loop for 5 seconds to
determine the loop frequency.

To relay information from the main thread to the ODrive threads, an inter-
thread communication tool called a pipe was used. When a pipe is created, two
endpoints are made. One endpoint is passed to the ODrive thread, and the other
is kept by the main thread. With these endpoints, data that can be packaged
into a byte stream can be sent between the threads to relay information. On
every iteration of the main loop, a data structure is sent to the ODrive thread
that contains the position setpoint and current limit for the motor. Optionally, a
pointer to a function can be sent to the ODrive thread for it to run on the ODrive
object. This allows for more advanced functionality like homing, error checking,
and calibration to be run on the thread without having to build a complex state
machine on the ODrive thread side.

The main loop then pauses after the information is sent to the ODrive threads
and waits until a response is received. This response to the main thread tells the
main thread that the values have been written to the ODrives and relays any
additional information that may be needed. For example, when the ODrive is
polled for errors a packet is returned to the main thread that tells it what errors
exist, if any.

5.3.2 ODrive Firmware

ODrive claims to natively support the AS5047P encoder[11], so the robot was
built using that encoder on all of the motors. The ODrive communicates with the
encoders well in low noise environments, like when using a single motor on a test
bench, but when a single bit error can be triggered on the MOSI line, the ODrive
encoder communication breaks down.

The AS5047P encoder has a feature that when receiving data over SPI, a
bit in the received packet tells the bus master whether an invalid command has
been sent to the encoder.[2] The master must issue a special command packet
that clears the error bit. The software running on the ODrive motor controller
checks this bit to see if a received packet has good data but does not send the
reset command if the bit is set. As a result, if there is enough noise on the MOSI
line to cause a single bit error, the error flag will be set and never reset, causing

45

the ODrive to invalidate all of the incoming data. After a short period of not
receiving good data, the ODrive will throw an encoder error and halt operation

Figure 49: SPI read data frame and EF bit description from the AS5047P en-
coder datasheet.[2]

With the ODrive unable to send the encoder the correct error reset packet,
the only way to reset the system to a functional state is to restart the encoder.
The error is saved in volatile memory so it is cleared when the encoder restarts.

During single motor testing this error was rare because the motor wires were
further from the encoder signal wires and only one encoder was connected to the
ODrive. The motor wires effectively have a three-phase alternating current run-
ning through them at the frequency of rotation of the motor with an amplitude
of the motor phase current. The EMF produced from these wires are likely a
large source of interference to the encoder communications. Additionally, due to
how each ODrive controls 2 motors adding a second encoder doubles the length of
wire that could be susceptible to interference. Moving to a full arm where the mo-
tor wires could not be separated from the encoder wires and two encoders were
connected to each ODrive, the encoder errors became far more frequent and made
the system nearly unusable.

To fix this issue, the ODrive firmware had to be changed to reset the AS5047P
encoder error flag correctly when it is set. The interrupt service routine where
encoder data is read was modified to also set a flag when the EF bit is set and the
encoder data is ignored. Then, in the section where the encoder read is triggered,
the flag is checked to see if an error reset packet should be sent instead of the
read encoder position packet.

After compiling and installing the new firmware on the ODrive motor con-
trollers, the encoder error was resolved and the ODrive encoder communication
became far more robust.

46

5.4 Controls

Figure 50: Leg Frame Locations on Robot

5.4.1 World To Robot Transformation

The location of the world to robot is defined by a translation(x,y,z) and a rotation(α,β,γ).
Using a ZYX rotation matrix (2) a 4x4 transformation matrix can be made that al-
lows the conversion between world coordinates and robot coordinates (3). Where
P is a 3x1 matrix that represents the translation of the robot body:

RZ(α)=


cosα −sinα 0

sinα cosα 0

0 0 1

RY (β)=


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

RX (γ)=


1 0 0

0 cosγ −sinγ

0 sinγ cosγ


RZY X (α,β,γ)= RZ(α)∗RY (β)∗RX (γ) (2)

TR
W (x, y, z,α,β,γ)=

RZY X (α,β,γ) P(x, y, z)

0 1

 (3)

5.4.2 Robot To Leg Frame Transformation

Each leg has its own transformation from the robot frame to its defined leg frame.
A set of euler angles were pre-calculated for each leg in order to define its rotation
with respect to the robot frame as seen in Table: 5. The length and width of the
robot body are used to define the position of the robot body with respect to the
robot frame as seen in Table: 6, where w is the width of the robot and l is the
length of the robot. Using the ZYX euler transformation matrix (2) we can make
a transformation matrix that converts between the robot frame and body frame.

