
Abstract
Direct Numerical Simulation of channel flow was utilized to study the evolution of 

various vortex configurations presented as flow initial conditions.  Simulations of 

longitudinally,  laterally and cross-flow oriented vortices suggested that the 

predominant form of turbulent structure was the half hairpin vortex.  This vortical 

structure was dominant in the simulations seen in this as well as other 

investigations.  In all cases hairpin vortices quickly degenerated to half hairpin or 

inclined vortical structures.  It is hypothesized that these structures function as 

the predominant momentum transfer mechanism within the boundary layer, 

entraining fluid into the vortex cores like miniature tornados and transporting this 

fluid to the top of the boundary layer while simultaneously dragging fluid 

viscously around the inclined core of the vortex causing mixing of low-speed and 

high-speed flows.
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Nomenclature

 wave number (real)

A
 mixing coefficient (Boussinesq)

B body force, gravity, charge, acceleration

c complex wave speed

C f friction coefficient, wall friction

 boundary layer thickness

ij Kronecker delta function

 turbulent dissipation function =u0
3 /L

 virtual kinematic viscosity

T ij stress tensor

p pressure

 absolute viscosity

 kinematic viscosity,  =/

v velocity

var  velocity at as function of radius (Biot-Savart law)

S ij stress tensor

t time

x



∇ Del or gradient operator  ∇=i ∂
∂ x

 j ∂
∂ y

k ∂
∂ z

 circulation

2 second eigenvalue of Aij= 
3

k=1
ikkjS ik S kj  , which provides a 

scalar field viewable as an iso-surface of vortical structures.

w wall shear stress w=
d U 

dy
0

l shear stress, laminar flow

t shear stress, turbulent flow

u ' v ' Reynolds stress

Re Reynolds number Re=
UL



l mixing length

 amplitude function, potential function

 stream function

 Kolmogorov length scale ≡3 /4 /1/4

t d Kolmogorov time scale t d=  
1/2

v Kolmogorov velocity scale v≡/1 /4 

x , y , z orthogonal position variables

x , y , z non-dimensional wall length units

xi



u , v , w velocity vector components

U ,u0 velocity in free stream

U friction velocity
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1.Introduction

 1.1 Mechanism of Turbulent Bursts

Turbulent bursts are a fundamental component of the generation of turbulence at 

the wall.  Turbulence at a boundary wall results from boundary layer instabilities. 

The exact mechanisms are not clear at this time.  

Turbulence at the wall affects the behavior of the boundary layer and many of the 

physical effects of flow.  The boundary layer determines wall shear stress, skin 

friction and ultimately drag on the body or vehicle.  Also affected is mixing of the 

fluid and heat transfer between the wall and fluid.  These effects are a function of 

turbulent shear stress.

With so many physical effects from turbulence determined by activity in the 

boundary layer, the phenomenon of turbulence initiation through bursts has been 

the subject of extensive study.  Within this study there have been two schools of 

thought regarding the formation of turbulent  bursts.

Turbulent bursts resulting from horseshoe shaped vortices is one mechanism 

that has received much study.  This mechanism will be further discussed in the 

background section.  The formation of a burst by this mechanism starts with 

lateral vortices resulting from laminar boundary layer shear.  Such a segment, 
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lifted by a disturbance, is carried downstream faster than the adjacent section of 

vortex causing stretching and folding of the vortex until there is a counter rotating 

parallel vortex pair.  At this point the upward flow between the vortices of the pair 

pushes slow moving fluid rapidly upward.  This upward moving fluid is replaced 

by high speed fluid that sweeps in close to the wall resulting in a high shear 

stress at the surface.

There is another school of thought that suggests turbulent bursts are formed as a 

result of parallel vortices without requiring the folding and stretching that 

produces the canonical hairpin shape.  Dahm (2000)1 suggested that turbulent 

bursts are caused by counter-rotating parallel vortices adjacent the wall that 

suddenly leave the wall due to vortex dynamics described by the Biot-Savart 

effect.  

 1.2 Goal of this work

The goal of this work is to clarify the mechanism for creation of turbulent bursts 

by conducting numerical simulations of channel flow with initial conditions that 

include embedded vortices and other flows that could not easily be produced 

using experimental apparatus.  These embedded vortices and flows were chosen 

to simulate the effects of devices such as bumps, flippers or jets.  The purpose 

was to clarify which of the components present in turbulent bursts, either those 
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created by hairpin vortices or by parallel vortices, were necessary for the 

initiation of the turbulent burst.

Much of this research involved the numerical modeling of vortices, oriented 

parallel (longitudinally) and perpendicular (transversely) to the direction of the 

channel flow.  Transversely placed vortices were located parallel to the wall in 

some simulations and in other simulations perpendicular to the wall spanning the 

channel from wall to wall.    These vortical structures were introduced numerically 

into the flow as initial conditions that were superimposed onto the channel flow. 

Channel boundary conditions were introduced to model devices such as fluid 

injection and trip bars or blades extending into the flow.

The objective was to develop the capability to reliably produce turbulent bursts in 

order to provide turbulent burst specimens to facilitate developing and testing 

burst control methodologies.   Additionally these simulations could help identify 

the predominant structures in the turbulent boundary layer and provide clues to 

the mechanism of these structures.

 1.3 Active control of turbulence

The goal of active control of turbulent bursts and the resulting reduction in drag is 
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a fundamental objective of research in turbulence and Micro Electro-Mechanical 

Systems (MEMS) devices for flow control.    MEMS devices for burst control may 

be constructed as flippers, suction, jet injectors or vortex generators on or near 

the burst.  A better understanding of the mechanism of the burst may suggest 

other mechanisms and methods of burst control.

An active control system for turbulence consists of three major components: 1. 

Sensors that will determine the condition of the boundary layer, 2. Some form of 

algorithm or artificial intelligence that will observe the information provided by the 

sensors and determine the required actions of the flow control devices, 3. The 

flow control devices being used.

A better understanding of the mechanism of turbulent burst will aid in determining 

what conditions within the boundary layer must be known for effective boundary 

layer control and thus the requirements for sensors.  Understanding the 

relationship between the condition of the boundary layer and the required actions 

on the fluid to control bursting will assist in determination of an appropriate 

algorithm for control.  And, understanding the required actions on the fluid to 

control bursting will help determine the devices required for turbulence control.

Prior investigators have utilized mechanisms for the control of turbulent bursts 
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that are both physical and numerical.  For example, Bewley2 constructed 

simulations using Direct Numerical Simulation governed by neural network 

control and Dahm demonstrated physical systems using electrokinetically driven 

jets governed by deterministic controls.
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2.Background

This section presents material necessary for the understanding of turbulence and 

mechanisms for the formation of turbulence.  Starting with elements of fluid 

mechanics boundary layer theory and a description of boundary layer stability, 

the report investigates the effects of Reynolds number, boundary layer wall 

length units the turbulent sublayer, transition to turbulence, classical work in 

boundary layer and modern investigations of boundary layer mechanisms and 

control.

 2.1 Fluid Mechanics

The relationship between fluid stress and the rate of strain is expressed in the 

constitutive equations also known as Newton's Viscosity Law. The constitutive 

equations in tensor notation are:

, (Eq 1)

where T ij  is the stress tensor, p  is pressure,   absolute viscosity, v  

velocity and S ij  the stress tensor ij  the Kronecker delta function.  

The continuity equation expresses the fact that for a unit volume there is balance 

between the mass entering and leaving and the density of the fluid.  The 

continuity equation in vector notation is:

7
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. (Eq 2)

where   is the density, t is time, V  is the velocity vector and ∇ is the Del 

operator,  ∇=i ∂
dx

 j ∂
dy

k ∂
dz .

The momentum equation is Newton's second law for a continuum.  It cannot be 

applied directly because a fluid does not support the principle of a point mass. 

However the momentum equation couples the actions of body forces such as 

gravity with surface forces such as pressure to fluid flow.  The momentum 

equation in vector form is:

        (Eq 3)

Where B is the body force per unit mass.

The Navier Stokes Equations couple the momentum equation with the 

constitutive equations to reflect the effects of viscosity.  The Navier Stokes 

equation in vector form is:

(Eq 4)

where ∇⋅T  is representative of shear forces due to viscosity.  For 

incompressible flow the Navier Stokes equation reduces to:
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∇⋅V =0

 ∂ v
∂ t

v⋅∇ v ∇ p− B=0

 ∂ v
∂ t

v⋅∇ v =−∇ p∇⋅T−B



(Eq 5)

The simulations in this work were conducted assuming incompressible flow using 

the incompressible Navier-Stokes equations.

Another very important quantity is the Reynolds number Re=
UD 


which is 

the ratio of inertial forces to viscous forces.  Where U is the average velocity, D is 

the characteristic length (in this case the pipe diameter),   the density and 

  the kinematic viscosity.

 2.2 Boundary Layer Mechanics (Blasius Velocity 
Profile)

Fluid flow along a surface has an associated boundary layer in which the effects 

of viscosity are predominant.  Prandtl showed that boundary layers are thin so 

that the outer flow is largely unaffected.

Boundary layer theory takes advantage of the continuum properties of a fluid so 

that the velocity at the wall is always equal to zero.  This is a reasonable 

assumption for fluids that can be modeled as a continuum, but becomes invalid 

for flows of gases at very low pressure where gases must be modeled as 

particles.  Flow regions far from the boundary will feel little effect from the 

9

 ∂ v
∂t

v⋅∇ v=−∇ p∇ 2 vB



boundary and move at a velocity approaching the average velocity of the flow 

that would exist for inviscid flow.  The thin region that is affected by the presence 

of the boundary is called the boundary layer.  Boundary layers are categorized as 

laminar or turbulent according to the nature of the flow characteristics.

The laminar boundary layer is characterized by flow that moves smoothly in 

layers or lamina.  Beginning at the boundary where the velocity is zero and 

moving outward into the flow each layer moves progressively faster until the layer 

far from the boundary is moving at the average or outer flow velocity.

