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Abstract

In this project, we added support to the OCaml interpreter to use the protections
afforded by Intel’s Software Guard Extensions (SGX). In particular, this is ap-
plied to a cryptographic protocol generator to provide provably secure message
exchange even in the face of a malicious operating system.

We argue from a theoretical and experimental perspective that the modifica-
tions presented do not alter program behavior and are not vulnerable to attacks
on our use of cryptography or implementation issues. We also provide a set of
guidelines for developers working with SGX to prevent security bugs.

This project was sponsored by the MITRE Corporation. We would especially
like to thank Joshua Guttman and John Ramsdell for sponsoring and advising
this project and for providing the environment we used to do the work. Your
guidance and advice were invaluable. I couldn’t have done it without you.
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Chapter 1

Problem Statement

As cloud computing becomes more prevalent, it is becoming more and more
important to ensure the confidentiality of proprietary data when it is stored
offsite. In the current cloud model, it is possible for a disgruntled employee or
a black hat with a VM exploit to inspect and modify anyone’s code and data.
In a world where even health care data is migrating to the cloud, this is clearly
not an acceptable situation. We need a model in which nobody—not even the
cloud providers themselves—can access their clients’ sensitive data.

In theory, strict policies can help to keep these unauthorized intrusions at
bay. However, people are fallible, falling prey to phishing, social engineering,
and outright bribery. Furthermore, company policy can do little against an
external attacker who exploits the system.

Another proposed solution is homomorphic encryption, a cryptosystem where
it is possible to perform calculations on encrypted data, such that the result is
also encrypted [20]. However, modern fully homomorphic encryption schemes
are prohibitively expensive, requiring the use of custom-designed homomorphic
encryption for each application, which is also impractical, especially for mod-
ern applications that can use data in several ways. Additionally, homomorphic
encryption does not prevent disclosure of the code itself.

Intel has announced a set of processor extensions known as SGX that attempt
to solve the problem of privileged access by isolating code and data in a so-
called “reverse sandbox” that prevents other software, including the operating
system and hypervisor, from looking inside. This project will leverage SGX

to provide security for code generated by CPPL, a programming language for
defining cryptographic protocols.
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Chapter 2

Background

2.1 Software Guard Extensions

Intel’s Software Guard Extensions (SGX) [1] are a set of processor extensions, re-
leased with the Skylake microarchitecture in August 2015, that allow userspace
processes to run securely, even when running under an actively malicious oper-
ating system or hypervisor. It ensures that the process’s memory is encrypted
and integrity protected whenever it leaves the physical processor chip, so that
privileged code, and even hardware attacks, cannot obtain meaningful informa-
tion about a process’s secrets or modify the data on which it operates. It also
provides attestation capabilities: code running under SGX can prove to remote
parties that it is “approved” code that has not been modified to leak secrets,
and that it is running on a legitimate, non-emulated processor.

A process initially starts in an unprotected state, although it may subse-
quently request that parts of its address space be placed into a secure enclave1

to protect the code and data stored there. Notably, this means that a malicious
actor could modify a process before it entered the enclave, so simply observing
that an enclave exists is not proof that it is running legitimate code. Therefore,
SGX measures the created enclave by hashing its contents, signs the measure-
ment with a key unique and known only to the processor itself, and makes the
measurement and signature available to the enclave. By comparing this mea-
surement against a known-good measurement produced locally, a remote party
can verify whether the code is trustworthy.

SGX does not use a traditional signature scheme, such as RSA, to sign its
measurements. Instead, it uses a scheme, called Enhanced Privacy ID, with some
unusual properties, to preserve users’ anonymity. Under EPID, every processor
has a unique private key for signing, as expected. However, there is only a single
public key, used for verification, shared by every processor produced by Intel.
Due to the design of EPID, this means that it is impossible to determine which

1The first usage of each term in this paper that may be unfamiliar to readers is italicized,
and brief definitions of all of these terms can be found in the glossary.
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private key produced a signature, only that some private key, authorized by
Intel, produced it. The mechanisms by which this is achieved are described in
Section 4.12.

SGX also provides binding capabilities to allow enclaves to store secrets for
future instances. Clearly, the data cannot simply be stored to disk, as the
operating system can intercept the reads and writes or simply read the disk
itself. Therefore, we would like to encrypt the data, but what key can we use?
Any key that the enclave generates would itself need to be stored somewhere,
which raises the original issue again. A remote party could provide the key, but
this requires every instance of the enclave to establish a network connection,
and requires the remote party to permanently store every key it sends, making
it a single point of failure in two distinct ways. To prevent this situation, SGX
allows an enclave to request a binding key, a symmetric key generated from a
combination of the enclave’s measurement and a secret value unique and known
only to the processor. An enclave can then use the binding key to encrypt
secrets that it has been given, allowing the ciphertext to be stored to disk. The
key itself does not need to be stored because future instances of the enclave can
simply retrieve it from the processor again to decrypt the secrets. Because the
binding key is derived from the enclave’s measurement, any modified enclaves
will receive different binding keys, rendering them incapable of decrypting the
secrets.

The binding key is also derived from the individual processor’s secret value,
so it varies across different physical processors. This prevents one compromised
processor from revealing the binding keys for every other processor, but it does
introduce logistical difficulties in distributing data. This is discussed further in
Section 2.1.2.

2.1.1 Protection

To protect its enclaves, a processor implementing SGX must perform several
checks on running code. To begin with, every thread has a flag, stored inside
the processor, that indicates whether or not it is executing inside an enclave. If
code is running without the enclave flag set, it is assumed to be malicious, so
any access to virtual addresses inside an enclave results in a segmentation fault.
Similarly, code with the enclave flag set that tries to access a different enclave’s
memory also receives a segmentation fault.2 Finally, code executing inside an
enclave cannot jump to addresses outside of an enclave, as such locations may
contain malicious code that could hijack the enclave access.

To allow enclaves to safely interact with the outside world, SGX provides
several instructions for managing control flow across enclave boundaries. These
include EEXIT, which safely jumps out of an enclave, replacing the CPU state
with a synthetic state that does not leak potentially sensitive information, and
ERESUME, which allows untrusted code called from an enclave to return back

2However, it is allowed to access both memory within its own enclave and memory that is
not in any enclave, as explained below.
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into the enclave, restoring the CPU state. Note that ERESUME does not allow
specification of the return address; it is stored per enclave thread to prevent
malicious code from returning into regions of the enclave that were not expected
to be running (e.g. returning to an address partway through an initialization
routine, which would initialize only parts of the enclave’s memory, likely causing
unexpected behavior).

2.1.2 Secret Provisioning

In order to take advantage of SGX’s ability to protect a process’s data from
snooping, it is necessary to provide input in an un-snoopable manner as well.
It cannot simply be included in the initial enclave memory, as the data would
be visible both in the executable image and in memory before the enclave is
set up. The canonical solution to this problem is to have a trusted provisioning
server that is responsible for sending input once the enclave has already been
initialized. The flow of this setup is as follows:

1. The worker process sets up its enclave and randomly generates a keypair
from inside the enclave. It sends the enclave’s signature and the public
key to the provisioning server.

2. The provisioning server verifies the enclave’s hash and signature. If they
are both acceptable, it encrypts the input to the public key, and sends the
ciphertext.

3. Inside the enclave, the worker process decrypts the input and processes it.

The main cost of this solution is that it requires a trusted provisioning server,
which must be accessible every time a new worker process is started. In a
cloud environment, this means a high-reliability, off-site server, maintained by
someone other than the cloud provider.

Another solution is to have each enclave request its input from another
enclave instead of from the provisioning server. Doing this, the provisioning
server only needs to be running when the first instance is set up (which does
not require dedicated hardware; the machine that deploys the code can also
serve the initial provisioning). After that, it can give the secret input to other
enclaves, eliminating the single point of failure of a provisioning server. The
disadvantage to this solution is that additional code needs to be included in the
enclave, which increases the attack surface of exploitable bugs.

2.1.3 Prior Protection Mechanisms

To provide protections against emulated CPUs, Intel introduced a unique Pro-
cessor Serial Number, accessible from software, for every physical processor
starting with the Pentium III. This would help a secret provisioning server to
identify emulated processors, as only physical processors would have valid, non-
duplicate serial numbers. However, this was the only issue that it addressed; it
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did not provide any of the protections that SGX would come to provide. In par-
ticular, it could not prevent malicious snooping in processes’ memory spaces or
attest to the code that a process is running. The plan was abandoned, and the
feature removed, before the Pentium 4, due to the privacy concerns it raised:
any software could read the serial number, so it eliminated the possibility of
running software anonymously if the vendor decided to track serial numbers.

2.2 OCaml

Caml is a programming language derived from ML[34] with a focus on efficiency.
It is primarily functional, but it allows for imperative programming as well.
OCaml [32] is an implementation that adds object-oriented concepts and syntax
to vanilla Caml to further increase its flexibility.

There are two ways to run OCaml code: native compilation and bytecode
interpretation. This paper will focus exclusively on the latter. In this mode
of operation, source code is compiled into bytecode, a platform-independent
representation that lies between source code and native binaries. Then, at
runtime, an interpreter reads the bytecode and executes it, similarly to a high-
level VM.

2.3 CPPL

CPPL [23] is a Cryptographic Protocol Programming Language for designing and
implementing cryptographic protocols and defining the implications of their ex-
ecution. It comprises a language that focuses on these semantics and a compiler
that produces code to execute the protocols.

Protocols are described in the Dolev-Yao model [17], and every transmis-
sion and reception can have an associated formula representing a guarantee and
reliance, respectively. Each principal maintains its own theory of the world,
comprising known associations between principals and public keys, which prin-
cipals it considers trustworthy, and other factual information relevant to the
protocol. When a principal receives a message, it can rely on the sender having
said the associated formula3 to extend its theory, and when it sends a message,
it is guaranteeing that the associated formula is true. Therefore, a principal
must be sure to verify that the associated formula is in fact true according to
its own theory before sending each message.

A protocol is considered sound if it is guaranteed that no principal can
deduce an incorrect fact from the messages it receives. This includes executions
of the protocol in which an attacker has full control over the network and can
intercept, modify, and forge messages to and from any participating principals
(the typical assumption for protocol analysis). It is assumed that all programs

3From this, it can be derived that the formula itself is true if the sender is trusted to tell
the truth.
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CPPL source code CPPL compiler OCaml source code

OCaml compiler OCaml bytecode OCaml interpreter

Figure 2.1: Progression from CPPL source to executing binary

running under SGX are sound; if they were not, the protections provided by SGX

would become irrelevant.
The current implementation of CPPL is written in OCaml. The compiler takes

a description of a cryptographic protocol and produces a working program that
implements that protocol. More specifically, it produces OCaml bytecode, which
can be run under the OCaml interpreter. This process can be seen in Figure 2.1.
Although it seems to be unnecessarily roundabout, the process simplifies the
implementation of CPPL and allows the generated programs to take advantage
of the optimizations built into the OCaml compiler.

2.3.1 Example

An example CPPL program, borrowed from [23], is provided below. It implements
the server side of a Needham-Schroeder-like protocol that allows a client to
request stock prices, but will only respond if it can determine that the client
will actually pay for the results.

proc server (b:text, kb:key) [owns(b, kb)]

let chan = accept in

(chan recv {na:nonce, a:text, d:text} kb [true]

let sk:symkey = new in

(send [owns(a, ka)] chan {na, sk, b} ka

(chan recv {sk} kb [says_requests(a, a, b, d)]

(send [will_pay(a, d); curr_val(d, na, v:text)]

chan {Data_is v} sk

return [supplied(a, na, d, v)]))))

10



Chapter 3

Goals and Results

The aim of this project was to investigate the application of SGX to non-trivial,
real-world applications, from both theoretical and applied perspectives, by mod-
ifying CPPL to produce code protected by SGX.

Originally, it was also intended to modify CPPL to include primitives for the
generated programs to perform remote attestation, and to extend CPPL’s trust
model to include these formulae and to know how to handle their semantics.
However, these goals proved to be beyond the scope of the work required for an
MQP, and were dropped due to time constraints.

Due to the implementation of CPPL, we decided that it would be easier
to modify the OCaml interpreter that executes the compiled CPPL code than
to directly modify the code produced by CPPL. This had the added benefit of
extending the protections provided by SGX from just CPPL programs to any
programs written in OCaml.

