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I. Abstract 

The catalytic combustion of methane in excess of O2 over Pd catalysts was studied on 
model catalysts, including polycrystalline palladium foil and palladium single crystals.  
The kinetics of this reaction could be measured at conditions not accessible to supported 
catalysts and, thus, the issues of structure sensitivity, mechanism, hysteresis on oxidation, 
and deactivation could be studied in detail. 

Methane oxidation on PdO was insensitive to the original metal surface structure which 
PdO grew from, with turnover rates in the range of 1.3-4.7 s-1 on (111), (100) and (110) 
single crystals at 160 Torr O2, 16 Torr CH4, 1 Torr H2O and 598 K. Methane oxidation on 
Pd metal was also insensitive to the original surface structure, with the turnover rate in 
the range of 2.0-2.8 s-1 on the three single crystals at 2.3 Torr O2, 0.46 Torr CH4, 0.05 
Torr H2O and 973 K.  Since there is no support effect and the surface purity could be 
certified, these turnover rates for this reaction can be used as a benchmark. 

The turnover rate for methane oxidation was found to decrease 95% when PdO 
decomposed to Pd metal at 888 K, showing that PdO was more active than Pd metal for 
methane combustion at this temperature. Water inhibition to the reaction was not 
observed at a temperature above 813 K on both PdO and Pd metal, while it was observed 
at 598 K on PdO. The activation energy on PdO was 32 kJ mol-1 in the range of 783-
873 K, while it was 125 kJ mol-1 in the range of 568-623 K.  The activation energy on Pd 
metal was 125 kJ mol-1 in the range of 930-980 K.  The change of reaction orders and 
activation energies suggests that the reaction mechanism is a function of temperature and 
palladium chemical states. We propose that adsorbed water, the most abundant surface 
intermediate at 598 K, was not present in significant quantities at temperatures above 783 
K. This change in surface inhibition by water is the reason for lower activation energy at 
temperatures above 783 K.  

Interaction between the catalyst and support, or presence of impurities, is one of the 
factors for catalyst deactivation.  The interaction between oxidized silicon and palladium 
was investigated on a polycrystalline palladium foil and on supported Pd/SiO2 catalysts.  
During methane oxidation, oxidized silicon covered the palladium oxide surface as 
observed by TEM on Pd/SiO2 catalysts and by XPS on palladium foil.  On Pd foil, the 
source of silica was a silicon impurity, common on bulk metal samples.  The migration of 
oxidized silicon onto PdO deactivated the catalysts by blocking the active sites for 
methane oxidation. Silicon oxide overlayers were also observed covering the Pd surface 
after reduction of Pd/SiO2 by H2 at 923 K. 

 

Keywords: methane oxidation on palladium, kinetics, model catalyst, deactivation, 
hysteresis, structure sensitivity 
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II. Extended Abstract 
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Natural gas-fueled gas turbines are a preferred technology for power generation. One 
reason is that many of the large reserves of natural gas, which is composed mainly of 
methane, have very small amounts of sulfur and nitrogen compounds; as a consequence, 
when the natural gas is burned, the emission gases will contain correspondingly a low 
concentration of SOx and NOx formed from S and N compounds. Another reason is that 
methane has the highest hydrogen-to-carbon ratio in all hydrocarbons and thus it can 
produce less carbon dioxide, a greenhouse gas, per unit of power produced.  In the 
conventional gas turbine combustors, flame can be sustained only within fixed 
flammability limits corresponding to temperatures (1800oC) where the reaction of 
nitrogen and oxygen occurs at appreciable rates to form NOx.  Procedures to reduce NOx 
formation, such as reducing the flame temperature or the residence time, could lead to 
increased operating expenses, increased emissions of CO and unburned hydrocarbons 
(UHC) as well as to an unstable combustion regime; while selective catalytic reduction of 
NOx with ammonia, commonly used as post-combustion clean up, is an expensive 
technology and handling of ammonia also poses problems. By contrast, catalytic 
combustion has the potential to reduce NOx emission to ultra low levels (less than 1 
ppm) at a much lower cost, while avoiding the problems of lean premix combustors. 

The catalyst for catalytic methane oxidation should have high activity for it to ignite at 
temperatures close to the compressor outlet temperature. Supported palladium catalysts 
have been found to be the most promising catalysts for catalytic methane combustion 
because they have the highest activity toward methane oxidation.  However, methane 
combustion on palladium presents some practical challenging issues that need to be 
resolved: What is the rate of reaction at particular conditions? Is the reaction sensitive to 
the palladium surface structure? What is the reaction mechanism? 

The approach in this study was to use a model system to address the issues mentioned 
above. In the model system, catalysts were planar replicas of the supported catalysts, 
including polycrystalline palladium foil and palladium single crystals. Those catalysts 
had all their area exposed at the surface and, thus, all the catalyst area was accessible to 
the powerful surface science techniques. Another advantage is that those catalysts were 
non-porous and free of internal mass and heat transfer limitations, making the kinetic 
study easier than on supported catalysts.  The system for model studies consisted of a 
high-pressure reactor and an ultrahigh vacuum (UHV) analyzing chamber. The catalysts 
can be prepared and characterized in UHV by surface sensitive techniques and can then 
be moved with a welded bellows transfer arm to the reaction chamber.  The reaction 
conditions are the same ones used to measure rates on high surface area catalysts.  The 
catalyst surface can be studied after reaction.  The techniques available in the UHV 
chamber are low energy electron diffraction (LEED), Auger electron spectroscopy 
(AES), X-ray photoelectron spectroscopy (XPS), and temperature programmed 
desorption (TPD). The attached reactor can be used to run reactions up to 1.5 atm and 
also to expose the sample to higher pressures of gases than is feasible in the UHV 
chamber.  With this apparatus we were able, for example, to determine the maximum 
possible rate and determine the structure sensitivity of the reaction. 
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The background activity from the reactor was tested and its contribution to the 
experimental results was found to be negligible.  The experimental data were acquired at 
conditions where no external mass transfer limitation was involved. 

The turnover rate is defined as the number of methane molecules reacted on one active 
site per unit of time. This rate provided the foundation for all studies. The active sites 
were either PdO or Pd, depending on the oxygen pressure in the gas phase and reaction 
temperature. The number of PdO sites was measured by 18O2 exchange.  In this method, 
18O2 from the gas phase exchanged with 16O on the Pd16O surface. The designed 
exchange conditions guaranteed that the exchange only occurred between gas phase 18O2 
and O in the first layer of palladium oxide, without appreciable diffusion of 18O into the 
bulk. After exchange, the 18O on the surface was released to the gas phase during 
temperature-programmed desorption and the amount released recorded. The surface area 
was then calculated based on the amount of 18O released.  The number of Pd metal sites 
was assumed to be the same as the amount of Pd atoms on the clean model catalyst 
surface. 

Catalytic rates per unit of active area provide the quantitative measure to allow for 
comparison of catalysts.  One difficulty in this quantification is that the rates may be 
dependent not only on the surface area but also on the particular structure of the active 
site, which would then have to be defined for each sample.  Thus, to specify the rate of 
reaction one needs to find if the reaction is sensitive to the structure of the catalyst.  One 
way to investigate this sensitivity is by realizing that a practical industrial catalyst is 
composed of nanometer clusters and that they are formed of single crystals surfaces.  
Comparing the rates on a set of large single crystal surfaces which make up the clusters 
can identify if the rates depend on the structure of the surface.  In this research, we 
studied methane oxidation on three single crystals, Pd(111), Pd(100) and Pd(110).  The 
surface during methane oxidation could be PdO or Pd metal, depending on the oxygen 
pressure and the reaction temperature; therefore both phases were studied.  The turnover 
rates, reaction orders and activation energies on metal phase were similar for three single 
crystals, suggesting that methane oxidation on Pd metal is not sensitive to the original 
metal surface structure.  Single crystals of PdO with different orientations are not 
available. Considering PdO in real catalysts is created by oxidizing the Pd particles which 
are composed mainly by facets of (111), (100) and (110), the oxide in this study was 
obtained by oxidizing the surface of the three crystals which should give the same PdO 
surface structure as on the corresponding facet in real catalysts. The turnover rates, 
reaction orders and activation energies on PdO phase were similar for three single 
crystals, suggesting that methane oxidation on PdO is not sensitive to the original metal 
surface structure where PdO grew from.  

We studied methane oxidation on both PdO and Pd metal using palladium foil at the 
temperature near PdO decomposition point.  Water inhibition to methane oxidation, 
which was observed at 598 K on PdO, was not observed at temperature above 813 K on 
both PdO and Pd metal.  Reaction order was 0.6-0.8 for CH4 and about zero for O2 at 
598-973 K on both PdO and Pd metal.  On PdO, activation energy was 32 kJ mol-1 at 
temperature between 783-873 K; lower than the 125 kJ mol-1 obtained at temperature 
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between 568-623 K.  On Pd metal, activation energy was 125 kJ mol-1 at temperatures 
between 930-1003 K.  The variation of reaction orders and activation energies indicate 
that the reaction mechanism is a function of temperature and palladium chemical states.  
A reaction mechanism was proposed to explain the kinetic data.  At 598 K, the catalyst 
surface could be mostly covered by adsorbed water which was in equilibrium with water 
vapor, and the adsorbed water blocked the active sites for methane oxidation. As the 
temperature increased, the concentration of adsorbed water decreased. When the 
concentration of adsorbed water was negligible compared with concentration of available 
sites for methane oxidation (such as at 813 K), the water inhibition effect disappeared. 
The lower activation energy on PdO at 783-873 K was attributed to the loss of water 
inhibition effect.  At 888 K with 0.76 Torr O2 and 0.15 Torr CH4, the turnover rate was 
found to decrease from 1.9 s-1 to 0.1 s-1 when PdO decomposed to Pd metal, showing that 
PdO was more active toward methane oxidation than Pd metal at this temperature. The 
kinetic results obtained at temperatures around PdO decomposition point, together with 
the kinetic results obtained at 598 K, could stand for the reaction kinetics for the 
palladium catalyst inside a catalytic combustor with temperature varying from the inlet 
temperature of 630 K to outlet temperature of 1300 K. 

Palladium catalyst exhibited activity hysteresis for methane oxidation at the temperature 
between PdO decomposition and reformation.  The hysteresis was studied using 
temperature-programmed methane oxidation with 0.76 Torr O2 and 0.15 Torr CH4, which 
included heating and cooling cycles. In the heating cycle, the methane conversion 
initially increased as expected up to 873 K when PdO started to decompose to Pd.  The 
conversion decreased by 90% after PdO fully decomposed to Pd.  Methane conversion 
started to increase again as the temperature increased after PdO had fully decomposed.  
When the temperature reached 1003 K, the process was reversed by decreasing the 
temperature to the initial point.   The conversion decreased as expected but as the 
transition temperature was reached the conversion remained at a level more than 90% 
lower than in the heating cycle.   As the temperature reached 828 K, methane conversion 
increased to the same level observed in the heating cycle.  Thus, there was a 45 K 
difference in the Pd-PdO transition temperature.  Additional experiments showed that in 
the hysteresis temperature range (828-873 K), palladium oxidation could occur only if 
PdO could be first formed in the catalyst.  This observation indicates that the PdO 
reformation at lower temperatures was not limited by the rate of oxidation but, possibly, 
by the formation of nucleation sites. 

Catalyst activation and deactivation are important issues for methane combustion on 
palladium catalysts.  Interaction between the catalyst and impurities from either reactants 
or source of catalyst materials is one of the factors for catalyst deactivation.  Since silica 
is one of the most common supports and silicon is one of the common impurities in 
catalyst materials, we studied the effect of silica/silicon on palladium catalysts reactivity.  
The interaction between silica and palladium following complete oxidation of methane or 
following reduction in H2 was investigated on a polycrystalline palladium foil and on 
supported Pd/SiO2 catalysts.  During methane oxidation, oxidized silicon covered the 
palladium oxide surface as observed by TEM on Pd/SiO2 catalysts and by XPS on 
palladium foil.  On the Pd foil, the source of silica was a silicon impurity, common on 
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bulk metal samples.  The spreading of silica was not observed when the Pd foil was 
treated by pure oxygen reaction temperature (598 K) or by vapor water treatment at room 
temperature, suggesting that temperature and water vapor are the two necessary factors to 
promote silica spreading. The migration of oxidized silicon onto PdO deactivated the 
catalysts by blocking the active sites for methane oxidation. Silicon oxide overlayers 
were also observed covering the Pd surface after reduction of Pd/SiO2 by H2 at 923 K. 

 

Keywords: methane oxidation on palladium, kinetics, model catalyst, deactivation, 
hysteresis, structure sensitivity 
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1.1  Research Motivation 

Many of the large reserves of natural gas, which is composed mainly of methane, have 

very small amounts of sulfur and nitrogen compounds.  As a consequence, when the 

natural gas is burned, the emission gases will contain correspondingly lower 

concentrations of SOx and NOx formed from S and N compounds.  Methane has the 

highest hydrogen-to-carbon ratio in all hydrocarbons, and thus can produce the highest 

amount of energy per CO2 formed when it is burned.  Since CO2 is a green house gas and 

consequently strict regulations on CO2 emissions into the atmosphere is expected in the 

near future, natural gas becomes even more attractive as a fuel for the purposes of energy 

production.  Due to those advantages, natural gas-fueled gas turbines are expected to 

provide a significant portion of the growing world demand for electric power generation. 

Figure 1-1 gives the schematic diagram of a traditional gas turbine system using natural 

gas as fuel.  The compressed air and the fuel are mixed and then combusted in a flame.  

The hot gas generated by the flame combustion expands and drives the turbine.  The hot 

gas has to be cooled by by-passed compressed air to 2300oF before being delivered to the 

gas turbine.  The homogeneous combustion can be sustained only within fixed 

flammability limits corresponding to temperatures (3000oF) where rapid coupling of 

nitrogen and oxygen occurs to form NOx (Figure 1-2, [1]).  Procedures to reduce NOx 

formation, such as reducing the flame temperature or the residence time, could lead to the 

increasing emissions of CO and unburned hydrocarbons (UHC) as well as to an unstable 

combustion regime; while selective catalytic reduction of NOx with ammonia, commonly 
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used as post-combustion clean up, is an expensive technology and the handling of 

ammonia also poses problems.  

Catalytic methane combustion was proposed to solve these issues without sacrificing the 

system performance.  Catalytic methane combustion is a process in which methane and 

oxygen react on the surface of a catalyst to achieve complete oxidation. This process 

takes place without a flame and can be operated at much lower temperature than the 

conventional combustion system. Due to the lower operating temperature, catalytic 

methane combustion generates a lower emission of nitrogen oxides (NOx) than a 

conventional combustion system.  This advantage becomes more and more economically 

and environmentally valuable with the increasingly stringent regulation of the NOx 

emission.  

Figure 1-3 gives the schematic diagram of a catalytic combustion system developed by 

Catalytic Energy Systems. In the non-flame combustors, fuel and air are thoroughly 

mixed and delivered to the catalytic combustion region.  In the catalytic combustion 

region, part of the lean fuel-air mixture was catalytically combusted to raise the 

temperature at the outlet to about 1800oF so that the remaining fuel can achieve a 

homogeneous combustion. [2-4].  This catalytic combustion system for gas turbines, 

which achieves combustion at temperatures at about 2300oF, can reduce NOx formation 

dramatically to below 2.5 ppm.  