In the laminar flow boundary layer the velocity profile is of constant slope near 

the boundary.  Further from the boundary the velocity profile transitions to 

uniform flow of zero slope.  The shear and resulting stress applied to the wall are 

proportional to the slope of the boundary layer velocity profile near the wall.
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Figure1: Blasius  
boundary layer

An analytical solution to the boundary layer velocity profile over a flat plate with a 

zero pressure gradient was found by Blasius in 1908.  Blasius used the boundary 

conditions for flow over a plate in conjunction with the equations for continuity:

(Eq 6)

and momentum:

(Eq 7)

to solve for the the boundary layer velocity profile.  This non-linear partial 

differential equation was solved using similarity techniques, which yielded 

functions for the velocity profile for u/u0=0.99 3 are:  

the wall shear stress;

(Eq 8)
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u ∂u
∂ x

v ∂ u
∂ y

=v ∂2u
∂ y2

w=
0.332U2
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and the friction coefficient;

(Eq 9)

boundary layer thickness;

(Eq 10)

where the x is the starting point at which flow has come in contact with the wall or 

surface.  These expressions are valid for Re≤3x106 .  Above this value flow 

begins transition into turbulence.

Typically physical experiments conducted to study turbulent boundary layer flow 

often induced turbulence with some trip device such as a wire or strip of 

sandpaper.  This induced instability of the boundary layer and is necessary for 

flows of low Reynolds number.  However, above a critical value of Reynolds 

number, a disturbance in not required to induce unstable flow.

 2.3 Turbulent Boundary Layer 

For flow over a surface, turbulent flow may be divided into three distinct regions. 

The region closest to the wall is the inner layer which is dominated by viscosity. 

The intermediate layer which is dominated by momentum exchanges due to 

velocity fluctuations and the outer layer where the influence of the boundary 
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becomes negligible.  The inner layer can be further divided into the viscous layer 

and the buffer layer.  The viscous layer is a very thin layer attached to the wall 

where velocities are very low and dominated by viscous effects.  It can be shown 

that the velocity profile in this region is essentially linear.  The buffer layer 

connects the viscous sublayer to the intermediate layer.  It is believed that the 

buffer layer is the region where turbulence is created.4

13

Figure 2: Boundary layer regions

Outer
Layer

Viscous 
Sublayer

Buffer Layer

Viscous Layer

Intermediate 
Layer



 2.4 Classical Work

 2.4.1 Reynolds Experiment

Initial investigations into transition to turbulent flow were demonstrated in a 

classic experiment by Osborne Reynolds5 in the 19th century.  Reynolds' very 

simple experimental apparatus consisted of a very smooth glass pipe with a bell 

mouth entrance immersed within a tank and a valve at the pipe outlet.  The pipe 

was fed from the tank and a means to inject dye into the inlet of pipe was 

provided.  Using this apparatus, Reynolds measured the distance from the 

entrance of the pipe to the point where the dye stream became unstable.  From 

numerous experiments, Reynolds determined an empirical expression for a 

dimensionless number that bears his name and correlates flow to transition to 

turbulence.  Reynolds found that at values of Re  above 12000, flow would 

transition to turbulence and below 2000, flow would always become laminar.

Other investigators managed to achieve a Re  of 40,000 by letting the water in 

the tank stand for several days and isolating the apparatus from vibration.  This 
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upper number is of no engineering value, but suggests that the initial conditions 

of the fluid have a significant effect on transition and stability.

When considering flow over a surface or plate, the characteristic length is the 

distance from the leading edge of the plate.  Therefore in flow over a plate Re

starts at zero and increases linearly with distance.  The channel flow simulated in 

this experiment starts with Re=0  and increases throughout the simulation.

At higher Reynolds numbers all boundary layers will eventually become 

turbulent.  The point of transition depends upon factors such as pressure 

gradient, wall curvature and wall roughness.  Common examples of favorable 

pressure gradient affecting boundary layer and turbulent flow is channel or pipe 

flow with lower downstream pressure.  Favorable pressure gradient tends to 

delay the onset of boundary layer instability and turbulence.  

Flow over an airfoil is an example of an adverse pressure gradient.  After passing 

the point of lowest pressure above the airfoil, the pressure begins to increase to 

meet the ambient conditions at the trailing edge.  During this increase in pressure 

or adverse pressure gradient, boundary layer instability generally occurs causing 

flow reversal and turbulence.
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 2.4.2 Prandtl's Mixing Length Theory6

In 1925, Prandtl hypothesized a model of turbulent flow.  Prandtl made an 

assumption that fluid passing along a wall in a turbulent boundary layer could be 

conceptually coalesced into lumps.  A lump displaced from a lower layer y1− l 

will have a velocity u y1−l  when displaced l and the resulting change in 

velocity will be:

(Eq 11)

and a lump displaced downward from y1 l  will have a velocity 

(Eq 12)

where l is Prandtl's mixing length.
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u1=u y1–u y1−l ≈l  d u
dy 

u2=u y1l−uy1≈l du
dy 

Figure 3: Transition to turbulent flow over flat plate
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The mixing length concept also contributes to developing an important 

relationship.

From mixing length theory it is possible to determine an expression for an 

effective or virtual viscosity that results from turbulence.  Starting with Stokes's 

law for laminar flow the shear stress which is:

(Eq 13)

Where  is the density  the absolute viscosity and  is the kinematic 

viscosity =/ .  

The concept of a mixing coefficient A was introduced by Boussinesq7.  This 
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leads to an expression for the turbulent shear stress:

(Eq 14)

where u' v ' is the Reynolds stress.  Since the mixing coefficient At

corresponds to the viscosity  it is often called the apparent, virtual or eddy 

viscosity.  If the apparent kinematic viscosity =A /  is used in the same 

manner as the kinematic viscosity =/ then:

(Eq 15 )

for laminar flow may be written in a similar form representing turbulent flow:

. (Eq 16)

Equations 12 and 13 may be written:

(Eq 17)

from equation 18 and reasoning regarding the movement of fluid lumps it may be 

shown that;

(Eq 18)

The expression for turbulent shear stress may be written:
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t=−u ' v '=A
d u
dy

l=
du
dy

t=
du
dy

∣u '∣=½ ∣u1∣∣u2∣=l∣ d u
dy ∣

u' v '=−l 2  d u
dy 

2



(Eq 19)

however the sign of t  will change and the more correct form is:

                 (Eq 20)

which is Prandtl's mixing-length hypothesis.

The mixing length concept has proved very useful for the description of turbulent 

flows where the mixing length must vanish near a smooth wall and for flow over 

rough surfaces where the mixing length has been shown to be the scale of the 

surface roughness.  Perhaps most important is that the mixing length concept 

has lead to the concept of virtual kinematic viscosity:

              (Eq 21)

which has been verified by experimental evidence.

 2.4.3 Boundary Layer Instabilities (Orr-Sommerfeld)

The boundary layer described by Blasius becomes unstable above a critical 

Reynolds number.  This instability was first expressed in the Orr-Sommerfeld 

equation. Derived first by Orr (1907), then Sommerfeld (1908). It forms the basis 

of hydrodynamic stability theory.  
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The Orr-Sommerfeld equation was developed by introducing the perturbation 

stream function expressed mathematically as a wave function with complex 

amplitude. These expressions for the stream function were then substituted into 

the Navier Stokes equations to form the Orr-Sommerfeld equation:

(Eq 22)

This formulation allows the flow to be expressed where U is the free stream 

velocity,  is the amplitude function dependent on y,   is the wave number 

(real) in the x direction, c  is the complex wave speed, amplification factor and 

circular frequency.  

The resulting waves suggested to Tollmien and Schlichting a solution to the Orr-

Sommerfeld equation from which they predicted the formation of instability waves 

above a critical value of Reynolds number.  These waves  would later be called 

Tollmien-Schlichting waves.  

In the diagram below (figure 5) two curves are shown in Reynolds number- wave-

number space.  Curve a represents behavior of an adverse pressure gradient 

dp /dx0 while curve b represents Blasius flow where the pressure gradient is 

dp /dx=0 .   The Blasius boundary layer has a critical Reynolds number of 
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Re=U∗ / =520 and is stable until this value is reached.  At Re=520 the 

boundary later is unstable to a wave of wavenumber ∗=0.3 .  This 

corresponds to a wavelength of L≈6 .  As the boundary layer thickens the 

Re  increases and the range of unstable wavelengths becomes larger.

When Re∞  the Orr-Sommerfeld equation reduces to a simplified form:

Eq 23

(Eq 23)

21

d2

dy2
−[2

1
U−c

d 2U
dy2 ]=0

Figure 5: Boundary layer stability, a) boundary layer with  
inflection, b) boundary layer without inflection

unstablestable

RcritRcrit

b

a



R=U m



y y UmUm

UU

PI



a b



Known as Rayleigh's equation, where U is the free stream velocity,  is the 

amplitude function dependent on y,   is the wave number (real) in the x 

direction, c  is the complex wave speed, amplification factor and circular 

frequency.

 2.4.4 Kolmogorov Length Scale

Kolmogorov hypothesized that turbulent dissipation occurs in a manner that 

approaches an equilibrium for all flows.  While turbulence may be introduced into 

a flow on various scales by mechanical action, energy dissipation would take 

place at one equilibrium scale for all flows.  From this Kolmogorov argued that 

there existed a length scale:

≡
3 /4 

1 /4  a time scale, t d= 
1/2

and a velocity scale,

v≡1/4

where ≈
u0

3

L
was the dissipation function, L  and u0 were length and 

velocity scales that characterize large eddies and turbulent dissipation.

The Reynolds number computed from   and  , v /=1 suggests that 

turbulent structures become smaller in size until they reach a Reynolds number 

of 1.  This has also been described as an “ energy  cascade”  where structures 
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cascade downward in size and energy.

The Kolmogorov scale has implications for Direct Numerical Simulation.  For 

finite difference computations of partial derivatives to properly resolve the fluid, it 

is logical to assume that the grid scale should be approximately equal to the 

Kolmogorov length scale.  Experience has shown that a grid spacing of four to 

six times the length scale is sufficient to provide accurate results.8

 2.4.5 Vortex Dynamics

An import characteristic of the behavior of vortex pairs is that they will propel 

themselves.  This is best recognized by the example of a canoe paddle that 

induces a pair of vortices after each stroke.  The vortices in the water continue to 

be propelled by their mutual induction.  This is a result of the Biot-Savart law that 

defines the velocity field in proximity to a vortex:

r≠r a .                  (Eq 24)

In the case of a pair of vortices, each vortex affects the field of the other, 

resulting in their moving together, and for two vortices of equal strength, moving 

perpendicular to the line between them.  This characteristic is important for the 

turbulent burst phenomenon.
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 2.5 Modern Work

 2.5.1 Boundary layer wall units

From similarity modeling, it has been customary to designate dimensionless units 

to characterize flow near walls.  