Another goal was to approach SGX from a theoretical perspective, and explore
its trust architecture was explored. This led to an analysis and review of its
underlying primitives and their functions within the system.

3.1 Evaluation

To establish the validity of the project, it was necessary to demonstrate that
each of the following goals was met:

• CPPL code (and any OCaml code) runs under SGX

• There are no vulnerabilities arising from the logic of the interpreter

• There are no vulnerabilities arising from the implementation of the inter-
preter

This was done by a series of tests and mathematical arguments:
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3.1.1 CPPL (and OCaml) in SGX

To test that code generated by CPPL is protected by SGX, several protocols were
compiled with CPPL, including the Needham-Schroeder-like protocol presented
in Section 2.3.1. It was observed by inspection that an enclave was created, and
that there was no sensitive data or code (aside from the loader and trampolines)
outside of the enclave. Furthermore, it was observed that the protocol executed
correctly, leading to the conclusion that the code and sensitive data must exist,
and therefore are stored inside the enclave. This process was repeated with
several non-CPPL OCaml programs as well, the largest of which was over 600
lines.

3.1.2 No Theoretical Vulnerabilities

The execution of a process was modeled so that its execution inside an enclave
could be analyzed mathematically. Using this model, it was proven that it is
impossible to mount an attack that causes unintended disclosure of secrets on
a sound protocol running inside an enclave.

3.1.3 No Implementation Bugs

We also argued that the low-level implementation cannot be exploited; that
is, an adversary cannot maliciously modify code or data outside of the enclave
to cause undesired behavior. This analysis focused primarily on passing unex-
pected or invalid values (such as negative buffer sizes or pointers to sensitive
data inside the enclave) across enclave boundaries.

3.2 Roadmap

The rest of this paper will include the results of this project:

• Chapter 4 explains the mathematical concepts and algorithms used by SGX

and provides proofs of their security.

• Chapter 5 describes the structure of the OCaml interpreter and the mod-
ifications made to it to execute its bytecode under SGX. It also provides
correctness proofs of the code, and discusses extant vulnerabilities and
how to address them.

• Chapter 6 contains the author’s comments on SGX. It addresses commonly
held misconceptions, advice for using SGX, and the “rough edges” of the
system.

• Appendix A explains in detail the operation and interfaces of SGX. It also
describes the challenges faced by SGX, and how they are solved.

• Appendix B lists the files associated with this paper and their purposes.

12



Chapter 4

Mathematical Basis for SGX

In order to protect enclaves from privileged code and provide its security guar-
antees, SGX makes heavy use of cryptography. This section introduces the major
concepts and cryptographic primitives used by SGX and proves that the latter
meet their stated security goals.

There are two primary guarantees that SGX must make in order to meet its
security goals. First, it must ensure that malicious code, regardless of permission
level, cannot tamper with enclaves. Second, it must be able to demonstrate to
users that their code is actually running inside an enclave, and that it is the
same code that they produced. To provide these guarantees cryptographically,
SGX makes use of a mechanism known as a hash-based message authentication
code (HMAC) for the former, and a signature scheme called Enhanced Privacy
ID (EPID) for the latter. This chapter describes these operations, as well as
the cryptographic concepts, functions, and principles that they depend on:

• Section 4.1 describes how SGX uses HMACs and EPID to provide its guar-
antees.

• Section 4.2 briefly introduces symmetric encryption, in which encryption
and decryption use the same key. In EPID, symmetric encryption is used
to encrypt each page of an enclave’s memory.

• Section 4.3 defines the notion of computational complexity and explains
its importance in designing secure cryptography.

• Section 4.4 reviews the mathematical concept of a group, used heavily
throughout many of the following sections. Section 4.4.3 defines the re-
lated concept of bilinear parings, which play a prominent role in EPID.

• Section 4.5 describes a class of encryption schemes known as attribute
based encryption, or ABE, in which messages can be encrypted to many
recipients, based on sets of attributes instead of individual keys. Sec-
tion 4.7 introduces one such scheme, published by Bethencourt et al., and
proves it correct.
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• Section 4.6 describes the concept of a zero-knowledge proof : a proof of a
fact that does not reveal any additional information. ZKPs are used in
EPID to prove that a private signing key is not on a list of revoked keys,
without revealing the key itself.

• Section 4.8 introduces Shamir secret sharing, a primitive that allows a
message to be split into multiple shares, such that no information can be
gleaned about the original message without possession of a given number
of shares. This is used in the ABE implementation of Bethencourt et al.
to allow more flexibility in defining the authorized recipients of a message.

• Section 4.9 defines the fundamental cryptographic operation of a hash:
a mapping from arbitrarily sized data to a fixed size digest. Hashes are
used in many places throughout this paper, most notably in EPID during
attestation of an enclave’s contents.

• Section 4.10 introduces the concept of a hash-based message authentica-
tion code, used by SGX to ensure the integrity of an enclave’s memory.

• Section 4.11 provides a brief introduction to the BBS+ signature scheme,
which will be used in EPID to prove security guarantees.

• Finally, Section 4.12 describes the algorithms of EPID, used by SGX to
attest to the contents of an enclave. It also contains a more direct proof
of the correctness of EPID, one of the principal results of this MQP.

4.1 Requirements

4.1.1 Enclave Memory Protection

SGX was designed to interfere with the operating system as little as possible;
in particular, this means allowing the OS to do its own memory management.
As a result, SGX does not directly prevent the operating system from reading
enclaves’ memories.1 Instead, it prevents the operating system from obtaining
meaningful data from any such reads by encrypting each page of the enclave’s
memory, and only putting encrypted pages in places accessible to the OS. This
process is explained in more detail in Appendix A.5.

Similarly, SGX does not directly prevent the OS from writing to an enclave’s
memory; instead, it detects when this has happened and aborts the execution
in response. To do this, the processor includes a Message Authentication Code
(or MAC) of every page in the enclave and its metadata, including the page’s
permissions, address (to prevent copying a valid page to an invalid location),
and a monotonically increasing counter (to prevent copying an old page back
into memory). If there is ever a mismatch between the memory and its MAC,
the processor concludes that something has tampered with the enclave.

1Part of memory management involves swapping memory to and from disk. Therefore, the
OS needs to be able to read (to swap out) and write (to swap in) every process’s memory,
including enclave memory.
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4.1.2 Attestation

Running a process within an enclave for protection does little good if nobody is
convinced that this is actually the case. Therefore, it is essential to be able to
demonstrate that a process is in fact protected. Doing so is termed attestation,
explained in detail in Appendix A.3. Briefly, this is achieved by producing a
hash of the enclave’s contents, and cryptographically signing it using a secret
key known only to a legitimate processor. If a verifier trusts the hardware
manufacturer to issue secret keys only to chips that function correctly (e.g.
with no backdoors to peek inside enclaves or to export secret keys), then it
can be deduced that a valid signature demonstrates the existence of a secure
process. If the signed hash matches a hash of the enclave’s expected contents,
computed locally, then it can also be deduced that the secure process is running
the correct, unmodified code.

4.2 Symmetric vs Asymmetric Encryption

All historical encryption algorithms, and even many modern ones (such as DES
and AES), are symmetric encryption algorithms. This means that they use the
same key for encryption and decryption (as opposed to asymmetric or public
key algorithms, which have a separate public key for encryption and private key
for decryption). Readers interested in the subject are referred to [5, 16, 26, 27]
for more information.

4.3 Computational Complexity

When analyzing algorithms, it is desirable to have an objective measure of
efficiency that is not dependent on processor speed, compiler optimizations, or
other variable factors that do not affect the algorithms themselves. To do this,
we define complexity as a measure of how quickly the number of operations
required by an algorithm grows as the input increases in size. Formally, an
algorithm that takes f(x) operations, where x is the size of its input, is in
complexity class O(g(x)) if

∃x0 | ∀x > x0, ∃α | f(x) < αg(x),

that is, that beyond a point x0, f(x) is less than g(x) up to a constant factor
[28]. It is in complexity class Ω(g(x)) if

∃x0 | ∀x > x0, ∃α 6= 0 | f(x) > αg(x),

meaning that beyond a point x0, f(x) is greater than g(x) up to a constant
factor [28].

An important complexity class consists of algorithms that take exponential,
or Ω(cn), time, for a constant c > 1. We aim to make our adversaries’ best-
case attacks fit into this class because these algorithms can be made to take
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extraordinarily long amounts of time just by increasing the input size a moderate
amount. For this reason, they are also referred to as computationally infeasible
for sufficiently large inputs.

While it would be ideal to make an adversary’s attack literally impossible,
such a goal is itself impossible for most algorithms: if it is possible for the
adversary to determine if a given solution (e.g. private key) is correct, then
he can simply enumerate and check every possibility. Because there are only a
finite number of possible solutions that fit in a finite storage size, this algorithm
takes a finite amount of time. The next best option, therefore, is to make such
an attack take prohibitively long.

4.4 Group Theory

Group theory is a branch of abstract algebra dealing with algebraic structures
known as groups. A group is a set of values with a binary operator, which we will
denote as multiplication (either by juxtaposition (ab) or with a multiplication
dot (a · b), when necessary for readability), with the following properties:

0. Closure: The binary operation is defined for all pairs of values in the
group, and always yields a value in the group.

1. Associativity: (ab)c = a(bc) for all a, b, and c in the group.

2. Identity: There is an element e, called the identity element, such that
ae = ea = a for all a in the group.

3. Inverse: For every element a in the group, there is an element a−1, called
the inverse of a, such that aa−1 = a−1a = e.

Groups are not required to be commutative (that is, it is not necessarily true
that ab = ba for all a and b), but groups that are are called abelian. Groups
may be finite or infinite. Some examples of groups include:

• Real numbers (R) over addition

• Rational numbers without 0 (Q∗) over multiplication

• Integers modulo n (Zn) over addition

• Integers modulo p without 0 (Z∗p) over multiplication

• Non-singular n×n square matrices (for a fixed n) over matrix multiplica-
tion

• Permutations over sequencing

• The Klein four-group: {e, a, b, ab}, where a and b are abstract elements
such that a2 = b2 = e

If the operation on a group is obvious from context, it is often omitted.
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4.4.1 Cyclic Groups

For some groups, there is an element g, called a generator of the group, such
that every element can be represented as gn for some integer n. These groups
are called cyclic groups, and are often notated as 〈g〉.

For instance, the set of integers modulo 5, excluding 0 (normally written as
Z∗5; containing the elements 1, 2, 3, and 4) is a group with respect to multipli-
cation. In this group, 2 is a generator, because every element can be expressed
as 2n for some n:

• 1 = 20

• 2 = 21

• 3 = 23 (because 23 = 8 ≡ 3
mod 5

)

• 4 = 22

Therefore, we could also write this group as 〈2〉.
Cyclic groups are often used in cryptography, and are the basis of the cyclic

redundancy checks often used for error detection in hardware devices such as
disks and in communication protocols.

4.4.2 Elliptic Curves

Another example of a group can be found in elliptic curves: curves of the form
y2 = x3 + ax + b. In this definition, x and y are often taken from R or Q, but
for cryptography, they are taken from Zp, for a prime p. For a fixed a and b,
points on this curve (together with the point at infinity) form a group. The
binary operation is defined as follows:

Definition 1 (Binary operation of elliptic curves). Find the line passing through
both points and find its third intersection point with the curve. The result of the
operation is this point mirrored over the x axis.

Although it is not immediately apparent that this satisfies the group condi-
tions, a proof can be found in [19].

4.4.3 Bilinear Pairings

A bilinear pairing is a function e : G1×G2 → GT that takes two group elements
(usually from the same group, although it is not necessary) and produces an
element from another group, satisfying the following conditions:

1. Linearity: ∀a ∈ G1, b ∈ G2,m, n ∈ Z : e(am, bn) = e(a, b)mn

2. Non-degeneracy: ∃a, b | e(a, b) 6= eGT
(where eGT

is the identity element
of GT .
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Informally, these conditions mean that exponents can be distributed to either
argument and that e(a, b) is not always the identity element. Many texts also
require that e be efficiently computable; regardless of definition, it is necessary
to be useful in practice.

From this definition, it can be derived that e must be injective in each
argument; that is, with a fixed element from G1, no two distinct elements from
G2 (and vice versa) will map to the same element. This result will be used in
section 4.4.4.2.

