
WORCESTER POLYTECHNIC INSTITUTE

Demining Autonomous System

A Major Qualifying Project

Submitted to the faculty of
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Bachelor of Science

Submitted By
Malek ElShakhs
Alexander Hagedorn
Troy Howlett
Eamon Oldridge
Maggie Raque
Jeremy Wong

Submitted To
Craig Putnam
Nicholas Bertozzi
Markus Nemitz

This report represents the work of six WPI undergraduate students submitted to the faculty as
evidence of a Degree requirement. WPI routinely publishes these reports on its website without
editorial or peer review. For more information about the projects program at WPI, please see
https://www.wpi.edu/academics/undergraduate

https://www.wpi.edu/academics/undergraduate

Abstract
Every year at least 7,000 people around the world die from abandoned, unexploded landmines
leftover from times of conflict. Current demining methods are expensive, dangerous, and slow.
To combat this issue, our team is continuing the project to create an operational autonomous
demining system. The system will consist of three parts: a rover, a drone, and a base station. The
rover will be able to search a user defined area for unexploded landmines. When the rover finds a
landmine, it will record the location. After the search is complete, the drone will then fly to the
locations of the landmines and will drop a small payload onto the mines to detonate them. The
base station acts as the communication link between the rover and the drone and provides a user
interface for the operator to control the system. The goal of our project is to have a functioning,
relatively inexpensive system that can increase the safety and efficiency of global humanitarian
demining efforts.

2

Acknowledgements

We would like to thank our advisors first and foremost: Nicholas Bertozzi, Craig Putnam,
and Markus Nemitz for supporting us in this challenging endeavor through this difficult time.
Their guidance and insight was integral to the success of our work. Thank you. We would also
like to thank Kat Crighton, whose administrative work allowed us to flourish, and whose passion
bound the entire department throughout the year.

There were many others who supported us along the way without whom, in small or large
part, this would not have been possible:

Connor Miholovich - a passionate and experienced drone connoisseur, for providing the
expertise to achieve the quick turnarounds on drone testing that were required and for invaluable
problem solving insights.

Andrew VanOsten - a member of Demining Phase IV, who went above and beyond with
video call instruction and debugging, and even providing written guides on the specifics of the
project.

Ian Anderson - for the instruction and support in Washburn labs necessary for the
mechanical success of the project. The welding lessons so generously provided were a
foundation of our progress.

Armando Uribe - an engineering representative from UAV Systems who worked closely
with the team to resolve not only our issues with the drone that we were provided, but even
provided some resources for our own custom systems.

The Demining Phase IV Team - whose work we built on.

Thank you all.

3

Table of Contents
Abstract 2

Acknowledgements 3

1.0 Introduction 8
1.1 Problem Statement 8
1.2 Project Description 8

2.0 Background 9
2.1 Related Work 9

2.1.1 Other Methods of Demining 9
2.1.2 Other Autonomous Robotic Solutions 10

2.2 Previous Work 10
2.2.1 Previous Work on Base Station 10
2.2.2 Previous Work on Rover 11
2.2.3 Previous Work on Drone 12
2.2.4 Evolving Project Design 13

3.0 Methodology 14
3.1 Problem Formation 14
3.2 Rover System Updates 15

3.2.1 Mounting the Metal Detector on the Rover 15
3.2.1.1 Modeling The CERBERUS Rover 15
3.2.1.2 Designing The Mounting Attachments 15
3.2.1.3 Analysis of Mounting Components 17
3.2.1.4 Weight Reduction In Four-bar Design 17
3.2.1.5 Fabrication 18
3.2.1.6 3D Static Truss Analysis 19
3.2.1.7 Calculating the Resultant Force 20
3.2.1.8 Mounting Plate Fastener Pull Out Strength Analysis 21

3.2.2 Rover Electronics 21
3.2.2.1 Combining the Husky and CERBERUS Electrical Systems 22
3.2.2.2 Electrical Redesign for Robustness and Durability 23

3.2.3 Rover Control 23
3.3 Systems Integration of New Drone 25

3.3.1 Tarot T-18 v2.1 25
3.3.2 Drone Electronic System 26

3.3.2.1 High-Level Electrical Overview 26
3.3.2.2 Flight Controller 26
3.3.2.3 Real-Time Kinematic GPS Unit 27

3.3.3 Flight Control System Architecture 28

4

3.3.3.1 System Integration 28
3.3.3.2 Mission Control Logic Onboard the Drone 29
3.3.3.3 Communication Between the Base Station and Onboard Computer 30
3.3.3.4 Communication Between the Onboard Computer and the Flight Controller 30

3.3.4 Drone Mechanical Updates 30
3.3.4.1 Drone Dropper Attachment 30
3.3.4.2 Dropper Mechanism Redesign 31
3.3.4.3 Testing Criteria for the Dropper Mechanism 32

3.4 Base Station Programming 32
3.4.1 User Interface 32
3.4.2 Rover Pathfinding 34

4.0 Results 38
4.1 Rover 38

4.1.1 3D Static, Motion, and Deflection Calculations 38
4.1.2 Electrical System Improvements 39
4.1.3 Rover Driving 41
4.1.4 Testing Against Acceptance Criteria 42

4.2 Drone 42
4.2.1 Flight Testing 42

4.2.1.1 Preliminary Flight 42
4.2.1.2 Autonomous Flight 43
4.2.1.3 Post-Reconfiguration Flight 44

4.2.2 Electrical Systems Update 44
4.2.2.1 RTK Unit Installation and Snow Drone Team Assistance 46

4.2.3 Dropper Tests Comparison 47
4.2.3.1 Initial Dropping Mechanism Tests 47
4.2.3.2 Updated Dropper Tests 48

4.2.4 Testing Against Acceptance Criteria 49
4.3 Base Station 50

4.3.1 User Interface 50
4.3.2 Rover Pathfinding Algorithm 51
4.3.3 Testing Against Acceptance Criteria 51

5.0 Conclusion/Discussion 53
5.1 Rover Discussion 53
5.2 Drone Discussion 53
5.3 Base Station Discussion 54
5.4 Future Work for the MQP 54

5.4.1 Drone 54
5.4.1.1 Communication between Drone Electronics 54
5.4.1.2 Dropper Mechanism 55

5

5.4.2 Rover 55
5.4.2.1 Rover Mobility 55
5.4.2.2 Rover Electrical Systems 55

5.4.3 Base Station 56
5.4.3.1 User Interface 56
5.4.3.2 Rover Pathfinding 57
5.4.3.3 Rover System 57

5.5 Conclusion 58

References 60

Appendices 61
Appendix A: Authorship 61
Appendix B: CAD Models 63
Appendix C: Rover Pathfinding Algorithm 64
Appendix D: Four-bar Analysis 70
Appendix E: Preflight Checklist: 83
Appendix F: Rover Hero .NETMF Drive Code 84
Appendix G: Attachment Part Analysis 86

List of Figures
Figure 1: Efficiencies of various contemporary demining methods . 10
Figure 2: Rover with Four-Bar Arm and Metal Detector . 11
Figure 3: Rover CAD Model . 15
Figure 4: Rover with Mounting Platform . 16
Figure 5: Four Bar Attaching Components . 16
Figure 6: ANSYS Analysis of Left Angle Bracket . 17
Figure 7: Mounting Frame Welded to Rover Frame . 18
Figure 8: Modified Front Bar . 19
Figure 9: Resultant Force From Treads Test . 20
Figure 10: Diagram for Rotation of the Rover . 21
Figure 11: Rover Electrical Schematic . 22
Figure 12: Rover control diagram . 24
Figure 13: Tarot T-18 v2.1 Ready to Fly . 25
Figure 14: Drone Electrical Schematic . 26
Figure 15: mRo X2.1 Diagram . 27
Figure 16: Drone System Setup Sequence Diagram . 29
Figure 17: In-Flight Mission Control Flowchart . 29
Figure 18: Drone Dropper Attachment Attached . 31
Figure 19: Drone Dropper Attachment CAD . 31

6

Figure 20: Polygon Bug . 33
Figure 21: Duplicate Vertex Bug . 34
Figure 22: Visualization of Convex Rover Pathfinding Output (raw & with added visual

aid) . 35
Figure 23: Visualization of a Triangulated Concave Polygon (using mapbox-earcut) . . . 36
Figure 24: Visualization of a Concave Polygon Split into Minimum Convex Partitions . 36
Figure 25: Visualization of Rover Pathfinding Output for a Concave Polygon Split into

Minimum Convex Partitions . 37
Figure 26: Joint Locations . 38
Figure 27: Attachment Bolts . 39
Figure 28: Electrical Mounting Box CAD . 40
Figure 29: Controller Solidworks Model . 41
Figure 30: Successful Compass Calibration Drone Flight at Green Hill Park 43
Figure 31: Drone Electrical System from UAV Systems . 45
Figure 32: Drone Electronics System . 45
Figure 33: Screenshot of the u-center interface from the RTK fix achieved by the Snow

Drone modules . 46
Figure 34: Slow-Motion Frame of Payload Impact (Second Test, #8) 47
Figure 35: Initial Dropper Test Landing Spread . 48
Figure 36: Updated Dropper Test Landing Spread . 49
Figure 37: Drone Deploying the Payload Mid Flight . 49
Figure 38: System Communications Diagram . 50
Figure 39: VM Options for UI Run Configuration . 56

7

1.0 Introduction

1.1 Problem Statement
Abandoned, unexploded landmines are a major concern for human life and wellbeing.

While an actual number is hard to obtain, the International Campaign to Ban Landmines (ICBL)
reports that in 2018 there were 6,897 casualties due to landmines, 71% of which were civilians
(ICBL, 2019, p. 54). One majorly affected demographic is children, accounting for 40% of all
casualties with a known age, and 54% of civilian casualties with a known age (ICBL, 2019, p.
58). However, even these statistics are likely lower than the actual number, since these are based
on only the reported numbers, and the ICBL states that even estimating the gap between reported
and actual casualties is not feasible due to conflicts that started in 2015 (ICBL, 2019, p. 54).
There have been a total of over 130,000 reported casualties since 1999 (ICBL, 2019, p. 55).
Landmines inhibit the development of infrastructure, trade, and impact mental health in affected
communities. The goal of our project is to develop a relatively cheap, safe, and efficient system
capable of clearing landmine contaminated areas in order to prevent as many civilian casualties
as possible. Not only will this reduce the number of civilian casualties due to abandoned,
unexploded landmines, but it will also reclaim useful land. Demining efforts are important in
helping conflict stricken countries recover.

1.2 Project Description
The project mission is to create an Autonomous Demining System operable by a

non-technical user. The demining system specializes in the PMN-1 landmine. The PMN-1 is an
anti-personnel blast mine developed in the 1950s. They are one of the most widely used mines
because of their low cost and simple production. They have a metal trigger, detectable by a metal
detector. These mines are relatively deadly, containing about five times the explosive material of
other mines of similar sizes (Landminefree.org, 2017). It is reported to be in use in at least 20
countries especially in the Middle East, Africa, and Southeast Asia (Smith, 2019).

8

2.0 Background

2.1 Related Work

2.1.1 Other Methods of Demining
The main three methods of demining are manual, animal assisted, and machine demining

(Mikulic, 2013) (Habib, 2002).
Manual demining involves trained personnel using sensing equipment like metal

detectors, radar, and probes to identify the location of a mine, and then remove or remotely
detonate it (Mikulic, 2013). Manual demining relies heavily on metal detectors, but about one
third of all anti-personnel landmines are metal free. Additionally, the soil in minefields is usually
saturated with metal fragments, debris, and litter. In some environments, only about 0.1% of all
signals belong to mines (Habib 2002). Manual demining is not only slow, but dangerous. When
Afghanistan was demining PMN-1 mines, about 3% of their deminers experienced accidents
(Trevelyan, 2000).

Animal demining is usually carried out by dogs, which are 10,000 times more sensitive to
explosive residue than man-made detectors (Habib, 2002). Other animals, insects, and even
bacteria have also been used though. African Pouched Rats are a relatively new tool being used,
and may be better suited than dogs. They have better senses of smell, cost less to maintain,
mature quicker, can be transported easier, and are resistant to tropical diseases (Habib, 2002).
However, animals can be overwhelmed when there is a high density of landmines, and cannot
work long hours.

Machine demining involves either tilling or flailing the ground to detonate the mines
under a protective shield attached to a vehicle (Mikulic, 2013). Flailing the ground detonates the
mines by triggering their pressure sensors. The two tilling designs either crush mines under a till,
or uproot them and bring them in front of the till to be more easily flailed. Usually, these
detonators are attached to armored vehicles. The heavier the vehicle, the higher its speed, but the
lower its versatility (Mikulic, 2013). Excavators can also have their end effectors changed to
these detonators, and can be much more versatile. Mechanical demining is relatively efficient,
but is significantly gaited by terrain restrictions, environmental disruption, and low consistency
(Mikulic, 2013) (Habib, 2002). It is best used supported by manual or animal teams that do a
secondary pass over mechanically cleared areas. Speed, safety, cost, and versatility are all factors
when assessing a demining solution. Figure 1 shows the speeds of different demining methods.
All of the speeds are in m2 per day in favorable conditions (Mikulic, 2013).

9

Manual Dog assisted <5 ton
Machine

5-20 ton
Machine

>20 ton
Machine

Primary Pass 75 m2/day 500 m2/day 725 m2/day 1550 m2/day 2500 m2/day

Secondary
Pass

450 m2/day 1500 m2/day N/A N/A N/A

Figure 1: Efficiencies of various contemporary demining methods

2.1.2 Other Autonomous Robotic Solutions
Many current autonomous robotic demining solutions are primarily developed for

military use and are high cost systems, which are too expensive for many communities most in
need. While some efforts have been made to create affordable and accessible robotic demining
systems, they are not yet as effective or readily available as is truly needed. One of these efforts
led by K. T. M. U. Hempala and R. P. Razzoli (2012) in a joint project between the University of
Sri Lanka and the University of Geneva. They worked on creating a design for a demining robot
that could be made from materials and farming equipment that local residents of their target areas
would already have access to and know how to operate.

The primary goal of the 2012 project was to create a demining robot that would be
effective for use in “mine belts'' as well as randomly buried mines. The design does not locate
buried mines and is focused on the removal of the buried mines as opposed to the detonation of
them, which was seen as less reliable for total clearance. This system implements several
innovative ideas but has several flaws that ultimately limit its effectiveness. This system is
highly dependent upon ground conditions and drops in both efficiency and effectiveness in
non-ideal terrain. Because the system is not locating buried mines there may be ones that are
missed and the system can not guarantee 100% clearance.