The turbulent wall shear stress is defined:

(Eq 25)

the wall shear stress can be combined with the fluid density to create a “ friction 

velocity” :

Eq 26

(Eq 26)

and, hence a corresponding length scale /U which when used to scale the 

y coordinate gives the inner variable:

(Eq 27)

This expression provides a means for scaling flow in near wall or boundary layer 

conditions.  Notable is that the expression for y is very similar to the Reynolds 

number.  The ratio of channel half-width, h /2 , to /U  is the Reynolds 

number:

. (Eq 28)

This value may be thought of as the number of wall length scales from the wall to 
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the channel centerline.

A non dimensional form of wall shear stress and Reynolds stress may be written,

(Eq 29)

where U= U /U and uv= uv /U
2 .  When plotted across a channel  where 

R=590 shows that the total stress varies linearly from the wall to the channel 

centerline.   The total stress is the sum of  mean viscous stress and Reynolds 

stress.  These are plotted in figure 6  below, showing that the viscous stress is 

predominant at y=0 where turbulent stress is negligible but by y=42 the 

effects of turbulent stress have become predominant and remain so until 

reaching the channel centerline.  From this it is clear that the majority of 

turbulence generating activity takes place between 0≤y≤42 .

Turbulent flow has a significant effect on the boundary layer velocity profile.  The 

slope of the turbulent boundary layer is significantly greater then the laminar 

boundary layer (figure 7) resulting in significantly greater shear stress, surface 

friction and drag.
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 2.5.2 Modern Investigators

Turbulent Burst Phenomenon

The phenomenon of turbulent bursts was first discovered in the 1950s9.  Since 
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Figure 6: Decomposition of total stress in turbulent boundary  
layer, viscous stress, turbulent stress
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then it has been the subject of considerable study.  Initially, physical experiments 

revealed the nature of the development of the turbulent burst from Schlichting10 

rollers through the process of lifting, folding and stretching of what started as a 

lateral vortex filament.  

There are two schools of thought about the mechanism for formation of the 

turbulent burst.  The first school suggests that the turbulent burst is the result of 

lifting a section of a vortex oriented parallel to the wall and perpendicular to the 

flow.  This lateral vortex is a result of boundary layer instability.  Once lifted, the 

section of vortex now further from the wall moves faster than the remainder of the 

vortex.  However, the vortex is still a single structure and as the lifted section 

moves ahead the vortex is stretched into a U shape.  This produces the 

canonical hairpin vortex shape consisting of inclined stretched parallel vortices 

joined at the head.  Bursting occurs when the parallel vortices suddenly move 

away from the wall bringing slow speed fluid with them and allowing high speed 

fluid to be swept in underneath.  It is the high speed fluid brought in close 

proximity to the wall that provides the increase in shear stress and resulting drag.
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Figure 8: Concept of turbulent burst cycle with hairpin vortex 
formation

The other theory suggests that vortical structures are always present along the 

wall as a result of folding and stretching of vortices created by boundary layer 

instability.  The turbulent burst is the result of a vortex pair lying parallel to the 

wall rotating upward between the vortices (figure 9).  In a manner similar to the 

first theory, the upward lifting action results in moving slow speed fluid away from 

the wall, which is then replaced by high speed fluid in a bursting action.
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The two theories differ in the way the parallel vortices are arranged.  The first 

theory describes a hairpin structure that is inclined to the flow and bursts occur 

because of vortex dynamic actions.  The second theory suggests that the 

vortices are merely parallel, not inclined to the flow, do not require stretching or a 

hairpin shape however bursting still occurs due to vortex dynamics.

Sublayer Vortical Structure 

The turbulent boundary layer in equilibrium has a universal and scalable 

structure.11  This makes possible the study of general conditions rather than 

specific turbulent boundary layer conditions.  Of most concern is the boundary 

layer velocity profile or velocity with increasing distance from the wall y .  At 

the wall y≡0  and u=0.   Very close to the wall, the primary contribution to 

momentum is molecular diffusion where the kinematic viscosity  is the 

momentum diffusivity.  Further from the wall, molecular diffusion remains 
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Figure 9: Counter-rotating streamwise vortices,  
(Blackwelder and Kaplan, 1976)



relatively constant and effects of momentum transfer due to fluctuation velocity of 

the flow increase.  Since flow velocity at the wall is zero, there cannot be velocity 

fluctuation.  Moving further from the wall, the effect of fluctuation velocity 

eventually dominates the transfer of momentum.

From this argument, it is customary to define the inner layer as the region of the 

boundary that is immediately adjacent the wall and dominated by viscous effects 

and an outer layer that is dominated by turbulent effects.  The connecting layer or 

overlap layer is often referred to as the log layer.  This name comes from the 

“ law of the wake”  (Coles, 1956) who postulated that the outer part of the inner 

inner layer and inner part of the outer layer, or overlap region, must form a 

velocity profile independent of pressure gradient.  Asymptotic matching requires 

that the region have a logarithmic profile.

The inner layer, excluding the log layer extends from 0≤y≤30 , while the 

viscous inner layer is 0≤y≤10 .  The physical thickness depends upon the 

the physical properties of the fluid such as density, viscosity and pressure 

gradient.

Because viscous effects are dominant close to the wall 0≤y≤10 ,  the 

velocity profile is linear and results in a uniform vorticity layer adjacent the wall. 
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Velocity must increase linearly with distance from the wall and thus in the region 

close to the wall 0≤y≤10 the relationship u=y will hold.  This limits 

velocities in y and provides stability to the boundary layer.   Further from the 

wall, the no-slip requirement cannot maintain stability; instabilities develop in the 

form of sinusoidal disturbances in the cross-stream or span-wise direction. 

Further instability results in elevation of sections of cross-stream  vortices, which 

become exposed to higher speed flow.  The elevated sections of vortex move 

faster and are elongated and oriented in the streamwise direction folding and 

stretching the vortices.  The resulting vortical structures reside at the outer edge 

of the sublayer have a spacing of about z=100, a length of x=1000,

varying from 400-1500.  The vortical structures are at about y=10  and 

therefore advect at u=10 12.

At the outer edge of the viscous sublayer these vortical structures provide the 

momentum transport from the outer to inner layer and hence the wall.  This 

mechanism provides the greatest influence on the shear stress at the wall.  The 

action of the Biot-Savart law causes the vortices to group into pairs of alternate 

rotation.  The streamwise pairs remain steady until the induced motion of the 

vortex pair causes the pair to be lifted abruptly from the near-wall region and into 

the outer layer.  This process is called “ bursting” .   The bursting process 
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transports low momentum fluid from the near wall region into the outer layer at a 

much higher rate than would be accomplished by diffusion alone with the result 

of much higher shear stress and drag.

Observations of Coherent Structures

Hassain, Schoppa and Kim (1997)13 examined coherent structures (CS) using a 

then newly developed technique of 2 visualization of vortical structures.  The 

2 technique clearly identified vortical structures by computing values of 

vortical structure intensity for the flow field.  This results in a scalar field for 2

that can be plotted as an iso-surface.  This technique is also used in this work for 

visualization and production of movies.  The 2 technique will be further 

discussed in Methodology.  Hassain et al examined the results of numerical 

simulation in a channel flow examining the region y60 .  Their observations 

show coherent vortical structures that are inclined with the flow, approximately 9 

degrees from horizontal and yawed to the flow +/-4 degrees.  

Hassain et. al. evaluated these structures statistically to determine the spatial 

relation of near wall coherent vortical structures, ensemble averaging the 

significant structural properties and compared them with experimentally observed 

events of the bursting process.  Their results showed excellent correlation with 
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experimentally observed events such as Reynolds stress distribution, low speed 

streaks and pressure variation.

The results also showed that the vast majority of vortical structures were oriented 

roughly in the streamwise direction and were generally much shorter than the 

y = 1000 length indicated by the evidence of low speed streaks and more on 

the order of length y = 200.  Further hairpin vortices were rarely observed in 

keeping with the observations of the work of this paper.  

Vortical structures arranged in head to tail groups produce low-speed streaks 

(figure 8) much longer than the structures themselves.  This explains the 

previous observation of low speed steaks of y=1000 .
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Figure 10: Low speed streaks from groups of vortical structures, Hassain, Schoppa 
and Kim (1997)

Sectional views of the vortical structures taken in the x-y plane (figure 10) above 

show vortical structures that were often stacked and counter rotating.  
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Figure 11: Stacked counter  
rotating vortical structures,  plan 
view shown at right Hassain,  
Schoppa and Kim (1997)



Stacked counter rotating vortical structures provide a mechanism for  exchange 

of fluid momentum between inner and outer boundary layer.  The flow field about 

the vortex core sweeping the wall transports slow speed fluid up to the vortex 

above, and is then swept by the upper vortex to the outer region of the boundary 

layer.  Simultaneously high speed fluid is swept down to the lower vortex and 

then down to the wall.

The canonical hairpin vortex was seldom seen in these simulations.  This 

suggests that the predominant turbulent feature is the single sided vortical 

structure.  This is in contrast to the study of the hairpin vortex and the turbulent 

burst phenomenon.  

35

Figure 12: Growth of vortical structures with time, Hassain,  
Schoppa and Kim (1997)



 2.6 Control Using Actuators

Interruption of bursting mechanism has been one of the targets for control of the 

burst process.  It is believed that using a device to disturb the pairs of vortices, 

either by increasing or decreasing their separation distance thereby preventing 

the effect of the Biot-Savart principle can arrest the burst development process. 

This disturbance has been introduced in the form of an array of electrokinetically 

controlled microactuators (Dahm & Diez-Garias, 2000).  These microactuators 

either pushed or pulled a small amount of fluid into or out of the channel.  The 

resulting effect was to separate the longitudinal vortex pairs that would otherwise 

be induced by the Biot-Savart principle to form a burst.