4.4.4 Complexity Assumptions

Classical cryptography relies on the computational complexity of discovering
secret keys from public information. To do so, it usually depends on the difficulty
of one or more problems: constructions that constrain an output value based on
the value of inputs. Ideally, cryptographic implementations would use problems
that are proven to be computationally infeasible; however, because these are
limited in number, problems that are strongly suspected by the community to
be computationally infeasible are also often used [29].

4.4.4.1 Discrete Logarithm Problem

The discrete logarithm of a group element β is defined as the smallest positive
integer n such that gn = β. It is guaranteed to exist if g is a generator because
cyclic groups are defined such that every element is expressible in such a form.

For some groups, such as Zn with respect to addition, the discrete logarithm
can be calculated efficiently. However, there is no known algorithm that works
efficiently in arbitrary groups, and the problem is believed to be computationally
infeasible in many groups without a known solution [35, 29].

4.4.4.2 Decisional Diffie-Hellman Problem

Another problem defined on groups is the decisional Diffie-Hellman (DDH) prob-
lem: given group elements ga, gb, and z for randomly selected integers a and b,
does z = gab? More formally, the problem asks for a polynomial-time algorithm
that can distinguish between (ga, gb, gab) and (ga, gb, gc), where a, b, and c are
randomly selected integers, with non-negligible probability. Note that this is
stronger than the discrete logarithm problem; given a solution to that, b can be
recovered from gb, and (ga)b = gab can be calculated directly. Therefore, the
DDH problem can be solved efficiently for any group in which the discrete log
problem can be solved efficiently; however, it is believed to be computationally
infeasible for others [9, 29].

It can be easily shown that any group with an efficiently computable bilinear
pairing has an efficient solution to the decisional Diffie-Hellman problem: if we
can compute e, we can calculate e(ga, gb) = e(g, gab), and if this is equal to
e(g, z), then we know that z = gab (because e is injective in each argument).
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4.4.4.3 Gap Groups

Some groups, such as Z∗p, have an efficiently computable solution to the deci-
sional Diffie-Hellman problem, but are believed to have a computationally in-
feasible discrete log problem. These are called gap groups and are useful when
dealing with bilinear pairings [29].

4.5 Attribute-Based Encryption

Attribute-based encryption (ABE) [22, 7] is a cryptosystem in which encryption
and decryption are performed using a set of attributes and policies, rather than
the traditional public and private keys. This allows a user to encrypt to a group
of people, without knowing the exact identity of each member. Critically, it is
also collusion-resistant, meaning that multiple parties cannot pool their secret
keys to decrypt a message that none of them could decrypt alone.

There are two main classes of ABE: key-policy (KPABE) and ciphertext-
policy (CPABE). Only CPABE is used in this project, but both are discussed
here for completeness and comparison.

In KPABE, messages are assigned a set of attributes at encryption time,
and each user’s key has an embedded policy that determines what messages
it can decrypt based on the attributes with which the message was encrypted.
This is well-suited for situations where the types of information that each user
should have access to is known beforehand, such as television broadcasting or log
sharing. For instance, consider a service that wants to share different parts of its
logs with various entities, but needs to ensure that nefarious recipients cannot
access unauthorized parts of the logs. Each log entry can be encrypted using
a set of attributes (e.g. a sensitivity level, the originating component, and the
date), and interested parties can be given keys with a policy that allows them to
decrypt only entries that they are authorized to access (e.g. (nonsensitive or

(lowsensitivity and database)) and year2015, to specify that a user can
access any nonsensitive data and low sensitivity data related to the database,
but that access expires after 2015).

In CPABE, these roles are reversed: a user’s key has a fixed set of attributes,
and each message is encrypted using a policy that specifies what attributes are
required to decrypt it. This is better suited for situations where the classes
of information are more dynamic, such as email. For instance, consider a large
company that wants to be able to send emails to groups of employees. Each em-
ployee receives a key specifying, e.g., his department, position in the company,
and hire date, and messages can be encrypted using arbitrary combinations of
these attributes, which may not have been predicted beforehand. For instance,
a message regarding benefits for newly-hired part-time employees can be en-
crypted with the policy (parttime and hired2015) or hr to ensure that it
reaches only the affected employees and the HR department.
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4.5.1 Keys

It is important to realize that ABE keys are not simply large numbers, as is
the case for many other cryptographic algorithms. Instead, they are complex
data structures with many component subkeys, arranged such that they can
only be of use in decrypting messages that they are authorized to decrypt [22].
This means that the algorithm does not simply check the policy and refuse
to continue if the given key is unauthorized; it is cryptographically unable to
decrypt a message without an authorized key.

4.6 Zero-Knowledge Proofs

A zero-knowledge proof (ZKP) is a proof of a predicate that does not reveal any
information beyond the truth of the predicate [21]. They will be used heavily
in the formation of EPID signatures (explained in section 4.12), which are used
for attestation by SGX.

In general, ZKPs are usually realized by constructing a game related to the
predicate. To begin, the prover, called Peggy, commits to some randomly chosen
r without revealing its value. Then the verifier, called Victor, requests either
r itself or some function of r and the secret portion of the predicate. Thus,
Peggy cannot make up an r and a value of the function that are consistent with
each other without knowing the secret, although she can make up either one
individually. This means that if she does not know the secret, she needs to guess
which value to make up when she commits to r, although Victor has not yet
decided which one to request. Therefore, if Victor plays this game several times,
the odds of Peggy guessing correctly every time become vanishingly small, and
she will eventually be unable to provide a valid response.

Zero-knowledge proofs are used in EPID when signing to prove that the
signature was created by a key that has not been revoked, while preserving
privacy by not revealing which particular key was used.

4.6.1 Example: Discrete Logarithms

Suppose that Peggy wants to prove to Victor that she knows x such that gx ≡ β,
where g is the generator of a group of prime order p in which the discrete log
problem is computationally infeasible. However, she does not want to reveal
the actual value of x. This can be achieved by following a protocol described in
[13]:

1. Peggy randomly selects r ∈ 〈g〉 and sends Victor C = gr.

2. Victor requests either r or x+r (mod p−1) from Peggy, chosen randomly.

3. Peggy sends the requested value.

4. Victor verifies the result: r can be verified by recalculating C = gr, and
x+ r (mod p− 1) by calculating gx+r (mod p−1) = gx · gr = β · C.
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Note that if Peggy is lying about knowing x, it is trivial for her to produce
a C that will satisfy one of the two requested values. However, when she sends
the value of C, she does not know which value Victor will request, so she must
choose one of the cases to forge. Because Victor randomly chooses which value
to request, there is a 1

2 chance that Peggy will have guessed incorrectly, revealing
herself as a liar. Therefore, if they execute the protocol N times, the chances
of Peggy successfully lying by guessing correctly every time is 1

2N , which can be
reduced very quickly to an arbitrarily small chance by increasing N .

It remains to show that this protocol reveals no information about the value
of x. Recall that Peggy can produce a C that is consistent with either request
without knowing x. Because this does not require any information unknown to
Victor, it is also possible for him to produce such Cs. This lets him form a fake
protocol execution, by simply deciding which value to request before producing
a C. Clearly, Victor cannot extract any information about x from these fakes,
given that he is the one that made them. However, the fake executions are
indistinguishable from valid executions with Peggy, so he cannot extract any
information about x from Peggy’s executions either.

4.6.2 Fiat-Shamir Heuristic

An inconvenient aspect of many zero-knowledge proofs is that they are inter-
active. This has several implications: first, a proof cannot be published at one
time by a prover and verified offline at another time by a verifier. Second,
third-party observers will remain unconvinced; they have no assurance that the
prover and verifier did not agree beforehand on a sequence of allegedly random
numbers to use.

A technique, called the Fiat-Shamir Heuristic, solves this conundrum by
allowing Victor to deterministically generate “randomness” to decide which re-
quest to make of Peggy [18]. Instead of generating a truly random request, he
can take the hash value of Peggy’s commitment (C in the above example). Un-
der the random oracle model of hash functions [6], this is a random number, so
it cannot be cheated by Peggy; however, it can be regenerated by third parties
to verify a transcript. In fact, it allows Peggy to form a complete transcript by
playing the part of Victor, as there is no longer any true randomness involved.
To perform multiple requests to increase confidence, the ordinal of the request
is included in the hashed value to prevent the same request from being issued
each time.

The Fiat-Shamir Heuristic is used to make the ZKPs used in EPID nonin-
teractive, so that they can be included as part of a signature.

4.7 CPABE Implementation of Bethencourt et
al.

In [7], Bethencourt et al. describe an implementation of CPABE using bilinear
pairings.
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4.7.1 Access Structures

The authors begin by defining a tree-based access structure (for an example,
see Figure 4.1) and a notion of satisfiability over it. This structure will be
incorporated into the ciphertext; a principal will only be able to decrypt the
message if his key can satisfy the access structure. The leaf nodes of the tree
are individual attributes; they are satisfied for a given key if the key contains
the associated attribute. Interior nodes of the access tree have an associated
threshold number, a quantity representing the minimum number of children
nodes that must be satisfied for the parent node to be satisfied (for instance, if
the threshold number is 1, the node functions as an “or” gate, and if it is equal
to the number of child nodes, the node functions as an “and” gate). Using these
definitions, arbitrary access policies can be constructed, with the limitation
that possession of an attribute cannot disqualify a key from satisfying a policy.
The authors note that this limitation can be solved by doubling the number of
attributes: each original attribute gets a positive and a negative variant, and
all keys are given exactly one of the two new attributes.

4.7.2 Numerical Attributes

Attributes represent Boolean values, but it is often desirable to assign keys nu-
merical values and restrict access using inequalities (e.g. level > 5). This can
be achieved by using one Boolean attribute for each possible value and listing
every permissible value in the policy, but this solution quickly becomes unwieldy
for even moderately sized values. An alternate solution is proposed in [7]: define
two attributes for each bit in the value and assign exactly one of the two to each
key (e.g. a four bit numerical attribute uses Boolean attributes 0***, 1***,
*0**, *1**, **0*, **1*, ***0, and ***1, and a key with the value 9 would con-
tain attributes 1***, *0**, **0*, and ***1). Then, an access structure can be
constructed that parallels the decision process for comparisons, as demonstrated
in Figure 4.1.

4.7.3 Algorithms

CPABE comprises four algorithms (plus an optional fifth):

Setup This algorithm initializes the system, yielding a master key, used by
the private key generator for generating keys for users, and the public
parameters, used by anyone to encrypt messages.

GenerateKey This algorithm takes the master key and a set of attributes,
and generates a new private key that contains the given attributes.

Encrypt This algorithm takes the public parameters, an access structure, and a
message. It produces an encryption of the message that is only decryptable
using a key that satisfies the given access structure.
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*1**

**1* ***1

or

and

or

Figure 4.1: Example access tree for numerical attributes (n ≥ 5)
This tree represents a comparison of a key’s numerical attribute to 5. If the
key contains the attribute 1***, then its value has the fourth bit set, so it
must be at least 8, which is a sufficient constraint for our ≥ 5 comparison
(making it an “or” constraint). Otherwise, we check the third bit. If it is set
(meaning it has the *1** attribute), then the value must be at least 4, making
*1** a necessary (“and”) constraint. Continuing, possessing a set bit 2 (**1*)
makes the value at least 6 (sufficient; “or”), and otherwise, a set bit 1 (***1)
makes the value at least 5 (which is our exact comparison, so there is no need
for further checks).
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Decrypt This algorithm takes the public parameters, a private key, and an
encrypted message. It returns the original message if the private key
satisfies the ciphertext’s embedded access structure, and fails otherwise.

Delegate This algorithm is not necessary for a functional CPABE system. It
takes a private key and a subset of its attributes and produces a new
private key that contains the given attributes.

The implementations of these algorithms for the system described in [7] are
summarized below.

4.7.3.1 Setup

Choose a bilinear group G0 with prime order p and generator g, randomly select
α and β from Zp, and choose a hash function H. The public parameters are
G0, g, h = gβ , e(g, g)α, H, and (for delegation) f = g1/β . The master key is
(β, gα).