The catalyst for catalytic methane oxidation should have high activity in order to obtain 

ignition at temperatures close to the compressor outlet temperature. Supported palladium 
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catalysts have been found to be the most promising catalysts for catalytic methane 

combustion [5] and are being used on the commercial catalytic combustors [3, 6].  

Despite of the successful applications, methane combustion on palladium catalysts, 

however, presents some challenging problems that should be resolved to allow for a 

better performance.  Some of these issues are related to the interaction of PdO with the 

reactants, and PdO with the support.  The issues to be discussed in this dissertation are as 

follows: 

(1) What is the reaction mechanism? Does the reaction mechanism change with 

temperature? 

(2) Which phase is more active for methane combustion, PdO or Pd metal?  

(3) What is the cause for the deactivation of catalysts?  

(4) What causes the catalyst to limit its temperature under reaction conditions to 1073 K 

at 1 atm in air?  Is it related to the transition between PdO and Pd? 

(5) Is the reaction structure sensitive? 
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Figure 1-1 Schematic diagram of conventional flame combustion gas turbine system 
(Figure is cited from www.catalyticenergy.com) 

 

Figure 1-2 NOx formation as a function of temperature[1] 
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Figure 1-3 schematic diagram of catalytic combustion gas turbine system  

(Figure is cited from www.catalyticenergy.com) 
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1.2 Research Objectives 

1.2.1 High Temperature Kinetics 

Palladium catalysts for the oxidation of methane present an unusual situation in that the 

thermodynamically stable phase can be either Pd metal or PdO depending on the oxygen 

practical pressure and the temperature.  In air, at atmospheric pressure, the stable phase is 

PdO at temperatures below 1073 K while is metallic Pd at temperature above 1073 K [7].  

It is generally agreed that the reaction mechanism changes with reaction temperature and 

the thermodynamically stable phases [8-21], but quantitative studies of the reaction 

kinetics at temperatures around PdO decomposition point, including turnover rates, 

reaction orders and activation energies, were not available.   

In this study, turnover rates, reaction orders and activation energies were obtained at 

various temperatures and palladium stable phases.  These data set up benchmarks for any 

study of methane oxidation on palladium catalysts.  The reaction mechanism was 

proposed to elucidate the kinetics results.  By comparing the turnover rates on PdO and 

Pd metal under the same conditions at PdO decomposition temperature, we could tell 

which phase is more active for methane oxidation.  
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1.2.2 Catalyst Activation and Deactivation 

Catalyst activation and deactivation have to be understood and controlled to allow a 

stable operation of the catalytic combustion system. The activation mostly occurred at the 

beginning of the reaction [8] and the activation period ranged from minutes to days [8, 

14, 22-24].  Some catalysts started to deactivate as soon as the reaction started, some 

started to deactivate after an activation period, while some were rather stable [25-30].  

There are no general agreements with reasons for these activations and deactivations.  

Interactions between catalysts and impurities from either reactants or source of catalyst 

materials, were some of the factors for catalyst deactivation [27, 31-34].  Since silica is 

one of the most common supports and silicon is one of the most common impurities in 

catalyst materials, this study was to analyze the effect of silica/silicon on palladium 

catalysts reactivity.  The catalysts studied include palladium foil with oxidized silicon 

impurities and palladium supported on silica.  

1.2.3 Catalyst Activity Hysteresis during Palladium Phase Transition 

Palladium catalyst exhibited hysteresis in the reaction rate for methane oxidation during 

PdO decomposition and reformation [17, 35-38].  In temperature-programmed methane 

oxidation, including heating and cooling cycles, the methane conversion initially 

increased as expected up to the temperature for PdO decomposition (Td).  The methane 

conversion usually decreased along with the PdO decomposition.  Methane conversion 

started to increase again as the temperature increased after PdO had fully decomposed.  
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The cooling cycle started from a temperature where PdO had fully decomposed to Pd 

metal.  During cooling, the methane conversion decreased as expected but it could only 

return to the level observed during heating cycle at temperature lower than the PdO 

decomposition temperature. The temperature for PdO reformation (Tr) was found lower 

than the temperature for PdO decomposition (Td). At the temperature window between 

Tr~Td, the methane conversion in cooling cycle was generally lower than the methane 

conversion in heating cycle 

The overall rate of catalytic methane combustion was the multiple of two factors: 

turnover rate and surface area. To understand quantitatively why the methane conversion 

dropped when palladium oxide decomposed to palladium metal, the turnover rates based 

on both PdO and Pd were obtained in this study at temperatures around PdO 

decomposition point.  

For adiabatic catalytic reactor, reactivity hysteresis could cause the oscillation of reaction 

temperature and methane conversion [28, 39, 40], which would affect the performance of 

the catalytic combustion system. Understanding the mechanism for hysteresis would be 

helpful to solve the problem.  In this study, a mechanism was proposed based on the 

experiment results, and methods with the potential to eliminate hysteresis were put 

forward. 

 17



1.2.4 Reaction Sensitivity to Surface Structure 

One of the questions regarding methane combustion on palladium catalyst is structure 

sensitivity.  For real catalyst, when metal particles are in the critical size of nanometer 

diameter, the relative concentrations of surface sites with given coordination neighbors 

changes rapidly when the particle size changes. This means the catalyst surface structure 

changes.  If the turnover rates changes as the catalyst surface structure changes, then the 

reaction is structure sensitive.  Turnover rate is commonly used as the quantitative 

measure for comparison of catalyst performance.  Thus, it is necessary to specify whether 

the reaction is structure sensitive before comparing the turnover rate.  The question of 

structure sensitivity on methane combustion has no unanimous answer so far [8, 15, 20, 

21, 24, 41-45].  

Most experiment results to address this issue were obtained on supported catalysts. The 

interaction between supports and catalyst varies depending on the support type, catalyst 

preparation method and catalyst treatment history. Those unpredictable interactions make 

the experimental results hard to interpret.  One straightforward way to know whether a 

reaction is structure sensitive is to run the reaction on single crystal catalysts with 

different surface atom orientations and then to compare the turnover rates.  In this study, 

the kinetics data were obtained on three palladium single crystals with the simplest 

orientations, Pd(111), Pd(110) and Pd(100).  The surface during methane oxidation could 

be PdO or Pd metal, depending on the oxygen pressure and the reaction temperature; 

therefore both phases were studied.  By comparing the kinetic results, the final 

conclusion was reached on whether methane oxidation is structure sensitive reaction.   
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2 Research System Setup 
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Model catalysts employed in this research were polycrystalline palladium foils and 

palladium single crystals. The palladium foils were 0.125 mm thickness (Goodfellow 

Cambridge Limited, 99.99+%) with geometric surface area between 0.5-1 cm2. The 

single crystals, including Pd(111) (Princeton Scientific Co.), Pd(110) (Princeton 

Scientific Co.) and Pd(100) (Accumet Materials Co.),  were about 1 mm thickness and 

8.5 mm diameter. All single crystals were one side polished with orientation accuracy 

±0.5o.  

The research system consisted of a high-pressure reactor cell attached to an ultra-high 

vacuum (UHV) analyzing chamber (Figure 2-1). The UHV chamber was isolated from 

the reaction cell by a gate valve. When gate valve was open, catalyst samples could be 

transferred between the high-pressure reactor and UHV analyzing chamber using a 

transfer arm without exposing the air, therefore the sample purity could be controlled and 

detailed surface analysis was feasible. The reactor  (Figure 2-2) could be operated in two 

modes: batch reactor mode and continuous-stirred stank reactor (CSTR) mode. The batch 

mode was available by opening valve V4, and closing valve V1, V2, V3 and V5. The 

CSTR mode was available by opening valve V1, V2 and V3, and closing valve V4 and 

V5 (Figure 2-2). The gas phase concentration was monitored by an Agilent 6890 Series 

gas chromatograph (GC) equipped with a 15-ft Carboxen 1000, 60/80 mesh column and a 

thermal conductivity detector (TCD).  The main components of the UHV analyzing 

chamber include a double-pass cylindrical mirror analyzer (PHI Model 15-255G) used 

for Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), a 

15 kV double-anode X-ray gun (PHI 4-548), a UTI-100C quadrupole mass spectrometer, 
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a sputtering gun (PHI model 04-164), an OCI low energy electron diffraction (LEED).  

The advantage of this approach is that one can apply surface science techniques and yet 

carry out reactions under the conditions described in the literature for supported catalysts. 

Samples inside the reactor were mounted by spot-welding (Figure 2-3).  For palladium 

foil, chromel-alumel thermocouples were spot-welded on the back of the foil for 

temperature measurement; stainless steel pins were spot-welded on the back of the foil to 

supply current for resistive heating. For single crystals, both the thermocouples and 

stainless steel pins were spot-welded on the edge of the crystals.  An infrared lamp was 

mounted outside the reactor facing the viewport on the reactor. The infrared light 

generated by the lamp could go through the viewport and be focused on the sample.  The 

sample was heated by both methods at the same time in the experiment (Figure 2-4). The 

sample temperature was controlled by using a temperature controller (Euortherm Model 

2408) interfaced TCR power supply (Electronic Measurements Inc).  
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Figure 2-1 Schematic diagram of high pressure reactor/UHV chamber system 
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Figure 2-2 Schematic diagram of reaction and data collection system 
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(a) 

 

(b) 

 

Figure 2-3 The construction of model catalysts (a) polycrystalline palladium foil (b) 
palladium single crystals 
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Figure 2-4 Schematic Diagram of High Pressure Reactor Cell 
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3 Temperature Dependence of Reaction Kinetics for Complete 
Oxidation of Methane on Palladium Foil 
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Abstract: 

Kinetic data, including turnover rates, reaction orders and activation energies were 

obtained at temperatures between 813-1003 K on both PdO and Pd phases.  At 888 K 

with 0.76 Torr O2 and 0.15 Torr CH4, the turnover rate decreased from 1.9 s-1 to 0.1 s-1 

when PdO decomposed to Pd metal, suggesting that PdO is more active than Pd metal for 

methane oxidation at this temperature.  Water inhibition to the reaction was not observed 

at temperature above 813 K on both PdO and Pd metal, while it was observed at 598 K 

on PdO in previous work. The reaction order was 0.6-0.8 for CH4 and about zero for O2, 

which was measured in the range of 598-973 K on both PdO and Pd metal.  The 

activation energy was 32 kJ mol-1 at 783-873 K on PdO, while it was 125 kJ mol-1 at 933-

1003 K on Pd metal.  The variation of reaction orders and activation energies indicate 

that the reaction mechanism for methane oxidation on palladium catalyst is a function of 

temperature and palladium chemical states. 

Keywords: methane oxidation on palladium; model catalyst; kinetics. 
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3.1  Introduction 

There are large reserves of natural gas in the world which were mainly composed of 

methane with very low level of sulfur- and nitrogen- containing impurities. Methane has 

the highest C-H ratio among all the hydrocarbons; thus, combustion of methane produces 

the highest energy per unit of CO2 (greenhouse gas) formed. Because of those 

advantages, natural gas-fueled gas turbines are expected to provide a significant portion 

of the growing world demand for electric power generation. Compared with the 

traditional flame combustion for the gas turbine, catalytic methane combustion is more 

attractive as it can be operated at a much lower temperature to reduce NOx formation. 

Palladium catalysts are the most active catalysts for catalytic methane combustion [5] and 

are currently being used on commercial catalytic combustors for gas turbine[3, 6].  

In the practical operation, palladium catalysts for methane combustion present an unusual 

situation in that the thermodynamically stable phase can be either Pd metal or PdO 

depending on the oxygen practical pressure and the temperature.  Kinetic data, such as 

turnover rates, reaction orders and activation energies, are necessary to understand the 

reaction mechanism on different catalyst phases.  It is generally agreed that the reaction 

mechanism changes with reaction temperature and with the surface chemical states [8-

21].  At temperatures below 600 K under normal working (dry feed) or excess water 

conditions, reaction order was reported 0.6-1 for methane, zero for oxygen, negative for 

water and zero for CO2 [8, 10].  The magnitude of water inhibition on methane oxidation 

was smaller at higher temperatures.  At 553 K, the reaction order of water was about -

1[8]; when the temperature was above 723 K, water inhibition to the reaction was almost 
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invisible [9]. Inhibition to the reaction by CO2 was observed only when excess CO2 was 

added in the gas mixture [8, 9]; however, when both water and CO2 were in the stream, 

the CO2 effect was negligible, and the total decrease of activity was equal to the decrease 

of activity caused by water alone [9].   

The activation energy was reported changing dramatically with reaction temperature and 

the chemical state of palladium catalyst.  At low temperatures and PdO being 

thermodynamically stable phase, the activation energy was reported 125-184 kJ mol-1 by 

considering the water inhibition effect [8, 10, 43]. Numbers between 80-126 kJ mol-1 

were obtained without considering the water inhibition effect [18-20] although these are 

not activation energies as the rate constants are effectively a function of water 

concentration.  (k/[H2O]).  Lower activation energy, with value about 24-45 kJ mol-1, 

was reported at higher temperatures with PdO still being the thermodynamically stable 

phase [21].  The temperatures, where the lower activation energy were observed, started 

from between 654-820 K depending on the type of support and catalyst loading [11, 21].  

The activation energy was about 157-200 kJ mol-1 [18, 19] when Pd metal was 

thermodynamically stable phase.  The decomposition temperature of PdO varies with the 

oxygen pressure and the catalyst supports.   

Until now, there is no general agreement on which state of palladium is more active for 

methane oxidation at high temperature conditions. Lyubovsky et al. [19] observed that 

Pd/α-Al2O3 after hydrogen reduction was more active than oxidized Pd/α-Al2O3 for 

methane oxidation. They also observed that the catalyst under stoichiometric mixture or 

fuel rich mixture was more active than the catalyst under fuel lean mixture, and they 
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attributed the higher activity to the metallic Pd which existed under stoichiometic or fuel 

rich mixture. On the contrary, Burch et al. [46] and Farrauto et al. [36, 47] claimed that 

the metal phase was inactive for methane oxidation.   

In summary, the kinetic data at temperatures around PdO decomposition point are very 

crucial for people to understand the unusual behaviors of the catalyst occurred at this 

temperature range [17, 35, 36] due to PdO decomposition and reformation, but no 

systemic study was available. This study was to obtain the kinetic results in wide 

temperature range and two different phases, and then compare the catalytic activity of 

PdO and Pd metal.  A model system was employed in this research to obtain the kinetic 

data.  The advantages of this system are that catalyst can be easily examined by surface 

analytical techniques and yet reactions can be carried out at the conditions described in 

the literature for supported catalysts.  The catalysts used in this study were non-porous 

solid palladium foil, which are free of internal mass and heat transfer limitation.  The 

results obtained on the foil catalysts agree well with the kinetic results reported in the 

literature.   

3.2  Experimental methods 

The experiment system includes a high-pressure reactor cell and ultrahigh vacuum 

(UHV) surface analysis chamber.  The reactor cell can be operated as continuous-stirred 

tank reactor (CSTR) and batch reactor.  At temperature above 700 K, experiments were 

performed in CSTR mode to avoid total conversion of methane because of the high 

reaction rate; at temperature below 700 K, experiments were performed in batch mode so 

that CO2 could accumulate inside the reactor to the level which the GC detector could 
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precisely monitor.  Gas circulation pumps (Metal Bellows, MB-21) were employed to 

speed up reactants flow rate to avoid mass transfer limitation.  The maximum flow rate 

was 4600 cc min-1.  The ultrahigh vacuum chamber was equipped with AES, XPS, mass 

spectrometer and sputtering gun for surface analysis and cleaning.  Catalyst could be 

transferred between the reactor cell and the UHV chamber without exposing to air.  