These arrays were controlled using a closed-loop control system or deterministic 

approach where sensors measured wall shear stresses and or pressure and 

actuators were controlled through a specific algorithm.  Another control 

approach was to use artificial intelligence in the form of a neural network that 
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Figure 13: Electro kinetic actuator  
(Dahm, 2000)



observed  and trained to the same sensor inputs as used for the deterministic 

system to control the actuators.14   Both  forms of control have been successfully 

demonstrated in experiments with remarkably similar results.  The deterministic 

control and neural network control both provide reductions in wall shear stress 

and drag of 20-30%.

 2.7 Previous Research in Boundary Layer Control 

Investigations have shown that the primary precursors to turbulent burst involve a 

region of locally adverse pressure gradient15, a lifting of the boundary layer due to 

flow over some obstruction such as flapper or hemispherical bump16, by injection 

of fluid17 or an acoustic excitation through a small hole in the floor of the test 

apparatus18.  These experiments resulted in either single or multiple turbulent 

bursts and accompanying vortical structures.  In some cases the disturbances 

spread laterally in the flow to form wider turbulent spots, while in others hairpin 

vortices also appeared upstream of the primary vortex.  In all cases secondary 

vortical structures were formed in addition to the primary hairpin vortex.  The 

development of these structures was a function of the Reynolds number of the 

flow and the size and duration of the disturbance introduced into the flow field.

Other research suggests that the initial instability leading to the onset of 

turbulence and turbulent burst can be driven by disturbances in the freestream 
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flow at some distance from the wall.  If these disturbances occur at the 

appropriate frequency or wave number, they will penetrate the boundary layer 

causing instabilities and transition to turbulence.

 2.7.1 Flow Fields Resulting from Devices

Several experimental studies were conducted that involved injection of fluid into 

the flow field resulting in what at least could be interpreted as a turbulent burst. 

The rate and volume of injection separates the injection process into two 

categories.

Fluid Injection

Singer and Joslin (1995) conducted an experiment using numerical simulation 

where fluid was injected slowly at a velocity of approximately 25% of average 

velocity ( .25U ) for a long duration through a longitudinally oriented slot (figure 

14).  The primary effect was a decrease in the momentum of the boundary layer 

and the introduction of a boundary layer velocity profile inflection.19  The resulting 

flow structures were observed by plotting pressure as an iso-surface. 
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Structures resulting from fluid injection are accurately shown as pressure iso-

surfaces.  The developed hairpin vortex along with in-line and side-lobe 

secondary vortices,  necklace vortices and a new u-shaped vortex are described 

in the figures shown below.  This development continues to become a young 

turbulent spot.
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Figure 14: Geometry of fluid injection slot, (Singer, Joslin,  
1995)

Figure 15: Plan view, hairpin vortex resulting from 
fluid injection, t=42.0 iso-pressure plot (Singer,  
Joslin, 1995)
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Figure 16: Elevation view, hairpin vortex resulting from 
fluid injection, t=50.25, iso-pressure plot (Singer, Joslin,  
1995)



In a similar but physical experiment conducted by Haidari and Smith (1994), fluid 
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Figure 17: Plan view of turbulent structure,  
t=80.70, iso-pressure plot (Singer, Joslin, 1995)

Figure 18: Plan view of turbulent structure, t=153.10,  
iso-pressure plot, (Singer, Joslin, 1995)



was injected through a long, longitudinally oriented 2 mm wide slot at a velocity 

similar to that of Singer and Joslin.  Here flow was visualized using hydrogen 

bubbles or dye in the fluid.  Haidari and Smith intended to duplicate the slow spot 

or streak that preceded the observed turbulent burst.  With this apparatus Haidari 

and Smith were able to produce excellent examples of hairpin vortices 

throughout a range of Reynolds numbers from 250 to 490 based on boundary 

layer thickness.  Their measurements of the boundary layer profile downstream 

of the injection point were fundamentally similar to those of Singer and Joslin; 

both experiments showed a boundary layer inflection leading to instability and 

subsequent formation of a canonical hairpin vortex.

In an experiment conducted by Amini and Lespinard (1982), fluid was injected 

through a horizontal plate parallel to the flow.  The jet, driven by an acoustic 

device, was formed through a hole rather than a slot as in the experiments 

described above.  The jet velocity was approximately 1.25U .  This relatively high 

speed, short duration jet provided the effect of lifting of the flow in the vicinity of 

the hole rather than creating a boundary layer velocity inflection.  The measured 

effects were less pronounced than the experiments previously described where 

slow speed injection produced a boundary layer inflection however provided 

evidence of turbulent spot generation measured near the injection port and at 

repeated downstream locations.
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Hemispherical Obstruction

Tufo, Fischer, Papka and Szymanski (1999) conducted an experiment using 

direct numerical simulation (DNS),  to investigate the flow field in a channel 

where a single stationary hemispherical roughness element was placed on the 

channel floor.20  The flow about this obstruction displayed a standing horseshoe 

vortex about the upstream edge of the hemisphere and adjacent the floor of the 

channel.  Hairpin vortices were periodically shed from the top of the hemisphere 

leaving a series of hairpin vortices advected downstream.  The flow field was 

visualized using the 2  techniques of Jeong and Hussain.  Observation of the 

boundary layer velocity profile showed results similar to the experimental and 

DNS work described above by Singer and Joslin, Hadair and Smith and Amini 

and Lespinard.
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Figure 19: Computational grid for hemispherical bump, (Tufo,  
Fischer, Papka and Szymanski, 1999)



 2.7.2 Transition Excited by Freestream Disturbances

A recent work by Durbin and Wu (2007)21 takes a different approach to the 

transition to turbulence in a boundary layer by examining how disturbances in the 

flow some distance from the wall effect the formation of boundary layer 

instabilities and transition to turbulence.  This work did have precedence.  Taylor 

(1936) had argued that the absence of evidence to support Tollmein-Schlichting 

waves suggested that instability leading to transition could be driven from 

disturbances located in the freestream.  When the Reynolds experiment was 

repeated after allowing the tank supplying the pipe to settle for several days,   the 

settling period extended the Reynolds number for transition from 12,000  to 

40,000, suggesting that the initial conditions within the fluid away from the 

boundary layer play a significant role in transition to turbulence.
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Figure 20: Flow over hemispherical bump showing repeating 
hairpin vortices and upstream vortex at wall, (Tufo, Fischer, Papka 
and Szymanski, 1999)



Earlier work by Klebanoff (1971) observed characteristic low frequency 

disturbances in the flow that induced variations in the thickness of the boundary 

layer.  These fluctuations in the boundary layer were referred to as “ breathing”  

modes which were characterized by buffeting of the laminar layer.   

Durbin et. al. performed numerical simulations of decaying grid turbulence that 

showed freestream turbulence of low frequency could penetrate the boundary 

layer causing longitudinal jets.22  These jets of high-velocity flow are shown as 

contours in u velocity.  Within the jets, turbulent spots may appear, which arise 

without previous instability at the surface as indicated by slow speed streaks. 

Orr-Sommerfeld theory provides an explanation of the transition of the 

freestream turbulence into jets within the boundary layer, but not the transition to 

turbulence.  

Numerical simulations of regions prior to the transition to a turbulent spot showed 

that the disturbances above the boundary layer induced fluctuations in the 

boundary layer bringing up slow speed fluid causing instabilities leading to 

transition to turbulence.  

This research was motivated in part from the investigation of turbine cascades 

and passage of wakes from blades and vanes on downstream surfaces as well 
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as fundamental research of turbulence over flat plates.  Previous investigation by 

Schlichting suggested that the surface roughness of turbine blades and vanes 

should not exceed 0.002 mm23; however the initiation of boundary layer instability 

and transition to turbulence due to wake passage suggests that a super-finished 

surface has limited effectiveness in avoiding transition to turbulence in a turbine 

cascade.  

 2.7.3 Near Wall Vortical Flows

Vortex Stretching

Work of Moffatt, Kida and Ohkitani (1994)24 indicated that for a vortex to persist in 

viscous fluid with dissipation requires the vortex be subject to positive strain. 

Failure to maintain strain, or negative strain, will cause the vortex to die out and 

the vortex will tend to align itself with the strain direction.  Their mathematical 

analysis was done in the context of subscale vortices present in turbulent 

boundary layer flow.  
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In a series of physical experiments by Petitjeans (2001)25, a standing vortex was 

created across the bottom of a transparent water channel.  The vortex was 

initiated by the vorticity present in the boundary layer profile at the bottom of the 

channel.  The vortex was maintained in strain and kept stationary by suction 

applied through a pair of opposing slots located at the side walls of the channel 

and adjacent the bottom wall.   Dye was added to the flow to readily observe the 

vortex.  Increased suction directly affected the size and vorticity of the vortex, 

which is consistent with increased rate of entrainment of fluid and increased rate 

of strain.  Notable is that the strain applied to the vortex not only was able to align 

the vortex, but also to keep the vortex from being swept downstream by the 

channel flow.
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Figure 21: Vortex stretching,  
vortex shown in  axial strain  
with fluid entering sides of  
vortex core, (Moffatt, Kida 
and Ohkitani, 1994)



In a second experiment, two rotating disks 10cm in diameter with suction ports at 

their center were placed in a tank face-to-face spaced approximately 15cm apart. 