4.7.3.2 GenerateKey

Randomly select r and, for each j in the given set of attributes, rj from Zp.
The secret key comprises D = g(α+r)/β and, for each j, Dj = gr · H(j)rj and
D′j = grj .

4.7.3.3 Encrypt

Define a polynomial qx for each node x of the access tree as follows:

• For leaf nodes, use the constant polynomial whose value is the parent
node’s polynomial evaluated at the node’s unique index within the parent.

• For interior nodes, set the constant term to the parent node’s polynomial
evaluated at the node’s unique index within the parent (use a value s
randomly selected from Zp for the root node, which has no parent). Then,
randomly select k − 1 additional points, where k is the threshold number
of the node, to obtain a unique (k − 1)-degree polynomial.

The ciphertext comprises the access tree, C̃ = Me(g, g)αs, C = hs, and for
each leaf node y in the access tree, Cy = gqy(0) and C ′y = H(att(y))qy(0).

4.7.3.4 Decrypt

Define the Lagrange coefficient ∆i,S =
∏
j∈S,j 6=i

x−j
i−j for i ∈ Zp and S ⊆ Zp.

Each node of the access tree can be decrypted (iff it is satisfiable) to obtain
e(g, g)rqx(0) as follows:
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• For leaf nodes, if the given secret key does not contain the associated
attribute, return an error. Otherwise, let i = att(x) and return

e(Di, Cx)

e(D′i, C
′
x)

=
e(gr ·H(i)ri , gqx(0))

e(gri , H(i)qx(0))

=
e(gr, gqx(0)) · e(H(i)ri , gqx(0))

e(H(i)ri , gqx(0))

= e(gr, gqx(0))

= e(g, g)rqx(0).

• For interior nodes, decryption requires the number of decrypted child
nodes to meet or exceed k, the threshold number (note that this sim-
ply uses Shamir secret sharing (explained in Section 4.8) to share the
decrypted value). If there are not enough child nodes that can be de-
crypted, return an error. Otherwise, decrypt a sufficient number of child
nodes and return∏

z∈Sx

F
∆i,S′x

(0)
z =

∏
z∈Sx

(e(g, g)rqx(0))∆i,S′x
(0)

=
∏
z∈Sx

(e(g, g)rqparent(z)(iz))∆i,S′x
(0)

=
∏
z∈Sx

e(g, g)rqx(iz)∆i,S′x
(0)

= e(g, g)rqx(0),

where Sx is the set of child nodes, S′x is the set of child node indices, iz is
the index of child node z, and Fz is the decrypted value of node z.

Finally, decrypt the root node of the access tree as A. The message is

C̃A

e(C,D)
=

C̃e(g, g)rs

e(hs, g(α+r)/β)

=
(Me(g, g)αs)e(g, g)rs

e((gβ)s, g(α+r)/β)

=
Me(g, g)αs+rs

e(g, g)(βs)((α+r)/β)

= M.

4.7.3.5 Delegate

Randomly select r̃ and, for each k in the new set of attributes, r̃k from Zp. The

new secret key comprises D̃ = Df r̃ and, for each k, D̃k = Dkg
r̃H(k)r̃k and

D̃′k = D′kg
r̃j .

Because this is the only algorithm that depends on the public value of f ,
delegation can be disallowed by omitting the value from the public parameters.
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4.8 Shamir Secret Sharing

Secret sharing is a primitive that divides a secret value into n shares in such a
way that at least k shares are required to reconstruct it, but having any fewer
provides no information about the secret. One implementation of this is Shamir
Secret Sharing [38]:

Construct a polynomial of degree k− 1, where the constant term is equal to
the secret, and the other terms are randomly selected. Evaluate the polynomial
at points {1, 2, . . . , n} to form the n shares. To reconstruct the secret, perform
an interpolation on k points to obtain the original k − 1st degree polynomial,
and extract the constant term. Note that with any fewer than k points, not only
is there not a unique k− 1st degree polynomial, but there is at least one k− 1st
degree polynomial that contains each constant term, making it impossible to
glean any additional information about the secret.

Shamir Secret Sharing is used in Bethencourt et al.’s CPABE implementa-
tion to allow for nodes that are satisfied when k of their n children are satisfied.

4.9 Hashing

A cryptographic hash is a mapping h : {0, 1}∗ → {0, 1}k from arbitrary data
to a finite-sized space, termed a digest, in an non-invertable way. It has several
properties:

Avalanche effect Even a small change in the input should produce a large
change in the output (approximately half of the bits).

Collision resistance It is computationally infeasible to find distinct m1 and
m2 such that h(m1) = h(m2); that is, to find two messages with the same
hash value.

Preimage resistance Given a digest d, it is computationally infeasible to find
an m such that h(m) = d; that is, to find a message that matches a given
digest.

Second preimage resistance Given m1, it is computationally infeasible to
find an m2 such that h(m1) = h(m2); that is, to find a message that
shares the same digest as a given message. (This is similar to collision
resistance, but m1 is fixed, making it a stronger condition.)

Hashes are used extensively for both cryptographic and non-cryptographic
purposes, especially when dealing with arbitrarily-sized data.

4.10 Hash-Based MACs

A message authentication code (or MAC ) is a code to verify the integrity of a
message. It is analogous to a symmetric signature because it requires both the
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signer and verifier to share the same secret. MACs are usually implemented us-
ing hash functions; one particular implementation is called “hash-based MAC,”
or HMAC.

A näıve implementation of a MAC with a secret key k for a message m
might look like MAC(k,m) = h(k||m), under the assumption that an attacker
would need to know k or be able to find a hash collision in order to forge a
MAC. However, this implementation is vulnerable to what is known as a “length
extension attack.” For many common hash functions, the digest is simply the
hash’s internal state when it reaches the end of a message. It is therefore possible
to reverse a digest into an internal state, and continue hashing as though there
were more data. This allows an attacker without knowledge of k to calculate
h(k||m||x) = MAC(k,m||x); that is, to calculate a valid MAC for arbitrary data
appended to a previously MAC-ed message. This may be acceptable for certain
use cases, but for the vast majority, a better solution is needed.

The next obvious solution is MAC(k,m) = h(m||k) or even MAC(k,m) =
h(k||m||k) in an attempt to avoid potential attacks on the former. However,
there have been proposed vulnerabilities to these constructions as well [36]. To
avoid these vulnerabilities, and potential future vulnerabilities, the standardized
construction today, known as HMAC, is [30]:

HMAC(k,m) = h((k ⊕ opad) || h((k ⊕ ipad) || m)),

where opad =0x5C5C . . . 5C and ipad =0x3636 . . . 36, both sized to match k.
Not only is this construction not vulnerable to any known attacks, but it is
resilient against future hash collision attacks that may be discovered against
the underlying hash function [4].

HMACs are used in SGX for the processor to attest to other local enclaves
and to verify that encrypted memory accessible to the operating system has not
been tampered with.

4.11 BBS+ Signature Scheme

BBS+ is a signature scheme built on group theory and bilinear pairings [3]. It
has three operations:

GenKey This is called beforehand by the signer to generate a private and
associated public key.

Let G1 and G2 be cyclic groups of prime order p, with a bilinear map e to
GT . Randomly select g1, h1, and h2 from G1, g2 from G2, and γ from Z∗p.
Let w = gγ2 . The private key is γ, and the public key is (g1, g2, h1, h2, w).

Sign This is called by the signer to produce a signature, given the signer’s
private key, public key, and message m ∈ Zp.
Randomly select x and y from Zp, and let A = (g1h

m
1 h

y
2)1/x+γ . The

signature is (A, x, y).
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Verify This is called by the verifier to check a signature, given the signer’s
public key and message.

Determine whether e(A, gx2w) = e(g1h
m
1 h

y
2, g2). The signature is valid if

and only if the equality holds. The proof of this follows directly from the
previous definitions.

It is shown in [3] that signatures in this scheme cannot be forged by an
attacker without the private key.

4.12 Enhanced Privacy ID (EPID)

4.12.1 Group Signatures

A group signature scheme is one in which many principals, each with a unique
private key for signing, share the same public key for verification. Informally,
this means that each member of a group can sign a message on behalf of the
entire group, in the same way that any spokesperson of a company can make
a statement on behalf of the entire company. Additionally, the scheme is con-
structed in such a way that a signature verifier cannot determine which principal
produced a given signature; nor can it distinguish between multiple signatures
by the same principal and signatures produced by distinct principals. It also
allows for a special principal, known as a revocation manager, to maintain a list
of individual keys whose signatures should not be accepted, to deal with users
who abuse their ability to sign on behalf of the group.

As used in SGX, each processor is a principal, with its own unique private
key, and Intel is the issuer and revocation manager. This means that there is a
single public key shared by all Intel processors. Verification requires no private
information, so it can be performed by any processor, including those that do
not support SGX (because they were produced before SGX was released or by a
manufacturer other than Intel).

Although the term group signature shares a name with the mathematical
concept of a group, it does not refer to the same definition. Instead, it uses
the term in the colloquial sense: a collection or set (of principals, in this case).
However, many schemes do use mathematical groups to implement group sig-
natures.

Several group signature schemes have been published, each with its own
strengths and deficiencies [2, 12, 14, 15]; the scheme used by SGX is Intel’s
Enhanced Privacy ID (EPID) [37]. Ordinarily, group signatures allow for the
revocation manager to override anonymity and reveal which principal issued a
given signature. A design decision of EPID is not to allow this; it does not allow
for anyone, even the revocation manager, to do so [10]. Instead, it enhances the
Revoke algorithm typically used in group signatures. This new Revoke algorithm
allows the revocation manager to revoke a private key given only a signature
that it produced, without knowing the identity of the private key. Technically,
this means that EPID is not a group signature scheme. However, it is similar
enough that we will continue to refer to it as one in this paper.
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Figure 4.2: Algorithms and Data in EPID
Algorithms are denoted by rectangles, and data are denoted by ovals. Data
within a principal’s box is private to that principal, while data outside any box
can be public.

EPID is used by SGX to attest to enclave hashes.

4.12.2 Algorithms

EPID comprises 5 algorithms [10], summarized in Figure 4.2 and explained in
detail below:

Setup This is called by the issuer to construct a public key for the group and
a private key for the issuer, which allows principals to join the group.

Let G1, G2, and G3 be cyclic groups of prime order p (with generators g1,
g2, and g3, respectively), where G1 and G2 have a bilinear map e to G3.
Randomly select h1 and h2 from G1 and γ from Z∗p, and let w = gγ2 . The
issuer’s private key is γ, and the group’s public key is

(p,G1, G2, G3, g1, g2, g3, h1, h2, w).

In the case of SGX, this was called once by Intel before manufacturing
processors. The public key was published, and the issuer private key was
stored securely, so that it can be used to generate each processor’s private
key.
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Join This is an interactive protocol2 between a principal P wishing to join the
group and the group’s issuer I. It provides the joining principal with a
private key that it can use to sign messages anonymously.

First, P randomly selects f and y′ from Zp and sends T = hf1 · h
y′

2 and a
proof of knowledge of f and y′ to I. Next, I randomly selects x and y′′

from Zp and sends x, y′′, and A = (g1 · T · hy
′′

2 )1/(x+γ) to P. Finally, P
takes y ≡ y′ + y′′ mod p and calculates e(A,w · gx2 ) and e(g1 · hf1 · h

y
2, g2).

If the latter two results are not equal, an error has occurred. Otherwise,
P’s private key is (A, x, y, f). (Note that (A, x, y) is a BBS+ signature on
f).

In the case of SGX, this is used by Intel to give each processor chip a unique
private key at manufacture time.

Sign This algorithm produces a signature on a message, given a group’s public
key, an unrevoked private key, a revocation list, and the message m.

Randomly select B in G3 and a in Zp and calculate K = Bf , b = y + ax
mod p, and T = A · ha2 . Produce zero-knowledge proofs of a signature as
described below, and, for each revocation in the revocation list, a ZKP
that the private key is not the revoked key (Using the ZKP algorithm
described in [11]).

To produce a zero-knowledge proof that P knows x, f , a, and b such that
K = Bf and e(T, g2)−x ·e(h1, g2)f ·e(h2, g2)b ·e(h2, w)a = e(T,w)/e(g1, g2):

1. Randomly select rx, rf , ra, and rb from Zp and compute R1 = Brf

and R2 = e(T, g2)−rx · e(h1, g2)rf · e(h2, g2)rb · e(h2, w)ra .

