
Evaluating Energy Efficiency of HPC
Benchmarks

A Major Qualifying Project (MQP) Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the Degree of Bachelor of Science in

Computer Science

By:

Karl Brzoska

Project Advisors:

Shubbhi Taneja
Joseph Manzano

Katarzyna Swirydowicz

Date: April 2024

This report represents work of WPI undergraduate students submitted to the faculty as
evidence of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. For more information about the projects program at WPI,
see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

Abstract

As we enter the exascale computing era, the focus on energy efficiency and performance for High-
Performance Computing (HPC) systems, particularly when handling benchmarks such as the High Perfor-
mance Conjugate Gradients (HPCG), is paramount. This project aims to assess the energy efficiency and
performance of HPC systems by profiling on benchmarks like HPCG and scientific workflows. The goal is
to investigate the impact of various system configurations and execution parameters on the power efficiency
and performance, enabling the optimization of HPC systems for energy-efficient execution of computationally
intensive tasks, thereby supporting sustainable and effective scientific computing practices.

i

Acknowledgements

I would like to thank Dr. Shubbhi Taneja for providing support and guidance throughout this
project. I would also like to thank Drs. Joseph Manzano and Kasia Swirydowicz from the Pacific Northwest
National Laboratory for their invaluable advice. I would also like to thank Adhiraj Budukh for his assitance
throughout the project. In addition, this work used the Extreme Science and Engineering Discovery Environ-
ment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. Specifically,
it used the Bridges-2 system, which is supported by NSF award number ACI-1928147, at the Pittsburgh
Supercomputing Center (PSC), as well as the Rockfish system, which is supported by NSF award number
ACI-1920103, at Johns Hopkins University (JHU). This research was also performed using computational
resources supported by the Academic and Research Computing group at Worcester Polytechnic Institute.

ii

Contents

1 Introduction 1

1.1 Project Objectives . 2

1.2 Objective . 2

1.3 Background . 2

1.4 Rockfish . 3

1.5 Bridges . 3

1.6 Motivation for using HPCG . 4

2 Related Work 5

2.1 Performance Modeling of the HPC Benchmark . 5

3 Benchmarking and Experimental Methodology 7

3.1 Experiment Setup . 7

3.2 Initiating HPCG Runs . 8

3.3 Running the HPCG Benchmark . 8

3.4 Profiling HPCG . 9

3.5 Energy Analysis of HPCG Benchmark Scaling . 14

3.6 Energy Results on A100 vs. V100 . 19

3.7 Increasing HPCG’s Input Size . 24

3.8 Pairwise comparisons of Energy, Size Sparsity . 28

4 Conclusion 31

Appendices 35

A Perf Cache Hit Script 35

B Rapl Power Collection Script 36

C Rapl Power Collection Script from University of Maine 36

List of Tables

1 Comparison of NVIDIA A100 and V100 GPUs . 5

List of Figures

1 Energy Consumption on V100, 1 processes, 256x256x256 . 7

2 TAU Profiling output . 10

3 TAU Profiling output for MPI send . 10

4 TAU Profiling output for MPI Collective Sync . 11

5 TAU Profiling output for MPI Wait . 12

6 TAU Profiling output for MPI Wait . 12

iii

7 TAU Profiling output for MPI Wait . 14

8 Graph depicting energy usage of HPCG run on A100. 5 process and 128x128x128 problem size 15

9 Graph depicting energy efficiency (MFLOPS) vs MPI Processes 17

10 Graph depicting energy efficiency (MFLOPS) vs MPI Processes 18

11 Energys Efficiency Table . 19

12 Energy Consumption on V100, 1 processes, 128x128x128 . 20

13 Energy Consumption on V100, 5 processes, 128x128x128 . 20

14 Energy Consumption on V100, 10 processes, 128x128x128 . 21

15 V100 Processes Distribution . 22

16 Energy Consumption on V100, 10 processes, 128x128x128 . 23

17 Energy Consumption on V100, 1 processes, 256x256x256 . 25

18 Energy Consumption on V100, 5 processes, 256x256x256 . 26

19 Energy Consumption on V100, 5 processes, 256x256x256 . 27

20 Pairwise Heatmap . 29

21 Pairwise Relationships . 31

iv

1 Introduction

In the dynamic landscape of High-Performance Computing (HPC), the march towards exascale

computing has heralded significant technological advancements. The last decade has witnessed a monumental

surge in the capabilities of the world’s leading HPC systems, with a performance increase of 42-fold, escalating

from 10,510.0 TFlops in November 2011 to an impressive 442,010.0 TFlops by November 2021 [3]. This

exponential growth in computational power has, however, been accompanied by a corresponding increase in

energy consumption, spotlighting the paramount challenge of boosting energy efficiency. While the Fugaku

supercomputer achieved a significant milestone in reaching exascale computing in June 2020, it has since

been surpassed by other systems in terms of computational power and efficiency rankings. The Frontier

supercomputer, housed at the Oak Ridge National Laboratory in Tennessee, USA, leads as the world’s

most powerful supercomputer, with an HPL benchmark score of 1.194 exaflops. It is recognized as the only

exascale system on the TOP500 list, showcasing advanced computational capabilities and efficiency. The

Aurora system, still in completion, is expected to reach over two exaflops, promising further advancements in

high-performance computing. Meanwhile, Fugaku now ranks fourth, with an HPL score of 443.01 petaflops,

indicating a shift in the landscape of supercomputing power and highlighting the ongoing evolution and

competition in the field [2].

Graphics Processing Units (GPUs) have been instrumental in the progress of HPC systems. Tran-

sitioning from auxiliary components to being at the core of computational powerhouses, GPUs now power

seven of the top ten supercomputers globally as of 2021 [1]. Their critical role extends beyond sheer computa-

tional strength to being central in the quest for energy efficiency, with nine out of the ten most energy-efficient

supercomputers relying on GPU technology. The introduction of Nvidia’s ninth-generation Ampere GPU

architecture in May 2020 marked a significant milestone, promising major improvements in performance and

energy consumption over its Volta predecessor, thus setting new standards for energy-efficient computing

[3],[4]. There has been research to even optimize.

This project aims to assess the energy efficiency and performance of High-Performance Computing

(HPC) systems through the execution of HPCG benchmark [3]. This marks a pivot from our previous

focus on Machine Learning (ML) applications, as documented in previous reports, towards a comprehensive

analysis of scientific workflows. There is a huge use of these hpc systems in science. [2] By examining energy

consumption and computational efficiency during the execution of HPCG benchmarks, the project seeks to

uncover performance bottlenecks and devise strategies for enhancing both sustainability and computational

power in HPC systems. The HPCG benchmark runs sparse algorithms. [6] There is work on improving these

1

systems. [13] This endeavor is crucial for advancing toward exascale computing with a sustained commitment

to energy efficiency.

1.1 Project Objectives

This study aims to explore and enhance the energy efficiency of High-Performance Conjugate Gra-

dients (HPCG) within high-performance computing (HPC). Under the guidance of Professor Shubbhi Taneja

from the Computer Science Department at Worcester Polytechnic Institute (WPI), and in collaboration with

experts from PNNL, this research seeks to identify, evaluate, and investigating workflows to identify per-

formance characteristics and any bottlenecks that if correctly identified could reveal opportunities to save

energy. The objective encompasses a detailed examination of the installation, configuration, and perfor-

mance testing processess. Through this endeavor, the report will contribute to the broader discourse on

sustainable computing, offering insights into the challenges and opportunities for advancing energy efficiency

in the context of evolving computational demands.

1.2 Objective

We plan to execute the High-Performance Conjugate Gradient (HPCG) benchmark across high-

performance computing systems to assess and compare their energy consumption and efficiency. This com-

prehensive evaluation will contribute to a deeper understanding of how HPCG operations utilize system

resources and their impact on energy usage.

1.3 Background

This study embarks on a comprehensive exploration of high-performance computing (HPC) ca-

pabilities by conducting rigorous experiments using the High-Performance Conjugate Gradients (HPCG)

benchmark, on two distinguished supercomputers: Rockfish at Johns Hopkins University (JHU) and Bridges

at the Pittsburgh Supercomputing Center (PSC). These experiments are designed to delve into the compu-

tational efficiency and energy consumption patterns of these advanced HPC systems, providing invaluable

insights into their performance characteristics under the load of sophisticated scientific computations. The

following paragraphs detail the architectural nuances and configurations of the Rockfish and Bridges sys-

tems, setting the stage for understanding how their design influences the outcomes of the HPCG experiments.

In the realm of high-performance computing (HPC), the architectural design and configuration of systems

like Rockfish at Johns Hopkins University (JHU) and Bridges at the Pittsburgh Supercomputing Center

2

(PSC) stand as pivotal elements in advancing computational research. These systems are tailored to meet

the diverse and demanding requirements of contemporary scientific investigations, encapsulating a blend

of cutting-edge technology and strategic design principles to optimize performance, scalability, and energy

efficiency.

1.4 Rockfish

The Rockfish HPC system, situated within the academic and research ecosystem of JHU, exemplifies

a modern approach to supporting a wide array of computational and data-intensive research endeavors. While

specific architectural details of Rockfish are proprietary or not widely disseminated in public domains, it

is reasonable to infer from prevailing trends in HPC architectures that the system incorporates a robust

network of compute nodes. These nodes are likely powered by multi-core processors that facilitate parallel

computations, a cornerstone for accelerating scientific discovery. Accompanying these compute resources,

high-capacity, fast-access storage systems are essential for managing the voluminous datasets characteristic

of modern research. The interconnectivity among compute nodes is presumably ensured by a high-speed,

low-latency network, such as InfiniBand, which is renowned for its high throughput and minimal latency,

thereby enhancing the system’s ability to perform large-scale, distributed computations efficiently. [4]

1.5 Bridges

Parallel to Rockfish, the Bridges system at PSC, including its more recent iteration, Bridges-

2, has been explicitly designed to cater not only to traditional HPC applications but also to emergent

computational paradigms such as artificial intelligence (AI), machine learning (ML), and big data analytics.

Bridges distinguishes itself through a heterogeneous computing architecture that integrates a variety of

compute nodes, including those with substantial memory capacities (reaching several terabytes per node) and

GPU-accelerated nodes designed to expedite AI and ML tasks. The inclusion of advanced GPU technologies,

such as NVIDIA’s Tesla and A100 series, underscores the system’s readiness to tackle compute-intensive

applications, leveraging the parallel processing prowess of GPUs. The storage architecture within Bridges

adopts a tiered approach, featuring both a high-performance parallel file system for active data access and

secondary storage solutions to accommodate larger datasets and archival needs. The underlying network

infrastructure, likely based on InfiniBand technology, supports the system’s heterogeneous computational

demands by facilitating swift data movement and inter-node communication. [11]

The software ecosystem across both Rockfish and Bridges encompasses a comprehensive suite of

3

tools, libraries, and frameworks, meticulously curated to support a broad spectrum of research activities. This

includes operating systems optimized for HPC, job scheduling systems to efficiently manage computational

workloads, and a plethora of scientific applications and libraries that empower researchers to push the

boundaries of their respective fields.

In summary, the architectural blueprints of Rockfish and Bridges reflect a sophisticated under-

standing of the requirements for modern scientific computation. Through strategic hardware selection and

integration, coupled with a robust software infrastructure, these systems provide the computational back-

bone necessary for advancing research across numerous scientific disciplines. As HPC continues to evolve, the

adaptability and innovation embedded within the architectures of Rockfish and Bridges will remain critical

in addressing the ever-expanding complexity of research challenges.

1.6 Motivation for using HPCG

In this study, the High Performance Conjugate Gradient (HPCG) benchmark serves a pivotal role

in advancing our understanding of energy consumption and efficiency across high-performance computing

(HPC) systems. As a metric designed to parallel real-world computational loads more closely than its

predecessor, HPL, HPCG incorporates memory-bound operations that are inherently more reflective of the

diverse and demanding nature of scientific computation today. By executing the HPCG benchmark on state-

of-the-art HPC systems, we aim to gather empirical data on energy usage under load conditions that simulate

actual application behavior, rather than peak theoretical performance. This provides a dual benefit: it allows

for a more nuanced analysis of the energy profiles of supercomputers and helps in identifying opportunities for

energy optimization. Crucially, HPCG’s emphasis on data movement and problem-solving efficiency presents

a more comprehensive framework for assessing how energy is consumed in the pursuit of solving complex

problems. Through this benchmark, we can evaluate the trade-offs between computational performance and

energy expenditure, enabling the development of more energy-efficient computing strategies and contributing

to the broader goal of sustainable advancement in HPC technologies. [12]

[1]

4

Table 1: Comparison of NVIDIA A100 and V100 GPUs

Specification A100 V100

Architecture Ampere Volta

CUDA Cores 6,912 5,120

Tensor Cores 432 (3rd Gen) 640 (2nd Gen)

Memory Capacity 40 GB or 80 GB HBM2e 16 GB or 32 GB HBM2

Memory Bandwidth 1.6 TB/s 900 GB/s

Peak FP32 Performance 19.5 TFLOPS 15.7 TFLOPS

Peak Tensor Performance (FP16) Up to 312 TFLOPS Up to 125 TFLOPS

Interconnect Bandwidth (NVLink) 600 GB/s 300 GB/s

Power Consumption 250W - 400W 250W - 300W

2 Related Work

Several previous studies have focused on similar topics to this project, including the performance

and energy efficiency of certain benchmarks.