2.2 Previous Work

2.2.1 Previous Work on Base Station
The base station consists of the base station laptop, a wireless link to communicate with

the rover and drone, and a real-time kinematic positioning unit (RTK unit). Previous work
designed the base station to use ROS for high-level planning and communication with both the
rover and the drone. It will define and hold the essential mapping information such as the
boundaries of the minefield to be cleared and the location of the detected mines which the rover
has scanned. It will then use a pathfinding algorithm to map out an ideal path for the rover to
follow in order to cover the entire minefield, sending these waypoints to the rover as it requests
them. When the rover identifies a mine, it will send the GPS coordinate back to the base station.
The base station will keep track of all identified mines to send to the drone once the rover is

10

finished sweeping the minefield. Once the rover has completed its search of the minefield and
moved to a safe location, the base station will command the drone to launch and provide it with
the mine locations. The drone will travel to each location and drop a payload on the mine to
detonate it, then retreat to the associated escape location. Once the drone has cleared all mines or
run out of payloads, it will communicate with the base station and return to be recharged and
restocked, then restart the process until all mines have been neutralized.

The system requires input for designated minefield boundaries, needs to be manually
restocked, and may need to be aborted. Therefore a user interface was developed for the
application to allow a non-technical user to communicate with the system. This UI was built by
the previous team, but not completed. The end goal for the UI is to provide a simple and intuitive
means for a user to complete the necessary setup for the system to start without issues and
provide understandable feedback to the user during the process of demining. A secondary
purpose is to also provide a way to quickly abort and recall the rover or drone in the event of an
emergency, or even take manual control of them as the situation dictates.

As our team took control of the project, most of the User Interface work was cemented in
place, the UI framework was complete with a Google Maps API display for selecting minefield
bounds. However, the UI was still being developed and required much fleshing out. The API no
longer functioned correctly upon picking up the project, and had not been fully completed and
tested previously. The UI also still needed added functionality to communicate with ROS in
order to send commands and receive data. The rover pathfinding had to be implemented as it,
along with the rover code, had been planned but delayed due to COVID-19.

2.2.2 Previous Work on Rover
The rover has two essential parts that will allow it to do its job properly: the four-bar arm,

which has a SURF 1.2 metal detector, and a navigation system, composed of the drivetrain and
RTK. The four-bar arm uses a pair of linear actuators to raise and lower the height of the metal
detector. The metal detector is attached to a linear screw system at the end of the four-bar arm as
shown below in figure 2.

Figure 2: Rover with Four-Bar Arm and Metal Detector

11

The linear screw system provides the lateral motion for the metal detector to sweep in front of
the rover. It is powered by a Vex CIM motor attached to a lead screw. The metal detector input is
processed by an Arduino Uno. A Teensy 3.5 manages the Uno, all the motors and actuators, and
all the sensors except the RTK. An onboard computer running ROS manages the RTK and
communicates with the base station to receive waypoints to move between. The first waypoint
sent directs the rover to the correct location to start following its path through the minefield.
Once it reaches the start location, it will start a grid search pattern where it moves the linear
screw system from one side to the other, scanning for mines. The rover will then move forward
the distance of the metal detector scanning radius and perform the sweep function again. While
the linear screw system moves the metal detector laterally, four ultrasonic sensors will measure
the distance from the metal detector to the ground and adjust the angle (pitch and roll) and height
of the metal detector to keep it parallel and close to the ground. This adjustment ensures
maximum detection radius, depth, and accuracy. When the metal detector is triggered, the rover
will send a message back to the base station indicating that there is a suspected mine at the
current RTK coordinates. The RTK will be mounted directly atop the arm which moves with the
linear actuation, guaranteeing that the coordinates sent are the same as where the detector was set
off. It will then repeat, inching forward until it reaches the waypoint.

The planned navigation system for the rover would also employ a LiDAR sensor to scan
for obstacles. The data collected from the LiDAR will be processed in ROS, then the path
planning will be updated to avoid obstacles in the minefield. The detected mines as well as
objects identified by the LiDAR will be factored into the base station’s path planning. The rover
will traverse the field by sweeping adjacent strips according to the planned path until the entire
section has been covered. Then it will follow waypoints to a safe location outside of the
minefield to ensure it is undamaged during the drone’s detonation operation.

2.2.3 Previous Work on Drone
The drone system consists of three main subsystems: flight, mission control, and payload

delivery. The flight subsystem consists of the physical drone and its low level control, including
electronics such as motor controllers and the flight controller. Demining Phase IV had integrated
an ArduPilot Pixhawk flight controller into a prebuilt drone base. The mission control
subsystem is in charge of communicating with the base station, and directing the drone between
waypoints during the mission. Previous work utilized an RTK unit for precise localization and a
Teensy 3.5 microcontroller as the on onboard computer. Phase IV wrote a flight control program
to be run on the Teensy in C++, and a partner program on the Base Station. Finally, the payload
subsystem accurately deploys payloads to remotely detonate the landmines. The dropper
inherited from Phase IV was 3D printed and had a stepper motor mounted, but no electronics
were implemented and it had not been tested. The dropping mechanism is attached to the bottom
of the drone, and is run by the Teensy 3.5.

The drone is able to navigate to the target location by receiving waypoints from the base
station. The base station sends two waypoints to the drone, the first is the location of the

12

suspected mine detected by the rover, and the second is an efficient escape location in the
direction of the next mine. The escape location is a safe distance away from the mine so the
drone speeds away to clear the area of potential shrapnel. Once at a mine waypoint, the drone
will steady itself in a hover, and make sure to be as close to the original mine coordinates as
possible before dropping the water balloon to detonate the mine.

The previous team working on this project determined that the force from a 0.5lb water
balloon dropped from 20 ft above ground level is sufficient to detonate the PMN-1 landmine
(Santos et al., 2020, p. 59). When the drone runs out of payloads it will return to the base station
and land, where it can be reloaded and recharged to continue the mission. Once it is done
clearing all suspected mines, it will return to the base station and wait to clear the next section
after the rover identifies another set of coordinates.

Unfortunately during the final test flight last year the drone crashed and due to COVID
19 the team was unable to replace it before the end of the school year.

2.2.4 Evolving Project Design
Since the project has been ongoing for several years, there have been necessary changes

to the equipment to improve the efficiency of the system and keep it up to date. This year, the
team received a new rover base and were able to use a new drone as well. The previous rover
base had been the source of issues with turning precisely, which were exacerbated by the heavy
load it carried. These turning issues would have been inefficient and dangerous for the mission.
The wider turn radius would mean that the rover may have entered unsafe locations, such as
other sections of the minefield, when turning to scan the next strip of the current minefield
section. The imprecise turns would have potentially caused the rover to get off track and unless
there was live location checking using the RTK unit. This could also cause the rover to scan
outside of the designated minefield section and fail to scan the whole section while marking it as
scanned, possibly leaving undetected mines behind. The team also used a new drone due to the
difficulty in acquiring parts to repair the extensive damage to the previous drone caused by the
crash late last year. The difficulty getting parts was partially due to the drone being a
discontinued model, and partly because of trade relations between the United States and China,
where the parts were available. This made repairing it unfavorable since it would require printing
or machining of the broken parts as well as any parts needed in the future. The team was
generously offered to share a drone with Professor Markus Nemitz, who was looking to acquire a
heavy payload drone for his own research and became an advisor for this project.

These major project changes are not unique to this year, the last project team rebuilt the
entire four-bar and sensing arm assembly. This involved replacing the painting mechanism to
mark mines with the current RTK coordinate markings. They also changed the payload dropping
system on the drone completely, from sand bags to a revolving water balloon dropper with a
higher capacity.

13

3.0 Methodology

3.1 Problem Formation
3.1.1 Acceptance Criteria

This section describes an acceptably working system, and was decided based on the skills
of our team, the speed of our progress in previous work, and the accomplishments of previous
teams on this project.

1. The mine detecting apparatus is attached and functioning on the new robot base.

2. The C/C++ robot code is completed so the rover can use the metal detecting apparatus,
drive, turn, and navigate using its encoders and dGPS.

3. The ROS code for the robot allows it to communicate with the base station, and manages
the path planning and the basic functions of the robot listed above.

4. The rover can communicate with the base station to coordinate completely sweeping an
area defined using the Google Maps API for both concave and convex polygons. This
means the path planning takes it across the whole field, and it is able to identify suspected
mines and avoid them during the process.

5. The accuracy necessary to consistently detonate PMN-1 mines from an altitude of 20 ft.
with our payloads is identified, and our dropping mechanism achieves this necessary
accuracy.

6. The drone is able to receive mission instructions from the base station, navigate to a
number of mines equal to its payload capacity, and drop its payloads.

Although these are the goals for our project, they do not constitute a complete demining system.
Trials involving the complete system, as well as more field realistic tests for each subsystem,
would still need to be completed.
The rover should be able to sweep areas at rates at least comparable to those of manual mine
sweeping, which is between 5-150 square meters per day (Guide to Mine Action, p.137).

14

3.2 Rover System Updates

3.2.1 Mounting the Metal Detector on the Rover

3.2.1.1 Modeling The CERBERUS Rover

Previous phases of the project utilized a Clearpath A100 Husky platform as the metal
detecting vehicle of the system. The last DAS MQP phase encountered mobility issues involving
the capabilities of the rover to turn while bearing a heavy load. The Husky rover was replaced
with a treaded rover base from a past CERBERUS WPI project to improve the maneuverability
of the rover with the metal detecting apparatus. A Solidworks CAD model was created of the
rover to allow for design and fitting of new components as well as analysis of these components
and the system as a whole. First, measurements of the main, central frame of the rover were
taken and recorded along with notes about frame geometry. The frame of the rover was
determined to be made from one inch steel square tubing with a wall thickness of one sixteenth
of an inch based on the measurements, color, texture and weight of the frame. This information
was then used to generate a CAD model with accurate dimensions and shape as shown in figure
3 below. The same measure-and-model method was then used to create the wheel housings, the
wheels, and treads. Additional components including a bottom plate and batteries were added to
give a more accurate depiction of the robot and its weight.

Figure 3: Rover CAD Model

3.2.1.2 Designing The Mounting Attachments

There needed to be a flat platform on which to mount the four-bar’s anchoring support on
top of. In addition, a lower horizontal bar was needed in front to connect the linear actuators for
the four-bar mechanism. In order to adapt the CERBERUS base to fit the arm designed for the

15

Husky, the connection for the linear actuators would need to be approximately 5” in front of, and
7.5” lower than the connection joint for the four-bar linkage. To provide the flat platform for the
anchoring support, a 90 degree frame made from square steel tubing was designed with angled
cuts to match the angled slope of the frame, where it would be welded as shown in figure 4
below.

Figure 4: Rover with Mounting Platform

The linear actuators are attached to the frame using steel square tubing with pairs of welded steel
tabs that sandwich the frame and are secured with a 1/4-20 bolt as shown by label A in figure 5.
To attach the four-bar anchoring support to the newly framed platform, the bottom plate that
holds the four-bar mechanism was drilled and tapped so twelve 14-20 1.75” bolts could be bolted
on, sandwiching the one inch square tubing as shown by label B in figure 5 below. Six aluminum
tabs that are 1/4” thick are used to secure the plate to the mounting frame.

Figure 5: Four Bar Attaching Components

16

This connection allows for a sturdy and easily removable connection so that the four-bar
mechanism can be removed from the base if necessary for transport or repairs. The location that
the plate is meant to rest on is etched into the metals so that it can be returned to the same place
every time.

3.2.1.3 Analysis of Mounting Components

To analyze the mounting components, both handwritten and computer simulated stress
calculations were completed to ensure that the stress on each of the components did not exceed
the von Mesis yield criterion for each of the materials. To analyze each component the
solidworks models were run through ANSYS. This pThis provided a comprehensive
understanding of the stresses throughout each of the individual parts. An example of one of the
ANSYS analysis is shown below in figure 6. To confirm that the numbers the program provided,
we completed simplified 3D static hand calculations. For our hand calculations we simplified it
to the force applied on the projected surface area of the fastener holes. We know that this is an
oversimplification but since we were only using the hand calculations to confirm our program
analysis, we were only looking for the hand calculations to be within 30% of the numbers from
ANSYS.

Figure 6: ANSYS Analysis of Left Angle Bracket

3.2.1.4 Weight Reduction In Four-bar Design

The metal detector extends beyond the front of the rover frame and has a significant
weight of 50 lbs. In order to move the center of mass back towards the center of rotation for the
rover, which in turn allows for more control and mobility of the rover, the weight of the four-bar
support design needed to be reduced. To reduce the weight of the four-bar assembly we
redesigned the top front plate to remove around 7 lbs of material while still being able to mount
the linear slide mechanism that allows the metal detector to oscillate from one side of the rover
to the other. This design was completed but was never fabricated.

17

3.2.1.5 Fabrication

To create the mounting platform that is needed for mounting the four-bar assembly to the
CERBERUS base we needed to weld together the one inch square steel tubing. The team decided
to utilize TIG welding for all welds that were used, because it allowed for more precise welds
and gave us more versatility in the thickness of steel we ended up using. Once the steel frame of
the mounting plate was welded together, as shown below in figure 7, the angled cuts of the
square tubing were welded to the steel frame of the Cerberus rover.

Figure 7: Mounting Frame Welded to Rover Frame

Another two holes we drilled into the front, steel, cross bar, and four identical tabs were
welded onto a front steel mounting bar that supports the linear actuators. The bar and tabs were
then mounted to the CERBERUS base as shown below in figure 8, this allowed for the bolts to
be used to attach the front bar that is connected to the linear actuators of the four-bar mechanism.

18

Figure 8: Modified Front Bar

The final modifications to the rover base was a mounting box that was made out of sheet
metal was folded and welded onto the rover base to hold the two 12V batteries during operation.

3.2.1.6 3D Static Truss Analysis

In addition to our calculation of the attachment points to confirm that the fasteners would
go beyond the max von Mesis force, we conducted an analysis of the four-bar mechanism to find
the internal forces in each member, the reactionary forces in each joint, and the deflection of the
assembly; both when it is at rest and when it is turning. To complete these calculations we made
a series of assumptions to slightly simplify the system, but every assumption we made resulted in
higher internal forces on the system, that we could be confident that if it could handle the forces
we calculated, it would be able to handle the actual stress it would be receiving. To calculate the
resultant force for the rotational acceleration, we needed to find the force that the treads would
be able to apply to turn the robot and create the rotational acceleration. This force needed to be
found experimentally because the company that the Cerberus base was originally purchased from
refused to provide any information about the operating capabilities of the drive motors. To find
this force we drove the robot into a scale that was propped up against the wall and measured the
total force that the robot was able to apply before the treads started slipping. This experiment is
demonstrated below in figure 10.