47

Leg Number α β γ

1 τ/4 τ/4 0

2 τ/4 τ/4 0

3 −τ/4 τ/4 0

4 −τ/4 τ/4 0

Table 5: Rotation of Each Leg on
Robot

Leg Number x y z

1 w/2 l/2 0

2 −w/2 l/2 0

3 −w/2 −l/2 0

4 w/2 −l/2 0

Table 6: Position of Each Leg on
Robot

5.4.3 Leg Swing Phase Control

A Bezier Curve was generated in order to control the swing phase of the step.
The Bezier curve is defined by a series of control points that define the shape of
the curve. The formula for a Bezier curve is defined as Equation 4:

B(t)=
n∑

i=0
(n

i)Pi(1− t)n−i ti (4)

Where Pi is the fitting point. The Bezier curve also has several other desirable
properties: two points at the same position define a zero velocity point and three
points at the same position define a zero acceleration point [23]. According to
these properties a smooth curve can be obtained using the twelve control points
as shown in Table 7. Where sl is the desired step length and sh is the desired
step height.

Figure 51: Bezier curves generated for various step heights and lengths

48

Pn X(mm) Y(mm) Z(mm)

P0 0 0 0

P1 -sl ∗ .05 0 0

P2 -sl ∗ .1 0 sh ∗1.1

P3 -sl ∗ .1 0 sh ∗1.1

P4 -sl ∗ .1 0 sh ∗1.1

P5 sl ∗ .5 0 sh ∗1.1

P6 sl ∗ .5 0 sh ∗ .9

P7 sl ∗ .5 0 sh ∗ .9

P8 sl ∗1.1 0 sh ∗ .9

P9 sl ∗1.1 0 sh ∗ .9

P10 sl ∗1.05 0 0

P11 sl 0 0

Table 7: Bezier Curve Control Points

5.4.4 Foot Ground Phase Control

In Ground Phase Control the robot attempts to keep its foot in the same world
coordinate as the robot body translates forward. The leg is commanded to go
slightly below the ground and the tip force limits prevent the leg pushing too
hard, tipping the robot.

49

5.5 Software Stack

Figure 52: Full Quadruped Code Overview

5.5.1 Robot Class

The Robot Class is responsible for managing all robot level information. The class
is constructed using 4 leg objects, and loads the robot configuration from a json
file. The robot class contains information about the current gait the robot is exe-
cuting and the current body position of the robot. Given the multithreaded nature
of the code the robot object has as single loop function. Loop executes one loop of
the current gait and then updates the arm objects.

5.5.2 Gait Class

In order to standardize how gaits are run on the robot a Gait super class was
created, which standardizes the structure for each. This structure is outlined in
Figure 53.

50

Figure 53: Basic Structure for all gaits

This structure creates "hot swappable" gaits. All parameters that control the
behavior of the gait exist in the Params dictionary. This provides a common place
for a higher level program to look to adjust gait parameters. The loop function
executes one loop of the gait. Each loop the gait updates the target positions for
each leg of the robot. During execution the robot object is passed into the loop
function. Allowing the gait to update the current body position of the robot and
access each of the leg objects.

As the code is not a real time system, a constant time per loop can not guar-
anteed thus each gait class must be able to track and handle variable loop times.
This constraint is handled by defining robot movements as continuous functions
of time which are evaluated when the loop is executed.

This gait structure allows for the separation of gait selection and manage-
ment from the gait itself. Each gait is simply responsible for moving the robot
given its input parameters.

5.5.3 Virtual Robot

A visualization of the robot was developed to test each of the gaits. The visual-
ization was based on matplotlib [22] and continuously plots the legs and robot
current position using the forward kinematics.

51

Figure 54: Plotted Robot

5.5.4 Utility

Over the course of this project a variety of utility functions or classes were devel-
oped to ease the programming and management of the robot.

• BodyState Class: Stores the location and orientation of the robot with re-
spect to the world frame

• Kinematics Module: has a series of helper functions that generate useful
transformation matrices like a ZYX Rotation Matrix or the Homogeneous
Transform Matrix

• get_body_pts: a function that takes in a BodyState Object and returns
where the 4 leg origins would be in world coordinates

• get_leg_rot: a function that takes in a leg number and returns a rotation
matrix that corresponds to its rotation from the robot frame.

• Robot Plot and Leg Plot: Classes that can plot the current position of the
robot or leg respectively

52

• Foot Control Module: A Module that takes in percentage of movement com-
pleted, step length, height, and rotation and returns a position from a gen-
erated Bezier curve that a foot should be at.

5.6 Gaits

5.6.1 Wiggle Gait

Figure 55: Logic For Single Loop of Wiggle Gait

The wiggle gait tries to keep the feet of the robot on the ground while moving
the body around. It calculates the foot position using the get_body_pts function
so that the robot body is at (0,0,0).This position is then translated from the world
frame to individual leg frames. With an appropriate input this gait is able to move
the body with 6 degrees of freedom while keeping the feet of the robot planted.