2.1 Performance Modeling of the HPC Benchmark

The evolution of benchmarks for assessing high-performance computing (HPC) systems has been

pivotal in reflecting the computational demands of real-world applications. Traditionally, the High Perfor-

mance LINPACK (HPL) benchmark has been the standard for ranking HPC systems. However, its relevance

has diminished as it primarily measures compute-bound operations, which do not accurately represent the

memory-bound nature of many contemporary scientific applications. This gap led to the development of

the High Performance Conjugate Gradients (HPCG) benchmark, designed to offer a more comprehensive

evaluation by focusing on operations that are more indicative of real-world applications’ performance.

Heroux et al. (2013) introduced the HPCG benchmark, highlighting its design aimed at better

mirroring the computational and data access patterns seen in current scientific computing tasks than what

HPL offers [3]. The authors emphasized that HPCG seeks to provide a more realistic measure of a sys-

tem’s performance, focusing on memory-bound rather than compute-bound operations, aligning with the

performance characteristics of many modern HPC applications [3].

Further extending the utility of HPCG, Marjanović et al. (2015) presented an in-depth analysis

and performance modeling of the benchmark [9]. Their work underscored the predictive capability of HPCG

5

in evaluating system performance based on critical hardware characteristics: the effective bandwidth be-

tween the main memory and the CPU, and the highest occurring network latency between compute units.

Their modeling demonstrates high accuracy in predicting HPCG performance, underscoring the benchmark’s

relevance in assessing future exascale systems [9].

The collective discourse surrounding HPCG accentuates its significance in steering the development

towards more energy-efficient HPC systems. By emphasizing memory-bound operations and integrating

factors such as network latency and memory bandwidth into its performance evaluation, HPCG advocates

for hardware and software optimizations geared toward energy efficiency. This paradigm shift is crucial for

achieving sustainable exascale computing, where energy consumption emerges as a formidable challenge to

the scalability of HPC systems.

The performance model, predicated on straightforward hardware metrics, suggests that advance-

ments in memory bandwidth optimization and reductions in network latency are key to enhancing HPCG

scores [9]. Such improvements, by extension, could significantly impact the energy efficiency and perfor-

mance of HPC systems in executing memory-intensive scientific applications. This insight forms a critical

foundation for my MQP, aiming to contribute to the optimization efforts for better energy efficiency in HPC

systems, particularly through enhancements targeting the HPCG benchmark.

The paper ”Modeling CPU Energy Consumption of HPC Applications on the IBM POWER7” by

Philipp Gschwandtner et al. addresses the challenge of optimizing energy consumption in High-Performance

Computing (HPC) applications, particularly when hardware support for measuring power and energy is lim-

ited. The study focuses on developing in-band energy consumption models for the IBM POWER7 processor

using hardware counters and linear regression. The models aim to predict energy consumption accurately

without needing detailed, hardware-specific micro-benchmarks for training. Instead, they utilize high-level

benchmarks, considering different instruction mixes influenced by compilers (GCC and IBM XL) and multi-

threading scenarios. [7]

6

Figure 1: Energy Consumption on V100, 1 processes, 256x256x256

The research findings demonstrate that linear regression can model energy consumption with high

accuracy (mean errors of approximately 1 percent and maximum errors of 5.3 percent for GCC compiled

applications). The paper also explores the effects of different compilers and parallelism on energy modeling,

revealing that the IBM XL compiler’s complex usage of hardware makes energy consumption modeling

more challenging compared to GCC. The study contributes to energy-efficient HPC by providing simple

yet accurate models for CPU energy consumption, emphasizing the need for in-band measurements and the

potential for auto-tuning and performance analysis in energy optimization efforts.

3 Benchmarking and Experimental Methodology

3.1 Experiment Setup

Accessing High-Performance Computing Systems The preliminary phase of setting up the High

Performance Conjugate Gradients (HPCG) benchmark involved securing access to two renowned high-

performance computing (HPC) systems: Rockfish at Johns Hopkins University (JHU) and Bridges at the

Pittsburgh Supercomputing Center (PSC). Access was granted through institutional affiliations and collab-

orations, providing an opportunity to deploy and assess the HPCG benchmark on these advanced compu-

tational platforms. Upon securing the necessary permissions, the HPCG benchmark software was acquired.

The source code for HPCG was downloaded from the official repository, ensuring that the most recent and

7

stable version of the benchmark was obtained for an accurate evaluation. It was then compiled.

3.2 Initiating HPCG Runs

With the HPCG benchmark successfully compiled and the systems configured, the execution phase

commenced. The runs were initiated using the Message Passing Interface (MPI) to orchestrate parallel com-

putations across the multiple nodes of the Rockfish and Bridges systems. The benchmark was launched using

the command mpirun, which is the standard runner for MPI-enabled applications. The specific command

used was:

mpirun -np ¡numberofprocesses > ./bin/xhpcg − −nx =< gridsizex > − − ny =< gridsizey >

−− nz =< gridsizez >

The primary objective of this experiment was to evaluate the energy efficiency of High-Performance

Computing (HPC) systems when running the High Performance Conjugate Gradients (HPCG) benchmark.

A critical aspect of this evaluation was to understand how varying the number of processes and the problem

size influences the power consumption of the CPU under different computational loads. This study utilized

the HPCG benchmark with a specific focus on comparing the performance and energy efficiency between

two advanced GPU architectures: NVIDIA’s A100 and V100.

3.3 Running the HPCG Benchmark

The HPCG benchmark was initially configured to run with a single process (1 process) and an

input problem size of 128 × 128 × 128 128×128×128. The choice of a single process served as the baseline

for this experiment, representing the smallest possible number of processes. This setup allowed for a founda-

tional understanding of the system’s behavior under minimal computational distribution and parallelization.

The problem size of 128 × 128 × 128 128×128×128 was selected based on its adequacy in demonstrating

discernible differences between successive runs, ensuring that the data collected was both significant and

reflective of the system’s capabilities.

To capture the CPU power consumption accurately, a power collection script was employed. This

script utilized the Running Average Power Limit (RAPL) interface to collect data on CPU power usage every

second throughout the HPCG benchmark execution. The granularity of power data collection was designed

to offer a detailed insight into the power dynamics and the energy efficiency of the system under test.

Following the baseline measurements, the experiment scaled the number of processes from 1 to 5 and

8

then to 10 processes. This incremental approach allowed for an analysis of how increasing parallelism impacts

the energy efficiency and overall performance of the system when running memory-bound benchmarks like

HPCG. The results of this experiment are expected to highlight the energy consumption patterns and the

efficiency of computational resource utilization across different process counts and GPU architectures. By

analyzing the power data collected via RAPL and correlating it with the HPCG benchmark performance

metrics, insights into the trade-offs between computational performance and energy efficiency in HPC systems

can be drawn. Specifically, the comparison between A100 and V100 GPUs under the HPCG workload will

elucidate the advancements in GPU technology and their implications for future HPC system design and

optimization.

3.4 Profiling HPCG

Before we take a look at the energy consumption results, let’s take a look at the profiling. Profiling

in the context of High Performance Conjugate Gradients (HPCG) refers to the process of analyzing the

program’s execution to understand its performance characteristics. The profiler I used is Tuning and Analysis

Utilities (TAU). TAU is a powerful and versatile profiling and tracing toolkit designed for performance

analysis of parallel programs. Developed to help scientists and engineers optimize the efficiency of their code,

TAU provides detailed information on the execution of programs, offering insights into various performance

metrics such as execution time, memory usage, I/O statistics, and hardware counters. [10]

TAU supports a wide range of parallel computing architectures and programming paradigms, in-

cluding message passing interface (MPI), OpenMP, CUDA for GPUs, and more. It can be used for profiling

both single-threaded and multi-threaded applications, from small-scale tests to large-scale HPC systems.

Open MPI is an open-source, efficient, and flexible implementation of the Message Passing Interface (MPI)

standard used for parallel programming in distributed computing environments. [5] [8]

9

Figure 2: TAU Profiling output

The exclusive time profiled for MPI operations using TAU across four nodes in an HPCG benchmark

illustrates a rich tapestry of performance metrics. The image reveals standard deviations (blue bars) that

span a moderate range, suggesting a somewhat consistent performance across nodes, albeit with detectable

variability. The mean values (green bars) stretch closely alongside the maximum times (red bars), indicating

that on average, the nodes tend to veer towards the upper end of the execution time spectrum. This pattern

implies a prevalence of operations skewing towards a longer duration. Notably, the minimum times (purple

bars) diverge from the cluster of other metrics, particularly for ’node 3’, which may indicate sporadic instances

of highly efficient execution. The nodes display varied lengths in execution time for the standard deviation,

mean, maximum, and minimum values, highlighting potential optimization opportunities in balancing the

workload and improving synchronization. Fortunately, TAU allows us to analyze each colored bar and see

what each one tells us.

Figure 3: TAU Profiling output for MPI send

This graph shows the first MPI call in our HPCG run. MPI Send is a function in the MPI (Message

10

Passing Interface) standard that allows a process to send a message containing specified data to another

process within a parallel computing environment. In the profiling of MPI Send, node 0 displays the maximum

exclusive time, suggesting it is the predominant sender in the communication pattern, possibly due to a larger

data payload or less optimal network paths. The mean time lies close to the maximum, which could reflect

a tendency for this operation to consistently take longer across all nodes. Node 1 shows a starkly minimal

exclusive time, which might be indicative of it being the least involved in sending operations or benefiting

from advantageous network conditions. The standard deviation is relatively small, pointing to a uniformity

in the send operation’s performance across the nodes. This level of uniformity, despite the high maximum,

presents an interesting case for potential network or process optimizations.

Figure 4: TAU Profiling output for MPI Collective Sync

The MPI Collective Sync operation profiling underscores ’node 0’ with the longest execution time,

potentially signifying either a delay in reaching the synchronization barrier or a greater volume of preceding

operations. The narrow standard deviation relative to the mean suggests uniform synchronization costs

among the nodes. ’Node 3’ secures the minimum time, implying efficient barrier operations, possibly due

to advantageous process completion or communication strategies. Given the critical nature of collective

synchronization in parallel processing, the relatively even distribution of times across nodes, except for ’node

0’, suggests a well-coordinated operation with a focus needed on ’node 0’ to bring it in line with its peers.

11

Figure 5: TAU Profiling output for MPI Wait

For MPI Wait(), ’node 2’ incurs the maximum time, which may reflect a bottleneck where this

node waits longer for operations to complete, likely due to pending data from other nodes or delays in

preceding computations. ’Node 1’ has the least wait time, indicating it is either less dependent on other

nodes’ computations or it efficiently manages its non-blocking communications. The standard deviation is

somewhat pronounced, revealing disparities in the asynchronous communication patterns among the nodes.

Such a deviation could be a sign of imbalanced workload distribution or varying efficiency in communication

which, if addressed, could significantly reduce the overall computational wait times.

Figure 6: TAU Profiling output for MPI Wait

The profiling of MPI Allreduce() demonstrates ’node 1’ expending the maximum time, which could

be attributable to a slower contribution to the collective reduction or a delay in processing the gathered

data. ’Node 2’ exhibits the minimum time, indicative of a quicker data handling or reduced communication

overhead. The small standard deviation suggests a relative homogeneity in the operation times across

nodes, which is desirable for collective operations that require synchronization. Nonetheless, the data point

to ’node 1’ as a potential outlier, necessitating further investigation into its specific behavior during the

allreduce operation.

12

The performance profiling of an HPCG benchmark facilitated by TAU has offered a comprehensive

view of the inter-node communication patterns and the associated computational overhead in an MPI-based

distributed computing environment. Across the board, there exists a notable divergence in the execution

times for various MPI operations—MPI Send(), MPI Collective Sync, MPI Wait(), and MPI Allreduce()—which

suggests a complex interplay between workload distribution, communication efficiency, and synchronization

among the nodes.