The disks were rotated to establish a rotating flow then suction was applied to the 
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Figure 22: Diagram of experimental apparatus for vortex stretching, suction ports  
located opposed adjacent bottom wall, dye injected through bottom wall  
upstream of vortex. (Petitjeans, 2001)

Figure 23: Stretched vortex captured in channel shown with dye 
injected (Petitjeans, 2001)



ports at the center of the disks.  The flow rate through the suction ports was 

measured before and after the vortex was established.  The lower pressure in the 

vortex center balanced the flow through the suction ports regulating the rate of 

flow and the rate of strain on the vortex.  This suggests that the vortex has a built 

in pressure feedback mechanism that keeps the vortex stable and will keep the 

vortex intact for as long as axial strain is maintained.
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Figure 24: Apparatus for starting and sustaining a vortex 
in continuous strain. (Petitjeans, 2001)



Experiments by Petitjeans demonstrated the phenomenon of vortex stretching 

and fluid entrainment and complimented the mathematical work of Moffatt, Kida 

and Ohkitani (1994).  The work showed that the vortex must be kept in axial 

strain to persist, will align with the axial strain and will entrain fluid through the 

walls of the vortex core and deliver that fluid out the ends of the vortex.  The 

vortex will also produce a circular flow field around its core that is of importance 

to the structure of the boundary layer.
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Figure 25: Vortex between 
plates sustained in continuous 
strain marked with dye injection 
(Petitjeans, 2001)



3.Methodology

3.1 Direct Numerical Simulation (DNS)

Modeling was conducted using Direct Numerical Simulation with an 

incompressible finite difference solver on a staggered grid.  The algorithm was 

Gauss-Seidel using  Black and Red successive over relaxation (SOR).  The 

domain of the solver was 66 x 66 x 66.  The channel was dimensioned 

x=2 , y=2 and z= .  The upper and lower boundaries, perpendicular to 

the y axis,  were solid, fixed and no slip.  The boundaries perpendicular to x and 

z axes were periodic.

Figure 26: Rectangular channel computational domain

Initial flow conditions consisting of uniform channel flow and some combination of 

embedded vortices that were computed separately then introduced into the 

channel prior to beginning computation of the flow field time solution.  Uniform 
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flow was achieved by assigning all grid locations the same velocity vector values 

and pressure scalar values.  In this case velocity values in v, and w =0.

Periodic boundaries have the effect of an infinite domain in the direction of the 

periodicity.  A boundary was made periodic by setting the flow field values at the 

grid locations at one wall (inlet) of the channel equal to the flow field values at the 

grid locations on the opposite wall (outlet).  To create a periodic boundary in x, 

for example, requires that the values for velocity u, v, w and pressure p at 1, y, z 

are equal to the values of velocity u, v, w and pressure p at 66, y, z.  This was 

accomplished during execution of a subroutine that updates the boundary 

conditions.  Fixed or moving wall boundary conditions are updated in a similar 

manner by specifying that the boundary velocities equal zero or for a moving wall 

some specified value.

The periodic boundary was useful for eliminating channel wall effects where a 

boundary layer was not desired.  Another valuable attribute was the effect of 

reducing the required computational domain size.  Rather than compute a 

channel of very large length to establish boundary layer properties the periodic 

boundary allowed the flow characteristics to develop by recirculating the flow. 

This was an important advantage.  The disadvantage was that computational 

flow features that are long may overlap on themselves.  In this work, the flow 
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features were generally short and did not overlap.  In some cases, flow features 

moved upstream, intersected and passed through downstream moving features, 

but did not seem to have an effect on the flow solution.

3.2 Grid spacing and Kolmogorov length

The Kolmogorov length is the dimension of the smallest disturbance than can 

exist within a flow.  This suggests that for numerical simulations of turbulent flows 

that the grid size should be roughly equal to the Kolmogorov length for partial 

derivatives to be properly resolved.  In practice a grid size of four to six times the 

Kolmogorov length has proved adequate.26  Further because of wall effects flow 

adjacent the wall is characterized by turbulent structures of smaller dimensions. 

This permitted the use of a grid that was  closely spaced near the wall with 

progressively larger spacing away from the wall.  In this work the grid in x and z 

was uniform  while the grid in y was sinusoidally spaced.

Calculations of the Kolmogorov length, using units of the channel dimensions, 

showed that the grid had adequate resolution.  The grid spacing in the x direction 

was:

(Eq 30)

and in the z direction,
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(Eq 31)

The sinusoidal grid spacing in y varied from 0.04869 at mid-channel to 0.001764 

at the wall.  The Kolmogorov length scale is a function of the dissipation and the 

kinematic viscosity:

(Eq 32)

Dissipation  may be estimated using:

(Eq 33)

then the Kolmogorov length scale was:

(Eq 34)

Comparing the Kolmogorov length with the grid spacing for x,

(Eq 35)

and z,

(Eq 36)

shows reasonable grid size for numerical simulation.  Comparing the grid spacing 

in the y direction at mid-channel,

(Eq 37)

and at the wall,
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dx


=
0.095419

0.01394
=6.8469,

dz


=
0.04759

0.01394
=3.4139,

dy


=
0.04869

0.01394
=3.4928,



(Eq 38)

These grid spacings were well within the requirements for resolving partial 

derivatives in direct numerical simulation.

3.3 Initial conditions

In each instance the preprocessor generated a uniform flow field in the x 

direction u=const , v=0, w=0.  Added to this flow field were vortices oriented 

in various directions.  Vortices were placed longitudinally within the flow, i.e. in 

the x direction, laterally or perpendicular to the flow direction and parallel to the 

bottom wall of the channel and vertically across the channel extending from the 

bottom wall to the upper wall of the channel.

Where vortices were placed parallel to the solid boundaries, the simulation 

included single and multiple vortices both co-rotating and counter-rotating. 

These vortices were placed at various locations from close to the wall to mid-

channel.

Where vortices were placed perpendicular to the solid boundaries, the protocol 

included simulations of counter rotating vortex pairs placed at various spacing 

equidistant from the end of the channel.   Vortex pairs were introduced where 
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flow between the vortices was both upstream and downstream.

3.4 Upstream and downstream vortices

When vortex pairs extending wall to wall were introduced into the channel as part 

of the initial conditions two rotation configurations were possible.  These were 

labeled upstream vortex pair and down stream vortex pair.  Diagrams describing 

these vortical arrangements and their rotation are shown below.

The upstream vortex pair shown in the diagram below was characteristic of the 

pair of vortices that would be created by flow about an obstruction or as the result 

of a hairpin vortex.

                   

Figure 27: Upstream vortex

This type of vortex pair tended to be more persistent when introduced into the 

channel as an initial condition.

The downstream vortex pair as shown in the diagram below was introduced into 

56

U



the channel for comparison with the upstream vortex pair.  The rotation was 

opposite of the upstream vortex pair and was opposite rotation produced by flow 

about an obstacle  or hairpin vortex.

Figure 28: Downstream 
vortex

3.5 Channel Flow Parameters

Simulations were conducted using values flow velocities, pressure gradient, 

channel dimensions and other parameters which have been previously used in 

other successful investigations of turbulent flow.

Flow parameters for the channel were:

Initial velocities,

 u=0.55, v=0.0, w=0.0,  

pressure gradient,

dp /dx=0.00178,
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channel height,

h=2.0,

viscosity,

=0.000333,

and density,

=1.0 .

Units are based upon channel dimensions of x=2 , y=2.0 and z= which 

resulted in all calculated length values to be in the units of the channel 

dimensions.  Using the channel height as the characteristic length the Reynolds 

number was:

(Eq 39)

The initial velocity profile in the channel was uniform and with no boundary layer. 

Throughout the simulation a boundary layer was established and grew in 

thickness, however, the flow remained laminar except for the vortical structures 

that were deliberately introduced as part of the initial conditions. 

Most simulations were conducted for a period from t 1=0 to t 2=21.   For this 

period the Reynolds number based upon the distance of travel along the wall 

varied from zero to:
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=3300



(Eq 40)

This corresponded to a boundary layer thickness ranging from zero at the start of 

the simulation to:

(Eq 41)

at the end of the simulation period.  The velocity profile for the channel was 

plotted for various times and is shown below.    The calculated value for 

boundary layer thickness corresponds to the measured thickness shown below.

          

Figure 29: Channel velocity profile at t=0.0, 7.0, 14.0 and 21.0.
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3.6 Vortex Calculation

During preprocessing the initial flow field was established and written to file as an 

array of velocity vectors u , v , w and pressure  p values.   These values 

corresponded to grid locations within the channel i , j , k  .  Vortices were then 

computed and superimposed on the initial flow field file.

Vortices were added by computing the required velocity vectors to represent 

vortices in the desired locations.  The velocity vectors were calculated in two 

dimensions in the plane, or layer of grid points, perpendicular to the axis of the 

vortex.  The calculations were repeated for each layer of grid points until the 

entire channel had been completed.  First, the location of vortex center, vortex 

strength and other parameters such as time and direction of rotation were 

specified.  For each grid point within the plane the orthogonal distances between 

the vortex center and grid point were calculated.  These values were used to 

form a vector orthogonal to the radius vector and extended from the grid point. 

This vector was the same length as the radius vector.  The vector was 

normalized by dividing by the magnitude of the radius and then scaled to the 

proper magnitude by computing the tangential velocity as a function of radius 

using the formula for tangential velocity of the Taylor vortex;

(Eq 42)
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where v  is the velocity, H  is the total angular momentum in the vortex, 

r  is the radius,  the viscosity and t the time.  

          

Figure 30: Taylor vortex velocity distribution

This process was repeated for each gridpoint throughout the plane and then 

repeated for each plane throughout the channel.  The calculated vector values 

for the vortex were then added to the flow field vectors.

Values for time and total momentum for the Taylor vortex calculation were 

selected to limit the maximum initial velocity of the vortex to be within stability 

requirements for the DNS flow solver.  The other criteria was to generate a vortex 
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with velocities similar to that generated by flow about an obstruction or device 

placed within the flow. 

3.7 Obstructions

In several simulations vortices were created by placing obstructions in the flow 

field for specified time intervals.  These obstructions were simulated by 

introducing code in the boundary condition subroutine of the flow field solver.   At 

the end of each time step the boundaries were reestablished setting velocities to 

zero at no slip boundaries and velocities and pressures at repeating boundaries 

to the value of the opposite wall.  This section of the boundary condition 

subroutine set velocities to zero at locations corresponding to the boundaries of 

obstructions.

Where longitudinal vortices were introduced into the channel some simulations 

included a lateral trip bar which is shown in the diagram below.
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Figure 31: Trip rail at wall

Vortices were created in the channel by placing a narrow obstruction extending 

from wall to wall as shown in the diagram below.

                

Figure 32: Narrow obstruction, wall to wall

Vortices were created in the channel in a pattern that resembled the unstable 
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lateral vortex.  This was accomplished by placing a lateral bar along the bottom 

wall with a small blade projecting up at the center of the bar.  This is shown in the 

diagram below.

                

Figure 33: Rail and blade obstruction

3.8 Fluid Source and Sink

One method of inducing a hairpin vortex is to inject fluid into the boundary layer. 