5.6.2 Crawl Gait

The crawl gait tries to move the robot body forward at a constant velocity while
moving the legs forward 1 at a time.

Figure 56: Step Pattern for Crawl Gait

The state in Figure 57 is the leg that is preforming the step each cycle, once
the step is completed the state is updated to the next leg in the sequence

53

Figure 57: Logic For Single Loop of Crawl and Trot Gait

5.6.3 Trot

The Trot gait tries to move the robot body forward at a constant velocity while
moving 2 diagonal legs forward at a time. The trot gait has a high amount of
dynamic load and relies on a high step speed in order to prevent tipping

Figure 58: Step Pattern for Trot Gait

The Trot Gait has identical logic as the Crawl Gait (57), the key difference
between the two is the Trot Gait has 2 diagonal legs set as the state at any given
time. This causes the robot to try stepping with two legs at once. When updating
the state the robot switches which two legs are in the step phase.

5.6.4 Intermittent Crawl

The Intermittent Crawl Gait consists of 2 major movements: First the body is
moved to the center of the triangle formed by the 3 grounded legs, then the step-
ping leg is moved forward. The Intermittent Crawl Gait while slow is incredibly
stable as it has very little dynamic load on the quadruped.

54

Figure 59: Step Pattern for Intermittent Crawl Gait

Figure 60: Logic For Single Loop of Intermittent Crawl Gait

55

5.7 Electrical

Figure 61: Picture of Various PCB’s Made

5.7.1 ODrive Holder PCB

It was determined, based upon the planned electronics layout of the robot, that
the ODrives should be mounted vertically. This would make swapping ODrives

56

similar to switching a graphics card. The first iteration contained features includ-
ing: connectors going to the main control PCB, and 6 connectors for the encoders.

Figure 62: ODrive Holder PCB Revision 1

The final iteration of the ODrive PCB swaps the Teensy controller for a FT4232H
mini module. This module allows a single USB to connect to 4 distinct UART
channels allowing for direct communication between the Pi and the ODrives. The
final iteration also included header pins to connect each of the 6 homing sensors,
the ability to reset the encoders from the Raspberry Pi, as well as the capability
to trigger the ODrive e-stop pins from the Raspberry Pi. The board also includes
many quality-of-life features such as power LEDs and updated geometry to best
fit the robot at the time the board was designed.

Figure 63: ODrive Holder PCB Final Revision

5.7.2 CPU PCB

The central controller PCB is much simpler as there are fewer components. This
PCB is responsible for power distribution for the controller and daughter boards,
as well as housing the Raspberry Pi. The initial design of the PCB could take ei-
ther an 8S (29.6V) or 2S (7.4V) battery input to supply power to the control elec-
tronics. The PCB has two 6 pin JST connectors to connect to the ODrive PCBs.
This connector has connections for 5V, 3.3V, and Ground, as well as a UART pair

57

and signal line used to control an LED on the controller PCB from the ODrive
PCB.

Figure 64: CPU PCB Revision 1

Based upon challenges with the power stage, in addition to concerns raised by
the potential interference of switching regulators, the 8S input was removed on
the final iteration of the board. This iteration added an input for a BNO055 dev
board and used larger traces for power and ground, reducing potential heating at
the maximum current draw.

Figure 65: CPU PCB Revision 2

5.7.3 Encoder PCB

The encoder PCB was built with 2 main constraints in mind. The first constraint
was a physical layout that is smaller than the alternative: the AS5047P dev

58

board. This required using the JST-SH connector, as it is smaller than the 0.1”
header pins used on the dev board. The second constraint was a self centering ge-
ometry. This was created with triangular keying geometry in line with the central
point of the encoder chip.

Figure 66: AS5047P Development Board (left) Designed AS5047P PCB (center)
US Quarter (right)

5.7.4 Hall Effect Homing Sensor

The A3144 hall effect sensor is connected to the ODrive motor controllers to home
the motors on startup. This sensor requires a 5V power source and outputs on
a single pin that is pulled low when a strong enough magnetic field is detected.
There is no pull up resistor embedded in the device, so the ODrive was configured
to use an internal pull-up resistor on its GPIO pin. Futaba style three wire servo
connectors are used to connect the hall effect sensors to the ODrive Holder PCB
so they can be easily connected.

