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Abstract

Event stream processing (ESP) has become increasingly important in mod-

ern applications, ranging from supply chain management for RFID tracking

to real-time intrusion detection. In this dissertation, I focus on providing a

robust ESP solution by meeting three major research challenges regarding

ESP system robustness: (1) using a lightweight constraint-aware framework

for event stream processing; (2) handling event streams with out-of-order

data arrival and (3) handling event streams with interval-based temporal se-

mantics. The following are the three corresponding research tasks completed

by the dissertation:

Task I - Constraint-Aware Complex Event Pattern Detection over

Streams. In this task, a framework for constraint-aware pattern detec-

tion over event streams is proposed. Given the constraint of the input

streams, the proposed framework on the fly checks the query satisfiabil-

ity / unsatisfiability using a lightweight reasoning mechanism. Based on the

checking results, it adjusts the processing strategy dynamically by produc-
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ing early feedbacks, releasing unnecessary system resources and terminating

corresponding pattern monitor, thus effectively decreasing the resource con-

sumption and expediting the system response on certain situations.

Task II - Complex Event Pattern Detection over Streams with

Out-of-Order Data Arrival. In this task, a mechanism to address the

problem of processing event queries specified over streams that may contain

out-of-order data is proposed. Based on the analysis of the problems that

state-of-the-art event stream processing technologies would experience when

faced with out-of-order data arrival, a new solution of physical implementa-

tion strategies for the core stream algebra operators such as sequence scan,

pattern construction and negation is provided.

Task III - Complex Event Pattern Detection over Streams with

Interval-Based Temporal Semantics. In this task, an expressive lan-

guage to represent the required temporal patterns among streaming interval

events is introduced. Based on that, the corresponding temporal operator

ISEQ and provide an efficient evaluation strategy for the proposed ISEQ

operator is designed. For further improving the event processing perfor-

mance, a mechanism to embed the “interval begin punctuation” into the

interval stream is provided. Corresponding punctuation-aware query eval-

uation strategy is studied, which can greatly reduce the runtime memory

and CPU footprint. A mechanism to push down the computation of in-

terval event abstraction to the low level sensor network for increasing the

computing leverage from the physical level devices is investigated.
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Chapter 1

Introduction

1.1 Event Stream Processing

Recently the emergence of stream data processing had been extended to

complex event processing on event streams. This research is generally called

as Event Stream Processing (ESP). The motivation for these event process-

ing systems comes from two directions. First, widespread deployment of

cheap receptor devices such as wireless sensor networks and RFID tech-

nologies enables many new applications on the data streams collected from

these receptors. Each data tuple from the sensors or RFID readers can be

viewed as a primary event and been processed for monitoring and manage-

ment purposes. The applications then can issue complex event patterns.

Second, advanced applications require the existing publish/subscribe sys-

tem supporting stateful filtering and propagation of the incoming messages.

In such scenario, messages are viewed as business events. The routing of

the messages then is determined by this message itself and its correlation
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with other previously messages. ESP enables applications such as algorith-

mic trading in financial services, RFID event processing applications, fraud

detection, process monitoring, and location-based services in telecommuni-

cations. Below some applications based on the technique of complex event

processing are listed:

Supply Chain Management [gar]. Business Activity Monitoring (BAM)

has been described by Gartner [gar] as a technology that “allows business

users real-time access to, and analysis of, important business indicators”.

One major BAM application is in supply chain management (SCM). ESP

allows SCM to monitor, analyze, and act on the event flow regarding the

produce procurement, order fulfillment and the transportation procedures.

Network Anomalies Detection [LTS+08]. Assume a firewall server

monitoring all the network packets between inside and outside machines.

By analyzing the packet headers, the server can maintain the statistics of

all the network flows. The statistics can include average bandwidth usage

calculated from payload of each packets. A criteria can be set that when a

series of flows each with 50% of the total network bandwidth, then an alert

is set for potential network abuse.

Anti-Shoplifting [WDR06]. Assume a RFID tag is attached to every

product in a retail store and RFID readers are installed at the shelves,

checkout cashier and exits. Then a temporal sequence of RFID reader events:

TAKE FROM SHELF, !CHECKOUT, EXIT FROM STORE means the oc-

currence of a shoplifting activity.
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Events processing has been studied for more than a decade in the field

of active databases, such as [GJS92][CKAK94]. See [PD99] for a survey

on active database systems. Trigger-based active databases can respond

automatically to events that are taking place either inside or outside the

database system [WGB08][WBG08]. Traditional database systems are pas-

sive in the sense that commands are executed by the database in the form

of queries. However, some applications expect more comprehensive facilities

from databases for modeling part of the behavioral aspects of the applica-

tion. This motivates the active databases that support moving the reactive

behavior from the application into the DBMS. The benefit of using active

databases lies in the centralized processing of database updates in a timely

manner. Together with transaction techniques, active database systems can

provide a stable, consistent and highly efficient framework for reaction-based

applications.

To support reactive behavior, such application logic has to be encoded

manually into the databases prior to the actual running. A common ap-

proach for active databases is to use rules that have up to three compo-

nents: an event, a condition, and an action. Such a rule is known as an

Event-Condition-Action (ECA) rule. The introduction of the ECA rules

seem like an extension of the well-known trigger concept in DBMS. However,

ECA rules can support widely different functionalities from using composed

events, complex conditions and arbitrary actions. Active database systems

in general include models of event detection, condition monitoring and action

execution. Thus event processing ability is essential for such a trigger-based

system.
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Event detection and condition monitoring affect mainly the efficiency of

the active databases. Several system implementations have been proposed

either based on finite automata [GJS92], trees [CKAK94] or colored Petri

nets [GD94]. However, the processing implementation is largely ad-hoc and

suffers from high cost for arbitrary composition of events and conditions.

This situation is even deteriorated when the event processing is mixed to-

gether with transaction management and the existence of multiple conflict-

ing ECA rules. Although many efforts have been made respective to the

active database system in the last decade, the performance of existing ac-

tive database systems are still far away from the expectation, which largely

limits their usability.

In the last two decades, the relational data model has gained popularity

because of its solid mathematical foundation. However, the relational data

model does not address the temporal dimension of data. Variation of data

over time is treated in the same way as ordinary data. This is not satisfactory

for applications that require temporal data-related operations. In fact, most

applications require temporal data to a certain extent. Temporal databases

provide query evaluation over persisted temporal data for such applications.

Compared with event processing applications based on active databases

/ temporal databases techniques, ESP applications have the following dif-

ferences:

• Different from the active databases and temporal databases, where

events are treated either as updates or persisted tuples of databases,

ESP processes real-time event streams instead of persisted information
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in the databases. The business logic executed by the ESP is directly

over the data generated from the physical device layer or business

process layer.

• Active databases and temporal databases do not have a strict con-

cept of window. They usually use transaction for expiration of target

patterns. That is, all the events of database updates are valid only

in one transaction or predefined several sequential transactions. How-

ever, Window constraints are usually applied to the ESP application

for result filtering and state purge.

Traditional stream processing systems such as Aurora [ACC+03], Stream

[BW01], NiagraCQ [KNV03], TelegraphCQ [CCD+03] and CAPE [RDS+04]

[WR09][WRGB06][LZR06][ZRH04] extend the relational query processing to

stream data. Generally the select, project, join and aggregate operations are

supported in these stream systems. Window-based constraint is also com-

monly used to processing blocking and stateful operations, such as grouping

and join. Thus, the existing continuous query processing techniques in the

traditional data stream systems can be extended to support ESP applica-

tions. However, in supporting ESP applications, the event-specific stream

processing technology, which has an event-specific query evaluation mecha-

nism, is shown to be superior to using the generic stream processing solu-

tions because it is being specifically designed for handling event queries over

streams [WDR06][GC+07][GADI08] [SC+09][MM09][BGHJ09][LRE09]. For

example, SASE [WDR06][GC+07] proposes an expressive language to sup-

port pattern queries on such sequential streams and proposes customized
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algebra operators for the efficient processing of such pattern queries with

sliding windows. [ADGI08] extends [WDR06] to support Kleene closure over

event streams. [ACT08] uses a plan-based technique to perform complex

event detection across distributed sources. Cayuga [DGP+07] designs an

event-driven pub/sub system using automaton-based techniques for stream-

ing pattern detection and [DCR+08] provides optimization methods for ef-

ficient event processing.

1.2 Research Challenges

Event-specific stream processing is gaining more and more popularity in

the industry [KF09][vAEE+09][PV09][KJP09][Dem09][MRLD08][WAR08].

However the ESP research is still at an early stage. Some issues on system

robustness have not yet been considered in the current research work on ESP.

First, data stream applications are required to handle very large volume of

real-time inputs and provide fast real-time system response continuously -

thus lightweight runtime processing and minimized memory footprint play

an important role in the robustness of event stream processing. Second,

event streams are generated by different sources in different formats and

they are sent through the ESP systems by different mechanisms in practice

- thus a robust ESP engine needs to provide real-time support for complex

event queries over event streams with flexible input semantics. For providing

a robust ESP solution, we are facing the following three research challenges:

Challenge I - Lack of Mechanism in Lightweight Constraint-Aware

Query Processing. Complex event processing over high speed streams
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may consume large amount of CPU and memory resources. For example,

the ESP for financial transaction applications need to process thousands

of incoming financial transactions per second in real-time. The efficiency of

event processing in the ESP system is very critical for such application. This

requires a high-performance query processing mechanism. Keeping large

amount of primary events and performing intensive monitoring task which

finally leads to no situation detection will be a big waste of system resources.

In many practical cases business events are generated based on predefined

business logic. Hence, in real-life event-based systems, constraints (such as

occurrence and order constraints) often hold among events. These known

constraints might help us to design a high-performance ESP mechanism

which can terminate long running query processes at the earliest possible

moment. Due to the real-time nature of ESP, such constraint-aware process-

ing is required to be kept lightweight. An event processing mechanism which

can efficiently exploit given event constraints to facilitate query processing

over large volumes of event streams is still an open research question.

Challenge II - Lack of Mechanism in Handling Event Streams with

Out-of-Order Data Arrival. For an event stream processing system if

the order in which the events are received by the system is not the same as

their timestamp order, we say the data arrival of the system is out-of-order.

Most event systems [WDR06][ADGI08][ACT08][DGP+07][DCR+08] assume

the event arrival is not out-of-order. By this assumption, the later arrival of

an event implies that it has a larger timestamp than the other events which

have already arrived earlier. However, out-of-order events are not uncom-
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mon in practice. Networking latencies and worst yet machine failures may

all cause events to arrive out-of-order at the event stream processing engine.

State-of-the-art event stream processing technology experiences significant

challenges when faced with out-of-order data arrival including blocking, re-

source overflow, and incorrect result generation. We can illustrate that the

existing technology would fail in such circumstances, either missing resulting

matches or incorrectly producing incorrect matches. Clearly, for handling

out-of-order data arrival, a more sophisticated mechanism is needed. Thus,

an ESP mechanism which performs query evaluation over event streams with

out-of-order data arrival remains a research challenge.

Challenge III - Lack of Mechanism in Handling Event Streams

with Interval-Based Temporal Semantics. Consider monitoring ap-

plications such as intrusion detection, sensor-based activity tracking and

network monitoring. Existing ESP engines have focused on detecting tem-

poral patterns from instantaneous events, that is, events with no duration.

However, such sequential patterns are inadequate to express the complex

temporal relationships in domains such as medical, multimedia, meteorol-

ogy and finance where the duration of events could play an important role.

Due to the differences between the temporal patterns over interval events

and point events, the query semantics and evaluation mechanisms used for

pattern detection over point events is not sufficient for pattern detection

over interval events. An expressive language to represent the required tem-

poral patterns among streaming intervals is needed. Also, query evaluation

mechanisms for such pattern queries need to be designed.



1.3. STATE OF THE ART 9

1.3 State of the Art

State of the Art for Challenge I. The constraint-aware query process-

ing has been studied extensively in traditional databases, which does not

meet the requirement of event stream processing application because they

do not provide real-time solution for event processing [DCR+08]. Some work

on XML stream processing engines [BCCN06][SRM05][KSSS04][WSL+06]

[LMR08d][LMR08c][LMR08b][LMR08a] have looked at the schema-based

optimization opportunity focusing on reducing CPU and memory footprint

in XML data processing. However such techniques for handling of semi-

structured data cannot be applied in ESP which is handling high volume

streaming events. The focus of [WDR06][ADGI08] is on providing a cus-

tomized algebra operators for handling event streams. In [ACT08] the

authors mainly focus on providing handling pattern detection over event

streams in a distributed environment. Thus constraint-aware processing

mechanism is not within their consideration. [DCR+08] provides a constraint-

aware ESP solution. However, it only considers a limited number of event

constraint types instead of completely applying the whole given constraint

knowledge. Even though a compile time precomputation mechanism is given

to improve the runtime constraint inferencing process, this process still re-

quires multiple state checking at runtime for every input event. Besides

that, the abductive inference which is required at their compile time pre-

computation is NP-complete.

State of the Art for Challenge II. There has been some initial work

of investigating the out-of-order problem for generic (homogenous-input)
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stream systems. One model, which is adopted for this dissertation, intro-

duces the notion of K-Slack [BMM+04]. Such solution is trivial in regular

stream system as in fact the processing such as join proceeds as normal

(with a K-delayed purging), and any tuple that arrives after K is simply dis-

carded [HBR+05]. A native approach [DGP+07] on handling out-of-order

event stream is using K-Slack as a priori bound on the input streams. It

buffers incoming events in the input queue until ordering can be guaran-

teed. Compared with the proposed approach where each operator is order

sensitive, such processing requires additional space and introduces more la-

tency before allowing events to be evaluated. A second solution proposed

to handle out-of-order data arrival is applying punctuations, namely, as-

sertions inserted directly in the data stream confirming that for instance

a certain value or time stamp will no longer appear in the future input

streams [DMRH04][LMT+05]. Such techniques, while interesting, require

for some service to first be creating and appropriately inserting such asser-

tions - hence here it is not considered further.

State of the Art for Challenge III. Previous research on pattern de-

tection over event streams mainly focused on extracting temporal patterns

from point-based event data [WDR06]. In [ACT08][DCR+08][DGP+07] the

events are defined based on the interval model. However, only the “before”

/ “after” temporal relation is supported. The data mining community stud-

ied discovering patterns over interval events [KF00][PHL08][WC07]. [KF00]

uses a hierarchical representation that extends Allens interval algebra [All83]

for modeling temporal patterns over event intervals. However, this repre-



1.4. DISSERTATION TASKS 11

sentation is lossy as the exact relationships among the events cannot be

fully recovered. [WC07][PHL08] devise a lossless representation to overcome

the drawbacks of [KF00]. Based on their proposed representation, they

design corresponding mining algorithms for pattern discovery over event in-

tervals. [PHL08] also examines how the discovered temporal patterns can be

utilized in classification to differentiate closely related classes thus building

an interval-based classifier. However, these works mainly focus on pattern

discovery (mining) instead of pattern detection. Besides that, they do not

consider streaming input with window constraints.

1.4 Dissertation Tasks

In my dissertation, I focus on the robustness of an ESP solution by meeting

the three research challenges discussed in Chapter 1.2. The following are

the three tasks:

Task I - Constraint-Aware Complex Event Pattern Detection over

Streams. The goal of this task is to provide a light-weight constraint-aware

pattern detection mechanism over event streams. It consists of the following

subtasks:

• Providing a lightweight framework for event constraint reasoning.

• Providing the static and runtime query satisfiability / unsatisfiability

checking algorithm based on automaton technique.

• Providing lightweight runtime optimization mechanisms through static

precomputation of condition checking.
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• Investigating an efficient execution strategy following the event-condition-

action rule-based framework for constraint-aware pattern detection.

• Evaluating the proposed techniques.

Task II - Complex Event Pattern Detection over Streams with

Out-of-Order Data Arrival. The goal of this task is to design a mech-

anism to address the problem of query processing over event streams that

may contain out-of-order data. It consists of the following subtasks:

• Analyzing the problems which state-of-the-art event stream processing

technology would experience when faced with out-of-order data arrival

and studying the levels of correctness in out-of-order processing that

target different priorities of applications.

• Designing a new solution of physical implementation strategies for the

core stream algebra operators such as sequence scan, pattern construc-

tion and negation, including stack-based data structures and associ-

ated purge algorithms.

• Investigating optimization strategies for sequence scan, construction

and negation as well as the corresponding state purge to minimize

CPU cost and memory consumption.

• Evaluating the proposed techniques.

Task III - Complex Event Pattern Detection over Streams with

Interval-Based Temporal Semantics. The goal of this task is to design
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an expressive language to represent the required temporal patterns among

streaming interval events and corresponding query evaluation strategy. It

consists of the following subtasks:

• Providing a case study of using interval events to optimize network

event stream correlation.

• Introducing an expressive language to represent the required temporal

patterns among streaming interval events, designing the corresponding

temporal operator and providing an efficient evaluation strategy for the

proposed operator.

• To further improve the event processing performance, providing a

method to embed the “interval begin punctuation”(indicating the start

of an upstream interval) into the interval stream. Studying the corre-

sponding punctuation-aware query evaluation strategy.

• Providing a method to push down the computation of interval event

abstraction to the low level sensor network for increasing the comput-

ing leverage from the physical level devices.

• Evaluating the proposed techniques.

Figure 1.1 shows the overall picture of the three dissertation tasks.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 gives the

preliminary of this dissertation. The mechanism for lightweight constraint-
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Event Stream Proc. ( ESP)
Engine
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Pattern Detection

Figure 1.1: Dissertation Tasks

aware pattern detection over event streams is given in Chapter 3 (Task

I). Chapter 4 discusses the proposed mechanism for query processing over

event streams with out-of-order data arrival (Task II). Chapter 5 proposes

the framework for query evaluation over event streams with interval-based

temporal semantics (Task III). Finally, Chapter 6 discusses the solution

integration and concludes this dissertation.
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Chapter 2

Preliminary

2.1 Event Data Model

Event Instance. An event instance is an occurrence of interest in a system,

which can be either primitive or composite as further introduced below.

Event Type. Similar event instances can be grouped into an event type.

That is, each event type corresponds to a set of event instances. Event types

describe a set of attributes that the class of event instances share. We use

capitalized letters for event types such as E and we use lower-case letters

such as e to represent event instances of event type E. An event type can be

either a primitive event type or a composite event type[CKAK94]. Primitive

event types are predefined in the application domain of interest. Composite

event types are aggregated event types that are created by combining other

primitive and/or composite event types.

Event Stream and Event Trace. An event stream is heterogeneously
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populated with event instances of different event types. In most event pro-

cessing scenarios, it is assumed that the input to the system is a potentially

infinite stream which contains all events that might be of interest [WDR06].

Such real-time input is referred to as an event trace (usually denoted as h),

which evolves on the fly by receiving new instances as input. For an event

trace h and an event type E, E[h] denotes the set of all the event instances

of E in h.

Temporal Aspects of Events. An event is associated with an unique

timestamp, indicating the discrete ordering in the time domain. An event

instance that happens instantaneously at a time point is called a point event.

An event instance that occurs over a time interval is called an interval event.

As a general representation for both the point and interval temporal seman-

tics, for any event instance e, we use e.ts and e.te to denote the start and

the end timestamp of the event instance e, respectively. The start and the

end timestamps of a point event e are the same, which is simplified as e.t

(i.e., e.ts = e.te = e.t). For an event instance e, we use a pair of numbers

as et1|t2 adjacent to it to represent its timestamp (denoting both the start

and end time). For the point-based events, the representation is simplified

as et, where the t adjacent to e denotes the time point when e happens. In

this dissertation, we first assume events to be point-based (thus event e’s

timestamp will be represented as e.t) from Chapter 2 to 4. The handling of

interval data and the solution integration for the support of intervals will be

given in Chapter 5 and 6.
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2.2 Event Query Model

Complex event pattern detection languages are studied in a number of ex-

isting works [ACT08][WDR06][DGP+07]. In this work I adopt the query

language defined in [ACT08][WDR06] as follows to specify an event pattern

query:

<Query>::= EVENT <pattern expression>

[WHERE <equality conditions>]

[WITHIN <window expression>]

The following I give a brief introduction to the semantics of the three

clauses. For detail syntax and semantics of the query language, please refer

to [ACT08][WDR06].

2.2.1 Semantics of the EVENT Clause

The EVENT clause specifies temporal and logical relationships among

events. The semantics of the supported set of event composite operators,

namely SEQ, AND, OR, and NEGATION, are provided below.

[Sequence Operator]. The sequence operator SEQ specifies a particular

order in which the event instances of interest should occur and these event

instances form a composite event instance. It takes a list of n (n > 1) event

types as its parameters and outputs composite events e = <e1 e2 ... em>.

The operator is defined as below:
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SEQ(E1, E2, ..., Em)[h] = { < e1 e2 ... em > | (e1.t < e2.t... < em.t)

∧ (< e1 e2 ... em > ∈ E1[h] × ... × Em[h]) }.

(2.1)

Example 2.1. The following example illustrates the computation of SEQ(A,

B) given the event trace h = “a1, b2, e5, a6, e7”. Remind that the small

number adjacent to an event instance denotes the timestamp of the event.

We have A[h] = { a1, a6 }, B[h] = { b2 } and A[h] × B[h] = { <a1 b2>

<a6 b2> }. The sequence result <a1 b2> satisfies the condition (a1.t < b2.t)

(i.e., 1 < 2). However, <a6 b2> is not a correct result for a6.t > b2.t (i.e., 6

≥ 2).

[AND Operator]. Conjunctive operator AND takes a list of n (n > 1)

event types as its parameters. This operator specifies that all the sub-event

types must occur for this event pattern. However, the sub-events can happen

in any order. We can see that the SEQ operator is a restricted form of AND

where events need to occur in order. The operator outputs composite events

e = <e1 e2 ... en>. The operator is defined as below:
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AND(E1, E2, ..., Em)[h] =

{< e1 e2 ... em > |(hts ≤ MIN(ei.ti∈{1,2,...,m}) ∧

(MAX(ei.ti∈{1,2,...,m}) ≤ hte)) ∧ (< e1 e2 ... em >

∈ E1[h] × E2[h]... × Em[h])}.

(2.2)

[OR Operator]. Disjunctive operator OR takes a list of n (n > 1) event

types as its parameters. It outputs a composite event when an instance of

any of the expected event types occurs. The operator is defined as below:

OR(E1, E2, ..., Em)[h] = E1[h] ∪ E2[h] ∪ ... ∪ Em[h]. (2.3)

Example 2.2. For example, consider an event history h as { a1, b2, c3, e4,

a6, d8 } and an event query as OR(B, C). OR(B, C)[h] = { b2, c3 }.

[NEGATION Operator]. Negation, denoted by “!”, is applied to the

events inside SEQ operators to express nonoccurrence of certain event pat-

terns. For example, event pattern SEQ(A, !B, C) means finding all the

matching of event pattern SEQ(A, C) that there is no B event instance be-

tween them. There are two special cases of negation which disallow events

of certain event types appearing before and after a sequence. Detail descrip-

tion of these two cases can be found in [WDR06]. The following I give the

definition of the negation operation which specifies that no event of a certain

event type can appear between the two event sequences:
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SEQ(E1, E2, ..., Ep, !Ek, Eq, ..., Em)[H] =

{< e1 e2 ... em > |(< e1 e2 ... em > ∈ E1[h] × E2[h]... × Em[h]) ∧

(hts ≤ e1.t) ∧ (em.t ≤ hte) ∧ (6 ∃ek((ek ∈ Ek[h]) ∧ (ep.t < ek.t < eq.t)))}.

(2.4)

Example 2.3. For example, consider an event history h as { a1, b2, c2,

b3, e5, a6, e7 }. We can see that SEQ(A, B)[h] ({ <a1 b2>, <a1 b3> }) =

SEQ(A, C, B)[h] ({ <a1 c2 b3> }) ∪ SEQ(A, !C, B)[h] ({ <a1 b2> }).

2.2.2 Semantics of the WHERE Clause

Most applications require real-time filtering, where users are interested in

complex event patterns that impose additional constraints on the event in-

stances [ACT08]. Such parameterized constraints between event attributes

and specific values can be specified in the optional WHERE clause [WDR06].

One usual kind of equality condition checking is on the ID values (i.e., trans-

actions IDs and RFIDs), such as EVENT SEQ(A, B) WHERE A.id = B.id.

Such checking partitions the event history into sub-sequences. Each sub-

sequence corresponds to one trace h. The query is then evaluated against

each h. In the following discussion, we assume the event history is within

an event trace. While customized predicate checking across multiple event

types can be further accomplished[WDR06][BGAH07][ACT08], that is inde-

pendent from the work in this dissertation. Thus we assume the predicate
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checking in an event query is only value-based comparison between con-

stant values and specific attribute values of given event instances, such as

EVENT SEQ(A, B) WHERE A.temperature = “37C”. The SELECT op-

erator introduced in [WDR06][ACT08] is the algebraic translation of the

WHERE clause.

2.2.3 Semantics of the WITHIN Clause

Window-based processing is an essence in data stream processing systems.