Slowly introducing fluid into the boundary layer has the effect of locally 

decreasing the boundary layer velocity and momentum.  This creates a boundary 

layer inflection and some degree of lifting of the flow.  The boundary layer 

inflection then leads to an unstable boundary layer profile that results in a lateral 

vortex in the flow that has been lifted.  The lifted portion is stretched by the 

shearing action of the boundary layer ultimately creating a hairpin shaped vortex. 

This technique is similar to the work of Singer and Joslin27.
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Fluid injection was simulated by adding code to the boundary condition 

subroutine of the flow solver.  After the flow solver updated the boundary 

conditions an additional routine set values at the boundary in the desired velocity 

and shape to form an inlet source.  To assure that the pressure solver would 

converge an outlet was also created with the same flow rate as the inlet.

The velocity for the inlet source was set to approximately 25% of the average 

flow or 0.25U , in a manner similar to Singer and Joslin.  The injection slot had 

proportions of approximately 1 x 5 oriented longitudinally parallel to the flow.  The 

outlet slot was created with the same size and velocity.

3.9 Vortex Identification and Visualization

The identification and visualization of vortices has been difficult because 

behavior rules for vorticity are valid in the inviscid limit whereas vorticity in the 

boundary layer is largely dependent upon viscosity effects.  In general methods 

that use pressure minima, vorticity maxima or vortex line integration often lead to 

incorrect vortex identification.

Jeong & Hussain28 developed a robust method for identification and visualization 

based upon the local pressure behavior.  Jeong & Hussain recognized that the 
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effects of unsteady straining  can create a pressure minimum without vortical or 

swirling motion and viscous effects can eliminate a pressure minimum in flow 

with vorticity.   They separated these effects by taking the gradient of the Navier-

Stokes equations:

(Eq 43)

where a
 i , j  is the acceleration gradient and decomposing into 

(Eq 44)

symmetric and antisymmetric parts

The antisymmetric part is the vorticity transport equation and the symmetric part 

is: (Eq 45)

The first two terms, unsteady irrotational straining and viscous effects are 

discarded leaving S22 the only parts that determine local pressure minima 

due to vortical motion.  Jeong & Hussain defined a vortex core as a connected 

region with two negative eigenvalues.  Functionally if the second eigenvalue

2 is negative then the location is within the vortex core.

In practice 2 is found by taking the eigenvalues of the 3 x 3 symmetric tensor:
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(Eq 46)

where,

(Eq 47)

and,

(Eq 48)

are the symmetric and antisymmetric components of the velocity gradient tensor, 

∇ u .29

Sorting the eigenvalues 1≤2≤3 if 2 is negative then there are two 

negative eigenvalues.  The resulting computation yields a scalar value for 2 at 

each grid point.  When visualizing a vortex a value of 2 slightly less than zero 

is used for  iso-surface plotting to indicate the envelop of the vortex.

3.10 Movie Production

Much of this work involved identification of turbulent vortical structures as they 

developed in time.  The post processing routines developed for 2 calculation 

provided a time series of files containing 2 scalar data for each grid point. 

Using Tecplot30, iso-surfaces of 2 were plotted revealing the details of vortices 
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within the flow field.  

Tecplot provided for automation of movie making using a relatively 

comprehensive macro language.  Movies were made to depict the time evolution 

of vortical structures by combining the series of flow field 2 iso-surface files 

into a movie using the AVI format.  Various views were chosen to best show the 

important details of the flow field.

The process of conducting a simulation involved numerous steps which are 

outlined below.

The flow DNS flow solver required specification of a number of parameters 

describing the fluid, channel size, number of grid points, output file names and 

times, and total duration of flow field simulation.  These parameters were 

contained in an input batch file read by the flow solver program at the beginning 

of the simulation.  

The solver also read a file containing the starting flow field file or flow field initial 

condition.  The starting flow field file was generated by an additional program that 

allowed for the insertion of vortices in the flow field.  Any number of vortices 

could be inserted parallel to any of the three orthogonal axes and at any set of 
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locations specified in a batch file.  Vortices could be of constant value over their 

length or vary sinusoidally as a function of longitudinal position.

Once the flow field calculation was completed the flow field data must be further 

processed.  The post processor program first read the parameters in a batch file 

which described the file names of the flow field files to be read and 

corresponding file names of the 2 data to be written.  The post processor then 

read each individual flow field file and computed the 2 value at each grid point 

within the flow field.   The values for 2 were then written to a file with the 

corresponding grid point locations and in the appropriate format for plotting in 

Tecplot.  The post processor ran automatically, reading each flow field file, 

computing values of 2 and writing the data to each of the files specified in the 

batch file.

Once the 2 files were written, a Tecplot macro was used to assemble the 

individual files into a movie in the .avi format.  Once in the .avi format the movie 

could be viewed using any of numerous windows movie viewers.
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4.Results

The following results describe the movies made from a time series of iso-

surfaces of 2 scalar fields.  These scalar fields resulted from Direct Numerical 

Simulations of a channel with various devices placed in the flow or initial 

conditions which included vortices placed in the flow before the simulation was 

begun.  These techniques were used to simulate the production of vortical 

structures and hairpin vortices.
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 4.1 Longitudinal Vortices

Longitudinal orientation referred to alignment with the x axis of the channel and in 

the predominant flow direction.  Longitudinal vortices were placed in the channel 

at various spacing and various distances from the wall, out to the centerline of 

the channel.  Vortices were placed in pairs or multiples, co-rotating and counter-

rotating.

 4.1.1 Longitudinal Vortex Pairs

Simulations of pairs of longitudinal vortices showed that the vortex pair induced 

four other vortices.  These additional vortices were located 45 degrees above 

and below the vortex centerline.  These vortices dissipated after traveling several 

lengths of the channel without showing any signs of instability that could lead to 

the generation of turbulent bursts.  Of note was that the vortices did not travel 

due to Biot-Savart effects.

Movie: WorkE_iso.avi pair of longitudinal vortices at y=-0.5
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 4.2 Lateral Vortices

 4.2.1 Lateral and Parallel to Wall

In the next group of simulations lateral vortices were placed in the channel 

parallel to the lower wall and transverse or perpendicular to the direction of flow. 

Because these vortices extend from one recurring boundary to the opposite 

recurring boundary they are essentially infinitely long vortices.  These vortices 

were placed in the flow as initial conditions and at various distances from the 

lower wall, out to the centerline of the channel.  Vortices were placed individually, 

in pairs or multiples , co-rotating and counter-rotating.

Eight Co-Rotating Vortices

In this simulation multiple vortices were immediately induced by the initial eight 

vortices.  The vortices appeared unstable in their vertical location.  In some 

cases bumps appeared on the surfaces of the vortices however all vortices 

remained intact and did not breakdown or form longitudinal or stretched vortical 

structures.  As the simulation proceeded the smaller vortices dissipated  or 

coalesced into larger vortices that appeared to roll along the lower wall of the 

channel.  By the end of the simulation the vortices had coalesced into two large 

vortices that were approximately three times the diameter of the original vortices 

and appeared to roll along the bottom wall of the channel.
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Movie: tst020_iso.avi, eight laterally placed co-rotating vortices at y=-0.9

 0.0.0.1 Eight Lateral Counter-Rotating Vortices

As in the previous simulation, multiple vortices were immediately induced by the 

initial eight vortices.  The vortices exhibited significant vertical movement. 

Numerous bumps were observed on the surface of the vortices; however no 

vortex instabilities were observed.  The vortices largely dissipated by the end of 

the simulation leaving one small vortex.  No instabilities occurred that could lead 

to stretched vortical structures or hairpin vortices.

Movie: tst036_iso.avi, eight laterally placed counter-rotating vortices at y=-0.9
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Figure 34: 8 lateral counter rotating vortices, frame 1
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Figure 35: 8 lateral counter rotating vortices, frame 20
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Figure 36: 8 lateral counter rotating vortices, frame 40
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Figure 37: 8 lateral counter rotating vortices, frame 60
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Figure 38: 8 lateral counter rotating vortices, frame 80
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Figure 39: 8 lateral counter rotating vortices, frame 100
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Figure 40: 8 lateral counter rotating vortices, frame 120

4.2.2 Multiple Longitudinal Vortices

Eight Counter-Rotating Vortices

Multiple longitudinal vortices were simulated.  In the following movie eight 

longitudinal vortices of alternating rotation were placed near the wall @ y=-0.9. 

These vortices behaved similarly to the vortices of WorkE_iso.avi, inducing other 

vortices at 45 degrees to each of the initial vortices.  These vortices showed no 

sign of instability and dissipated viscously before the end of the simulation.

Movie: tst050_iso.avi eight longitudinally placed vortices at y=-0.9
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Figure 41: 8 Longitudinal counter rotating vortices, frame 1
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Figure 42: 8 counter rotating longitudinal vortices, frame 33
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Figure 43: 8 longitudinal counter rotating vortices, frame 66

Twelve Co-Rotating Vortices with Trip Bar

Multiple longitudinal vortices were simulated.  Twelve longitudinal co-rotating 

vortices were simulated with trip bar placed at the lower wall and perpendicular to 

the direction of flow.  This simulation immediately displayed significant instability. 

In the vicinity of the trip bar the vortices became very unstable with lifted vortical 

structures appearing before and after the trip bar.  These disturbed lifted vortical 

structures moved both upstream and downstream simultaneously.  After the 

84



downstream moving lifted vortical structures left the trip bar, they were replaced 

by small stretched vortical structures that were inclined with the flow.  The 

upstream traveling vortical structures did not clear the trip bar, but remained 

attached as the instabilities extended upstream.  Instabilities traveling upstream 

passed through the upstream boundary and reentered the channel through the 

downstream recurring boundary and then moved upstream and passed through 

the downstream moving instabilities.  The vortical structures moving upstream 

eventually dissipated leaving a series of standing up stream waves parallel to the 

trip bar.  The vortical structures that had first appeared downstream dissipated 

leaving a series of small standing waves running parallel to the trip bar. 

Hairpin vortices were not observed; however, stretched vortices, which were 

similar to those seen in other investigations were observed just downstream of 

the trip bar shortly after the beginning of the simulation.  These vortices 

dissipated as they were overtaken by the upstream moving instabilities at the end 

of the simulation.