5.7.5 Inertial Measurement Unit

The BNO055 inertial measurement unit (IMU) was attached to the body of the
quadruped so the control system can measure the rotation and acceleration of
body. At first, the BNO055 IMU was connected to the Raspberry Pi through an
inter-integrated circuit (I2C) connection. Due to a driver error with the Raspberry
Pi I2C peripheral, reading the BNO055 would often result in errors and null
values. The BNO055 was then wired to a CP2102 USB to UART converter and
put into UART mode[24]. Moving to UART communication fixed this issue and
allowed the program to consistently read the BNO055 measurements without
any errors.

5.7.6 Battery Calculations

The batteries for the robot are chosen to allow the robot to be able to provide
the peak current needed for the robot during dynamic movements. The series
of batteries used for the robot have a continuous discharge rating of 75C, and

59

a peak discharge rating of 150C. Battery C ratings are used to determine the
current that a battery of a given capacity can supply. The C rating is multiplied
by the battery capacity in amp hours to determine the current the battery can
supply. For the peak current, the peak C rating is used.

I = C∗Capacity

An estimate of the worst case scenario for the battery would have the upper and
lower extremity motors applying full torque at the maximum speed in the current
limited torque region. Since the shoulder joints cannot reach this high of a speed
due to the end stops of the capstan, the maximum power that they can draw is
assumed to be negligible.

At the point on the torque curve where the motor is at the maximum speed in
the current limited region, the motor controller is almost voltage limited so it is
applying the full bus voltage to the motor. The motor is drawing the full allowable
current and the full voltage, so the current draw from the battery by the motor is
equal to the current flowing through the motor.

With 8 motors drawing the current limit of 64A, the current flowing through
the battery would be:

#nmotors ∗ I l im = Ibatt_max

8∗64A = 512A

With a 150C peak battery, the battery capacity that would be needed to achieve
the necessary peak current is:

Ibatt_max/Cmax = Capacity
512A/150C = 3.413Ah

Since the robot should never reach peak current draw in normal operation
and there was a sale on the 3Ah batteries, the team decided to go with the slightly
smaller 3Ah capacity battery and be very careful to never reach this worst case
scenario.

6 System Testing and Validation

6.1 Overview
Throughout development of the robot, we continuously tested components as the
system grew. This allowed us to find many issues while developing the quadruped.
By unit testing sections the final robot was a system with many issues already
accounted for.

60

6.2 Single Motor Testing
We began by immediately building a jig to test control of a single motor using
ODrive. The purpose of this testing was to prove the concept of using BLDC mo-
tors as if they were servos. Getting the motor to behave as expected took more
time than originally planned, however when it was working the performance of a
single motor was superb. Based upon these results we later moved on to testing
control of 2 motors simultaneously to control a single leg.

6.3 Bandwith Measurement
To measure the position control bandwidth of the full system, a single unloaded
motor was commanded to follow a sinusoidal trajectory with an increasing fre-
quency until the amplitude of the trajectory that the motor actually followed was
approximately 71% of what was commanded. The frequency at which the actual
response is 71% of the commanded is the cutoff frequency of the system.

This cutoff frequency is a useful benchmark as it shows how well the motor
control parameters are tuned and gives an indication as to how fast the main
control loop must be to get maximum performance from the motors.

6.4 Single Leg Testing
Building a single leg first allowed us to test of the electronics that are required
for control of the quadruped. As the shoulder joint was not yet complete, a belted
system was used in place of the shoulder for testing. On this platform, the forward
and inverse kinematics were validated, and the control system was tested with
three motors connected at once. Some simple leg motions were tested to show
that the system is capable of smooth motion.

6.5 Dual Leg Testing
Once we had two legs assembled we began testing simultaneous control of two
independent legs. Testing the control system was mostly successful, however en-
coder errors started to appear regularly. These were able to be avoided by reset-
ting the encoders, however the cause was unclear at the time. After further inves-
tigation, the errors seemed to be caused by some encoders being broken during

61

the soldering process. After switching the encoders with ones that worked, the
errors mostly subsided, seemingly solving the problem.

6.6 Virtual Gait Testing
While final fabrication and assembly of the robot occurred, a test platform with
only one final leg was built. This was used to test the gaits in development. By
virtualizing 3 of the legs and having physical control over the single leg, the final
system was able to be debugged without requiring the final mechanical assembly.

Additionally, a robot visualization software was developed to run the gaits in a
virtual environment. The software draws the robot body position and all four legs
in a matplotlib 3d plot. Using the visualization software, the gaits were validated
on a virtual system before running them on the actual robot.

6.7 Gait Testing
Once the final robot was assembled, the first set of tests were performed while
the robot was placed on a box. These tests proved that all the legs were moving
properly, however encoder and ODrive issues persisted. These issues appear to
be caused by noise on the encoder lines, based upon the errors prevalence on the
encoders furthest from the control board. The box proved problematic as a test
stand, so a system to suspend the robot with rope was set up. This proved to be a
more secure method and allowed for further testing of the robot.