Sliding windows [BBMW02] are commonly used constraints to define the

stateful operators in the traditional stream processing systems. In the tra-

ditional event query model such as [WDR06], the window constraint specifi-

cation is given by a window parameter defined in the WITHIN clause. The

time window argument specifies the maximum time duration between the

occurrence of any two sub-events of a composite event instance. Hence, all

the sub-events are separated by at most the time units defined by the win-

dow constraint. The WIN operator (sometimes referred to as the WITHIN

operator) introduced in [WDR06] is the algebraic translation of the WITHIN

clause.

2.3 Basic ESP System Architecture

Figure 2.1 shows the system architecture for a common ESP system. System

architecture for each proposed solution given in Chapter 3.4, 4.6 and 5.5 will

be based on this basic structure. The ESP system receives event through

an Input Adapter, which connects to different kinds of data sources, such
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as system transaction datalogs, supply chain RFID readings, stock market

data and e-commerce online transaction data. The ESP connects to two

different output sockets, one is the Result Monitor, which consists within

the ESP Console, the other is the Output Adapter, which relays output se-

quences to downstream receivers, such as different operational applications,

spreadsheets, BI tools and BI dashboards. The ESP console also includes the

Query Register for defining customized pattern monitor requirements. The

Plan Generator parses and translates a given event query into an execution

plan. The Execution Engine, which constructs results on the fly, is the key

component of the ESP system. The definition and implementation of the

query operators are contained by the Operator Containers, which includes

the Libraries of the Logical and Physical Operators.

Figure 2.1: Basic ESP System Architecture
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Chapter 3

Constraint-Aware Complex

Event Pattern Detection

over Streams

3.1 Introduction

Event stream processing (ESP) [WDR06][ACT08][Etz07][LLG+09] technolo-

gies enable enterprise applications such as algorithmic trading, RFID data

processing, fraud detection and location-based services in telecommunica-

tions. The key applications of the ESP technologies rely on the detection of

certain event patterns (usually corresponding to the exceptional cases in the

application domain). Alerts will be raised after the target pattern has been

detected in the form of system notifications or triggers. Such functionality

is sometimes referred to as the situation alert, which corresponds to many
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key tasks in enterprises computing.

In many practical cases business events are generated based on prede-

fined business logic, shown by the following two scenarios:

Supply Chain Management. As we discussed earlier in Chapter 1.1, One

major business activity monitoring (BAM) application is in supply chain

management (SCM), which provides a flexible model to express business

rules on top of a supply chain process. The business events corresponding

to the stream-line logistics flow in SCM follow a predefined procedure.

Network Anomalies Detection. Assume a firewall server monitoring the

network packets between inside and outside machines. The server can main-

tain the statistics of all the network traffic flows. Anomalies are detected

from statistical data sent as event streams [ACT08], which are generated

by workflow engines or simply customized programs following predefined

schema.

In real-life event-based systems, constraints such as workflows often hold

among the event data. For pattern detection over such event data streams,

reasoning using the constraints enables us to (1) identify queries which are

guaranteed to not lead to successful matches at the earliest, thereby helping

us to terminate these long running pattern detection processes and release

the corresponding CPU and buffer resources; (2) identify queries which can

be guaranteed to surely lead to a future alert at the earliest (even though the

matched result has not yet happened), thereby helping us to get prepared

for upcoming situations. The above two are referred to as detection of query
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unsatisfiability and detection of query satisfiability separately.

Consider the following event query [WDR06][ACT08] in SCM, which

monitors whether an item has passed several process steps of certain location

in a certain order:

SEQ(SUPPLIER WAREHOUSE, LABEL CENTER, SHELTER)

Without given constraint knowledge of the input events, the earliest we can

say that the expected pattern cannot be matched over the event trace is

after the whole event trace has been completely received and still no match

has been found. Similarly, the earliest a situation alert could be triggered is

after a match of the expected pattern corresponding to the alert has been

fully received. Assume we are given the event constraint as the product

transportation workflow shown in Figure 3.1. By such semantics of the

input stream, if the item’s arrival at a logistics center is notified, we can

guarantee that no match can be found for the expected pattern in a future,

since no shelter could appear in the coming trace. Thus the pattern monitor

can be terminated at this moment. Similarly, if the item’s arrival at a

label center following a retail warehouse is notified, we can guarantee that

the current event trace can surely lead to a future match for the expected

pattern, since a coming shelter following the label center is indicated by the

workflow. Thus an early alert can be triggered for helping the corresponding

party get prepared for upcoming situations.

I propose a framework for constraint-aware pattern detection over event

streams and have implemented the proposed framework in a prototype sys-

tem called E-Tec (constraint-aware query Engine for pattern deTection over
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Figure 3.1: Example Workflow in SCM

event streams) [LMRL09b]. Given the constraint of the input event stream,

E-Tec on the fly checks the query satisfiability / unsatisfiability using a

lightweight reasoning framework. Based on such runtime constraint, E-Tec

can adjust the processing strategy dynamically, by producing early feed-

backs, releasing unnecessary resources (CPU and buffer) and terminating

corresponding pattern monitor, thus effectively decreasing the resource con-

sumption and expediting the system response on certain situation alerts.

The proposed framework could be extended with window-based functionali-

ties thus to support event pattern detection for queries with sliding windows.

In this dissertation task, we will assume no window constraint on the pattern

query. The contributions include:

• Lightweight Constraint Checking. Given the constraint of the

input event stream at compile time, the query satisfiability / unsatis-

fiability is efficiently observed on the fly by E-Tec’s constraint engine

using the proposed checking algorithm. The process is made to be

lightweight through decreasing the cost of runtime checking by apply-
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ing the statically encoded information, which is precomputed using

the proposed encoding algorithm. (Chapter 3.2)

• Execution Strategy. I propose a query execution strategy following

the Event-Condition-Action (ECA) rule-based framework. Real-time

streaming event data input serves as the events. The constraint engine

described earlier uses the checking algorithm to determine whether a

set of specific conditions are satisfied at runtime. Based on the check-

ing results, corresponding actions are taken on the fly such as monitor

termination, buffer releasing and early situation alerts. (Chapter 3.3)

• System Integration and Experimental Studies. The proposed

constraint-aware pattern detection framework can be easily integrated

with an automaton-based ESP engine by combing automaton applied

for constraint checking with the automaton applied for pattern detec-

tion. A prototype system E-Tec is implemented following such design

patter. Based on E-Tec, experimental studies are conducted to demon-

strate that the proposed techniques bring significant performance gains

in memory and CPU usage. (Chapter 3.4)

Recently the emergence of stream data processing had been extended

to complex event processing on event streams [WDR06][ACT08][DCR+08].

Wu [WDR06] proposes an expressive yet easy-to-understand language to

support pattern detection over event streams, but constraint knowledge is

not within the consideration of its query evaluation. In [ACT08], a plan-

based technique is used to perform streaming complex event detection across
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distributed sources. Its focus is mainly on handling pattern detection over

event streams in a distributed environment. A rule-based ESP solution is

provided in [DCR+08]. However, it only considers a limited number of rules

instead of utilizing the complete input event constraint.

Roadmap. The rest of Chapter 3 is organized as follows. Chapter 3.2

provides the satisfiability / unsatisfiability checking algorithms. Execution

strategy is studied in Chapter 3.3. Evaluations are presented in Chapter 3.4,

followed by related work in Chapter 3.5 and conclusions in Chapter 3.6.

3.2 Query Satisfiability and Unsatisfiability

3.2.1 Event Constraint

As discussed earlier, in many practical cases events are generated based on

predefined constraint. In this work, we consider an event constraint C which

can be expressed using a regular expression. For instance, C can be given as

the event workflow of the input stream. L(C) denotes the language defined

by C. For any event trace h (which is assumed to be a finite stream), if

h is the prefix of a sequence k ∈ L(C), we call h being consistent with

C. Trace(C) denotes the set which contains all the event traces that are

consistent with C. Thus given a trace h, h ∈ Trace(C) iff ∃ sequence k: hk

∈ L(C). Obviously, L(C) ⊆ Trace(C).

Example 3.1. Regular expression A+K∗B+KC+ represents a given event

constraint Cexp1, where consecutive A event instances, B event instances and

C event instances are divided by a K event instances but the K’s between
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the A’s and B’s is optional. Event trace h1 = “a1, k2, b4, b7, k8, c9” and h2

= “a1, b4, b7, k8, c9” are both in Trace(Cexp1).

3.2.2 Satisfiability and Unsatisfiability Checking

An event trace is said to match event query Q if the evaluation of Q over h

produces at least one matched pattern. For a pattern query Q, L(Q) denotes

the set which contains all the event traces that match Q.

Example 3.2. Consider event trace h1, h2 given in Example 3.1 and event

pattern query Qexp2 = EVENT SEQ(A, K, K, C), which looks for event

patterns with at least two K event instances appearing between an A in-

stance and a B instance. Trace h1 matches Qexp2 since in the trace there

exist a complex event pattern instance <a1 k2 k8 c9> matching the tar-

get pattern <a k k c>. However, trace h2 does not match Qexp2 since no

instances of the target pattern could be found.

Given a pattern query Q, an event constraint C and a trace h ∈ Trace(C),

we want to determine whether a query match may exist for h while h keeps

evolving at runtime. This problem regards to the checking of the query

satisfiability / unsatisfiability, of which we give the definitions below.

Query Satisfiability. Given Q, C and h ∈ Trace(C), Q is satisfiable iff

∀ k: hk∈L(C) → hk∈L(Q). This is denoted as Satisfiable(Q, C, h) = true.

Query Unsatisfiability. Given Q, C and h ∈ Trace(C), Q is unsatisfiable

iff 6∃ k: hk∈L(C) ∧ hk∈L(Q). This is denoted as Unsatisfiable(Q, C, h) =

true.
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The key functionalities of event stream processing applications rely on

the detection of certain event patterns (usually corresponding to the excep-

tional cases in the application domain). Alerts (such as system notification

or triggers) are usually raised after the target pattern has been detected.

Under the context of such situation alerts, checking the query satisfiability

/ unsatisfiability is equivalent to determining whether situation alerts will

be raised in the future while a given event trace evolves on the fly. Given

Q, C and h ∈ Trace(C), Q either could be determined as satisfiable (i.e.,

Satisfiable(Q, C, h) holds true) or unsatisfiable (i.e., Unsatisfiable(Q, C, h)

holds true), or could not yet be determined (i.e., both Satisfiable(Q, C, h)

and Unsatisfiable(Q, C, h) are false, which means that whether a matched

pattern may exist for Q while h evolves could not be decided yet).

Example 3.3. Consider Qexp2, Cexp1 given earlier and event trace h3 =

“a1, k2”, h4 = “a1, b4” and h5 = “a1, a2”. We have satisfiable(Qexp2, Cexp1,

h3) as true. This is because Cexp1 guarantees one or more K instances

will appear (i.e., the K’s appearing before and after the consecutive B’s)

and then C events will appear after that. Thus, no matter how h3 evolves,

matched result(s) will surely appear in the future. For instance, a match is

formed after h3 evolving to h1. Similarly, we knows that unsatisfiable(Qexp2,

Cexp1, h4) is true, since Cexp1 indicates that only one K instance (i.e., the

K appearing after the consecutive B’s) will appear. We could also see

that both satisfiable(Qexp2, Cexp1, h5) and unsatisfiable(Qexp2, Cexp1, h5)

are false, since whether a match may exist could not yet be decided at the

moment. How to determine satisfiability / unsatisfiability using algorithms
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for this example will be given later in Example 3.5.

A query could be statically determined as satisfiable / unsatisfiable be-

fore receiving any event input, i.e., the event trace h being an empty se-

quence. These two extreme cases are referred to as static query satisfiability

/ unsatisfiability.

Example 3.4. Consider Cexp1 given earlier and Qexp4−a = EVENT SEQ(A,

K, C), Qexp4−b = EVENT SEQ(A, K, D). Obviously we can guarantee the

static query satisfiability of Qexp4−a because Cexp1 indicates the existence of

instances such as <a k c>. Similarly, the static unsatisfiability of Qexp4−b

is guaranteed.

For an event constraint C, we let τC denote the minimized DFA for

the language L(C). Similarly, for a pattern query Q, we let τQ denote

the minimized DFA for the language L(Q). Construction of τC and τQ is

described in [Koz03]. For a given DFA τ , We use s̊τ to represent τ ’s start

state. The state transition function of τ used for processing a sequence

input is denoted as δ̂τ . δ̂τ(s, seq) denotes the state reached after finishing

the transition of seq, beginning from a given state s in τ . {δ̂τ(s, seq)} = ∅ if

the transition falls out of τ . We use Ds to denote the derivative of a state s

in a corresponding automaton, which is equivalent to the language accepted

by the corresponding automaton starting from state s.

Two theorems are given below before showing the proposed algorithm on

query satisfiability / unsatisfiability checking. Given query Q, constraint C

and trace h, we have DFA τC , τQ defined earlier and we use τ ∩̈ to represent
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the FSA equivalent to τC ∩ τQ, simply constructed as the cross product of

τC and τQ. We let τ∩ denote the DFA equivalent to the minimized DFA

of τ ∩̈, however in τ∩ during the minimization process we do not merge the

automaton states in τ ∩̈ if they are mapped from different states from τC .

Thus the states being merged during the minimization step are only the

ones mapped from a same state at τC .

Below we explain the construction of τ∩ in more detail. In the tradi-

tional algorithm for FSA minimization, we partition the set of states in FSA

τ ∩̈ into a set of equivalence classes and we have one state in the minimized

DFA corresponding to each equivalence class. Two states, x and y, in the

FSA are said to be in the same equivalence class if Dx = Dy. Our specific

minimization of τ ∩̈, denoted as τ∩, is a variation of the traditional mini-

mization algorithm. Note that each state in τ ∩̈ corresponds to a (sC , sQ),

where sC is a state in τC and sQ is a state in τQ. Also, there is a state

in τ ∩̈ corresponding to every such pair (sC , sQ). For a state corresponding

to (sC , sQ) in τ ∩̈, we say that the mapping state in τC is sC (similarly we

say that the mapping state in τQ is sQ). We partition the states in τ ∩̈ into

equivalence classes as follows: two states, x and y in τ ∩̈ belong to the same

equivalence class if Dx = Dy, and the mapping state in τC for x and y are

the same. In other words, x corresponds to the pair (s1C , s1Q) and y corre-

sponds to the pair (s2C , s2Q), then x and y belong to the same equivalence

class if Dx = Dy and s1C = s2C . Our algorithm also constructs one state

corresponding to every equivalence class. Note that our minimization algo-

rithm can result in more states in our minimized DFA than the traditional

minimization algorithm. However, two states that are not merged in the
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traditional minimization algorithm will not be merged in our minimization

algorithm as well. This implies the correctness of our minimization algo-

rithm (i.e., the resulting FSA τ∩ accepts the same language as the FSA

that would result from the traditional minimization algorithm, which is the

same as the language that would be accepted by τ ∩̈).

The reason for our specialized minimization is described later in Chap-

ter 3.2.3, where we describe a light weight constraint checking mechanism,

using the FSA resulting from our specialized minimization algorithm. For

efficient algorithms of constructing and computing automaton derivatives,

please refer to [Koz03].

Theorem 3.1. Unsatisfiable(Q, C, h) holds true iff {δ̂τ∩(̊sτ∩, h)} = ∅.

Proof.

⇐=: Given {δ̂τ∩(̊sτ∩, h)} = ∅, we know that h falls out of τ∩. This implies

h 6∈ L(Q) since h is already in L(C). Thus, there does not exist k: hk∈L(C)

∧ hk∈L(Q). Unsatisfiable(Q, C, t) holds true by definition. 2

=⇒: Given that Unsatisfiable(Q, C, h) holds true, we can not find a sequence

k: hk∈L(C) ∧ hk∈L(Q). Assume δ̂τ∩(̊sτ∩, h) = s, where s is an automaton

state in τ∩. Then there exist sequence k′ ∈ Ds, hk′∈L(C) ∧ hk′∈L(Q). By

this we form a contradiction. 2

Theorem 3.2. Assuming δ̂τ∩(̊sτ∩, h) = p and δ̂τC (̊sτC , h) = q, Satisfiable(Q,

C, h) holds true iff Dp is equivalent to Dq.

Proof.

⇐=: The fact that Dp is equivalent to Dq implies that there does not exist



3.2. QUERY SATISFIABILITY AND UNSATISFIABILITY 34

k: hk is in L(C) but hk is not in L(Q). Satisfiable(Q, C, t) holds true by

definition. 2

=⇒: Given that Satisfiable(Q, C, h) holds true, we know that for any k:

hk∈L(C) → hk∈L(Q). Thus hk is in L(C) ∩ L(Q). Suppose Dp is not

equivalent to Dq, there exists a sequence o: k′ ∈ Dq but k′ 6∈ Dp since Dq

⊇ Dp, which forms a contradiction. 2

Based on the theorems, a query satisfiability / unsatisfiability checking

algorithm shown in Algorithm 1 is designed. Line 6 to 13 give the static

checking process. Q can be statically guaranteed as unsatisfiable if τ∩ ac-

cepting only empty language (by Theorem 3.1) and Q can be statically

guaranteed as satisfiable if τ∩ is equivalent to τC (by Theorem 3.2). Line

17 to 47 give the runtime checking process. Once an input event from the

evolving trace seq triggers a state change in either τ∩ or τC , derivative of

the current state (precomputed in Line 17) of τ∩ and τC will be compared.

If they are equivalent, the satisfiability of Q can be guaranteed (by Theorem

3.2). If the transition falls out of τ∩ (note that it could never fall out of τC

because the input sequence is consistent with C), the unsatisfiability of Q

can be guaranteed (by Theorem 3.1).

Example 3.5. Consider Qexp2 and Cexp1 given earlier. Figure 3.2 shows

three automaton respectively: (1) τCexp1
, (2) an equivalent NFA of τQexp2

(instead of showing τQexp2
for easier understanding) and (3) τ∩ equivalent to

τCexp1
∩ τQexp2

. Let us first look at trace h3 (given in Example 3.3). When

the first event a1 is processed, both τCexp1
and τ∩ transit to state s1 and

the derivatives for these two states are A∗K∗B+KC+ and A∗K+B+KC+
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respectively, which are obviously not equivalent. When the second event k2

is processed, both τCexp1
and τ∩ transit to state s2 and the derivatives turn

to be equivalent as K∗B+KC+. Thus we can guarantee the satisfiability of

Qexp2. We then look at trace h4 (given in Example 3.3) which is an example

of query unsatisfiability. The transition falls out of τ∩ when the second

event b4 is processed and unsatisfiability of Qexp2 can be guaranteed at this

moment.

A K B C A K B C* * * * *

K B K

B

A
0 1 3 42

C

(1)

K KA
0 1 325

K BA
1 320

C

(2)

4
K C
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Figure 3.2: Example Automaton

3.2.3 Lightweight Constraint Checking

Checking the derivative equivalency between the states of τ∩ and τC (poly-

nomial time complexity) introduces runtime costs in Algorithm 1. It is

conducted every time an input event instance triggers state transition(s) on

either τ∩ or τC , which could bring in big overhead for such runtime process.

Besides that, Algorithm 1 requires two automaton state lookups at runtime

for each input event, i.e., the state lookups at τ∩ and τC .

Below we introduce an optimized query satisfiability / unsatisfiability

checking algorithm to decrease the runtime cost in Algorithm 1. Let us first
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Algorithm 1 Query Satisfiability / Unsatisfiability Checking

1: Procedure: SatUnsatChecking
2: Input: (1) constraint C, (2) query Q, (3) real-time evolving sequence trace seq (must

be consistent with C) as “e1, e2, e3 ...” received incrementally, with the End of Stream
(EOS) message arriving at the very end if input termination is indicated

3: Output: static or runtime notification of query satisfiability / unsatisfiability
4:
5: ——————————————— Static Checking ——————————————
6: construct τC , τ∩ and precompute Ds̊τ∩ and Ds̊τC

7: if τ∩’s accepted language L(τ∩) = ∅ (i.e., τ∩ being an empty automaton) then
8: notify unsatisfiable and return
9: else
10: if τC ’s accepted language L(τC) is equivalent to L(τ∩) (i.e., Ds̊τ∩ = Ds̊τC) then
11: notify satisfiable and return
12: end if
13: end if
14: —————————————————————————————————————
15:
16: —————————————— Runtime Checking —————————————
17: calculate the derivatives for all the states τC and τ∩ except s̊τ∩ and s̊τC

18: var p ← s̊τ∩

19: var q ← s̊τC

20: var p′, q′

21: var checkFlag ← false
22: var e ← poll(seq)
23: while e 6= EOS do

24: p′ ← δ̂τ∩(p, e)

25: q′ ← δ̂τC(q, e)
26: checkFlag ← false
27: if p′ = null then
28: notify unsatisfiable and return
29: else
30: if p 6= p′ then
31: if Dp′ is equivalent to Dq′ then
32: notify satisfiable and return
33: end if
34: checkFlag ← true
35: p ← p′

36: end if
37: if q 6= q′ then
38: if !checkFlag then
39: if Dp′ is equivalent to Dq′ then
40: notify satisfiable and return
41: end if
42: end if
43: q ← q′

44: end if
45: end if
46: e ← poll(seq)
47: end while
48: —————————————————————————————————————
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look at a theorem given as follows, where τ∩’s state set is denoted as Sτ∩

and τC ’s state set is denoted as SτC .

Theorem 3.3. For any p in Sτ∩, there exists q in SτC : for any sequence

seq, δ̂τ∩(̊sτ∩, seq) = p → δ̂τC (̊sτC , seq) = q.

Proof. The proof of this theorem is straightforward. By the automaton

construction mechanism of τ∩, we have guaranteed that for any state s in

τ∩, s maps to one and only one state in τC , which asserts the correctness

of the given theorem. 2

Remind that in the construction of τ∩, the modified automaton mini-

mization process skips merging the automaton states in τ ∩̈ (the cross prod-

uct of τC and τQ) if they are mapped from different states from τC . From

the above proof of Theorem 3.3 we can see that the correctness of the theo-

rem is based on such minimization mechanism, which guarantees each state

in τ∩ having one and only one mapping state in τC .

Example 3.6. Consider Qexp6 = EVENT SEQ(OR(P |Q), A, B) and Cexp6

= PAB|Q∗B|R∗A. Figure 3.3 shows three automaton respectively: (1)

τCexp6
, (2) τ∩ equivalent to τCexp6

∩ τQexp6
and (3) the minimized DFA of

τ∩, referred to as automaton τ ∩̇. We use the automaton number plus the

state label to distinguish each automaton state. For two different states sa

and sb in τCexp6
, if they map to state s′a and s′b respectively in τ∩, we can

guarantee that s′a 6= s′b. For example, we have state (1)-0 maps to state

(2)-0, state (1)-1 maps to state (2)-1, ..., and state (1)-4 maps to state

(2)-4. Consider input event trace h6 = “p1”, h7 = “q1” and h8 = “q1,
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a2”. Trace h6 reaches state (2)-1 in τ∩. By the precomputation, we already

know that the derivative of state (2)-1 is equivalent to the derivative of

its mapping state (state (1)-1) in τCexp6
. Thus we encode state (2)-1 with

some corresponding information. During real-time processing, only the τ∩

automaton is run. After receiving trace h6, we will reach state (2)-1. Based

on its encoded information, we can then notify the query satisfiability .

Similarly, query satisfiability can be notified after receiving trace h8. For

trace h7, since the derivative of state (2)-4 is not equivalent to its mapping

state (state (1)-4), no information will be encoded for the state during the

precomputation phase. So whether a matched pattern may exist for the

query while the trace evolves could not be decided yet based on the input

of h7. Now we go back to look at τ ∩̇ in Figure 3.3, which is the minimized

DFA equivalent to the cross product of τCexp6
and τQexp6

. Without taking

the distinguished minimization steps used in the construction of τ∩, states

in the cross product which are mapped from different states in τCexp6
could

be collapsed together during the minimization. Thus, the property given in

Theorem 3.3 will no longer hold for τ ∩̇. For example, states mapped from

(1)-1 and (1)-4 in τCexp6
are combined into state (3)-1 in τ ∩̇. We cannot

perform precomputation since (3)-1 maps to multiple states in τCexp6
.

The property given in Theorem 3.3 guarantees the correctness of a run-

time constraint checking mechanism given in the following Algorithm 2. Dif-

ferent from Algorithm 1, Algorithm 2 achieves lightweightness in constraint

checking by applying the automaton encoding before the runtime checking

process. For each state p in τ∩, its mapping state q in τC is found and
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Figure 3.3: Automaton for Example Query with Lightweight Checking

derivative equivalency of p and q is checked. Then the corresponding check-

ing result is encoded with p (Line 9 in Algorithm 2). Algorithm 3 depicts

such automaton encoding process. The process has two components: the

traverser and the applier. Each state in τ∩ is associated with a variable

encoding which is used to record the encoded information. By default the

encoding value is set to be N/A for each state. The traverser traverses

τ∩ and directs the applier to each of its states. For a given state p, the

applier calculates p’s mapping state q in τC and performs the derivative

comparison between p and q. If these two are equivalent, p.encoding will

be encoded as DER EQUIVALENT. By using such encoded result on τ∩,

runtime cost in the runtime process is greatly decreased. Runtime checking

of the derivative equivalency is completely replaced by a simple checking

on the encoding value of the reached state in τ∩ (Line 20 in Algorithm 2).