2. Compute the Fiat-Shamir Heuristic c = H(pk, B,K, T,R1, R2,m),
where H is a publicly-known hash mapping into Zp and pk is the
group’s public key.

3. Calculate sx = rx + cx, sf = rf + cf , sa = ra + ca, and sb = rb + cb,
and produce σ = (B,K, T, c, sx, sf , sa, sb).

Under SGX, this is used by the quoting enclave to attest to the contents
of another enclave, without revealing which processor chip the enclave is
running on.

Verify This algorithm determines whether a signature was produced by an
unrevoked private key associated with a given public key. It does not
require any private keying material.

Given a signature σ = (B,K, T, c, sx, sf , sa, sb) and list of zero-knowledge

proofs, compute R̂1 = Bsf ·K−c and

R̂2 = e(T, g2)−sx · e(h1, g2)sf · e(h2, g2)sb · e(h2, w)sa · (e(g1, g2)/e(T,w))c.

2Interactivity means that both the joining principal and the issuer can keep secrets from
each other, so that even the issuer does not know the new signer’s private key.
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Verify that c = H(pk, B,K, T, R̂1, R̂2,m), and that each zero-knowledge
proof is valid. Note that the signature may have been made with an
older revocation list, so it should also be confirmed that the ZKPs cover
a sufficiently current revocation list.

In SGX, this is called by the user requesting the enclave to be run to verify
an attestation. Note that it will, in general, not be used on the same
computer that is running the enclave.

Revoke This algorithm allows the revocation manager to establish a set of
keys (identified by signatures that they have produced) that are no longer
allowed to issue signatures on behalf of the group. It produces (or extends)
a revocation list that can be used in the Verify algorithm to check if a
signature was produced with a revoked key.

Given a signature σ = (B,K, T, c, sx, sf , sa, sb) and a (possibly empty)
revocation list, add (B,K) to the revocation list.

Note that this algorithm does not require any private data, so it can
be performed by anyone. Therefore, the true revocation manager must
sign its revocation lists (using a traditional signature algorithm, such as
RSA) to prevent attackers from producing rogue revocation lists. It also
means that trusted third parties can produce their own, equally usable,
revocation lists independently of the “real” revocation manager.3

For SGX, this will be run by Intel if the private key from a processor is
ever compromised, to prevent attackers from using the key to falsely attest
to the contents (or existence) of enclaves. The revocation list will be
published; because it is not secret, there is no need for special treatment.

4.12.3 Correctness Proofs

For a signature to verify, it must have a valid zero-knowledge proof of a signature,
which can only happen if all parameters to the hash function are the same.
Therefore, we must show that R̂1 = R1 and R̂2 = R2 for a valid signature; all
other parameters are given in σ. (An implicit proof of Theorem 1 appears in
[10], but we provide an explicit proof here.)

Theorem 1. Correct signatures will verify: R̂1 = R1 and R̂2 = R2.

R̂1 = Bsf ·K−c = Brf+cf · (Bf )−c = Brf+cf−cf = Brf = R1

3This could be useful if, for example, Intel stops supporting SGX in the future or refuses
to acknowledge the compromise of a particular key. It could also be used to prevent enclaves
from being created on particular processors for reasons other than key compromise.
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R̂2 = e(T, g2)−sx · e(h1, g2)sf · e(h2, g2)sb · e(h2, w)sa · (e(g1, g2)/e(T,w))c

= e(T, g2)−rx−cx · e(h1, g2)rf+cf · e(h2, g2)rb+cb · e(h2, w)ra+ca · (e(g1, g2)/e(T,w))c

= (e(T, g2)−rx · e(h1, g2)rf · e(h2, g2)rb · e(h2, w)ra)·
(e(T, g2)−x · e(h1, g2)f · e(h2, g2)b · e(h2, w)a)c · e(g1, g2)c/e(T,w)c

= R2 · (e(Aha2 , g2)−x · e(h1, g2)f · e(h2, g2)y+ax · e(h2, g
γ
2 )a · e(g1, g2)/e(Aha2 , g

γ
2 ))c

= R2 · (e((Aha2)−x, g2) · e(hf1 , g2) · e(hy+ax
2 , g2) · e(haγ2 , g2) · e(g1, g2)/e((Aha2)γ , g2))c

= R2 · e((Aha2)−x · hf1 · h
y+ax
2 · haγ2 · g1/(Ah

a
2)γ , g2)c

= R2 · e((Aha2)−x−γ · hf1 · h
y
2 · h

ax+aγ
2 · g1, g2)c

= R2 · e(A−x−γ · h−ax−aγ2 · hf1 · h
y
2 · h

ax+aγ
2 · g1, g2)c

= R2 · e(A−x−γ · hf1 · h
y
2 · g1, g2)c

= R2 · e((g1 · T · hy
′′

2 )(−x−γ)/(x+γ) · hf1 · h
y
2 · g1, g2)c

= R2 · e((g1 · hf1 · h
y′

2 · h
y′′

2 )−1 · hf1 · h
y
2 · g1, g2)c

= R2 · e((g1 · hf1 · h
y
2)−1 · hf1 · h

y
2 · g1, g2)c

= R2 · e(eG1
, g2)c

= R2 · ecG3
= R2 · eG3

= R2

This proves that signing with a private key will produce correct signatures;
however, it must also be shown that a signature cannot be forged without a
valid private key. This can be done as in [10]:

Theorem 2. Signatures are unforgable under the strong Diffie-Hellman assumption.
Suppose there exists an algorithm that can forge an EPID signature in polyno-
mial time. We use this algorithm to forge a BBS+ signature:

Given a BBS+ public key (g1, g2, h1, h2, w), choose a groupG3 of order p with
generator g3 to make an EPID public key (p,G1, G2, G3, g1, g2, g3, h1, h2, w). Use
the EPID forging algorithm to produce a signature, and extract A∗, x∗, y∗, and
f∗ from it. From the definition of the EPID signature, we know that

e(A∗, gx
∗

2 w) = e(g1h
f∗

1 hy
∗

2 , g2).

Therefore, (A∗, x∗, y∗) is a BBS+ signature on f∗. However, the BBS+ signature
scheme is unforgable under the strong Diffie-Hellman assumption, so our initial
assumption that there exists an algorithm that can forge an EPID signature
must be wrong.

4.12.4 Key Sizes

Even when a signature scheme is cryptographically secure, it needs to use keys
that are sufficiently large to resist brute-force attacks. For EPID, “sufficiently
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large” means that p must be 170 bits to achieve 80-bit security, and 256 bits to
achieve 128-bit security [10]. This means that private keys must be 681 bits (86
bytes) or 1025 bits (129 bytes), respectively, and that signatures are 1363 bits
(171 bytes) or 2051 bits (257 bytes) respectively.
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Chapter 5

Implementation

5.1 Overview of Code

5.1.1 Architecture

For this project, the OCaml interpreter was modified to execute under SGX. To
do this, it transparently creates an enclave and runs the bytecode inside, as
shown in Figure 5.1

Running a CPPL protocol under SGX requires several steps. First, the CPPL

source must be compiled into OCaml code using the unmodified CPPL compiler.
Next, the OCaml code must be compiled into OCaml bytecode, an intermediate
representation used by the interpreter to maintain platform independence. Fi-
nally, this bytecode can be fed to the modified OCaml interpreter, which will
load itself and the bytecode into an SGX enclave before executing.

Read opcode Execute opcode DeinitializeInitialize

Read opcode Modified execute opcode Tear down enclaveInitialize Setup enclave Deinitialize

Figure 5.1: High-level operation of vanilla OCaml interpreter (above) and modi-
fied OCaml interpreter (below)

34



5.1.2 Modifications to OCaml Interpreter

Ordinarily, the OCaml interpreter follows a simple execution flow, as shown on
the top of Figure 5.1. First, it initializes its memory and allocates its resources.
Next, it enters its main loop, where it reads the next opcode, decodes and
executes it (conceptually using a switch statement or lookup table), increments
its program counter, and repeats. Finally, when an opcode terminates the loop,
it releases its resources and exits.

Several modifications to the this flow were necessary in order to enable CPPL

programs to run under SGX. First, the main function of the interpreter, which
calls the initialization and deinitialization routines, was wrapped in an addi-
tional initialization/deinitialization layer for SGX. This allows it to safely load
itself into an enclave before the program begins execution. Second, the code
for the opcodes that performed system calls were replaced with a trampoline
version (explained below) and a corresponding implementation outside of the
enclave. Finally, the unix module, used for disk and network access, was linked
statically into the interpreter. Under the vanilla interpreter, modules are loaded
dynamically as needed; however, doing so under SGX would present a security
concern. Therefore, expected modules (in this case, only unix, although others
can be easily added) are linked statically, and dynamic linking is emulated.

5.1.2.1 Trampolines

Recall that code executing inside an enclave is not allowed to access external
resources. If it attempts to execute system calls directly, the processor will
force a segmentation fault to prevent the operating system from gaining access
to the enclave’s memory. To work around this, the interpreter running inside
the enclave uses what is known as a trampoline [25]: unprotected code outside
the enclave that coordinates with the protected code to perform the system call.
It works as follows (shown in Figure 5.2):

• The code inside the enclave copies the necessary parameters to a fixed
address in unprotected virtual memory.1

• The enclave code executes the EEXIT instruction to exit the enclave and
transfer control flow to the trampoline located in unprotected memory.

• The trampoline reads the parameters from the same fixed address in un-
protected memory (which it can do because it is outside the enclave), and
uses them to execute the system call.

• When the system call returns, the trampoline copies the returned data to
another fixed address and returns control flow back to the enclave using
the ERESUME instruction.

1Recall that code executing in an enclave has normal read/write access to memory outside
the enclave.
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• Finally, the enclave resumes execution and copies the result from the sec-
ond fixed address in unprotected memory into protected memory and con-
tinues its regular execution.

For instance, the interpreter makes use of the open system call to be able
to read files. However, it cannot be called directly in an enclave. Thus, a
stub version, called sgx open, for use inside the enclave was written. This stub
accesses a known memory location for stub communication located outside the
enclave, where it stores a constant FUNC OPEN to indicate the requested system
call, the file path, and the flags used to open the file. It then exits the enclave to
the trampoline address, which checks the requested system call and dispatches
to a non-enclave sgx open tramp function. This function reads the parameters
from the stub communication memory and performs the actual system call. It
copies the result back into the stub communication memory when the system
call finishes, and then returns to the main trampoline function. The trampoline
function reenters the enclave where it left off inside sgx open, which reads the
system call result from the stub communication memory and returns it to the
caller.

Note that this trampoline scheme closely resembles traditional function calls,
and can be considered to be simply a different calling convention. Whereas tra-
ditional function calls store their parameters on the stack or in registers, tram-
poline calls store parameters in a fixed memory location, and while traditional
function calls use CALL and RET to call and return from functions, trampoline
calls use EEXIT and ERESUME, respectively. Aside from these differences in im-
plementation, however, the underlying mechanisms remain the same.

5.2 Correctness Argument

Simply executing code under SGX is not sufficient to guarantee that it will op-
erate correctly; we must also argue that it will act in the same manner as its
unprotected counterparts. We must also establish that it cannot be manipulated
by malicious modification of code or data outside of the enclave.

Fundamentally, the core logic of the interpreter is unchanged. The changes
are in initialization and handling of system calls. The interpreter’s initialization,
which only sets up and executes the enclave, does not affect the interpreter’s
functionality; it is an augmentation, but it does not replace any logic. System
calls, in the ordinary case, are unaffected. The changes add several layers of
indirection, but the functionality is, by design, unchanged. Therefore, we can
conclude that under benign circumstances, the modified interpreter functions
identically to the original.

However, what about the adversarial circumstances where an attacker is
trying to exploit the system? For our purposes, it is desirable to deviate from
the unmodified interpreter’s behavior; we want to avoid leaking information or
misbehaving. We assume that SGX itself meets its stated security goals: that
it will protect against unauthorized memory reads by properly encrypting all
enclave memory and against unauthorized writes by correctly authenticating
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Figure 5.2: Trampoline execution
The first picture in this figure represents the enclave’s state before using the trampoline; each
of the following pictures directly matches the corresponding bullet point in Section 5.1.2.1.
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the encrypted data (for details, see Appendix A). This means that while the
program is executing inside the enclave, the attacker can do nothing to cause it
to misbehave or to leak secrets. However, useful programs must perform some
form of I/O (usually in the form of network access), and the execution flow is
required to leave the enclave to perform system calls. Could this behavior be
exploitable? There are two ways that this could be attacked: at the functional
level, where the attacker exploits bad program logic, or at the implementation
level, where the attacker exploits the low-level implementation.