Details about this system were described in previous paper[10]. 

The palladium catalysts were 0.1 mm thickness polycrystalline foil with surface area 

about 0.5 cm2 (Alfa Aesar, 99.9%).  It was spot-welded on the power pins so that electric 

current can go through to achieve resistive heating.  Thermocouple wires were spot-

welded on the back of the foil for temperature reading.  Sample temperature was 

automatically controlled by interfacing a temperature controller (Euortherm Model 2408) 

with a TCR power supply (Electronic Measurements Inc).  An infrared lamp was 

mounted outside the reactor facing the viewport on the reactor.  Infrared light generated 

by the lamp could go through the viewport and be focused on the palladium foil.  The 

sample was heated by both methods at the same time during the experiment. The clean 

procedures include running methane oxidation at 773 K and 873 K for 100 minutes 

respectively with reactants mixture of 4.5 Torr CH4, 18 Torr O2 and inert gases (He and 

N2) balanced to atmospheric pressure, annealing at 873 K for 1 minute in vacuum, and 

sputtering with 2.0 keV Ar+.  Surface was regarded clean when no sulfur-, phosphorus- 

and silicon- species were detected by XPS.  Before each independent experiment, the 

sample was sputtered by 2.0 keV Ar+ and then annealed at 873 K for 1 minute. 
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The reaction temperature must be raised above PdO decomposition temperature to study 

the reaction mechanism of methane oxidation on palladium metal. The oxygen pressure 

reported in most publications was higher than 30 Torr (4% if the total pressure is 1 atm), 

which corresponds to PdO decomposition temperature higher than 1007 K [7].  Such kind 

of high temperature put a lot of stress on the equipment, especially when oxygen existed. 

In this study, the oxygen pressure was lowered to less than 3 Torr so that the metal phase 

could be obtained at a temperature lower than 930 K.   

Except notation, turnover rate was calculated using the geometric Pd metal surface area 

assuming an average Pd surface atom density for a polycrystalline foil of 1.27*1015 atoms 

cm-2[48].  The surface should not change or change slightly with the variation of 

temperature for activation energy measurement or with the variation of reactant 

concentration for reaction order measurement. Thus, using the geometric Pd metal 

surface area was feasible to measure the reaction orders and activation energies.  

The real PdO surface area was measured by a surface exchange experiment with labeled 

oxygen (18O isotope), which was done by exposing the oxidized foil to 5 Torr 18O2 at 598 

K for 12 seconds.  These conditions were designed based on the results from Au-Yeung 

et al. [49] and ensured the exchange between 16O in PdO and 18O2 isotope mostly occur at 

the surface, without appreciable diffusion into the bulk. The reference point for oxygen 

coverage was made by assuming that a foil exposed to O2 at room temperature will form 

an oxygen layer with 0.25 ML coverage at saturation.  Since this coverage was well 

established for a Pd(111) single crystal [50, 51] and a foil is composed of mostly (111) 

planes, the reference point is reasonable.  The exchange was proved to be an effective 
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method to measure PdO surface area [10, 52].  The surface area of the metal phase under 

reaction conditions was assumed to be the same as the surface area for clean Pd foil. 

3.3   Results 

3.3.1 System Test 

A stainless steel foil with same size as palladium foil was used to test background activity 

of the catalytic reactor.  The turnover rate was less than 0.15 s-1 on the stainless steel 

under conditions of 6 Torr O2, 1.5 Torr CH4, and at 1023 K, compared with the turnover 

rate of 9.3 s-1 on Pd foil.  Therefore, the contribution from background activity of the 

catalytic reactor was less than 2%. 

To obtain kinetic data, the experiment must be free of mass and heat transfer limitations. 

The palladium foil was non-porous solid metal, so there was no internal mass and heating 

transfer limitations. The temperature of the foil was automatically controlled by a 

temperature controller, which enabled the reaction free of external heat transfer limitation 

inherently.  Thus, the only concern was external mass transfer limitation.  Figure 3-1 

shows the methane conversion as a function of gas circulation rate. Under the test 

conditions, methane conversion did not increase any more when circulation rate was 

raised to above 3800 cc min-1.  Therefore, when circulation rate was higher than 3800 cc 

min-1, the reaction was free of external mass transfer limitation. The circulation rate was 

higher than 3800 cc min-1 during experiment, so no mass transfer limitation was 

involved in the experiment results. 
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3.3.2 Reaction Orders and Activation Energy 

 Table 3-1 summarizes the reaction orders and the activation energies obtained in this 

study under different conditions. The reaction order for CO2, which is -2 when the 

concentration of CO2 is higher than the concentration of H2O [8], was not measured since 

the conditions of this work were outside the range where CO2 could inhibit reaction.  

Reaction orders for CH4, O2, and H2O were measured at 863 K and 973 K in fuel lean 

conditions (Figure 3-2 & Figure 3-3).  To measure the reaction order for CH4, for 

example, excess O2 and H2O were added into the gas mixture so that the change of 

reaction rate solely reflects the change of CH4 concentration. Note that the 

thermodynamically stable phase was PdO at 863 K and Pd metal at 973 K.  The reaction 

order for water was also measured at 813 K, and was 0.0 (Figure 3-4). Activation energy 

was 32 kJ mol-1 on PdO at 783-873 K and 125 kJ mol-1 on Pd metal at 933 K-1003 K 

(Figure 3-5).   

3.3.3 Characterization 

The chemical state of the foil surface was examined before and after reaction by X-ray 

photoelectron spectroscopy (XPS).  The metallic Pd was characterized by the Pd 3d5/2 

peak at 335.0 eV (Figure 3-5), which is in good agreement with the one in the literature 

[53].  Palladium oxide was observed on the foil surface after measuring the reaction 

orders at 863 K and activation energy at temperatures between 783-873 K.  An example 

of XPS Pd3d core level was shown in Figure 3-6 after reaction at 863 K with 0.76 Torr 

O2, 0.15 Torr CH4 and inert gases balanced to atmospheric pressure, and the binding 
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energy of Pd 3d5/2 was 336.85 eV, characteristic of PdO [53].  The Pd 3d5/2 peak obtained 

after methane oxidation did not show broadening comparing with the Pd 3d5/2 peak 

obtained on clean metal foil, indicating the major compound on the foil surface was PdO.  

If Pd metal were also present, metal Pd 3d5/2 peak at lower binding energy (335.0 eV) 

would have overlapped with the oxide Pd 3d5/2 peak and made it broader. When studying 

the reaction orders at 973 K and the activation energy at temperature between 933-1003 

K, only metallic palladium was observed on the foil surface.  An example of XPS Pd3d 

core level was shown in Figure 3-6 after reaction at 903 K with 0.76 Torr O2, 0.15 Torr 

CH4 and inert gases balanced to atmospheric pressure, and the binding energy of Pd3d5/2 

was 335.0 eV. 

The equilibrium oxygen pressure with temperature for PdO decomposition is [7]: 

006.0
T
510,14Tlog29.6905.31Plog ±−−=  

Where 

P: O2 pressure (atm)  

T: temperature (K) 

Calculations based on the above equation confirmed the XPS results. 
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3.3.4 Active Phase 

In this study, the kinetic data including turnover rates, reaction orders and activation 

energies were obtained both on palladium oxide and palladium metal at temperatures 

around the PdO decomposition temperature. The turnover rate at PdO decomposition 

temperature (Td) under certain O2 pressure (Pd) could be calculated from the kinetic data 

(activation energy and turnover rate) on PdO or Pd metal as following:  

)11(
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d
eTORTOR

−−

=  

Where Td is the decomposition temperature (K)  

           T is the temperature to collect turnover rate (K) 

           Ea is the activation energy at temperature T (J mol-1) 

           R is universal gas constant (J mol-1 K-1) 

Figure 3-7 shows the turnover rates on both palladium oxide and palladium metal at 

temperatures around the PdO decomposition temperature (888 K).  The turnover rates on 

PdO were measured with 1.5 Torr O2 and 0.30 Torr CH4, while the turnover rates on Pd 

metal were measured with 2.3 Torr O2 and 0.46 Torr CH4.  The methane oxidation rate 

was lower on Pd metal than on the oxide, thus higher methane pressure was used for 

experiment on metal phase to get reasonable concentration of CO2 which GC can 

quantify.  The O2 pressure was also raised to keep the ratio of O2 to CH4 the same as on 

the oxide phase.  Finally, all the turnover rates were corrected to 0.76 Torr O2 and 0.15 

Torr CH4 using reaction order of 1 for CH4, 0 for O2 and H2O.  The surface area of PdO 
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corresponding to the reaction conditions of 1.5 Torr O2, 0.3 Torr CH4 at 843 K was 8.3 

cm2, based on 1 cm2 geometric area of clean foil.  With 0.76 Torr O2, PdO decomposes to 

Pd metal at 888 K [7].  By extrapolating the data in Figure 3-7 to 888 K, turnover rates 

were found to be 1.9 s-1 on PdO and 0.10 s-1 on Pd metal at 888 K. The decrease of 

turnover rate from 1.9 s-1 to 0.10 s-1 when PdO decomposes to Pd shows that PdO is more 

active for methane oxidation than Pd metal at 888 K.  

3.4 Discussion 

The experiments in batch mode were carried out at 598 K with 160 torr O2, 16 Torr CH4 

and N2 balanced to 800 Torr.  The turnover rate was 3.8 s-1 calculated at 598K, 160 Torr 

O2, 16 Torr CH4, 1 Torr H2O.  Comparison of turnover rates with literature reports was 

summarized in Table 3-2. The turnover rate in this study is close to the turnover rate 

obtained in our laboratory in former report [10], and is among the highest for all the 

palladium catalysts reported. 

Monteiro et al. [10] observed that the surface area was two times the geometric area of 

palladium metal foil after reaction at 598 K with 160 Torr O2, 16 Torr CH4 and N2 

balanced to 800 Torr.  In this study, the surface area was 8.3 times the geometric area of 

palladium metal foil after reaction at 843 K with 1.5 Torr O2, 0.3 Torr CH4 and inert 

gases balanced to atmospheric pressure.  The surface area after treatment at 843 K was 

larger than the surface area after treatment at 598 K even though the O2 pressure was 

much lower during treatment at 843 K, which indicates that high temperature was one of 

the driven forces for the surface area increase.   
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Table 3-1 summarizes the reaction orders at different temperatures.  The reaction order 

was 0.6-0.7 for methane and around zero for oxygen at 598-973 K.  Water inhibition 

effect was weaker at higher temperatures.   

CH4 + *  CH4*                                 (1) 

CH4* + O → …. (rds)                         (2) 

H2O + *   H2O*                               (3) 

A reaction mechanism was proposed to explain the kinetic results. In this mechanism, 

methane is proposed to interact with lattice oxygen to break the initial C-H bond (step 2), 

which is regarded as the rate-determining step. Combustion of CH4 and CD4 gave a 

normal isotope effect (kH/kD>1, k is the reaction rate constant), suggesting that the rate-

determining steps in the catalytic sequence involve H-atoms [54]. The rate of H-D 

exchange for the gas mixture of CH4/CD4/O2 was found only 1/10 of the combustion rate 

at 573 K [54], indicating that the C-H bond activation could be treated as irreversible 

step.  Isotopic studies showed that during methane oxidation, part of the O in products 

came from original O stored in PdO bulk [54-56].  While the other part of O came from 

gas phase O2, it is not known whether gas phase O2 transformed to lattice O before it was 

consumed by methane combustion. Therefore, at least part of the O (if not all) in the 

products came from lattice O.  Oxygen scrambling was observed when 16O2/
18O2 mixture 

contacted with Pd16O/ZrO2 catalyst at 575 K without methane oxidation, but was not 

observed when methane oxidation was running at the same time [54]. This difference 

indicates that either the reaction consumed most of the adsorbed oxygen or the oxide 
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surface was blocked by other species during the reaction. Ciuparu et al. [57] observed 

water inhibition of the oxygen exchange between gas phase and PdO surface at 700 K, 

indicating that the slower exchange could be attributed to water blocking exchange sites 

(step 3).  The most abundant surface intermediate (MASI) in the mechanism is assigned 

to H2O* by considering its inhibition to the reaction.  The positive reaction order of CH4 

and zero reaction order of CO2 indicate that neither CH4* nor CO2* could be the MASI.  

A pseudo-steady state treatment of the reaction mechanism proposed above gives rate 

expressed as: 

][
1][

][
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4
12 O

OHK
LCHKkr
+

=                                                (I) 

Where  L is the concentration of active sites,  [H2O*]+[*]=L 

The concentration of O can be treated as constant (C) considering the lattice oxygen 

could be filled quickly.  Step 4 should be exothermic reaction from left to right as it is 

water chemisorption; therefore, the equilibrium constant K3 was greater at lower 

temperatures. At 598 K when water has inhibition effect on the reaction, the rate 

expression could be simplified to the following expression, which shows a reaction order 

of 1 for CH4 and –1 reaction order for H2O. 
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As the temperature increases, K3 became smaller and the expression (I) could be 

simplified to: 

][ 412 CHCLKkr =                                                  (III) 

An abrupt decrease of activation energy on PdO was observed from 75-95 kJ mol-1 to 24-

45 kJ mol-1 as the temperature increased, and the transition temperatures were in the 

range of 650-720 K [11, 21]. Those reports agree with the value of 32 kJ mol-1 obtained 

at temperatures between 783-873 K in this study. The apparent activation energy for 

equation (II) is ∆H1+Ea2-∆H3, while the apparent activation energy for equation (III) is 

∆H1+Ea2. As ∆H3 is negative, the activation energy should be higher at low temperature 

when water has inhibition effect. 