The query can be determined to be satisfiable while the encoding value
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Algorithm 2 Lightweight Query Satisfiability / Unsatisfiability Checking

1: Procedure: LightweightSatUnsatChecking
2: Input / Output: same as Algorithm 1 (Line 2 to 3)
3:
4: ——————————————— Static Checking —————————————–
5: Same as Algorithm 1 (Line 6 to 13)
6: —————————————————————————————————————
7:
8: —————————————— Runtime Checking —————————————
9: perform precomputation by running Algorithm 3 as AutomatonEncoding(τ∩, τC)
10: var p ← s̊τ∩

11: var p′

12: var e ← poll(seq)
13: while e 6= EOS do

14: p′ ← δ̂τ∩(p, e)
15: if p′ = null then
16: notify unsatisfiable and return
17: else
18: if p 6= p′ then
19: if p.encoding = DER EQUIVALENT then
20: notify satisfiable and return
21: end if
22: p ← p′

23: end if
24: end if
25: e ← poll(seq)
26: end while
27: —————————————————————————————————————

is DER EQUIVALENT. Besides that, running τC alongside with τ∩ is no

longer needed thus only one automaton look up at τ∩ is required for each

input event.

Example 3.7. Consider the same scenario as in Example 3.5 but applying

the lightweight constraint checking algorithm. The state s2 to s5 of τ∩ are

all encoded as DER EQUIVALENT after applying Algorithm 3. For trace

h3, when the second event instance k2 is processed, τ∩ transits to state s2.

Thus we are guaranteed the satisfiability of Qexp2 at this moment.
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Algorithm 3 Automaton Encoding

1: Procedure: AutomatonEncoding
2: Input: (1) DFA τ∩, (2) DFA τC

3: Output: τ∩ with encoded information on derivative equivalency checking
4:
5: calculate the derivatives for all the states τC and τ∩ except s̊τ∩ and s̊τC

6: for all p ∈ Sτ∩ except s̊τ∩ do
7: find p’s mapping state q in τC

8: if Dp is equivalent to Dq then
9: p.encoding ← DER EQUIVALENT
10: end if
11: end for

3.2.4 Handling Predicate-Based Filtering

As earlier discussion, most applications require real-time filtering, where

users are interested in complex event patterns that impose additional con-

straints on the event instances. The proposed constraint-aware pattern de-

tection framework supports predicate-based filtering on event streams using

the same automaton-based mechanism introduced earlier. An example is

shown as follows.

Example 3.8. Consider constraint Cexp8−a = A+B+A+C+, and query

Qexp8 = EVENT SEQ(A, B, C) WHERE A.id = “3”. In order to fit

into the automaton-based framework, we rewrite Cexp8−a into Cexp8−b =

(A[id 6=3]|A[id=3])+B+(A[id 6=3]|A[id=3])+C+. DFA τCexp8−b
and τ∩ (equiv-

alent to τCexp8−b
∩ τQexp8

) are given in Figure 3.4 (1) and (2) respectively.

Take trace h9 = “a1[id = 2], b3” and h10 = “a1[id = 3], b3” as example.

For h9, unsatisfiability of Qexp can be guaranteed. For h10, satisfiability of

Qexp8 can be guaranteed instead.
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Figure 3.4: Automaton for Example Query with Predicate-Based Filtering

3.3 Query Execution

Pattern monitoring is a long running process for event pattern detection. In

an execution strategy without considering constraint knowledge, the mon-

itoring process could be stopped only when the event trace is terminated.

Corresponding CPU and buffer resources could not be released earlier. Dur-

ing the monitoring process, situation alert will be raised while target event

patterns has been detected. Algorithm 4 given below sketches such basic

execution strategy.

Algorithm 4 Basic Execution Strategy

1: Procedure: BasicExecution
2: Input: real-time evolving sequence seq as “e1, e2, e3 ...”, with the End of Stream (EOS)

message arriving at the very end if input termination is indicated
3: Output: situation alerts and matched result sequences
4:
5: var e ← poll(seq)
6: while e 6= EOS do
7: process e:
8: perform necessary data buffering and state purge, produce results and raise situation

alerts if possible
9: e ← poll(seq)
10: end while
11: terminate the pattern monitor for the current event trace

As earlier discussion, observation of the query satisfiability / unsatis-

fiability could be utilized in two aspects. First, it enables us to identify
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queries which are guaranteed to not lead to successful matches at the ear-

liest, thereby helping us to terminate such long running pattern detection

processes and release the corresponding CPU and buffer resources earlier.

All the buffer taken for this trace can be released and no more CPU and

memory footprint is required in the future on this trace. We call this pro-

cess early monitor termination. Second, it enables us to identify queries

which can be guaranteed to surely lead to a future alert at the earliest (even

though the matched result has not yet happened), thereby helping us to get

prepared for upcoming situations. We call this process early situation alert.

A constraint-aware execution strategy for complex event pattern detec-

tion over streams is thus proposed in Algorithm 5, by which the query sat-

isfiability / unsatisfiability will be notified at the earliest possible moment

during the execution to achieve both early monitor termination and early

situation alert. The execution strategy follows the Event Condition Ac-

tion (ECA) rule-based framework. It applies a constraint checker M using

the checking algorithm (Algorithm 1 or 2) to notify the query satisfiability

/ unsatisfiability on the fly. Through the ECA framework, the real-time

streaming event input serves as the events. The checking results from M

serve as the conditions and the corresponding steps taken based on the

checking result are seen as the actions.

To be specific, following benefits could be obtained through taking the

corresponding actions of the early monitor termination and early situation

alert under the proposed execution strategy:

• Early Buffer Release. By the early monitor termination, buffered
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elements can be released earlier.

• Further Buffer Avoidance. By the early monitor termination, no

further event buffering is required for the current event trace.

• Further Monitor Avoidance. By the early monitor termination,

no further pattern detection process is needed for the trace.

• Taking Precaution Action for Upcoming Situations. By the

early situation alert, we can get prepared for upcoming situations at

the earliest.

Example 3.9. Consider the same scenario as in Example 3.5. Let us first

look at trace h3. When the second event k2 is processed, the constraint

checker raises satisfiable. Thus, an early situation alert will be thrown at

this moment for helping the corresponding parties to get prepared for up-

coming situations at the earliest, even though the whole <a k k c> pattern

has not yet been formed. For trace h4, the constraint checker raises unsat-

isfiable when the transition falls out of τ∩ at the second event b4. Thus a1

(the first event in h4) which was received and buffered earlier can be purged

and no further buffering is required under this trace. Also, the pattern mon-

itor can be terminated at this point in order to release corresponding CPU

resources. Consider h4 evolving to h2 (given in Example 3.1). Pattern de-

tection and buffering for extracting and keeping k8 can be avoided through

the early monitor termination.
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Algorithm 5 Constraint-Aware Execution Strategy

1: Procedure: ConstraintAwareExecution
2: Input: (1) real-time evolving sequence seq as “e1, e2, e3 ...”, with the End of Stream

(EOS) message arriving at the very end if input termination is indicated, (2) procedure
M for lightweight satisfiability / unsatisfiability monitor given in Algorithm 1 or 2

3: Output: situation alerts, matched result sequences and early situation alerts, with the
early monitor termination functionality

4:
5: invoke M ’s static checking process
6: if M raises unsatisfiable then
7: terminate the pattern monitor determination for the current event trace
8: return
9: else
10: if M raises satisfiable then
11: raise early situation alert
12: end if
13: end if
14: invoke M ’s runtime checking process
15: var e ← poll(seq)
16: while e 6= EOS do
17: pass e to M
18: if M raises unsatisfiable then
19: release buffer, perform early monitor determination for the current event trace
20: pass EOS to M
21: return
22: else
23: if M raises satisfiable then
24: raise early situation alert
25: end if
26: end if
27: process e:
28: perform necessary data buffering and state purge, produce results and raise situation

alerts if possible
29: e ← poll(seq)
30: end while
31: terminate the pattern monitor for the current event trace
32: pass EOS to M
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3.4 Performance Evaluation

3.4.1 System Implementation

E-Tec is implemented using Java 5. Figure 3.5 shows the system architec-

ture. Based on the basic system structure given in Chapter 2.3, the compo-

nent of Constraint Register is plugged into the ESP console to provide the

interface for constraint configuration. The Execution Engine and the corre-

sponding components are equipped with the constraint handling ability: (1)

the Query Plan Generator parses and translates a given event query into an

execution plan, which includes a precomputed encoding; (2) the Query Ex-

ecutor takes in events from input streams and constructs results on the fly;

(3) the Constraint Engine utilizes automaton-based technique to perform

runtime constraint monitoring; (4) the Execution Controller receives feed-

backs from the constraint engine and triggers the query executor to perform

corresponding runtime actions.

The automaton-based model is commonly used by the state-of-the-art

ESP engines. The proposed query satisfiability / unsatisfiability checking

framework can be easily integrated with the automaton-based ESP engines

by combing the monitoring automaton (τ∩) with the automaton applied for

pattern detection.

3.4.2 Experimental Setting

Experiments are run on two Pentium 4 3.0GHz machines, both with 1.98G

of RAM. One machine sends the event stream to the second machine, i.e.,
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Figure 3.5: E-Tec System Architecture

the query engine. In Chapter 3.4.3 and Chapter 3.4.4 we will report the per-

formance of the proposed constraint-aware techniques on a 5G data input

based the supply chain data model given in [HG00], which contains multiple

real life use cases on SCM. From its workflow, we can see that the data

can be highly irregular, with 60% of the event types that can be optional

or exclusive choices (used for controlling query selectivity). An on-line auc-

tion data which conforms to the schema used in XMark [SW02] can be an

alternative data set for experiments.

Two sets of experiments are run. One is on event pattern queries with

only pattern-based filtering, where the pattern-based selectivity is varied

accordingly, which controls the percentage of patterns being filtered out

through the query structure-related factors (Qexp2 as an example) from zero
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to 100% through changing the query complexity (state number of the query

automaton in our case). The other set of experiments is on queries with

only predicate-based filtering (Qexp8 as an example). In this test the pattern-

based selectivity is 100%. However I also vary the predicate-based selectivity

from zero to 100% through changing the predicate type and position.

3.4.3 Queries with Only Pattern-Based Filtering

Memory Consumption. The proposed constraint-based pattern detection

technique should be able to minimize the amount of data that is buffered:

with a smaller selectivity (less results being produced), more unnecessary

data buffering could be avoided. The results shown in Figure 3.6 provides the

verification. X axis shows 6 groups of queries categorized by their pattern-

based selectivities. Y axis shows the accumulative memory consumption for

each query. We can see that the basic constraint checking (Algorithm 1) has

the same buffer performance as the lightweight constraint checking (Algo-

rithm 2) since they have the same effect on cutting memory consumption.

CPU Performance. Figure 3.7 shows the query execution time. We can

see that in most cases constraint-aware approaches outperform the naive

approach without considering constraints: with a smaller selectivity, more

unnecessary CPU computation could be avoided. However, when the se-

lectivity is very high, constraint-aware approaches have poor performance

because their overheads on runtime constraint checking become higher than

the CPU saving through early monitor termination. Y axis here shows the

execution time for each query. In the best case (i.e., the query for which
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Figure 3.6: Results for Queries with Only Pattern-Based Filtering I
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Figure 3.7: Results for Queries with Only Pattern-Based Filtering II

selectivity is 0%), plans optimized with constraint-based processing reduce

the execution time of the original plan by 76%. We can also observe that

the basic constraint checking does not perform as well as the lightweight

constraint checking since the higher overhead from its runtime process.

Accumulative Query Determination Time. Figure 3.8 shows the ac-
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cumulative query determination time for each method, which is the accu-

mulation of each input trace’s execution time taken from the start of the

trace till finally determining the result regarding the query satisfiability /

unsatisfiability of the trace. For example, for a query which is determined as

satisfiable at runtime before the trace ends, the determination time for it is

the query execution time taken from starting the trace till a situation alert

being raised. Constraint-aware approaches outperform the naive approach

without considering constraints since the determination of the query being

satisfiable / unsatisfiable comes before the trace being completely received

and processed for most traces in the input. Y axis here shows such query

determination time for each query. Plans optimized with constraint-based

processing reduce the execution time of the original plan with similarly re-

sults (between 65% to 70%). Situation alerts raised by the system thus can

lead to effective precaution action taking. We can also observe that the

basic constraint checking does not perform as well as the lightweight con-

straint checking since its costly runtime process introduces higher overhead,

similarly to the CPU performance results.

3.4.4 Queries with Only Predicate-Based Filtering

Experiments on memory and CPU consumption are also run for queries

with only predicate-based filtering. Results with similar characteristics as

in Chapter 3.4.3 are reported, which are shown in Figure 3.9, Figure 3.10

and 3.11.
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Figure 3.8: Results for Queries with Only Pattern-Based Filtering III
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Figure 3.9: Results for Queries with Only Predicate-Based Filtering I

3.4.5 Conclusions of the Experimental Study

Above experimental results reveal that the proposed constraint-aware pat-

tern detection framework is practical in two senses: (1) the technique can

surely reduce the system memory consumption and (2) savings on CPU

performance brought by the technique can be significant in most cases.



3.5. RELATED WORK 52

0% 20% 40% 60% 80% 100%

500

E
xe

cu
tio

n 
 T

im
e 

 (
s)

2500

2000

1500

1000

Naive

Basic Checking

Lightweight Checking

3000

Predicate-based Selectivity 

Figure 3.10: Results for Queries with Only Predicate-Based Filtering II
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Figure 3.11: Results for Queries with Only Pattern-Based Filtering III

3.5 Related Work

The constraint-aware query processing has been studied extensively in tradi-

tional databases, which does not meet the requirement of event stream pro-

cessing application because they do not provide real-time solution for event

processing. XML stream processing work like [BCCN06][SRM05][KSSS04]

[WSL+06][LMR08d][LMR08c][LMR08b][LMR08a][WLRM06][WRML08] has

looked at the schema-based optimization opportunity focusing on reducing
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CPU and memory footprint in XML data processing. Such techniques for

handling of semi-structured data cannot be applied in event stream pro-

cessing which is handling high volume of real-time stream input in the

format of heterogenous events. Event-specific ESP technology, which has

an event-specific system design and evaluation mechanism, is shown to be

superior to generic stream processing solutions [BW01][ACC+03][CCD+03]

because it is being specifically designed for handling sequence queries over

streaming event. An expressive yet easy-to-understand language is pro-

posed in [WDR06] to support pattern queries on such sequential streams

and proposes customized algebra operators for the efficient processing of

such sequence queries with sliding windows. Constraint knowledge is not

within the consideration of its query evaluation. A plan-based technique

to perform streaming complex event detection across distributed sources is

discussed in [ACT08]. Its focus is mainly on handling pattern detection

over event streams in a distributed environment. In [SMMP09] and [MM09]

CEP systems designed for query rewriting and distribution are proposed.

These works do not consider constraints and they are following the tradi-

tional stream processing paradigm instead of the event-specific one for the

purpose of distributed computing. A constraint-aware ESP solution is pro-

vided in [DCR+08]. However, it only considers a limited number of event

constraint types instead of completely utilizing the whole input constraint.

Even though a compile time precomputation mechanism is given to improve

the runtime constraint inferencing, this process still requires multiple state

checking for every input event. Besides that, the abductive inference which

is required at their compile time precomputation is NP-complete.



3.6. CONCLUSIONS 54

3.6 Conclusions

In many practical cases business events are generated based on predefined

business logic. Hence, constraints often hold among event data. For pat-

tern detection over event streams, reasoning using such known constraints

enables us to identify the unsatisfiability and the satisfiability for a query

at the earliest possible moment, thereby helping us to get prepared for up-

coming situations at the earliest, thus helping us to effectively decrease the

resource consumption and expedite the system response on certain situa-

tion alerts. In this dissertation task, I introduce a framework for constraint-

aware pattern detection over event streams: (1) Given the constraint of the

input event stream at compile time, the query satisfiability / unsatisfiability

is efficiently monitored on the fly using my proposed lightweight runtime

checking algorithm; (2) Following an ECA-based query execution strategy,

I am able to adjust the processing strategy dynamically, by producing early

feedbacks, releasing unnecessary resources and terminating corresponding

pattern monitor; (3) I have implemented the proposed framework in the E-

Tec prototype system and conducted experimental studies to illustrate that

the proposed techniques bring significant performance improvement in both

memory and CPU usage with little overhead.
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Chapter 4

Complex Event Pattern

Detection over Streams with

Out-of-Order Data Arrival

4.1 Introduction

Event stream processing has raised increased interest in the communities of

the database and distributed systems in the past few years [AE04][WDR06]

[DGP+07][SPL96]. A wide range and ever growing numbers of applications

nowadays, including network monitoring, e-business, health-care, financial

analysis and security supervision, rely on being able to process queries over

data streams that take the form of time ordered series of events.

Let us consider a popular application for applying event sequence track-

ing techniques, namely, anti-shoplifting, which has been discussed earlier in
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Chapter 1.1. Assume it is a bookstore which deploys the anti-shoplifting

devices: RFID tags are attached to each book and RFID readers are placed

at different locations throughout the store, such as book shelves, checkout

counters and the store exit. If a book shelf and a store exit sensed the

same book but none of the checkout counters sensed it in between the oc-

currence of the first two events, then we can conclude that this book is being

shoplifted.

Event queries, such as those needed above to detect shoplifting, have

been tackled in the literature. For instance, SASE [WDR06] proposes an

expressive yet easy-to-understand language to support pattern queries on

such sequential streams. It also proposes customized algebra operators for

the efficient processing of such event pattern queries with sliding windows.

This technology, being specifically designed for handling pattern queries

over event streams, is shown to be superior to generic stream processing

solutions [ACC+03][BW01][KNV03][CCD+03][RDS+04].

For an event stream processing system if the order in which the events

are received by the system is the same as their timestamp order, we say

the data arrival of the system satisfies the total order assumption. Most

systems [WDR06][ACT08], both event-based and stream-based ones, assume

a total ordering among event arrivals. By this assumption, the later arrival

of an event implies that it has a larger timestamp than the other events which

have already arrived earlier. For example, the query evaluation approach of

[WDR06] relies on such total ordering assumption for locating the expected

event sequences.

However, out-of-order events are not uncommon in practice. For exam-
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ple, in a distributed computing environment, event sequences might arrive

out of order at the processing engine due to network traffic and possible

node failure. The existing technology would fail in such circumstances, ei-

ther missing resulting matches or producing incorrect matches. Clearly,

for handling out-of-order data arrival, a more sophisticated mechanism is

needed. This is the problem I tackle in this dissertation task.

There has also been some initial work of investigating the out-of-order

problem for generic (homogenous-input) stream systems. One model, which

is adopted for this dissertation, introduces the notion of K-Slack [BMM+04].

Such solution is trivial in regular stream system as in fact the processing such

as join proceeds as normal (with a K-delayed purging), and any tuple that

arrives after K is simply discarded [HBR+05]. A native approach [DGP+07]

on handling out-of-order event stream is using K-Slack as a priori bound

on the input streams. It buffers incoming events in the input queue until

ordering can be guaranteed. Compared with the proposed approach where

each operator is order sensitive, such process requires additional space and

introduces more latency before allowing events being evaluated. A second

solution proposed to handle out-of-order data arrival is applying punctua-

tions [DMRH04][LMT+05]. Such techniques, while interesting, require for

some service to first be creating and appropriately inserting such assertions.

Contributions. I provide a solution framework for query evaluation over

event streams with out-of-order data arrival in this task. The main contri-

butions include:

• I analyze the problems that state-of-the-art event stream processing
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technology would experience when faced with out-of-order data arrival.

(Chapter 4.3)

• I define different levels of correctness in out-of-order processing that

target priorities of applications considering latency, output order, re-

sult correctness and result completeness. (Chapter 4.4)

• I provide new physical implementation strategies for the core stream

algebra operators such as sequence scan, pattern construction, nega-

tion and the corresponding runtime purge. In particular, I introduce

stack-based data structures as well as the associated sequence retrieval,

event pattern construction, negation filtering and state purge mecha-

nisms. (Chapter 4.5)

• Optimization for sequence scan, negation and state purge to minimize

CPU cost and memory consumption are introduced. (Chapter 4.5)

• I conduct an experimental study that demonstrates the effectiveness

of the proposed approach. (Chapter 4.6)

Roadmap. The rest of Chapter 4 is organized as follows. In Chapter 4.2 I

give the overview of the SASE query algebra [WDR06]. Problems caused by

the out-of-order data arrival are identified in Chapter 4.3. Different levels of

“output correctness” is described in Chapter 4.4. In Chapter 4.5, I propose

the solution of event stream processing with out-of-order data arrival. An

experimental analysis is given in Chapter 4.6. Related work is discussed in

Chapter 4.7. Conclusions for this dissertation task is given in Chapter 4.8.
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4.2 Background

We assume here that the input event query has been translated into an

algebraic query plan introduced in Chapter 2. The logical operators such

as AND / OR (which detect patterns with logical relations) apparently

would not be affected by out-of-order events. The SELECT operator (which

performs value-based predicate checking) would be affected by out-of-order

events only when it is associated with negation patterns. However that

can be simply avoided by operator pushdown on the SELECT [WDR06].

Thus we only need to focus on the following operators: SEQ, NEGATION

and WIN. Their corresponding physical implementations in SASE algebra

are: SSC, NG and WD. SSC is formed by sequence scan (SS) and sequence

construction (SC), and it contains functionalities pushed down from the

window operator for the state purge operation. SS employs a NFA to detect

matches to the event pattern specified in the query and SC constructs the

expected event sequences based on events retrieved by SS. The WD operator

checks whether events in the input event sequence occur within a sliding

window. The NG operator handles the events in the queried event patterns

that are preceded with the negation annotation (“!”), which is referred to

as negative components. On the top of each SASE algebraic plan there is a

TF (transform) operator, which handles the transformation of query results

to composite event outputs.

Example 4.1. Figure 4.1 shows an query plan for the query Q depicted in

the same figure using the SASE algebra.
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SS: (A, B, D)

TF: sequence to composite event

Input Event Stream

SC: (A, B, D)

SSC

WD: D.ts – A.ts < 10 secs

PSSC: W = 10 secs

( ts:timestamp)

Q:
EVENT SEQ (A, B, D)
WITHIN     10  seconds

Figure 4.1: Event Query Plan

Sequence Scan and Construction (SSC). SSC as the bottom-most op-

erator constructs a nondeterministic finite automaton. Let N denote the

number of events in the query that are not involved in the negation query

patterns. Then the number of states in the NFA equal to N + 1 (including

the starting state). A data structure named Active Instance Stack (AIS) is

proposed by [WDR06] for the execution of SSC. That is, instead of using a

single stack for the NFA (Figure 4.2(a)), AIS associates a stack with each

state of the NFA storing the events that triggered the NFA transition to

this state. The events stored in each stack are called the active instances of

this stack. In addition, for each active instance e in a stack, an extra field is

created to record the most recent instance in the stack of the previous state

(RIP).
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Figure 4.2(c) shows a partial input event stream. The events marked

with an underscore are the ones being extracted during the sequence scan.

All the retrieved events of type A, B and D are kept by AIS. Figure 4.2(b)

shows the content of the three AIS stacks after the portion of stream S de-

picted in Figure 4.2(c) has been received. In each stack, the active instances

are listed from top to bottom in the order of their arrival. Take the active

instance b11 in stack S2 in Figure 4.2(b). The most recent instance in stack

S1 (holding event instances of type A) before b11 is a7. The RIP field of b11

is thus set to a7, as shown in the parenthesis preceding b11 in Figure 4.2(b).

The sequence construction is initiated for each active instance of the

accepting state, in our case, d10 and then d15. With AIS, the construction is

simply done by a depth first search in the DAG that is rooted at this instance

and contains all the edges reachable from the root. Each root-to-leaf path

in the DAG corresponds to one matched event sequence to be returned by

this SSC operator. For example, the three event sequences created for the

active instance d15 are <a3 b6 d15>, <a3 b11 d15> and <a7 b11 d15>. Thus,

after receiving the events in the input stream S depicted in Figure 4.2(c),

the SSC operator should output four event sequences and then two of them

will be removed by the WD operator. Totally there are two result sequences

being produced, as shown in Figure 4.2(d).

Purge at SSC (PSSC). State purge on SSC is conducted based on window

constraints for removing outdated events from AIS. It considers the window

constraint at the SSC operator, which can be seen as pushing down the

windows down to the SSC. If the purge at SSC is conducted on a timely
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Figure 4.2: Query Evaluation of SASE

fashion, the window operator on top of the SSC can be removed. Event

instances in AIS which fall out of the sliding window will no longer be

able to contribute to the query result. PSSC dynamically prunes the event

instances at AIS by removing such outdated events.

For example, when d15 is retrieved, a3 can be removed from stack S1

because the distance between a3 and d15 is already larger than the allowed
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Figure 4.3: Out-of-Order Data Arrival Examples

window range (15− 3 > 10). Similarly, once f17 is received, b6 can be safely

pruned from S2 at AIS because it has slid out of the window (17− 6 > 10).