5.2.1 Functional Correctness

The only external I/O performed by CPPL programs is network access to com-
municate with other principals participating in the protocol. Therefore, this is
the only avenue of attack on functional correctness for a malicious actor: mod-
ifying the data that the program sends or receives. This is equivalent to the
attacker being able to interfere with the program’s network connections. How-
ever, CPPL is already designed around a model where attackers have full control
of the network. Thus, the weak points of the SGX implementation are covered
by CPPL’s cryptographic guarantees; there is no way for an attacker to extract
secrets or cause the program to misbehave.

5.2.2 Implementation Correctness

Assuming that SGX is implemented properly, the only access that an attacker
has to an enclave is to the unprotected memory that is mapped into the same
address space as the enclave and the results of system calls executed from outside
the enclave.

All processing for system calls occurs outside the enclave: either in the oper-
ating system or in the enclave’s process when in non-enclave mode. Therefore,
any exploits against the TCP stack, filesystem, the implementation of any other
syscall, or any libc wrappers can only be used to attack resources that the at-
tacker already has access to. Because these exploits, if they exist, do not gain an
attacker any leverage, they do not need to be further considered in the security
analysis of the enclave. This is by the design of SGX: it forces the programmer
to partition the code to remove as much as possible from the code that needs
to be verified to place trust in an enclave’s correctness.

Inspection of the code reveals that the modified OCaml interpreter code does
not directly access any memory outside the enclave, and that the only time
the libsgx code, which is also included in the enclave, accesses unprotected
memory is during trampoline calls. Therefore, it suffices to validate only this
code, as any exploits against the modified interpreter would need to target either
the trampoline code or an existing bug in the OCaml interpreter (which would
be outside the scope of this project). Simple inspection reveals that the stub
implementation, when copying the results of a system call into enclave memory,
does read the length from outside the enclave for system calls that return such
blocks of data. However, it compares this untrusted length to the known size of
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the buffer that it is copying into, and signals an error if it is exceeded. Therefore,
if it copies data from outside the enclave, it is guaranteed to stay within the
allocated buffer, preventing buffer overflow attacks.

5.2.3 Currently Viable Attacks

There are still three obvious attacks that are viable against most CPPL programs
running under the current SGX OCaml interpreter:

• Influencing the source of randomness

• Modifying the executed bytecode

• Changing the theory files

Each of these can be solved with additional modifications to the interpreter,
outlined below. Doing so is a possible direction for future work on this project.

5.2.3.1 Source of Randomness

All but the simplest CPPL programs require random data to operate (for creating
keys, choosing nonces, etc.). An attacker that can influence the source of this
data can violate the program’s assumption that it is actually random, and cause
it to misbehave. This could cause it to create keys known to the attacker, choose
already used nonces, or even reveal already created keys [40]. CPPL uses a library
called cryptokit [31] for its cryptographic operations, which currently uses
randomness from /dev/random This is a resource provided by the operating
system, which means that it can be controlled by an attacker who controls
the operating system. This can be solved by modifying cryptokit to use an
alternate, more secure source of randomness. Such a source can be found in
the processor, in the form of the RDRAND instruction [33]. This instruction uses
a hardware random number generator in the processor itself, based on thermal
noise and compliant with NIST SP800-90A, B, and C, FIPS-140-2, and ANSI
X9.82 [33], and can be used from inside an enclave, requiring no trust in the
operating system.

5.2.3.2 Executed Bytecode

The OCaml interpreter, by nature of being an interpreter, does not contain the
code that it will execute. Instead, it reads the bytecode for the program from
a separate file. Because disk operations are controlled by the operating system,
this is not secure: an attacker could modify the code that is executed, doing
anything from simply revealing sensitive key material to introducing subtle bugs
into the software. The correctness of the protocol is irrelevant in this case,
because the protocol as the author intended it is never actually executed.

This can be solved in several ways:
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• The code to be executed can be embedded in the enclave’s memory space
when the enclave is created, and the interpreter modified to read bytecode
from memory, rather than from a file. Any modifications to the bytecode
before the enclave is created would prevent the enclave from attesting to
the expected value, so users would know that it had been tampered with.

• Similarly, a hash of the bytecode file can be embedded in the enclave’s
memory space, and the interpreter modified to verify the hash after reading
in the file. Any modifications to the bytecode file would cause it to have
a different hash, so the interpreter can reject the program.

• The interpreter can be modified to accept the bytecode (or a hash of it)
over the network, encrypted to a keypair generated inside the enclave. In
this case, the interpreter would attest to its contents, so that the user
can reject it if it has been modified, and then the user would send the
encrypted bytecode. Because the keypair was generated inside the enclave,
the attacker cannot access the private key, and without the private key,
he cannot undetectably modify the bytecode.

5.2.3.3 Theory Files

CPPL uses an inference engine at each step of the protocol to decide if it trusts the
other principals involved enough to continue executing. This trust is ultimately
rooted in a theory file containing a set of formulas that it is allowed to rely
upon as axiomatically true. Similarly to above, if an attacker can intercept
and modify read operations from that file, she can introduce false axioms (e.g.
“Anything Mallory says is true”) that cause the program to misplace its trust
and thus misbehave.

The first two solutions from above can be similarly applied to this attack as
well:

• The theory file can be included in the initial enclave image, and the in-
terpreter modified to use the theory already present in memory instead of
reading it from disk.

• A hash of the theory file can be included in the enclave’s memory space,
so that the interpreter can verify the integrity of the file that it reads (and
abort execution if the hashes do not match).

Notably, the third solution from above cannot solve this problem: in order for
the program to know that the provided theory file is correct, the sender would
have to prove that the file is trustworthy, but in order to do that, the program
already needs to have a theory file to root its trust in.

5.3 Modifications to OpenSGX

During the course of this project, we discovered several bugs with OpenSGX.
Most of them were fixed during the course of its development, except for one
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bug, dealing with adding new pages to the enclave [8]. As this bug blocked
development and was not addressed during this project, we modified OpenSGX
to work around it. The patch is attached to this report and listed in Appendix B.
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Chapter 6

Comments about SGX

6.1 Early misconceptions about SGX

Because it is such a new technology, there are many misconceptions about SGX
and its capabilities. In this section we make some observations, each of which
dispels some commonly held misconceptions about SGX.

SGX does not directly prevent the operating system from tampering
with an enclave. As explained in Section 4.1, SGX needs to allow the op-
erating system read/write access to enclaves’ memories, so that it can swap
pages to and from disk. To prevent malicious use of these permissions, SGX
cryptographically protects each page, so that reads cannot obtain useful
information, and writes can be detected by SGX, and the program aborted.

The operating system can modify the contents of an enclave before it
is initialized. All enclaves are initialized with data originating outside
the enclave. Therefore, it is possible for the operating system to alter the
initial contents of the enclave (most importantly, this includes the code
that it will execute). To address this, SGX allows for attestation, so that
the end user can tell if such modifications have occurred, and refuse to use
the results of the enclave.

SGX does not hide the code that runs inside an enclave. For similar
reasons to the previous point, the operating system can see the code that
goes into an enclave (although it can no longer read it after the enclave
is fully initialized). This can be mitigated by only putting a loader in
the initial enclave. Once the enclave is initialized, the loader can obtain
the real code to be executed from a remote server, encrypted to a key
generated inside the enclave.

SGX does not enable malware that cannot be removed or reverse engi-
neered. Creating an enclave requires support from the operating system,
so any attempts to put malware into an enclave can be rejected by the
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operating system. This can be implemented with anything from a simple
user prompt or blacklist/whitelist to hooks that allow antivirus software
to inspect the code being put into the enclave.

6.2 Limitations of SGX

Although SGX has been shown to be a cryptographically secure system, this is
not the only consideration that should be taken into account. In particular,
it has several design decisions that make it unnecessarily cumbersome to use,
without increasing security. This section addresses some of the rough edges
of SGX, and how they could be improved. Please note that these comments are
solely the opinions of the author, and should not be interpreted as absolute facts
or the opinions of Worcester Polytechnic Institute or the MITRE Corporation.

• There is currently no mechanism for an enclave to securely interact with a
computer’s peripherals. This is unnecessary for most servers, but critical
for personal computers, where code running in an enclave needs to interact
directly with the user. At present, the enclave needs to receive its input
and send its output through the operating system, which it cannot trust.
Consider the case of running a program to cryptographically sign email in
an enclave: a malicious operating system could fake input to the program,
asking it to sign a message never authorized by the user.

To solve this, SGX would need to add a mechanism for the operating system
to grant an enclave direct access to a particular peripheral, in a way that
cannot be intercepted or modified (this would probably require non-trivial
hardware changes as well). Then, each driver, usually run within the
operating system, could be moved into its own enclave with access to only
the associated peripheral. This allows programs running in an enclave
to receive input from another enclave, which they can verify is actually
receiving input directly from the user.

• There is currently no mechanism for enclaves to specify a “contract” for
how they can interact with the rest of the system. Doing so could miti-
gate the effects of bugs in the code running in an enclave by aborting the
program if it attempts to perform an unexpected operation. For instance,
code running in an enclave should be able to voluntarily drop access per-
missions for unprotected memory and restrict the allowed targets for an
EEXIT instruction.

• There is currently little compiler support for SGX. While this is not a
problem with SGX itself, it is essential for widespread use and adoption of
SGX. There are many possible ways in which compilers and toolchains can
make working with SGX easier, the most important of which include:

– Allow the programmer to annotate functions and variables that should
be included in the enclave, and detect at compile time attempts to
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call code or access variables across an enclave boundary. Require an
explicit declaration of intent to do so, to prevent accidentally access-
ing unprotected memory.

– Automatically generate code for trampolines.

• Although SGX does not directly reveal what code is currently executing in
an enclave, it can leak approximate memory access patterns to a cleverly
malicious operating system. If the OS swaps every page of an enclave out
of memory, it knows that if the enclave takes a page fault on page x, then
it is currently executing an instruction somewhere in page x. Any further
page faults are due to either memory accesses executing instructions on
different pages. The operating system can then immediately swap the
pages back out and repeat the process to get a fairly detailed picture
of the enclave’s memory access pattern. It can also distinguish between
writes and reads/executes by comparing the ciphertext of the swapped
pages before and after execution. This allows a side-channel attack on the
program running inside the enclave, which could potentially reveal secret
information from the enclave, given enough time.

Unfortunately, there is no simple way to address this problem. (While it is
technically possible to require all pages of an enclave to be swapped in and
out as a single unit, and to increase the counter on each page regardless
of if it was written to, this is prohibitively inefficient and effectively elimi-
nates the operating system’s ability to do effective memory management.)
The best solution seems to be to ensure that developers are aware of the
possibilities for side-channel leakage, and trust them to mitigate the issue
(by ensuring that variables often accessed together are on the same page,
designing side-channel resistant algorithms, deciding that such an attack
would be too expensive relative to the information it would extract, etc).

• As explained in Appendix A.1, adding a page to an enclave during ini-
tialization requires one EADD for the 4 KiB page, followed by exactly 16
EEXTENDs, one for each 256 byte region of the page. Because it is incor-
rect to execute more or fewer instructions, or in any other order, there is
no need to separate the logical operation into two (let alone 17) different
invocations. Although compiler support will mean that the programmer
does not have to interact with SGX at the instruction level, this is still an
unnecessary wart on the implementation of SGX.

6.3 Considerations for Writing SGX-Compatible
Code

When writing code that will be secured with SGX, special care must be taken
to ensure that the program will satisfy the assumptions of SGX and be secure
under its new threat model.
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• Isolate all calls to resources outside the enclave (e.g. network access) with
proper abstractions. Not only does this make testing easier, but it also
reminds the programmer that these are no longer native calls, and cannot
be trusted.