From the data gathered, node 0 consistently shows a predisposition towards higher execution times

in collective synchronization and sending operations. This could indicate that node 0 is possibly engaged

in more intensive computation or communication tasks, which may be attributed to a disproportionate

workload or to suboptimal communication routes that exacerbate the latency. The relatively small standard

deviations in operations like MPI Collective Sync and MPI Allreduce() reflect a uniformity in execution time

which implies that the discrepancy in performance between nodes is not due to stochastic variations but

likely results from systemic issues in the computational balance or network configuration.

The intricate relationship between the performance of individual nodes and the collective behavior

of the system highlights the multifaceted nature of parallel computing performance optimization. It is not

merely about accelerating individual nodes but about ensuring harmony and balance in their collective

operation. The findings strongly suggest that there are imbalances in the computational and communication

load that should be addressed. In conclusion, while the MPI operations within the HPCG benchmark display

a general consistency in synchronization and reduction operations, there is significant room for improvement

in balancing the load and optimizing communications. A targeted approach that addresses the specific

inefficiencies identified for each node could lead to a more streamlined and efficient execution of the HPCG

benchmark. Such enhancements would not only improve the raw performance metrics but also increase the

scalability and robustness of the system as a whole.

13

3.5 Energy Analysis of HPCG Benchmark Scaling

Figure 7: TAU Profiling output for MPI Wait

Our experiments with the High Performance Conjugate Gradients (HPCG) benchmark on the

A100 GPU system reveal distinct energy consumption profiles for the processing units and memory. The

energy consumption for both CPU packages, Package-0 and Package-1, maintained a steady state between

80-90 joules throughout the benchmark execution. Notably, Package-0 consistently showed a higher energy

consumption, approaching 90 joules, indicating that the MPI processes may not be evenly distributed across

the sockets. It is probable that the single MPI process used in this experiment was allocated to Package-0.

This observation points to an imbalance in energy distribution between the two packages, which could be

attributed to the benchmark’s process allocation mechanism.

In contrast to the CPU packages, the Dynamic Random-Access Memory (DRAM) associated with

both Package-0 and Package-1 exhibited very similar and considerably lower energy consumption levels.

The negligible variation between them suggests that memory access and usage were consistent and evenly

distributed, which is an expected behavior given the memory-bound nature of the HPCG benchmark. The

low energy consumption by the DRAM also implies that, for this problem size and the given compute

architecture, the benchmark’s workload is not memory-intensive.

The data from this experiment provide a nuanced understanding of the energy efficiency dynamics

within an HPC system equipped with an A100 GPU. The higher energy consumption by Package-0 suggests

14

that while the system may have adequate provisions for power sharing, the actual utilization during the

HPCG run favors one CPU package over the other. This finding is critical for energy optimization as it

highlights the need for more balanced process distribution across CPU sockets to achieve better energy

proportionality.

The relatively stable energy consumption by the CPU packages also suggests that the computational

load imposed by the HPCG benchmark does not fluctuate significantly over time, which is indicative of the

benchmark’s consistent demand on system resources. However, the disproportionate energy consumption

between Package-0 and Package-1 raises questions about the optimality of the current HPCG benchmark

setup. Optimizing the distribution of MPI processes could potentially lead to more even energy usage across

CPU packages and thus improve the overall energy efficiency of the system during benchmarking.

The energy consumption patterns observed during the HPCG benchmark run with a single MPI

process on an A100 GPU system underline the importance of considering both CPU and memory energy

profiles in the evaluation of HPC systems. The insights gained from this analysis will inform subsequent

experiments, which will explore the effects of varying MPI process counts on energy consumption. Addi-

tionally, these findings will contribute to the development of strategies to enhance the energy efficiency of

HPCG benchmark runs, ensuring that both computational and memory resources are utilized in the most

energy-effective manner.

Figure 8: Graph depicting energy usage of HPCG run on A100. 5 process and 128x128x128 problem size

Having established the baseline energy consumption characteristics of the HPCG benchmark with a

15

single MPI process, we now shift our focus to a more complex scenario involving multiple processes to examine

how increased parallelism influences the system’s energy dynamics. In the pursuit of characterizing energy

efficiency across different computational loads, an HPCG benchmark was executed on an NVIDIA A100

system with an increased parallelization of 5 MPI processes, while retaining the problem size of 128×128×128.

This section discusses the energy consumption patterns as observed in the provided graph.

The recorded energy consumption exhibited significant variability, with readings oscillating between

approximately 100 joules and just over 160 joules. This range is markedly higher than what was observed

in the single-process execution, indicating that the additional processes introduce greater fluctuations in

power usage. The less uniform nature of the energy consumption, as evidenced by the ”squiggly” lines on

the graph, suggests a dynamic workload where certain operations within the HPCG benchmark demand

more energy. The peak energy consumption, reaching slightly above 160 joules, likely corresponds to the

most compute-intensive portion of the benchmark. A notable dip to 100 joules, representing the lowest

energy usage during the run, precedes this peak. Such a dip might correspond to a phase in the benchmark

where either computational demand temporarily lessens or efficient power management mechanisms within

the A100 system dynamically scale the energy usage in response to the workload variations. The graph

also reveals that the energy consumption associated with Package-1 consistently exceeds that of Package-0.

This could imply an imbalanced distribution of MPI processes, with Package-1 possibly handling a greater

number of processes. Such an imbalance could be due to non-uniform process distribution across the CPU

sockets or the inherent architecture of the A100 system, which may allocate resources unevenly under certain

conditions.

The dynamic energy consumption pattern observed with 5 MPI processes presents a contrast to

the more stable pattern seen with a single process. This variability underscores the complexity of managing

energy efficiency in parallel computing environments. Specifically, the peak energy consumption observed

suggests that certain computational phases in the HPCG benchmark are particularly power-intensive and

could be targets for optimization in future energy efficiency efforts.

16

Figure 9: Graph depicting energy efficiency (MFLOPS) vs MPI Processes

The final experiment here presents a comparison of energy consumption over time between two com-

puting packages and their corresponding DRAM units. The solid blue and red lines, representing Package-0

and Package-1 respectively, suggest distinct energy utilization patterns, with Package-0 consuming more en-

ergy than its counterpart. This discrepancy could be indicative of Package-1’s superior energy efficiency or a

less intensive workload. Additionally, there is a marked peak in the energy consumption of Package-0 around

the 10:29:30 timestamp, which does not appear in the data for Package-1, pointing to a transient increase in

demand or computational activity exclusively affecting Package-0. In contrast, the energy consumption of

both DRAM units, illustrated by the dashed lines, remains significantly lower and more stable, aligning with

the typical behavior of memory components, which are known for their relatively low power consumption.

Towards the end of the observed period, a decline in energy use for both packages is noticeable, potentially

signifying a reduction in operational demand or a transition to a lower power state. The y-axis of the

graph, quantifying energy in joules, allows for an appreciation of the scale of consumption, with Package-

0 approaching 160 joules and DRAM units maintaining a consumption below 20 joules, underscoring the

comparatively modest energy requirements of DRAM. Without additional context regarding the system’s

configuration and the nature of the workload, definitive conclusions remain tentative; however, the graph

clearly demonstrates a variance in energy consumption between the two packages and the consistently low

demand of the DRAM, highlighting the importance of considering individual component behavior in overall

energy efficiency assessments.

In conclusion, the increased energy consumption and variability with 10 MPI processes highlight

17

the challenges in maintaining energy efficiency as computational load scales. The insights from this analysis

will inform strategies for optimizing process distribution and managing power dynamically, which are crucial

for the development of energy-efficient HPC systems capable of sustaining larger-scale computations, as

proposed in the HPCG benchmark.

So when we increased the number of processes, the energy used increased. So what happens with

energy efficiency? In order to measure energy efficiency, we take the MegaFLOPS per joule. MegaFLOPS

per Joule (MFLOP/J) is a unit of measure that describes the energy efficiency of a computer system when

performing floating-point operations.

Figure 10: Graph depicting energy efficiency (MFLOPS) vs MPI Processes

This graph delineates the relationship between the number of Message Passing Interface (MPI)

processes and the corresponding energy efficiency, measured in millions of floating-point operations per joule

(MFLOP/J). The depicted trend suggests a positive correlation between the two variables, with energy

efficiency appreciably increasing as more MPI processes are employed. Specifically, the graph illustrates

that this increase is significant up to 5 processes and continues to rise, albeit at a diminishing rate, up to

15 processes. This progression indicates a potential plateau effect, implying a point of diminishing returns

where additional MPI processes contribute less incrementally to energy efficiency. The graphical data extend

up to 15 MPI processes, offering a comprehensive overview of the scalability and efficiency trade-offs involved

in the parallelization of computational tasks.

The table complements the graphical data by providing detailed quantitative metrics for the first

18

Figure 11: Energys Efficiency Table

five MPI processes. Each row correlates to a unique MPI process count and presents four distinct performance

indicators: energy efficiency (MFLOP/J), energy used (Joules), execution time (seconds), and GFLOP/s with

overhead. The energy efficiency values corroborate the graphical analysis, demonstrating a clear upward

trend. However, energy usage also increases with the number of MPI processes, suggesting a trade-off

between efficiency and total energy consumption. Notably, the execution time remains constant for 1 and

2 MPI processes but begins to increase from 3 processes onwards, with 5 processes experiencing a nearly

50-second increase compared to 1 process. The GFLOP/s metric, inclusive of overhead, also rises with the

number of processes but indicates increasing overhead costs, reflected by the slowing rate of growth. This

tabular data underscore the interplay between energy efficiency, energy consumption, execution time, and

overhead, providing a nuanced understanding of the computational efficiency landscape in parallel processing

environments.

3.6 Energy Results on A100 vs. V100

In this section, we compare the performance of the High Performance Conjugate Gradient (HPCG)

benchmark on two GPUs: NVIDIA’s V100 and the more recent A100. We aim to highlight the differences

in their HPC capabilities, with a focus on the improvements the A100’s Ampere architecture brings over the

V100’s Volta architecture in terms of computational efficiency and speed.

19

Figure 12: Energy Consumption on V100, 1 processes, 128x128x128

Figure 13: Energy Consumption on V100, 5 processes, 128x128x128

20

Figure 14: Energy Consumption on V100, 10 processes, 128x128x128

In the first graph, the energy consumption depicted for Package-0 and Package-1 is relatively stable,

indicating that the CPUs are likely operating under a constant workload or in an idle state with minimal

performance fluctuations. The steady energy usage levels, with Package-0 slightly higher than Package-1,

could suggest inherent differences in their power efficiency or a slight variation in the tasks they are handling.

The DRAM associated with both packages registers a much lower energy consumption, reflecting the typical

power characteristics of memory operations, which are generally less variable and considerably lower than

that of CPUs. The uniformity of DRAM energy consumption across both packages also suggests that the

memory workload is consistent, with no significant bursts of read/write activity or variations in memory

access patterns during this monitoring window.

The second graph presents a notable variance in energy consumption, particularly for Package-0,

which experiences a sharp increase in power usage. This transient spike suggests a sudden escalation in

computational demand, possibly due to a high-intensity task or process that temporarily engages the CPU

at a higher operational state. After this peak, the energy consumption returns to a baseline similar to that

of Package-1, which remains consistent throughout, suggesting that Package-1 did not encounter the same

workload surge. The DRAM energy consumption remains flat for both modules, unaffected by the CPU’s

peak activity. This decoupling of DRAM power usage from CPU activity might indicate that the workload

causing the spike was compute-bound rather than memory-bound, or that the DRAM was not a limiting

factor in the computational task that induced the CPU energy surge.

21

In the third graph, the energy consumption of Package-0 shows more variability compared to the

previous graphs, with noticeable rises towards the beginning and end of the period. These fluctuations

could be indicative of a dynamic workload with periods of increased processing requirements, or perhaps

thermal or power management actions triggering changes in CPU performance states. The DRAM energy

consumption, while consistent for both modules, shows a negligible increase at the same timestamps where

Package-0’s energy usage spikes, hinting at a potential correlation between CPU and memory activity, albeit

the DRAM’s response is much muted. Such a pattern could imply synchronized bursts of activity where

both CPU processing and memory access are momentarily intensified, potentially due to a workload with

variable memory-read/write intensity.