As Pd metal became the thermodynamic stable phase, the surface species should be 

different from the surface species on PdO.  Since most information on palladium for gas-

surface interactions were reported on single crystals, here we will discuss the cases on Pd 

single crystals and then make comparable judgment on Pd foil.  For heat of O2 adsorption 

on Pd(110), Ertl et al. [58] reported 80 kcal mol-1 when the coverage reached some point 

where LEED image gave (1x3) pattern; 77 kcal mol-1 for (1x2) pattern; 62 kcal mol-1 for 

c(2x4) pattern and 48 kcal mol-1 for c(2x6) pattern.  The heat of adsorption was obtained 

using Clausius-Clapeyron equation assuming a LEED pattern corresponds to same 

saturated oxygen coverage at different temperatures.  Saturated coverage of 0.23 ML was 

reported for the (1x3) LEED pattern [59] and 0.48-0.5 ML was reported for c(2x4) LEED 

pattern [59, 60].  Jo et al. [61] believed that the (1x3) and (1x2) LEED patterns observed 
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by Ertl et al. [58] correspond to the streaky pattern they observed.  Tanaka et al. [62] 

obtained a coverage of 0.2 ML for the (2x3)-1D pattern and a coverage of 0.3 ML for the 

streaky pattern. For Ni(110), which has the same crystal structure and the same surface 

atom orientation as Pd(110), coverage of 0.33-0.35 ML was reported for the (2x1) LEED 

pattern [63, 64].  Considering the same LEED pattern corresponds to same saturated 

overage of oxygen as long as the single crystals are in the structure and have same 

surface orientation, we think that the streaky LEED pattern reported on Pd(110)  might be 

the (1x2) pattern Ertl et al. [58] observed. Thus, the coverage of 0.3 ML could be used 

for (1x2) LEED pattern.  The c(2x6) LEED pattern was observed in our lab with the 

coverage in the range of 0.6-0.7 ML.  On Rh(110), the oxygen coverage for the structure 

of c(2x2n) (n=3, 4 and 5) was proposed to be (n-1)/n [65], which agrees well with 

experimental results. Considering Rh(110) and Pd(110) have same crystal structure and 

surface orientation, the c(2x6) on Pd(110) should correspond to an oxygen coverage of 

0.67 ML.  In summary, the heat of adsorption at corresponding coverage is 80 kcal mol-1 

at 0.23 ML, 77 kcal mol-1 at 0.30 ML, 62 kcal mol-1 at 0.50 ML and 48 kcal mol-1 at 0.67 

ML.  With the heat of adsorption, the equilibrium pressures at our experiment 

temperature (973 K) with oxygen coverage of 0.23 ML, 0.30 ML, 0.50 ML and 0.67 ML 

could be obtained using Clausius-Clapeyron equation. Then, the equilibrium oxygen 

pressure for 1 ML coverage at 973 K was found to be 0.8 Torr by empirical equation of 

Freundlich. Thus, from thermodynamic point of view, the surface of Pd(110) should be 

mostly covered by adsorbed oxygen at 973 K when exposing to 2.3 Torr O2.   
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One concern is whether the oxygen adsorption rate could surpass methane adsorption rate 

under reaction conditions so that thermodynamically favored situation mentioned above 

could be reached.  At temperatures between 273 K and 673 K, the sticking probability of 

oxygen on Pd(110) was about 1 at zero coverage of oxygen, and decreased to 0.1 at 

coverage about 0.5 ML [66].  The sticking probability of oxygen at 973 K with coverage 

less than 0.5 ML was found greater than 0.1 by extrapolating the sticking probability at 

lower temperatures. The initial sticking probability of methane on Pd(110) was found to 

increase exponentially with the average translational energy of methane which was 

calculated as: 

gp
h TC

M
m

E =  

Where is the molecular mass of heavy species, hm pC  is the average heat capacity of the 

gas mixture, and M  is the average molecular mass of the gas mixture[67, 68].  

Meanwhile, The initial sticking probability was also found to increase strongly with 

methane molecule vibrational energy, but increase weakly with solid phase temperature 

[67-69].  When the turnover rate was measured in this study at 973 K, gas phase 

temperature could not be precisely determined but was estimated in the range between 

600 K and 973 K.  The average translational energy was then between 22 kJ mol-1 and 31 

kJ mol-1 based on the fact that N2 was the majority composition of gas mixture (>90 

vol%) and also the heavy species.  The sticking probability of methane on Pd(110) with 

zero coverage of oxygen was, therefore, in the range of 3*10-4 to 3*10-3 assuming it did 

not change with solid phase temperature. The sticking probability of methane on Pd(110) 

decreased linearly with oxygen coverage [68]: 
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)1()( 0,00 αθθ −= tottot SS  

Where α has value about 2.3 

Stot is the sticking probability of methane at oxygen coverage of θ0 

S0,tot is the sticking probability of methane at oxygen coverage of 0 

 

Based on these facts, the sticking probability of oxygen should be at least two orders of 

magnitude higher than the sticking probability of methane even with 0.5 ML oxygen 

coverage. Though the sticking probability of oxygen continuously decreases as the 

coverage increases, the large difference between the sticking probability of oxygen and 

methane indicate that oxygen adsorption rate should still surpass methane adsorption rate 

at higher oxygen coverage.  Thus, the Pd(110) surface should be mostly covered by 

adsorbed oxygen under reaction conditions, from both thermodynamic and kinetic point 

of view.  

 

The turnover rates on Pd(110) and Pd foil are very close at 973 K with 2.3 Torr O2 and 

0.46 Torr CH4 [70], indicating that the surface of Pd foil under reaction conditions should 

be similar as the surface of Pd(110) which was mostly covered by oxygen.  This 

conclusion is also reasonable considering the zero reaction order for oxygen on the Pd 

foil.  If surface was mostly covered by other species, the reaction order for oxygen should 

be positive. 

Experimental data in this study show that under steady operation the active phase should 

be temperature specific.  At 888 K, turnover rate dropped from 1.9 s-1 to 0.1 s-1 under 
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0.76 Torr O2 and 0.15 Torr CH4 when PdO decomposed to Pd metal, indicating that PdO 

was more active than Pd metal for methane oxidation at this temperature.  The two lines 

in Figure 3-7 intercept at 1160 K, suggesting that the turnover rate on PdO is the same as 

on Pd metal at 1160 K.  At temperature below 1160 K, PdO is more active than Pd metal 

for methane oxidation; but at temperature above 1160 K, Pd metal is more active than 

PdO.  McCarty [35] studied methane combustion on Pd/γ-Al2O3 with same methane 

pressure but different oxygen pressures and found that methane conversion dropped 60% 

when PdO decompose to Pd at 930 K, while no conversion drop when decomposition 

occurred at temperature above 1100 K, indicating the turnover rate on Pd metal surpassed 

PdO at temperature above 1100 K. This result is very close to our projection.  

Lyubovsky et al. [19] observed a methane conversion increase when the oxygen pressure 

in the reaction mixture was reduced below the equilibrium and PdO decomposed.  In 

their experiment when PdO decomposed to Pd, the oxygen pressure was reduced to the 

level that the ratio of O2 to CH4 was close to stoichiometric ratio or even under fuel rich 

conditions.  The catalyst was reported to have a much higher activity in fuel rich 

conditions even when PdO was still in the stable phase [52], thus the activity 

improvement reported could be the result of changing O2 to CH4 ratio instead of PdO 

decomposition. 

3.5 Conclusion 

The reaction mechanism changed with temperature and palladium chemical states.  The 

reaction orders for CH4, O2 and H2O were 0.7, 0.2, 0.0 at 598 K, 0.6, 0.0, -0.0 at 863 K, 

and 0.7, -0.1, -0.1 at 973 K.  The surface compound was PdO at 598 K [10] and 863 K, 
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and Pd metal at 973 K.  The activation energy was 125 kJ mol-1 in the temperature range 

568-628 K [10], 32 kJ mol-1 in 783-873 K and 125 kJ mol-1 in 933-1003 K.  Note that the 

thermodynamically stable phase was PdO for the first two temperature regions and Pd for 

the last temperature region.  A reaction mechanism was proposed to explain the kinetic 

data.  In this mechanism, dissociative methane adsorption occurs on PdOx sites; the 

initial C-H bond breaking is achieved by methane interacting with lattice oxygen, which 

is the rate-determining step; water adsorbs on the active sites to block methane 

adsorption. The change of activation energy was caused possibly by the diminishing of 

water inhibition effect and the change of chemical properties of active sites.  Surface area 

of PdO was measured by 18O2 exchange, and the surface area of Pd metal was calculated 

based on atom density on the Pd foil of 1.27x1019 m-2.   

The active phase, PdO or Pd metal, is temperature dependent.  At 888 K with 0.76 Torr 

O2 and 0.15 Torr CH4, the turnover rate decreased from 1.9 s-1 to 0.1 s-1 when PdO 

decomposed to Pd metal, suggesting that the active phase was PdO at 888 K. 
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Table 3-1: Comparison of reaction orders and activation energy at different 
temperatures and chemical states of the catalysts 

Reaction order Temperature 

K CH4 H2O O2 

Activation Energy

(kJ mol-1) 

Oxidation 

state of foil 
Reference 

598 0.7 -0.9 0.2 125 PdO [10] 

863 0.6 0 0 32 PdO This work 

973 0.7 -0.1 -0.1 125 Pd This work 
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Table 3-2: Comparison of Turnover Rates on Palladium Catalysts 
Activation Energya 

Catalyst Value  
(kJ mol-1) 

Measure Range (K) 
TORb 
(s-1) Reference 

Pd foil - - 3.8 This work 
Pd foil 125 570-630 5.3 [10] 

Pd/Si-Al2O3 170-184 500-640 0.1e [8] 
Pd/Al2O3 150 500-640 0.07-0.16e [8] 
Pd/ZrO2 170 500-640 0.1-0.7e [8] 
Pd/ZrO2 185 - 0.5-3.0e [43] 
Pd/ZrO2 N/A - 0.3e [45, 71] 

a Assuming reaction order for water is –1, the activation energy was corrected for the water inhibition 
effect. 

bTOR calculated at 598 K, 16 Torr CH4, 1 Torr H2O, and N2 balanced to 800 Torr.  Reaction orders were 
assumed to be 1 for CH4, 0 for O2 and –1 for H2O 
cSurface area measured from 18O2 exchange 
dNumber of sites measured from BET surface area (47 m2g-1) 
e For plug flow reactor, partial pressures for reactants and products are the average of values of inlet and 
exit concentration 
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Figure Captions: 

Figure 3-1 Methane conversion as a function of reactants circulation rate at 863 K with 

1.5 Torr O2, 0.38 Torr CH4 and inert gases balanced to atmospheric pressure 

Figure 3-2 Reaction order dependence for Pd foil at 863 K on CH4 (0.15-0.27 Torr CH4, 

0.76 Torr O2, N2 and He balanced to atmospheric pressure), O2 (0.76-1.54 

Torr O2, 0.15 Torr CH4, N2 and He balanced to atmospheric pressure), and 

H2O (0-1.5 Torr H2O, 0.15 Torr CH4, 0.76 Torr O2, N2 and He balanced to 

atmospheric pressure) 

Figure 3-3 Reaction order dependence for Pd foil at 973 K on CH4 (0.30-0.93 Torr CH4, 

2.28 Torr O2, N2 and He balanced to atmospheric pressure), O2 (2.28-4.56 

Torr O2, 0.44 Torr CH4, N2 and He balanced to atmospheric pressure), and 

H2O (0-0.7 Torr H2O, 0.44 Torr CH4, 2.28 Torr O2, N2 and He balanced to 

atmospheric pressure) 

Figure 3-4 Reaction order dependence for Pd foil at 813 K on H2O (0-1 Torr H2O, 0.30 

Torr CH4, 1.52 Torr O2, N2 and He balanced to atmospheric pressure). 

Figure 3-5 Arrhenius plot for the combustion of methane over Pd foil (solid circle: 1.5 

Torr O2, 0.3 Torr CH4 and inert gases (N2, He) balanced to atmospheric 

pressure; open circle: 2.3 Torr O2, 0.46 Torr CH4, 0.66 Torr H2O and inert 

gases (N2, He) balanced to atmospheric pressure). 

Figure 3-6 Comparison of XPS Pd3d core level scan of clean metal foil, foil after lean 

reaction at 903 K and 863 K with 0.76 Torr O2, 0.15 Torr CH4 and inert gases 

(N2 and He) balanced to atmospheric pressure. 
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Figure 3-7 Prediction of Turnover Rates on Palladium Oxide and Palladium Metal with 

0.76 Torr O2 and 0.15 Torr CH4 
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Figure 3-1 Methane conversion as a function of reactants circulation rate at 863 K 
with 1.5 Torr O2, 0.38 Torr CH4 and inert gases balanced to atmospheric pressure 
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Figure 3-2 Reaction order dependence for Pd foil at 863 K on CH4 (0.15-0.27 Torr 
CH4, 0.76 Torr O2, N2 and He balanced to atmospheric pressure), O2 (0.76-1.54 Torr 
O2, 0.15 Torr CH4, N2 and He balanced to atmospheric pressure), and H2O (0-1.5 
Torr H2O, 0.15 Torr CH4, 0.76 Torr O2, N2 and He balanced to atmospheric 
pressure)   
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Figure 3-3 Reaction order dependence for Pd foil at 973 K on CH4 (0.30-0.93 Torr 
CH4, 2.28 Torr O2, N2 and He balanced to atmospheric pressure), O2 (2.28-4.56 Torr 
O2, 0.44 Torr CH4, N2 and He balanced to atmospheric pressure), and H2O (0-0.7 
Torr H2O, 0.44 Torr CH4, 2.28 Torr O2, N2 and He balanced to atmospheric 
pressure)  

 52



-2 -1 0 1

10.6

10.8

11.0

11.2

11.4

Ln
 (T

O
R

)

Ln (P
H2O

)

 

Figure 3-4 Reaction order dependence for Pd foil at 813 K on H2O (0-1 Torr H2O, 
0.30 Torr CH4, 1.52 Torr O2, N2 and He balanced to atmospheric pressure).   
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Figure 3-5 Arrhenius plot for the combustion of methane over Pd foil (solid circle: 
1.5 Torr O2, 0.3 Torr CH4 and inert gases (N2, He) balanced to atmospheric 
pressure; open circle: 2.3 Torr O2, 0.46 Torr CH4, 0.66 Torr H2O and inert gases 
(N2, He) balanced to atmospheric pressure).   
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Figure 3-6 Comparison of XPS Pd3d core level scan of clean metal foil, foil after 
lean reaction at 903 K and 863 K with 0.76 Torr O2, 0.15 Torr CH4 and inert gases 
(N2 and He) balanced to atmospheric pressure.  
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Figure 3-7 Prediction of Turnover Rates on Palladium Oxide and Palladium Metal 
with 0.76 Torr O2 and 0.15 Torr CH4  
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Abstract 

The interaction between silica and palladium following complete oxidation of methane or 

following reduction in H2 was investigated on a polycrystalline palladium foil and on 

supported Pd/SiO2 catalysts.  During methane oxidation, oxidized silicon covered the 

palladium oxide surface as observed by TEM on Pd/SiO2 catalysts and by XPS on 

palladium foil.  On the Pd foil, the source of silica was a silicon impurity, common on 

bulk metal samples.  The migration of oxidized silicon onto PdO deactivated the catalysts 

by blocking the active sites for methane oxidation. Silicon oxide overlayers were also 

observed covering the Pd surface after reduction of Pd/SiO2 by H2 at 923 K.  

 

 

Key words: Complete methane oxidation on palladium; deactivation of Pd by silica; 

model catalysts 
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4.1 INTRODUCTION 

Catalytic methane combustion is an environmentally benign process for power generation 

because of its potential to generate NOx emissions below 1 ppm; it can also be utilized to 

remove residual methane in the emission gases in vehicles powered by natural gas. The 

catalyst in methane combustion must be resistant to deactivation caused, for example, by 

interaction with the support and substrate materials and contaminants by air-borne dust 

[72]. Since palladium-based catalysts are the most effective catalysts for methane 

oxidation and silica (SiO2) is a major component of air dust and a common contaminant 

in catalyst supports, it is of practical importance to understand the interaction between 

palladium and silica during catalytic methane oxidation.  In addition, since silicon is a 

common impurity in Pd and it is difficult to analyze without surface science techniques, 

the results in the literature that use Pd as a foil or wire must be interpreted carefully. 