6.8 Suspended Testing
To test the quadruped without access to a fully equipped lab, the team had to
think out of the box to create a system to suspend the robot, gradually lower it to
the ground, and prevent the robot from hitting the ground if it loses balance and
falls. To test the robot a master point was created to lift it. A piece of rope was tied
around the front and back shoulders. A central knot was then tied. Another piece
of rope was then attached to the master point that ran through a hook mounted
above the robot then down to an anchor point on the floor. Using a climbing belay
setup, the robot could be raised or lowered easily. This system made it much
easier to test the robot without it being damaged from a fall.

62

Figure 67: Robot suspended on testing jig

6.8.1 Lowering

Once the suspended tests proved the robot was moving as expected, the robot was
slowly lowered onto its own weight while attempting to hold body position. This
test proved that the robot could support its own weight in a static position. As a
final test the rope was disconnected from the robot.

6.8.2 Body Positioning

Body positioning was demonstrated in the air and on the ground. It was validated
that the legs moved in a coordinated way in the air, and the robot was then low-
ered onto the ground. Maintaining body position was proven by lightly pushing
the robot and seeing that it could recover to the initial position.

6.8.3 Crawl

The crawl gait was first validated with the robot suspended. Once the leg move-
ments were confirmed to be correct the robot was lowered onto the ground where
it was able to take a few steps with the rope holding a minimal amount of the
robot’s weight. As more weight was taken off the rope the transmission for the
lower leg began to slip leading to the rope catching the robot.

6.8.4 Trot

The trot gait was validated with the robot suspended, however based on the
transmission issues present with the walk gait, it was decided to not test this
gait on the ground.

63

6.8.5 Intermittent Crawl

Intermittent crawl was the last gate implemented in an attempt to prevent dy-
namic loading. This gait was successful when the robot was suspended, however
when placed on the ground the static positioning could not be obtained, leading
to the robot tipping over when the single leg was lifted off of the ground. Update
for 2 complete steps

6.9 Encoder Problems
While setting up the robot to run with all four legs in a test environment, addi-
tional problems were discovered with the system wiring and the ODrive motor
controllers. The JST-SH connectors for the encoders are not rated for many cycles
of plugging in and unplugging the connector. Some of the connectors mounted on
the PCB were either incorrectly connected or reached the end of product life. As
a result, a few of the connectors had to be replaced as they no longer maintained
full continuity across the connection, causing the ODrive to be unable to commu-
nicate with the encoder.

6.10 ODrive Problems
With the ODrive motor controllers a mysterious error would seemingly randomly
occur on startup claiming that a current measurement watchdog was tripped and
caused the motor controller to halt all operation. We found that simply rebooting
the ODrives that had this error would fix the problem temporarily, but this is not
a long term solution

7 Discussion

7.0.1 Mechanical

The final feet used on the quadruped were very slippery and did not get good
traction on any non-carpeted surface. The feet were printed TPU which deforms
easily but is very slippery. Due to time constraints, the team did not implement
the intended solution. Other quadrupeds have cast their own urethane feet and
we intended to do the same with Swol Kat. (Ben Katz Paper) The urethane we
intended to use was FlexFoam-iT 23FR Flexible Polyurethane Foam.

Due to an oversight with the belt tensioning on the transmissions of the legs,
the final mechanical system ran into belt slipping issues under the full weight of
the quadruped. Initially the team thought these issues were coming from com-
pliance in the 3D prints changing pulley center distances. With further examina-
tion, the HTD-3M belts that were used for the robot upper and lower extremity
gearing were used out of their specified tension limits.

Tensioning devices were used to achieve slightly higher torque transmission
through the belts, but they reduce the lifetime of the belts. This is neither a
practical or fully functional solution.

64

HTD-5M belts are the next step up in the HTD belt series and are built to
handle higher tension and transmit more power than HTD-3M belts. After rough
calculation it is shown that these belts are not a viable solution. As such, the
team recommends that in future work the quadruped be redesigned without the
use of belts.

7.0.2 Electrical

The electrical and communication system proved functional for the project, how-
ever more time would have allowed for a few additional improvements. The final
version of both PCBs had a few errors which could easily be fixed and help clean
up the electronics further.

The ODrive PCB was rushed to manufacturing which led to quite a few over-
sights, from footprints being dimensioned slightly wrong, to vias not be con-
nected to a couple of key traces. Fixing this would allow for the elimination of
the USB hubs from the control system and making full use of the FT4232H mini
module[25]. Additionally, more testing needs to be done with the FT4232H mini
module as we broke 2 during testing and they are expensive components. These
modules are also approaching end of life. We could not find any suitable alterna-
tive, however it might be simpler to implement a USB hub controller along with
3 independent USB to UART bridges. This would also reduce the form factor of
the board as these components could exist in between the connection points of
the ODrives.