19

Figure 9: Resultant Force From Treads Test

This test is very dependent on the surface that it is being conducted on, but the force that we
found far exceeds the limits we are putting on the rover while it is operating. Because of this the
resultant calculated acceleration and force from the metal detecting arm rotating that we
calculate will be higher than the actual one, and as such it is structurally safe under our
calculated load. In addition, we understand that not 100% of the force that the treads apply when
they are driving in a straight line. Part of the force that the treads are able to apply will go toward
overcoming the friction force to get the front and back part of the treads to slide over the ground
as the treads rotated around the center of rotation. We did not take this into account when
conducting our calculations because if we did, it would only decrease the resulting force at the
metal detecting arm, and it is very dependent on the type of ground the rover is covering, so to be
on the conservative side in our calculations, we decided to not take it into account. Another
simplification we made was to assume that the members in the four-bar mechanism were
massless, and looked at the entire mass of the four-bar mechanism and metal detecting linear
slide and based our calculation off the assumption that all of the mass is being applied at the
center of mass of the linear slide. This allowed us to simplify our hand calculations and still
accounted for the weight of the steel tubing. The final assumption we made is that we assumed
that the centripetal force from the velocity of the rover rotating was negligible when compared to
the resultant force due to the acceleration from the motors. Since we have capped the rotational
velocity of the rover at one full rotation in 8 seconds, or 0.79 radians per second, to allow for
precision in the autonomous system. The resulting centripetal force would only be approximately
3 lbf at max speed and is negligible.

3.2.1.7 Calculating the Resultant Force

To calculate the force that is applied to the system from the rover turning, we needed to
find the acceleration of the metal detector as it rotated around. To calculate that, we used the
maximum force that the treads can apply to the system, and used that to calculate the rotational

20

acceleration of the system from the torque on the system. To do that we needed to calculate the
moment of inertia of the rover. To calculate the moment of inertia we simplified the rover down
to a rectangle rotating around the pivot point with the center of mass 2.5 inches in front of the
center of rotation. The calculated moment of inertia was 28 kg*m2, the resultant angular
acceleration of the rover was 14.7 rad/s2. After we had the rotational acceleration of the system
we could find the linear acceleration of the metal detector and its resultant force. The linear force
that is applied from the rover turning ended up being 71.7 lbf. Figure 10 shows a diagram of the
system to help make the described calculations clearer.

Figure 10: Diagram for Rotation of the Rover

3.2.1.8 Mounting Plate Fastener Pull Out Strength Analysis

Aftering running the 3D Truss Analysis, we were able to calculate the force that was
going to be applied to the 1/4-20 bolts that hold the mounting plate for the four-bar to the
CERBERUS frame. From there were were able to calculate the maximum pull out strength for
the 1/4-20 bolts to see if they would be able to endure the load that would be applied to them
from the weight of the four-bar.

3.2.2 Rover Electronics
Just as the sensing arm hardware was transferred from the old rover base, the team also

transferred the majority of the control system and electronics that were not a part of the

21

off-the-shelf Husky system to the new rover base. Most of the sensing and onboard processing
systems were able to remain unchanged, while modifications were made to the drive system to
accommodate the new base. An XBee was added to communicate with the microcontroller for
manual control of the drivetrain, four-bar, and metal detector, and a Logitech F710 was added to
shortcut manual control of the drivetrain through the Hero Development board. In keeping with
the previous team’s efforts, we organized and documented the electrical system for ease of
troubleshooting and repair as well as ease of understanding for future teams.

3.2.2.1 Combining the Husky and CERBERUS Electrical Systems

Integrating the electronics system with the new rover base presented a few issues
regarding differing power requirements, particularly for the two drive motors. One of the primary
reasons for using a different rover base was to achieve greater traction and power within the
drive train. Last year only 12V and 5V supplies were required, but the drive motors on the new
base require 24V. Additionally, the voltage conversion and power distribution components of last
year’s system were a part of the Husky platform and could not be transferred to the new base.
The team added two voltage converters, 24V to 12V and 24V to 5V, to the system to create 24V,
12V, and 5V power supplies, as shown in figure 11 below.

Figure 11: Rover Electrical Schematic

Another major difference from the old rover base is the style of the drive motor
controllers. The Husky base used Jaguar motor controllers as part of the off-the-shelf system.
The new rover base that our team received this year uses Talon SRX motor controllers. The
primary difference between the two types is the way they receive signals. Jaguars use individual
PWM signals while Talons use a CAN Bus system. Implementing CAN Bus signaling with the

22

rover control system required the team to use a HERO Development board from Cross the Road
Electronics to interface between the onboard computer and the CAN Bus system.

3.2.2.2 Electrical Redesign for Robustness and Durability

Continuing with the previous team’s efforts to upgrade the overall system to make it more
robust and high quality, our team is upgrading components of the electrical system to make them
more durable and reliable. The primary upgrade will be the replacement of three breadboards
being used for power distribution with perfboard circuit boards that have soldered connections.
These connections will be less delicate and susceptible to coming loose with vibration from
diving, which is necessary for the system to be able to function reliably in unpredictable terrain.

The team will also be using electrical connectors that create a solid and secure connection
between as many components as is feasible to both ensure reliable connections and facilitate easy
troubleshooting and quick replacing of components on short notice. This will be part of making
the system more practical and accessible for real life scenarios and needed maintenance.

3.2.3 Rover Control
The rover is controlled using the popular ROS framework. Previous work had also used

ROS, but had relied on the professional libraries prebuilt for the Husky body. A ROS node
network was designed with inspiration from previous work, and outlines future implementation
of mapping, navigation, dGPS, and LiDAR nodes. The interface to the electronics uses C++ and
Arduino and is called from the XBee manually. Code for the ultrasonic sensors, and the slider
motor and linear actuators controlling the arm and sweep have been adapted for the new system
but remain untested. The communication protocol between the rover and base station are being
adapted from those written for the drone.

Because the XBee communication with the Teensy 3.5 was not implemented until the end
of the project, the team investigated alternative manual control methods.

23

Figure 12: Rover control diagram

The team decided to interface directly with the HERO board with a game controller through a
USB connection. This is because the HERO has a processor and can be directly programmed in
C# through the NETMF framework. The development of the drivetrain library can be started on
the HERO, and called by the controller. The same library can be called from the onboard
computer in the end solution, so the team started the library to get basic driving but replaced the
communication from the computer with a Logitech F710 wireless controller.

The HERO is designed by Cross the Road Electronics (CTRE) and communicates with
the Talon SRX motor controllers over CAN bus. The team started by updating all the firmware
on the HERO and both the Talons to the latest v-21.0 releases. Phoenix LifeBoat, the CTRE
imager software, was used to update the HERO. LifeBoat then was able to identify the Talons
through the HERO, and updated their firmware as well. The HERO board has a firmware level
direct drive solution that requires no programming which was used to sanity test the electronics
system. The direct_drive firmware on the HERO automatically recognizes attached Talon motor
controllers and game controller input, then drives motors based on analog stick input with no
coding needed on the user end. However, initial testing did not yield results. The team changed
the HERO board to the NETMF firmware, and programmed it through the .NETMF framework
addon in Visual Studio 2017. The team used an edited CTRE sample program to test the motor
control, but this also yielded no results.

Through debugging, it was found that the XBox One controller that had been employed
used too modern of a communications protocol, so the team switched to the Logitech F710
controller which uses HID USB protocol. It also has a DirectX protocol mode switch, which can
be used as an emergency stop during operation as an added benefit. The team also found that the
latest firmware versions implement special watchdog checks built for the FRC roboRIO onboard
computer that had been preventing the motors from driving. Using Phoenix LifeBoat again, the

24

HERO board firmware was regressed to the latest non-FRC NETMF firmware, and the Talon
SRX’s were also updated to have the latest non-FRC firmware, v-11.11.

Using the changed firmware and the Logitech controller, one of the Talon SRXs
successfully drove its motor and moved one side of the rover’s treads. After thorough testing, it
was determined beyond any reasonable doubt that the other older Talon SRX was not fully
functioning. The team successfully replaced the dysfunctional Talon, and improved the C# drive
code. These efforts resulted in the ability to manually control the rover’s driving using the
Logitech controller.

3.3 Systems Integration of New Drone

3.3.1 Tarot T-18 v2.1
Due to the terminal crash of the DAS Phase IV drone, our team investigated options for

replacement. The specifications were long range, heavy payload capabilities, and ease of
customization. Working in collaboration with Dr. Nemitz, the Tarot T-18 from UAV Systems
International was selected. It was chosen for its 2 mile range and its 8kg payload capacity, as
well as initial order customization support from UAV systems and an accessible electrical
system. The Tarot T-18 is pictured in figure 13.

Figure 13: Tarot T-18 v2.1 Ready to Fly

25

3.3.2 Drone Electronic System

3.3.2.1 High-Level Electrical Overview

A major portion of the drone’s upgrades was the integration of the onboard Teensy
microcontroller, radio communication, and dropper mechanism with the electrical system of the
new Tarot T-18 Drone. Figure 14 shows the latest electrical diagram for the drone.

Figure 14: Drone Electrical Schematic

The stepper motor is powered with a 11.1V lipo battery and uses a MicroStepperDriver to
achieve precise rotations from the stepper motor. Last year's team used a Pixhawk 4, while this
year the new drone came with an mRo X2.1. This presented challenges in terms of trying to
reconfigure the mRo to perform the same functions as the Pixhawk 4.

3.3.2.2 Flight Controller

The Tarot T-18 had been special ordered from UAV Systems International to use a
Pixhawk 4 flight controller, the same as the previous iteration of the drone had employed. The
Pixhawk 4 has an advanced STM32F765 processor, arguably the best flight controller on the
market. It has 8 UART data ports, which are integral for connecting to the many planned
peripheral devices. However, the Tarot T-18came with an mRo v2.1 flight controller installed
instead. This controller’s F4 processor is 25% slower, and it only has 3 UART ports. It also has a
less precise internal compass, and has been known to face errors when running the latest
ArduPilot firmware.

26

Figure 15: mRo X2.1 Diagram

The team investigated replacing the mRo board with a Pixhawk 4, but decided that the benefits
were not worth the time needed to do so at the stage the project was at. UAV Systems was
contacted to assist in reconfiguring the mRo board.

QGroundControl v4.1.2 was used in preparation to update the firmware of the mRo board
to the latest ArduCopter release, v3.2.1. Then a UAV Systems engineer led the team through
configuring the board. MissionPlanner v1.3.74 was used to set the full parameter tree, using a zip
file provided by UAV Systems. Serial2 input was configured to take the MAVLink1 protocol
through UART3 on the board, to communicate with the custom DAS mission control software on
the Teensy 3.5 onboard computer. However, this may be the cause of the mavlink item transfer
errors between the drone and the Herelink that were experienced.

3.3.2.3 Real-Time Kinematic GPS Unit

The system uses three precise GNSS modules. The modules are all ublox C94-M8P
application boards with NEO-M8P-2 modules. These modules can achieve accuracies of 1-3cm
relative to each other. One of them is set up as a stationary “base station,” and sends out
correctional data to the two “roving” modules. The final design has one of the roving modules
attached above the metal detector on the rover, and the other attached above the dropper
mechanism on the drone. When the Rover discovers a potential mine location, it reports the
location to the base station using the RTK unit. Once the Rover has swept the field, the Base
Station reports the mine locations in an array to the Drone, which it navigates to using its
onboard RTK.

The quickstart guide from ublox was followed to configure the three boards as base
station and two rovers. U-center_v20.10 software was downloaded and used to initially configure

27

the boards through USB connection. The u-center software was used to restore the boards to
default settings before configuration attempts.

At this point, we started cooperating with the Snow Drone MQP, who had consulted for
help with what positioning system to use for their drone. They decided to also use the same RTK
modules.

Tests for the system consist of surveying-in the base station location through the u-center
software, then connecting the rover modules to it. Only one rover will be tested with the base
station at first, and will be moved to known distances within the range of 1 to 100 meters away
from the base station to test the accuracy of the relative position. Then both rover modules will
be connected to the base station and tested in parallel. The tests need to be completed in an open
area with a clear sky.

In order to communicate with a Pixhawk 4 flight controller, the RTK unit on the drone
needed to have its serial baud rate raised to 38,400 from its 19,200 default. This is done through
the u-center software. To communicate with each other, the RTK units all need to have the same
baud rate of 38,400, or the RTK corrections between the boards will not be recognized. In order
to transmit this data, the radio baud rates of the modules need to be higher than that of the data
within them, so are set to 48,000. The radios needed to be configured outside the u-center
software using AT commands sent using PuTTY over a 9-pin serial cable.

3.3.3 Flight Control System Architecture

3.3.3.1 System Integration

The base station runs an application written in C++ that allows for user input to initiate
and terminate the mission, as well as handling the path planning for the drone. Currently, dummy
mine locations are hardcoded into the software. Once this application is integrated into the ROS
network, coordinates for potential mine locations will be set by the Rover. This base station
mission planner application uses the mine locations to generate a list of waypoint coordinates to
send to the drone. The waypoints consist of mine locations where the payload drops will occur,
and escape locations for the drone to move towards immediately after dropping a payload. The
escape locations are planned so that they are in the direction of the next target. In order for the
system to work coherently, there is a thorough setup process that occurs at the initialization of
every mission.

28

Figure 16: Drone System Setup Sequence Diagram

The sequence diagram in figure 16 above describes the information passed between the
different subsystems, where the vertical axis progresses downwards in time.

3.3.3.2 Mission Control Logic Onboard the Drone

Once the setup process is complete and the mission planner application has sent the
waypoints to the Teensy, the Teensy commences the mission. It controls the mission using a
finite state machine, allowing interrupts from the flight controller and from the base station.

Figure 17: In-Flight Mission Control Flowchart

29

The flowchart in figure 17 above describes the finite state machine for the mission control
onboard the drone. The Teensy maintains connection to the base station and confirms it with
heartbeats throughout, and aborts the mission if communication is lost. This ensures constant
user control over the active system in the high consequence environment.

3.3.3.3 Communication Between the Base Station and Onboard Computer

The base station and drone communicate via a pair of Holybro 500mW 915 MHz
telemetry radios. The wireless communication established between the base station and the drone
emulates a serial connection. The Holybro radios are running an open-source SiK firmware.
Custom packet-based protocols allow for the information passed between the radios to be
processed by the two systems and mitigate potential transmission errors.