The interactions between silica and the metal or metal oxide catalyst supported on silica 

and its effect on catalytic behavior have been reported before[25, 26, 73-81]. Reduction 

of Pd/SiO2 in H2 at a temperature above 723 K could form palladium silicides, such as 

Pd2Si [73], Pd3Si [74, 75], Pd4Si[75], and the  type of silicide formed is a function of 

reduction conditions. The interaction between Pd and silicide was responsible for the 

selectivity enhancement on the isomerization of neopentane[74].  Another example is the 

low temperature reduction of Pd/SiO2 at 573 K by H2, which created amorphous silica 

overlayers on the surface of palladium particles, presumably by silica migration[76]. Not 

only can H2 facilitate the interaction between silica and metal or metal oxide, but also 

water. Silica migration was observed on iron oxide/silica model catalyst at 670 K upon 
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treatment in H2O/CO or H2O/H2 gas mixture, but was not observed upon treatment in 

CO2/CO or O2[77]. After treating a silica-supported magnetite catalyst in a water-

containing environment at 650 K and at near atmospheric pressure, the apparent turnover 

rate for water-gas shift was reduced by approximately one order of magnitude, although 

the capacity to chemisorb NO did not diminish significantly[78, 79]. Muto et al. [25, 26] 

tested Pd/SiO2, Pd/Al2O3 and Pd/SiO2-Al2O3 catalysts for methane oxidation. Their 

results showed that when the amount of silica on the surface of the support was enough to 

cover the entire surface of the catalyst, only deactivation was observed during reaction; 

otherwise, activation followed by deactivation was observed. Deactivation of silica 

supported cobalt catalyst was observed during Fischer-Tropsch synthesis.  It was caused 

by a loss of active sites and BET surface area [80].  The deactivation increased with 

partial pressure of water. Cobalt-silicate formation and support breakdown, caused by the 

water produced during reaction, were proposed as the reasons for deactivation.   

The objective of this contribution was to investigate the effect of silica on palladium 

catalysts during complete oxidation of methane and reduction in H2. The investigations 

were carried out on model catalysts consisting of polycrystalline palladium foil and 

palladium supported on non-porous supports. The advantages of these catalysts are that 

they can be easily examined by surface sensitive techniques and by TEM [82], 

respectively. We conclude that silica poisons the catalyst by spreading and covering the 

surface of PdO in the presence of water at reaction temperature or H2 reduction. 
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4.2 EXPERIMENTAL METHODS 

4.2.1 Supported Model Catalysts 

Two supported model catalysts, palladium supported on zirconia (Pd/ZrO2) and 

palladium supported on silica (Pd/SiO2), were studied for methane combustion. The silica 

support was prepared using the technique developed by Stoeber et al. [83]. By varying 

the reactant concentrations, monodisperse silica spheres were produced with average 

diameters between 100 and 500 nm. The material was non-porous and had a simple 

spherical geometry. The palladium was supported on the silica spheres by non-aqueous 

impregnations from Pd acetylacetonate (Aldrich) precursor followed by drying in air at 

room temperature. Palladium supported on zirconia was prepared by incipient wetness 

impregnation of zirconia (RC-100P, Daiichi Kigenso Kagaku Co., 16.5 m2g-1, air 

treatment at 1123 K, 10 hours) with Pd(NH3)2(NO2)2/HNO3 solutions (Tanaka Kikinzoku 

Kogyo Co.) and then dried in air at 373 K for 24 hours.     

The number of exposed Pd atoms was measured using H2-O2 titration after samples were 

reduced in H2 (2-4 cm3 H2 g-1s-1) at 373 K for 1 h and evacuated at 373 K for 1 h to 

remove chemisorbed hydrogen. The uptake of O2 during O2 chemisorption and of H2 

during titration of chemisorbed oxygen by H2 were measured at 373 K and 2.7-11 kPa H2 

or O2. Monolayer values were obtained by extrapolating isotherms to zero pressure. The 

number of exposed Pd metal atoms was calculated using reported stoichiometries [84]: 
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Crystallite sizes were estimated from these dispersions by assuming hemispherical 

crystallites and a Pd surface density of 1.27x1019 m-2 [48]. 

The surface morphology of the supported model catalysts was examined by a Jeol 2000-

FX transmission electron microscope. The reaction rate was measured in a tubular reactor 

with a thin layer of catalyst held above acid-washed quartz wool. This design achieved 

low methane conversion in a single pass, which made it possible to calculate the turnover 

rate by assuming a differential reactor behavior. The reaction was carried out at 553 K 

and at atmospheric pressure with reactants composition of 2% CH4, 20% O2 and 78% He. 

4.2.2  Foil Catalyst 

The palladium foil catalyst was a 0.125 mm thick polycrystalline foil (Goodfellow, 

99.99+%) with a geometric area of ~1.0 cm2. Methods to mount the catalyst were 

described previously [10]. 

Methane oxidation on palladium foil was performed in a batch reactor, which was 

attached to an ultrahigh vacuum (UHV) chamber equipped with surface analysis tools. 

Without exposure to the atmosphere, the foil could be transferred between the reactor and 

the UHV chamber by a welded bellows transfer arm. The batch reactor had a volume of 

 62



about 0.84 liters. Reactants were introduced into the reactor individually and were mixed 

by a pump (Metal Bellows model MB-21) at a nominal rate of 5000 cm3 min-1 for 25 

minutes before the reaction was started. The gas phase concentration was monitored by 

an Agilent 6890 Series gas chromatograph equipped with a 15-ft Carboxen 1000, 60/80 

mesh column and a thermal conductivity detector (TCD). X-Ray Photoelectron 

Spectroscopy (XPS) and Temperature Programmed Desorption (TPD) were employed to 

characterize the foil surface.  In the water treatment experiment, water was added by 

evaporation from the degassed liquid. Blank experiments on a stainless steel foil revealed 

that the turnover rate was negligible compared to the turnover rate on the palladium foil 

[10]. 

XPS spectra were collected using Al Kα (1486.6 eV) radiation at 300W. The atomic 

sensitivity factor (ASF), used for surface composition calculation from XPS spectra, were 

0.27 for Si 2s, 0.66 for O 1s and 4.6 for Pd 3d [85].  The relative atomic concentration for 

silicon was calculated by: 

%100

ASF
I

ASF
I

ASF
I

ASF
I

Si ofion concentrat atomic Nominal

O1s

O1s

Pd3d

Pd3d

Si2s

Si2s

Si2s

Si2s

×
++

=  (1) 

where for example IPd3d is the signal intensity of Pd 3d.   
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The foil cleaning procedure consisted of sputtering with a 2 keV Ar ion beam, followed 

by annealing at 873 K for 1 minute under UHV conditions. For the clean foil, only metal 

palladium features were observed by XPS. Depth profiling of the deactivated foil 

consisted of cycles of sputtering with 500 eV Ar ions and XPS analysis.  

Temperature-programmed-desorption was carried out in the UHV chamber by heating the 

foil from room temperature to 873 K at 3 K s-1. Species desorbed from the surface were 

examined by an UTI-100C quadrupole mass spectrometer. 

4.3 RESULTS 

4.3.1 Surface Characterization Before Reaction 

Supported Model Catalysts 

Before reaction, each supported model catalyst was either reduced in H2 at 923 K for 2 

hours or oxidized in O2 at 923 K for 2 hours. The specific surface area of treated catalysts 

is listed in Table 4-1. Oxidized Pd/ZrO2 has 1.5 times the specific Pd surface area of the 

reduced Pd/ZrO2; oxidized Pd/SiO2 has 3 times the specific surface area of the reduced 

Pd/SiO2.  The turnover rate and the rate of reaction per gram of Pd after 24 h on stream 

are also shown in Table 4-1.  The turnover rate for the sample supported on zirconia after 

reduction and oxidation is about the same, whereas the Pd catalyst supported on silica 

after reduction is less active in a factor of 15 than the sample after oxidation.  This result 

shows a significant difference in rate between the samples supported on silica and 

zirconia, and for this reason, they were further investigated by TEM.  Comparisons with 

rates from the literature are also presented in Table 4-1 [8, 10, 43]. 
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The Pd samples supported on zirconia show the expected particle size and features after 

reduction (Figure 4-1) and oxidation (Figure 4-2).  The same observation is true for the 

oxidized Pd/SiO2 (Figure 4-3).  However, on reduced Pd/SiO2 sample amorphous 

overlayers covering the palladium particles were observed by TEM (Figure 4-4). The 

surface overlayers look amorphous, which is consistent with the migration of silica over 

the Pd metal surface.  It is not possible to estimate the surface coverage of silica since 

TEM provides a 2-D image of a 3-D sample.  Only the silica overlayer at the edge is 

visible. Since these are randomly oriented particles, one would expect the presence of 

silica on the top and bottom of the metal particle, which is not visible because the lattice 

image dominates the contrast.  Based on the thickness of the layer, we can state that the 

coverage is less than one monolayer.   

Pd foil 

Before reaction, the palladium foil was cleaned as described above and then examined by 

XPS. Only features corresponding to palladium metal were observed with Pd 3d5/2 

Binding Energy (BE) 334.50 eV.  The minimal atomic concentration of Si that could be 

detected by XPS was 1%. The number of active sites during methane oxidation was 

calculated based on a Pd atom density of 1.27x1019 m-2 [48].  

4.3.2 Surface Coverage by Silicon Compounds During Reaction  

Supported Model Catalysts 

All Pd/ZrO2 catalysts showed activation and deactivation stages during reaction, 

independently of pre-reduction or pre-oxidation treatment (Figure 4-5). Activation and 
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deactivation stages were also observed for reduced Pd/SiO2; however, only deactivation 

was observed for oxidized Pd/SiO2 (Figure 4-6). After 24 hours on stream, the reduced 

catalysts generally had lower turnover rates than the oxidized ones.  In particular, the 

turnover rate for the reduced Pd/SiO2 was 1/15 of the one for oxidized Pd/SiO2. Oxidized 

Pd/SiO2 was examined by TEM after reaction and its image showed that the palladium 

particles were covered with an amorphous layer  (Figure 4-7).  This amorphous layer was 

less distinct than the one observed after reduction at 923 K (Figure 4-4).   

Foil Catalyst 

A batch reactor was used for measuring rates.  Before the results are presented, we will 

explain how to interpret the data on this type of reactor when inhibition by one of the 

products is present.  For lean fuel methane combustion at 598 K, the methane reaction 

rate can be expressed as  

r=-k[CH4]1[O2]0[H2O]-1[CO2]0.     (2) 

At low conversion, the methane concentration is almost constant and the rate expression 

can be simplified to r=A/[H2O], where A is a constant. Since the reaction rate was 

measured in a batch reactor, the water concentration can be related to the change of 

methane concentration  

[ ] [ ] χ⋅= 042 CH2  OH ,      (3) 
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where [CH4]0 is the initial methane concentration and χ is methane conversion. The final 

expression can be written as  

χ= Br ,      (4)  

where B is a constant. The reaction rate can also be expressed by methane consumption 

rate as  

[ ]
dt
dCHVr 04
χ

⋅−=      (5) 

where V is the reactor volume and t is reaction time. By combining the two rate 

expressions (4) and (5),  

χ
=

χ C
dt
d      (6) 

where C is a constant. After integration, a linear relation can be obtained between the 

square of conversion and time  

χ2=2Ct.      (7) 

Since a relation between methane conversion and number of methane turnovers can be 

expressed as  
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(Number of Turnovers)=Dχ,      (8) 

where D is a constant, a linear relation can be obtained between square of Number of 

Turnovers and reaction time as  

(Number of Turnovers)2=Et,      (9a) 

where  

E = 2D2C.       (9a) 

Monteiro et al. [10] reported a linear relationship between (Number of Turnovers)2 and 

reaction time for palladium foil. In this study, the plot of (Number of Turnovers)2 to 

reaction time was used to monitor catalyst performance. 

Figure 4-8 shows the plot of (Number of Turnovers)2 versus reaction time for a typical 

deactivation process. Since a stable foil produces a straight line, a change in slope 

indicates deactivation.  On the deactivated foil, palladium, oxygen, silicon (Figure 4-9) 

and carbon were observed on the surface. Carbon on the was mainly deposited during 

transfer from the reactor to the UHV chamber [10]. For this reason, carbon was not 

considered during surface composition analysis. The binding energy of the Pd3d5/2 at 

336.3 eV was shifted by 1.8 eV from the position of metallic Pd (334.5 eV), indicating 

the surface was PdO. The Si 2s peak is quite broad and centered at 152.5 eV. According 

to the literature data, the Si 2s peak position for silicon is 150.5-150.7 eV [86-88] . 
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Therefore the 2 eV shift towards higher BE points to an oxidation state of silicon after the 

reaction. On the other hand, silica (SiO2) is characterized by the Si 2s peak set at 

approximately 154.2-154.8 eV[89-92]. The factors, which cause the smaller BE shift, will 

be discussed below.  

To understand how Si appeared on the surface, a series of experiments were carried out 

on the clean foil to investigate the effect of H2O and O2. The joint effect from H2O and 

O2 was tested by treating the clean foil at 598 K for 30 minutes with a gas mixture of 2 

Torr H2O, 638 Torr N2 and 160 Torr O2. XPS analysis on this foil showed features 

corresponding to Pd, O, Si and C. The rate of methane oxidation on the treated foil was 

tested at 598 K; no CO2 was detected in 40 minutes, indicating that the foil was 

deactivated. After the methane oxidation experiment, the foil was transferred to the UHV 

chamber and annealed at 873 K for 1 minute. XPS analysis of the sample revealed O and 

Si (Figure 4-10), also metallic Pd on the surface. The nominal atomic concentration 

assuming a uniformly distributed concentration over the probing volume was 5.2% Si, 

16.3% O and 78.5% Pd.  

The O2 effect on Si was tested by treating the clean foil with 160 Torr O2 at 598 K for 1 

hour. No Si was detected by XPS on the oxidized foil. XPS after TPD showed metallic 

Pd peaks, but did not show O Auger peaks and Si 2s peak (Figure 4-10). 

The water effect on Si was tested by treating the clean foil with a gas mixture of 3 Torr 

H2O and N2 balanced to 800 Torr for 1 hour at either room temperature or 598 K. Silicon 
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was detected by XPS on the foil treated at 598 K, but was not detected on the one treated 

at room temperature.  

The information depth of XPS is in the range of 50-100 Å, therefore additional 

experiments were performed to determine the depth profile of the Si distribution (Figure 

4-11). The deactivated catalyst was sputtered by 0.5 kV Ar+ beam with beam current 

passing through the sample of 0.24 µA. It can be seen that the signal intensity ratio of 

silicon to palladium (ISi/IPd) decreased with sputtering time. A distribution of silicon on 

the sample based on this profile will be derived in the next section. 

4.4 DISCUSSION 

Deactivation by coverage with silicon oxides 

Silicon and oxygen were observed on the surface of the deactivated foil after annealing at 

873 K (Figure 4-10). The oxygen is associated with Si because PdO decomposes to Pd at 

the prevalent vacuum pressure. No oxygen signal is observed by XPS following 

annealing of a foil that did not show deactivation during reaction (Figure 4-10). Bader et 

al. [93] observed that thermal decomposition of PdO to 1173 K could not decompose the 

co-existing Si-stabilized oxide, so annealing at 873 K could leave Si-stabilized oxide on 

the foil surface. Two kinds of oxidized silicon, including silica (SiO2) and silicon 

monoxide (SiO), could be the specie on the surface [94]. Solid SiO is a metastable state, 

thermodynamically stable only as a gas at high temperatures; it dissociates to Si and SiO2 

at 400-700oC [94].  
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The BE of the Si 2s peak was 152.5 eV. This number is by approximately 2 eV higher 

than those for silicon[86-88]  . On the other hand, this BE is lower by approximately 2 eV 

than the BE of the Si 2s peak (154.2-154.8 eV) characterized SiO2 [89-92].  The 

relatively small chemical shift might be due to the “surface” nature of the silica. The 

silica layer covering the surface might consist of the silicon atoms bound to various 

number of oxygen atoms. Bekkay et al [95] reported non-stoichiometric oxide formation 

and the silicon atoms coordinated to one and to four oxygen atoms were characterized by 

the Si 2s peaks at 150.2 and 153.9 eV correspondently. In our case the Si 2s peak is broad 

and the state of Si could not be unambiguously identified because the signal to noise level 

on the Si 2s peak was low. The other factor, which might cause the relatively low BE of 

the Si 2s peak observed in our experiments, is the relaxation energy.  