• Ensure that programs are executing sound protocols. At the very least,
this means that all network (and disk) accesses must be encrypted and/or
authenticated, but it may also impose additional restrictions based on the
function of the code and malleability of the protocol. Use the appropriate
key(s) for each access (communication with third parties should use a
newly-generated symmetric key, storage should use the binding key, etc.).

• Design the software architecture to cleanly split into secure and non-secure
portions. The secure portion should contain everything that needs to
be kept secret, and nothing more: parsing and formatting, for instance,
should be moved to the non-secure code when possible. Minimizing the
code that is included in the enclave (as well as the interface between the
secure and non-secure portions) reduces the amount of effort needed to
audit the enclave, and decreases the surface area of attacks.

• If the overall program has multiple components, design the architecture
with multiple enclaves. For instance, a server could have the database in
one enclave, the TLS/SSL layer in another, and the program proper in a
third. Done properly, this increases auditability, decreases surface area of
attacks, and reduces the impact of a successful compromise.

• When analyzing an architecture, consider code outside the enclave not to
exist, as it can be modified by an attacker. Assume that the attacker
can interact directly with the enclave via any interface provided. If this
bypasses any protections and allows the attacker to change the information
that the enclave processes or that another principal sees, that functionality
should be moved into the enclave, or the protocol should be changed to
prevent such a scenario.

6.4 SGX in Other Architectures

Currently, SGX is an Intel-only technology. However, other manufacturers may
decide to adopt it into their own processors if it gains a large enough developer
base.

AMD, in addition to Intel, produces processors with the x86 64 architecture.
If AMD implements SGX in its own processors, it is exceedingly unlikely that
Intel would give access to its issuer private key. This means that AMD would
need to act as its own issuer and generate its own private key, resulting in a
different public key. Users would then need to determine which manufacturer’s
processor their enclaves are running on, and check the attestations against the
corresponding public key.
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More interesting is SGX support in architectures other than x86 64. Because
AMD’s processors run the same code as Intel’s, it would be likely to implement
SGX in a compatible way. However, other architectures are not bound to being
strictly compatible with Intel’s SGX. This gives them the flexibility to change
interfaces to suit their own use cases and to simplify usage for their users.
They would be free, for instance, to implement any of the changes suggested in
Section 6.2, without regard for compatibility with the current implementation
of SGX.
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Appendix A

SGX Architecture

SGX adds two instructions to the Intel architecture: ENCLS and ENCLU, for super-
visor (operating system) and usermode uses respectively. Each instruction has
several leaves, representing distinct logical instructions, that are selected based
on the value of the EAX register.

A.1 Enclave Creation

Enclaves, although used by unprivileged processes, can only be requested by
the operating system. Therefore, a platform-specific API, which will not be
described here, must be used for the application to request an enclave.

To begin creating an enclave, the operating system executes the ECREATE

leaf of the ENCLS instruction. This initializes an SGX Enclave Control Struc-
ture (SECS), used to store the processor’s information about the enclave. It
then executes the EADD leaf to copy a 4 KiB page into the EPC, followed by
16 EEXTENDs, each of which cryptographically measures a 256 byte section of
the enclave. Failure to properly measure the enclave with exactly 16 EEXTENDs
means that the final measurement of a correctly constructed enclave will not
match the expected value (if the attacker tries to incorrectly construct an en-
clave) or that an attacker can modify the unmeasured data without detection
(if the expected value is constructed incorrectly). The operating system repeats
the EADD and EEXTEND instructions until it has added all necessary pages to the
enclave; then, it executes the EINIT leaf to finalize creation and prepare the
enclave for use. This prevents additional pages from being added to the enclave
and causes the processor to store the enclave’s hash in the SECS, so that it can
be retrieved and attested to later, as described in Appendix A.3. This process
is shown pictorially in Figure A.1.
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Figure A.1: Enclave creation
The first picture shows the process’s memory space before creating the enclave. The next
shows the results of the OS executing ECREATE to initialize the SECS. Next shows the EADD

call to encrypt a page into the EPC. After that is the 16 EEXTENDs to measure the page. These
two steps are repeated until the entire enclave has been measured. The next picture shows
the result of the EINIT call: the measurement is finalized and the encrypted enclave pages are
mapped into the process’s memory space. Finally, the last picture shows the process after
executing EENTER to jump into the enclave. 48



A.1.1 EINIT Access Control

There is one additional step to enclave creation that was not mentioned in
the previous section. Intel has included a check in the EINIT instruction that
allows a special enclave, called the launch enclave, to enforce arbitrary access
controls on the EINIT instruction. To implement this check, the launch enclave
is provided with the measurement, author, and other metadata about each
enclave that is created.1 If it determines that a given enclave should be allowed
to proceed, it generates a MAC on the metadata using the processor’s launch
key, producing an EINITTOKEN.2 When the enclave is being finalized, the EINIT

instruction checks for a valid EINITTOKEN, and fails if one is not provided.3

Intel has been criticized for adding this element to SGX for a variety of rea-
sons:

It provides no additional security. Because ECREATE, EADD, EEXTEND, and
EINIT can only be executed by privileged software, the operating system
already has the ability to perform access control for access to enclaves,
by refusing to execute any of these instructions on behalf of the program.
Furthermore, it has a superset of the information available to the launch
enclave, so it can make equally, if not more, informed decisions.

It takes control away from the computer owner. The launch enclave is
provided by Intel, and cannot be replaced. This wrests control from the
actual owner of the computer and gives it to a third party, violating the
idea that a computer’s owner should have ultimate control over what runs
on it.

It allows Intel to control enclaves. The launch enclave is written by Intel,
and it cannot be overridden by the owner of the system. This allows Intel
to restrict access to enclaves for non-technical (i.e. business) reasons,
which violates SGX’s apparent philosophy of not restricting what can be
done to or with an enclave.

A.2 Enclave Execution

To execute code in the enclave, the usermode process uses the EENTER leaf of
the ENCLU instruction. This marks the process as running in enclave mode and
jumps to an enclave-specified address. When the enclave wants to call or return
back to unprotected code (to perform system calls, for instance), it executes the

1The exact mechanism by which this information is transferred is left unspecified in the
documentation.

2The launch key, like most other keys used by SGX, is requested from the processor using
EGETKEY. However, the launch enclave, identified by its signature from Intel, is the only enclave
given permission to access it. This prevents other enclaves from acting as their own launch
enclaves, and allowing enclaves that would not otherwise be allowed.

3This check is bypassed for the launch enclave itself, as requiring an EINITTOKEN for the
launch enclave would present a bootstrapping issue, and the launch enclave can be implicitly
trusted, because it has been signed by Intel.
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EEXIT leaf, which clears the enclave mode flag and jumps to a specified location
in unprotected code. If permitted by the enclave, the process may return back
into the enclave by calling the ERESUME leaf. If the processor encounters a fault
or exception while inside an enclave, it performs an Asynchronous Enclave Exit
(AEX), which stores the current registers on the stack, loads dummy registers
known as synthetic state to avoid leaking information, drops the enclave flag,
and jumps to a specified address in unprotected code. Once the event has
been handled, the process can call ERESUME, which will additionally restore the
enclave’s original registers.

To prevent unauthorized access to the enclave, the processor enforces addi-
tional restrictions on memory access based on the access type, the location of
the memory, and the enclave flag. If these are violated, a segmentation fault is
produced. These restrictions are summarized in Table A.1.

R/W Outside X Outside R/W Inside X Inside
Non-enclave mode Y Y N N
Enclave mode Y N Y Y

Table A.1: Memory restrictions due to enclaves

A.3 Attestation

Running code in an enclave can sometimes be useful on its own, but most of the
utility of SGX comes from being able to prove to third parties that their code is
actually running in an enclave. This process is known as attestation. It takes
place in three parts under SGX: first, measuring the enclave during initialization,
and once the enclave is running, reporting (attestation to other enclaves running
the same processor) and quoting (attestation to remote parties).

A.3.1 Measurement

As discussed previously, an enclave is initialized with the ECREATE instruction,
and its contents are specified with several invocations of EADD and EEXTEND. The
measurement of the enclave, finalized with the EINIT that starts protection of
the enclave, is therefore specified to be a cryptographically secure log of these
instructions, in execution order, specifying the exact arguments to each. Under
SGX, this is realized with a SHA-256 hash. Each EADD instruction adds one block
of data to the hash, specifying the instruction executed (EADD), the virtual
address of the page added, and the permissions on the page. Each EEXTEND

instruction adds 5 blocks of data to the hash: the first specifies the instruction
executed (EEXTEND) and the virtual address of the data it is measuring, padded
to the block length, and the remaining four contain the value of the data. Once
the enclave is initialized, the EINIT instruction finalizes the computation of the
hash, and stores the result in the enclave’s SECS.
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Because this process documents everything done to initialize the enclave
(combined with the requirements on when EADD and EEXTEND can be executed),
the calculated value can be considered to be a digest of the enclave itself, ex-
tending all of the properties of hashes to the measurement. In particular, this
means that it is computationally infeasible to form a new enclave with the same
measurement as an existing enclave.

A.3.2 Reporting

Reporting is the process of proving the contents of an enclave to a separate
enclave on the same processor. This is useful for applications that are split
among multiple enclaves (e.g. a server that has the database in one enclave, the
TLS stack in another, and the business logic in a third), but is also used as a
component of quoting, explained below.

To request a report, an enclave P executes the EREPORT instruction, specify-
ing 64 bytes of arbitrary data4 and the measurement of a target enclave V that
wants to verify the result. In response, the CPU generates a MAC of the given
data and P ’s measurement, using the signing key associated with V .

To verify the report, V can request a copy of its own signing key from the
processor with the EGETKEY instruction, and use this key to verify the MAC on
the report. If the MAC is valid, it knows that there is an instance of P running
on the same processor, and that the public key given in the report came from
within the enclave.

It is necessary for P ’s key to be included in the report for validation to
prevent replay and man-in-the-middle attacks. Without this inclusion, an at-
tacker could create two instances of P : one protected by an enclave, and one
unprotected. Once the instance in the enclave produces a report, the attacker
could proceed as though the report came from the unprotected instance. As V
cannot directly observe P ’s contents, it is unable to distinguish between the two
instances, and would proceed to communicate with the unprotected instance
of P under the mistaken assumption that P is secure. Including a public key
for P in the report prevents this attack, because the unprotected instance of
P would generate a different key. This would make it unable to successfully
decrypt messages from V , and thus unable to proceed normally.

A.3.3 Quoting

One of the main guarantees of SGX is to allow for remote attestation, or quoting.
To do this, we need to introduce another enclave, called the quoting enclave.
This enclave, provided by Intel, runs locally on the processor, so that any run-
ning enclave can attest to it, using a report as described above. It is unique in
that it can request the EPID private key from the processor, but is otherwise
a normal enclave, with no additional access to other enclaves. Its sole function

4Although there is no specified structure to this data, it is in practice necessary for it to
be a public key generated within the enclave that can be used to communicate with P . This
rationale will be explained in more detail below.
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is to accept incoming reports, verify them, and then sign the measurement and
public key from the report using EPID. This signature is passed back to the re-
questing enclave, which can then send it to a remote party to prove its identity.
The security of this protocol derives from the same principles as reporting; the
only difference is the type of signature, and thus who can verify it.

A.4 Binding

Almost all non-trivial programs need to store state between runs, and pro-
grams run in enclaves are no exception. However, enclaves cannot simply write
their state to disk, as that would be vulnerable to modification by an attacker.
Therefore, SGX provides a mechanism, known as binding, that allows a program
running under SGX to securely encrypt secrets, using a key accessible only within
the enclave. To obtain this key, the enclave uses the EGETKEY instruction, re-
questing its binding key. This key is unique to the enclave and processor, so that
no other enclaves can decrypt stored information; not even another instance of
the same enclave running on a compromised processor.

A.4.1 Migration

When the software running in an enclave is updated, the enclave’s measurement
changes. This means that if the binding key were derived directly from the
measurement (in addition to other data), future versions of the enclave would
be unable to access existing bound data after an update. To address this, SGX
requires each enclave to have an author5 specified at creation time. To do so,
the author’s public key and signature of the enclave’s expected measurement
are passed to EINIT when the enclave is initialized. At that point, the processor
verifies that the signature is valid, and that it matches the measurement actually
produced by the enclave. If either of these conditions is not met, the enclave is
not created, and the call fails. Otherwise, the author’s public key is included
in the SECS as another attribute of the enclave (and thus included in any
attestations), and this key, rather than the measurement, is used to derive the
binding key.