Movie: tst055_iso.avi  twelve longitudinally placed co-rotating vortices at y=-0.9, 

with trip bar
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Figure 44: 12 longitudinal co-rotating vortices with trip bar, frame 1
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Figure 45: 12 longitudinal co-rotating vortices with trip bar, frame 20
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Figure 46: 12 longitudinal co-rotating vortices with trip bar, frame 40
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Figure 47: 12 longitudinal co-rotating vortices with trip bar, frame 60
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Figure 48: 12 longitudinal co-rotating vortices with trip bar, frame 80
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Figure 49: 12 longitudinal co-rotating vortices with trip bar, frame 100
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Figure 50: 12 longitudinal co-rotating vortices with trip bar, frame 120

Twelve Counter-Rotating Vortices with Trip Bar

This simulation was very similar to Twelve Co-Rotating Vortices with Trip Bar 

(tst055_iso.avi) however with co-rotating vortices.  The simulation immediately 

showed significant instability in the vicinity of the trip bar.  This instability moved 

both upstream and downstream from the trip bar with the disturbances overtaking 

one another due to the recurring boundaries.  There was no evidence of 

stretched inclined vortices immediately downstream from the trip rail as with 
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tst055_iso.avi; however, much larger vortical structures emerged and remained 

above the standing waves that had formed upstream of the trip bar.  These 

structures passed through the channel several times before dissipating.  Several 

of the upstream longitudinal vortices briefly reorganized, but then were obscured 

by the formation of upstream waves parallel to the trip bar.  The waves that 

coalesced upstream of the trip bar were more uniform than in the previous 

simulation of co-rotating vortices, tst055_iso.avi.

Movie: tst056_iso.avi, twelve longitudinally placed counter-rotating vortices at y=-

0.9 with trip bar.
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Figure 51: 12 longitudinal counter rotating vortices with trip bar, frame 1
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Figure 52: 12 longitudinal counter rotating vortices with trip bar, frame 20
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Figure 53: 12 longitudinal counter rotating vortices with trip bar, frame 40
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Figure 54: 12 longitudinal counter rotating vortices with trip bar, frame 60
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Figure 55: 12 longitudinal counter rotating vortices with trip bar, frame 80
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Figure 56: 12 longitudinal counter rotating vortices with trip bar, frame 100
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Figure 57: 12 longitudinal counter rotating vortices with trip bar, frame 120

4.3 Lateral Vortices Extending Wall to Wall

Vortices were placed laterally across the channel extending from lower solid 

boundary to upper solid boundary.  This arrangement placed the ends of the 

vortices perpendicular to the wall and in the boundary layer.  The initial location 

of the vortices was approximately 1/6th the length of the channel from the 

entrance.  Vortices were placed in counter-rotating pairs with both upstream and 

downstream flow between the vortices.  These will be referred to as upstream 
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and downstream vortex pairs.  The upstream rotating pairs were located at 

approximately  z=0.78, while the downstream rotating vortex pairs were located 

at approximately z=2.2.

Lateral Vortices, H=0.2, tst072_iso.avi

Immediately after start of the simulation, both sets of vortex pairs induced 

additional vortices that moved both upstream and downstream. These upstream 

and downstream moving structures passed through the upstream and 

downstream recurring channel boundaries and reentered the channel from the 

opposite ends, then passed through each other.  

The sections of vortices that were within the upper and lower boundary layer 

were swept downstream and stretched.  In the case of the upstream vortex pair, 

the section of vortex between the upper and lower boundary layer was well 

behaved and vortices remained smooth and distinct.  While for the downstream 

vortex pair, the section of vortices between the upper and lower boundary layers 

became unstable with considerable linking between the vortices that seemed to 

join and then break and and then rejoin. 

After some dissipation the downstream vortex pair produced two symmetrical 

pairs of vortices at about mid channel that were longitudinally oriented and 

appeared to be stretched.   The upstream vortex pair evolved to a pair of 
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stretched vortices in the boundary layer that were connected to a pair of 

stretched vortices in the boundary layer at the opposite wall by large vortices.

After further dissipation the downstream vortex pair was almost completely gone 

leaving only the two pair of symmetrical vortices at mid channel oriented 

longitudinally and a pair of vortices that were oriented perpendicular to the walls 

also at mid channel.

Further dissipation of the upstream vortex pair resulted in further development of 

the stretched vortex pairs within the boundary layer.  The structure also induced 

in-line vortices parallel to the legs of the stretched vortices and a series of 

vortices that bridged across the downstream ends of the two stretched vortices 

much like the head of the pin of a hairpin vortex but slightly upstream.

At the end of the simulation the downstream vortex pair had completely 

dissipated.  The upstream vortex pair appeared to have only the stretched vortex 

pairs and induced in line vortices in the boundary layer.  The vortices that had 

connected the vortices from one wall to the opposite wall had dissipated 

completely.

Movie: tst072_iso.avi, 
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Figure 58: 2 pair vortices, wall to wall, frame 1
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Figure 59: 2 pair vortices, wall to wall, frame 20
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Figure 60: 2 pair vortices, wall to wall, frame 40
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Figure 61: 2 pair vortices, wall to wall, frame 60
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Figure 62: 2 pair vortices, wall to wall, frame 80
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Figure 63: 2 pair vortices, wall to wall, frame 100
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Figure 64: 2 pair vortices, wall to wall, frame 120

Lateral Vortices, H=0.3, tst073_iso.avi

This simulation, conducted with a larger starting vortex momentum (H=0.3), was 

very similar to the preceding simulation where H=0.2.  Both upstream and 

downstream vortex pairs generated vortices that moved upstream and 

downstream simultaneously passing through the recurring boundaries and then 

reentered the channel and passed through each other.  Both the upstream and 
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downstream vortex pairs showed instability in the vortices extending wall to wall 

and connected the stretched vortices at the walls.  

The stretched vortices in the boundary layer that were present after the 

recirculation of the structures through the recurring boundaries were larger than 

in the previous simulation. However, the stretched structures that were present 

mid-channel from the downstream vortex pair were not present during this 

simulation.

Later in the simulation, the downstream vortex pair had almost completely 

dissipated, while the upstream vortex pair had induced a very complicated set of 

complimentary vortices in addition to the principal stretched inclined vortices.  Of 

note was that the single pair of vortices that connected the stretched vortex pairs 

at each wall in the previous simulation were not present.

Movie: tst073_iso.avi

 0.1 4.4 Vortices Created from Flow about Obstructions

Simulations were conducted of vortices that were created by inserting 

obstructions in the flow field.  These vortices were intended to resemble the type 

of structure that would be created by a MEMS device that could be used for 

active control of turbulence.  These simulations also provided examples of the 

development of canonical hairpin structures.
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4.4.1 Rail and Blade Obstruction

In order to simulate a lateral vortex parallel to the wall, a trip rail was placed 

along the bottom wall.  In the center of the rail, a small rectangular blade was 

placed extending above the rail.   The blade generated two vertical sections of a 

vortex joined at the top with a short section of horizontal vortex. The intention of 

this arrangement was to create a lateral vortex similar to a Tollmein-Schlichting 

wave with a section of vortex that had been raised extending into the faster 

moving regions of the boundary layer.   This structure was similar to an unstable 

boundary layer wave and appeared in the boundary layer for only a brief time

5.00≤t≤5.01.

Movie: tst062_iso.avi, rail and blade obstruction present 5.00≤t≤5.01

Immediately after the appearance of the rail and blade, a lateral vortex appeared 

parallel to the lower wall along the rail and on both sides of the blade.  Around 

the blade, a vortex appeared which followed the shape of the blade.  The lateral 

vortex from the rail generated multiple vortices that moved upstream from the rail 

and stayed close to the lower wall of the channel.  The vortex around the blade 

also generated upstream traveling vortices along with the primary hairpin shaped 

vortex.  The upstream moving and downstream moving lateral vortices from the 
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rail dissipated quickly leaving the vortex structure formed by the blade to move 

downstream.  The structure resulting from the blade took on a form similar to the 

canonical hairpin vortex.  As the structure moved downstream, the head of the 

pin decayed and then reestablished several times.  The simulation ended before 

the head of the hairpin vortex decayed completely; however, the behavior was 

similar to the other simulations that produced a hairpin vortex then dissipated to 

the form of a pair of stretched vortical structures.

Figure 65: Rail and blade obstruction on channel wall, frame 53
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Figure 66: Rail and blade obstruction on channel wall, frame 60
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Figure 67: Rail and blade obstruction on channel wall, frame 80
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Figure 68: Rail and blade obstruction on channel wall, frame 100
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Figure 69: Rail and blade obstruction on channel wall, frame 120
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Figure 70: Rail and blade obstruction on channel wall, frame 130

 0.2 4.5 Wall to Wall Obstruction

In another simulation, a narrow fixed obstruction was placed in the channel 

extending from the fixed lower wall to the fixed upper wall of the channel.  This 

wall to wall obstruction remained in the flow for a short duration 0.1≤t≤0.2.  

As a result of the obstruction, a series of vortical waves were formed moving 

upstream along with a strong pair of vortices at the edges of the obstruction.  The 
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upstream traveling vortical waves decayed quickly, while the vortices formed at 

the edges of the obstruction were advected downstream.  As the edge vortices 

moved downstream, the portions in the boundary layer were inclined downstream 

and stretched while the sections in mid channel flow between the upper and 

lower boundary layers dissipated then reestablished several times reconnecting 

the upper and lower inclined vortices.  Finally, the section of vortex connecting 

the     inclined vortices at the upper an lower wall dissipated leaving inclined 

vortical structures.  These vortical structures are very similar to the vortices 

created by the rail and blade and lateral vortex pair simulations described above.

Movie: tst066_iso.avi, obstruction extending bottom wall to upper wall,

0.1≤ t≤0.2 .
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Figure 71: Narrow obstruction wall to wall, frame 10
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Figure 72: Narrow obstruction wall to wall, frame 20
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Figure 73: Narrow obstruction wall to wall, frame 40
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Figure 74: Narrow obstruction wall to wall, frame 60
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Figure 75: Narrow obstruction wall to wall, frame 80
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Figure 76: Narrow obstruction wall to wall, frame 100
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Figure 77: Narrow obstruction wall to wall, frame 120

 0.3 4.6 Vortices Created from Fluid Injection

To provide a basis for comparison to experimental work by Haidari and Smith 

(1994) and simulation by Singer and Joslin (1995), a simulation was conducted 

of hairpin vortex generation method common to these works.  