The Controller PCB has less issues but could still benefit from another itera-
tion. The footprint for the BNO055 IMU needs to be fixed to have proper header
spacing for the dev board. It is recommended to continue using the dev board
as it allows for more control over the positioning of the IMU. Additionally, the
power components would benefit significantly from an external heatsink. The
components have the capacity to power all the control electronics, including the
Raspberry Pi (or a Jetson Nano), however there is significant temperature rise at
maximum capacity.

The computational capacity of the Raspberry Pi is plenty for the current state
of the project. Should additional features wish to be added, most specifically vi-
sion processing, it would be beneficial to switch to a Jetson Nano. This does not
give any additional CPU capacity, however the CUDA cores would unlock addi-
tional computational capacity for specific types of tasks. If more CPU capacity is
required the Teensy could be reintroduced, either in the original planned imple-
mentation, or as a separate task controller.

7.0.3 ODrives

Due to strange communication and motor errors halting progress on the rest
of the quadruped, the team cannot recommend using the same ODrive motor
controllers for future work.

The absolute encoder offset was unable to be saved correctly into the ODrive,
so encoder calibration had to be run each time the robot restarted. Since the

65

encoder calibration requires the motors to freely move without obstruction, it
sometimes fails while connected to the robot. A program had to be written to
find the motor controllers that failed the first round of calibration and re-run the
encoder calibration sequence.

The ODrive firmware does not properly implement resetting the AS5047P
encoder error flag, so a custom firmware had to be developed. This cost the team
development time debugging and correcting this error.

Sometimes on startup the ODrive throw error code 0x08, which only has the
description “ERROR_CURRENT_MEASUREMENT_TIMEOUT”[11] This looks
to be an error where a current measurement watchdog is being tripped. There are
no included troubleshooting instructions for this error as it seems to be an issue
with the timing of the encoder readings and ADC readings on the microcontroller.

Although connecting to an ODrive over a serial connection to a PC is a feature
that ODrive claims to have, the team was not able to get a PC to connect to the
ODrive over a serial connection. Scoping out the connection between the two
devices shows data moving across the link, but the library is unable to produce
an ODrive object that can be used in Python. This seems to be an issue with the
Fibre communication library that ODrive is built on. The ODrive python library
is also blocking, which causes speed issues when communicating with ODrive.

While testing tip force limiting on a single arm, a negative current limit was
accidentally sent to a motor. In response, the ODrive ran the motor in full re-
verse and broke the arm attached to it. Knowing that this error was not caught
by the firmware raises questions of other edge case scenarios where unexpected
behaviors may occur.

A strange convention is used in the ODrive Python library. One problem that
the team ran into is that the function to connect to an ODrive with a particular
serial number only accepts the serial number as a hexadecimal converted into a
string. This was not apparent from documentation of the library and took a good
amount of time to resolve.

Overall, the team cannot recommend using the ODrive motor controllers for
future work. Recently, a new alternative to the ODrive motor controller has
emerged. The motor controller that was used in the MIT mini cheetah has be-
come open source and some vendors are selling fully assembled versions of this
controller. This controller has been proven to work in quadruped robots and the
CAN bus communication protocol seems to be simpler to interface with. The team
recommends that for future work this motor controller should be investigated.

7.0.4 Code

The code base on this robot is a strong foundation for the next iteration of this
project. The team found the developed resources extremely helpful while pro-
gramming and testing gaits. The implementation of the Virtual Joint allowed
rigorous testing of all the control algorithms used on the robot. Additionally, the
abstraction created by the gait super class allows for new gaits to be programmed
into the robot with ease. The team was able to rapidly test and iterate through
gait cycles without having to worry about how the gait was going to be run or

66

managed. The utility functions and classes provided quick access to many useful
functions that were common among gaits. This allowed the implementation and
testing of some gaits to occur within a matter of hours.

There are a variety of things the team recommends implementing moving for-
ward. While a web-based GUI was created for Arm, and ODrive Control, due to
time constraints a proper control interface for the robot was not implemented.
The team recommends defining a variety of inputs to control the robot. Due to
time constraints the current IMU implementation is not compatible with the
multithreaded approach, for this code base to become viable for future research
it is recommended that the IMU be implemented.

7.0.5 Controls

The team was able to cycle the robot through all of the developed gaits in the air.
This shows great promise for the control algorithms that were developed. How-
ever, a lack of IMU feedback on the robot makes it impossible to test or implement
more advanced gaits. In future versions of the code a state estimator will need to
be fused with gyroscopic data to accurately track the robot’s position. Addition-
ally, a there is currently no feedback on the any of the gait algorithms. Adjusting
the gaits to handle sensor feedback and adjust the robot body accordingly seems
like the clear next step for the project.