The variation of the relaxation energy is the final-state effect corresponding to a 

reorganization of the electrons of the neighboring atoms that provide the screening of the 

photoelectron hole remaining after electron emission. The effects of relaxation could 

cause a low BE shift whereas the effect of the initial states for a positive ionic state 

should result in a high BE shift. For instance, a large extra-atomic relaxation energy 

contribution for CdO reduces the binding energy [96]. Silver is another example of the 

exceptions, which show a low BE shift in the oxide states [96-99] . Therefore, the 

relatively low BE shift of the Si 2s peak, observed in our experiments, might be governed 

by the difference in the relaxation energy for a thin layer and a bulk material. Thus, we 

believe the silicon compound on the surface was silica. 
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Silicon and carbon were two impurities found on the surface of the deactivated foil. 

Previous work showed that the carbon deposition does not result in the catalyst 

deactivation [10], thus silica must be the compound deactivating the foil.  One possible 

source of silica was the bulk of the foil. If the conditions are favorable, silicon 

compounds can migrate to the surface and then agglomerate to form large particles. Our 

hypothesis is that these large particles, with low concentration and small surface area to 

volume, generate a low intensity XPS signal that could not be detected on the clean foil. 

These particles are probably concentrated at grain boundaries.  At reaction temperature 

(598 K) and with help from water formed during reaction, silicon from the large particles 

could oxidize, spread and cover the foil.  The silica coverage in this case is high and XPS 

could detect it. The cleaning process could only remove thin layers of silica spreading on 

the surface, but could not eliminate the large particles that are the source of silica. 

XPS depth profiling indicates that silica was on the top layer of the foil surface. By using 

Ar+ with 500 eV ion energy, the sputtering yields for single-element solids are 0.5 Si 

atom per Ar+ and 2 Pd atoms per Ar+ [100]. If Pd was surface segregated compared to Si 

or the distribution of Pd and Si was homogeneous, then ISi/IPd should have increased with 

time-on-sputtering because Pd has a higher sputtering yield. This hypothesis does not 

agree with the experimental results. The only reasonable element distribution to explain 

the data is that Si was surface segregated so that ISi/IPd could drop from the beginning of 

sputtering even though Si has a lower sputtering yield than Pd.   

Assuming silica spreading on top of PdO, the Si2s and Pd3d signal intensity could be 

expressed as a function of silica coverage using a mathematical model for photoelectron 
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attenuation during XPS analysis [101]. The coverage on the deactivated foil was obtained 

by fitting the signal intensities from the experiment to the mathematical model. The 

inelastic-mean-free-path was supplied by the National Institute of Standards and 

Technology [102]. The thickness of one monolayer of silica was estimated at 0.34 nm. It 

was calculated based on the parameters for quartz using the equation 1000ρa3N=A where 

ρ is the quartz density (kg m-3), “a” is the monolayer thickness we are estimating, N is the 

Avogadro number and A is the atomic weight. The XPS data was recorded with fixed 

emission angle of the photoelectron, which was between 0o and 45o with respect to the 

sample normal.  In such cases, the coverage was found to be in the range of 0.8 to 1.0 

monolayer. 

Our experimental results showed that water and reaction temperature were the two key 

factors promoting silica migration, which was in agreement with previous work. Lund et 

al. [77] observed silica migration on Pt/SiO2 at 660 K and on Fe3O4/SiO2 at 670 K when 

water vapor was present. Huber et al. [80] attributed the loss of H2 chemisorption 

capacity and BET surface area of Co/SiO2 catalyst during Fischer-Tropsch at 220oC (493 

K) to silica migration and formation of cobalt-silicates.  

Lund et al. [79] explained the migration of silica on Fe3O4 by Si4+ substitution into the 

tetrahedral sites of Fe3O4 and displacement of Fe3+ to adjacent octahedral sites, which 

occurred over the entire surface of Fe3O4, rather than being confined to the interface. The 

substituted Fe3O4 retained 80% capacity to adsorb NO but showed one order of 

magnitude lower turnover rate for water-gas shift reaction because there were still 

octahedrally coordinated iron cations on the surface that could adsorb NO but this 
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compound was not active for catalytic reaction. A similar explanation may be applicable 

to the Pd system.  Another possibility for silica migration is that silica interacted with 

water to form a mobile compound that migrated to the palladium particle surface. 

Silica migration was also observed by TEM on the supported Pd/SiO2 samples after 

reduction and after reaction.  Similar migration of titania on rhodium during reduction 

has been seen after high temperature reduction [103], and is believed to be the 

explanation for the phenomenon of strong metal support interaction.  If the surface 

overlayers were caused by Pd oxide, they would not be amorphous since PdO is generally 

crystalline (Figure 4-2, Figure 4-3, and Figure 4-7).  Hydrogen reduction of silica-

supported palladium catalysts can also lead to strong chemical interaction between metal 

and support and the growth of palladium silicides [73-75].  If we use the rate per gram of 

Pd as an indication of the surface area of Pd available during reaction (Table 4-1), it can 

be concluded that silica coverage must be higher on the sample reduced in H2 than on the 

sample oxidized in O2 since the rate is 45 times lower on the former sample.  The TEM 

results confirm the higher concentration of silica on the reduced sample; the amorphous 

layer is clearly visible on the reduced sample but is diffuse on the oxidized sample after 

reaction.  Juszczyk and Karpinski [74] proposed that overlayers of oxidized silicon 

species on palladium were formed only when the catalyst was first reduced at high-

temperature and then oxidized. During reduction, palladium silicides (PdxSiy) were 

formed by palladium atoms taking oxygen vacancies in the silica support.  When exposed 

to O2 at room temperature, silicon in PdxSiy was oxidized and then moved to the top of 

the surface; at the same time palladium atoms agglomerated and formed palladium 

particles, which were covered by silica. 
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Pd surface area and rates of reaction  

The effects of oxidation and reduction on the surface area and reactivity of palladium 

catalysts has been studied [104].  In this study (Table 4-1), the higher surface area for the 

oxidized catalysts was caused probably by palladium surface roughening during O2 

oxidation although the TEM pictures presented here do not suggest a substantial 

difference in surface roughening between reduced and oxidized samples.  Ruckenstein 

and Chen [105] suggested that a particle breakup, not observed by TEM in our 

experiments either, could be the explanation for higher surface area.  Datye [82] 

suggested based on TEM results that the surface of Rh catalysts was roughened when the 

sample was oxidized in O2 and then reduced in H2 at a mild temperature.  The roughening 

is caused by an expansion of the metal structure upon oxidation, a situation similar to the 

one we have here.  Results from our group on a Pd foil [10] show that the surface of PdO 

surface increases by a factor of two after the combustion reaction.  The increase in 

surface area by a factor of 1.5 for Pd/ZrO2 after oxidation observed in our work is thus 

reasonable.  Note also that for the samples supported on zirconia, the surface increase 

corresponded to a proportional increase in the rate per gram so that the turnover rate was 

constant. For the samples supported on silica, the decline in the chemisorption uptake by 

a factor of three after reduction seems to be affected by the coverage of Pd by silica.  The 

decrease in chemisorptive properties (factor of 3) is much smaller than the decrease 

observed in the rate per gram (factor of 45) (Table 4-1). One explanation for this 

difference is that the overlayers of oxidized silicon formed during H2 reduction might 

have moved during the surface area measurement by the H2-O2 titration procedure, 

causing a higher coverage.  This is a feasible mechanism as the titration involves 
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oxidation and reduction steps at 373 K.  In this case, more active sites could be counted 

by H2-O2 titration than could be available during reaction of methane oxidation.  This 

over-counting translates into a lower turnover rate than the correct one and would explain 

why the turnover rate of reduced Pd/SiO2 was 1/15 of that for oxidized Pd/SiO2 after 24 

hours on stream. 

The rates of reaction for the foil and supported sample were in good agreement with the 

rates reported in the literature (Table 4-1).  The general behavior of activation and 

deactivation are also the same as reported in the literature.  For example, the zero rate of 

reaction at time zero for the pre-reduced samples observed in Figure 4-5 and Figure 4-6 

have been observed before [9, 106].  In this study, activation followed by deactivation 

was observed on Pd/ZrO2 samples.  Literature results suggest, for example, that during 

the activation stage new surface morphologies that are more active in oxidizing methane 

are formed and that palladium oxide particles sinter during the deactivation stage [23-26, 

42, 43, 107].  There was only deactivation observed on oxidized Pd/SiO2, which was 

different from the other three catalysts tested and can probably be explained by silica 

migration. For oxidized Pd/SiO2, silica started to spread once water was formed at the 

start of reaction. The initial activation caused possibly by a surface morphology change 

of PdO particle overlapped with deactivation by silica migration. The magnitude of 

deactivation was larger than the magnitude of activation, so deactivation, not activation, 

was observed at the first stage. Experimental results from Muto et al. [25, 26] showed 

that in Pd/SiO2 and Pd/SiO2-Al2O3 samples with enough silica loading to cover the 

surface, only the deactivation stage was observed, which is in agreement with our results. 
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4.5 CONCLUSION 

Silica from the support could migrate on to the palladium particles during H2 reduction or 

spread from silicon impurities present on the foil during methane oxidation. Migration 

during reaction was caused by water formed in the reaction and migration during H2 

reduction of silica-supported catalyst was possibly caused by the formation of palladium 

silicides, subsequently oxidized by O2. The migration of silica deactivated the catalyst by 

covering active sites.  We conclude that silica is not a good support for Pd catalysts when 

they are used in reactions where water is present and also that they should not be reduced 

in H2 at temperatures close to 900 K.  These results explain the deactivation observed in 

this work on foil during methane oxidation.  It points to possible problems when Pd 

massive catalysts (foil and wires) are used in reaction media containing water and H2.  

When bulk Pd is used, surface science techniques need to be available to measure the 

state of the surface.  When Pd is supported on zirconia, no deleterious effects caused by 

H2 or H2O are observed. 
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Table 4-1 - Surface area and corrected turnover rates for Pd catalysts 
 
 

Catalyst Pdsa  
µmol g-1 

Diameterb 

nm 
Ratec   

µmol g-1 s-1 
TORd   
10-2 s-1 

Reference 

5% Pd/SiO2-Reduced 11 45 1.6 0.7 This work 
5% Pd/SiO2-Oxidized 33 15 72 11 This work 
10% Pd/ZrO2-Reduced 43 20 37 9 This work 
10% Pd/ZrO2-Oxidized 65 15 71 11 This work 
10% Pd/ZrO2 32 30 0.7 3 [8] 
1.0% Pd/ZrO2 2.4-21 4.6-39 0.05-2.1  0.5-11 [43] 
Pd foil - - - 70 [10] 
Pd black 990e - - 6 [10] 
a -  Pd surface area measured by H2-O2 titration at 373 K 
b- calculated using d(nm)=100/(Percentage of metal exposed) 
c -  Reaction rate based on mass of Pd 
c, d - Rate and Turnover rate (TOR) calculated at 553 K, 16 Torr CH4 and 1 Torr H2O by 

assuming reaction order of 1 for CH4, –1 for H2O, and 0 for O2 and CO2.  
e -  Calculated based on BET surface area 47 m2g-1  
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Figure captions: 

Figure 4-1 TEM of Pd/ZrO2 after reduction in H2 at 923 K for 2 h. 

Figure 4-2 TEM of Pd/ZrO2 after oxidation in O2 at 923 K for 2 h. 

Figure 4-3 TEM of Pd/SiO2 after oxidation in O2 at 923 K for 2 h. 

Figure 4-4 TEM of Pd/SiO2 (reduced in H2 at 923 K for 2 h) after chemisorption. Note 

amorphous silica overlayers. 

Figure 4-5 Turnover rates as function of time for 10% Pd/ZrO2 (calculated at 553 K, 16 

Torr CH4, 160 Torr O2 and 1 Torr H2O using reaction orders 1 for CH4, -1 

for H2O and 0 for O2) 

Figure 4-6 Turnover rates as function of time for 5% Pd/SiO2 (calculated at 553 K, 16 

Torr CH4, 160 Torr O2 and 1 Torr H2O using reaction orders 1 for CH4, -1 

for H2O and 0 for O2) 

Figure 4-7 TEM of oxidized Pd/SiO2 after methane oxidation reaction at 553 K for 22 h 

with 2% CH4, 20% O2 and N2 balanced to 800 Torr. 

Figure 4-8 (Number of Turnovers)2 as function of reaction time for a deactivated foil. 

Reaction at 598 K with 2% CH4, 20% O2 and N2 balanced to 800 Torr. 

Figure 4-9  Si 2s core level XPS spectra of deactivated foil 

Figure 4-10 XPS survey spectra of (a) deactivated foil after TPD (b) oxidized clean 

palladium foil after TPD 

Figure 4-11 ISi/IPd change as function of time-on-sputtering (ISi: XPS signal intensity of 

Si 2s; IPd: XPS signal intensity of Pd 3d)

 79



 

 

 

Figure 4-1 TEM of Pd/ZrO2 after reduction in H2 at 923 K for 2 h. 
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Figure 4-2 TEM of Pd/ZrO2 after oxidation in O2 at 923 K for 2 h. 
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Figure 4-3 TEM of Pd/SiO2 after oxidation in O2 at 923 K for 2 h. 
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Figure 4-4 TEM of Pd/SiO2 (reduced in H2 at 923 K for 2 h) after chemisorption. 
Note amorphous silica overlayers. 
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Figure 4-5 Turnover rates as function of time for 10% Pd/ZrO2 (calculated at 553 K, 16 
Torr CH4, 160 Torr O2 and 1 Torr H2O using reaction orders 1 for CH4, -1 for H2O and 0 

for O2) 
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Figure 4-6 Turnover rates as function of time for 5% Pd/SiO2 (calculated at 553 K, 16 

Torr CH4, 160 Torr O2 and 1 Torr H2O using reaction orders 1 for CH4, -1 for H2O and 0 
for O2) 
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Figure 4-7 TEM of oxidized Pd/SiO2 after methane oxidation reaction at 553 K for 

22 h with 2% CH4, 20% O2 and N2 balanced to 800 Torr.  
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Figure 4-8 (Number of Turnovers)2 as function of reaction time for a deactivated 
foil. Reaction at 598 K with 2% CH4, 20% O2 and N2 balanced to 800 Torr. 
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Figure 4-9  Si 2s core level XPS spectra of deactivated foil 
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Figure 4-10 XPS survey spectra of (a) deactivated foil after TPD (b) oxidized clean 

palladium foil after TPD 
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Figure 4-11 ISi/IPd change as function of time-on-sputtering (ISi: XPS signal intensity 

of Si 2s; IPd: XPS signal intensity of Pd 3d) 
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5 Study of Catalyst Reactivity Hysteresis during Phase 
Transition 
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Abstract: 
The palladium catalyst exhibited activity hysteresis for methane oxidation at the 

temperatures between PdO decomposition and reformation.  The hysteresis was studied 

using temperature-programmed methane oxidation with 0.76 Torr O2 and 0.15 Torr CH4, 

which included heating and cooling cycles. In the heating cycle, the methane conversion 

initially increased as expected up to 873 K when PdO started to decompose to Pd.  The 

conversion decreased by 90% after PdO fully decomposed to Pd.  Methane conversion 

started to increase again as the temperature increased after PdO had fully decomposed.  