Negation (NG). The negation operator handles the negative components

of a pattern sequence construction. Events under such negative components

ignored during the SSC are collected in a buffer. We refer it as the negation

buffer in this dissertation. In the above example, the C events from the

input stream will be kept in the negation buffer. NG checks for each input

event sequence whether there exist any C events in the negation buffer that

arrives between the B and D events in the located event sequences. For

example, when d15 is received, there are two C events kept in the negation

buffer (namely, event instance c5 and c13). The second tuple (a7 b11 d15)
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input to the NG operator will be removed from its output, because that

there exist a C event (c13) between b11 and d15.

Purge at NG (PNG). The negation buffer is another in-memory data

structure maintained by SASE. Similarly to AIS, windows constraint-based

data purging needs to be conducted for removing outdated events from the

negation buffer when memory resources are limited. In [WDR06] this process

is seen as garbage collection on negative events. In this dissertation we model

it as an operator, referred to as PNG (Purge at Negation). Event instances

in the negation buffer which fallen out of the sliding window will no longer

contribute to the query result. PNG dynamically prune the negation buffer

by removing such outdated events. For example, when f16 is retrieved, c5

can be removed from the buffer because that the distance between c5 and

f16 is already larger than the allowed window range (16 − 5 > 10).

4.3 Problems Caused by Out-of-Order Events

4.3.1 Out-of-Order Event Stream

SASE approach assumes a total ordering of all event arrivals, i.e., the order

in which the events are received by the query system equal to their times-

tamp order. The query evaluation approach of SASE relies on this total

order assumption for identifying event sequences. However, as mentioned

in Chapter 4.1, if the input stream were to contain any out-of-order events,

such handling approach becomes insufficient for event query evaluation.

Out-of-Order Event. For a newly arrived event e, supposed the events
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that we received before e are “e1, e2, e3, ..., em”, if there exists any ei

among “e1, e2, e3, ..., em” satisfying e.timestamp < ei.timestamp, e is an

out-of-order event.

In the example stream S shown in Figure 4.3(a), the events are listed

under their received order. We can see that event c9 received after event

f17 is an out-of-order event. The input event stream no longer satisfies the

total order assumption. The out-of-order event c9 should have arrived at

the position indicated by a dot above the axis.

4.3.2 Problem for Sequence Scan and Construction (SSC)

Incomplete Event Retrieval. The current execution logic of NFA in

SSC [WDR06] relies on the total ordering assumption. If this assumption

no longer holds, some events which should have been kept might be discarded

by the sequence scan. We refer to this as incomplete event retrieval.

Example 4.2. Consider the example event stream in Figure 4.3(b). Two

out-of-order events, a0 and d2, came after f17. The dots in the figure indicate

the positions at which these two out-of-order events should have arrived

under the event timestamp order. We can see that <a0 b1 d2> is an event

sequence which should be constructed by the SSC. However, during the event

retrieval of SSC by using NFA, when b1 arrives, automaton state s2 hasn’t

been activated yet. Hence, b1 will simply be discarded. At the moment

when the a0 and d2 are received, the event b1 is gone. Thus the sequence

<a0 b1 d2> is missed.
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From the above example we observe that such incomplete event retrieval

potentially causes some qualified event sequence being missed.

Event Misplacement. The retrieved events during the sequence scan will

be placed in AIS for event sequence construction. Based on the total order

assumption, newly arriving events are placed on top of the corresponding

stack in AIS. For example, when a7 is retrieved, it will be put on top of

stack S1. With out-of-order event inputs, located events might be placed

into the wrong spot in AIS during sequence scan by this simple “append”

approach. We refer to this as event misplacement.

Example 4.3. Still consider the example event stream in Figure 4.3(c).

Assume the out-of-order event, b8 and d2 arrive after f17. The dots above

the axis show the position where b8 should have arrived under the event

timestamp order. If evaluating correctly, one candidate event sequence,

<a7 b8 d10>, should be produced after receiving b8. However, by simply

appending b8 to stack S2, b8 will be placed under b11, with the RIP field set

to a7 (Figure 4.4(a)). The event sequence <a7 b8 d10> thus would never

be constructed. Similarly, by simply appending d2 to stack S3, d2’s RIP

will be pointing to the newly appended b8 (Figure 4.4(b)). Thus incorrect

sequences such as <a3 b6 d2> and <a3 b11 d2> will be produced in the

sequence construction.

From the above example we observe that such event misplacement po-

tentially causes the SSC operator to miss event sequences and to produce

incorrect event sequences.
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Figure 4.4: Event Misplacement in AIS

4.3.3 Problem for Negation (NG)

To determine whether an event sequence satisfies the negation requirement,

the execution of the negation operator utilizes the events kept in the negation

buffer at the moment the new input tuple to the operator is scheduled to

be consumed. Once a new event sequence is constructed by the SSC, it

will be passed to the upper operators for further processing. For example,

consider evaluating for the query SEQ(A, B !C, D) WITHIN W over the

data given in Figure 4.2(c). When d10 is met, event sequence <a3 b6 d10>

will be produced and passed up to the Window (WD) operator and then the

NG operator, as the given SASE query plan shown in Figure 4.2(b). At this

moment, there is only one event instance kept in the negation buffer c5).
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Negation event c5 is not in the range of b6 and d10. Thus the event sequence

<a3 b6 d10> does not get removed by the NG. It is passed up to the TF

and then output. Under the total order assumption, this works correctly.

However, with out-of-order events coming potentially in the future, such

output event sequence is no longer guaranteed to be correct. Let’s first look

at the following example.

Example 4.4. Suppose that the out-of-order event c9 comes right after f17,

as shown in Figure 4.3(a). Obviously, the appearance of c9 makes the output

<a3 b6 d10> no longer a valid answer. It should not have been produced by

the NG operator.

We call the event sequence <a3 b6 d10> in the above example spurious

sequences because that at the moment it is being output by the NG, we can-

not guarantee its correctness regarding to the functionality of the negation

semantics. We refer such problem in NG as producing spurious sequences.

Spurious sequences potentially will turn to an invalid output of the NG oper-

ator, if certain out-of-order events indeed arrive later. Intuitively we can see

that in a sequence query with negation components, the NG operator can

never produce any data event sequence which is guaranteed to be “correct”,

as shown by Theorem 4.1.

Theorem 4.1. In a sequence query with negation components, every event

sequence output by the NG operator is a spurious event sequence unless the

total order on the data arrival holds for the input stream.

Proof. Let us first assume the query is with only one negation pattern.
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Suppose Et is a negation pattern in the event sequence query as: EVENT

SEQ(E1, E2, E3, ..., Ei, !Et, Ej, ..., Em) WITHIN W. Assume <e1 e2

e3 ... ei ej ... em> is any matching event sequence input to the NG

operator. Suppose that at this moment, there is no Et events received with

a timestamp within the range [ei.timestamp, ej.timestamp]. The above

sequence <e1 e2 ... em> will thus be put into the NG operator’s output.

However, any out-of-order event et can possibly be received after em with

a timestamp ei.timestamp < et.timestamp < ej.timestamp. Thus, the <e1

e2 ... em> actually is a spurious event sequence that erroneously had been

sent out to upper operators. For the queries with more than one negation

pattern, repeat the proof above for each of its negation patterns. 2

4.3.4 Problem for Purge at SSC (PSSC)

A basic mechanism for window-based AIS checking is to compare the differ-

ence between the checked event and the latest event received by the system.

According to the sliding window semantics, any matching event sequence

<e1 e2 ... em> for event pattern SEQ(E1, E2, ..., Em) must satisfy the

time-based constraint that (em.timestamp - e1.timestamp) < W. For any

event instance ei kept in AIS, it can be purged from the stack once an event

ek with (ek.timestamp - ei.timestamp) > W is received by the query en-

gine. However, with out-of-order data arrivals, the above window-based AIS

purge is no longer “safe”.

Example 4.5. In Figure 4.3(c), the out-of-order event b8 comes after f17.

The out-of-order b8 should be put together with a3 and d10 to form a candi-
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date event sequence output (<a3 b8 d10>) during the sequence construction.

However by the above AIS purging, a3 would have already been removed.

Suppose the problems mentioned in Chapter 4.3.2 and 4.3.3 are solved.

Retrieving an out-of-order event might then trigger the construction of a

new candidate event sequence, such as <a3 b6 d8> in Example 4.5. We refer

to such event sequences which consist of some out-of-order event as out-of-

order event sequence. Out-of-order data arrival triggers the construction of

out-of-order event sequences. We can see from the above example that PSSC

purges some events from AIS which might be needed for forming such out-

of-order event sequences in the future. We refer to this as unauthorized AIS

purge. It prevents some out-of-order event sequences from being constructed

by the SSC operator. For example, <a3 b6 d8> can never be constructed

due to the AIS purging on a3 or b6. Intuitively we can see that once out-of-

order data arrival being possible, any data purge at AIS becomes “unsafe”,

as expressed by the theorem below.

Theorem 4.2. Any data purge of active instance stack (AIS) is unautho-

rized unless the total order on the data arrival holds for the input stream.

Proof. For any event instance kept by ei in AIS, suppose that it is purged

at some moment during the evaluation, and let’s assume the event received

right before ei is purged is ek. There can be out-of-order events ei−n,

ei−n+1, ..., ei−1, ei, ei+1, ..., ei+m−1, ei+m received after ek (i > n > 0

and m > 0). By the notation we have ei−n.timestamp < ei−n+1.timestamp

< ... < ei−1.timetamp < ei.timestamp < ei+1.timestamp < ... < ei+m−1 <
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ei+m.timestamp. We can have ei+m.timestamp - ei−n.timestamp < W by

defining the incremental time unit from ei−n to ei+m to be small enough.

Thus, ei can be used to form a future potential out-of-order event sequence

<ei−n ei−n+1 ... ei ... ei+m−1 ei+m>. Hence the purge on ei is an unautho-

rized AIS purge. 2

4.3.5 Problem for Purge at Negation (PNG)

Similarly to the AIS purge, the window constraint-based mechanism for

purging from the negation buffer can be conducted simply by comparing

the distance between the checked event and the latest event received at the

system. As the previous example in Chapter 4.2, c5 can be purged from

the negation buffer once f16 is received. However, with out-of-order data

arrival, such data purge on the negation buffer is no longer “safe”, as shown

in the following example.

Example 4.6. Assume the input event stream is as the one shown at

Figure 4.2(d), where out-of-order event b4 comes after f17. Suppose that

the SSC can handle the out-of-order event arrival correctly, b4 will lead to

the construction of an out-of-order event sequence (<a3 b4 d10>) by the

SSC. This out-of-order event sequence will be passed up to the NG operator

for further checking by applying the negation semantics. Obviously <a3 b4

d10> is not a qualified sequence because there is a negation event c5 between

b6 and d8. However, c5 has been removed by the purge at this moment.

As the above example, PNG purges some events from the negation buffer

which might be needed in the future for forming out-of-order sequence. We
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refer this as unauthorized negation buffer purge. Unauthorized nega-

tion buffer purge causes some unqualified out-of-order event sequences to be

filtered out at the NG operator. For example, <a3 b6 d8> will be mistak-

enly treated as a qualified sequence by the NG due to the c5 having been

removed. Similarly to the AIS purging, we can see that once out-of-order

data arrival is possible, any data purge on the negation buffer becomes “un-

safe” , as shown by the Theorem 4.3 below. Its proof is similar to the proof

of Theorem 4.2.

Theorem 4.3. Any data purge on the negation buffer is unauthorized

unless the total order on the data arrival holds for the input stream.

4.3.6 Summary

Above we have discussed the SSC operator and its state purge function

causing the missing sequences and producing incorrect sequences, as shown

in Figure 4.5, corresponding to the SSC operator and the PSSC function

described in Chapter 4.2. Given event query EVENT SEQ(E1, E2, ...,

Em) WITHIN W, the query plan is shown in Figure 4.5. We can see that

the problems are all related to the in-memory data structures (AIS) at SSC.

Assuming that precise query result is required, evaluation approach in Chap-

ter 4.2 is no longer sufficient once out-of-order data arrival is possible.

4.4 Levels of Correctness

Several aspects of “output correctness” are defined as below.
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SS: (E1,E2,…,Em)

TF: sequence to composite event

Input Event Stream

SSC

WD: Em.ts – E1.ts < W

SC: (E1,E2,…,Em)

Active Instance Stacks (AIS)

PSSC: window W

SSC (1) mistakenly omits 
events which should be put 
into the AIS because they can 
be coupled with out-of-order 
events coming in the future, 
(2) misplaces out-of-order 
event instances in the AIS

PSSC mistakenly purges 
events from the AIS (events 
might be used to form out-of-
order sequences in the future)

1

2

Incomplete Retrieval
& Event Misplacement

Unauthorized
AIS Purge

Figure 4.5: Problem Observation

Ordered. The ordered property holds if and only if for any sequence result

T = <e1 e2 ... em> from the system, we can guarantee that every future

sequence result T ′ = <e1′ e2′ ... em′> with T ′ >o T . T ′ >o T holds iff em.t

6 em′.t and if ∃ k (1 6 k 6 m− 1) ek.t > ek′.t, then ∃ p (k < p 6 m), ep.t

< ep′.t.

In-Time. Our algebra assumes the execution is driven by the arrival of

new events. The in-time property holds if for any event sequence output T

= <e1 e2 ... em> from the system where we assume ek is the last event

instance of T received by the engine, the output of T must be initiated by

the arrival of ek.
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Permanently Valid. The property of being permanently valid holds if

and only if all output result sequences from the system satisfy the query

semantics. That is, for any sequence result T = <e1 e2 ... em>, it should

satisfy the sequence constraint as e1.t 6 e2.t 6 e3.t ... 6 em.t; the window

constraint (if any) as em.t - e1.t 6 window size; the predicate constraints (if

any) and the restriction on the negation filtering. Satisfying the negation

filtering constraint is defined as follows. Assume in the query there is a

negation pattern NE between event type E and E′ and E maps to ep and

E′ maps to eq in T . The negation filtering constraint is satisfied iff (4-1) no

current received event ne of type NE such as ep.t 6 ne.t 6 eq.t and (4-2)

no future received event ne′ of type NE such as ep.t 6 ne′.t 6 eq.t

Eventually Valid. We define a property a bit weaker than the “perma-

nently valid” above. The validation towards satisfying the restriction on the

negation filtering (defined in (4-1) and (4-2) above) is loosen up on (4-2)

to the following: (4-2)′ if there is any future received ne of type NE satis-

fying ep.t 6 ne.t 6 eq.t, the invalidation of the previously output tuple T

can be notified and the correction of such invalid output can be achieved.

This output mechanism is also seen as being “valid”, which is denoted as

“eventually valid”.

The “permanently valid” and “eventually valid” defined above are two

different levels of satisfying “valid” result output.

Complete. If current received event instances <e1 e2 ... em> satisfy

the query semantics (defined in the “permanently valid” above then the

sequence result T = <e1 e2 ... em> will at some point of time be output
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by the system.

As summary, four different properties of output correctness are defined:

(a) ordered, (b) in-time, (c) valid and (d) complete. The property of being

“valid” can be categorized into two levels: (c-1) permanently valid and (c-2)

eventually valid.

Based on such categorization, by combination we can define (2 * 2 * 3 * 2

=) 24 different categories of output correctness. Some of them can never be

possible. For example, it is not possible that an execution strategy produces

permanently correct unordered results with zero latency. The reason is

that with out-of-order event arrivals, sequence results cannot be output

immediately safely. Similarly, it is not possible that output tuples produced

are eventually correct and at the same time keeping the order. The reason

is that sequences sent by some later compensation computation can lead

to out-of-order output. Several combinations as different levels of output

correctness are now introduced as below.

• Full Correctness: the query evaluation satisfies the property of ordered,

in-time, permanently valid and complete output.

• Delayed Correctness: the query evaluation satisfies the property of

ordered, permanently valid and complete output.

• Delayed Unsorted Correctness: the query evaluation satisfies the prop-

erty of permanently valid and complete output.

• Convergent Correctness: the query evaluation satisfies the property of

ordered, in-time, eventually valid and complete output.
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• Convergent Unsorted Correctness: the query evaluation satisfies the

property of in-time, eventually valid and complete output.

Although “full correctness” is a nice output property, it is too strong a

requirement and unnecessary in most practical scenarios (in fact, if events

come out-of-order, “full correctness” cannot be achieved). In the appli-

cations while real-time valid output is required, “delayed correctness” or

“delayed unsorted correctness” may be necessary, i.e., the receiver performs

business action triggered by individual sequence results requires each result

sent from the stream provider to be guaranteed valid. On the other hand,

the application where real-time correctness is not important but there is a

high requirement on system response time, “convergence unsorted correct-

ness” or “convergent unsorted correctness” may be a more desired property,

i.e., some online statistic analyzing tools requiring a large input rate for un-

dertaking coarse granularity mining would prefer a fast data feed-in instead

of a guaranteed valid one from the stream provider.

In Chapter 4.5 I introduce a slack-based approach which satisfies

the delayed correctness. A conservative query evaluation approach

which satisfies the delayed unsorted correctness and an aggressive query

evaluation approach which satisfies the convergent unsorted correctness

are studied in [LLG+09], which are not included in this dissertation.



4.5. SOLUTION 77

4.5 Solution

4.5.1 Assumption on Unordered SSC Output

Construction of the out-of-order event sequence actually is delayed by its

out-of-order event components. Suppose a0 and d2 in Example 4.2 both

were to arrive in order. Then the sequence <a0 b1 d2> would have been

constructed before <a3 b6 d10>. Assuming the execution of SSC produces

output event sequences whenever new sequences are being formed, with

out-of-order data arrival, the output order of the SSC can no longer be

guaranteed.

If ordered output is needed from the SSC operator, additional semantic

information such as K-Slack factor or punctuation is needed to “unblock” the

on-hold candidate sequences from being output by the SSC operator. Since

the input event stream to the query engine is unordered, it is reasonable to

produce unordered output events to downstream. Thus in this dissertation,

unordered sequence output at the SSC operator is permitted.

4.5.2 Solution for SSC

SSC operator consists of three major procedures: (1) event retrieval; (2) AIS

construction and (3) event sequence production, with the first two affected

by out-of-order data arrival as the previous discussion in Chapter 4.2. The

following is the proposed mechanism for event retrieval and AIS construc-

tion.

Event Retrieval Mechanism. To avoid incomplete retrieval, all states of
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the NFA need to be set active before the retrieval over the event stream.

Let’s look at Example 4.2. With all the automaton states activated at the

beginning, b1 can be retrieved by the automaton even though no A events

have appeared before it.

AIS Construction Mechanism. For avoiding event misplacement, we

have to insert the retrieved events into the right position of AIS. In the case

of total order, any new received event can be simply appended to the end of

the sequence. We refer to this as the “append semantics”. When events can

arrive out of order, the “sort semantics” need to be applied: for each event

instance that triggers a transition in NFA, instead of simply appending it to

the stack, we search for a proper insertion place in the corresponding stack

to guarantee that the event instances in the same stack are in chronological

order from bottom to top. Also, the context RIP pointer of the inserted

event e needs to be correctly set. Besides that, if e is not the rightmost event

type in the sequence pattern of the query, RIP of the event instances in the

right-adjacent stack might need to be updated as well. If the timestamp

of e is in between of an event e′ in the right-adjacent stack and the event

pointed by the RIP fields of e′ and e′ will need to be reset to e.

Example 4.7. Similar to Example 4.3, let’s again consider the event stream

in Figure 4.3(c) with out-of-order event b8 arriving after event f17. Once b8

is received, it is inserted between b6 and b11 in stack S2. Event b8 is not of

a final state event type in the sequence pattern of the query. Thus we need

to check the D event instances in stack S3 to see whether any of their RIP

field needs to be reset. Since b8 becomes the most recent event in stack S2
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whose timestamp is smaller than the timestamp of d10, the RIP field of d10

should be reset from the original b6 to b8.

Once a new event e is retrieved, it might trigger the construction of

event sequences in SSC. By the total order assumption, only events from

the rightmost event pattern in the query (D event type in Example 4.1)

trigger the event sequence construction in SSC. However, with out-of-order

data arrival, any located event might trigger sequence construction in SSC.

If the event retrieval and AIS construction are correctly handled as above,

the SSC operator needs to produce out-of-order event sequences whenever

some new opportunity arises. For instance, two out-of-order event sequences

- <a3 b8 d10> and <a3 b8 d15> - should be constructed by SSC after b8 is

inserted into the stack S2 in Example 4.7. The proposed process for the

SSC operator which handles out-of-order data arrival is shown by the below

Algorithm 6 .

Algorithm 6 Out-of-Order Handling Incorporated SSC

1: Procedure: OutOfOrderSSC
2: Input:
3: (1) event Query EVENT SEQ(E1, E2, ..., Em) WITHIN W,
4: (2) AIS constructed from previously input events,
5: (3) newly received event e (under event type E)
6: Output:
7: (1) updated AIS,
8: (2) matched result sequences triggered by the input event instance
9:
10: if event type Ei is among E1, E2, ..., Em then
11: insert e into stack Si (using “sort semantics”)
12: set e’s RIP
13: check RIPs of the instances in Si+1 and reset the ones being affected by e
14: produce event sequences containing e if any
15: end if

Optimization 4.1. Line 11 and 12 in Algorithm 6 add a newly located

event into AIS by applying the “sort semantics” and then sets its RIP field.
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Line 13 checks the RIP field of the event instance in the right-adjacent stack

and resets the ones being affected by the newly located event. However, if the

received event is “in-time”, we will continue to follow the previous “append

semantics”: that is we simply put the event at the end of the corresponding

stack and set its RIP as the most recent event in the left-adjacent stack. Line

13 is no longer necessary for such in-time events. Besides that, sequence

construction at Line 14 of Algorithm 6 would only be triggered when the

received event type is at the rightmost in the query sequence (D events).

To avoid such overhead caused by treating every event as a “potential”

out-of-order event, the SSC operator can maintain an “AIS-CLOCK” value,

which equals to the largest timestamp of the events at AIS. Algorithm 7

shows the optimized approach. Once a newly retrieved event is with a

timestamp larger than the current AIS-CLOCK, AIS-CLOCK will be up-

dated to this value. Such an event can be handled simply by the “append

semantics” and corresponding steps for in-order events (Line 7 to 11 in Al-

gorithm 7). Whenever a newly retrieved event is with a timestamp smaller

than the AIS-CLOCK, we instead apply “sort semantics” and conduct the

corresponding out-of-order-specific steps (Line 14 to 16 in Algorithm 7).

Example 4.8. Consider the sequence construction of out-of-order event

instance a1 under sequence query SEQ(A, B, D) over the runtime AIS state

shown in Figure 4.6. Event instance a1 needs to find matching event entry

in S2 and S3 to produce out-of-order event sequences. The timestamp of

b3 is greater than a1 and the timestamp of d4 is greater than b3. All the
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Algorithm 7 Optimized SSC with AIS-CLOCK

1: Procedure: OptimizedOutOfOrderSSC 1
2: Input / Output:
3: same as Algorithm 6
4:
5: if e’s event type Ei is among E1, E2, ..., Em then
6: if e.timestamp < AIS-CLOCK then
7: buffer e
8: insert e into stack Si (using “sort semantics”)
9: set e’s RIP
10: check the RIP field of the instances in stack Si+1

11: & reset the ones being affected
12: produce event sequences containing e if any
13: else
14: buffer e
15: insert e into stack Si (using “append semantics”)
16: set e’s RIP
17: if Ei = Em then
18: produce event sequences containing e if any
19: end if
20: end if
21: end if

Figure 4.6: SSC using Active Instance Stacks with RIN

event instances after d4 in S3 can be matched with b3 if event sequences

involving b3 need to be constructed. Similarly, b7 needs to find matching

event instance in S3 which timestamp is greater than 7. And the matching

event entry of b7 in S3 is d8. As we can see, event instances need to find
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event entries in out-of-order event construction. And it is time-consuming

for the system to find these entries when the query pattern is long and there

are many event instances between adjacent event entries in the same stack.

The following is an optimization technique for decreasing such cost.

Optimization 4.2. I propose the most recent instance in the stack of the

next state (RIN). For an event instance e, instead of only one field as the

RIP, such RIN field is added. Take the active instance a1 in the S1 stack in

Figure 4.6. The most recent instance in the stack of the next state of a1 is

b3, so the RIN field of a1 is set to b3. This RIN field tells that any instances

in the S2 stack up to b3 can be matched with a1 if event sequences involving

a1 need to be created. When a new event e comes, the RIN filed of the event

needs to be correctly set. Besides that, if e is not the leftmost event type in

the sequence query, RIN of the event instances in the previous stack might

need to be updated as well. If the timestamp of e is less than the original

RIN value of an event in the previous stack but greater than the timestamp

of the event in the previous stack, we then update the RIN field of the event

to the timestamp of e. By using the RIP and RIN together in Algorithm 8,

we can perform the out-of-order sequence construction in Algorithm 7 more

efficiently.