3.3.3.4 Communication Between the Onboard Computer and the Flight Controller

The drone is controlled by a mRo X2.1 flight controller that handles the flight stability
control loops allowing the drone to accurately perform flight maneuvers such as hovering,
turning, and waypoint navigation. The mRo X2.1 is commanded directly from the Teensy 3.5
through a serial port using a MAVLink 1 protocol over the Serial2 input set in ArduPilot across
the physical UART 3 port on the mRo.

3.3.4 Drone Mechanical Updates

3.3.4.1 Drone Dropper Attachment

Our team is borrowing a Tarot T-18 V2.1 drone from Professor Markus Nemitz. Due to
the drone not belonging solely to this project, we decided that the new attachment would need to
be easy to put on and take off the drone while still being able to support its payload. The
attachment design clamps on to the carbon fiber rails at the bottom of the drone. The dropper
mechanism is bolted through its lid to the bottom of the attachment frame. Four press-fitted hex
nuts in the lid allow for secure fastening of the body of the dropping mechanism with the ability
to refill the water balloon magazine by only removing four ¼”-20 bolts. Components of the
dropping mechanism attachment design were 3D printed and assembled shown in figure 18.

30

Figure 18: Drone Dropper Attachment Attached

3.3.4.2 Dropper Mechanism Redesign

When the drone crashed it highlighted structural flaws in the initial design. One of the
main points of fracture was the ABS axle that was holding the balloon revolver in place. We
decided to increase the diameter of the piece to strengthen the structure and prevent further
breaks at that point.

Figure 19: Drone Dropper Attachment CAD

Another shortcoming of the previously designed dropping mechanism was the fin design.
It worked fine when the dropper mechanism was stable, but when it was in motion the balloons
inside would get caught in the revolving mechanism causing a jam. We resolved this issue by
inserting flexible extensions to the fins that allow the balloons to make more contact with the
revolving mechanism reducing the chance of the balloons getting caught in the system. While

31

this fix may reduce the chance of the balloons getting caught, the dropper mechanism can only
spin in one direction so the flexible extensions wont get caught in the dropper mechanism.

3.3.4.3 Testing Criteria for the Dropper Mechanism

The dropper was tested by raising it to an elevation of 20’ and actuating the revolving
mechanism to drop on a pseudo landmine location. The exit hole was manually lined up above
the center of the landmine, and each test was performed from the same position to determine
precision. The payloads were water balloons, filled to the 1/2 lb metric identified to detonate the
PMN-1 mines from 20’. The drops were filmed in slow motion to accurately identify impact
locations, and the error was measured relative to the center of the test landmine.

3.4 Base Station Programming

3.4.1 User Interface
The User Interface (UI) was mostly designed and implemented during the previous year’s

project, with the Google Maps API having been implemented and integrated with the UI as well.
However, it took some effort this year and contact between the current team and previous team in
order to get the UI back to its previous functionality. A new Google Maps API account had to be
set up, and the run configuration was extensively lengthened to properly load all needed modules
for JavaFX and for the Google Maps API to load within the UI window.

The next work that took place on the UI was checking for and fixing any bugs or errors
observed. There were some minor bugs within the UI, and some larger ones within the Google
Maps API. The UI had a few issues with unfinished buttons, for example, the “return” button
after starting the UI to go back to the starting page didn’t function correctly, and would open the
window in the incorrect location without any navigation buttons. There was another button
which simply hadn’t had functionality added to it when clicked yet, the “Deploy” button on the
“Deploy Drone” page. Then there were also larger issues with the Google Maps API, the two
most notable being the ability to infinitely add polygons, and the duplication of vertices. When
starting a selection of points to be the designated minefield area, the user drags a pointer to the
various vertices, then hits a “Generate Polygon” button, which generates the vertices, lines
between the vertices, and the enclosed area in a red color. The bug encountered was that once
clicked, the button, as well as its functionality, remained on the page. This meant that the user
could continuously click the “Generate Polygon” button, and multiple polygons would appear on
top of each other, and when one was dragged, the others would not be moved. An example of
this bug can be seen in figure 20. This would generally be confusing as it would: 1) cause the
points in the “Current Selection” area to be incorrect, 2) make it very difficult to drag the correct
points, and 3) cause significant problems when the data was fed to ROS for the rover
pathfinding. To fix this issue, the functionality and the entire button are now removed as long as
there is already a generated polygon in the Google Maps window.

32

Figure 20: Polygon Bug

The next bug was with the current selection area, when moving a point or adding a point,
the selection would keep all previous points and add all of the points from the polygon again,
creating many duplicate points as well as some erroneous points that had since been moved. An
example of this bug occurring can be seen in figure 21, where there are seven vertices, but at
least 22 points in the current selection area. This presented a major issue since the data in the
current selection area is the same data that will then be sent to the ROS for rover pathfinding.
Therefore, if this data is not correct, the rover will not be able to pathfind correctly, and the entire
system fails before it begins. In order to fix this, the Google Maps API interface code and UI
current selection code were extensively explored. The root of the issue ended up being the data
sent from the Google Maps API to the UI, there were two separate arrays storing the vertices of
the generated polygon being built simultaneously, however, one was building correctly, and the
other was being built incorrectly, and would end up with many erroneous points in it. The second
array was the one being sent as the point data to the UI, so this was changed to send the first
array instead, since it contained the correct data. This solved the issue, and the second array was
simply deleted from the code since it was only used for the purpose of sending the data back.

33

Figure 21: Duplicate Vertex Bug

3.4.2 Rover Pathfinding
To allow for the rover to traverse the minefield designated in the Google Maps API, a

pathfinding algorithm needed to be written. This algorithm was written to take in the ordered
vertices from the API, then create a list of waypoints which the rover will travel to consecutively.
The first version of this pathfinding algorithm was implemented to only process convex
polygons. The algorithm for convex polygons uses two static values: the amount of overlap
between rows to ensure all mines are caught and the width of the rover. The way that the
algorithm works is by first finding the west-most and east-most points of the polygon. It
establishes the line between these two points as the west-east line. It does this by finding the

slope using and the y-intercept using . Next, it finds all lines in𝑚 =
𝑒

𝑦
−𝑤

𝑦

𝑒
𝑥
−𝑤

𝑥
𝑏 = 𝑒

𝑦
− 𝑚 * 𝑒

𝑥

the polygon, defined by two consecutive points in the array of vertices. It sorts these lines into
upper and lower bound lines by checking whether either vertex connected to the line has a higher
y value than the west-east line at the same x value. If either endpoint does, then the line is an
upper bound, otherwise the line is a lower bound. However, this caused a problem whenever the
west-east line happened to be an upper or lower bound: the west-east line would always be added
to the lower bounds, even if it was an upper bound, leaving the upper bounds empty. This was
fixed by adding a check after all lines had been added which adds the west-east line to whichever
bound list (upper or lower) currently has no bounds within it, and makes sure the west-east line is
not in the other list as well.

34

Figure 22: Visualization of Convex Rover Pathfinding Output (raw & with added visual aid)

Once the upper and lower bounds are established, the algorithm starts adding to the
waypoints list. To do this, it starts just to the east of the west-most point, and while its x is
smaller than that of the east-most point, it continues traversing the minefield. The algorithm has
a boolean value “top” to keep track of whether the next waypoint should be at the top or the
bottom of the polygon. For each row, the algorithm creates two waypoints, a top waypoint and a
bottom waypoint. The top waypoint is set at the lowest y value of the upper bounds at the current
x value, and the bottom waypoint is the highest y value of the lower bounds at the current x
value. When “top” is true, the top waypoint is added first, then the bottom, and “top” is flipped to
false, and when “top” is false, the bottom waypoint is added before the top, and “top” is flipped
to true. After both waypoints are added, the width of the row

is added to the current x value, and the loop restarts. The(𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑟𝑜𝑣𝑒𝑟 * (1 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝))
output of this algorithm is then a list of waypoints, in order, which the rover will move to in
order to search the entire field.

The second version of the rover pathfinding algorithm adds the capability to process
concave polygons. It does this by splitting concave polygons into convex partitions and making
use of the established algorithm to process convex polygons. There are three steps involved in
processing the concave shapes: triangulation of the shape, partitioning of the shape into convex
pieces, and finally taking advantage of the convex algorithm to process each of the partitions.

To triangulate the concave polygon quickly and effectively, a python library for
triangulation was used called “mapbox-earcut”. This library was developed by Samuel Kogler
and is described by him as: “Python bindings for the C++ implementation of the Mapbox Earcut
library, which provides very fast and quite robust triangulation of 2D polygons,” (Kogler, 2020).
This is the first step in generating waypoints for a concave shape since in order to make efficient
partitions, the shape first has to be broken down into triangles since they are always convex.

35

Figure 23: Visualization of a Triangulated Concave Polygon (using mapbox-earcut)

Once the shape is triangulated, the triangles can be combined to form larger convex
shapes. This combination can greatly reduce the number of convex shapes that need to be
traversed, which correlates to quicker and less tedious traversal of the field as a whole. This part
of the algorithm was developed from scratch. To find the minimum number of partitions needed,
an exhaustive tree of all possible convex partitions is made. This makes use of a recursive
method and a node class, each node being one triangle in the fully triangulated polygon. For each
node, this method checks the combination of itself and each adjacent node to check for
convexity. If the combination of nodes is convex, it adds the combination to the possible
partitions and recurses to try combining with the next set of adjacent nodes. It also simply
recurses without combining the current node at all to make sure all cases are checked. Once there
are no more nodes to check, it returns the smallest number of necessary partitions, and the
previous recursion continues checking. It continues this until all possible combinations of convex
shapes are searched and returns the set of partitions with the smallest number of polygons.

Figure 24: Visualization of a Concave Polygon Split into Minimum Convex Partitions

36

Finally, once the smallest number of convex partitions is found, each partition is put into
the algorithm for generating waypoints for convex shapes one by one. This creates a set of
waypoints for each convex partition which when put together traverse the entire designated
concave field.

Figure 25: Visualization of Rover Pathfinding Output for a Concave Polygon Split into
Minimum Convex Partitions

37

4.0 Results

4.1 Rover

4.1.1 3D Static, Motion, and Deflection Calculations
Our free body diagrams and results are denoted in Appendix D. From our analysis we

have determined that the four-bar mechanism is more than capable in regards to enduring the
forces it will be exposed to during operation. From the 3D static analysis the maximum internal
force any of the members experience is 129.8 lbf. This takes place in member JL as shown in
figure 26 when the angle of the link is 22.5 deg and the rover is rotating. When the system is not
rotating the maximum internal force is 85.7 lbf, which takes place in members DF and JL. This is
important because the linear actuators that we are using are rated up to 500N each. This means
that if the rover is turning, the linear actuators would not be able to raise the metal detector,
because the force on that member would be 577 N. If the rover is not turning though, it will be
able to raise and lower the metal detector because it will only need to overcome an internal force
of 381 N.

Figure 26: Joint Locations

The maximum reactionary force at any of the ball and socket pin joints is 129.8 lbf. This is the
same as the maximum internal force because when the arm is set at 22.5 deg the linear actuator is
pointed basically straight up. This is well within the capabilities of the steel structure. For the
deflection calculation, we used the method of virtual work and found the internal forces and the
unit forces in each of the members. The point that we were analyzing was the center of mass of
metal detector linear slide. The deflection of the metal detector arm when the rover is not moving
is 0.00075 in, and when it is turning it is 0.0018 in. This is a very small deflection and a great

38

improvement over the previous design. In terms of attachment of the arm to the rover base, it is
secure and well within the pull out strength of the bolts. The stress on the twelve bolts that attach
the four-bar mechanism to the CERBERUS, shown in figure 27, is 391 psi, and the combined
pull out strength of them is 110443 psi.

Figure 27: Attachment Bolts

We calculated the strain in each of the links, and the link with the highest strain still
ended up being 0.000013. We calculated the strain by multiplying the internal force by the cross
sectional area of the members, and then dividing it by the Young’s modulus of elasticity for steel.
Unfortunately, we did not have access to any strain gauges that were sensitive enough to give us
an accurate enough reading with the strain being so low, so we were unable to test the strain with
a strain gauge.

4.1.2 Electrical System Improvements
This year the primary goals for the rover electrical system focused around combining the

electrical system from the Demining Phase IV MQP on the Husky base and the CERBERUS
MQP electrical system on the Action Track base. This included both mixing the driving control
systems and connecting the electrical components for the arm designed by the previous team into
the new combined control system.

The drive system and power distribution system are the only parts of the rover electrical
system still using components from the CERBERUS system. This is primarily because of the
voltage requirements and the Talon SRXs used on the CERBERUS rover. On the Husky rover,
last year’s team was able to communicate directly from the Teensy board to the Jaguar motor
controllers using PWM signaling. Since the Action Track rover has higher voltage motors and
we are using Talon SRXs we needed to use the HERO board to communicate from the onboard
computer to the drive motors instead of the Teensy. By combining the two systems we ended up
with different power distribution requirements than either of the two previous electrical systems.
And with the PD boards on the Husky base being part of their off-the-shelf hardware we had to
modify the PD setup from the CERBERUS rover to fit the new requirements. This involved
using two voltage converters to step down from the 24V battery supply to 12V and 5V, as well as
using the 3.3V voltage output from the Teensy to supply some of the low voltage sensors.

39

The electrical wiring for the sweeper arm designed by last year’s team was routed
through a single bundle to bring the wires to the base of the arm structure and had no labeling to
identify the purpose of each wire. We identified each wire already connected to a component of
the arm and labeled them accordingly for easy identification. The wires intended for the
electrical components of the metal detecting system are not currently connected and therefore
have been left unlabeled until the metal detecting system is connected. We also used Anderson
connectors at the base of the wire bundle leading to the main electrical box so that it will be easy
to disconnect the arm from the rover base if needed (i.e. if the rover needs to be transported in
two pieces).

Another goal for the rover electrical system was to improve durability and flexibility for
future modification or maintenance. The flexibility was achieved by installing each electrical
component with short lead wires with Anderson connectors on the ends. These are then
connected to what are essentially extension cables, that can be easily made to different lengths, to
reach the other end of the connection. This allows for the mounting location of a component to
be easily changed without having to change the lead wires on the component itself.
The durability of the electrical system was improved in two ways. The first way was the
replacement of the breadboards being used in the electrical system with soldered connections on
perfboard. This makes the connections more secure and less at risk of coming loose due to
vibrations from driving. Another way the durability of the electrical system was improved was in
terms of the protection of the mounted electronics. The electrical system from the CERBERUS
rover was mounted in an open top box and was not well protected from the elements which is
important for this project since it is meant for outdoor use. The previous Demining team was also
focused on protecting the electrical system from the elements and had purchased a Nanuk case to
house the electronics. Unfortunately, when our team inherited the project, we were unable to
locate this mounting case and decided to create our own mounting box for the Action Track base.
The 3-D printed electrical mounting box shown in figure 28 will enclose all of the electrical
components mounted in the base of the rover and has an external holding slot for the onboard
computer so it does not overheat.