When comparing the energy consumption profiles of the NVIDIA V100 and A100 GPUs during

the execution of the High Performance Conjugate Gradient (HPCG) benchmark, distinct operational char-

acteristics emerge. Observations indicate that the V100 GPU maintains a lower energy usage across various

process counts, with a peak energy consumption reaching approximately 160 joules when subjected to 10

parallel processes. This contrasts with the A100 GPU, which demonstrates a higher energy demand, peak-

ing close to 180 joules under the same 10-process workload. Notably, the V100 GPU exhibits a remarkable

balance in energy consumption between its two sockets for workloads utilizing 1 and 5 processes, indicating

efficient energy distribution and management. Here, the graph shows that.

Figure 15: V100 Processes Distribution

Conversely, the A100 GPU presents a disparate energy usage pattern for lower process counts, with

22

Socket 0 drawing noticeably more power than Socket 1 during both 1 and 5 process workloads.

Figure 16: Energy Consumption on V100, 10 processes, 128x128x128

However, this trend diverges when expanding to 10 processes, where the V100 then reveals a

significant disparity between the sockets, suggesting a shift in the distribution of computational load or

a difference in the energy scaling behavior at higher process counts. This nuanced performance profile

between the two GPUs underlines the influence of architectural differences on power efficiency and workload

management, with the A100’s newer architecture pushing higher power boundaries, likely in pursuit of

increased computational throughput.

The disparity in energy consumption between the NVIDIA V100 and A100 GPUs when running

the HPCG benchmark can be attributed to several factors inherent in the architecture and configuration of

high-performance computing (HPC) clusters. HPC clusters are typically composed of various node types,

each optimized for different aspects of the computing tasks – Login nodes for user interaction, Compute

nodes for executing computational workloads, and Data Transfer nodes for efficient communication with file

systems.

When a user logs into an HPC cluster, they are initially on a Login node. To run tasks, they must

allocate Compute nodes through job scheduling commands like sbatch or srun. These Compute nodes could

be equipped with different types of accelerators, such as GPUs, and potentially have CPUs that differ from

those in the Login nodes or even among themselves within the cluster. For instance, a Compute node paired

with a V100 might have a different CPU than one paired with an A100. Since CPUs and GPUs can have

23

different power efficiencies, the total energy consumption for running the same task can vary depending on

the combination of CPU and GPU.

Moreover, it is not guaranteed that the same Compute nodes will be allocated for each job sub-

mission. Even when re-running the same script, the actual nodes and accelerators used can differ, leading

to variations in energy usage. This can explain why energy consumption might not be consistent between

runs, as the heterogeneous nature of HPC clusters means that different hardware combinations (with varying

power characteristics) can be engaged for each job.

The A100 GPU is designed with the newer Ampere architecture, which, while offering higher

computational capabilities, may also lead to increased energy demands, especially as the number of processes

scales up. This could be due to the architecture’s design, which aims to maximize performance, possibly at

the expense of higher power consumption. On the other hand, the V100, with its older Volta architecture,

appears to have a more favorable energy profile at lower and higher process counts, possibly due to a more

mature energy management system or less aggressive performance scaling.

The observed differences in energy consumption between the sockets when running 1, 5, and 10

processes on the A100, and particularly the divergence at 10 processes on the V100, could stem from the

way these architectures handle parallel tasks. Energy efficiency in multi-socket systems is influenced by the

interplay between workload distribution, thermal management, and the power states of the CPUs and GPUs.

As the number of processes increases, the workload distribution may become uneven, or certain power-saving

features may become less effective, leading to the variations observed.

In essence, the architectural differences between the GPUs, the variable configurations of Com-

pute nodes, and the dynamic allocation of resources in an HPC cluster contribute to the differing energy

consumption profiles observed during the HPCG benchmark runs. It is the intricate relationship between

the hardware architecture, the configuration of the cluster, and the nature of the workload that ultimately

determines the energy efficiency and performance of the system.

3.7 Increasing HPCG’s Input Size

In this section, we concentrate on the examination of weak scaling within the context of the HPCG

benchmark. Weak scaling, as opposed to strong scaling, evaluates the efficiency of a system in handling larger

problem sizes distributed across an increasing number of processors without shortening the computation time

per processor. Our analysis explores how HPCG responds when the problem size is scaled up proportionally

to the number of processors, aiming to maintain constant work per processor. This study sheds light on

24

the intricate balance between computation, memory access, and communication overhead that defines the

performance boundaries of modern HPC architectures when tasked with increasingly large-scale, real-world

problems. Through this detailed exploration, we seek to provide insights into optimizing HPC systems

for enhanced scalability and efficiency, contributing to the broader discourse on making supercomputing

resources more adaptable and effective for a variety of complex applications.

Figure 17: Energy Consumption on V100, 1 processes, 256x256x256

The energy consumption graph for the 256x256x256 problem size with 1 process on a high-performance

computing (HPC) system reveals several critical insights into the system’s performance. The runtime for

this problem size is markedly longer than that of smaller problem sizes, as reflected by the extended timeline

of consistent energy consumption. Despite the increased computational load, the energy levels for the two

CPU packages, Package-0 and Package-1, as well as for their respective DRAM, remain relatively close to

one another, indicating a balanced distribution of the workload across the processors.

The DRAM for both packages shows a very low and stable energy consumption profile, which implies

that memory operations are not the primary contributor to fluctuations in energy use. This is beneficial as

it points to efficient memory access patterns that do not introduce additional overhead.

However, the presence of intermittent spikes in energy use for both CPU packages could signify

moments when the system is dealing with more computationally intensive tasks within the larger problem

space. These spikes, while minimal, are noteworthy as they could identify potential areas for performance

optimization, especially if they correspond to specific operations that are more resource-intensive.

25

Overall, the analysis of the energy consumption over time for the 256x256x256 problem size suggests

that while the system maintains an even energy use indicative of a well-balanced computational load, the

extended runtime and occasional spikes in energy point towards the need for a more in-depth examination of

the system’s weak scaling capabilities. Understanding these dynamics is crucial for improving the efficiency

of HPC systems and optimizing them for handling large-scale computations more effectively.

Figure 18: Energy Consumption on V100, 5 processes, 256x256x256

The energy consumption graph for a 256x256x256 High Performance Conjugate Gradient (HPCG)

benchmark with an increased process count reveals several distinctive patterns. Initially, we observe a series

of pronounced spikes in energy consumption for both Package-0 and Package-1, suggesting periods of intense

computational activity. These spikes are likely reflective of the additional processes being initiated, with

each spike potentially corresponding to the commencement of a new computational phase within the HPCG

run. As the number of processes increases, the system may exhibit a heightened energy profile due to the

simultaneous execution of multiple tasks.

The DRAM energy consumption remains consistently low for both packages, which indicates that

memory is not the primary consumer of energy in this context. Instead, the energy demands are driven by

the computational processes of the CPU packages. Notably, the fluctuation in energy levels becomes less

pronounced over time, which could imply that the system is reaching a state of equilibrium as the processes

distribute and stabilize across the computational resources.

However, it is essential to consider that with more processes at play, the synchronization and com-

26

munication overhead between processes could contribute to the variability seen in the energy consumption.

In a perfectly scaled system, we would expect more uniform energy usage. Still, the oscillations suggest that

the workload distribution and inter-process communication could be areas for optimization to reduce energy

spikes and improve overall system efficiency. Here is the

Figure 19: Energy Consumption on V100, 5 processes, 256x256x256

In conclusion, the energy consumption profile displayed in this run reflects the system’s response

to a larger computational workload distributed across more processes. While the energy usage for CPU

packages is variable, with distinct peaks indicating computational intensity, the DRAM maintains a low and

steady consumption. This behavior underscores the importance of considering both computational strategies

and hardware capabilities when scaling up problem sizes and process counts in high-performance computing

runs.

In summary, our exploration of weak scaling through the HPCG benchmark at a problem size

of 256x256x256 has yielded informative insights into the scalability of our computational architecture. As

we increased the number of processes, the energy consumption profiles highlighted the system’s capability

to manage a larger workload, albeit with noticeable fluctuations that suggest potential inefficiencies in

load distribution or communication. Despite these irregularities, the relative stability in DRAM energy

consumption indicates that memory access patterns were not significantly affected by the increased problem

size. The pronounced energy spikes, corresponding with the initiation of new processes, reveal areas where

optimization could be beneficial. The overarching conclusion drawn from this analysis is that while the

27

system exhibits the ability to scale weakly, there is room for refinement. Identifying the causes of energy

variability and addressing them could lead to more efficient scaling strategies, enhancing the performance of

large-scale computational tasks on similar HPC architectures.

3.8 Pairwise comparisons of Energy, Size Sparsity

To understand the observed differences in energy consumption between HPCG runs on systems

equipped with NVIDIA A100 and V100 GPUs, it is essential to delve into the underlying hardware dynamics,

particularly focusing on the CPU’s operational characteristics. The High Performance Conjugate Gradient

(HPCG) benchmark, while primarily leveraging the CPU for computation, inadvertently brings to light the

subtle yet significant impact of GPU selection on overall system energy efficiency. This phenomenon is rooted

in the operational frequency of the CPU, which varies depending on the GPU in use.

The operational frequency of a CPU is a critical determinant of both its computational performance

and energy consumption. A higher frequency enables the CPU to process more instructions per second, thus

potentially completing computational tasks more quickly. However, this increased capability comes at a

significant cost in terms of power usage. The relationship between CPU frequency and power consumption is

not straightforwardly proportional; it is best described by models that show power consumption increasing

quadratically or even cubically with frequency. This means that small increases in frequency can lead to

disproportionately large increases in power consumption. The power consumption of a CPU is governed by

an equation that considers the capacitance (which depends on the number of transistors and their size), the

square of the voltage, and the frequency of operation. Consequently, the higher operational frequency of the

CPU in conjunction with an A100 GPU as compared to a V100 GPU signifies a notable increase in power

consumption, which directly translates to the differences in energy values observed during the HPCG runs.

In this context, the discrepancy in energy consumption between the A100 and V100 runs can be

attributed to the variation in CPU operational frequencies induced by the different GPUs. Although HPCG

primarily taxes the CPU, the GPU’s influence on the system’s power management strategy and thermal

profile can lead to adjustments in CPU performance parameters, including its operational frequency. Thus,

when analyzing energy efficiency and computational performance in high-performance computing setups, it

becomes imperative to consider not only the direct computational contributors but also the broader system

configuration, including the choice of GPU, due to its indirect yet impactful influence on energy consumption

patterns. Therefore, the observed variations in energy consumption between the A100 and V100 runs can

be attributed largely to the differences in CPU frequencies. The higher frequency associated with the A100

28

GPU setup enables faster processing and performance at the cost of higher energy consumption.

Figure 20: Pairwise Heatmap

The image depicts a correlation matrix of computational parameters, visualized as a heatmap. A

correlation matrix is a table showing correlation coefficients between variables. Each cell in the table shows

the correlation between two variables. The value is in the range of -1 to 1. If two variables have high positive

correlation, they tend to increase or decrease together; if they have high negative correlation, one increases

when the other decreases. The matrix in the image includes four different parameters: Size, Energy, Memory,

and Sparsity.

The color intensity in each cell corresponds to the strength and direction of the correlation between

the variables: red for positive correlation, blue for negative correlation, and the intensity of the color indicates

the strength of the relationship. According to the legend on the right, the strongest positive correlation (0.8)

appears to be between Size and Energy, and also between Energy and Sparsity, suggesting that larger sizes

are associated with higher energy consumption and sparsity. Conversely, the strongest negative correlation

(-0.7) is observed between Energy and Memory, indicating that higher energy consumption is associated

29

with lower memory usage. The diagonal cells are always 1, as they represent the correlation of each variable

with itself.

In the context of computational systems, these relationships can provide insights into how changes

in one parameter might affect others, which is essential for optimizing performance and resource utilization.

For example, this matrix suggests that improving energy efficiency might come at the cost of memory usage,

whereas increasing the sparsity of data representations could be correlated with increased size and energy

requirements.