When temperature reached 1003 K, the cooling cycle started.  The conversion decreased 

initially in the cooling cycle as expected; but as the transition temperature was reached, 

the conversion remained at a level more than 90% lower than in the heating cycle.   As 

the temperature reached 828 K, methane conversion increased to the same level observed 

in the heating cycle.  We have thus observed a 45 K difference in the Pd-PdO transition 

temperature.  Additional experiments showed that in the hysteresis temperature range 

(828-873 K), palladium oxidation could occur only if PdO could be first formed in the 

catalyst.  This observation indicates that the PdO reformation at lower temperature was 

not limited by the rate of oxidation but possibly by the formation of nucleation sites. 

Keywords: methane oxidation on palladium, catalyst activity hysteresis, palladium 

oxidation, model catalyst 
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5.1 Introduction 

As the most active catalysts for methane combustion, supported Pd catalysts have been 

extensively studied and currently are being used in the commercial catalytic combustion 

systems [3].  Due to the wide operating temperature range of the catalytic combustor, the 

palladium catalyst presents unusual situation that the thermodynamic stable phase could 

be PdO or Pd, depending on the oxygen pressure and the reaction temperature.  Palladium 

catalyst exhibited hysteresis in the reaction rate for methane oxidation due to the PdO 

decomposition and reformation.  Temperature-programmed methane oxidation, including 

heating and cooling cycles, was usually carried out to study this issue. In the heating 

cycle, the methane conversion initially increased as expected up when PdO started to 

decompose to Pd.  Methane conversion started to increase again as the temperature 

increased after PdO had fully decomposed.  The process was then reversed by decreasing 

the temperature from some point where PdO has fully decomposed to the initial point.  

The conversion decreased as expected; but as the transition temperature was reached, the 

conversion remained at a level lower than in the heating cycle.  The methane conversion 

increased to the same level observed in the heating cycle only at a temperature below the 

PdO decomposition temperature [17, 35-38].  The temperature range for hysteresis and 

the difference of catalytic activity in the hysteresis window were also found strongly 

dependent on support materials [47, 108, 109].   
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Some hypotheses have been raised to explain the unusual behavior of PdO reformation. 

McCarty [35] and Datye et al. [37] attributed this behavior to formation of passive layers 

of chemisorbed oxygen on palladium metal, which prevented the oxidation of palladium. 

Salomonsson et al. [110] proposed a non-ideal three-phase system in the hysteresis 

region composed of palladium metal, palladium metal with oxygen and palladium oxide. 

In this phase diagram, the palladium oxidation and reformation took different paths 

which caused the hysteresis of oxide formation.  A more complex four-phase diagram 

was proposed by Wolf et al. [111] to simulate the hysteresis of palladium oxidation.  

These four phases included Pd, PdO, surface PdO and chemisorbed oxygen.   

It is noteworthy that the hysteresis has been, so far, mainly studied on supported Pd 

catalysts, which could be strongly affected by the support-metal interactions. Also there 

were no detailed kinetic data in this region to help understand this issue.  In this study, 

the hysteresis issue was addressed using a Pd polycrystalline foil which is free of support 

effect.  Possible mechanism based on the study results was proposed. 

5.2 Experimental Methods 

The experiment system includes a high-pressure reactor cell and an ultrahigh vacuum 

(UHV) surface analysis chamber.  The reactor cell can be operated as continuous-stirred 

tank reactor (CSTR) and batch reactor.  At temperature above 700 K, experiments were 

performed in CSTR mode to avoid total conversion of methane because of the high 

reaction rate; at temperature below 700 K, experiments were performed in batch mode so 

that CO2 could accumulate inside the reactor to the level which the GC detector could 

precisely monitor.  Gas circulation pumps (Metal Bellows, MB-21) were employed to 
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speed up reactants flow rate to avoid mass transfer limitation.  The maximum flow rate 

was 4600 cc min-1.  The UHV chamber was equipped with AES, XPS, mass 

spectrometer and sputtering gun for surface analysis and cleaning.  The sample could be 

transferred between the reactor cell and the UHV chamber without exposing to air.  

Details about this system were described in previous paper[10]. 

The palladium catalysts were 0.1 mm thickness polycrystalline foil with surface area 

about 0.5 cm2 (Alfa Aesar, 99.9%).  It was spot-welded on the power pins so that current 

can go through to achieve resistive heating.  Thermocouple wires were spot-welded on 

the back of the foil for temperature reading.  Sample temperature was automatically 

controlled by interfacing a temperature controller (Euortherm Model 2408) with a TCR 

power supply (Electronic Measurements Inc).  An infrared lamp was mounted outside the 

reactor facing the viewport on the reactor.  Infrared light generated by the lamp could go 

through the viewport and be focused on the palladium foil.  The sample was heated by 

both methods at the same time during the experiment. To clean the impurities, the foil 

was treated by methane oxidation at 773 K and 873 K for 100 minutes respectively with 

reactants mixture of 4.5 Torr CH4, 18 Torr O2 and inert gases (He and N2) balanced to 

atmospheric pressure. After the treatment, the foil was annealed at 873 K for 1 minute in 

vacuum, and then sputtered with 2.0 keV Ar+ to remove the surface impurities.  Surface 

was regarded clean when no sulfur-, phosphorus- and silicon- species were detected by 

XPS.  Before each independent experiment, the sample was sputtered by 2.0 keV Ar+ and 

then annealed at 873 K for 1 minute. 
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To study hysteresis, the operating temperature should vary between room temperature to 

some level above the PdO decomposition temperature. Considering the possible mass 

transfer limitation and the limit of the equipment tolerance to high temperature oxidation, 

the PdO decomposition temperature should be set as low as possible, which means the O2 

pressure should be as low as possible. At the same time, the concentration has to be high 

enough to be detectable by GC detector. By comprising these two contradictive factors, 

most experiment in this study was performed with oxygen pressure of 0.76 Torr, which 

corresponds to PdO decomposition temperature of 888 K.  

Except notation, turnover rate was calculated using the geometric Pd metal surface area 

assuming an average Pd surface atom density for a polycrystalline foil of 1.27*1015 atoms 

cm-2[48].   

The real PdO surface area was measured by a surface exchange experiment with labeled 

oxygen (18O isotope), which was done by exposing the oxidized foil to 5 Torr 18O2 at 598 

K for 12 seconds.  These conditions were designed based on the results from Au-Yeung 

et al. [49] and ensured the exchange between 16O in PdO and 18O2 isotope mostly occur at 

the surface, without appreciable diffusion into the bulk. The reference point for oxygen 

coverage was made by assuming that a foil exposed to O2 at room temperature will form 

an oxygen layer with 0.25 ML coverage at saturation.  Since this coverage was well 

established for a Pd(111) single crystal [50, 51] and a foil is composed of mostly (111) 

planes, the reference point is reasonable.  The exchange was proved to be an effective 

method to measure PdO surface area [10, 52].  The surface area of the metal phase under 

reaction conditions was assumed to be the same as the surface area for clean Pd foil. 
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5.3 Results 

5.3.1 System Test 

A stainless steel foil with same size as palladium foil was used to test the background 

activity of the catalytic reactor.  The turnover rate was less than 0.15 s-1 compared with 

the turnover rate of 9.3 s-1 on Pd foil under conditions of 6 Torr O2, 1.5 Torr CH4, and at 

1023 K.  Therefore, the contribution from the background of the catalytic reactor was less 

than 2%. 

To obtain kinetic data, the experiment must be free of mass and heat transfer limitation. 

The palladium foil was non-porous solid metal, so there was no internal mass and heating 

transfer limitation. The temperature of the foil was automatically controller by a thermal 

controller, which enabled the reaction free of external heat transfer limitation inherently.  

The only possible transport limitation for this system was external mass transfer.  Figure 

5-1 shows the methane conversion as a function of gas circulation rate. The results 

indicate that under the test conditions, there was no external mass transfer limitation 

when circulation rate was higher than 3800 cc min-1 since methane conversion did not 

increase any more when the circulation rate was increased above this level. The 

circulation rate was higher than 3800 cc min-1 during experiment, so no mass transfer 

limitation was involved in the experiment results. 
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5.3.2 Hysteresis of Methane Oxidation 

Temperature-programmed methane oxidation was performed with 0.76 Torr O2, 0.15 

Torr CH4 and inert gases balanced to atmospheric pressure. The temperature program 

included heating and cooling cycles. The heating cycle included two ramps: from room 

temperature to 863 K, the heating rate was 0.5 K s-1; from 863-1003 K, the heating rate 

was 1 K s-1.  During cooling cycle, the catalyst was cooled down from 1003 K to 600 K 

at 1 K s-1 and then the sample was quenched inside the gas mixture. Since the volume of 

the reactor cell was 840 ml and the feed rate was only 50 ml min-1, the response of 

reactants concentration to reaction rate or feed concentration change was very slow.  At 

each temperature where data were collected, the temperature program was held for at 

least one hour so that steady-state data could be obtained.  

Figure 5-2 shows the methane conversion during the heating and cooling cycles.  Since it 

took at least one hour to get stabilized data for each point on the figure and the circulation 

pump could not tolerate extensive operation time, the data on the figure were collected 

from three heating-cooling cycles. There was at least one point shared by each two cycles 

to check that these cycles were repeatable. 

The first point was collected at 733 K with methane conversion of 13%. Methane 

conversion increased at elevated temperature until 873 K where it reached 40%. 

Conversion decreased to 20% when the temperature was increased further to 893 K and 

decreased to 5% when temperature reached 903 K. Methane conversion started to pick up 

again from 903 K. In the experiment, the temperature on the foil was not very uniform 
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and 15 K variation was possible. Thus, it was normal to have both PdO and Pd on the foil 

at temperature around PdO decomposition point and the decrease of methane conversion 

did not show a straight vertical line. The cooling cycle started from 1003 K.  The 

methane conversion decreased initially until 823 K.  At 823 K, the methane conversion 

increased to the level observed in the heating cycle. As temperature was further 

decreased, the methane conversion started to decrease again.  There was a hysteresis of 

50 K between the starting point of conversion increase during cooling and the starting 

point of conversion decrease during heating.  

Was the hysteresis caused by cooling from temperatures above PdO decomposition 

point? A special experiment was designed to answer this question. The clean Pd metal 

foil was heated in N2 to 863 K (below PdO decomposition temperature). Because the gas 

phase was pure N2, no PdO was formed during catalyst heating up. Then, the feed was 

changed from N2 to reactant mixture with 0.76 Torr O2 and 0.15 Torr CH4.  No CO2 was 

detected for 80 minutes after changing the feed composition. Then the temperature was 

decreased to 828 K (out of hysteresis range), and was held at 828 K for 80 minute before 

returning to 863 K.  Methane conversion of 25% was obtained when temperature returned 

to 863 K.   

5.3.3 Palladium Oxide Decomposition and Reformation        

The hysteresis of catalyst activity during cooling is related with the PdO reformation at 

lower temperature than the PdO decomposition. To understand the hysteresis of methane 

oxidation, it is imperative to study the PdO decomposition and reformation. 
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Clean metal palladium foil was heated under vacuum in the reactor to 863 K at 0.8 K s-1, 

then 0.76 Torr O2 was introduced inside. The foil was held at 863 K for 30 minutes in 

0.76 Torr O2 before being quenched with oxygen inside. During the quenching stage, the 

temperature dropped to 543 K after 30 seconds and to 473 K after another 30 seconds. 

XPS analysis after quenching indicated the surface was palladium metal (Figure 5-3). 

Oxygen desorption was observed during TPD after XPS analysis, but desorption peak 

was not observed even when temperature reached 950 K (Figure 5-4).  Since XPS 

showed the foil was in metal state, the oxygen could possibly come from the surrounding 

power pins on the mounting cart.  In another experiment, the foil was heated up with 0.76 

Torr O2 inside the reactor using the same temperature program. After quenching, PdO 

was the only surface species observed on the surface.  Following TPD revealed that 440 

monolayers of PdO were formed. Note that the oxygen released from power pins, 

obtained from the previous experiment, was subtracted during the calculation of PdO 

formation. By comparison, only 270 ML of PdO was formed if the foil was quenched 

immediately after temperature reached 863 K inside 0.76 Torr O2.  Therefore, there were 

170 monolayers of PdO formed during the 30 minutes holding at 863 K inside oxygen, 

but it only occurred after 270 ML of PdO formed during the heating up. 

5.3.4 Effect of Rich Treatment on Hysteresis 

The clean metal foil was heated in N2 to 863 K, and then the feed was changed from N2 

to fuel lean mixture (0.76 Torr O2, 0.15 Torr O2, inert gases balanced to atmospheric 

pressure). After 3 hours, methane conversion was stabilized at ~5%. Then, the feed was 

changed to fuel rich mixture (0.76 Torr O2, 1.5 Torr CH4 and inert gases balanced to 
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atmospheric pressure). The methane conversion during the rich treatment was 10%. After 

2 hours of rich treatment, the feed was change back to fuel lean mixture. A stabilized 

methane conversion of about 55% was obtained under the fuel lean reaction. Then the 

catalyst was quenched.  The XPS analysis after quenching indicated that the foil surface 

was palladium metal (Figure 5-3).  

Another experiment of the lean-rich-lean treatment was performed at 853 K.  Since the 

temperature was still at the hysteresis window, the results were similar as the results at 

863 K, with the lean reaction after rich treatment had much higher methane conversion 

than the one before rich treatment.  By assuming the catalyst surface area was the same 

before arich treatment and after rich treatment, the turnover rate increased 6 times. After 

the lean-rich-lean experiment, the reactor was loaded with 160 Torr O2, 16 Torr CH4 and 

N2 balanced to 800 Torr, and reaction was performed in batch reactor mode at 598 K. The 

nominal turnover rate was 5 s-1 after correcting to 550 K, 16 Torr CH4 and 1 Torr H2O 

without considering surface area change.  Note that if starting the reaction at 598 K with 

a clean metal palladium foil, the nominal turnover rate was 0.4 s-1.  

5.3.5 Effect of O2 Pressure on Hysteresis 

Previous experiment showed that when hysteresis occurred, the catalyst could keep in 

metal state though the thermodynamically stable phase was PdO. This experiment tested 

whether increasing the oxygen pressure could eliminate hysteresis.  
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A new palladium foil was used to perform this experiment. For this foil, PdO started to 

decompose at 863 K, which was lower than the one obtained on the previous foil. The 

reasons could be the non-uniform temperature distribution on the foil and the different 

position of the thermocouple. The foil was heated up to 903 K in the fuel lean mixture 

(0.76 Torr O2 and 0.15 Torr CH4) at 0.5 K s-1.  The temperature was kept at 903 K for 5 

minutes, and then decreased to 853 K. The final methane conversion at 853 K was 10%. 