Figure 28: Electrical Mounting Box CAD

40

4.1.3 Rover Driving
We did not have the resources to complete the Rover ROS. A Git repository of drivetrain

functions, map maintenance, and navigation written in ROS was added to the base station, based
on RBE 3002 Turtlebot work. However, its adaptation to the Rover saw little progress. Lack of
sensors were major barriers to its development. The CERBERUS base did not have encoders
installed and solutions to this were mechanically demanding. Additionally, the RTK was not
installed for precise GPS, and there was no IMU or LiDAR either.

LCD displays were added to the xBee controller and the XBee receiver to display the
analog stick output. Initial intentions for establishing serial communication between the rover
and a rover controller were going to be handled by a set of paired XBee controllers. When
running the XBees between two arduinos they are able to establish a network, however there
were limitations when trying to establish a network between an arduino and a teensy.

The XBee was updated to be commanded by a Teensy 3.5 opposed to the Arduino Uno
used in previous tests cause some issues when trying to establish a stable network. Figure 29
shows a controller designed to house the rover controller electronics. This controller houses an
XBee unit, analog stick, Arduino uno, two buttons and a LCD screen. However our resources
were reallocated to prioritize other portions of the project so the controller was not printed.

Figure 29: Controller Solidworks Model

The team successfully achieved manual control of the rover drivetrain through the Hero
development board’s NETMF capabilities. The Hero and Talons were successfully updated, and
a simple one-stick drive program was written in C#. The motors speeds are given by the y-axis
value of the stick +/- the x-axis for the left and right motors, respectively. The full code uploaded
to the Hero can be found in appendix F. There is also an e-stop built into this control system. The
communication mode of the Logitech controller can be switched from HID to Direct-X to
immediately discontinue Hero board level function.

The drive train is extremely competent and is able to complete all necessary aspects of
our mission from a driving standpoint. The drivetrain was tested using the manual control

41

provided by the Hero. The team needed to put a cap on the velocity of the rover to maintain
control and precision, but if the rover got itself in an unsafe position, the operator, with manual
driving, would be able to very quickly navigate the rover out of harm's way.

With the arm attached and the metal detector installed, the metal detector remains stable
while the rover is in motion. The rover has full mobility as it has no difficulties turning with the
center of mass located only 2.5 inches in front of the center of rotation. In addition, the rover was
tested on inclines and it did not show any difficulty in going up or down a hill, as well as turning
on a hill. This is important because as the project continues on, this will allow the user to define
a landmine field that contains a hill.

4.1.4 Testing Against Acceptance Criteria
Reflecting on the acceptance criteria for the rover understanding the project more fully,

they were certainly ambitious. The rover did not fully accomplish any of the three main goals set
for it. They were: for the rover to have the mine detecting apparatus attached and functioning on
the new base, to have the low level C/C++ code completed for driving and sensor control, and
for the ROS to communicate with the base station and manage the low level systems.

The rover does have the four-bar apparatus attached, but it is not electrically integrated.
The rover does have manual drive capabilities, but it is not controlled through the originally
planned system and the sensors for the system are either not integrated or non-existent. The ROS
network has been outlined and starter code has been supplied, but the adaptation to the system
has not been completed.

4.2 Drone

4.2.1 Flight Testing

4.2.1.1 Preliminary Flight

The Tarot T18 from UAV Systems was extremely delayed in its arrival. It had been
scheduled for delivery in late September, the later half of A term. However, due to significant
delays from UAV Systems, the drone only arrived in early December at the very end of B term.
The team cooperated with two WPI students, Connor Miholovich and Jeremy Trilling, who have
extensive autopilot and drone experience for the first flight test. The test was performed in
Institute Park. The drone successfully took off and hovered, but an unknown error caused the
loss of manual control and the drone safely autonomously landed. This error was later inferred to
be a compass calibration issue that continued in our future testing. A rover unit using an
autopilot board was used instead to learn MissionPlanner waypoint path planning, and
successfully navigated around a simple course.

42

4.2.1.2 Autonomous Flight

The team developed a Pre-Flight Checklist for autonomous flight tests that we used to
ensure the safety of the equipment and our team when flying. This checklist is located in
Appendix E.

Connor Miholovich continued to work with the team, and assisted in the FAA clearances
and provided his expertise. Flight tests were performed at Green Hill Park. The team also worked
with Meredith Merchant in the WPI athletics department and Deputy Marsh from the WPI Police
to gain permission to fly the drone on WPI’s athletic fields, though no tests ended up being
performed on them.

The continued tests yielded similar results to the preliminary flight test. Manual control
was used to lift off, but as soon as the drone began to move away from its take-off location,
manual control was lost and the drone autonomously landed. When attempting autonomous
flights, the drone took off, hovered, then landed. The compass was identified as the issue, but the
team was unable to complete a full calibration and continued to receive the error “Compass
calibration error -1”. The drone was initiating this autonomous safety protocol because its safety
faults recognized that it would not be able to navigate back home in an emergency.

The team successfully calibrated the compass once during a test on March 7th, but
because of time constraints was only able to perform manual flight tests. The drone performed
well on basic maneuvering.

Figure 30: Successful Compass Calibration Drone Flight at Green Hill Park

43

The Tarot T-18’s compass needed to be recalibrated for the next flight however, and the
team was not able to replicate our success in the next and final pre-reconfiguration flight we
attempted. Reflecting on the successful compass calibration, we are unsure as to whether it was
actually accomplished or if the error was somehow avoided, since the compass should not need
to be recalibrated before every flight.

4.2.1.3 Post-Reconfiguration Flight

After the team attempted to install the Pixhawk 4 and then reinstalled and reconfigured
the mRo X2.1, tests to integrate the mission control system were attempted. However, the
compass calibration issue continued and an additional error “need mavlink2 for item transfer.”
was shown as well.

Final testing attempts resulted in resounding success! After contacting UAV Systems for
assistance, the team determined the mavlink2 item transfer error was non-critical. The team
additionally solved the compass calibration issue by plugging a laptop into the mRo and
calibrating the compass through MissionPlaner over a wired connection. The drone was put
through much more rigorous maneuvering tests, and fared mildly well. When doing some tighter
turns, it did seem slightly unstable, but never dangerously so. The only challenging and critical
maneuver necessary for the mission is the prompt escape of the drone to a safe location after a
drop. It was able to complete this well under manual control.

The drone also successfully lifted and dropped water balloons. The weights of the
payloads were not an issue for the drone’s flight, nor were the shifting of weights due to their
deployment.

4.2.2 Electrical Systems Update
A major portion of the drone’s upgrades was the integration of the drone’s onboard

microprocessor, allowing us to actuate the dropping mechanism and establish communication
between the base station and mRo X2.1. Figure 31 shows the drone with the configuration we
got out of the box from UAV Systems.

44

Figure 31: Drone Electrical System from UAV Systems

After getting the drone, the team decided to map out the voltage requirements for each system
and then draft the diagram in figure 32 to account for all necessary components. One 11.1V
power supply using a 5V voltage converter was able to power the Teensy 3.5 microcontroller,
dropper mechanism and telemetry radio.

Figure 32: Drone Electronics System

After testing each of the modules individually to ensure they were getting the correct voltage, the
team created perf boards for permanent mounting of the electrical systems. FThe drone

45

electronics are housed inside of the mounting structure that attaches the dropper mechanism to
the drone.

4.2.2.1 RTK Unit Installation and Snow Drone Team Assistance

The RTK installation on our drone was not completed. The RTK modules were
configured, and the base station successfully found a TIME/FIX position estimation. However,
we never got a rover module to connect to it. Since any board can be configured as a base station
or a rover, we tested multiple combinations of configurations, all to no success.

Working with the Snow Drone team, their fresh C94-M8P boards successfully achieved a
TIME/FIX lock as a base station and connected to it as a rover with a 3D/DGNSS/FIXED
connection.

Figure 33: Screenshot of the u-center interface from the RTK fix achieved by the Snow Drone
modules

The connection took about 15 minutes to achieve after one of our reconfigurations, and was
completed in the middle of the Quad on the Worcester Polytechnic Campus on a clear day.

Our team ended our efforts on the RTK boards when we discovered that they would not
be able to interface with the mRo X2.1 flight controller on our drone without more significant
effort. The mRo board only has three UART ports, as compared to the original design which
accounted for the Pixhawk 4’s eight UART ports. All of the UART ports on the mRo board were
occupied with other peripherals. When the implementation of the RTK boards concluded, the
next steps were to investigate possible discrepancies in the radio modules on the boards and their

46

baud rates through the 9-pin serial connection, since they may have been altered by last year’s
team.

The Snow Drone MQP team was using a Pixhawk 4, and so was able to continue their
implementation. We gave them the USB to 9-Pin cable, and instructed them on the process of
using AT commands to update the C94 module with it. Their efforts concluded with successful
field tests of the precision of the units, but they did not finish integrating it with their Pixhawk 4.
We are cooperating with them to provide a guide for the continued integration of this unit for
both our projects.

4.2.3 Dropper Tests Comparison

4.2.3.1 Initial Dropping Mechanism Tests

The accuracy of the drops were measured by taking slow motion footage of the water
balloons as it impacted the pseudo landmine as seen in Figure 34. Distance from the target
landmine was recorded by reviewing the footage and using a tape measure.

Figure 34: Slow-Motion Frame of Payload Impact (Updated Dropper, balloon #8)

The first dropper tests were completed in Early December. They were to gauge the
accuracy of the dropper when a water balloon was dropped from 20 ft. Since the electronics were
unfinished, the revolver was actuated manually as consistently as possible. Figure 35 shows the
locations of eight water balloons that were dropped and how far away they were from the target
location.

47

Figure 35: Initial Dropper Test Landing Spread

Water balloons 3 and 8 have an asterisk next to them because each had complications
when being deployed. During test 3 the water balloon got jammed between the rotating fins and
the exit hole of the dropper and test 8 hit the wall of the garage before reaching the ground.

These tests indicated that the rotational velocity of the revolving mechanism imparted a
horizontal error onto their descent. Additionally, the stored asymmetric water balloons had
difficulty rolling as the mechanism rotated, and were in varying orientations upon their release
from the dropper. Their aerodynamics are inconsistent as well. To improve upon the initial
design we aim to compensate for the variable rotational velocity by using a stepper motor to have
a more consistent initial placement of balloons to improve consistency.

The initial tests for the dropper mechanism showed that 3 of the 8 water balloons dropped
were on target giving an accuracy of 37.5%.

4.2.3.2 Updated Dropper Tests

Figure 36 shows the locations of eight water balloons that were dropped during the
second dropper test and their spread from the desired target location. The updates were to the
mechanical structure for the revolver and lid, and this time the actuation was controlled by the
stepper motor.

48

Figure 36: Updated Dropper Test Landing Spread

These tests encountered two jams where the water balloon got
stuck part way out of the exit hole. In these instances, we reset the
test. None of the balloons got stuck in the revolver as they had
previously.

The second test of the dropper mechanism showed that 6 of
the 8 water balloons dropped were on target giving an accuracy of
75%. This is double the accuracy of the previous test. The second test
shows that the implementation of the microstepper driver allows the
stepper motor to have a more consistent dropping spread.

4.2.4 Testing Against Acceptance Criteria
The drone system almost meets the acceptance criteria. The

drone is able to communicate with the base station application, but
did not progress past the setup of the mission control system. The
dropper is run off of a simple application uploaded onto the onboard
Teensy microcontroller. The control code for the dropper mechanism
was not integrated into the flight control program on the drone. Once
this issue can be resolved and the dropper is integrated into the flight
control program, the drone should meet the mission control goal. The
dropper can deploy up to six payloads, with an accuracy of 75%, This
means that the dropper subsystem does meet its goal requirement.
The drone achieved successful manual flight and payload deployment
from as seen in Figure 37.

49

4.3 Base Station

Figure 38: System Communications Diagram

4.3.1 User Interface
Once the User Interface and Google Maps API were configured and running completely

as they were after the previous teams work, testing of the User Interface started. During the
testing of each element of the interface, it was discovered that the UI had a few bugs, that some
buttons on the interface were missing any basic functionality despite them being simple to
implement, and that some pages were not displaying as they should. On the minefield
designation page, there was one error with the data being sent back from the Google Maps API
which made the window display duplicate vertices over and over, and another error which
allowed the user to generate multiple polygons in the Google Maps API which would overlap
and cause issues.

After discovering and fixing the bugs within the User Interface and Google Maps API,
there were no future issues when testing the User Interface. All pieces of the User Interface
which have coded functionality currently work as intended. The rover “Deploy” button functions
as intended, but does so slowly, the reason for this is currently unknown.

In an attempt to integrate the User Interface with the Base Station after testing it’s
functionality, methods for allowing Java with JavaFX to communicate with ROS nodes were
researched. There were two promising options which the team attempted to implement. The first
tool was rosjava, which allows Java executables to be run as ROS nodes when normally this only
works with C/C++ and Python executables. Ultimately, issues with JavaFX compatibility with
rosjava and the Java version needed for the Google Maps API prevented this from being possible
(JavaFX is only compatible until Java 8, however, the Google Maps API requires a later version
to load). There is very little documentation for rosjava, and none for using JavaFX with rosjava,
so this made any progress guess-work. Similar issues persisted with jrosbridge, lack of

50

documentation and compatibility with JavaFX caused the team to move on to focus on more
essential project work despite being close to getting it functional.

4.3.2 Rover Pathfinding Algorithm
The original implementation of the Rover Pathfinding Algorithm resulted in erroneous

waypoints whenever the west-east line belonged to the set of upper or lower bounds, and when
the polygon contained a perfectly vertical (north-south) line. The bug with the west-east line was
due to the fact that no matter how it was checked, if the west-east line belonged to one of the
bounds, it would always be added to the upper or lower, despite the possibility for it to be either.
This was because of how the upper and lower bounds were populated, checking whether either
vertex was above the west-east line, since the west-east line has no vertices above itself, it would
always be added to the lower bounds. The bug with vertical bounds was caused by trying to

calculate the slope of the line by computing when is equal to zero, this𝑚 =
𝑒

𝑦
−𝑤

𝑦

𝑒
𝑥
−𝑤

𝑥
𝑒

𝑥
− 𝑤

𝑥

would cause an error due to trying to divide by zero.
After these bugs were fixed, multiple convex and concave shapes were tested. However,

these testing efforts did not end up being very extensive due to other deliverables being
prioritized since the Rover Pathfinding Algorithm was not planned to be integrated until future
years work. It was found that all of the polygons entered successfully generated non-erroneous
waypoints for the rover, however, the number of polygons tested was only 15. During these tests,
it was found that the concave algorithm performs poorly with increased numbers of boundary
points, so they should be limited whenever possible. This is due to the partitioning algorithm
needing to create an exhaustive tree of all possible partitions, which grows exponentially as the
number of boundary points increases. Despite the low number, the team believes that all
potentially problematic conditions have been tested and were successful after bug fixes. Since
the Google Maps API does not allow for creating polygons which contain holes, this does not
pose an issue for the Rover Pathfinding unless future teams decide to implement the ability to
incorporate holes into designated minefields for geographical features such as a rock formation
or a small body of water.