Certainly, here’s a paragraph that encapsulates the relationships between the computational pa-

rameters as per the correlation matrix:

The correlation matrix presents intriguing relationships between computational parameters, indi-

cating a complex interplay between size, energy, memory, and sparsity. A notable positive correlation of 0.8

between size and energy suggests that an increase in computational size, possibly due to larger datasets or

more complex algorithms, results in higher energy consumption. This is expected since larger computations

typically require more CPU or GPU cycles, which are directly proportional to energy usage. Interestingly,

there is a negative correlation of -0.6 between size and memory, which could imply that as computations

become larger, perhaps in terms of sparsity or feature dimensions, they may be designed to utilize memory

more efficiently, possibly through data compression or optimized storage of sparse matrices. The relationship

between size and sparsity is positively correlated at 0.7, supporting the notion that higher dimensionality

often results in increased data sparsity. Lastly, energy and memory showcase a strong negative correlation

of -0.7, indicating an inversely proportional relationship. This could be due to energy-optimized computa-

tions that trade off memory usage for speed, employing techniques that expedite computation at the cost

of increased memory demand. Such trade-offs are essential considerations in the design of computational

architectures and algorithms, where the optimization of one resource can lead to increased consumption of

another, highlighting the delicate balance required in computational resource management.

30

Figure 21: Pairwise Relationships

This graph shows the same thing as the heatmap but it shows the actual data points and not the

correlation coefficient.

4 Conclusion

In conclusion, the analysis undertaken in this study lays the groundwork for a series of actionable strategies

that promise to significantly enhance the efficiency of high-performance computing (HPC) systems. The

interrelated nature of computational size, energy consumption, memory usage, and sparsity has been elu-

cidated, revealing opportunities for optimization in each domain. The implementation of iterative solvers

and preconditioners is poised to revolutionize energy efficiency, capitalizing on their inherent strengths in

handling sparse matrices. By focusing computational power on non-zero elements and improving matrix

31

condition numbers, these tools will enable faster convergence with less energy expenditure.

For the Size versus Energy optimization, implementing efficient iterative solvers such as Conjugate

Gradient (CG) and Generalized Minimal Residual (GMRES) within the HPCG code is pivotal. These

solvers are tailored for sparse matrices and concentrate computations on the non-zero elements, dramatically

reducing superfluous operations and, by extension, energy usage. To tackle the implementation, one would

integrate these solvers into the HPCG framework, replacing or augmenting the default solvers. Each solver’s

performance characteristics would be carefully tuned to the specific nature of the problem at hand to ensure

optimal performance.

Moreover, preconditioners like Incomplete LU (ILU) and Algebraic Multigrid (AMG) can be intro-

duced to enhance solver efficiency. The HPCG code must be modified to include the application of these

preconditioners before the iterative solution process. These preconditioners would improve the condition

number of the matrices involved, enabling the iterative solvers to achieve convergence with fewer iterations,

thus conserving energy.

For Energy versus Memory, the implementation focus shifts to data structure optimization. Storing

sparse matrices in Compressed Sparse Row (CSR) or Compressed Sparse Column (CSC) formats within the

HPCG code can drastically reduce memory usage. This process involves the reorganization of matrix storage

in the HPCG benchmark so that these efficient formats replace the traditional storage methods. The benefit

is twofold: less memory is required to store the matrices, and the energy costs associated with memory access

are significantly reduced.

To implement these formats, existing data structures within the HPCG code would need to be

refactored. Efficient access patterns must be developed, ensuring that computational kernels are optimized

to take full advantage of the storage efficiency and access speed provided by these formats.

When considering Energy versus Sparsity, the implementation strategy becomes even more special-

ized. Block Compressed Sparse Row (BCSR) format extends the principles of CSR to matrices with block

patterns, which can be common in HPC applications. In the HPCG code, this would mean adapting the

current storage and computational routines to leverage the BCSR format for appropriate matrices, thereby

optimizing both memory usage and computational performance for energy savings.

Dynamic sparsity handling involves creating or integrating algorithms within HPCG that dynami-

cally adjust to the varying levels of sparsity in matrices during runtime. This means developing algorithms

that can analyze the sparsity patterns in real-time and adjust the computational resources and task schedul-

ing accordingly. Such algorithms would enable the HPCG benchmark to process matrices with varying

32

sparsity levels more efficiently, avoiding the energy waste associated with processing non-essential elements.

Crucial to the successful implementation of these strategies is a commitment to continuous profiling

and optimization. By rigorously monitoring energy efficiency and dynamically adjusting to the profiling

data, the HPC community can not only achieve but also sustain the highest standards of computational

performance and resource utilization. Future steps include integrating these solvers and formats into existing

HPCG codebases, refining data structures, and developing sparsity-aware algorithms capable of responding

to the shifting landscape of computational demands. This meticulous approach to optimization is expected

to yield a new echelon of performance in HPC systems, with profound implications for computational science

and the myriad fields it supports.

33

References

[1] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. Nvidia a100
tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35, 2021.

[2] Zachary Cooper-Baldock, Brenda Vara Almirall, and Kiao Inthavong. Speed, power and cost im-
plications for gpu acceleration of computational fluid dynamics on hpc systems. arXiv preprint
arXiv:2404.02482, 2024.

[3] Jack Dongarra, Piotr Luszczek, and M Heroux. Hpcg technical specification. Sandia National Labora-
tories, Sandia Report SAND2013-8752, 2013.

[4] Brett Foster, Shubbhi Taneja, Joseph Manzano, and Kevin Barker. Evaluating energy efficiency of gpus
using machine learning benchmarks. In 2023 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 42–50. IEEE, 2023.

[5] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra, Jeffrey M Squyres,
Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, et al. Open mpi: Goals,
concept, and design of a next generation mpi implementation. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface: 11th European PVM/MPI Users’ Group Meeting Budapest,
Hungary, September 19-22, 2004. Proceedings 11, pages 97–104. Springer, 2004.

[6] Earle Jennings. Core module optimizing pde sparse matrix models with hpcg example. Supercomputing
Frontiers and Innovations, 4(2):54–70, 2017.

[7] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K Nurminen, and Zhonghong Ou. Rapl in action:
Experiences in using rapl for power measurements. ACM Transactions on Modeling and Performance
Evaluation of Computing Systems (TOMPECS), 3(2):1–26, 2018.

[8] Allen D Malony, John Mellor-Crummey, and Sameer S Shende. Measurement and analysis of parallel
program performance using tau and hpctoolkit. Performance Tuning of Scientific Applications. CRC
Press, New York, 2010.

[9] Vladimir Marjanović, José Gracia, and Colin W Glass. Performance modeling of the hpcg benchmark.
In High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation: 5th
International Workshop, PMBS 2014, New Orleans, LA, USA, November 16, 2014. Revised Selected
Papers 5, pages 172–192. Springer, 2015.

[10] Shirley Moore, David Cronk, Felix Wolf, Avi Purkayastha, Patricia Teller, Robert Araiza,
Maria Gabriela Aguilera, and Jamie Nava. Performance profiling and analysis of dod applications
using papi and tau. In 2005 Users Group Conference (DOD-UGC’05), pages 394–399. IEEE, 2005.

[11] Nicholas A Nystrom, Michael J Levine, Ralph Z Roskies, and J Ray Scott. Bridges: a uniquely flexible
hpc resource for new communities and data analytics. In Proceedings of the 2015 XSEDE Conference:
Scientific Advancements Enabled by Enhanced Cyberinfrastructure, pages 1–8, 2015.

[12] Biswajit Saha. Green computing. International Journal of Computer Trends and Technology (IJCTT),
14(2):46–50, 2014.

[13] Xianyi Zhang, Chao Yang, Fangfang Liu, Yiqun Liu, and Yutong Lu. Optimizing and scaling hpcg on
tianhe-2: early experience. In Algorithms and Architectures for Parallel Processing: 14th International
Conference, ICA3PP 2014, Dalian, China, August 24-27, 2014. Proceedings, Part I 14, pages 28–41.
Springer, 2014.

chapterRegular Chapter

34

Appendices

A Perf Cache Hit Script

Listing 1: Bash Script for HPCG Power Collection

#!/ bin / bash

#SBATCH −J hp c g powe r c o l l e c t i on
#SBATCH −o hpcg power %j . out
#SBATCH −p p a r a l l e l
#SBATCH −N 1

#SBATCH −−ntask s=4
#SBATCH −−cpus−per−t a s k=1
#SBATCH −t 01 :00 :00
#SBATCH −−e x c l u s i v e

ml own p e r f
module load openmpi
module load cuda

Sta r t RAPL power c o l l e c t i o n
echo ” S ta r t i ng cont inuous power c o l l e c t i o n with RAPL read ”
(

echo ”Timestamp , Package −0,Package −1,DRAM” > r a p l f i l t e r e d o u t p u t $ {SLURM JOBID} . csv
while true ; do

timestamp=$ (date +%Y−%m−%d\ %H:%M:%S)
. / rapl−read | grep −E ’ package −[0−9]+|dram ’ | awk −v t s=”$timestamp” ’BEGIN{ORS=””; p r i n t t s } { pr in t ” ,” $3 ”J”}

END{ pr in t ”\n”} ’ >> r a p l f i l t e r e d o u t p u t $ {SLURM JOBID} . csv
s l e e p 1

done
) &
RAPL PID=$!

echo ” S ta r t i ng p e r f ”
PERF FILE=” p e r f e n e r g y o u tp u t $ {OMPI COMM WORLD RANK} . tx t ”

echo ” h e l l o ”
p e r f s t a t −e cache−misses , cache−r e f e r e n c e s −I 1000 −o $PERF FILE −− mpirun −np 4 . / bin /xhpcg −−nx=256 −−ny=256 −−nz=256 &
#mpirun −np 2 pe r f s t a t −e cache−misses , cache−r e f e r enc e s −I 1000 −o p e r f en e r g y ou t pu t $ {OMPICOMMWORLDRANK} . t x t −− . / b in / xhpcg −−nx=16 −−ny=16 −−nz=16 &
echo ”HPCG benchmark and power c o l l e c t i o n s t a r t e d . ”

wait

k i l l $RAPL PID
echo ” Continuous power c o l l e c t i o n stopped . ”

s l e e p 5

echo ”HPCG benchmark and power c o l l e c t i o n complete . ”

35

B Rapl Power Collection Script

Listing 2: Bash Script for HPCG Benchmark and Power Collection

#!/ bin / bash
#SBATCH −J hp c g powe r c o l l e c t i on
#SBATCH −o hpcg power %j . out
#SBATCH −p a100
#SBATCH −N 1
#SBATCH −−gre s=gpu : a100 :2
#SBATCH −−ntask s=10
#SBATCH −−cpus−per−t a s k=1
#SBATCH −t 01 :00 :00
#SBATCH −−e x c l u s i v e # Request e x c l u s i v e acces s to the node

Load requ i r ed modules
module load openmpi
module load cuda
Load TAU module or se tup TAU environment
module load tau

Configure TAU to capture cache performance metr ic s
export TAU METRICS=”PAPI L2 TCM , PAPI L2 TCH”

echo ” S ta r t i ng cont inuous power c o l l e c t i o n with RAPL read ”
(

echo ”Timestamp , Package −0,Package −1,DRAM” > r a p l f i l t e r e d o u t p u t $ {SLURM JOBID} $ {SLURM NODEID} . csv
while true ; do

timestamp=$ (date +%Y−%m−%d\ %H:%M:%S)
. / rapl−read | grep −E ’ package −[0−9]+|dram ’ | awk −v t s=”$timestamp” ’BEGIN{ORS=””; p r i n t t s } { pr in t ” ,” $3 ”J”}

END{ pr in t ”\n”} ’ >> r a p l f i l t e r e d o u t p u t $ {SLURM JOBID} $ {SLURM NODEID} . csv
s l e e p 1

done
) &
MONITOR PID=$!

echo ”Running HPCG benchmark with TAU ins t rumentat ion ”
Use TAU’ s mpirun wrapper or s p e c i f y TAU opt ions d i r e c t l y i f necessary
Assuming shared−mpi−openmp i s the co r r e c t c on f i g u r a t i on to use
mpirun −np 1 tau exec −T shared−mpi−openmp . / bin /xhpcg −−nx=128 −−ny=128 −−nz=128

k i l l $MONITOR PID
echo ” Continuous power c o l l e c t i o n stopped . ”

s l e e p 5

echo ”HPCG benchmark and power c o l l e c t i o n complete . ”

C Rapl Power Collection Script from University of Maine

Listing 3: Complete RAPL Read Source Code

36

/∗ Read the RAPL r e g i s t e r s on recen t (> sandybr idge) I n t e l p roce s so r s ∗/
/∗ There are cu r r en t l y t h r ee ways to do t h i s : ∗/
/∗ 1 . Read the MSRs d i r e c t l y wi th /dev/cpu/??/msr ∗/
/∗ 2 . Use the pe r f e v en t open () i n t e r f a c e ∗/
/∗ 3 . Read the va l u e s from the s y s f s powercap i n t e r f a c e ∗/