4.5.3 Solution for PSSC

When out-of-order data arrival is possible, based on Theorem 4.2, no event

instance in AIS can be purged safely by the PSSC. To avoid errors, no data
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Algorithm 8 Optimized SSC with AIS-CLOCK and RIN

1: Procedure: OptimizedOutOfOrderSSC 2
2: Input / Output:
3: same as Algorithm 6
4:
5: if e’s event type Ei is among E1, E2, ..., Em then
6: if e.timestamp < AIS-CLOCK then
7: buffer e
8: insert e into stack Si (using “sort semantics”)
9: set e’s RIP
10: set e’s RIN
11: check the RIP values of the instances in stack Si+1

12: & reset the ones being affected
13: check the RIN values of the instances in stack Si−1

14: & reset the ones being affected
15: produce event sequences containing e if there any
16: else
17: buffer e
18: insert e into stack Si (using “append semantics”)
19: set e’s RIP
20: set e’s RIN to be null
21: check the RIP values of the instances in stack Si+1

22: & reset the ones being affected
23: check the RIN values of the instances in stack Si−1

24: & reset the ones being affected
25: if Ei = Em then
26: produce event sequences containing e if any
27: end if
28: end if
29: end if

purge can ever be applied on AIS. That is not a realistic solution due to its

unbounded memory requirement.

Thus, for “unblocking” the PSSC, we need additional semantic knowl-

edge on the stream source to enable the safe data purge on AIS. K-Slack

is a well-known approach [BMM+04][HBR+05][DGP+07] for processing un-

ordered data streams. In real applications, the K-Slack assumption holds in

many situations when predictions about network delay can be considered.

Besides that, it is very suitable for producing approximate answers if that

is acceptable. Thus, I propose a solution for data purging at SSC using the

K-Slack semantics.

Here K-Slack is based on time units. It means that the out-of-ordering
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in event arrivals is within a range of K time units. That is, an event can be

delayed for at most K time units. For example, in Figure 4.3(a), the out-

of-order event c9 is received after f16. Thus it is delayed for 7 (16 − 9 = 7)

time units. If we set the K value as 5, the out-of-order data arrival case in

Figure 4.3(a) would never arise.

Window purge using K-Slack compares the distance between the checked

event and the latest event received at the system. A CLOCK value which

equals to the largest timestamp seen so far for the received events is main-

tained. Each time the CLOCK value is updated, PSSC will be notified.

According to the sliding window semantics, for any event instance e kept

in AIS, it can be purged from the stack if (e.timestamp + W) < CLOCK.

Thus, under the out-of-order assumption, the above condition on window

purge will be (e.timestamp + W + K) < CLOCK. This is because after

waiting for K time units, no out-of-order event with timestamp less than

(e + W) can arrive. Thus e can no longer contribute to forming a new

candidate sequence.

SSC passes the updated CLOCK values up to the PSSC whenever a new

event with a larger timestamp is seen. Thus, before Line 5 in Algorithm 7,

we trigger PSSC by adding the following:

IF ei.timestamp > CLOCK

CLOCK = ei.timestamp and pass a CLOCK triggering to PSSC;

The below Algorithm 9 depicts the basic approach for AIS purging in-

corporated into the out-of-order event handling by applying the K-Slack

constraint. Each time the CLOCK is updated, PSSC gets triggered. Event
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instances in AIS will be purged when the previously introduced purge con-

dition is satisfied.

Algorithm 9 Out-of-Order Handling Incorporated SSC State Purge

1: Procedure: OutOfOrderSSCPurge
2: Input:
3: (1) current AIS,
4: (2) CLOCK triggering from SSC
5: Output:
6: updated AIS
7:
8: On receiving a CLOCK triggering for event instance e in AIS
9: if e.timestamp + W + K < CLOCK then
10: purge e
11: end if

Example 4.9. Let’s consider purge when evaluating event query SEQ(A,

B, D) on the data in Figure 4.2(c). Event instance a3, b6 and d10 are kept

in AIS after d10 is received. Event d10’s RIP points to event instance b6

and b6’s RIP points to a3. Suppose event f21 (which is not shown in the

figure) is received after f16 and the window size W equals to 7. Assume K

value equals to 2 for the K-Slack constraint. As more data is received, the

CLOCK value increases and the order of those three event instances being

purged from AIS is a3 (due to 13 > 3 + 7 + 2, when c13 is met), b6 (when

f16 is met) and then d10 (when f21 is met).

Holding the outdated event sequences in the AIS structure increases the

workload of the SSC operator for event sequence construction. Take Example

4.9 for instance. For data arrival under the total order assumption, when

b15 is received, both a3 and b6 can be purged from AIS (due to 3 + 7 < 15

and 6 + 7 < 15). So, there are only three instances in AIS at this moment:

a7 in stack S1, b11 in S2 and d15 in S3. Thus, by receiving d15, SSC operator
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produces one new event sequence output (<a7 b11 d15>). In the out-of-

order scenario, SSC might produce more sequence output than in the in-

order case. In Example 4.9, assume the K value of K-Slack constraint is

10. When d15 is met, event instances a3, b6 and d10 are still kept in AIS.

Thus, by receiving d15, the SSC operator produces three event sequences:

<a3 b6 d15>, <a3 b11 d15> and <a6 b11 d15>. The first two sequences

actually should not be produced. This is because a3, b6 are both “outdated”

event instances. They are held in AIS just for out-of-order event sequence

construction once possible out-of-order events coming in the future. Thus,

coupling the in-order event d15 with the outdated events a3 and b6 is not

necessary. An event sequence produced by such construction can never be

a result sequence because they would be removed later by window-based

filtering (functionality of the WD operator). Thus, it also brings burden

to the window-based filtering computation. Many of the outdated event

instances may be kept in the AIS stacks if the K value is large. Thus

the above overhead on sequence construction and AIS filtering should be

considered. Below I propose a technique for decreasing such cost.

Optimization 4.3. We divide each stack in AIS into two parts: outdated

event instances and up-to-date event instances. A divider is set for each

stack: instances on or above it are outdated instances and instances below it

are up-to-date ones. For a stack without outdated events, the set of outdated

instances is empty. Besides applying the slack-based purge in Algorithm 9,

the basic data purge introduced in Chapter 4.2 is also applied. The divider

for each stack will be set using such basic purge. While an in-order event
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triggers sequence construction in SSC (Line 17 and 18 in Algorithm 7), only

the events below the divider in each stack will be considered.

Again let’s look at Example 4.9 with a K value equal to 10 and window

W equal to 7. When d15 is met, the divider of stack S1 is set to a3 and the

divider of stack S2 is set to b5. Thus, only one new sequence (<a7 b11 d15>)

will be constructed when the in-order event d15 is received. Construction of

event sequences <a3 b11 d15> and <a6 b11 d15> is avoided by applying the

AIS partition.

Optimization 4.4. For two event instances ei and ej in AIS ej’s RIP

pointing to ei. Observe that if the condition of purging ej is satisfied

((ej.timestamp + W + K) < CLOCK), conditions to purge ei must also

be satisfied. This gives an opportunity for lazy AIS purge: for each CLOCK

update, only the instance in the last AIS stack will be checked for data

purge. For any instance is purged from there, we can purge instances in

other AIS stacks following the RIP path. Let’s again look at Example 4.9.

Performing the lazy PSSC purge, each time the CLOCK update triggers

the PSSC, only the event instances in stack S3 (holding the D events) will

be checked for possible purge. Purge of any D event instance from S3 will

trigger the purge on stack S2 and then stack S1, following the RIP linking of

the purged instances. In Example 4.9, d10 is purged when f21 is met. Event

b6 and a3 are purged right after that because “d10 –> b6 –> a3” forms a

chain through RIP linking.
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4.5.4 Solution for NG and PNG

When out-of-order data arrival is possible, based on Theorem 4.1, we can see

that a NG operator cannot produce any non-spurious data output. Thus,

the NG is forever blocked. Using negative tuples is a possible approach to

unblock the NG operator. We can let the NG operator output candidate

event sequences even though they may be spurious answers. Whenever an

out-of-data negation event arrives, we produce and send up negative tuples

to correct the previous results. However, this approach has many drawbacks:

(1) it requires the upper operators to have the ability to handle negative tu-

ples; (2) it does not quite fit into the real-time applications of event stream

processing; (3) unbound data holding is required for tracing back to the

sequences that have already been output by the NG for producing the neg-

ative tuples. Thus in this dissertation we will not consider such approach

and detail pros and cons of that approach is given in [LLG+09].

Similar to the K-Slack in PSSC, for “unblocking” the negation operator

and enable data purge at the operator state, slack-based approach could be

applied for NG and PNG.

A conservative mechanism for NG using K-Slack is simply “postponing”

the existing negation filtering K time units to capture all possible negation

events, where a CLOCK value equal to the current largest timestamp from

the received events is maintained.

Example 4.10. Let’s first look back at Example 4.4. When d10 is seen, SSC

produces <a3 b6 d10> as output to the NG operator. At this moment, the

negation buffer holds only one event instance (c5), It is with a timestamp
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not in the range of [6,10]. Thus, <a3 b6 d10> should be output in the

total order scenario. However, to avoid producing spurious sequences in

the out-of-order scenario, NG cannot output this tuple in case potential

out-of-order event such as c9 in Figure 4.3(a) coming later. Suppose the

input data is with the K-Slack constraints and K equals to 6. In such case,

when event f16 is met, the CLOCK value is updated to 16. Potential out-

of-order C events will be at least with a timestamp larger than 10 (10 =

16 - 6). So future out-of-order C events, if any, will not have timestamp

within the range of [6,10]. Out-of-order event such as c9 cannot be possible

under K-Slack constraint after seeing event f16. The NG operator can thus

output the candidate event sequence <a3 b6 d10> delayed for K time units.

For simplification, we place only one negation component inside the query.

Negation algorithm for queries with more than one negation patterns is

similar. Every negation pattern needs to be taken care of in the negation

filtering. The event sequence query is given as: EVENT SEQ(E1, E2, E3,

E4, ..., Ei, !NE, Ej, ..., Em) WITHIN W, where NE is a negation pattern.

While the SSC processing any new event during the retrieval phase from the

input event stream, it will be put into the negation buffer if it is under the

negation event type NE. Thus in Algorithm 7, we add the following lines

after Line 18:

ELSE IF ei is NE type

pass up ei to NG

Besides that, SSC passes up updated CLOCK value, whenever a new event

with a larger timestamp is seen, to NG. Thus, before Line 5 in Algorithm 7,

add the following lines:
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IF ei.timestamp > CLOCK

CLOCK = ei.timestamp

pass up a CLOCK triggering to NG

If an event is the retrieved and triggers producing any new event sequence

output from SSC, it will be passed up to the upper operators (WD or NG).

We assume the computation of WD filtering has been pushed down to the

SSC. Then the SSC’s sequence output will feed to the NG directly. Line 12

and 18 in Algorithm 7 both change to the following:

try to produce event sequences containing ei

IF event sequence(s) being produced

pass up the produced sequences to NG

The NG operator receives the above negation pattern event, updated

CLOCK value and event sequence output from SSC. The algorithm for out-

of-order incorporated negation operator is given below in Algorithm 10.

A set named “holding set” is applied to keep the spurious event sequences

which cannot be output safely by the NG operators yet. Let’s take Exam-

ple 4.10 to further illuminate Algorithm 10. When d10 is received at SSC,

sequence <a3 b6 d10> is produced by SSC and passed to NG. It is put into

the holding set. When f16 is reached, the CLOCK is updated to 16 and the

NG is notified. The NG operator goes to check the sequences kept in the

holding set (only <a3 b6 d10> there). It can be safely output from NG and

then removed from the holding set at this moment (Line 9 to 11). For a

sequence kept in the holding set, it will be removed from the set if during

the holding any out-of-order negation event which timestamp is within the
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Algorithm 10 Out-of-Order Incorporated Negation

1: Procedure: OutOfOrderNegation
2: Input:
3: (1) current negation buffer, (2) current holding set,
4: (3) negation pattern event / CLOCK triggering / event sequence
5: Output:
6: (1) updated negation buffer, (2) sequence output of negation,
7: (3) updated candidate set on receiving a negation event instance e
8:
9: On receiving newly received negation event e (under event type Ei) among the event

sequence:
10: add e into the negation buffer
11: prune the holding set using e
12: On receiving an CLOCK triggering:
13: check each sequence in the holding set:
14: if any hold candidate hc: <e1 e2 e3 ... em> satisfies em.timestamp + K < CLOCK

then
15: output and then remove hc from the holding set
16: end if
17: On receiving sequence <e1′ e2′ ... em′>:
18: check the negation buffer
19: if no negation events e’s timestamp is within the range of [e1′.timestamp, em′.timestamp]

then
20: put <e1′ e2′ ... em′> into the holding set
21: end if

range of [ei.timestamp, ej.timestamp] being added into the negation buffer.

Suppose out-of-order event c9 is received between d15 and f16. Then the a3

b6 d10 will be filter out from the holding set by c9.

It is a little different to handle sequence query such as SEQ(E1, E2,

E3, ..., Em, !NE), where NE is a negation pattern. For such query, output

sequence <e1 e2 e3 ... em> from SSC will be put into the holding set of NG

if no NE events in the negation buffer with a time stamp within the range

of [em.timestamp, e1.timestamp + W] (W is the window size). When the

CLOCK value satisfies CLOCK e1.timestamp > em.timestamp + K, this

sequence can be safely output by the NG operator.

Optimization 4.5. The conservative mechanism on output sequences from

the holding set “delays” output for K time units. This is already the earliest

moment for the sequence output for queries such SEQ(A, B, !C, D). Now
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let’s consider query SEQ(A, B, !C, D, E). For an event sequence kept in the

holding set such as <a b d e>, we do not need to wait till the e.timestamp +

K < CLOCK to safely output sequence <a b d e>. The sequence could be

output earlier at the moment when d.timestamp + K < CLOCK. Generally,

take a sequence query SEQ(E1, E2, ..., Ei, NE, Ej, ..., Em) where NE is

the last negation pattern in the query sequence. Instead of following the

conservative mechanism to “delay K time units”, an event sequence <e1 e2

... ei ej ... em> kept in the negation buffer can be output from the holding

set once ej.timestamp + K < CLOCK. For the long sequence with the

negation pattern(s) appearing relatively early, this can shorten the holding

on the event sequence output for the NG operator.

The basic approach and optimization technique of using K-Slack to han-

dle the PNG is similar to the approach for PSSC. Thus the corresponding

description is skipped in this dissertation.

4.6 Performance Evaluation

4.6.1 System Implementation

Figure 4.7 shows the system architecture for incorporating the proposed out-

of-order handling into the basic ESP system structure given in Chapter 2.3.

Out-of-order event-incorporated SEQ and Negation operator are added into

the corresponding operator library containers.
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Figure 4.7: Out-of-Order Event-Incorporated ESP System Architecture

4.6.2 Experimental Setting

The proposed techniques have been implemented in a prototype system us-

ing Java 1.4. An event sequence generator is implemented for simulating

sequences under different properties. Experiments are run on two Pentium4

3.0Ghz machines each with 512M RAM.

The percentage of the out-of-order events and the K-Slack factor are set

in the generator. In the experiments, one machine generates and sends the

event stream to the second machine, i.e., the query engine. In this disserta-

tion I only provide the experimental results on the out-of-order incorporated

SSC and PSSC operator. The results on negation-related operators can be

found in [LLG+09].
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4.6.3 Sequence Scan and Construction

Figure 4.8 shows the CPU gain when applying the AIS-CLOCK technique.

A sequence query of length 6 (i.e., SEQ(A, B, C, D, E, F )) is run on five dif-

ferent data sets, with the size ranging from 20000 to 100000. The percentage

of out-of-order events is 90% in all datasets. Y axis shows the accumulated

cost on runtime AIS construction (inserting events and resetting RIP) dur-

ing the query evaluation. We observe that applying AIS-CLOCK can reduce

the overall cost of AIS construction even though the percentage of in-order

data is very small. For a decreased percentage of out-of-order data, the per-

formance gain in CPU cost increases. Take the dataset with 80000 events

as example. The gain of applying AIS-CLOCK jumps from 8% to 43% if

the out-of-order percentage is decreased from 90% to 30%.
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Figure 4.8: Results for Applying AIS-CLOCK

4.6.4 Purge at SSC

We now study the performance of applying AIS partition during the SSC

purge. A sequence query of length 6 is run and the window size is set as 20.
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Figure 4.10: Results for Applying AIS Partition I

Performance gain on memory is shown in Figure 4.10 and in CPU cost is

shown in Figure 4.11. Through partitioning AIS, construction of outdated

event sequences will be avoided for the in-order portion of the input stream.

We observe that either a larger percentage of “in-order” events or a larger

value slack factor result in more memory and CPU gain by applying AIS

partition. Studying quantitatively, the ratio of intermediate buffer size of

SSC is directly proportional to the value of ((K + W) / W)S , where K is

the slack factor, W is the window size and S is the query sequence length.
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Figure 4.11: Results for Applying AIS Partition II

4.6.5 Overhead of Out-of-Order Handling

We now test the overhead of the proposed out-of-order event stream pro-

cessing techniques. We utilize the same setting in Chapter 4.6.3 but the

out-of-order data percentage is set as 0%. In other words, all the input

events are “in-order”. Thus, evaluation based on the total order assump-

tion can be applied in this scenario. The simple approach based on total

order assumption and the out-of-order incorporated approach are compared

in Figure 4.9. The performance difference (execution time denoted on the Y

axis) is then the overhead of applying the out-of-order handling. Proposed

techniques of AIS-CLOCK and AIS partition are both applied in the out-of-

order incorporated approach. The overhead ranges from 5.1% to 24.6% in

the five given datasets. The overhead increases while increasing the dataset

size due to the cost on extra timestamp checking and AIS maintenance.
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4.7 Related Work

Most stream query processing research over the past few years has assumed

complete ordering of input data [BMM+04][DMRH04][LMT+05]. They tend

to work with homogeneous streams, meaning, each stream contains only tu-

ples of the same type. Thus the semantics of general stream processing

which employs SQL-like queries composed of join, select, project, aggrega-

tion, is not that sensitive to the ordering of the data. Ordering is core for

the event pattern detection we are targeting here.

However, there has been some initial work of investigating the out-of-

order problem for generic (homogenous-input) stream systems. One model,

which is adopted for this work, introduces the notion of K-Slack [BMM+04].

Such solution is trivial in regular stream system as in fact the processing such

as join proceeds as normal (with a K-delayed purging), and any tuple that

arrives after K is simply discarded [HBR+05]. A native approach [DGP+07]

on handling out-of-order event stream is using K-Slack as a priori bound

on the input streams. It buffers incoming events in the input queue until

ordering can be guaranteed. Compared with the proposed approach where

each operator is order sensitive, such processing requires additional space

and introduces more latency before allowing events to be evaluated.

A second solution proposed to handle out-of-order data arrival is ap-

plying punctuations, namely, assertions inserted directly in the data stream

confirming that for instance a certain value or time stamp will no longer

appear in the future input streams [DMRH04][LMT+05]. Such techniques,

while interesting, require for some service to first be creating and appropri-
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ately inserting such assertions - hence we do not consider it in this disserta-

tion. Further research on this topic could be found in [LLG+09][WLL+09].

Lastly, we base the proposed solution on the SASE [WDR06] architecture

which has been designed specifically for processing pattern queries over event

streams. SASE proposes query language and algebra to support queries on

sequential streams, which is adopted as the foundation of this dissertation

task. However, [WDR06] does not support out-of-order data arrival.

4.8 Conclusions

In this dissertation task, I address the problem of processing event stream

with out-of-order data arrival: (1) I analyze the problems state-of-the-art

event stream processing technology would experience when faced with out-

of-order data arrival and study the levels of correctness in out-of-order pro-

cessing that target priorities of applications considering latency, output or-

der, result correctness and result completeness; (2) I propose new implemen-

tation and optimization strategies for the core stream algebra operators such

as sequence scan and construction as well as the associated state purge; (3)

I conduct an experimental study that clearly demonstrates the effectiveness

of the proposed approach over existing solutions.
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Chapter 5

Complex Event Pattern

Detection over Streams with

Interval-Based Temporal

Semantics

5.1 Introduction

Existing ESP engines have focused on detecting temporal patterns from

instantaneous events, that is, events with no duration. Under such a model,

an event instance can only be happening “before”, “after” or “at the same

time as” another event instance. However, such sequential patterns are

inadequate to express the complex temporal relationships in domains such

as medical, multimedia, meteorology and finance where the events’ durations
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could play an important role.

In such real world applications domains, events have durations, two

events can have overlapping portion thus the relations among two event

instances is no longer sequential (“before”, “after” or “at the same time as”)

like the point events.

Example 5.1. An ESP engine can be utilized to monitor the events gener-

ated by the warehouse of a supermarket. Based on the temperature values

sent by the temperature readers, temperature fluctuations as the interval

events are generated and sent to the ESP system. We assume three differ-

ent interval events: HIGH, MEDIUM and LOW. Besides that, the duration

of an item staying in the warehouse is extracted and sent to the ESP system

as an interval event after the item leaves the warehouse, which is denoted

as STAY. The event pattern of a HIGH event contains a STAY event means

that the duration of an item staying in the warehouse is with a high temper-

ature the whole time. We can use such pattern to indicate that the quality

of this item might not be good.

As discussed in Chapter 2.1, event instances happen instantaneously at

a time point are called events with point-based temporal semantics (point

events in short) and event instances that occur over a time interval are called

events with interval-based temporal semantics (interval events in short). For

any event instance e, we use e.ts and e.te to denote the start and the end

timestamp of the event instance e, which are called the endpoints of the

event. The start and the end timestamps of an event instance with point-

based semantics are the same, which is simplified as e.t (i.e., e.ts = e.te =
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e.t). Temporal patterns under the point-based temporal semantics and the

interval-based temporal semantics have the following major difference:

Additional Temporal Relations between Events. For events with a

point-based temporal semantics, the temporal relations between any two

events e and e′ can only be e “before” e′ (e.t < e′.t), e “equal” e′ (e.t = e′.t)

and e “after” e′ (e.t > e′.t). There are more temporal relations that can be

defined between two interval events. According to the classification scheme

proposed by [All83], there are 13 temporal relations between any two interval

events: “before”, “after”, “during”, “contain”, “meet”, “met by”, “overlap”,

“overlapped by”, “start”, “started by”, “finish”, ”finished by” and ”equal”.

Table 5.1 shows the detail of these temporal relations. Some of them are

mirror relations. other. For example, a overlaps b can be represented as the

relation of b is overlapped by a.

The relations between interval events can be expressed in terms of their

endpoints (the start and end of an interval event). Under the classification

in [All83], the relation between two interval events can be one from the above

13 relations if the order of all the endpoints of these two events are fixed.

Furthermore, while the endpoint order are not fully fixed, relation between

event instances can be much more flexible. Because of such difference be-

tween the point-based semantics and the interval-based semantics, the query

language and evaluation mechanisms used for detecting temporal patterns

over point events is not sufficient for pattern detection over interval events.

An expressive language to represent the required temporal patterns among

streaming interval events is needed. Also, a query evaluation mechanism for
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Relation Temporal Algebra

e before e′ (e.te < e′.ts)

e after e′ (e.ts > e′.te)

e during e′ (e.ts > e′.ts) ∧ (e.te < e′.te)

e contain e′ (e.ts < e′.ts) ∧ (e.te > e′.te)

e meet e′ (e.te = e′.ts)

e met by e′ (e.ts = e′.te)

e overlap e′ (e.ts < e′.ts) ∧ (e.te > e′.ts) ∧ (e.te < e′.te)

e overlapped by e′ (e.ts > e′.ts) ∧ (e.ts < e′.te) ∧ (e.te > e′.te)

e start e′ (e.ts = e′.ts) ∧ (e.te < e′.te)

e started by e′ (e.ts = e′.ts) ∧ (e.te > e′.te)

e finish e′ (e.ts > e′.ts) ∧ (e.te = e′.te)

e finished by e′ (e.ts < e′.ts) ∧ (e.te = e′.te)

e equal e′ (e.ts = e′.ts) ∧ (e.te = e′.te)

Table 5.1: Temporal Relations between Two Intervals

such sequence queries needs to be designed.

Previous research on pattern detection over event streams mainly fo-

cused on extracting temporal patterns from point-based event data. For

example, [WDR06] proposes sequence scan and construction for implement-

ing the SEQ operator introduced in Chapter 2.2.1. However it handles

the “before” / “after” temporal relation only on point-based events. Even

though in [ACT08][DCR+08][DGP+07] the events are defined based on the

interval model, only the “before” / “after” is supported. The data min-

ing community studied discovering patterns over interval events [KF00]

[PHL08][WC07]. [KF00] uses a hierarchical representation that extends Allen’s

interval algebra [All83] for modeling complex event patterns over intervals.

However, this representation is lossy as the exact relationships among the
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events cannot be fully recovered. [WC07][PHL08] devises a lossless repre-

sentation to overcome the drawbacks of [KF00]. Based on their proposed

representation, they design corresponding mining algorithms for pattern

discovery over event intervals. [PHL08] also examines how the discovered

temporal patterns can be utilized in classification to differentiate closely re-

lated classes thus building an interval-based classifier. However, these works

mainly focus on pattern discovering algorithms instead of pattern detection

algorithms. Besides that, they do not consider streaming input with window

constraints.