4.3.3 Testing Against Acceptance Criteria
Reviewing the acceptance criteria reveals that we wished to have the system much more

integrated than it ultimately was. In part, this was due to shortcomings with the base station. We
were not able to implement the rover communication code, and we were also not able to set up
the User Interface to communicate with the drone and rover comms. The rover communications
code was not realistic to develop until the rover could be driven autonomously, so this portion
was stalled before any work could be done. After spending much time attempting to get the User
Interface to communicate through ROS, we eventually had to cut our losses to focus on other
more pressing deliverables that were not roadblocked. We did, however, meet the criteria for the

51

Rover Pathfinding Algorithm; we were just unable to implement it into the system yet because of
complications with the autonomous driving of the rover and lack of rover communications code.

52

5.0 Conclusion/Discussion

5.1 Rover Discussion
The transition to the CERBERUS MQP’s Action Track rover base from the Clearpath

Husky A100 sacrificed short term functionality for the long-term robustness of the system. The
mechanical and electrical work involved in moving the critical DAS system was vast, and
deprecated many efforts from previous MQPs. We anticipate a significant challenge will be the
ROS control for the new rover. The Husky platform had a pre-written ROS library developed for
it by Clearpath. Not only will future teams have to write a new one from scratch, but the
CERBERUS rover had been originally designed to be driven manually, and does not have
encoders on the drive motors, LiDAR, or any other sensors needed for autonomous navigation
yet.

Our team additionally faced electrical challenges because of the structural changes being
made to the rover base. Many electrical systems’ installations were delayed because of welding
that needed to be done on the rover chassis that would have damaged them had they been
installed.

Because of our relatively smaller team size compared to previous DAS MQP phases, we
did not have the resources to test the sensor systems involved in identifying mines. Some
resources that may be useful for future teams in this endeavor are the ADI-MassRobotics Sensor
Fusion Challenge, which this year’s team has already created a substantial body of work for, and
a possible collaboration with Cornerstone Research Group which is working on a related
landmine searching project.

5.2 Drone Discussion
Upon initial purchase, the drone was supposed to arrive near the end of A term. However,

after complications with UAV Systems the drone did not arrive until the end of B term. After
arrival, the team had trouble interfacing with the flight controller board, and could not find the
model of Pixhawk that was installed on the drone. After reaching back out to UAV Systems
about this, we learned they had not installed the Pixhawk 4, and had instead used the mRo X2.1.
The limitations of the mRo board are discussed in section 3.3.2.2. The board has basic
functionality, but struggles to support the integrated system of this project.

We additionally had significant struggles with the mission control system between the
base station application and the Teensy. After cooperation with the original author of the code,
Andy VanOsten, the issue was finally identified, but there still remained no solution. The base
station had been receiving its own communications, and the Teensy became stuck early on in its
setup loop. We suspect this has to do with the Teensy not getting the information it needs from
the mRo board, and may be specifically tied to the setting of the home location which requires
compass calibration. This issue was only solved at the very end of the project and the comms

53

were not tested again. The serial MAVLink communication with the mRo must also be
confirmed, though the mavlink2 item transfer error may not be critical, it may impede
Teensy-mRo communications. However, after these few linchpin issues are resolved, the system
should be completely functional.

Finally, the dropper mechanism is not a robust solution. It works basically, but the high
precision of the RTK is made irrelevant by the high inaccuracies of the dropper. Additionally, a
payload capacity of six is relatively low. Possible redesigns could incorporate a “tray” of dartlike
payloads dropped from a higher altitude. However, the decision to pursue this must be made
while balancing the value of this improvement against the time and resources it would take to
redesign this subsystem, especially when the current dropper is functional, even if it is not
elegant.

5.3 Base Station Discussion
The choice of Java with JavaFX for the Base Station User Interface made any attempts to

integrate it with the ROS communication nodes very difficult. JavaFX is no longer natively
supported by Java, which means that Java 8 is preferred due to its native support for JavaFX. The
issue with Java 8 later became evident though, as the team discovered that a newer version of
Java is now required to load the WebEngine needed for the Google Maps API. Until the Java
version was updated, the Google Maps API would simply error. This made the UI require a
complex run configuration to function. It also meant that integrating the UI was much more
complicated since we had to investigate solutions like rosjava, which would allow a .java file to
run as a ROS node, or jrosbridge, which would allow a .java file to publish and listen to ROS
topics. There was no documentation for using JavaFX with either rosjava or jrosbridge, meaning
that once the team exhausted reasonable ways to attempt communication, we were forced to
move on. These attempts ended up costing the team a lot of time with no real results to show for
them.

5.4 Future Work for the MQP

5.4.1 Drone

5.4.1.1 Communication between Drone Electronics

Future work for the drone should start with the replacement of the mRo X2.1 board with
a Pixhawk 4. UAV Systems has personnel who can help create a guide to install the Pixhawk 4.
This will allow the drone to have access to a port for the RTK integration. The baud rates of the
radio modules on the C94 M8Ps should be confirmed and updated as necessary using a USB to
9-pin serial cable and AT commands. UAV Systems shared a brief list of references that may aid
with the integration of the Teensy microcontroller, but were unable to provide further assistance.
The mission control system between the base station application, Teensy, and flight controller

54

also needs to finish being debugged. The code had previously managed the flight of a drone in
operation, so once the few errors existing are fixed it should be almost fully operational.

5.4.1.2 Dropper Mechanism

The current method for actuating the dropper mechanism uses a 12 tooth gear attached
directly to the stepper motor, however this driving gear is only supported on one side of the axle
causing the revolving mechanism to occasionally skip when dispensing water balloons. This can
be fixed by redesigning how the revolving mechanism is driven.

The dropper actuation code needs to be implemented into the main flight code. Future
teams should test the accuracy of the dropping mechanism when in flight and see how the
constantly changing weight affects both the drone flight and dropper accuracy, and look into
possible changes to the payloads and the deployment system.

Currently the payloads that are used to detonate the mines are water balloons, however
they tend to cause jams in the dropper mechanism due to their malleability and high friction of
the rubber. Future teams should look into payload deployment of “stress ball” like sand bags to
reduce the chance of jamming.

5.4.2 Rover

5.4.2.1 Rover Mobility
To achieve fully autonomous driving capabilities of the CERBERUS Rover, encoders must be

installed. With the encoders on the drivetrain axles, information on the speed and direction of the motors
will be available for the program to use to guide the rover along its designated path. To bring the center of
mass of the rover closer to its center of rotation, the weight of the linear slide system at the end of the
four-bar mechanism can be reduced. The weight can be reduced by removing more of the material from
the aluminum plate that supports the linear slide rails. With the center of mass moved closer to the center
of rotation, the rover will have less resistance and improved capabilities when turning.

5.4.2.2 Rover Electrical Systems

Due to time constraints and minimal documentation from previous MQPs we were unable
to finish installing the electrical components of the metal detector as well as the ultrasonic
sensors that will be used to keep the metal detector level relative to the ground. These systems
are included in the rover electrical schematic and will need to be installed accordingly by a future
MQP. Another electrical component that a future team should consider is encoders for the
drivetrain, as these will be necessary for implementing autonomous driving of the rover. Part of
this challenge will be determining a mounting solution for the encoders since the drive motors’
transmissions are in a fully enclosed housing.

55

5.4.3 Base Station

5.4.3.1 User Interface

The 2019-20 and 2020-21 teams both used IntelliJ to run the User Interface (which is in
Java). To run the User Interface with JavaFX, since compatibility for JavaFX was removed after
Java version 8, the 2020-21 team used these VM options in the run configuration to access all
necessary JavaFX modules:

--module-path "C:\Users\mlsha\Documents\GitHub\MQP_DAS_20-21\javafx-sdk-11.0.2\lib"

--add-modules javafx.graphics,javafx.controls,javafx.fxml

--add-exports javafx.graphics/com.sun.javafx.util=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.sg.prism=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.scene=ALL-UNNAMED

--add-exports javafx.base/com.sun.javafx.logging=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.prism=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.glass.ui=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.geom.transform=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.tk=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.glass.utils=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.font=ALL-UNNAMED

--add-exports javafx.controls/com.sun.javafx.scene.control=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.scene.input=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.geom=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.prism.paint=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.scenario.effect=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.application=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.text=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.scenario.effect.impl.prism=ALL-UNNAMED

--add-exports javafx.graphics/com.sun.javafx.iio=ALL-UNNAMED

Figure 39: VM Options for UI Run Configuration

This should be added to the VM options section of the run configuration after changing
the module path to the appropriate location. The JavaFX SDK is located in the github repository,
so it will be there when cloned. There is also a hardcoded file path on line 129 in
MineFieldController.java that will need to be amended (this also leads to a file that is in the
repository). Most likely, a new Google Maps API key will have to be generated, which will
replace the previous key on line 232 of GoogleMapSelect.html.

After set-up is complete and the User Interface and Google Maps API are running, the
next steps for the User Interface are to integrate it with drone and rover communications through
ROS and then add functionality to all buttons which should send data to the drone and rover
communications. There is currently some starter code in the UI from the 2019-20 which attempts
to communicate with ROS but did not end up helping the 2020-21 team, however, it may be
useful to look into first. Attempts were made to establish communication during this project

56

using rosjava and jrosbridge. Jrosbridge ended up being the more promising of the two, but still
suffered from minimal documentation. The team encountered issues with compatibility of
JavaFX with Maven, which would make implementation of jrosbridge much simpler. Ultimately,
the team moved on before fully exploring jrosbridge, so this would be a good avenue to explore
next year. If this also proves fruitless in a similar vein to rosjava, the nuclear option of rebuilding
the User Interface without JavaFX or potentially even in a ROS supported language
(C++/Python) becomes more viable. A much simpler potential work-around to having to rebuild
it, however, would be to have the UI write to a file which the ROS node then reads from and vice
versa.

Once communication through ROS topics is established, functionality can be added to the
“Deploy” and “Abort” buttons. The deploy button for the rover should send the boundaries of the
minefield as well as the deploy message for the rover. The deploy button for the drone should
just send the deploy message for the drone as the mine locations should already be known by the
base station. The abort buttons should simply send an abort message which the drone/rover
communications will pass along to the drone/rover.

5.4.3.2 Rover Pathfinding

The Rover Pathfinding code can be found in Appendix D, and is in Python. There should
be no issues running the code as is after the required libraries are installed. Once it runs, it should
be further tested to verify success, especially in any boundary cases. To test a polygon, all that
needs to be done is have a defined polygon (2D array of shape [n,2] where n is the number of
vertices), and pass the polygon into the wpoints(points) method as the “points” argument.
However, the points should be ordered (y,x) since the algorithm uses the format (lat,lng).

In its current state, the Rover Pathfinding Algorithm should be sufficient for any
reasonable minefield designation. However, the concave performance rapidly decreases with an
increasing number of boundary points. This is due to the partitioning of the concave polygons,
which has exponential growth due to the exhaustive tree of all partitions. This could be solved by
utilizing a spiral traversal instead of row traversal if necessary. In a spiral traversal, the rover
would traverse each boundary line, then increment inward toward the center of the shape and
traverse just inside of each boundary line, continuing to spiral inward until the whole field had
been checked for mines. This would inevitably come with its own set of challenges to overcome,
but would improve performance of the Rover Pathfinding Algorithm. It would also be a single
solution to both convex and concave polygons.

5.4.3.3 Rover System

The rover communications need to be developed to take in messages from the UI and
pass them to both the rover and the Rover Pathfinding Algorithm, as well as take in messages
from the rover and pass them to the UI and the drone communications. The rover
communications should be written in a ROS supported language (C++/Python) so that they can
be run as a ROS node in order to communicate with the rover. Ideally, the rover communications

57

will take in the deploy message and boundaries from the UI, process the boundaries into
waypoints using the Rover Pathfinding Algorithm, then pass the deploy message and initial
waypoint to the rover. Then it should wait for the rover to request the next waypoint and send it
once requested as well as send the status update to the UI. If the Teensy 3.5 identifies a potential
mine signature from the Uno, it should send this information to the onboard computer and halt
the field search. The maintainMap ROS node should update the mine list and dilate the map so
that the rover maintains a safe distance. The navigation node will plan around this when
continuing to traverse the field. It should also send the information that a mine has been detected
back to the UI. Once the rover has finished traversing the field, the missionControl node should
tell navigation to guide it back home using waypoints, and send the mine data collected to the
drone communications.

Since ROS abstracts node functionality, any node in the network can be run on either the
rover onboard computer or the base station laptop. Our team recommends that the node
containing the code state machine that stops the rover upon receiving a mine signal should be run
on the rover in case of WiFi failure, but that as many nodes as possible be off-loaded onto the
base station. Map maintenance, navigation, and drivetrain sample code will be provided, as will
DAS specific ROS node outlines, but the implementation remains unfinished.

5.5 Conclusion

Abandoned landmines are a major inhibitor to the development of countries recovering
from conflict. They prevent land development, stunt economic growth, and have a severe cost to
human life - affecting 20,000 victims every year, 70-85% of whom are civilians
(Landminefree.org, 2017) (Humanity & Inclusion, 2020). Landmines are widespread, affecting
58 nations across the globe (The HALO Trust, 2015). The diversity of environments that need to
be demined calls for a similar diversity of solutions. Popular contemporary demining methods all
have strengths and weaknesses. Machine demining is simple and effective, but it is also
expensive, destructive, and limited by topography and environment. Animal assisted demining is
relatively fast, but requires much more resources in training handlers and raising animals, and
can be limited by how long and in what environments the animals can operate. The animals can
also become confused in mine dense areas. Manual demining is thorough and versatile, but
requires rigorous training and is slow and dangerous.