8 Conclusion

In conclusion, the team must acknowledge that the initial goals were overly am-
bitious. Based upon the completed work this project is largely a success. The
team demonstrated the robot’s control system is capable of both static and dy-
namic walking gaits. The visualization system can be used to validate future
gaits before testing them on the robot hardware. Unfortunately, the transmis-
sions of the robot are not capable of dynamic movements, however this can be
solved with future work. Replacing the ODrive controller should allow for a more
robust control system and fixing the mechanical issues will result in a highly
capable quadruped.

The team looks forward to seeing this project flourish as it is further devel-
oped to be a robust research platform.

67

Figure 68: Fully Assembled Robot

68

9 Appendix

9.1 UI Pictures

Figure 69: Odrive Tuner UI

69

Figure 70: Leg Control UI

9.2 PCB Pictures

Figure 71: Encoder PCB Schematic

70

Figure 72: Encoder PCB Layout

Figure 73: ODrive Holder PCB Schematic

71

Figure 74: ODrive Holder PCB Layout

72

Figure 75: CPU PCB Layout

References

[1] W. H. Encyclopedia, “Capstan equation.” [Online]. Available: http:
//www.self.gutenberg.org/articles/capstan_equation/

[2] “As5047p 14-bit on-axis magnetic rotary position sensor with 12-bit
decimal and binary incremental pulse count for 28krpm high speed
capability.” [Online]. Available: https://ams.com/documents/20143/36005/
AS5047P_DS000324_2-00.pdf/a7d44138-51f1-2f6e-c8b6-2577b369ace8

[3] H. Zhuang, H. Gao, Z. Deng, L. Ding, and Z. Liu, “A review
of heavy-duty legged robots,” Dec 2013. [Online]. Available: https:
//link.springer.com/article/10.1007/s11431-013-5443-7

[4] B. Katz, J. D. Carlo, and S. Kim, “Mini cheetah: A platform for pushing the
limits of dynamic quadruped control,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 6295–6301.

[5] “Solutions: Boston dynamics.” [Online]. Available: https://www.
bostondynamics.com/solutions

[6] J. E. O Rourke, V. Chernyak, T. R. Flynn, A. K. Zalutsky, and J. F. Mor-
gan, “Sabertooth: A high mobility quadrupedal robot platform,” 100 Insti-
tute Road, Worcester MA 01609-2280 USA, Tech. Rep., April 2011.

[7] A. C. Tacescu, K. Bisland, and X. J. Little, “Smallkat mqp,” 100 Institute
Road, Worcester MA 01609-2280 USA, Tech. Rep., April 2019.

[8] D. J. Fitzgerald, “Hydrodog: A quadruped robot actuated by soft fluidic mus-
cles,” 100 Institute Road, Worcester MA 01609-2280 USA, Tech. Rep., April
2015.

73

http://www.self.gutenberg.org/articles/capstan_equation/
http://www.self.gutenberg.org/articles/capstan_equation/
https://ams.com/documents/20143/36005/AS5047P_DS000324_2-00.pdf/a7d44138-51f1-2f6e-c8b6-2577b369ace8
https://ams.com/documents/20143/36005/AS5047P_DS000324_2-00.pdf/a7d44138-51f1-2f6e-c8b6-2577b369ace8
https://link.springer.com/article/10.1007/s11431-013-5443-7
https://link.springer.com/article/10.1007/s11431-013-5443-7
https://www.bostondynamics.com/solutions
https://www.bostondynamics.com/solutions

[9] A. L. Bittle and A. Martinez, “Low cost quadruped: Mutt,” 100 Institute
Road, Worcester MA 01609-2280 USA, Tech. Rep., April 2017.

[10] Wikipedia contributors, “Gait — Wikipedia, the free encyclopedia,” 2004,
[Online; accessed 22-July-2004]. [Online]. Available: https://en.wikipedia.
org/wiki/Gait

[11] “Odrive documentation.” [Online]. Available: https://docs.odriverobotics.
com/

[12] “Teensy® 4.1 development board.” [Online]. Available: https://www.pjrc.
com/store/teensy41.html

[13] “Jetson nano developer kit.” [Online]. Available: https://developer.nvidia.
com/embedded/jetson-nano-developer-kit

[14] “Raspberry pi 4 model b datasheet,” June 2019. [On-
line]. Available: https://www.raspberrypi.org/documentation/hardware/
raspberrypi/bcm2711/rpi_DATA_2711_1p0_preliminary.pdf

[15] “Dyneema® fiber.” [Online]. Available: https://www.dsm.com/dyneema/en_
GB/our-products/dyneema-fiber.html

[16] TECHNICAL DATA SHEET - Nylon X, Matter Hackers. [Online].
Available: https://www.matterhackers.com/r/xCSnpt

[17] A. Mazumdar, S. J. Spencer, C. Hobart, J. Dabling, T. Blada, K. Dullea,
M. Kuehl, and S. P. Buerger, “Synthetic fiber capstan drives for highly ef-
ficient, torque controlled, robotic applications,” IEEE Robotics and Automa-
tion Letters, vol. 2, no. 2, p. 554–561, 2017.