/∗ MSR Code o r i g i n a l l y based on a (never made i t upstream) l inux−k e rne l ∗/
/∗ RAPL dr i v e r by Zhang Rui <ru i . zhang@inte l . com> ∗/
/∗ h t t p s :// lkml . org / lkml /2011/5/26/93 ∗/
/∗ Addi t i ona l c on t r i b u t i on s by : ∗/
/∗ Romain Dolbeau −− romain @ do lbeau . org ∗/

/∗ For raw MSR access the /dev/cpu/??/msr d r i v e r must be enab led and ∗/
/∗ permiss ions s e t to a l l ow read acces s . ∗/
/∗ You might need to ”modprobe msr” be f o r e i t w i l l work . ∗/

/∗ pe r f e v en t open () suppor t r e q u i r e s at l e a s t Linux 3.14 and to have ∗/
/∗ /proc/ sys / k e rne l / p e r f e v en t pa rano i d < 1 ∗/

/∗ the s y s f s powercap i n t e r f a c e go t in t o the k e rne l in ∗/
/∗ 2d281d8196e38dd (3 .13) ∗/

/∗ Compile wi th : gcc −O2 −Wall −o rap l−read rap l−read . c −lm ∗/

/∗ Vince Weaver −− v incen t . weaver @ maine . edu −− 11 September 2015 ∗/

#include <s t d i o . h>
#include <s t d l i b . h>
#include <sys / types . h>
#include <sys / s t a t . h>
#include < f c n t l . h>
#include <errno . h>
#include <i n t t y p e s . h>
#include <uni s td . h>
#include <math . h>
#include <s t r i n g . h>

#include <sys / s y s c a l l . h>
#include <l i nux / p e r f e v e n t . h>

#define MSR RAPL POWER UNIT 0x606

/∗
∗ Platform s p e c i f i c RAPL Domains .
∗ Note t ha t PP1 RAPL Domain i s supported on 062A only
∗ And DRAM RAPL Domain i s suppor ted on 062D only
∗/

/∗ Package RAPL Domain ∗/
#define MSR PKG RAPL POWER LIMIT 0x610
#define MSR PKG ENERGY STATUS 0x611
#define MSR PKG PERF STATUS 0x613
#define MSR PKG POWER INFO 0x614

/∗ PP0 RAPL Domain ∗/

37

#define MSR PP0 POWER LIMIT 0x638
#define MSR PP0 ENERGY STATUS 0x639
#define MSR PP0 POLICY 0x63A
#define MSR PP0 PERF STATUS 0x63B

/∗ PP1 RAPL Domain , may r e f l e c t to uncore de v i c e s ∗/
#define MSR PP1 POWER LIMIT 0x640
#define MSR PP1 ENERGY STATUS 0x641
#define MSR PP1 POLICY 0x642

/∗ DRAM RAPL Domain ∗/
#define MSR DRAM POWER LIMIT 0x618
#define MSR DRAM ENERGY STATUS 0x619
#define MSR DRAM PERF STATUS 0x61B
#define MSR DRAM POWER INFO 0x61C

/∗ PSYS RAPL Domain ∗/
#define MSR PLATFORM ENERGY STATUS 0x64d

/∗ RAPL UNIT BITMASK ∗/
#define POWER UNIT OFFSET 0
#define POWER UNIT MASK 0x0F

#define ENERGY UNIT OFFSET 0x08
#define ENERGY UNIT MASK 0x1F00

#define TIME UNIT OFFSET 0x10
#define TIME UNIT MASK 0xF000

stat ic int open msr (int core) {

char msr f i l ename [BUFSIZ] ;
int fd ;

s p r i n t f (msr f i l ename , ”/dev/cpu/%d/msr” , core) ;
fd = open (msr f i l ename , O RDONLY) ;
i f (fd < 0) {

i f (er rno == ENXIO) {
f p r i n t f (s tde r r , ” rdmsr : No CPU %d\n” , core) ;
e x i t (2) ;

} else i f (errno == EIO) {
f p r i n t f (s tde r r , ” rdmsr : CPU %d doesn ’ t support MSRs\n” ,

core) ;
e x i t (3) ;

} else {
per ro r (”rdmsr : open”) ;
f p r i n t f (s tde r r , ” Trying to open %s \n” , msr f i l ename) ;
e x i t (1 2 7) ;

}
}

return fd ;
}

38

stat ic long long read msr (int fd , int which) {

u i n t 6 4 t data ;

i f (pread (fd , &data , s izeof data , which) != s izeof data) {
per ro r (”rdmsr : pread ”) ;
e x i t (1 2 7) ;

}

return (long long) data ;
}

#define CPU SANDYBRIDGE 42
#define CPU SANDYBRIDGE EP 45
#define CPU IVYBRIDGE 58
#define CPU IVYBRIDGE EP 62
#define CPU HASWELL 60
#define CPU HASWELL ULT 69
#define CPU HASWELL GT3E 70
#define CPU HASWELL EP 63
#define CPU BROADWELL 61
#define CPU BROADWELL GT3E 71
#define CPU BROADWELL EP 79
#define CPU BROADWELL DE 86
#define CPU SKYLAKE 78
#define CPU SKYLAKE HS 94
#define CPU SKYLAKE X 85
#define CPU KNIGHTS LANDING 87
#define CPU KNIGHTS MILL 133
#define CPU KABYLAKE MOBILE 142
#define CPU KABYLAKE 158
#define CPU ATOM SILVERMONT 55
#define CPU ATOM AIRMONT 76
#define CPU ATOM MERRIFIELD 74
#define CPU ATOM MOOREFIELD 90
#define CPU ATOM GOLDMONT 92
#define CPU ATOM GEMINI LAKE 122
#define CPU ATOM DENVERTON 95

/∗ TODO: on Skylake , a l s o may suppor t PSys ” p la t form” domain , ∗/
/∗ the whole SoC not j u s t the package . ∗/
/∗ see dcee75b3b7f025cc6765e6c92ba0a4e59a4d25f4 ∗/

stat ic int detec t cpu (void) {

FILE ∗ f f f ;

int fami ly , model=−1;
char b u f f e r [BUFSIZ] ,∗ r e s u l t ;
char vendor [BUFSIZ] ;

f f f=fopen (”/ proc / cpu in fo ” , ” r ”) ;
i f (f f f==NULL) return −1;

39

while (1) {
r e s u l t=f g e t s (bu f f e r , BUFSIZ , f f f) ;
i f (r e s u l t==NULL) break ;

i f (! strncmp (r e s u l t , ” vendor id ” , 8)) {
s s c a n f (r e s u l t , ”%∗s%∗s%s ” , vendor) ;

i f (strncmp (vendor , ” GenuineInte l ” , 12)) {
p r i n t f (”%s not an I n t e l ch ip \n” , vendor) ;
return −1;

}
}

i f (! strncmp (r e s u l t , ”cpu fami ly ” , 10)) {
s s c a n f (r e s u l t , ”%∗s%∗s%∗s%d”,& fami ly) ;
i f (fami ly !=6) {

p r i n t f (”Wrong CPU fami ly %d\n” , fami ly) ;
return −1;

}
}

i f (! strncmp (r e s u l t , ”model” , 5)) {
s s c a n f (r e s u l t , ”%∗s%∗s%d”,&model) ;

}

}

f c l o s e (f f f) ;

p r i n t f (”Found ”) ;

switch (model) {
case CPU SANDYBRIDGE:

p r i n t f (” Sandybridge ”) ;
break ;

case CPU SANDYBRIDGE EP:
p r i n t f (” Sandybridge−EP”) ;
break ;

case CPU IVYBRIDGE:
p r i n t f (” Ivybr idge ”) ;
break ;

case CPU IVYBRIDGE EP:
p r i n t f (” Ivybr idge−EP”) ;
break ;

case CPU HASWELL:
case CPU HASWELL ULT:
case CPU HASWELL GT3E:

p r i n t f (” Haswel l ”) ;
break ;

case CPU HASWELL EP:
p r i n t f (” Haswell−EP”) ;
break ;

case CPU BROADWELL:
case CPU BROADWELL GT3E:

40

p r i n t f (” Broadwell ”) ;
break ;

case CPU BROADWELL EP:
p r i n t f (” Broadwell−EP”) ;
break ;

case CPU SKYLAKE:
case CPU SKYLAKE HS:

p r i n t f (” Skylake ”) ;
break ;

case CPU SKYLAKE X:
p r i n t f (” Skylake−X”) ;
break ;

case CPU KABYLAKE:
case CPU KABYLAKE MOBILE:

p r i n t f (”Kaby Lake”) ;
break ;

case CPU KNIGHTS LANDING:
p r i n t f (”Knight ’ s Landing”) ;
break ;

case CPU KNIGHTS MILL:
p r i n t f (”Knight ’ s Mi l l ”) ;
break ;

case CPU ATOM GOLDMONT:
case CPU ATOM GEMINI LAKE:
case CPU ATOM DENVERTON:

p r i n t f (”Atom”) ;
break ;

default :
p r i n t f (”Unsupported model %d\n” , model) ;
model=−1;
break ;

}

p r i n t f (” Proces sor type\n”) ;

return model ;
}

#define MAX CPUS 1024
#define MAX PACKAGES 16

stat ic int t o t a l c o r e s =0, t o t a l p a c k a g e s =0;
stat ic int package map [MAX PACKAGES] ;

stat ic int detec t package s (void) {

char f i l ename [BUFSIZ] ;
FILE ∗ f f f ;
int package ;
int i ;

for (i =0; i<MAX PACKAGES; i++) package map [i]=−1;

p r i n t f (”\ t ”) ;

41

for (i =0; i<MAX CPUS; i++) {
s p r i n t f (f i l ename , ”/ sys / d e v i c e s / system/cpu/cpu%d/ topology / p h y s i c a l p a c k a g e i d ” , i) ;
f f f=fopen (f i l ename , ” r ”) ;
i f (f f f==NULL) break ;
f s c a n f (f f f , ”%d”,&package) ;
p r i n t f (”%d (%d) ” , i , package) ;
i f (i%8==7) p r i n t f (”\n\ t ”) ; else p r i n t f (” , ”) ;
f c l o s e (f f f) ;

i f (package map [package]==−1) {
t o t a l p a c k a g e s++;
package map [package]= i ;

}

}

p r i n t f (”\n”) ;

t o t a l c o r e s=i ;

p r i n t f (”\ tDetected %d co r e s in %d packages \n\n” ,
t o t a l c o r e s , t o t a l p a c k a g e s) ;

return 0 ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ MSR code ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
stat ic int rap l msr (int core , int cpu model) {

int fd ;
long long r e s u l t ;
double power units , t i me un i t s ;
double cpu ene rgy un i t s [MAX PACKAGES] , dram energy uni t s [MAX PACKAGES] ;
double package be fo re [MAX PACKAGES] , p ack ag e a f t e r [MAX PACKAGES] ;
double pp0 be fore [MAX PACKAGES] , p p 0 a f t e r [MAX PACKAGES] ;
double pp1 be fore [MAX PACKAGES] , p p 1 a f t e r [MAX PACKAGES] ;
double dram before [MAX PACKAGES] , dram after [MAX PACKAGES] ;
double p s y s b e f o r e [MAX PACKAGES] , p s y s a f t e r [MAX PACKAGES] ;
double thermal spec power , minimum power , maximum power , time window ;
int j ;

int dram avai l =0, pp0 ava i l =0, pp1 ava i l =0, p s y s a v a i l =0;
int d i f f e r e n t u n i t s =0;

p r i n t f (”\nTrying /dev/msr i n t e r f a c e to gather r e s u l t s \n\n”) ;

i f (cpu model<0) {
p r i n t f (”\ tUnsupported CPU model %d\n” , cpu model) ;
return −1;

}

42

switch (cpu model) {

case CPU SANDYBRIDGE EP:
case CPU IVYBRIDGE EP:

pp0 ava i l =1;
pp1 ava i l =0;
dram avai l =1;
d i f f e r e n t u n i t s =0;
p s y s a v a i l =0;
break ;

case CPU HASWELL EP:
case CPU BROADWELL EP:
case CPU SKYLAKE X:

pp0 ava i l =1;
pp1 ava i l =0;
dram avai l =1;
d i f f e r e n t u n i t s =1;
p s y s a v a i l =0;
break ;

case CPU KNIGHTS LANDING:
case CPU KNIGHTS MILL:

pp0 ava i l =0;
pp1 ava i l =0;
dram avai l =1;
d i f f e r e n t u n i t s =1;
p s y s a v a i l =0;
break ;

case CPU SANDYBRIDGE:
case CPU IVYBRIDGE:

pp0 ava i l =1;
pp1 ava i l =1;
dram avai l =0;
d i f f e r e n t u n i t s =0;
p s y s a v a i l =0;
break ;

case CPU HASWELL:
case CPU HASWELL ULT:
case CPU HASWELL GT3E:
case CPU BROADWELL:
case CPU BROADWELL GT3E:
case CPU ATOM GOLDMONT:
case CPU ATOM GEMINI LAKE:
case CPU ATOM DENVERTON:

pp0 ava i l =1;
pp1 ava i l =1;
dram avai l =1;
d i f f e r e n t u n i t s =0;
p s y s a v a i l =0;
break ;