The purpose of the Demining Autonomous System MQP since its inception has been to
create a relatively inexpensive demining alternative that is easily deployed by any non-technical
user. Even though there were limitations due to the global COVID-19 pandemic slowing down
process development on the project, our team was able to provide a stable baseline for the
Demining Phase VI group to build upon. While we did not meet the goals we set out to
accomplish, they were set without fully understanding either the state of the project we inherited
or the scope of the work to be done. The team this year started with a new rover, a new base
station, and a new drone, but left the project in a good state to see major progress in the years to

58

come, and almost all of the necessary preliminary work for integrating the system as a whole was
completed.

Though the project faced adversity, it did ultimately see great success. The four-bar of the
rover was installed onto the new CERBERUS base. The new drone was outfitted with a new
electronic system and dropper mechanism and is flight ready. The base station’s UI was updated
and it’s pathfinding algorithm was built from scratch.

Up to this point, the DAS has been mostly theoretical in its design. As the DAS
approaches completion, the project should find a sponsor who would employ the system,
allowing future design decisions to be tailored to their individual situations and needs.

59

References
1. Aziz, Mahmoud. “Facts about Landmines.” Home - Minesweepers, 2017,

www.landminefree.org/2017/index.php/support/facts-about-landmines
2. Habib, Maki. (2002) Mine Clearance and Technologies for Effective Humanitarian

Demining. The Journal of Mine Action 6.1.17. Retrieved from
https://commons.lib.jmu.edu/cgi/viewcontent.cgi?article=2259&context=cisr-journal

3. Hemapala, K T M U & Razzoli, Roberto. (2012). Design and Development of a
Landmines Removal Robot. International Journal of Advanced Robotic Systems. 9.
10.5772/50907.

4. Humanity & Inclusion. (2020). Landmines - a deadly, disabling threat to humanity.
Retrieved from
https://www.hi-us.org/landmines#:~:text=71%25%20of%20landmine%20victims%20are,
are%20no%20longer%20at%20war.

5. International Campaign to Ban Landmines (ICBL). (2019). Landmine Monitor 2019.
Landmine & Cluster Munition Monitor.

6. Kogler, Samuel. (2020). mapbox-earcut [Computer Software]. Retrieved from
https://pypi.org/project/mapbox-earcut/

7. Mikulic, Dinko. (2013) Humanitarian Demining Techniques. In: Design of Demining
Machines. Springer, London. https://doi.org/10.1007/978-1-4471-4504-2_1

8. Santos, A. R., Vanosten, A. D., ElShakhs, B. A., Foltan, E. D., McKenna, J. C., Niski, J.
A., Ehlers, K. C., & Schmitt, M. T. (2020). Demining Autonomous System. Retrieved
from https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=8540&context=mqp-all

9. Smith, Andy. (2019). PMN Anti-personnel blast mine. Humanitarian Mine Action.
Retrieved from: https://www.nolandmines.com/explosive_hazards/minesPMN.htm

10. The HALO Trust. (2015). Landmines Still Exist In 58 Countries and Four States.
Retrieved from
https://www.halotrust.org/latest/halo-updates/news/landmines-still-exist-in-58-countries-a
nd-four-states/

11. Trevelyan, James. (2000) Reducing accidents in Demining: Achievements in
Afghanistan. Journal of Mine Action 4.2.3. Retrieved from
https://commons.lib.jmu.edu/cisr-journal/vol4/iss2/3

60

http://www.landminefree.org/2017/index.php/support/facts-about-landmines
https://commons.lib.jmu.edu/cgi/viewcontent.cgi?article=2259&context=cisr-journal
https://www.hi-us.org/landmines#:~:text=71%25%20of%20landmine%20victims%20are,are%20no%20longer%20at%20war
https://www.hi-us.org/landmines#:~:text=71%25%20of%20landmine%20victims%20are,are%20no%20longer%20at%20war
https://pypi.org/project/mapbox-earcut/
https://doi.org/10.1007/978-1-4471-4504-2_1
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=8540&context=mqp-all
https://www.nolandmines.com/explosive_hazards/minesPMN.htm
https://www.halotrust.org/latest/halo-updates/news/landmines-still-exist-in-58-countries-and-four-states/
https://www.halotrust.org/latest/halo-updates/news/landmines-still-exist-in-58-countries-and-four-states/
https://commons.lib.jmu.edu/cisr-journal/vol4/iss2/3

Appendices

Appendix A: Authorship

Section Author(s) Editor(s)

Abstract Troy Howlett Eamon Oldridge

1.0 Introduction - -

1.1 Problem Statement Alex Hagedorn,
Eamon Oldridge

Maggie Raque, Eamon
Oldridge, Jeremy Wong

1.2 Project Description Alex Hagedorn,
Eamon Oldridge

Malek ElShakhs, Eamon
Oldridge, Jeremy Wong

2.0 Background - -

2.1 Related Work Eamon Oldridge,
Maggie Raque

Malek ElShakhs, Eamon
Oldridge, Jeremy Wong

2.2 Previous Work All Malek ElShakhs,
Eamon Oldridge, Jeremy
Wong

3.0 Methodology - -

3.1 Problem Formation Eamon Oldridge Eamon Oldridge, Jeremy
Wong

3.2 Rover System Updates Malek ElShakhs,
Alex Hagedorn,
Troy Howlett,
Eamon Oldridge,
Maggie Raque

Eamon Oldridge, Jeremy
Wong

3.3 Systems Integration of New Drone Eamon Oldridge,
Jeremy Wong

Maggie Raque

3.4 Base Station Programming Malek ElShakhs Eamon Oldridge, Jeremy
Wong

4.0 Results - -

61

4.1 Rover Alex Hagedorn,
Troy Howlett,
Eamon Oldridge,
Maggie Raque,
Jeremy Wong

Eamon Oldridge, Jeremy
Wong

4.2 Drone Eamon Oldridge,
Jeremy Wong

Maggie Raque

4.3 Base Station Malek ElShakhs Eamon Oldridge

5.0 Conclusion/Discussion - -

5.1 Rover Discussion Alexander Hagedorn,
Eamon Oldridge,
Maggie Raque,
Troy Howlett

Malek ElShakhs

5.2 Drone Discussion Eamon Oldridge,
Jeremy Wong

Maggie Raque

5.3 Base Station Discussion Malek ElShakhs Eamon Oldridge

5.4 Future Work for the MQP All Malek ElShakhs,
Eamon Oldridge,
Maggie Raque

5.5 Conclusion Malek ElShakhs,
Eamon Oldridge,
Jeremy Wong

Maggie Raque

62

Appendix B: CAD Models

Figure 40: Isometric View of Rover

Figure 41: Side View of Rover

63

Appendix C: Rover Pathfinding Algorithm
import matplotlib.pyplot as plt

import mapbox_earcut

import numpy as np

WIDTH = 0.00000891 # width of the rover in lat/lng !TODO THIS SHOULD BE VERIFIED!

OVERLAP = 0.2 # how much overlap between lines (1 being 100% overlap, 0 being 0% overlap)

Calculate the latitude of a line with slope m and y-intercept b at the given longitude

def calc_lat(lng, m, b):

return m * lng + b;

def wpoints_convex(points):

if(len(points) > 2):

lupper, llower = [], [] # upper bound lines and lower bound lines

w, e = points[0], points[0] # west and eastmost points

wpoints = [] # waypoints to send to the rover (will be populated in order)

find west and eastmost points

for p in points:

if(p[1] < w[1]):

w = p

elif(p[1] > e[1]):

e = p

#print(w[1], e[1])

welineM = (e[0]-w[0])/(e[1]-w[1]) # slope of the line between w and e

welineB = e[0] - welineM * e[1] # y-intercept of the line between w and e

#print(welineM)

#print(welineB)

add all lines to upper or lower bound arrays

for i in range(len(points)):

j = 0 # next point after i

if(i < len(points)-1): # if i is the last point, keep j as the first point

j = i+1

m = 0 # slope of i-j line

b = 0 # y-intercept of i-j line

if(points[i][1] == points[j][1]): # if i & j have the same longitude, the line is vertical

m = float('inf')

b = float('-inf')

else:

m = (points[i][0] - points[j][0]) / (points[i][1] - points[j][1]) # equation for slope

b = points[i][0] - m * points[i][1] # equation for y-intercept

add line to upper or lower bound

if(points[i][0] > round(calc_lat(points[i][1], welineM, welineB), 6) or points[j][0] >

round(calc_lat(points[j][1], welineM, welineB), 6)):

lupper.append((m, b))

else:

llower.append((m, b))

check for if the west-east line is an upper or lower bound

64

if(len(lupper) == 0):

if (welineM, welineB) in llower:

llower.remove((welineM, welineB))

lupper.append((welineM, welineB))

elif(len(llower) == 0):

if (welineM, welineB) in lupper:

lupper.remove((welineM, welineB))

llower.append((welineM, welineB))

posLat = w[0] # current position (latitude) (UNUSED)

posLng = w[1] + (1.-OVERLAP)/2. * WIDTH # current position (longitude)

top = True # boolean value, whether the rover is at a top boundary

add waypoints to wpoints

while(posLng > w[1] and posLng < e[1]):

tLat = calc_lat(posLng, lupper[0][0], lupper[0][1])

bLat = calc_lat(posLng, llower[0][0], llower[0][1])

for l in lupper: # get the lowest latitude of the upper bounds at the current rows longitude

newLat = calc_lat(posLng, l[0], l[1])

if(newLat < tLat):

tLat = newLat

for l in llower: # get the highest latitude of the lower bounds at the current rows

longitude

newLat = calc_lat(posLng, l[0], l[1])

if(newLat > bLat):

bLat = newLat

if(top): # if at the top, add the top waypoint first, then the bottom

wpoints.append((tLat, posLng))

wpoints.append((bLat, posLng))

top = False

else: # if at the bottom, add the bottom waypoint first, then the top

wpoints.append((bLat, posLng))

wpoints.append((tLat, posLng))

top = True

posLng += (1.-OVERLAP) * WIDTH # move to next row while accounting for overlap

#print(wpoints)

PLOTTING POINTS AND GRAPHING --

xpts = []

ypts = []

xwpts = []

ywpts = []

for p in points:

xpts.append(p[1])

ypts.append(p[0])

for p in wpoints:

xwpts.append(p[1])

ywpts.append(p[0])

65

plt.plot(xpts, ypts, 'ro', xwpts, ywpts)

plt.show()

return wpoints # return the full list of waypoints for the convex polygon

get circular range of array (return values in the array wrapping from the end of the array back to the

beginning)

array is the array to return, start is the starting index, stop is the ending index, mod is the size

of the array

def crange(array, start, stop, mod):

result = []

index = start

while(index != stop):

result.append(array[index])

index = (index + 1) % mod

result.append(array[index])

return result

returns whether the angle between three consecutive points is clockwise

def cw(a,b,c):

return float(b[0] - a[0]) * (c[1] - b[1]) >= float(b[1] - a[1]) * (c[0] - b[0])

returns whether the angle between three consecutive points is counterclockwise

def ccw(a,b,c):

return float(b[0] - a[0]) * (c[1] - b[1]) <= float(b[1] - a[1]) * (c[0] - b[0])

returns whether the given array of points forms a convex shape

def convex(points):

allcw = True

allccw = True

tests whether all angles are clockwise (takes every consecutive 3 points and finds if the angle

between any is not clockwise)

for i in range(len(points)):

a = points[i % len(points)]

b = points[(i + 1) % len(points)]

c = points[(i + 2) % len(points)]

if not cw(a,b,c):

#print(a,b,c)

allcw = False

tests whether all angles are counterclockwise (takes every consecutive 3 points and finds if the

angle between any is not counterclockwise)

for i in range(len(points)):

a = points[i % len(points)]

b = points[(i + 1) % len(points)]

c = points[(i + 2) % len(points)]

if not ccw(a,b,c):

#print(a,b,c)

allccw = False

if all angles are of the same orientation, the polygon is convex

return allcw or allccw

split an array into equally sized partitions (needed to split the triangulated shape into triplets of

three points each)

def split(arr, n):

ret = []

66

for i in range(0, len(arr), n):

ret.append(arr[i:i + n])

return ret

return whether one convex shape is adjacent to another (if they share 2 points)

def adjacent(poly1, poly2):

adj = 0

for i in poly1:

for j in poly2:

if(i[0] == j[0] and i[1] == j[1]):

adj += 1

return adj == 2

Node is the basis for partitioning, polys is the list of all polygons in the field, source is the

Nodes own triangle/polygon, nodes is the list of nodes not yet searched, possible is a list of all

potential convex partitions found thus far

class Node:

def __init__(self, polys, source, nodes, possible):

self.polys = polys

self.source = source

self.nodes = nodes

self.possible = possible

finds the starting index for a combined polygon on the first shared point (if the second shared point

is not the next point) otherwise, the second shared point

def fstartind(poly1, shared, missing):

for i in range(len(poly1)):

for j in range(len(shared)):

if(poly1[i][0] == shared[j][0] and poly1[i][1] == shared[j][1]): # if i is a shared point

for j in range(len(shared)):

if(len(poly1) > i+1 and poly1[i+1][0] == shared[j][0] and poly1[i+1][1] ==

shared[j][1]): # if i+1 is a shared point

return i+1 # returns i+1 if i and i+1 are both shared

return i # returns i if i is shared and i+1 is not

combine two polygons into one polygon in the correct point order without duplicating shared points

works assuming poly2 is a triangle (always should be)

def combine(poly1, poly2):

shared = [] # points shared between poly1 and poly2 (will always have a length of 2 since only

adjacent polygons are combined)

missing = [] # points present in poly2 and not present in poly1

populate shared and missing

for j in poly2:

present = False

for i in poly1:

if(i[0] == j[0] and i[1] == j[1]):

shared.append(i)

present = True

if(present == False):

missing = j

67

get the starting index for poly1

startind = fstartind(poly1, shared, missing)

using the starting index, get the circular range of poly1

this combined with the starting index function guarantees that one shared point will be the first

element while the other will be the last

poly_comb = crange(poly1, startind, (startind-1)%len(poly1), len(poly1))

since the first and last elements are the shared points, the missing point (only ever adds

triangles to poly1) can be added to the end without messing up the order of points

poly_comb.append(missing)

return poly_comb

remove the given array from an array of arrays (.remove() will throw an error)

def remove_array(to_remove, r_from):

ind = 0

for i in range(len(r_from)):

if np.array_equal(to_remove, r_from[i]):

ind = i

r_from.pop(ind)

return r_from

recursive method which creates an exhaustive tree of all possible combinations of convex shapes and

returns the least number of convex shapes possible

def partition(node):

base case: if there are no more nodes to check, just return the poly list that the node has

if(len(node.nodes) == 0):

return node.polys

for all nodes to still check

for i in node.nodes:

if(adjacent(node.source, i)): # if the node is adjacent to the current polygon

new_poly = combine(node.source, i) # try adding the node to the polygon

if(convex(new_poly)): # if the resulting polygon is still convex, add this as a possible

partition and recurse

temp_polys = node.polys.copy()

temp_nodes = node.nodes.copy()

temp_nodes = remove_array(i, temp_nodes) # remove the added node from the list of nodes

to check

temp_polys = remove_array(node.source, temp_polys) # remove the initial polygon from the

polygon list

temp_polys = remove_array(i, temp_polys) # remove the added node from the polygon list

temp_polys.append(new_poly) # add the combined polygon back into the polygon list

node.possible.append(partition(Node(temp_polys, new_poly, temp_nodes, [])))

also add the case where the current polygon is complete and moving onto the next node is the best

option

node.possible.append(partition(Node(node.polys, node.nodes[0], node.nodes[1:], [])))

minimum = node.polys # list of the minimum number of polygons in the possible list

find mindex and minimum selection

68

for i in node.possible:

if(len(i) < len(minimum)):

minimum = i

#print("MINIMUM: " + str(minimum))

return minimum # returns the minimum selection in all possible partitions

get waypoints for any shape

def wpoints(points):

allwpoints = []

if(convex(points)): # if already convex, just use the convex function

allwpoints.append(wpoints_convex(points))

return allwpoints

else:

res = np.array(points).reshape(-1, 2) # reshape the array in order to use the library

result = mapbox_earcut.triangulate_float32(points, [len(points)]) # library function to

triangulate the polygon using earcutting

print("TRIANGULATING...")

triangulated = split(res[result], 3) # split the result into arrays of three (triangles)

print("PARTITIONING...")

allpolys = partition(Node(triangulated, triangulated[0], triangulated[1:], [])) # produces list

of minimum partitioned convex polygons

for i in allpolys:

print("GENERATING POLYGON " + str(i) + " WAYPOINTS...")

allwpoints.append(wpoints_convex(i)) # generate waypoints for each convex polygon and add

each set to the list

return allwpoints

69

Appendix D: Four-bar Analysis

Figure 42: Joint Locations

Static Analysis

Determined the 3D forces within the four-bar mechanism as well as the deflection due to the
weight of the linear slide.