Contributions. In this dissertation task, I study query processing over

event streams with interval-based temporal semantics. The contributions

include:

• I provide a case study of using interval events to optimize network

event stream correlation. (Chapter 5.2)

• I introduce an expressive language to represent the required temporal

patterns among streaming interval events. I design the corresponding

temporal operator ISEQ and provide an efficient evaluation strategy

for the proposed ISEQ operator. (Chapter 5.3)

• For further improving the event processing performance, I provide a

mechanism to embed the “interval begin punctuation”(indicating the

start of an upstream interval) into the interval stream. Correspond-

ing punctuation-aware query evaluation strategy is studied, which can

greatly reduce the runtime memory and CPU footprint. (Chapter 5.4)
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• I introduce a method to push down the computation of interval event

abstraction to the low level sensor network for increasing the comput-

ing leverage from the physical level devices. (Chapter 5.4)

• I conduct experimental studies to demonstrate the efficiency of the

proposed techniques in interval event stream handling. (Chapter 5.5)

Roadmap. The rest of Chapter 5 is organized as follows. Chapter 5.2 stud-

ies the use case of interval events in optimizing network event stream correla-

tion. Chapter 5.3 proposes an evaluation mechanism for detecting temporal

pattern over interval event stream. Ideas of using punctuation and com-

putation pushdown for optimizing the proposed interval stream processing

framework are discussed in Chapter 5.4. Experimental results are presented

in Chapter 5.5, followed by related works in Chapter 5.6. Conclusions for

this dissertation task is given in Chapter 5.7.

5.2 Case Study: Intervals in Stream Correlation

5.2.1 Event Stream Correlation

Event Correlation [NRJ04][XN04][QL04][Cro04] is a technique for making

sense of a large number of events and pinpointing the few events that are

really important in that mass of information. It has been notably used

in Telecommunications and Industrial Process Control since the 1970s, in

Network Management and Systems Management since the 1980s, in Service

Level Management and Event-Based Systems since the 1990s, and in Busi-

ness Activity Monitoring since the early 2000s. Event Correlation is imple-
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mented by a piece of software known as the event correlator [SM04][MS07]

[Luc07]. This tool is automatically fed with events originating from the

source. Each event captures something special (from the event source stand-

point) that happened in the domain of interest to the event correlator. An

event may convey an alarm or report an incident (which explains why event

correlation used to be called alarm correlation), but not necessarily. It may

also report that a situation goes back to normal, or simply send some infor-

mation. The severity of the event is an indication given by the event source

to the event destination of the priority that this event should be given while

being processed. The practice of event correlation is useful and necessary

not only to reduce the number of alarms but also to do some processing of

the likely causes to take some of the workload off of the network engineer.

Event correlation can be performed over streams besides event clouds

[Bas07][MS07]. Over streams, event correlation deals with the task of pro-

cessing multiple streams of event data with the goal of condensing the

streams, identifying meaningful events within the streams and performing

reasoning based on the streams. Together with other event stream pro-

cessing (ESP) techniques, event correlation is utilized in the data stream

applications such as algorithmic trading in financial services, RFID event

processing applications, fraud detection, process monitoring, and location-

based services in telecommunications. Obviously, ESP techniques can be

applied in event stream correlation. On the other hand, as pointed out

by [CA08], the typical CEP techniques on event clouds (such as using event

detection graphs and a data flow architecture) is similar to the processing

of data streams. Thus, we can anticipate that ESP techniques can be bene-
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ficial to major event correlation algorithms working over both general event

clouds and event streams.

The research work in [XN04][NRJ04] applies an event correlation frame-

work for streaming network management events. The proposed correlation

approach is based on triggering events and common resources for event pro-

cessing in the network security domain. One of the key concepts in such

correlation framework driven by streaming events is data triggering, which

produces the (low-level) events that trigger alerts. By grouping alert events

that share “similar” triggering events, a set of alert events can be parti-

tioned into different clusters such that the alerts in the same cluster may

correspond to the same attack. The alert events in each cluster are consis-

tent with relevant network and host configurations, which help analysts to

partially identify the severity of alerts and clusters.

Upon receiving events, the event correlator discards those that it deems

irrelevant. Next, it merges duplicate events and aggregates events that glob-

ally tell the same story. Finally, the event correlator performs Root Cause

Analysis to identify, through dependency analysis, what events can be ex-

plained by a single one (the root cause). At this stage, the event correlator

is left with at most a handful of events that need to be acted upon. Event

Correlators also include problem-solving capabilities, in order to be able

to trigger corrective actions or further investigations automatically. Event

correlation is defined in many different ways, but in its barest essence, an

event correlator attempts to do exactly as the name suggests: associate

events with one another in useful ways. An event stream correlation can be

decomposed into the following steps:
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• Event Filtering.

• Event Aggregation.

• Root Cause Analysis.

Event Filtering consists in discarding events that are deemed to be irrel-

evant by the event correlator.

Event Aggregation consists in grouping events that match specific pat-

terns. Based on rules defined on the temporal, spatial and other predicates of

the events, this action reduces multiple occurrences of the similar event into

a single event, likely with some kind of counter, or grouping corresponding

events into a composite single event.

Root Cause Analysis is the last and most complex step of Event Cor-

relation. It consists in analyzing dependencies between events, based on a

model of the environment and dependency graphs, to detect whether some

events can be explained by others.

A somewhat traditional approach to event correlation is that of rule-

based analysis [Luc07][CJC06][Cro04]. In this approach, sets of rules are

matched to events when they come in. Based on the results of each test,

and the combination of events in the system, the rule-processing engine

analyzes data until it reaches a final state. It will then report a diagnosis.

For the results to be accurate, an excessive amount of expert knowledge is

typically needed to input the correct rules and keep them updated in case

of any changes or new data.

An approach that is radically different from the rule-based approach uses

the artificial intelligence (AI). Event correlation frameworks have been pro-
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posed utilizing various combinations of the AI techniques, including Bayesian

belief networks and expert systems. AI systems have an advantage in that,

if well-programmed, they have the capability to be somewhat self-learning,

helping to eliminate the continuous need for the expert knowledge of the

previous systems. They also have the capability to sift through data at

least as fast as the other systems to produce their results [FNS+99][BE04].

5.2.2 Using Intervals for Optimization

Many factors come into play in the process of event correlation. The two

most important aspects of an event correlation system are the speed with

which the event correlator response, and the accuracy of the data returned

by a correlation. A system must have an appropriate combination of these

two characteristics in order to be considered effective.

For the purpose of correlating events in the complex event processing,

context consists of time, space, and semantic circumstances in which the

events are all to be considered. Because many instances of relations can be

determined through temporal information, temporal relations among events

play an important role in a causal system. In many cases, there is a time

period associated with possible correlations, which requires proper events

occur during a particular time period for them to be correlated.

For a business application, an event is triggered when certain status

with the event publisher has a meaningful change. An event interval is a

period between two events triggered by the event publisher. Within an event

interval, the status with the event publisher should remain the same. We

can use event intervals to optimize the correlation operation for complex
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event processing to improve system accuracy and efficiency.

Let’s take network management as an example. As the world relies on

computers to do increasingly important and complicated tasks, the field of

network management becomes ever more important. Whether ensuring that

the e-commerce servers are constantly up and accessible or simply making

sure that company executives can send and receive e-mail, the network en-

gineers are heavily relied upon to ensure consistency. Whenever there is

a problem, the engineers in charge of maintaining the network need to be

able to quickly pinpoint the source of the problem, whether it is as simple

as a stopped mail daemon or as complicated as a fiber cut between satel-

lite offices. The specialization of event correlation aids in this endeavor,

by attempting to consolidate the information received into a concise, clear

package that can be quickly deciphered.

An event in network management is typically defined as a piece of infor-

mation dealing with a happening in the network, and may also be referred

to as an alarm, due to its nature usually being something causing problems.

The network management system can be programmed to methodically ob-

tain these events by polling devices, the devices can send events to the

management system, or, as is commonly the case, a hybrid combination

of the two is used. Examples of events are hardware or software failures,

security violations, and performance issues.

Example 5.2. In network ABC, the SV-I server broke down (server fail-

ure). The root cause is traced by a link of events (such as a series of de-

vice/function failures and sensor readings) with particular patterns. By
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analysis, one possible root cause is determined to be network attacks. The

event correlator try to find out the target attacks by associating the given

server failure event with consecutive high temperature events from the tem-

perature sensor, which can represented as SEQ(NETWORK ATTACK, con-

secutive TEMPERATURE READING with value > 120F). We assume that

the high temperature events can be furtherly correlated with either fan fail-

ure events and server overload events, which are in the link of tracing back

to network attacks (Figure 5.1). We can see that the fan failure actually

represents an event interval of consecutive temperature readings. Within

an interval (either the fan failure or server overload), the status with the

event publisher(the temperature reader) remains the same, which keeps

producing high temperature readings. Thus, we can transform the corre-

lation rule by using the interval events of fan failure and server overload by

two patterns, BEFORE(NETWORK ATTACK, FAN FAILURE) and BE-

FORE(NETWORK ATTACK, SERVER OVERHEAT), to trace the target

network attack events. With up-to-date CEP systems, the rules using the

interval events can be executed more efficiently and more accurately.

5.3 Interval Event Stream Processing

5.3.1 Interval Event Query Model

An interval event e can be represented as two separated point-based events

using its two endpoints, namely start endpoint (e−) and termination end-

point (e+) [Tom96][RB06]. We assume a data model in which an interval
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TS-I Temperature Sensor Event
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Network Attack on IP a.b.c.d

Network Attack on IP e.f.g.h

TS-I Temperature Sensor Event

TS-I Temperature Sensor Event

TS-I Temperature Sensor Event

TS-I Temperature Sensor Event

Figure 5.1: Network Event Correlation

event is an atomic unit semantically. Thus an interval event is composed

fully after it ends and it arrives at the ESP system after it is completed. We

will have further discussion in Chapter 5.4 for the data model in which an

interval event is composed by two atomic point events.

In the following discussion we assume that the timestamps of the events

are globally ordered, reflecting the ordered semantics of the physical events.

In case of disordered arrival of the events at the ESP engine, the mechanism

introduced in [LLD+07] can be applied after some further adjustments and

it will not affect the correctness of the basic approach introduced in this

chapter. Further discussion will be given in Chapter 6.1. Each event is

assigned a timestamp from a discrete ordered time domain. We assume

that such timestamps are assigned by a separate mechanism before events
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enter the event processing system and that they reflect the true order of the

occurrences of these events. For an ordered interval-based event stream, the

event receiving order at the ESP system is the same as the order of the end

time of the event instances.

For fully supporting event processing over interval streams, the query al-

gebra and evaluation corresponding to detecting temporal relations among

events need to be adjusted. Similar to the discussion in Chapter 4, only SEQ,

NEGATION and WIN need to be adjusted for handling interval streams.

The logical operators such as AND / OR (which detect patterns with log-

ical relations) apparently do not need to be adjusted for interval handling.

The SELECT operator (which performs value-based predicate checking)

needs special adjustment only when it is associated with negation pat-

terns. However that can be simply avoided by operator pushdown on the

SELECT [WDR06]. The handling of negation over interval events is not

covered in this dissertation so we will be focusing only on the SEQ and

WIN operator.

The SEQ operator [WDR06][ACT08] handles only the “before” / “after”

temporal relation (treating a point event as an interval with the same start

and end time timestamps). Because of the transitive property of the “before”

/ “after” relation, this basic two-arguments operator can be extended to

handle sequence with three or more event as SEQ(E1, E2, E3, ...), which

indicates that an E1 event is followed by an E2 and the E2 event is followed

by an E3 event, and so on. For example, SEQ(A, B, C) detects a sequential

event patterns <a, b, c> where a is an event instance of type A, b is an

event instance of type B, c is an event instance of type C, a before b and
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also b before c.

As we have pointed out in Chapter 5.1, additional temporal relations can

be defined between two interval events. The reason is that two non-equal

interval events can have overlapping portion instead of a simple sequential

relation. The relations between two intervals can be expressed in terms of

relations between their endpoints, i.e., the start and end of the interval. Un-

der interval-based temporal semantics, relation between two event instances

can be very flexible.

We consider a temporal relation to be a relation among two or more

interval events, which can be divided into two different categories, namely,

closed endpoint relation and open endpoint relation.

A temporal relation where the order of all endpoints of the events are

fixed is called a closed endpoint relation, which falls into the categories given

by [All83]’s classification (discussed earlier in Chapter 5.1). We refer to these

temporal relations as Allen-based relations.

A temporal relation where the order of all endpoints of the events are

not fully fixed is called an open endpoint relation. Real world applications

might have customized requirement on interval pattern detection where open

endpoint relations are needed to be defined. For example, we can define

temporal relation R as “intervals of type E1 starts before intervals of type

E2”. The temporal algebra of such pattern is as e1.ts < e2.ts, where e1

is an instance of E1 and e2 is an instance of E2. We can see that such

temporal relation is the disjunction of several closed endpoint relations. For

example, temporal relation R defined above is equivalent to the disjunction

of several closed endpoint relations as (E1 before E2) ∨ (E1 meets E2) ∨
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(E1 overlaps E2) ∨ (E1 finished by E2) ∨ (E1 contains E2).

To express temporal relation between two intervals (referred to as prim-

itive temporal relation), the simple SEQ operator becomes insufficient be-

cause it only considers “before” / “after” as temporal relations over point-

based events. One approach to define a primitive temporal relation is simply

using the 13 Allen-based relations and their disjunction using the syntax

Rel[list of Allen-based relations](E1, E2), where Rel is a temporal operator

for interval. The temporal semantics of Rel is defined by a list of Allen-based

relations. For example, Rel[overlap](A, B) represents the overlap relation in

Allen’s model. Rel[before,meet,overlap,finished by,contain](A, B) represents

an open endpoint temporal relation which is the disjunction of five different

Allen-based relations.

While the expressiveness of such relation representation is no longer suf-

ficient if it is extended to represent temporal relation among three or more

intervals (referred to as composite temporal relation. as Rel[list of Allen-

based relations](E1, E2, E3, ..., Em). One reason is that some temporal

relation might not satisfy the transitive property (such as overlap). Take

Rel[overlap](A, B ,C) as an example. Given three interval event instances

a of type A, b of type B and c of type C, “a overlap b and b overlap c”

cannot infer “a overlap c” because that overlap relation does not have the

transitive property. This representation cannot express the pattern such as

“A overlaps B, B overlaps C and A overlaps C”. Another reason is that a

composite relation might contain more than one temporal relations, such as

a composite relation R defined as “A contains B and B overlaps C”.

A hierarchical representation [KF00] is proposed to encode composite
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relations. Similarly, we can extend our previously defined operator syn-

tax to represent a composite relation with multiple temporal relations as

Reln(...Rel2(Rel1[list of Allen-based relations](E1, E2), E3),..., Em). It can

express composite relation such as “A contains B, which as a composite

event, overlaps C”. However, such representation is still not expressive

enough as it lacks the ability to represent pair-wise relations among events.

It still cannot express relation such as “A contains B and B overlaps C”.

We introduce the endpoint-based encoding mechanism to represent tem-

poral relations among event intervals, inspired by [NB94][NB95], where an

endpoint sequence representation for intervals is studied. The basic idea is

to express a relation using the conjunction of temporal restriction, which

restricts the temporal relation to <, <=, =, >, >= between two interval

endpoints. Such conjunction representation is called a temporal restriction

list (TList in short). TList is with the syntax as “TList ::= TList∧TList |

I1
∗<I2

∗ | I1
∗<=I2

∗” | I1
∗=I2

∗”, where I1
∗ and I2

∗ define two endpoints.

Although that the same expressibility can be achieved using the 13 Allen-

based relations and their disjunction to define the primitive relations for

intervals among the composite pattern, the above endpoint-based language

has the advantages of simplicity in use and it is closer to the business rules

of the temporal-based real world applications [NB94][NB95].

Example 5.3. For example, the event relation “A starts earlier than B” is

simply represented as “A.ts < B.ts” and the event relation “A overlaps B,

B overlaps C” is represented as “(A.ts < B.ts) ∧ (B.ts < A.te) ∧ (A.te <

B.te) ∧ (B.ts < C.ts) ∧ (C.ts < B.te) ∧ (B.te < C.te)”.
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Please note that if there exists any conflicts (such as ep1 > ep2 ∧ ep1 <

ep2, where ep1 and ep2 are two event endpoints) in the TList, it becomes in-

valid. We assume a validating process thus all the TLists in this dissertation

are considered valid.

Our proposed encoding mechanism is with the syntax as “EVENT ISEQ

[TList](E1, E2, E3, ..., Em; W)”, where ISEQ is the temporal operator with

the following semantics:

ISEQ[TList](E1, E2, ..., Em; W )[H] =

{< e1 e2 ... em > | (TList(e1, e2, ..., em)) ∧

(< e1 e2 ... em > ∈ E1[H] × E2[H]... × Em[H]) ∧

(max(ei.end)i∈{1,2,...,m} − min(ej.start)j∈{1,2,...,m} < W )}.

(5.1)

In the ISEQ operator given above, {E1, E2, ..., Em} is the set of event

types defined in ISEQ and the TList defines the endpoint relation among

the instances. An occurrence number will be attached to distinguish multi-

ple occurrences of the same event type. Given E and E′ defined in ISEQ,

maximum four different temporal restrictions could be defined: (1) E.ts

Rel1 E′.ts, (2) E.ts Rel1 E′.te, (3) E.te Rel1 E′.ts and (4) E.te Rel1 E′.te.

Rel1 to Rel4 are among possible point-based temporal relations <, <=, =,

> and >= (‘>’ is the mirror relation of ‘<’ and ‘>=’ is the mirror relation

of ‘<=’). For any given E in ISEQ, E.ts <= E.te is always a required tem-

poral restriction. A reasoning framework on the endpoint-based temporal
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representation is studied in [NB94][NB95]. It introduces an algorithm with

exponential complexity which can be used to infer the temporal relation be-

tween two endpoints based on a given set of temporal restrictions. Queries

defined by the ISEQ using the TList can also be expressed by the disjunc-

tions of the Allen’s algebra operators [Tom96]. Consider Example 5.3 given

earlier on temporal relation R as “intervals of type A starts before intervals

of type B”. The TList for R is “A− < B−”, which implies “(A before B) ∨

(A meets B) ∨ (A overlaps B) ∨ (A finished by B) ∨ (A contains B)”.

In a traditional point-based event query algebra, the window constraint

specification is expressed as the time window parameter, used for restricting

the duration length among events in the temporal pattern. In [WDR06], the

window expression gives the time window argument W, which specifies the

maximum time duration between the occurrences of the first and last events

in the event temporal pattern. We adopt the operator pushdown approach

in [WDR06] to handle the window-based filtering in ISEQ, which uses the

window size W to control the maximum span of the result composite, defined

as max(ei.end)i∈{1,2,...,m} - min(ej.start)j∈{1,2,...,m}.

5.3.2 ISEQ Operator

The physical implementation of ISEQ has three core operations listed below:

Event Buffering. A newly received event instance is buffered in the oper-

ator state of ISEQ if it is necessary. Given a newly received event interval

e of type E which is among the set of expected events {E1, E2,...., Em}, e

needs to be buffered into a stack structure referred to as the instance stack
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if and only if it is possible to form result tuples using e together with some

other received interval or future coming intervals. So, if E is with a given

or inferred temporal restriction as E.te > E′.te and no event instance of E′

is currently buffered, the condition that requires an instance to be buffered

is not satisfied thus e can be discarded directly without buffering (referred

to as on-the-fly dropping). For other cases, e is added to the corresponding

stack for buffering unless its interval length is larger than the window size

(in such case the even will be discarded without consideration).

Result Construction. The result construction is performed on the fly trig-

gered by newly arrived tuples to ISEQ. Given a newly received and buffered

event interval e of type E among expected event types, new results could

possibly be constructed if and only if e might be contained by a result com-

posite event consisting of currently received instances. So, if E is not with

a given or inferred temporal restriction as E.te < ep, E.te = ep or E.te <=

ep, where ep is another interval endpoint, e could then possibly contribute in

forming new result sequences consisting of the current buffered intervals. So

the result construction condition is satisfied thus the construction process

triggered by e can be called. The process uses a multi-join algorithm based

on the attribute constraints on the interval endpoints defined by TList is

applied to construct possible composite events. In the join process, the val-

ues of event endpoints (both the start endpoint and termination endpoint)

are used if the endpoints are associated with some temporal restrictions or

with the window constraint.

Operator State Purge. Window constraints can be utilized in ISEQ to
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avoid unnecessary event buffering. It provides opportunity to dynamically

purge events from the ISEQ operator when the event has fallen out of the

sliding window. The latter is important in stream processing where runtime

data structures need to be pruned to avoid memory depletion. Memory foot-

print is reduced due to such pruning. In addition, if the checking overhead

is kept to be small, CPU footprint can also be reduced because of the saving

on buffering-related operators and result construction Furthermore, similar

to pushing down the window constraint into SEQ operator in [WDR06], if

the purge at ISEQ is conducted on a timely fashion, the checking on win-

dow constraint could be skipped thus the corresponding computation for

window-based filtering is avoided in the result construction phase. Given

a buffered event interval e of type E among expected event types, e can

be safely purged from the buffer if and only if it is no longer contributing

in forming new results. So, if the termination endpoint associated with E

is in given or inferred “>” temporal restrictions with all the endpoints in

the pattern except itself, the purge condition is satisfied and the event in-

stance e can be purged from the buffer once the result construction process

triggered by e (if any) is completely finished. A window constraint-based

purge named cascading purge could be performed: if E is with a given or

inferred temporal restriction as E.te > E′.te and the stack for E′ events

is empty, all the E events can be safely removed. The process can go on

following the chain of such temporal restrictions on the interval termination

endpoints. While a fine-grained duration constraint [NB94][NB95] defined

in ISEQ, it can be utilized to furtherly avoid unnecessary event buffering.

The basic idea is dynamically checking the window constraint while a new
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interval instance e of type E is received. For a buffered interval ei of Ei

with a duration restriction as Ej.te − Ei.ts(te) < W, if e.te - ei.ts(te) >

W, ei can be purged from the operator state of ISEQ. The correctness of

this window-based purging mechanism is shown as follows. By the arrival

of e, we can know any interval e′ coming in the future satisfies e.te < e′.te.

Thus, any future Ej instance ej will satisfy ej.te − ei.ts(te) > W. So, e is

guaranteed to no longer contribute in forming new query results. In this dis-

sertation we will not consider data purge on such duration constraint since

we only consider the window semantics defined in Chapter 5.3.1.

An optimization can be brought into this process. Remember that we

assume the input interval stream is ordered and the event receiving order

at the ESP system is the same as the order of the end time of the event in-

stances. Such order semantics of the input intervals can be utilized to reduce

the join computation in the result construction of ISEQ. This is similar to

the idea of using a runtime stack nondeterministic finite automaton (NFA)

for pattern retrieval on point-based events [WDR06]. The optimization is for

avoiding the multi-join on the longest path of termination endpoints linked

through temporal restrictions. Let N denote the length of the path. Then

the number of states in the NFA equals N+1 (including the starting state).

A data structure named AIS as discussed earlier in Chapter 4 associates a

stack with each state of the NFA storing the events that trigger the NFA

transition to this state. For each instance ei in the stack, an extra field

named RIP records the nearest instance in terms of time sequence in the

stack of the previous state to facilitate sequence result construction. When
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Algorithm 11 Basic ISEQ Operations

1: Procedure: ISEQOperation
2: Input:
3: (1) event Query EVENT ISEQ[TList](E1, E2, ..., Em; W),
4: (2) newly received event e (under event type E)
5: Output:
6: matched result sequences triggered by the input event instance
7:
8: compute the inferred temporal restrictions
9: form the DAG G representing the temporal restrictions
10: compute the indexing scheme for AIS-based approach
11: if CLOCK updates then
12: perform window-based purge
13: perform corresponding cascading purge
14: end if
15: checkState = true
16: if E is among E1, E2, ..., Em then
17: if e.te - e.ts < W then
18: if E is with a given or inferred temporal restriction as E.te > E′.te then
19: if no event instance of E′ is currently buffered then
20: checkState = false
21: end if
22: end if
23: if CheckState then
24: buffer e into the corresponding AIS stack if indexing is applied on E for the

AIS-based approach and into the corresponding instance stack otherwise
25: if E is not with any temporal restriction as E.te < ep, E.te = ep or E.te <=

ep in G, where ep is a vertex in G and ep 6= E.te then
26: produce event sequences containing e (if any) by corresponding join algorithm
27: end if
28: if G covers all the endpoints in the pattern and E is with a temporal restriction

as E.te > ep for any ep ∈ G and ep 6= E.te then
purge e

29: end if
30: end if
31: end if
32: end if
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the newly inserted event is an instance of the final stack then AIS computes

sequence results. With the AIS states, the construction is simply done by a

depth first search in the AIS stacks that is rooted at this instance and con-

tains all the virtual edges reachable from this root. Each root-to-leaf path in

the AIS stacks corresponds to the complete or a portion of a matched event

sequence, which will be constructed by the rest of the multi-join process

after the AIS-based construction. With such AIS data structure, a more so-

phisticated cascading purge named cascading AIS purge could be performed:

once an event instance is purged from the AIS stack, events whose RIP field

pointing to this event can also be purged.