43

case CPU SKYLAKE:
case CPU SKYLAKE HS:
case CPU KABYLAKE:
case CPU KABYLAKE MOBILE:

pp0 ava i l =1;
pp1 ava i l =1;
dram avai l =1;
d i f f e r e n t u n i t s =0;
p s y s a v a i l =1;
break ;

}

for (j =0; j<t o t a l p a c k a g e s ; j++) {
p r i n t f (”\ t L i s t i n g paramaters f o r package #%d\n” , j) ;

fd=open msr (package map [j]) ;

/∗ Ca l cu l a t e the un i t s used ∗/
r e s u l t=read msr (fd ,MSR RAPL POWER UNIT) ;

power uni t s=pow (0 . 5 , (double) (r e s u l t&0xf)) ;
cpu ene rgy un i t s [j]=pow (0 . 5 , (double) ((r e s u l t >>8)&0x1f)) ;
t i me un i t s=pow (0 . 5 , (double) ((r e s u l t >>16)&0xf)) ;

/∗ On Haswel l EP and Knights Landing ∗/
/∗ The DRAM un i t s d i f f e r from the CPU ones ∗/
i f (d i f f e r e n t u n i t s) {

dram energy uni t s [j]=pow (0 . 5 , (double) 1 6) ;
p r i n t f (”DRAM: Using %l f i n s t ead o f %l f \n” ,

dram energy uni t s [j] , cpu ene rgy un i t s [j]) ;
}
else {

dram energy uni t s [j]= cpu ene rgy un i t s [j] ;
}

p r i n t f (”\ t \ tPower un i t s = %.3fW\n” , power uni t s) ;
p r i n t f (”\ t \tCPU Energy un i t s = %.8 fJ \n” , cpu ene rgy un i t s [j]) ;
p r i n t f (”\ t \tDRAM Energy un i t s = %.8 fJ \n” , dram energy uni t s [j]) ;
p r i n t f (”\ t \tTime un i t s = %.8 f s \n” , t i me un i t s) ;
p r i n t f (”\n”) ;

/∗ Show package power i n f o ∗/
r e s u l t=read msr (fd ,MSR PKG POWER INFO) ;
thermal spec power=power uni t s ∗(double) (r e s u l t&0 x 7 f f f) ;
p r i n t f (”\ t \ tPackage thermal spec : %.3fW\n” , thermal spec power) ;
minimum power=power uni t s ∗(double) ((r e s u l t >>16)&0 x 7 f f f) ;
p r i n t f (”\ t \ tPackage minimum power : %.3fW\n” , minimum power) ;
maximum power=power uni t s ∗(double) ((r e s u l t >>32)&0 x 7 f f f) ;
p r i n t f (”\ t \ tPackage maximum power : %.3fW\n” , maximum power) ;
time window=t i me un i t s ∗(double) ((r e s u l t >>48)&0 x 7 f f f) ;
p r i n t f (”\ t \ tPackage maximum time window : %.6 f s \n” , time window) ;

/∗ Show package power l im i t ∗/

44

r e s u l t=read msr (fd ,MSR PKG RAPL POWER LIMIT) ;
p r i n t f (”\ t \ tPackage power l i m i t s are %s \n” , (r e s u l t >> 63) ? ” locked ” : ” unlocked ”) ;
double pkg power l im i t 1 = power uni t s ∗(double) ((r e s u l t >>0)&0x7FFF) ;
double pkg time window 1 = t im e un i t s ∗(double) ((r e s u l t >>17)&0x007F) ;
p r i n t f (”\ t \ tPackage power l i m i t #1: %.3fW f o r %.6 f s (%s , %s)\n” ,

pkg power l imi t 1 , pkg time window 1 ,
(r e s u l t & (1LL<<15)) ? ” enabled ” : ” d i s ab l ed ” ,
(r e s u l t & (1LL<<16)) ? ”clamped” : ” not clamped ”) ;

double pkg power l im i t 2 = power uni t s ∗(double) ((r e s u l t >>32)&0x7FFF) ;
double pkg time window 2 = t im e un i t s ∗(double) ((r e s u l t >>49)&0x007F) ;
p r i n t f (”\ t \ tPackage power l i m i t #2: %.3fW f o r %.6 f s (%s , %s)\n” ,

pkg power l imi t 2 , pkg time window 2 ,
(r e s u l t & (1LL<<47)) ? ” enabled ” : ” d i s ab l ed ” ,
(r e s u l t & (1LL<<48)) ? ”clamped” : ” not clamped ”) ;

/∗ only a v a i l a b l e on ∗Bridge−EP ∗/
i f ((cpu model==CPU SANDYBRIDGE EP) | | (cpu model==CPU IVYBRIDGE EP)) {

r e s u l t=read msr (fd ,MSR PKG PERF STATUS) ;
double a c c p k g t h r o t t l e d t i m e =(double) r e s u l t ∗ t im e un i t s ;
p r i n t f (”\ tAccumulated Package Thrott led Time : %.6 f s \n” ,

a c c p k g t h r o t t l e d t i m e) ;
}

/∗ only a v a i l a b l e on ∗Bridge−EP ∗/
i f ((cpu model==CPU SANDYBRIDGE EP) | | (cpu model==CPU IVYBRIDGE EP)) {

r e s u l t=read msr (fd ,MSR PP0 PERF STATUS) ;
double a c c p p 0 t h r o t t l e d t i m e =(double) r e s u l t ∗ t im e un i t s ;
p r i n t f (”\ tPowerPlane0 (core) Accumulated Thrott led Time ”

” : %.6 f s \n” , a c c p p 0 t h r o t t l e d t i m e) ;

r e s u l t=read msr (fd , MSR PP0 POLICY) ;
int pp0 po l i cy =(int) r e s u l t&0x001f ;
p r i n t f (”\ tPowerPlane0 (core) f o r core %d p o l i c y : %d\n” , core , pp0 po l i cy) ;

}

i f (pp1 ava i l) {
r e s u l t=read msr (fd , MSR PP1 POLICY) ;
int pp1 po l i cy =(int) r e s u l t&0x001f ;
p r i n t f (”\ tPowerPlane1 (on−core GPU i f a v a i l) %d p o l i c y : %d\n” ,

core , pp1 po l i cy) ;
}
c l o s e (fd) ;

}
p r i n t f (”\n”) ;

for (j =0; j<t o t a l p a c k a g e s ; j++) {

fd=open msr (package map [j]) ;

/∗ Package Energy ∗/
r e s u l t=read msr (fd ,MSR PKG ENERGY STATUS) ;

45

package be fo re [j]=(double) r e s u l t ∗ cpu ene rgy un i t s [j] ;

/∗ PP0 energy ∗/
/∗ Not a v a i l a b l e on Knights∗ ∗/
/∗ Always re turns zero on Haswel l−EP? ∗/
i f (pp0 ava i l) {

r e s u l t=read msr (fd ,MSR PP0 ENERGY STATUS) ;
pp0 be fore [j]=(double) r e s u l t ∗ cpu ene rgy un i t s [j] ;

}

/∗ PP1 energy ∗/
/∗ not a v a i l a b l e on ∗Bridge−EP ∗/
i f (pp1 ava i l) {

r e s u l t=read msr (fd ,MSR PP1 ENERGY STATUS) ;
pp1 be fore [j]=(double) r e s u l t ∗ cpu ene rgy un i t s [j] ;

}

/∗ Updated documentation (but not the Vol3B) says Haswel l and ∗/
/∗ Broadwel l have DRAM suppor t too ∗/
i f (dram avai l) {

r e s u l t=read msr (fd ,MSR DRAM ENERGY STATUS) ;
dram before [j]=(double) r e s u l t ∗ dram energy uni t s [j] ;

}

/∗ Sky lake and newer f o r Psys ∗/
i f ((cpu model==CPU SKYLAKE) | |

(cpu model==CPU SKYLAKE HS) | |
(cpu model==CPU KABYLAKE) | |
(cpu model==CPU KABYLAKE MOBILE)) {

r e s u l t=read msr (fd ,MSR PLATFORM ENERGY STATUS) ;
p s y s b e f o r e [j]=(double) r e s u l t ∗ cpu ene rgy un i t s [j] ;

}

c l o s e (fd) ;
}

p r i n t f (”\n\ t S l e e p i n g 1 second \n\n”) ;
s l e e p (1) ;

for (j =0; j<t o t a l p a c k a g e s ; j++) {

fd=open msr (package map [j]) ;

p r i n t f (”\ tPackage %d :\n” , j) ;

r e s u l t=read msr (fd ,MSR PKG ENERGY STATUS) ;
pa cka ge a f t e r [j]=(double) r e s u l t ∗ cpu ene rgy un i t s [j] ;
p r i n t f (”\ t \ tPackage energy : %.6 fJ \n” ,

pa ck age a f t e r [j]− package be fo re [j]) ;

r e s u l t=read msr (fd ,MSR PP0 ENERGY STATUS) ;

46

p p 0 a f t e r [j]=(double) r e s u l t ∗ cpu ene rgy un i t s [j] ;
p r i n t f (”\ t \ tPowerPlane0 (c o r e s) : %.6 fJ \n” ,

p p 0 a f t e r [j]− pp0 be fore [j]) ;

/∗ not a v a i l a b l e on SandyBridge−EP ∗/
i f (pp1 ava i l) {

r e s u l t=read msr (fd ,MSR PP1 ENERGY STATUS) ;
p p 1 a f t e r [j]=(double) r e s u l t ∗ cpu ene rgy un i t s [j] ;
p r i n t f (”\ t \ tPowerPlane1 (on−core GPU i f a v a i l) : %.6 f J\n” ,

p p 1 a f t e r [j]− pp1 be fore [j]) ;
}

i f (dram avai l) {
r e s u l t=read msr (fd ,MSR DRAM ENERGY STATUS) ;
dram after [j]=(double) r e s u l t ∗ dram energy uni t s [j] ;
p r i n t f (”\ t \tDRAM: %.6 fJ \n” ,

dram after [j]−dram before [j]) ;
}

i f (p s y s a v a i l) {
r e s u l t=read msr (fd ,MSR PLATFORM ENERGY STATUS) ;
p s y s a f t e r [j]=(double) r e s u l t ∗ cpu ene rgy un i t s [j] ;
p r i n t f (”\ t \tPSYS : %.6 fJ \n” ,

p s y s a f t e r [j]− p s y s b e f o r e [j]) ;
}

c l o s e (fd) ;
}
p r i n t f (”\n”) ;
p r i n t f (”Note : the energy measurements can over f l ow in 60 s or so \n”) ;
p r i n t f (” so t ry to sample the counter s more o f t en than that .\n\n”) ;

return 0 ;
}

stat ic int pe r f even t open (struct p e r f e v e n t a t t r ∗ hw event uptr ,
p i d t pid , int cpu , int group fd , unsigned long f l a g s) {

return s y s c a l l (NR per f event open , hw event uptr , pid , cpu ,
group fd , f l a g s) ;

}

#define NUM RAPL DOMAINS 5

char rapl domain names [NUM RAPL DOMAINS] [3 0] = {
” energy−co r e s ” ,
” energy−gpu” ,
” energy−pkg” ,
” energy−ram” ,
” energy−psys ” ,

} ;

stat ic int check parano id (void) {

47

int parano id va lue ;
FILE ∗ f f f ;

f f f=fopen (”/ proc / sys / ke rne l / p e r f e v e n t p a r a n o i d ” , ” r ”) ;
i f (f f f==NULL) {

f p r i n t f (s tde r r , ” Error ! could not open / proc / sys / ke rne l / p e r f e v e n t p a r a n o i d %s \n” ,
s t r e r r o r (er rno)) ;

/∗ We can ’ t re turn a nega t i v e va lue as t ha t imp l i e s no paranoia ∗/
return 500 ;

}

f s c a n f (f f f , ”%d”,& parano id va lue) ;
f c l o s e (f f f) ;

return parano id va lue ;