Assumptions due to symmetry:
𝐴

𝑥
= 𝐺

𝑥

𝐴
𝑦

= 𝐺
𝑦

𝐴
𝑧| | = 𝐺

𝑧| |
𝐵

𝑥
= 𝐻

𝑥

𝐵
𝑦

= 𝐻
𝑦

𝐵
𝑧| | = 𝐻

𝑧| |
𝐶

𝑥
= 𝐼

𝑥

𝐶
𝑦

= 𝐼
𝑦

𝐷
𝑥

= 𝐽
𝑥

𝐷
𝑦

= 𝐽
𝑦

𝐸
𝑥

= 𝐾
𝑥

𝐸
𝑦

= 𝐾
𝑦

70

𝐹
𝑥

= 𝐿
𝑥

𝐹
𝑦

= 𝐿
𝑦

Equilibrium equations for the linear slide:

Figure 43: Free Body Diagram of the Linear Slide

Σ𝑀
𝐸

= 𝑟
𝐸𝐵

× 𝐹
𝐵

+ 𝑟
𝐸𝐻

× 𝐹
𝐻

+ 𝑟
𝐸𝐾

× 𝐹
𝐾

+ 𝑟
𝐸𝑊

× 𝐹
𝑊

= 0

Σ𝐹
𝑦

= 𝐸
𝑦

− 𝐵
𝑦

− 𝐻
𝑦

+ 𝐾
𝑦

− 𝑊
𝑦

= 0

Σ𝐹
𝑥

= 𝐸
𝑥

+ 𝐵
𝑥

+ 𝐻
𝑥

+ 𝐾
𝑥

= 0

Σ𝐹
𝑧

= 𝐵
𝑧

− 𝐻
𝑧

= 0

Equilibrium equations for link AB:

71

Figure 44: Free Body Diagram of Link AB

Σ𝑀
𝐴

= 𝑟
𝐴𝐵

× 𝐹
𝐵

= 0

Σ𝐹
𝑦

= 𝐴
𝑦

− 𝐵
𝑦

= 0

Σ𝐹
𝑥

= 𝐴
𝑥

− 𝐵
𝑥

= 0

Equilibrium equations for link CE:

Figure 45: Free Body Diagram of Link CE

Σ𝑀
𝐶

= 𝑟
𝐶𝐷

× 𝐹
𝐷

+ 𝑟
𝐶𝐸

× 𝐹
𝐸

= 0

Σ𝐹
𝑦

= 𝐶
𝑦

+ 𝐷
𝑦

− 𝐸
𝑦

= 0

Σ𝐹
𝑥

= 𝐶
𝑥

+ 𝐷
𝑥

− 𝐸
𝑥

= 0

Equilibrium equations for linear actuator FD:

72

Figure 46: Free Body Diagram of Linear Actuator FD

Σ𝑀
𝐹

= 𝑟
𝐹𝐷

× 𝐹
𝐷

= 0

Σ𝐹
𝑦

= 𝐹
𝑦

− 𝐷
𝑦

= 0

Σ𝐹
𝑥

= 𝐹
𝑥

− 𝐷
𝑥

= 0

Equilibrium equations for forces acting on the four-bar mechanism:

Figure 47: Free Body Diagram of External Forces on the Four-bar Mechanism

Σ𝑀
𝐶

= 𝑟
𝐶𝑊

× 𝐹
𝑊

+ 𝑟
𝐶𝐴

× 𝐹
𝐴

+ 𝑟
𝐶𝐹

× 𝐹
𝐹

+ 𝑟
𝐶𝐺

× 𝐹
𝐺

+ 𝑟
𝐶𝐼

× 𝐹
𝐼

+ 𝑟
𝐶𝐿

× 𝐹
𝐿

= 0

73

Σ𝐹
𝑦

= 𝐴
𝑦

+ 𝐶
𝑦

+ 𝐹
𝑦

+ 𝐺
𝑦

+ 𝐼
𝑦

+ 𝐿
𝑦

− 𝑊
𝑦

= 0

Σ𝐹
𝑥

= 𝐴
𝑥

+ 𝐶
𝑥

+ 𝐹
𝑥

+ 𝐺
𝑥

+ 𝐼
𝑥

+ 𝐿
𝑥

= 0

Σ𝐹
𝑧

= 𝐴
𝑧

+ 𝐺
𝑥

= 0

Analyzed forces and deflection at an angle of inclination for the CE member at 22.5 degrees and
60 degrees.

Figure 48: Force Results at 22.5 degrees

Figure 49: Deflection Results at 22.5 degrees

74

Figure 50: Force Results at 60 degrees

Figure 51: Deflection Results at 60 degrees

Rotational Analysis

75

Determined the 3D forces within the four-bar mechanism as well as the deflection due to the
weight of the linear slide and the force on the linear slide due to the rotation of the rover.

Equilibrium equations for the linear slide:

Figure 52: Free Body Diagram of Linear Slide

Σ𝑀
𝐸

= 𝑟
𝐸𝐵

× 𝐹
𝐵

+ 𝑟
𝐸𝐻

× 𝐹
𝐻

+ 𝑟
𝐸𝐾

× 𝐹
𝐾

+ 𝑟
𝐸𝑊

× 𝐹
𝑊

= 0

Σ𝐹
𝑦

= 𝐸
𝑦

− 𝐵
𝑦

− 𝐻
𝑦

+ 𝐾
𝑦

− 𝑊
𝑦

= 0

Σ𝐹
𝑥

= 𝐸
𝑥

+ 𝐵
𝑥

+ 𝐻
𝑥

+ 𝐾
𝑥

= 0

Σ𝐹
𝑧

= 𝐵
𝑧

− 𝐻
𝑧

− 𝑊
𝑧

= 0

Equilibrium equations for link AB:

Figure 53: Free Body Diagram of Link AB

76

Σ𝑀
𝐴

= 𝑟
𝐴𝐵

× 𝐹
𝐵

= 0

Σ𝐹
𝑦

= 𝐴
𝑦

− 𝐵
𝑦

= 0

Σ𝐹
𝑥

= 𝐴
𝑥

− 𝐵
𝑥

= 0

Σ𝐹
𝑧

= 𝐴
𝑧

− 𝐵
𝑧

= 0

Equilibrium equations for link GH:

Figure 54: Free Body Diagram of Link GH

Σ𝑀
𝐺

= 𝑟
𝐺𝐻

× 𝐹
𝐻

= 0

Σ𝐹
𝑦

= 𝐺
𝑦

− 𝐻
𝑦

= 0

Σ𝐹
𝑥

= 𝐺
𝑥

− 𝐻
𝑥

= 0

Σ𝐹
𝑧

= 𝐺
𝑧

− 𝐻
𝑧

= 0

Equilibrium equations for link CE:

77

Figure 55: Free Body Diagram of Link CE

Σ𝑀
𝐶

= 𝑟
𝐶𝐷

× 𝐹
𝐷

+ 𝑟
𝐶𝐸

× 𝐹
𝐸

= 0

Σ𝐹
𝑦

= 𝐶
𝑦

+ 𝐷
𝑦

− 𝐸
𝑦

= 0

Σ𝐹
𝑥

= 𝐶
𝑥

+ 𝐷
𝑥

− 𝐸
𝑥

= 0

Equilibrium equations for link IK:

Figure 56: Free Body Diagram of Link IK

Σ𝑀
𝐼

= 𝑟
𝐼𝐽

× 𝐹
𝐽

+ 𝑟
𝐼𝐾

× 𝐹
𝐾

= 0

Σ𝐹
𝑦

= 𝐼
𝑦

+ 𝐽
𝑦

− 𝐾
𝑦

= 0

Σ𝐹
𝑥

= 𝐼
𝑥

+ 𝐽
𝑥

− 𝐾
𝑥

= 0

Equilibrium equations for linear actuator FD:

78

Figure 57: Free Body Diagram of Linear Actuator FD

Σ𝑀
𝐹

= 𝑟
𝐹𝐷

× 𝐹
𝐷

= 0

Σ𝐹
𝑦

= 𝐹
𝑦

− 𝐷
𝑦

= 0

Σ𝐹
𝑥

= 𝐹
𝑥

− 𝐷
𝑥

= 0

Equilibrium equations for linear actuator LJ:

Figure 58: Free Body Diagram of Linear Actuator JL

Σ𝑀
𝐿

= 𝑟
𝐿𝐽

× 𝐹
𝐽

= 0

Σ𝐹
𝑦

= 𝐿
𝑦

− 𝐽
𝑦

= 0

Σ𝐹
𝑥

= 𝐿
𝑥

− 𝐽
𝑥

= 0

79

Equilibrium equations for forces acting on the four-bar mechanism:

Figure 59: Free Body Diagram of External Forces on the Four-bar Mechanism

Σ𝑀
𝐶

= 𝑟
𝐶𝑊

× 𝐹
𝑊

+ 𝑟
𝐶𝐴

× 𝐹
𝐴

+ 𝑟
𝐶𝐹

× 𝐹
𝐹

+ 𝑟
𝐶𝐺

× 𝐹
𝐺

+ 𝑟
𝐶𝐼

× 𝐹
𝐼

+ 𝑟
𝐶𝐿

× 𝐹
𝐿

= 0

Σ𝐹
𝑦

= 𝐴
𝑦

+ 𝐶
𝑦

+ 𝐹
𝑦

+ 𝐺
𝑦

+ 𝐼
𝑦

+ 𝐿
𝑦

− 𝑊
𝑦

= 0

Σ𝐹
𝑥

= 𝐴
𝑥

+ 𝐶
𝑥

+ 𝐹
𝑥

+ 𝐺
𝑥

+ 𝐼
𝑥

+ 𝐿
𝑥

= 0

Σ𝐹
𝑧

= 𝐴
𝑧

+ 𝐺
𝑥

− 𝑊
𝑧

= 0

Analyzed forces and deflection at an angle of inclination for the CE member at 22.5 degrees and
60 degrees.

80

Figure 60: Force Results at 22.5 Degrees

Figure 61: Deflection Results at 22.5 degrees

81

Figure 62: Force Results at 60 Degrees

Figure 63: Deflection Results at 60 degrees

82

Appendix E: Preflight Checklist:

83

Appendix F: Rover Hero .NETMF Drive Code
using System;

using System.Threading;

using Microsoft.SPOT;

using System.Text;

using CTRE.Phoenix;

using CTRE.Phoenix.Controller;

using CTRE.Phoenix.MotorControl;

using CTRE.Phoenix.MotorControl.CAN;

namespace HERO_MQP_Arcade_Drive_Testing

{

public class Program

{

/* create a talon */

static TalonSRX right = new TalonSRX(0);

static TalonSRX left = new TalonSRX(1);

static StringBuilder stringBuilder = new StringBuilder();

static CTRE.Phoenix.Controller.GameController _gamepad = null;

public static void Main()

{

/* loop forever */

while (true)

{

/* drive robot using gamepad */

Drive();

/* print whatever is in our string builder */

Debug.Print(stringBuilder.ToString());

stringBuilder.Clear();

/* feed watchdog to keep Talon's enabled */

CTRE.Phoenix.Watchdog.Feed();

/* run this task every 20ms */

Thread.Sleep(20);

}

}

/**

* If value is within 10% of center, clear it.

* @param value [out] floating point value to deadband.

*/

static void Deadband(ref float value)

{

if (value < -0.10)

{

/* outside of deadband */

}

else if (value > +0.10)

{

/* outside of deadband */

}

else

{

/* within 10% so zero it */

value = 0;

84

}

}

static void Drive()

{

if (null == _gamepad)

{

_gamepad = new GameController(UsbHostDevice.GetInstance());

Debug.Print("Controller object initialized");

}

float y = _gamepad.GetAxis(2); // analog right (1) to left (-1) on right joystick

float twist = _gamepad.GetAxis(5); // analog forward (-1) and back (1) on right joystick

Deadband(ref y);

Deadband(ref twist);

float leftThrot = y + twist;

float rightThrot = y - twist;

left.Set(ControlMode.PercentOutput, leftThrot);

right.Set(ControlMode.PercentOutput, -rightThrot);

stringBuilder.Append("\t");

stringBuilder.Append(y);

stringBuilder.Append("\t");

stringBuilder.Append(twist);

}

}

}

85

Appendix G: Attachment Part Analysis
CAD stress analysis with the applied loads on the components.

Figure 64: ANSYS Analysis of Linear Actuator Attachment Bar

Figure 65: ANSYS Analysis of Four-bar Attachment Frame

Figure 66: ANSYS Analysis of Left Angle Bracket

86