Algorithm 11 depicts the key ISEQ operations described above. Upon

the arrival of a new event interval, buffering decision is made and possible

result sequences are produced at the earliest moment. Window-based and

cascading purge are performed triggering by the CLOCK updates Line 11.

The CLOCK value is introduced earlier in Chapter 4, which equals to the

largest end time timestamp seen from the received intervals. The given and

inferred temporal restrictions are managed as a DAG structure [Koz03], with

the edges marked as either “>”, “>=” or “=”. Corresponding construction

supports for applying the AIS data structure is given in Line 10 and 24. In

addition to that, specific AIS-incorporated computation (Line 13 and 26)

are plugged in for utilizing the indexing structure.

Example 5.4. Consider event pattern query Q = ISEQ[A− < B+ < C+ <

D+](A, B, C, D) and interval event trace S = “b3|6, d6|10, b9|11, c4|12, a7|14,

d9|15, a8|16” (shown in Figure 5.2). Remind that by the notation given in
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Chapter 2, for an interval event instance e, we use a pair of numbers as et1|t2

adjacent to it to represent its timestamp (denoting both the start and end

time). Interval instance d6|10 will be discarded upon arrival through the on-

the-fly dropping since no C events are currently buffered and between C and

D there is a temporal restriction defined as C+ < D+. While d9|15 arrives,

the result construction is triggered to produce a result sequence <a7|14 b9|11

c4|12 d9|15>. While a8|16 arrives, the construction process is triggered again,

producing another result sequence <a8|16 b9|11 c4|12 d9|15>. Assuming that

the window size W equals to 30 and we furtherly receive interval e20|35, b3|6

and c4|12 can then be safely purged from the operator state.

Figure 5.2: Example Interval Event Input

5.3.3 Query Evaluation Strategy

Algorithm 12 sketches my proposed execution strategy for a long running

process of interval event pattern detection. The monitoring process is stopped

when the event trace is terminated. Corresponding CPU and buffer re-

sources could not be released earlier. During the monitoring process, each

received event triggers data buffering, result construction and operator state

purge following Algorithm 11 given in Chapter 5.3.2.
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Algorithm 12 Execution Strategy for Interval Event Stream Processing

1: Procedure: IntervalProcessingExecutionStrategy
2: Input: real-time evolving interval sequence trace seq as “e1, e2, e3 ...” by the order of

their termination endpoint, with the End of Stream (EOS) message arriving at the very
end if input termination is indicated

3: Output: matched result sequences
4:
5: var e ← poll(seq)
6: while e 6= EOS do
7: process e:
8: perform necessary data buffering and state purge, construct new results if possible

based on Algorithm 11
9: e ← poll(seq)
10: end while
11: terminate the pattern monitor for the current event trace

5.4 Towards Efficient Interval Processing

5.4.1 Using Punctuations

In many ESP applications, event intervals are actually extracted from the

raw primitive point-based events (such as the RFID sensor readings) by busi-

ness intelligence (referred to as BI) middlewares [vAEE+09][PV09][Luc07]

and then passed to the downstream ESP systems. Consider the previous

example given in Chapter 5.1 where an ESP system is used to monitor

the events generated by warehouses of a supermarket. Based on the tem-

perature values sent by the temperature readers, temperature fluctuations,

HIGH, MEDIUM and LOW, as the interval events are generated and sent

to the ESP system. In real world applications, such temperature fluctua-

tion intervals are actually extracted by the middleware systems which re-

ceives the actual readings from the temperature sensors. Let’s assume the

HIGH temperature is above 100F, the MEDIUM temperature is within the

range of (50F, 100] and the LOW temperature is 50F or lower. We also
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assume the sensor reads temperature every two seconds and reports the fol-

lowing reading: 01:00:00PM - 55F; 01:00:02PM - 70F; 01:00:04PM - 95F;

01:00:06PM - 80F; 01:00:08PM - 110F; 01:00:10PM - 120F; 01:00:12PM -

90F; 01:00:14PM - 60F; 01:00:16PM - 30F... The interval streams gen-

erated will be: “MEDIUM(01:00:00PM, 01:00:08PM), HIGH(01:00:08PM,

01:00:12PM), MEDIUM(01:00:12PM, 01:00:16PM)...”. Assume we are hav-

ing another two interval events, WET and DRY, to represent the humidity

of the environment generated under a similar sensor layer as the one used for

the temperature readings. By such context, a practical event query can be

looking for the pattern of HIGH overlaps DRY. Such corner changes which

trigger new intervals are called critical state changes. These critical state

changes (as the begin and end of an interval) are captured by the BI middle-

wares and then composed into interval events and passed to the downstream

ESP systems once the interval is fully formed. Thus, under the above appli-

cation structure, the information of the “interval start” is actually known to

the BI middleware at real-time. A mechanism to improve the efficiency of

interval stream processing is to embed a punctuation named interval begin

punctuation into the interval event stream. The proposed punctuation is

defined as follows:

Interval Begin Punctuation(IBP). IBP indicates the initialization of an

interval instance. At the moment an interval event e starts, its corresponding

IBP will be created and sent. It has associated a metadata schema as ibpe

= <e.id, e.ts>, where e.id is the ID value of e, assigned automatically by

the EPS. The ID value is unique among the events in the stream. Given an
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IBP p, its timestamp p.t equals to e.ts.

In the discussion in Chapter 5.3.1, a data model in which an interval

event is an atomic unit semantically is assumed. Thus an interval event is

composed fully after it ends and it arrives the ESP system after it is com-

pleted. Applying IBP does not require the change of this model. However,

the IBP information can be used for effective interval event processing. The

interval event sender (i.e., the BI middlewares as shown in our earlier ex-

ample) should have the mechanism to encode an unique ID to the event

intervals. The ESP system receives interval event streams mixed together

with IBPs. Remember that we assume order for the input interval stream.

Under such model which interleaves IBPs with event interval instances, the

order of receiving events and IBPs at the ESP system is the same as the

order of their end time timestamp. Note that since IBPs are point-based

data, the time stamp of an IBP equals to its end time timestamp.

An IBP-aware interval event processing approach can greatly reduce the

runtime memory and CPU footprint for temporal pattern detection over

interval-based event streams. The key operations of an IBP-incorporated

ISEQ operator is given as below.

Event Buffering. The event buffering conditions in the basic ISEQ stays.

However, the IBP information is also hold in the AIS for the events being

indexed. We will have further discussion on this in the result construction.

With the IBP information being available, additional on-the-fly event drop-

ping becomes possible, as follows. Given a newly received IBP of E interval

e, which is among the set of expected events {E1, E2,...., Em}, if E.ts is
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among the indexed start endpoints (referred to as the IBP of E being in-

dexed) and (1) the AIS stack pointed by the AIS stack of ibpe is empty, or

(2) E is with a given or inferred temporal restriction as E.ts > E′.te and no

events of E′ is currently buffered, the received IBP can be dropped without

buffering. Given a newly received interval instance e of type E which is

among the set of expected events {E1, E2,...., Em}, if (1) the IBP of E

is required to be indexed and no IBP entry corresponding to e is currently

buffered, or (2) E is with a given or inferred temporal restriction as E.te >

E′.ts, the IBP of E′ is required to be indexed and no IBPs of E′ is currently

buffered, or (3) E is with a given or inferred temporal restriction as E.te >

E′.te and no events of E′ is currently buffered, the condition that requires

the e instance to be buffered is not satisfied thus e can be discarded directly

without buffering.

Result Construction. As discussed earlier, the result construction is per-

formed on the fly triggered by newly arrived tuples to ISEQ. Given a newly

received and buffered event interval e of type E among expected event types,

new results could possibly be constructed if and only if e might be contained

by a result composite event consisting of currently received instances. The

conditions for result construction triggering in the basic ISEQ stays for the

IBP-incorporated ISEQ. So, if E is not with a given or inferred temporal re-

striction as E.te < ep, E.te = ep or E.te <= ep, where ep is another interval

endpoint, e could then possibly contribute in forming new result sequences

consisting of the current buffered intervals. So the result construction con-

dition is satisfied thus the construction process triggered by e can be called.
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For the part without AIS indexing, the process uses a multi-join algorithm

based on the attribute constraints on the interval endpoints defined by TList

is applied to construct possible composite events. In the join process, the

value of event endpoints (both the start and termination endpoints) are used

if the endpoint is associated with some temporal restriction or with the win-

dow constraint. The AIS stack is brought into the multi-join process for

the indexed temporal restrictions to avoid the joins on a path of event end-

points (both the start and termination endpoints) linked through temporal

restrictions using not only the interval termination but also the IBPs. This

is different than the AIS-based approach in the basic ISEQ, where the IBPs

are not available. The path with the most join avoidance will be selected,

which is the longest path in the DAG formed by the temporal restriction,

and it is not counted as one join if an edge is formed by one single event

type. For event types with only indexed termination endpoints, the AIS

structure remains the same as the basic ISEQ operator. For event types

with only indexed IBPs, a corresponding AIS stack at first holds the IBPs

and later is filled with the corresponding full instances. The RIN pointers

introduced in Chapter 4.5 can be applied to the stacks consisting of the IBP

entries. If the path includes both the start and termination endpoints of

an event type, two different AIS stacks will be applied and they both link

to a shared structure (referred to as the full edge stack) holding the event

instance. The construction on the indexed path remains as a simple depth

first search in the AIS stacks that is rooted at this instance and contains

all the virtual edges reachable from this root. Each root-to-leaf path in the

AIS stacks corresponds to the complete or a portion of a matched event se-
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quence, which will be constructed by the rest of the multi-join process after

the AIS-based construction.

Operator State Purge. The conditions for operator state purging in the

basic ISEQ stays for the IBP-incorporated ISEQ. So, if the termination

endpoint associated with E is in given or inferred “>” temporal restrictions

with all the endpoints in the pattern except the ones from E itself, the purge

condition is satisfied and the event instance e can be purged from the buffer

once the result construction process triggered by e (if any) is completely fin-

ished. However, more purging opportunities become possible with the IBP

being available: the window-based purge and the corresponding cascading

purge can be simply extended to cover the IBPs kept in the AIS stacks. The

benefits of doing so is that it can lead to further on-the-fly dropping since

there could be fewer IBPs kept in the indexes after the purge.

Algorithm 13 depicts the corresponding operations given above. We

can see that upon the arrival of a new event interval and an event IBP,

buffering decision is made and possible result sequences are produced at

the earliest moment. Similar to the basic ISEQ, upon the arrival of new

event intervals, corresponding construction and operator state purge are

triggered to performed. The query execution strategy based on ISEQ given

in Algorithm 12 stays the same for the IBP-incorporated ISEQ.

Example 5.5. Again consider the scenario given in Example 5.4. Interval

event b3|6 can be discarded without buffering, since we can guarantee that

no future arrival of A could have a start time smaller than b3|6’s end time,
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Algorithm 13 IBP-Incorporated ISEQ Operations

1: Procedure: ISEQPlusOperation
2: Input:
3: (1) event Query EVENT ISEQ[TList](E1, E2, ..., Em; W),
4: (2) newly received event IBP ibpe / event instance e (under event type E)
5: Output: matched result sequences triggered by the input event instance
6:
7: same as Line 8 to 14 in Algorithm 11
8: if E is among E1, E2, ..., Em then
9: on the arrival of ibpe:
10: checkState = true
11: if the IBP of E is required to be indexed then
12: if the AIS stack pointed by the AIS stack of ibpe is empty then
13: checkState = false
14: end if
15: if E is with a given or inferred temporal restriction as E.ts > E′.te && checkState

&& no events of E′ is currently buffered then
16: checkState=false
17: end if
18: end if
19: if checkState then
20: buffer ibpe into the corresponding AIS stack by the append semantics
21: end if
22: on the arrival of e instance:
23: checkState = true
24: startFlag, endFlag = false
25: if e.te - e.ts < W then
26: if the IBP of E is required to be indexed then
27: startFlag = true
28: if no IBP entry corresponding to e is currently buffered then
29: checkState = false
30: end if
31: end if
32: if the full instance of E is required to be indexed then
33: endFlag = true
34: end if
35: if checkState && E is with a given or inferred temporal restriction as E.te > E′.ts

&& the IBP of E′ is indexed and no IBP of E′ is currently buffered then
36: checkState = false
37: end if
38: if checkState && E is with a given or inferred temporal restriction as E.te > E′.te

&& no event instance of E′ is currently buffered then
39: checkState = false
40: end if
41: if checkState then
42: if startFlag && !endFlag then
43: insert e into the corresponding AIS entry based on the event ID
44: else
45: if !startFlag && endFlag then
46: buffer e into the corresponding AIS stack by the append semantics
47: else
48: if startFlag && endFlag then
49: buffer e into the full edge stack and buffer e’s reference into the corre-

sponding AIS stack by the append semantics, update existing AIS
50: else
51: buffer e into the corresponding instance stack
52: end if
53: end if
54: end if
55: if E is not with any temporal restriction as E.te < ep, E.te = ep or E.te <=

ep in G, where ep is a vertex in G and ep 6= E.te then
56: produce event sequences containing e (if any)
57: end if
58: if G covers all the endpoints in the pattern and E is with a temporal restriction

as E.te > ep for any ep ∈ G and ep 6= E.te then
purge e

59: end if
60: end if
61: end if
62: end if
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using the fact that no IBPs of A is met before the arrival of b3|6. Similarly,

interval b9|11 is required to be buffered, indicated by the IBP of a7|14.

Adapting the Point-Based ESP Solution. As mentioned earlier in

Chapter 5.3.1, for a model where an interval event is an atomic unit seman-

tically, an interval event is composed fully after it ends and it arrives the

ESP system after it is completed. However, for a model where an interval

event can be broken down to two atomic point events without losing seman-

tic information, an interval logic can be converted to a point-based logic,

which simply uses point-based events to represent the critical changes (the

start and end of an interval). Again consider Example 5.1 given previously

regarding the ESP application in supermarket warehouses event monitoring.

If an interval event simply carry semantic information as the time period

of the temperature / humidity condition, we can replace the given business

logic purely using point-based events showing the critical changes happening

in the raw reading. The pros for this approach is that a point-based event

processing mechanism can be easily adapted thus an interval event query

can be evaluated simply using the point-based query processing mechanism.

However, the business logic based on intervals is no longer kept under such a

framework thus it is not straightforward to representation of the BI rules for

the event reasoning and processing. Actually, the Algorithm 13 given above,

which follows the interval-based data model, already provided a point-based

query processing framework, where the IBPs serve as a part of the critical

state change events. Any further optimization on top of a point-based ESP

solution can be easily consolidated into this framework.
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5.4.2 Pushing Down the Interval Event Abstraction

As mentioned earlier for the IBP-based solution, in many ESP applications,

event intervals are actually extracted from the raw primitive point-based

events (such as the RFID sensor readings) by BI middlewares and then

passed to the downstream ESP systems. Following such application struc-

ture, the low level physical devices (i.e., the sensor network) with enough

computing power would actually be able to capture these critical state

changes. Such mechanism of pushing down the computation of interval

event abstraction to the low level sensor network can greatly improve the ef-

ficiency and scalability for ESP applications with intense computing ability

on the physical level devices. This is because that the computation happens

much closer to the information source thus the cost of data transportation

is avoided.

5.5 Performance Evaluation

5.5.1 System Implementation

Figure 5.3 shows the system architecture for incorporating the proposed out-

of-order handling into the basic ESP system structure given in Chapter 2.3.

The proposed ISEQ operator is added into the corresponding operator li-

brary containers. While the input is point-based events (seen as interval

events each with the same start and end time timestamp) and the AIS in-

dexing is applied, the ISEQ operator behaves exactly the same as the SEQ

operator. Thus, it can be treated as an extended SEQ operator.
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Remaining Work
• Expressive language to represent the temporal  patterns among intervals

• Evaluation strategies for the ISEQ operator 

• Interval-begin punctuation and the punctuation-aware query evaluation strategy 
for query optimization

• Mechanism to push down the computation of interval event abstraction to low 
level networks of event sources

Completed

First version done.  Will be completed by further r evision 

First version done.  Will be completed by further r evision 

To be Completed

Figure 5.3: Interval Event-Incorporated ESP System Architecture

5.5.2 Experimental Setting

Experiments are run on two Pentium 4 3.0GHz machines, both with 1.98G

of RAM. One machine sends the event stream to the second machine. From

Chapter 5.5.3 to 5.5.6 we are going to study the performance of the proposed

interval event stream processing techniques on a 2G generated data input,

which contains 20 different event types with uniform distribution.

Totally four sets of experiments are run to test the effects of various

factors: (1) the indexing percentage that controls the indexable endpoints

and endpoints types (either start or termination); (2) the query length that

controls the number of interval patterns in the ISEQ operator; (3) the aver-

age interval length that controls the average span of the interval events with

the normal distribution and (4) the event density that controls the num-

ber of events within one sliding window with the normal distribution. The



5.5. PERFORMANCE EVALUATION 134

applied queries are with the template as “EVENT ISEQ[TList](A, B, ... ;

W)”, where the TList defines the endpoint temporal restrictions among the

event patterns. Performances of (1) the basic ISEQ without AIS indexing

(referred to as naive ISEQ) approach, (2) the basic ISEQ with AIS index-

ing (referred to as basic indexing) approach and (3) the IBP-incorporated

ISEQ (referred to as IBP-incorporated) approach are measured respectively.

Experimental results are given from Chapter 5.5.3 to 5.5.6 below.

5.5.3 Experiments with Varying Query Types

This set of experiments varies the percentage of indexable endpoints as well

as the indexable endpoints types in the given query. The indexable end-

points will contribute to the AIS construction for the basic ISEQ with AIS

indexing approach and the IBP-incorporated ISEQ approach. Ten different

combinations are covered by the experiments, which is shown in Table 5.2.

The query length is fixed as 10. The average interval length is fixed as W/10

(W is the sliding window size, which is fixed as 30 seconds for all queries)

with the event density as 200 events per window. Results are shown in Fig-

ure 5.4 and 5.5. The property of the input event data such as the average

interval length and event density greatly affects the performance, which will

be studied later in Chapter 5.5.5 and 5.5.6.

Memory Consumption (Figure 5.4). X axis here shows the ten groups of

queries categorized by indexing scheme discussed earlier (Table 5.2) and Y

axis shows the accumulative memory consumption for each query. With the

cascading AIS purge, the basic indexing approach and the IBP-incorporated
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Name Description

100t-0s 100% termination endpoint indexing

90t-10s 90% termination endpoint and 10% start endpoint indexing

80t-20s 80% termination endpoint and 20% start endpoint indexing

70t-30s 70% termination endpoint and 30% start endpoint indexing

60t-40s 60% termination endpoint and 40% start endpoint indexing

50t-50s 50% termination endpoint and 50% start endpoint indexing

40t-60s 40% termination endpoint and 60% start endpoint indexing

30t-70s 30% termination endpoint and 70% start endpoint indexing

20t-80s 20% termination endpoint and 80% start endpoint indexing

10t-90s 10% termination endpoint and 90% start endpoint indexing

0t-100s 100% start endpoint indexing

Table 5.2: Profiles for Different Query Types

approach both have less memory footprint than the naive ISEQ approach

except the case with no termination endpoint indexing for the basic indexing

approach. However it only shows a slight gain (less than 5% for the case

with the most gain) under the given setting. With a smaller window, which

can be achieved by increasing the average interval length or decreasing the

event density, more memory footprint can be avoided. This will be furtherly

discussed in Chapter 5.5.5 and 5.5.6. Addition to that, for the basic indexing

approach, the gain on memory consumption is affected by the percentage of

indexable termination endpoints in the query.

CPU Performance (Figure 5.5). X axis still shows the ten different index-

ing scheme and Y axis shows the execution time for each query. We can see

that the IBP-incorporated approach in all cases outperform the naive ISEQ
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approach. This is because that it has indexing support for all the query

categories due to the IBP utilization. In most cases the basic indexing ap-

proach outperforms the naive ISEQ approach: with a higher percentage of

the termination indexing, more CPU computation could be avoided in terms

of result sequences construction using the costly multi-join algorithm. For

example, in the best case (i.e., the query with 100% indexable termination

endpoint patterns), execution with the basic indexing approach reduce the

execution time of the plan with naive ISEQ by 60%. However, while the per-

centage of indexable termination endpoints is not high in the given query,

the basic indexing approach has poor performance because the overheads

on index construction and maintenance. The overhead ranges from 3% to

12% in the query categories of 20t-80s, 10t-90s and 0t-100s. The overhead

increases while decreasing the portion of indexable termination endpoints in

the query. We can also observe that the basic indexing approach does not

perform as well as the IBP-incorporated approach. This is due to the cost

avoidance using the IBP information in the IBP-incorporated approach is

not applicable for the basic indexing approach.

5.5.4 Experiments with Varying Query Length

This set of experiments studies how varying the relative query length affects

the interval stream processing cost. The query length is varied from 2 to 18.

For example, among them a sequence query with length 6 (i.e., ISEQ[A−

< B− < C− < D+ < E+ < F+](A, B, C, D, E, F )) is run. The 50t-50s

indexing profile is applied to all the queries in this set of experiments. The
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average interval length is fixed as W/10 with the event density as 200 events

per window, which stays the same as Chapter 5.5.3. Experimental results

are shown in Figure 5.6 and 5.7 and the result analysis is given as follows.

Memory Consumption (Figure 5.6). X axis here represents the query

length and Y axis shows the accumulative memory consumption for each

query. We can see that the ratio of memory consumption saving (the slight
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saving on memory footprint discussed earlier in Chapter 5.5.3) stays rela-

tively steady for the index-applied approaches while the query length in-

creases, since the event intervals among different types are with uniform

distribution.

CPU Performance (Figure 5.7). X axis still represents the query length

and Y axis shows the execution time for each query. A query with a longer

length requires much more CPU resources for the result construction than

the naive ISEQ approach. Thus we can see that the ratio of CPU gain

increases sharply for the index-applied approaches while the query length

increases. Similar observation can be found in the comparison between the

two index-applied approaches. The ratio of the IBP-incorporated approach’s

CPU gain over the basic indexing approach increases steadily while the query

length increases, from 45% to 66%.
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Figure 5.6: Results for Varying Query Length I
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Figure 5.7: Results for Varying Query Length II

5.5.5 Experiments with Varying Average Interval Length

Since the input event stream is infinite, consistent performance over time can

only be achieved by actively maintaining the data structures incrementally

based on the given window constraint of the query [ADGI08]. Thus the event

interval size and event density both affect the cost of buffer consumption and

the result construction since they both affect the amounts of active instances

kept in the operator state. We next study the effect of interval size by varying

it from W/100 to W/5. Similar to the earlier settings, the 50t-50s indexing

profile is applied to all the queries in this set of experiments. The event

density is set to 200 events per window and the query length is set to 10.

Experimental results are shown in Figure 5.8 and 5.9 and the result analysis

is given as follows.

Memory Consumption (Figure 5.8). X axis here represents the interval

length and Y axis shows the accumulative memory consumption for each

query. We can see that with larger intervals (thus relatively smaller slid-
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ing window size in terms of holding how many complete event intervals),

more memory footprint can be avoided for the IBP-incorporated approach.

The ratio of the memory consumption gain scales with the average interval

length. This is because that more intervals can be discarded directly through

the on-the-fly dropping and more cascading AIS purge can be applied while

intervals become easier to fall out of the sliding window. Similar observation

can be found while comparing the basic indexing approach and the naive

ISEQ approach.

CPU Performance (Figure 5.9). X axis still represents the interval length

and Y axis shows the execution time for each query. Similar to the obser-

vation on the memory consumption, we can see that with larger intervals,

more CPU cost can be avoided for both index-applied approaches, with a

gain ratio in proportion to the interval length.
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Figure 5.8: Results for Varying Average Interval Length I
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Figure 5.9: Results for Varying Average Interval Length II

5.5.6 Experiments with Varying Event Density

As the discussion in Chapter 5.5.5, the event interval size and event density

both affect the cost of buffer consumption and the result construction. In

this set of experiments we study the effect of event density by varying it

from 50 events per window to 800 events per window. Note that for inter-

vals we consider the event center (the middle point of the interval) as its

representation. Similar to the earlier settings, the 50t-50s indexing profile

is applied to all the queries in this set of experiments. The average interval

length is given as W/20 and the query length is set to 10. Experimental

results are shown in Figure 5.10 and 5.11 and the result analysis is given as

follows.

Memory Consumption (Figure 5.10). X axis here represents the interval

length and Y axis shows the accumulative memory consumption for each

query. We can see that with more sparse input (thus relatively smaller
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sliding window size in terms of covering how many event interval centers),

more memory footprint can be avoided for the IBP-incorporated approach.

The ratio of the memory consumption gain is in inverse proportion to the

event density. This is because that with a more sparser input data set, less

data will be hold by the operator since the state purge. Similar observation

can be found while comparing the basic indexing approach and the naive

ISEQ approach.

CPU Performance (Figure 5.11). X axis still represents the interval

length and Y axis shows the execution time for each query. Similar to the

observation on the memory consumption, we can see that with more sparse

input, more CPU cost can be avoided for both index-applied approaches.