The simulation was conducted using Direct Numerical Simulation of channel flow 

while injecting fluid through a longitudinally oriented slot in the floor or lower solid 
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boundary of the channel.  This technique required steady injection of fluid at a 

velocity of approximately .25U through a longitudinally oriented slot of 

proportions 1x5.  Simultaneous withdrawal of an equal volume of fluid was 

required for continuity reasons.  Fluid injected in this manner provided a 

reduction in momentum at the wall and an inflection in the boundary layer 

velocity profile.  The resulting instability from the velocity inflection initiated the 

formation of a hairpin vortex.  Along with the hairpin vortex, another vortex was 

generated upstream and complimentary vortices were developed adjacent to the 

sides of the primary hairpin vortex.

As the hairpin vortex was advected by the flow, the head of the hairpin vortex 

decayed, moved downward, disappeared momentarily, then reattached and then 

dissipated again leaving the inclined stretched vortices within the boundary layer. 

This pair of inclined stretched vortices persisted for several passes through the 

channel.

Ultimately, the hairpin vortex generated by fluid injection means looked like the 

vortex pair generated by all of the methods described above.

Movie: tst063_iso.avi
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Figure 78: Vortices from fluid injection, frame 10
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Figure 79: Vortices from fluid injection, frame 20
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Figure 80: Vortices from fluid injection, frame 40
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Figure 81: Vortices from fluid injection, frame 60
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Figure 82: Vortices from fluid injection, frame 80
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Figure 83: Vortices from fluid injection, frame 100
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Figure 84: Vortices from fluid injection, frame 120
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5.Discussion

5.1 Similarity of vortical structures

Since the discovery of the turbulent burst, there has been significant effort placed 

in observing, studying, and simulating this phenomenon.  It is believed that the 

turbulent burst mechanism provides the key to the presence of increased drag in 

turbulent flow.  As part of the study of turbulent bursts, much emphasis has been 

placed upon the transition to turbulence and the study of instability of the laminar 

boundary layer.  Of note was that the all methods used to simulate hairpin 

vortices used in this work were capable of creating a hairpin vortex or vortex with 

significant similarity to the canonical  hairpin vortex along with accompanying 

induced vortical structures.  

5.2 Contribution of turbulent Bursts

Throughout the literature, there was mention of fast spots or streaks that have 

been shown to accompany turbulent bursts.  The assumption has been made 

that these streaks are a result of turbulent bursts, which result in increased shear 

stress and drag.  The mechanism of the turbulent burst did show that the 

sweeping action bringing high velocity fluid close to the wall will result in the 

observed fast spots and streaking.  At issue with the turbulent burst as the 

primary mechanism for increased boundary layer shear and drag was that 

simulations of the fully turbulent boundary layer show little evidence of the 
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canonical hairpin vortex or generation of the hairpin vortex.  What was present 

are single ended or half hairpin vortices similar to the structures created through 

the efforts related to this paper.  

The goal of this work was to further an understanding of the mechanism that 

contributes to wall shear stress and resulting drag so that more effective devices 

can be developed for drag reduction.  In the furtherance of this goal, the study of 

the turbulent burst was not likely to be of significant use.  The turbulent burst, 

though likely the mechanism to initiate the onset of turbulence, was not 

significantly present after turbulent flow is established.

5.3 Requirements for a Stable Vortex

From the literature, it was clear that the stable vortex in a viscous fluid must 

undergo continuous strain or it will dissipate.  A vortex will have a tendency to 

align with the direction of strain.  A vortex will also entrain fluid through the sides 

and up through the core and out the end or ends.  This was demonstrated both 

mathematically and in physical experiments discussed above.  

The simulations conducted in this work showed little tendency to instability of 

vortices that were parallel to the wall or that had no exposure to strain from the 

shear present in the boundary layer.  From the simulations conducted in this 
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work, it is likely that vortical structures introduced into the boundary layer with 

any vertical development, one end higher than the other, will become aligned 

with the flow due to strain produced by the effects of boundary layer shear and 

will persist in the flow as a result of stretching from the action of boundary layer 

shear.

From the literature, it was also clear that fluid surrounding the vortical structure 

will be dragged around the vortex due to viscous effects much like a stirring rod 

spun in a bucket of paint.  This action surrounding an inclined vortex will cause a 

mixing of fluid between the upper and lower regions of the boundary layer and a 

resulting exchange of momentum.
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6.Conclusions

 6.1 Boundary Layer Momentum Transfer

The single end vortical structures or half hair pins are the mechanism for 

momentum transfer within the boundary layer, forming a vortical structure 

momentum transfer mechanism (VSMTM).  These micro vortical structures 

behave like tiny tornados, both dragging fluid around the perimeter like a tornado 

or a rotating stirring rod, but also drawing fluid into the vortex core and 

transporting the fluid out the top into the upper regions of the boundary layer 

where shear is insufficient to provide enough axial strain to sustain a vortex.  The 

vortical structures are inclined as they are continuously strained by the shear of 

the boundary layer.  Due to the inclination of the vortical structure, fluid dragged 

around the perimeter is moved vertically within the boundary layer exchanging 

high speed fluid with low speed fluid.  

Blowing and suction can affect the vortical structures, especially when arranged 

such that they can act in pairs countering the vortical structure rotation, resulting 

in the reduction of angular momentum of the structure sufficient to eliminate the 

vortex.  Notable however is that blowing is a means of creating turbulent bursts 

and that indiscriminate blowing will only add turbulent structures to the boundary 

layer.
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 6.2 Drag Reduction Devices

The VSMTM explains the actions of a number of successful devices for drag 

reduction.  These devices act upon the mechanisms that sustain the momentum 

transfer mechanism.

 6.2.1 Blowing and suction

Where wall blowing jets and suction have been used either in physical 

experiments or in simulations, the effect is to arrest the rotation of the vortical 

structures.  Vortical structures are in a critical balance between viscous 

dissipation and strain.  The actions of jets or suction adjacent to the vortical 

structure or on both sides can counter the angular momentum of the structure 

causing it to dissipate.

Jets, however, are a mechanism for introducing turbulent bursts and excessive 

jet strength may introduce more vorticity than it removes.  Here the sensing of 
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the location of the vortical structure is critical to provide the greatest effectiveness 

and to avoid introducing more vorticity or unstable boundary layer conditions.

 6.2.2 Riblets

Adhesive backed sheet with riblets is commercially available.  The effect of this 

device on the vortical structure is two-fold.  The ribs themselves act to block the 

viscous mixing action of the vortical structure by acting as barrier, or baffle, 

which blocks fluid from being dragged around the vortex.  

Second, the riblets function as standoffs keeping the vortical structure from 

getting close to the wall and limit the shear stress that can be placed upon the 

vortical structure thus limiting the axial strain.

 6.3 Similarity with Prandtl's Mixing Length Theory

Prandtl's mixing length theory (PMLT) was an early attempt to provide a model of 

turbulence.  PMLT was based upon some very crude assumptions such as two-
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dimensional turbulence and the concept of a rotating chunk of fluid exchanging 

momentum between upper and lower regions of the boundary layer.  Despite 

being a crude model, PMLT was quite useful.  Interestingly, the mixing length 

suggested by the vortical structures as mixing devices is of the same order as 

Prandtl's mixing length.  The significant difference is that the axis of rotation of 

the vortical structures is orthogonal to that of the model proposed by Prandtl.

6.4 Kolmogorov length scale

Kolmogorov had predicted an energy cascade consisting of smaller and smaller 

eddy structures that dissipate energy.  Subsequent to the development of his 

model experimental evidence showed that the energy scale does not progress 

entirely in one direction but that there is considerable production of turbulence of 

increasing scale as well as decreasing scale.  This was consistent with the 

observations of turbulent vortical structures in this work and others that showed 

simultaneous dissipation and generation of vortical structures.  

The balance of production versus dissipation is quite sensitive to boundary layer 

conditions.  This sensitivity provides an opportunity for development of 

mechanisms and resulting devices that can affect the quantity of vortical 

structures present in the boundary layer by affecting production of new structures 

and dissipation of existing structures.
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7. Future Work

The next task is to closely examine the vortical structure to gain a clearer 

understanding of how the vortical structure exchanges fluid between the upper 

and lower layers of the boundary layer and to determine the energy balance 

necessary to keep the vortical structure intact.  

The internal flow of the vortical structure needs to be examined along with the 

pressure field from the wall to the upper end of the vortical structure and into the 

center of the channel.  This will help determine the degree of strain applied by 

the boundary layer shear as well as the rate of flow through the vortex core.

Before selecting particular types of devices for drag reduction, studies should be 

conducted using DNS to inject fluid to counteract the rotation of vortical 

structures to determine the degree of interference required to kill the structure 

and thus stop the momentum transfer mechanism.
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 8 Appendix

 8.1 List of Movies

 8.1.1 Longitudinal Vortices

WorkE_iso.avi pair of counter-rotating vortices y=-0.5

tst050_iso.avi 8 longitudinal counter-rotating vortices, y=-0.9

tst055_iso.avi 12 longitudinal co-rotating vortices, with 

trip bar, y=-0.9

tst056_iso.avi 12 longitudinal counter-rotating vortices, with 

trip bar, y=-0.9

 8.1.2 Lateral Vortices, vortices parallel to wall

tst020_iso.avi 8 lateral co-rotating vortices, y=-0.9

tst036_iso.avi 8 lateral counter-rotating vortices, y=-0.9

 8.1.3 Lateral Vortices, vortices extending wall to wall

tst072_iso.avi 2 pair vortices, H=0.2, y=-0.9

tst073_iso.avi 2 pair vortices, H=0.3, y=-0.9

 8.1.4 Vortical Structures resulting from obstructions

tst062_iso.avi rail and blade obstruction on channel wall

tst066_iso.avi narrow obstruction extending wall to wall

 8.1.5 Vortical Structures resulting from fluid injection

tst063_iso.avi fluid injection through slot in channel wall
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