}

stat ic int r a p l p e r f (int core) {

FILE ∗ f f f ;
int type ;
int c o n f i g [NUM RAPL DOMAINS] ;
char un i t s [NUM RAPL DOMAINS] [BUFSIZ] ;
char f i l ename [BUFSIZ] ;
int fd [NUM RAPL DOMAINS] [MAX PACKAGES] ;
double s c a l e [NUM RAPL DOMAINS] ;
struct p e r f e v e n t a t t r a t t r ;
long long value ;
int i , j ;
int parano id va lue ;

p r i n t f (”\nTrying p e r f e v e n t i n t e r f a c e to gather r e s u l t s \n\n”) ;

f f f=fopen (”/ sys /bus/ event sour c e / d e v i c e s /power/ type ” , ” r ”) ;
i f (f f f==NULL) {

p r i n t f (”\tNo p e r f e v e n t r ap l support found (r e q u i r e s Linux 3 . 14)\n”) ;
p r i n t f (”\ t F a l l i n g back to raw msr support \n\n”) ;
return −1;

}
f s c a n f (f f f , ”%d”,&type) ;
f c l o s e (f f f) ;

for (i =0; i<NUM RAPL DOMAINS; i++) {

s p r i n t f (f i l ename , ”/ sys /bus/ event sourc e / d e v i c e s /power/ events/%s ” ,
rapl domain names [i]) ;

f f f=fopen (f i l ename , ” r ”) ;

i f (f f f !=NULL) {
f s c a n f (f f f , ” event=%x”,& c o n f i g [i]) ;

48

p r i n t f (”\ tEvent=%s Conf ig=%d ” , rapl domain names [i] , c o n f i g [i]) ;
f c l o s e (f f f) ;

} else {
continue ;

}

s p r i n t f (f i l ename , ”/ sys /bus/ event sourc e / d e v i c e s /power/ events/%s . s c a l e ” ,
rapl domain names [i]) ;

f f f=fopen (f i l ename , ” r ”) ;

i f (f f f !=NULL) {
f s c a n f (f f f , ”%l f ” ,& s c a l e [i]) ;
p r i n t f (” s c a l e=%g ” , s c a l e [i]) ;
f c l o s e (f f f) ;

}

s p r i n t f (f i l ename , ”/ sys /bus/ event sourc e / d e v i c e s /power/ events/%s . un i t ” ,
rapl domain names [i]) ;

f f f=fopen (f i l ename , ” r ”) ;

i f (f f f !=NULL) {
f s c a n f (f f f , ”%s ” , un i t s [i]) ;
p r i n t f (” un i t s=%s ” , un i t s [i]) ;
f c l o s e (f f f) ;

}

p r i n t f (”\n”) ;
}

for (j =0; j<t o t a l p a c k a g e s ; j++) {

for (i =0; i<NUM RAPL DOMAINS; i++) {

fd [i] [j]=−1;

memset(&attr , 0 x0 , s izeof (a t t r)) ;
a t t r . type=type ;
a t t r . c o n f i g=c o n f i g [i] ;
i f (c o n f i g [i]==0) continue ;

fd [i] [j]= pe r f even t open (&attr , −1 , package map [j] , −1 ,0) ;
i f (fd [i] [j]<0) {

i f (errno==EACCES) {
parano id va lue=check parano id () ;
i f (parano id va lue >0) {

p r i n t f (”\ t / proc / sys / ke rne l / p e r f e v e n t p a r a n o i d i s %d\n” , parano id va lue) ;
p r i n t f (”\tThe va lue must be 0 or lower to read system−wide RAPL va lue s \n”) ;

}

p r i n t f (”\ tPermiss ion denied ; run as root or ad jus t paranoid va lue \n\n”) ;
return −1;

}
else {

p r i n t f (”\ t e r r o r opening core %d c o n f i g %d : %s \n\n” ,

49

package map [j] , c o n f i g [i] , s t r e r r o r (errno)) ;
return −1;

}
}

}
}

p r i n t f (”\n\ t S l e e p i n g 1 second \n\n”) ;
s l e e p (1) ;

for (j =0; j<t o t a l p a c k a g e s ; j++) {
p r i n t f (”\ tPackage %d :\n” , j) ;

for (i =0; i<NUM RAPL DOMAINS; i++) {

i f (fd [i] [j]!=−1) {
read (fd [i] [j] ,& value , 8) ;
c l o s e (fd [i] [j]) ;

p r i n t f (”\ t \ t%s Energy Consumed : %l f %s \n” ,
rapl domain names [i] ,
(double) va lue ∗ s c a l e [i] ,
un i t s [i]) ;

}

}

}
p r i n t f (”\n”) ;

return 0 ;
}

stat ic int r a p l s y s f s (int core) {

char event names [MAX PACKAGES] [NUM RAPL DOMAINS] [2 5 6] ;
char f i l enames [MAX PACKAGES] [NUM RAPL DOMAINS] [2 5 6] ;
char basename [MAX PACKAGES] [2 5 6] ;
char t e m p f i l e [2 5 6] ;
long long be f o r e [MAX PACKAGES] [NUM RAPL DOMAINS] ;
long long a f t e r [MAX PACKAGES] [NUM RAPL DOMAINS] ;
int v a l i d [MAX PACKAGES] [NUM RAPL DOMAINS] ;
int i , j ;
FILE ∗ f f f ;

p r i n t f (”\nTrying s y s f s powercap i n t e r f a c e to gather r e s u l t s \n\n”) ;

/∗ / sys / c l a s s /powercap/ i n t e l −r ap l / i n t e l −r ap l :0/ ∗/
/∗ name has name ∗/
/∗ energy u j has energy ∗/
/∗ s u b d i r e c t o r i e s i n t e l −r ap l : 0 : 0 i n t e l −r ap l : 0 : 1 i n t e l −r ap l : 0 : 2 ∗/

for (j =0; j<t o t a l p a c k a g e s ; j++) {

50

i =0;
s p r i n t f (basename [j] , ”/ sys / c l a s s /powercap/ i n t e l −r ap l / i n t e l −r ap l :%d” ,

j) ;
s p r i n t f (t empf i l e , ”%s /name” , basename [j]) ;
f f f=fopen (tempf i l e , ” r ”) ;
i f (f f f==NULL) {

f p r i n t f (s tde r r , ”\ tCould not open %s \n” , t e m p f i l e) ;
return −1;

}
f s c a n f (f f f , ”%s ” , event names [j] [i]) ;
v a l i d [j] [i]=1;
f c l o s e (f f f) ;
s p r i n t f (f i l enames [j] [i] , ”%s / ene rgy u j ” , basename [j]) ;

/∗ Handle subdomains ∗/
for (i =1; i<NUM RAPL DOMAINS; i++) {

s p r i n t f (t empf i l e , ”%s / i n t e l −r ap l :%d:%d/name” ,
basename [j] , j , i −1);

f f f=fopen (tempf i l e , ” r ”) ;
i f (f f f==NULL) {

// f p r i n t f (s tder r ,”\ tCould not open %s\n” , t emp f i l e) ;
v a l i d [j] [i]=0;
continue ;

}
v a l i d [j] [i]=1;
f s c a n f (f f f , ”%s ” , event names [j] [i]) ;
f c l o s e (f f f) ;
s p r i n t f (f i l enames [j] [i] , ”%s / i n t e l −r ap l :%d:%d/ ene rgy u j ” ,

basename [j] , j , i −1);

}
}

/∗ Gather b e f o r e va l u e s ∗/
for (j =0; j<t o t a l p a c k a g e s ; j++) {

for (i =0; i<NUM RAPL DOMAINS; i++) {
i f (v a l i d [j] [i]) {

f f f=fopen (f i l enames [j] [i] , ” r ”) ;
i f (f f f==NULL) {

f p r i n t f (s tde r r , ”\ tError opening %s !\n” , f i l enames [j] [i]) ;
}
else {

f s c a n f (f f f , ”%l l d ” ,& be f o r e [j] [i]) ;
f c l o s e (f f f) ;

}
}

}
}

p r i n t f (”\ t S l e e p i n g 1 second \n\n”) ;
s l e e p (1) ;

/∗ Gather a f t e r va l u e s ∗/
for (j =0; j<t o t a l p a c k a g e s ; j++) {

51

for (i =0; i<NUM RAPL DOMAINS; i++) {
i f (v a l i d [j] [i]) {

f f f=fopen (f i l enames [j] [i] , ” r ”) ;
i f (f f f==NULL) {

f p r i n t f (s tde r r , ”\ tError opening %s !\n” , f i l enames [j] [i]) ;
}
else {

f s c a n f (f f f , ”%l l d ” ,& a f t e r [j] [i]) ;
f c l o s e (f f f) ;

}
}

}
}

for (j =0; j<t o t a l p a c k a g e s ; j++) {
p r i n t f (”\ tPackage %d\n” , j) ;
for (i =0; i<NUM RAPL DOMAINS; i++) {

i f (v a l i d [j] [i]) {
p r i n t f (”\ t \ t%s \ t : %l f J \n” , event names [j] [i] ,

((double) a f t e r [j] [i]−(double) be f o r e [j] [i]) / 1 0 0 0 0 0 0 . 0) ;
}

}
}
p r i n t f (”\n”) ;

return 0 ;

}

int main (int argc , char ∗∗ argv) {

int c ;
int f o r c e msr =0, f o r c e p e r f e v e n t =0, f o r c e s y s f s =0;
int core =0;
int r e s u l t =−1;
int cpu model ;

p r i n t f (”\n”) ;
p r i n t f (”RAPL read −− use −s f o r s y s f s , −p f o r pe r f event , −m f o r msr\n\n”) ;

opt e r r =0;

while ((c = getopt (argc , argv , ”c : hmps”)) != −1) {
switch (c) {
case ’ c ’ :

core = a t o i (optarg) ;
break ;

case ’ h ’ :
p r i n t f (”Usage : %s [−c core] [−h] [−m]\n\n” , argv [0]) ;
p r i n t f (”\ t−c core : s p e c i f i e s which core to measure\n”) ;
p r i n t f (”\ t−h : d i s p l a y s t h i s he lp \n”) ;
p r i n t f (”\ t−m : f o r c e s use o f MSR mode\n”) ;
p r i n t f (”\ t−p : f o r c e s use o f p e r f e v e n t mode\n”) ;
p r i n t f (”\ t−s : f o r c e s use o f s y s f s mode\n”) ;

52

e x i t (0) ;
case ’m’ :

f o r c e msr = 1 ;
break ;

case ’ p ’ :
f o r c e p e r f e v e n t = 1 ;
break ;

case ’ s ’ :
f o r c e s y s f s = 1 ;
break ;

default :
f p r i n t f (s tde r r , ”Unknown opt ion %c\n” , c) ;
e x i t (−1);

}
}

(void) f o r c e s y s f s ;

cpu model=detec t cpu () ;
de t e c t package s () ;

i f ((! f o r c e msr) && (! f o r c e p e r f e v e n t)) {
r e s u l t=r a p l s y s f s (core) ;

}

i f (r e s u l t <0) {
i f ((f o r c e p e r f e v e n t) && (! f o r c e msr)) {

r e s u l t=r a p l p e r f (core) ;
}

}

i f (r e s u l t <0) {
r e s u l t=rap l msr (core , cpu model) ;

}

i f (r e s u l t <0) {

p r i n t f (”Unable to read RAPL counter s .\n”) ;
p r i n t f (”∗ Ver i f y you have an I n t e l Sandybridge or newer p ro c e s s o r \n”) ;
p r i n t f (”∗ You may need to run as root or have / proc / sys / ke rne l / p e r f e v e n t p a r a n o i d s e t p roper ly \n”) ;
p r i n t f (”∗ I f us ing raw msr acces s , make sure msr module i s i n s t a l l e d \n”) ;
p r i n t f (”\n”) ;

return −1;

}

return 0 ;
}

53

	Introduction
	Project Objectives
	Objective
	Background
	Rockfish
	Bridges
	Motivation for using HPCG

	Related Work
	Performance Modeling of the HPC Benchmark

	Benchmarking and Experimental Methodology
	Experiment Setup
	Initiating HPCG Runs
	Running the HPCG Benchmark
	Profiling HPCG
	Energy Analysis of HPCG Benchmark Scaling
	Energy Results on A100 vs. V100
	Increasing HPCG's Input Size
	Pairwise comparisons of Energy, Size Sparsity

	Conclusion
	Appendices
	Perf Cache Hit Script
	Rapl Power Collection Script
	Rapl Power Collection Script from University of Maine