However, the ratio is no longer just in inverse proportion to the event den-

sity when the input becomes very dense. We can see that the CPU cost

increases sharply for the naive ISEQ approach comparing with the index-

applied approaches while the query density jumps from 200 to 400 and from

400 to 800. Similar observation can be found for the comparison between

the two index-applied approaches. This is because that with larger opera-

tor state, the result construction for the patterns without indexing becomes

more and more inefficient.
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Figure 5.11: Results for Varying Event Density II

5.5.7 Conclusions of the Experimental Study

Above experimental results reveal that the proposed interval event stream

processing framework is practical in three senses: (1) interval streams are
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handled correctly by the proposed framework; (2) the index-applied ap-

proaches outperform the naive ISEQ approach in most cases and (3) the

IBP-incorporated outperforms the basic indexing approach.

5.6 Related Work

In [WDR06], the authors propose an expressive yet easy-to-understand lan-

guage to support pattern queries on such sequential streams and propose

customized algebra operators for the efficient processing of such pattern

queries with sliding windows. [ACT08] uses a plan-based technique to per-

form streaming complex event detection across distributed sources. These

researches on event pattern detection over event streams mainly focused on

extracting temporal patterns from point-based event data [WDR06]. Even

though in [ACT08][DCR+08][DGP+07] the events are defined based on the

interval model. However, only the “before” / “after” temporal relation is

supported, which simplifies the interval-based temporal model to the point-

based temporal model by overlooking the patterns where events can have

some overlapped portion.

The data mining community studied discovering patterns over interval

events [KF00][PHL08][WC07]. [KF00] uses a hierarchical representation that

extends Allen’s interval algebra [All83] for modeling complex event patterns

over intervals. However, this representation is lossy as the exact relation-

ships among the events cannot be fully recovered. [WC07][PHL08] devise a

lossless representation to overcome the drawbacks of [KF00]. Based on their

proposed representation, they propose corresponding mining algorithms for
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pattern discovering over event intervals. [WC07] proposes the TPrefixSpan

algorithm to mine the new temporal patterns from interval-based events.

The completeness and accuracy of the results are also proven. Their ex-

perimental results show that the efficiency and scalability of the TPrefixS-

pan algorithm are satisfactory. An efficient algorithm called IEMiner is

designed by [PHL08] to discover frequent temporal patterns from interval-

based events. The algorithm employs two optimization techniques to reduce

the search space and remove unpromising candidates. [PHL08] also exam-

ines how the discovered temporal patterns can be utilized in classification to

differentiate closely related classes thus building an interval-based classifier

called IEClassifier. Even though we adapted the idea of lossless represen-

tation of event patterns in these works, we cannot adapt their algorithms

because they mainly focus on pattern discovering algorithms instead of pat-

tern detection algorithms. Besides that, they do not consider streaming

input with window constraints.

5.7 Conclusions

ESP is emerging as a key capability for many monitoring applications such as

intrusion detection, sensor-based activity tracking and network monitoring.

Existing ESP engines have focused on detecting temporal patterns from in-

stantaneous events, that is, events with no duration. However, such sequen-

tial patterns are inadequate to express the complex temporal relationships

in domains such as medical, multimedia, meteorology and finance where the

durations of events could play an important role. Due to the differences be-
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tween the temporal patterns over interval events and point events, the query

semantics and evaluation mechanisms used for pattern detection over point

events is not sufficient for pattern detection over interval events. An expres-

sive language to represent the required temporal patterns among streaming

interval events and corresponding evaluation mechanism for such event tem-

poral queries is needed. In this dissertation task, I provide a framework to

support interval event stream processing: (1) I introduce an expressive lan-

guage to represent the required temporal patterns among streaming interval

events; (2) I design the corresponding temporal operator ISEQ and provide

an efficient evaluation strategy for the proposed ISEQ operator; (3) For fur-

ther improving the event processing performance, I provide a mechanism to

embed the “interval begin punctuation”(indicating the start of an upstream

interval) into the interval stream and based on that I also discuss an ap-

proach to convert the interval-based event query into a simple point-based

event query thus providing a possible adaptation for the point-based ESP

systems; (4) I study a method to push down the computation of interval

event abstraction to the low level sensor network for increasing the com-

puting leverage from the physical level devices; (5) I conduct experimental

studies to demonstrate the effectiveness of my proposed approach on query

processing over interval event streams.
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Chapter 6

Solution Integration and

Dissertation Conclusions

6.1 Solution Integration

The research on event-specific stream processing technology is still at an

early stage. Some issues on system robustness have not yet been considered

in the current research work on ESP. First, data stream applications are

required to handle very large volume of real-time inputs and provide fast

real-time system response continuously, thus a lightweight runtime process-

ing and minimized memory footprint play an important role in the robust-

ness of event stream processing. Second, event streams are generated by

different sources in different formats and they are sent through the ESP sys-

tems by different mechanisms in practice – thus a robust ESP engine needs

to provide real-time support for complex event query over event streams

with flexible input semantics. As discussed in Chapter 6.1, these research
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challenges regarding the robustness of the ESP systems are categorized into

the following three: (1) lack of mechanism in lightweight constraint-aware

query processing; (2) lack of mechanism in handling event streams with out-

of-order data arrival; (3) lack of mechanism in handling event streams with

interval-based temporal semantics.

This dissertation focuses on providing a robust ESP solution by meeting

the above three research challenges. As mentioned in the earlier chapters

(Chapter 3, 4 and 5), the proposed techniques for the research challenges are

have the limitation as not incorporating with each other. For example, in

the proposed constraint-aware complex event pattern detection framework,

assumptions of events being point-based and in-order are made. Similarly, in

the proposed out-of-order processing framework, I assume only point-based

events. For supporting the cases of more complex scenarios, these proposed

techniques are required to be integrated together. The following I study the

integration approach for the proposed techniques. It is categorized into four

cases as follows and part of the information is shown in Figure 6.1:

Event Processing for Out-of-Order Interval Streams. Solution for

out-of-order (referred to as OOO) handling introduced in Chapter 4 applies

to the design of an OOO-enabled ISEQ operator, which requires design

revises on the basic ISEQ in terms of event buffering, result construction

and operator state purge. Such handling revises are similar to the revises

made to the basic SEQ for building the OOO-enabled SEQ. However, while

with an approach where intervals are converted into points, the proposed

out-of-order handling technique could be applied directly.
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Constraint-Aware Event Processing for Interval Streams. The pro-

posed constraint-aware event pattern detection framework in Chapter 3 can

work with interval events correctly while the query is limited to the tem-

poral semantics applied in the constraint. Thus, if the constraint language

is extended to support the interval relations, the proposed constraint-aware

framework could be easily adapted to handle interval events. Similar as

above, while with an approach where intervals are converted into points,

the proposed out-of-order handling technique could be applied directly.

Constraint-Aware Event Processing for Out-of-Order Point-Based

Streams. The constraint-aware knowledge could help an out-of-order data-

incorporated event engine to determine whether possible out-of-order input

on a certain event pattern could be seen from the downstream. On the other

hand, since the out-of-order property of the input stream, the information

given in the constraint (such as a workflow) could majorly become invalid.

Thus the semantic-based optimization discussed in Chapter 3 can only be

used in very limited cases where constraints can still be implied from the

out-of-order data input.

Constraint-Aware Event Proc. for Out-of-Order Interval Streams.

This case requires applying all integration methods in the categories above.

6.2 Dissertation Conclusions

In this dissertation, I focus on providing a robust ESP solution by meeting

the three research challenges concluded in Chapter 6.1. The dissertation
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Figure 6.1: Integration of the Proposed Techniques

research has lead to several publications (shown in Table 6.1) thus far with

additional manuscripts currently in preparation at international conferences

/ workshops / journals that are the premier venue in the study of event

processing and semantic computing (ICDE, SIGMOD, DASFAA, ICDCS

Workshops, ICSC and DEBS), including 4 full research papers (one still

in preparation for submission), 2 short research papers, 2 demonstration
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Dissertation Task Publication

(I). Constraint-Aware Complex Event Pattern
Detection over Streams

[LMRL10][LMRL09b]
[LMRL09a][LMRLonb]

(II). Complex Event Pattern Detection over
Streams w/ Out-of-Order Data Arrival

[LLD+07][LLG+09]
[WLL+09]

(III). Complex Event Pattern Detection over
Streams w/ Interval-Based Temporal Semantics

[LMR+09][LMRLona]

Table 6.1: Publications Lead by the Dissertation Research

proposals and one journal paper (still in preparation for submission).

The dissertation research is completed by finishing three dissertation

tasks, which are concluded as below:

Task I - Constraint-Aware Complex Event Pattern Detection over

Streams. ESP has become increasingly important for modern enterprises

to react quickly to critical business situations. In many practical cases, con-

straints (such as business workflows) often hold among business events. For

query processing over event streams, reasoning using such known constraints

enables us to (1) notify the unsatisfiability for a query at the earliest, thereby

helping us to terminate the long running pattern detection processes that are

guaranteed to not lead to successful matches; (2) identify the satisfiability for

a query at the earliest possible moment, thereby helping us to get prepared

for upcoming situations at the earliest. How to completely and efficiently

exploit the given semantic knowledge on the input event streams to detect

event patterns over large volumes of business transaction streams is still an

open question. In this task, I propose a framework for constraint-aware pat-
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tern detection over event streams. Given the constraint of the input streams,

the proposed framework on the fly checks the query satisfiability / unsatis-

fiability using a lightweight reasoning mechanism. Based on the constraint

specified in the input stream, we are able to adjust the processing strategy

dynamically, by producing early feedbacks, releasing unnecessary system

resources and terminating corresponding pattern monitor, thus effectively

decreasing the resource consumption and expediting the system response on

certain situations. I have implemented the proposed constraint-aware pat-

tern detection mechanism in a prototype system called E-Tec (constraint-

aware query Engine for pattern deTection over event streams). Experimental

studies are conducted to illustrate the significant performance improvement

achieved by applying the proposed framework with little overhead.

Task II - Complex Event Pattern Detection over Streams with

Out-of-Order Data Arrival. A key aspect of event processing is to ex-

tract patterns from event streams to make informed decisions in real-time.

However, network latencies and machine failures may cause events to arrive

out-of-order at the ESP system. State-of-the-art event stream processing

technology experiences significant challenges when faced with out-of-order

data arrival including output blocking, huge system latencies, memory re-

source overflow, and incorrect result generation. In this task, I propose

a mechanism to address the problem of processing event queries specified

over streams that may contain out-of-order data. I first analyze the prob-

lems that the state-of-the-art event stream processing technologies would

experience when faced with out-of-order data arrival and study the levels of
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correctness in out-of-order processing that target priorities of applications

considering latency, output order, result correctness and result complete-

ness. I then provide a new solution of physical implementation strategies

for the core stream algebra operators such as sequence scan, pattern con-

struction and negation, including stack-based data structures and associated

purge algorithms. Optimization for sequence scan and construction as well

as state purging to minimize CPU cost and memory consumption are also

introduced. Experimental studies are conducted to demonstrate the effec-

tiveness of the proposed approach on query processing over event streams

with out-of-order data arrival.

Task III - Complex Event Pattern Detection over Streams with

Interval-Based Temporal Semantics. Existing ESP engines have fo-

cused on detecting temporal patterns from instantaneous events, that is,

events with no duration. However, such sequential patterns are inadequate

to express the complex temporal relationships in domains such as med-

ical, multimedia, meteorology and finance where the durations of events

could play an important role. Due to the differences between the tempo-

ral patterns over interval events and point events, the query semantics and

evaluation mechanisms used for pattern detection over point events is not

sufficient for pattern detection over interval events. An expressive language

to represent the required temporal patterns among streaming interval events

and corresponding evaluation mechanism for such event temporal queries is

needed. In this dissertation task, I introduce an expressive language to rep-

resent the required temporal patterns among streaming interval events. I
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design the corresponding temporal operator ISEQ and provide an efficient

evaluation strategy for the proposed ISEQ operator. For further improv-

ing the event processing performance, I provide a mechanism to embed the

“interval begin punctuation”(indicating the start of an upstream interval)

into the interval stream. Corresponding punctuation-aware query evaluation

strategy is investigated, which can greatly reduce the runtime memory and

CPU footprint. I then study a mechanism to push down the computation

of interval event abstraction to the low level sensor network for increasing

the computing leverage from the physical level devices. Experimental stud-

ies have been conducted to demonstrate the effectiveness of the proposed

approach.
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[BCCN06] Véronique Benzaken, Giuseppe Castagna, Dario Colazzo, and
Kim Nguyen. Type-based xml projection. In VLDB, pages
271–282, 2006.

[BE04] David Botzer and Opher Etzion. Self-tuning of the relationships
among rules’ components in active databases systems. IEEE
Trans. Knowl. Data Eng., 16(3):375–379, 2004.



BIBLIOGRAPHY 156

[BGAH07] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and
Mingsheng Hong. Consistent streaming through time: A vision
for event stream processing. In CIDR, pages 363–374, 2007.

[BGHJ09] Lars Brenna, Johannes Gehrke, Mingsheng Hong, and Dag
Johansen. Distributed event stream processing with non-
deterministic finite automata. In DEBS, 2009.

[BMM+04] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru
Nishizawa, and Jennifer Widom. Adaptive ordering of pipelined
stream filters. In SIGMOD, pages 407–418, 2004.

[BW01] Shivnath Babu and Jennifer Widom. Continuous queries over
data streams. SIGMOD Record, 30(3):109–120, 2001.

[CA08] Sharma Chakravarthy and Raman Adaikkalavan. Events and
streams: harnessing and unleashing their synergy! In DEBS,
pages 1–12, 2008.

[CCD+03] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin,
J. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Ra-
man, F. Reiss, and M. Shah. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR, pages
269–280, 2003.

[CJC06] Shyh-Kwei Chen, Jun-Jang Jeng, and Henry Chang. Complex
event processing using simple rule-based event correlation en-
gines for business performance management. In CEC/EEE,
page 3, 2006.

[CKAK94] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and
S.-K. Kim. Composite events for active databases: Semantics,
contexts and detection. In VLDB, pages 606–617, 1994.

[Cro04] Christopher Crowell. Event correlation and root cause analysis.
White Paper of CA Inc., 2004.

[DCR+08] Luping Ding, Songting Chen, Elke A. Rundensteiner, Jun’ichi
Tatemura, Wang-Pin Hsiung, and K. Selçuk Candan. Runtime
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gas Damásio, and Lúıs Moniz Pereira. Using extended logic
programming for alarm-correlation in cellular phone networks.
In IEA/AIE, pages 343–352, 1999.

[GADI08] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Im-
merman. On supporting kleene closure over event streams. In
ICDE, pages 1391–1393, 2008.

[gar] Gartner Inc. http://www.gartner.com.

[GC+07] Daniel Gyllstrom, Eugene Wu 0002, Hee-Jin Chae, Yanlei Diao,
Patrick Stahlberg, and Gordon Anderson. Sase: Complex event
processing over streams (demo). In CIDR, pages 407–411, 2007.

[GD94] Stella Gatziu and Klaus R. Dittrich. Detecting composite
events in active database systems using petri nets. In RIDE-
ADS, pages 2–9, 1994.

[GJS92] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli. Com-
posite event specification in active databases: Model & imple-
mentation. In VLDB, pages 327–338, 1992.

[HBR+05] Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur
Çetintemel, Michael Stonebraker, and Stanley B. Zdonik. High-
availability algorithms for distributed stream processing. In
ICDE, pages 779–790, 2005.

[HG00] C. Harris and S. Gass. Encyclopedia of MS/OR. 2000.

[KF00] Poshan Kam and Ada W. Fu. Discovering temporal patterns
for interval-based events. In DaWaK, pages 317–326, 2000.



BIBLIOGRAPHY 158

[KF09] Ingmar Kellner and Ludger Fiege. Viewpoints in complex event
processing: industrial experience report. In DEBS, 2009.

[KJP09] Alexander Kozlenkov, David Jeffery, and Adrian Paschke. State
management and concurrency in event processing. In DEBS,
2009.

[KNV03] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window
joins over unbounded streams. In ICDE, pages 341–352, March
2003.

[Koz03] Dexter Kozen. Automata and computability. In W.H.Freeman
and Company, New York, 2003.

[KSSS04] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and
Bernhard Stegmaier. Schema-based scheduling of event pro-
cessors and buffer minimization for queries on structured data
streams. In VLDB, pages 228–239, 2004.

[LLD+07] Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner, and
Murali Mani. Event stream processing with out-of-order data
arrival. In ICDCS Workshops, 2007.

[LLG+09] Mo Liu, Ming Li, Denis Golovnya, Elke A. Rundensteiner, and
Kajal T. Claypool. Sequence pattern query processing over
out-of-order event streams. In ICDE, pages 784–795, 2009.

[LMR08a] Ming Li, Murali Mani, and Elke A. Rundensteiner. Constraint-
aware xslt evaluation. In ER, pages 524–525, 2008.

[LMR08b] Ming Li, Murali Mani, and Elke A. Rundensteiner. Efficiently
loading and processing xml streams. In IDEAS, pages 59–67,
2008.

[LMR08c] Ming Li, Murali Mani, and Elke A. Rundensteiner. Elf: A
constraint-aware xquery engine for processing xml streams with
minimized memory footprint. In ICSC, pages 494–495, 2008.

[LMR08d] Ming Li, Murali Mani, and Elke A. Rundensteiner. Semantic
query optimization for processing xml streams with minimized
memory footprint. In EDBT Workshops, pages 27–36, 2008.

[LMR+09] Ming Li, Murali Mani, Elke A. Rundensteiner, Di Wang, and
Tao Lin. Interval event stream processing. In DEBS, 2009.



BIBLIOGRAPHY 159

[LMRL09a] Ming Li, Murali Mani, Elke A. Rundensteiner, and Tao Lin.
Constraint-aware event stream processing. In DEBS, 2009.

[LMRL09b] Ming Li, Murali Mani, Elke A. Rundensteiner, and Tao Lin.
E-tec: A constraint-aware query engine for pattern detection
over event streams. In ICSC, pages 565–566, 2009.

[LMRL10] Ming Li, Murali Mani, Elke A. Rundensteiner, and Tao
Lin. Constraint-aware complex event pattern detection over
streams. In DASFAA, pages 199–215, 2010.

[LMRLona] Ming Li, Murali Mani, Elke A. Rundensteiner, and Tao Lin.
Complex event pattern detection over streams with interval-
based temporal semantics. In preparation for conference sub-
mission.

[LMRLonb] Ming Li, Murali Mani, Elke A. Rundensteiner, and Tao
Lin. Constraint-aware complex event pattern detection over
streams. In preparation for journal submission.

[LMT+05] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker.
Semantics and evaluation techniques for window aggregates in
data streams. In SIGMOD, pages 311–322, 2005.

[LRE09] Geetika T. Lakshmanan, Yuri G. Rabinovich, and Opher Et-
zion. A stratified approach for supporting high throughput
event processing applications. In DEBS, 2009.

[LTS+08] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadi-
mos, Theodore Johnson, and David Maier. Out-of-order pro-
cessing: a new architecture for high-performance stream sys-
tems. PVLDB, 1(1):274–288, 2008.

[Luc07] David Luckham. The power of events: An introduction to com-
plex event processing in distributed enterprise systems. ACM
Trans. Database Syst., 2007.

[LZR06] Bin Liu, Yali Zhu, and Elke A. Rundensteiner. Run-time op-
erator state spilling for memory intensive long-running queries.
In SIGMOD Conference, pages 347–358, 2006.

[MM09] Yuan Mei and Samuel Madden. Zstream: a cost-based query
processor for adaptively detecting composite events. In SIG-
MOD Conference, pages 193–206, 2009.



BIBLIOGRAPHY 160

[MRLD08] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and
Schahram Dustdar. Advanced event processing and notifica-
tions in service runtime environments. In DEBS, pages 115–125,
2008.

[MS07] Carolyn McGregor and Michael Stacey. High frequency dis-
tributed data stream event correlation to improve neonatal clin-
ical management. In DEBS, pages 146–151, 2007.

[NB94] Bernhard Nebel and Hans-Jurgen Burckert. Reasoning about
temporal relations: A maximal tractable subclass of allen’s in-
terval algebra. In AAAI, pages 356–361, 1994.

[NB95] Bernhard Nebel and Hans-Jurgen Burckert. Reasoning about
temporal relations: A maximal tractable subclass of allen’s in-
terval algebra. J. ACM, 42(1):43–66, 1995.

[NRJ04] Steven Noel, Eric Robertson, and Sushil Jajodia. Correlating
intrusion events and building attack scenarios through attack
graph distances. In ACSAC, pages 350–359, 2004.

[PD99] Norman W. Paton and Oscar Diaz. Active database systems.
ACM Comput. Surv., 31(1):63–103, 1999.

[PHL08] Dhaval Patel, Wynne Hsu, and Mongli Lee. Mining relation-
ships among interval-based events for classification. In SIG-
MOD, pages 393–404, 2008.

[PV09] Adrian Paschke and Paul Vincent. A reference architecture for
event processing. In DEBS, 2009.

[QL04] Xinzhou Qin and Wenke Lee. Attack plan recognition and pre-
diction using causal networks. In ACSAC, pages 370–379, 2004.

[RB06] Grigore Rosu and Saddek Bensalem. Allen linear (interval)
temporal logic - translation to ltl and monitor synthesis. In
CAV, pages 263–277, 2006.

[RDS+04] E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, B. Pi-
elech, and N. Mehta. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In VLDB, pages 1353–1356,
2004.



BIBLIOGRAPHY 161

[SC+09] Thanh Tran 0002, Charles Sutton, Richard Cocci, Yanming
Nie, Yanlei Diao, and Prashant J. Shenoy. Probabilistic infer-
ence over rfid streams in mobile environments. In ICDE, pages
1096–1107, 2009.

[SM04] Josef Schiefer and Carolyn McGregor. Correlating events for
monitoring business processes. In ICEIS (1), pages 320–327,
2004.

[SMMP09] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter R.
Pietzuch. Distributed complex event processing with query
rewriting. In DEBS, 2009.

[SPL96] Praveen Seshadri, Hamid Pirahesh, and T. Y. Cliff Leung.
Complex query decorrelation. In ICDE, pages 450–458, 1996.

[SRM05] Hong Su, Elke A. Rundensteiner, and Murali Mani. Semantic
Query Optimization for XQuery over XML Streams. In VLDB,
pages 1293–1296, 2005.

[SW02] A. Schmidt and F. Wass. XMark: a benchmark for XML data
management. In VLDB, pages 974–985, 2002.

[Tom96] David Toman. Point vs. interval-based query languages for tem-
poral databases. In PODS, pages 58–67, 1996.

[vAEE+09] Rainer von Ammon, Christoph Emmersberger, Thomas Ertl-
maier, Opher Etzion, Thomas Paulus, and Florian Springer.
Existing and future standards for event-driven business process
management. In DEBS, 2009.

[WAR08] Seth White, Alexandre Alves, and David Rorke. Weblogic event
server: a lightweight, modular application server for event pro-
cessing. In DEBS, pages 193–200, 2008.

[WBG08] Karen Walzer, Tino Breddin, and Matthias Groch. Relative
temporal constraints in the rete algorithm for complex event
detection. In DEBS, pages 147–155, 2008.

[WC07] Shinyi Wu and Yenliang Chen. Mining nonambiguous temporal
patterns for interval-based events. IEEE Trans. Knowl. Data
Eng., 19(6):742–758, 2007.



BIBLIOGRAPHY 162

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance
complex event processing over streams. In SIGMOD, pages
407–418, 2006.

[WGB08] Karen Walzer, Matthias Groch, and Tino Breddin. Time to the
rescue - supporting temporal reasoning in the rete algorithm for
complex event processing. In DEXA, pages 635–642, 2008.

[WLL+09] Mingzhu Wei, Mo Liu, Ming Li, Denis Golovnya, Elke A. Run-
densteiner, and Kajal T. Claypool. Supporting a spectrum
of out-of-order event processing technologies: from aggressive
to conservative methodologies. In SIGMOD, pages 1031–1034,
2009.

[WLRM06] Mingzhu Wei, Ming Li, Elke A. Rundensteiner, and Murali
Mani. Processing recursive xquery over xml streams: The rain-
drop approach. In ICDE Workshops, page 85, 2006.

[WR09] Song Wang and Elke A. Rundensteiner. Scalable stream join
processing with expensive predicates: workload distribution
and adaptation by time-slicing. In EDBT, pages 299–310, 2009.

[WRGB06] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, and
Sudeept Bhatnagar. State-slice: New paradigm of multi-query
optimization of window-based stream queries. In VLDB, pages
619–630, 2006.

[WRML08] Mingzhu Wei, Elke A. Rundensteiner, Murali Mani, and Ming
Li. Processing recursive xquery over xml streams: The raindrop
approach. Data Knowl. Eng., 65(2):243–265, 2008.

[WSL+06] S. Wang, H. Su, M. Li, M. Wei, S. Yang, E. A. Rundensteiner,
and M. Mani. R-sox: Runtime semantic query optimization
over xml streams. In VLDB, pages 1207–1210, 2006.

[XN04] Dingbang Xu and Peng Ning. Alert correlation through trigger-
ing events and common resources. In ACSAC, pages 360–369,
2004.

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dy-
namic plan migration for continuous queries over data streams.
In SIGMOD Conference, pages 431–442, 2004.