[18] P. I. Corke, “A simple and systematic approach to assigning de-
navit–hartenberg parameters,” IEEE Transactions on Robotics, vol. 23,
no. 3, pp. 590–594, 2007.

[19] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and con-
trol. John Wiley amp; Sons, Inc., 2020.

[20] D. Arrachequesne, May 2021. [Online]. Available: https://socket.io/

[21] “Welcome to flask.” [Online]. Available: https://flask.palletsprojects.com/en/
1.1.x/

[22] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science
& Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[23] X. Zeng, S. Zhang, H. Zhang, X. Li, H. Zhou, and Y. Fu, “Leg trajectory
planning for quadruped robots with high-speed trot gait,” Applied Sciences,
vol. 9, p. 1508, 04 2019.

74

https://en.wikipedia.org/wiki/Gait
https://en.wikipedia.org/wiki/Gait
https://docs.odriverobotics.com/
https://docs.odriverobotics.com/
https://www.pjrc.com/store/teensy41.html
https://www.pjrc.com/store/teensy41.html
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0_preliminary.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0_preliminary.pdf
https://www.dsm.com/dyneema/en_GB/our-products/dyneema-fiber.html
https://www.dsm.com/dyneema/en_GB/our-products/dyneema-fiber.html
https://www.matterhackers.com/r/xCSnpt
https://socket.io/
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/

[24] “Bno055 intelligent 9-axis absolute orientation sensor data sheet.”
[Online]. Available: https://www.bosch-sensortec.com/media/boschsensortec/
downloads/datasheets/bst-bno055-ds000.pdf

[25] “Ft4232h mini module usb hi-speed ft4232h evaluation module
datasheet,” August 2012. [Online]. Available: https://www.ftdichip.com/
Support/Documents/DataSheets/Modules/DS_FT4232H_Mini_Module.pdf

75

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
https://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_FT4232H_Mini_Module.pdf
https://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_FT4232H_Mini_Module.pdf

	Introduction
	Current State of Research Quadrupeds
	Proposed Objectives

	Background
	Quadrupeds at WPI
	MIT Mini Cheetah
	ODrive Motor Controllers
	Quadruped Walking Gaits
	Intermittent Crawl Gait
	Crawl Gait
	Trot

	Methodology
	Engineering Process
	Motor Selection
	BLDC Motor Torque Curves
	Initial Control System Topology
	COVID

	Design and Development of Single Leg
	System Overview
	Mechanical
	Extremity Design
	First Design
	Second Design
	Third Design

	Shoulder Joint Design
	Capstan Prototype
	Determining the wraps necessary for the minor roller

	Controls
	Forward Kinematics
	Inverse Kinematics
	Jacobian
	Current Limiting
	Quintic Trajectory Planning

	Software Stack
	ODrive Tuner
	Joint and Virtual Joint Class
	Leg Class
	Leg Stick Plot
	Leg UI

	Communication

	Design/Development of Quadruped
	System overview
	Mechanical
	Communication
	Multi Threading
	ODrive Firmware

	Controls
	World To Robot Transformation
	Robot To Leg Frame Transformation
	Leg Swing Phase Control
	Foot Ground Phase Control

	Software Stack
	Robot Class
	Gait Class
	Virtual Robot
	Utility

	Gaits
	Wiggle Gait
	Crawl Gait
	Trot
	Intermittent Crawl

	Electrical
	ODrive Holder PCB
	CPU PCB
	Encoder PCB
	Hall Effect Homing Sensor
	Inertial Measurement Unit
	Battery Calculations

	System Testing and Validation
	Overview
	Single Motor Testing
	Bandwith Measurement
	Single Leg Testing
	Dual Leg Testing
	Virtual Gait Testing
	Gait Testing
	Suspended Testing
	Lowering
	Body Positioning
	Crawl
	Trot
	Intermittent Crawl

	Encoder Problems
	ODrive Problems

	Discussion
	Mechanical
	Electrical
	ODrives
	Code
	Controls

	Conclusion
	Appendix
	UI Pictures
	PCB Pictures