This means that an enclave can decrypt secrets that were bound by a pre-
vious version (with a different measurement), as long as they were both signed
by the same author. At first, this seems dangerous: there is no verification that
the author key provided at enclave creation is the correct one, so an attacker
can simply strip off the original author signature and replace it with his own.
Then, if he modifies the enclave, he can produce a signature for the new enclave
using the new key. Alternatively, he can leave the original enclave unmodified

5This usage of the term “author” in SGX is slightly incongruous with the traditional English
meaning: if a single developer produces multiple independent enclaves, they should each have
a separate author for the purposes of SGX. The only time two enclaves should be signed with
the same author key is if one is an updated version of the other; a better term might therefore
be “program identity.”
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but write another enclave, signed with the same key, that requests the binding
key and uses it to decrypt the first enclave’s secrets.

The prevention for both of these attacks comes during attestation. If an
enclave tries to attest to a provisioning server, and the server sees that it has
an unexpected measurement or author, it should not provision any secret infor-
mation to the enclave. Therefore, although the attacker can access any secrets
that the enclave tries to bind, the enclave will never gain access to any sensitive
information in the first place6, making the attack pointless. This again aligns
with SGX’s philosophy of not using access controls to restrict what can be done,
but rather using cryptographic means to render any attacks useless.

A.5 Off-Chip Memory

To prevent a malicious operating system, hypervisor, or even an attacker with
physical access to the machine that runs an enclave from reading protected
secrets, SGX encrypts every page of an enclave’s memory. At system initialization
time, a region of physical memory, known as the Enclave Page Cache (EPC),
is set aside to be used exclusively for backing the virtual memory of enclaves.
Ordinary software, including the operating system, is forbidden from accessing
the EPC directly, although the operating system can map pages from it into
the address space of enclaves.

Whenever enclave data is flushed from the processor’s cache, it is not simply
written back to a mapped page main memory (as non-enclave data would be).
Instead, it is encrypted (with a key unique to the enclave and processor) and
written to the mapped page in the EPC. This extra security measure appears
unnecessary at first, as the operating system is prevented from accessing these
pages, but it is useful in preventing physical attacks that go beyond the operat-
ing system. For instance, malicious peripherals with direct memory access [39]
and cold boot attacks [24] can both retrieve data from RAM without any re-
quirements from the operating system. There is no feasible way to prevent these
attacks without crippling the computer for the common case, so instead, SGX
includes the EPC to render these attacks unable to extract useful information.

Accordingly, when the processor takes a cache miss on data in an enclave,
the processor must decrypt the data that it obtains from the EPC.

Because an enclave’s memory is encrypted with a key unique to a specific
processor, it is not possible to migrate an enclave from one processor to another.
This is most relevant in a cloud computing environment, in which processes are
often moved between physical machines to address shifting load and hardware
failures. SGX interferes with this type of management, which will force cloud
providers to change management techniques. It is likely that programs using
SGX will be required to be designed to be shorter-lived and composable, or to
be able to be interrupted at any time and restarted.

6Note that this guarantee, along with several others provided by SGX, requires the enclave
to be running a sound protocol.
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A.6 EPC Management

There are four types of pages in the EPC:

Regular Most pages in the EPC are regular pages, used for backing the virtual
memory of enclaves.

SECS There is one SGX Enclave Control Structure page per enclave instance,
used to store information about the enclave (including its size, memory
location, measurement, etc.).

TCS Each enclave instance has one or more Thread Control Structure pages,
one for each thread allowed in the enclave simultaneously.

VA Each Version Array page holds information on up to 512 other pages that
have been evicted from the EPC, in order to ensure their integrity when
reloaded. Unlike the other page types, VA pages are not associated with
an enclave.

A.6.1 Page Eviction

A design goal of SGX was to allow the operating system to continue managing the
memory of all processes, even those with enclaves. To swap out a page from an
enclave’s memory, the operating system must first inform the processor that the
page is not to be used. It does this with the EBLOCK instruction, which sets the
page as blocked to disallow the mapping from being added to a TLB. However,
this alone does not remove the mapping from a TLB if it is already cached. To
do so, it must send an inter-process interrupt (IPI) to each logical processor
executing in the enclave, forcing it to perform an asynchronous exit from the
enclave and flush its TLB. Once the page’s mapping has been removed from all
TLBs, the page itself can be evicted to main memory with the EWB instruction.
This instruction takes the address of the enclave page to be evicted, the address
of another page to store the encrypted data, the address of a buffer for protected
metadata about the page, and a VA slot for secure metadata. Finally, now that
the page has been evicted from the EPC, the operating system can swap the
encrypted page to disk, just like it would any other page.

A.6.1.1 Additional Requirements per Page Type

Regular pages can be evicted as described above with no additional restric-
tions.

SECS pages are required to run an enclave, so each can only be evicted when
all pages belonging to its associated enclave have been evicted first.

TCS pages are required for a thread to be in an enclave, so they can only be
evicted when they are not in use.
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VA pages can be evicted without additional requirements, but still require their
own version numbers to be stored in another VA page. This leads to a
hierarchical structure of VAs when many pages are evicted.

A.6.2 Page Loading

When an enclave tries to access a page that has been evicted, it will take a page
fault, just like any other process. To continue its execution, the operating system
must load the evicted page back into the EPC. To do this, it must first swap the
encrypted page back into main memory, as it would a non-enclave page. It must
also ensure that the enclave’s SECS page78 and the VA page containing the slot
used during eviction are already in the EPC, which may require loading those
back first. It then executes either the ELDB or ELDU instruction9 to load the
encrypted page back into the EPC, and recreates the mapping in the enclave’s
memory space.

A.7 Adding Pages

Although the original SGX specification did not provide a mechanism to add
pages to an enclave after initialization, Intel has since released SGX2, an exten-
sion to the original SGX specification, which includes support for doing so.

To add additional pages, the enclave makes a request to the operating system
through a platform-specific API (note that this requires the enclave to exit to
unprotected code). The operating system then calls EAUG to allocate a page
from the EPC and associate it with a given address in the enclave. Finally, when
the enclave resumes execution, it calls EACCEPT to acknowledge the addition of
the page. Until it does so, the page is inaccessible, and the enclave functions
identically to how it would have if the page had not been allocated.

Although adding pages to the enclave after initialization may seem like it
requires the enclave to re-attest to its validity, the necessity of the EACCEPT call
renders this unnecessary. Because the enclave will be unchanged if it does not
explicitly acknowledge the new page, any malicious additions to the enclave by
an untrusted operating system cannot affect the enclave’s execution. Therefore,
any additions that modify the enclave must have been acknowledged, which
could only have been done by previously authenticated code. Thus, the EACCEPT
call allows the augmented enclave to extend a chain of trust as to its own validity,
rooted in the initial measurement.

7If the page is being restored because the enclave took a page fault, the SECS will already
be in the EPC, as it is needed for the enclave to execute. However, if the operating system is
reloading the page for other reasons, this may not always be the case.

8As VA pages do not belong to an enclave and thus do not have an associated SECS, this
requirement does not apply when restoring VA pages.

9Both of these instructions perform the same task, but ELDU unblocks the page after loading,
while ELDB leaves it blocked, requiring the operating system to unblock it before it can be used
in an enclave.
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A.8 Multithreading

Another feature added in SGX2 is the ability to have multiple threads executing
concurrently in an enclave. To use this functionality, the process must explicitly
allow each thread by setting aside one page of memory to be used as a Thread
Control Structure (or TCS) for the thread’s metadata.10 These pages are loaded
into the enclave normally, as described in Appendix A.1, with the PT TCS page
type flag to indicate that they are not to be treated as regular enclave memory.

After the enclave is created, it can be entered normally, as described above.
When doing so, one of the parameters to the EENTER leaf is the index of the
TCS to use. Upon entry, the processor marks the TCS as “busy” to prevent
another thread from being able to use the same TCS concurrently. This ensures
that there will never be more threads than expected, and that each thread will
be executing the expected code.

Note that this does not prevent against denial-of-service attacks from the
operating system. It is still possible, for instance, for the operating system to
refuse to schedule one of an enclave’s threads; recall that SGX guarantees that if
the process runs to completion, it will do so correctly, but makes no guarantees
as to whether it will complete. This makes multithreaded SGX programming
even more difficult than regular multithreaded programming already is: there
can be no assumption that threads will execute at even approximately the same
rates.

10The most important piece of metadata in the TCS is OENTRY, the location in the enclave
where the thread should resume (or begin) execution.
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Appendix B

Associated Files

The following files were submitted with this report, and are a part of this project:

ocaml-sgx.tar.gz The code for the OCaml interpreter modified to run under
SGX. Based on OCaml version 4.02.3.

MD5: 53778b9c2e79255065f3904488c6720f

SHA1: d1bbc2f9117ffc456d33dc6acd3ec95fb857868e

SHA256: 834637505f4300d31e7ea0080175c68c0248148cf679e49dd3e95a12d1fbf6ec

opensgx.diff A patch to OpenSGX that increases the size of the EPC and
initial enclave heap to work around its bugs. Produced from commit
8feb343.

MD5: 227507cb7c37e3b8ba194787ef70f736

SHA1: 3b1379336790a595dcc0fa3170ff99f97655a2f1

SHA256: 9468027a2ba520b0df61f31612c140a970c932dd3e9f0b4bf6f3e01deffd1ccf
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Appendix C

Glossary

ABE Attribute-based encryption; a cryptosystem that uses attributes and poli-
cies in place of public and private keys

Abelian group A commutative group, that is, a group where the order in
which terms are multiplied does not matter

Attestation A cryptographic signature of a measurement

Binding key A key produced by SGX from an enclave’s measurement and the
processor’s secrets; used for persistent data storage

Computational complexity A measure of how quickly the number of oper-
ations taken by an algorithm grows as the input size increases

Computationally infeasible Taking at least O(cn) time, for a constant c > 1

CPPL Cryptographic Protocol Programming Language; a tool that verifies se-
curity properties of and generates code for cryptographic protocols anno-
tated with trust constraints

Cyclic group A group in which all elements can be expressed as gn, for a fixed
g, called a generator of the group

Digest The result of a cryptographic hash

Gap group A group in which the decisional Diffie-Hellman problem can be
solved efficiently, but calculating discrete logarithms is computationally
infeasible

Generator See cyclic group

Dolev-Yao model A model for analyzing cryptographic protocols where only
the usage of cryptographic primitives is considered, not their implemen-
tations
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Enclave A region of memory protected by SGX

EPC Enclave Page Cache; a region of off-chip memory used to back enclaves’
virtual memories

EPID Enhanced Privacy ID; a cryptographic signature scheme where each of
a set of principals can sign messages anonymously

Group A set of elements with a binary operator, subject to constraints de-
scribed in Section 4.4

Group signature scheme A signature scheme where any member of a group
can sign a message using its own private key, but an ordinary verifier
cannot determine which member produced a given signature

HMAC A MAC implemented with hashes

Identity element The unique element of a group that, when multiplied by
another term, produces that same term

Group inverse

MAC Message Authentication Code; a cryptographic value that verifies the
integrity of given data

Measurement A cryptographic hash of an enclave used to identify the code
that it is running

Penetrator A malicious actor in a cryptographic protocol who can arbitrarily
insert, remove, and process any message

Principal A participant in a cryptographic protocol

Provision Give secrets to a program running in an enclave that is already
running, so that they are not visible in the enclave’s initial state

Provisioning Server An external server that provisions necessary secrets only
to properly attested enclaves

Random oracle model A model for analyzing cryptographic protocols in which
hash functions are modeled as producing a truly random output for each
input

Revocation manager The principal in EPID that can mark keys as untrust-
worthy

SECS SGX Enclave Control Structure; a structure used by the processor to hold
information about an enclave

SGX Software Guard Extensions; a set of instructions from Intel to allow trusted
computing under untrusted privileged code
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TCS Thread Control Structure; a page of metadata allocated for each thread
to be allowed in an enclave

Theory The set of facts that a particular principal knows to be true

Trampoline Unprotected code used by an enclave to perform system calls

Quoting enclave An enclave provided by Intel that uses local attestations to
produce remote attestations
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