Then oxygen pressure in the feed was increased to 1.5 Torr, which was double of the 

initial pressure. Under this oxygen pressure, the methane conversion increased to 30%. 

XPS analysis after reaction indicated that the surface was palladium oxide.  

5.4 Discussion 

An experiment in batch mode was carried out at 598 K with 160 torr O2, 16 Torr CH4 and 

N2 balanced to 800 Torr.  The turnover rate was 3.8 s-1 calculated at 598K, 160 Torr O2, 

16 Torr CH4, 1 Torr H2O.  A comparison of turnover rates from literature reports was 

summarized in Figure 5-1. The value of turnover rate in study is close to the turnover rate 

obtained in our laboratory on Pd foil (5.3 s-1), and is among the highest for all the 

palladium catalysts reported. 

McCarty [35] and Datye et al. [37] attributed the hysteresis to the formation of a passive 

chemisorbed oxygen layer on the metal surface. Since heat of formation of chemisorbed 

oxygen (220 kJ mol-1 [50, 51, 66, 112]) is greater than heat of bulk PdO formation (120 

kJ mol-1 [7]), the chemisorbed oxygen should bind Pd stronger than the oxygen in bulk 

PdO.  Thus, it could form a passive layer on the metal surface to prevent oxygen 

adsorption, in turn to prevent PdO formation and methane reaction.  The challenge for 
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this theory is why the chemisorbed oxygen could not prevent PdO formation at lower 

temperatures such as 783 K.  

Dissolved oxygen/subsurface oxygen was able to form at subsurface region of Pd metal 

at temperature above the PdO decomposition point in oxygen environment, and this 

oxygen was regarded as the precursor for bulk PdO formation [60, 113-120]. The 

interaction between oxygen and Pd was simplified as the following stages: (i) formation 

of surface chemisorbed oxygen O(c) from gas phase oxygen O2(g): (ii) chemisorbed 

oxygen O(c) migration into the bulk to form dissolved/subsurface oxygen O(d): (iii) 

oxide O(b) formation from dissolved/subsurface oxygen O(d) [118].  A similar 

mechanism is proposed here to explain the unusual behavior for PdO decomposition and 

reformation.  In our mechanism, an equilibrium could be reached between O2(g) and O(d) 

(step 1); but formation of O(b) from O(d) is irreversible and only starts when the O(d) 

concentration is saturated.  

(2)                              )b(O)d(O
(1)                           )d(O)g(O2

→
⇔

 

The O(d) should be more strongly bonded than O(b) considering the lower O/Pd ratio for 

O(d).  Since the formation of O(b) from the oxygen in gas phase is an exothermic 

reaction with heat of formation 120 kJ mol-1[121], the formation of O(d) from oxygen in 

the gas phase should be exothermic. Therefore, the equilibrium of step 1 will shift to O(d) 

as temperature decreases. We proposed that at temperatures slightly lower than PdO 

decomposition temperature, the equilibrium concentration of O(d) could not saturate to 
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form PdO. Further decreasing the temperature would allow O(d) to build up in the near 

surface region until it is saturated to form O(b).  

Thurmer et al. [122] reported that for oxidation of lead single crystal, the oxide initially 

was formed around impurity sites, and then the oxide acted as a catalyst for the further 

oxidation.  Zheng et al. [50] observed the formation of PdO islands on Pd(111) surface at 

the beginning of oxidation.  These results indicate that oxidation of palladium is very 

possible an auto-catalytic reaction like the oxidation of lead, and it starts with PdO seeds. 

The formation of the PdO seeds may occur at the defects where the O(d) could saturate at 

higher temperature. Once the seeds were created, further growth of oxide is only a kinetic 

issue. The mechanism we proposed is for the initial PdO seeds formation.  Further 

oxidation after the formation of PdO seeds may not be restricted by the concentration of 

O(d) as it became auto-catalytic process.  This would explain why at 863 K with 0.76 

Torr O2, palladium oxide grew further if oxide has already formed, but did not grow if 

there was no oxide.  Increasing O2 pressure will increase the O(d) concentration., thus 

will allow  O(d) to saturate at temperature inside the hysteresis temperature window to 

form oxide, which explains why an increase of O2 pressure could eliminate hysteresis.   

The PdO decomposition is proposed not to go through the dissolved oxygen, and only 

depends on the thermodynamic equilibrium between PdO and gas phase oxygen.  

)()(2 2 gObO →  
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In this mechanism, both O(b) and O(d) could be the stable phase on the surface region at 

temperatures between PdO decomposition and reformation, and the choice just depends 

on the starting point.  

Rich treatment was proved to be able to increase the catalyst surface area of palladium 

oxide, thus to increase the methane conversion [52]. Could rich treatment increase the 

surface area of palladium metal?  The nominal turnover rate was 5 s-1 at 550 K with 160 

Torr O2, 16 Torr CH4 and 1 Torr H2O on the foil after the lean-rich-lean experiment, 

which was 12 times the nominal turnover rate (0.4 s-1) based on a clean palladium metal 

foil without rich treatment history.  It is possible that the surface area increased after rich 

treatment even though the surface was still palladium metal. 

5.5 Conclusion 

During temperature-programmed methane oxidation, methane conversion decreased as 

PdO decomposed to Pd metal; however the methane conversion could not be fully 

recovered to the level in heating cycle until temperature decreased to the point lower than 

where PdO should be reformed.  This hysteresis in the rate of reaction was caused by 

PdO reformation at a lower temperature than PdO decomposition. The hysteresis could 

be eliminated by either increasing the O2 pressure, or treating with rich fuel mixture. 

A mechanism was presented to explain the hysteresis by assuming different reaction 

pathways for PdO decomposition and reformation. Dissolved/subsurface oxygen is 

regarded as the precursor for initial PdO formation, and palladium oxide is formed until 

the concentration of dissolved/subsurface oxygen reaches certain level. On the contrary, 
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PdO decomposition will not go through subsurface oxygen. In such cases, the PdO 

decomposition and reformation may occur at different temperatures. 
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Table 5-1: Comparison of Turnover Rates on Palladium Catalysts 
Activation Energya 

Catalyst Value  
(kJ mol-1) 

Measure Range (K) 
TORb 
(s-1) Reference 

Pd foil - - 3.8 This work 
Pd foil 125 570-630 5.3 [10] 

Pd/Si-Al2O3 170-184 500-640 0.1e [8] 
Pd/Al2O3 150 500-640 0.07-0.16e [8] 
Pd/ZrO2 170 500-640 0.1-0.7e [8] 
Pd/ZrO2 185 - 0.5-3.0e [43] 
Pd/ZrO2 N/A - 0.3e [45, 71] 

a Assuming reaction order for water is –1, the activation energy was corrected for the water inhibition 
effect. 

bTOR calculated at 598 K, 16 Torr CH4, 1 Torr H2O, and N2 balanced to 800 Torr.  Reaction orders were 
assumed to be 1 for CH4, 0 for O2 and –1 for H2O 
cSurface area measured from 18O2 exchange 
dNumber of sites measured from BET surface area (47 m2g-1) 
e For plug flow reactor, partial pressures for reactants and products are the average of values of inlet and 
exit concentration 
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Figure 5-1 Methane conversion as a function of reactants circulation rate at 863 K with 

1.5 Torr O2, 0.38 Torr CH4 and inert gases balanced to atmospheric pressure 

Figure 5-2 Catalytic methane oxidation on palladium foil as function of temperature and 

treat methods. The rate of ramp up was 0.5 K·s-1 from room temperature to 

863 K and 1 K·s-1 from 863 K to 1003 K; rate of ramp down was 1 K·s-1 

from 1003 K to 783 K and then the sample was quenched. Reactant mixture 

was composed of 0.75 Torr O2, 0.15 Torr O2 and inert gases balanced to 

atmospheric pressure 

Figure 5-3 Comparison of XPS Pd 3d5/2 core level peak on clean metal foil and foils 

after two kinds of treatment. O2 treatment was done by heating up clean metal 

palladium foil under vacuum to 863 K at 0.8 K·s-1 and then introducing 0.76 

Torr O2 inside. Lean-rich-lean experiment was performed by heating up clean 

metal palladium foil to 863 K in N2, then switch to fuel lean, rich and lean 

mixture. 

Figure 5-4  Temperature-programmed desorption of palladium foil after three kinds of 

oxygen treatment (Treatment 1: heat up foil in 0.76 Torr O2 to 863 K and 

hold for 30 min before quenching; Treatment 2: heat up foil in 0.76 Torr O2 

to 863 K and quench; Treatment 3: introduce 0.76 Torr O2 into reactor after 

heating up the foil to 863 K, hold 30 min before quenching.)
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Figure 5-1 Methane conversion as a function of reactants circulation rate at 863 K with 

1.5 Torr O2, 0.38 Torr CH4 and inert gases balanced to atmospheric pressure 
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Figure 5-2 Catalytic methane oxidation on palladium foil as function of temperature and 

treat methods. The rate of ramp up was 0.5 K·s-1 from room temperature to 863 K and 1 

K·s-1 from 863 K to 1003 K; rate of ramp down was 1 K·s-1 from 1003 K to 783 K and 

then the sample was quenched. Reactant mixture was composed of 0.75 Torr O2, 0.15 

Torr O2 and inert gases balanced to atmospheric pressure 
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Figure 5-3 Comparison of XPS Pd 3d5/2 core level peak on clean metal foil and foils 

after two kinds of treatment. O2 treatment was done by heating up clean metal palladium 

foil under vacuum to 863 K at 0.8 K·s-1 and then introducing 0.76 Torr O2 inside. Lean-

rich-lean experiment was performed by heating up clean metal palladium foil to 863 K in 

N2, then switch to fuel lean, rich and lean mixture. 
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Figure 5-4  Temperature-programmed desorption of palladium foil after three kinds of 

oxygen treatment (Treatment 1: heat up foil in 0.76 Torr O2 to 863 K and hold for 30 min 

before quenching; Treatment 2: heat up foil in 0.76 Torr O2 to 863 K and quench; 

Treatment 3: introduce 0.76 Torr O2 into reactor after heating up the foil to 863 K, hold 

30 min before quenching.) 
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Abstract 

Catalytic methane combustion was studied on palladium polycrystalline foil and 

palladium single crystals including Pd(111), Pd(100) and Pd(110).  Reaction kinetics was 

investigated under fuel lean conditions both at low temperatures where PdO was the 

thermodynamic stable phase and at high temperatures where Pd metal was 

thermodynamic stable phase. The reaction on both PdO and Pd metal was structure 

insensitive to the original metal surface orientations. The turnover rate on the oxide phase 

was 2.8 s-1 for Pd(111), 4.7 s-1 for Pd(100) and 1.3 s-1 for Pd(110) after correcting to 160 

Torr O2, 16 Torr CH4 and 1 Torr H2O at 598 K.  And the turnover rate on the metal phase 

was 2.8 s-1 for Pd(111), 2.0 s-1 for Pd(100) and 2.2 s-1 for Pd(110) after correcting to 2.3 

Torr O2, 0.46 Torr CH4 and 0.05 Torr H2O at 973 K.   

 

Keywords: methane oxidation on palladium, structure sensitivity, model catalysts  
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6.1 Introduction 

Natural gas-fueled gas turbines are a preferred technology for power generation. One 

reason is that many of the large reserves of natural gas, which are composed mainly of 

methane, have very small amounts of sulfur and nitrogen compounds; as a consequence, 

when the natural gas is burned, the emission gases will contain correspondingly a low 

concentration of SOx and NOx formed from S and N compounds. Another reason is that 

methane has the highest hydrogen-to-carbon ratio of all the hydrocarbons, thus, 

combustion of methane can produce less carbon dioxide, a greenhouse gas, per unit of 

power produced. Catalytic combustion, which enables the combustion reaction to take 

place on the catalyst surface without flame, could be operated at a lower temperature. 

Thus, it has the potential to reduce NOx emission at much lower cost while avoiding the 

problems of conventional flame combustors. Palladium based catalysts have been 

regarded as the choice for catalytic methane combustion because of their high catalytic 

activity [5].  Catalytic methane combustion technology based on palladium catalyst has 

recently been used on commercial combustors [3, 6].   

One of the questions regarding methane combustion on palladium catalyst is structure 

sensitivity.  For a real catalyst, when metal particles are in the critical size of nanometer 

diameter, the relative concentrations of surface sites with given coordination neighbors 

changes rapidly when the particle size changes. This means the catalyst surface structure 

changes.  If the turnover rates changes as the catalyst surface structure changes, then the 

reaction is structure sensitive.  Turnover rate is commonly used as the quantitative 
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measure for comparison of catalyst performance.  Thus, it is necessary to specify whether 

the reaction is structure sensitive before comparing the turnover rate.   

Baldwin and Burch [24] found a change in turnover rate (TOR) of two orders of 

magnitude on a series of catalysts with no correlation between particle size and TOR. The 

catalysts used in their study were prepared from two different kinds of palladium sources: 

palladium chloride and palladium nitrate.  Comparing TOR on those catalysts is not 

sound as chlorine, which was deposited during catalyst preparation, could inhibit the rate 

of methane oxidation[41].  Hicks et al. [20, 41] reported higher TORs on catalysts with 

larger Pd particles.  They found that during experiments small Pd crystallites were 

completely oxidized, while large crystallites were partially oxidized.  The completely 

oxidized palladium dispersed over the alumina as PdO, while the partially oxidized 

palladium was broken into smaller crystallites which were covered with a layer of 

oxygen.  Based on these results, the authors suggested that the palladium oxide dispersed 

over the alumina was much less active than the oxide covering the FCC palladium 

crystallites.  Garbowski et al. [42] proposed that crystal planes with low atom density, 

like Pd(110) and Pd(100), were able to form PdO in a near epitaxial structure with the 

sublayer metal.  If the metal itself is also in epitaxy with the support, there is no need for 

reorganization of the sublayer metal structure.  On the other hand, for planes with high 

atom density, such as Pd(111) plane, are not related to a square structure, thus catalytic 

activity, (i.e., oxidation and reduction of the surface) cannot occur without profound 

metal reorganization.  Ribeiro et al. [8] found that for catalysts with different supports 

and prepared with different metal precursors, the rates were the same with particles 

ranging from 2 nm to 110 nm.  Fujumoto et al. [15] found a “weak” structure sensitivity 
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on Pd/ZrO2 as particle size varied from 3 to 10 nm.  Muller et al. [45, 71] found that 

TOR on Pd/ZrO2 with palladium particle size of 12 nm was about 5 times the TOR on 

Pd/ZrO2  with palladium particle size of 6 nm.   

In general, most of the experiments to address this issue have been carried out on 

supported catalysts. However, supported catalysts are not ideal systems in this case 

because multiple factors, such as particle size, interaction with support, deactivation by 

impurities, spreading of oxide and measurement of support area, can affect the rate 

substantially and are difficult to identify individually. Another key issue did not get 

touched on in previous studies is the reaction sensitivity on palladium metal. Studying 

methane oxidation on palladium metal requires high temperatures so that metal state 

could be maintained under reaction conditions. 

This study addressed the sensitivity issue using palladium single crystals and 

polycrystalline palladium foil under both oxide and metal states. The results on single 

crystals were straightforward because the structure of the metal could be modified by 

changing the low Miller index plane exposed on the catalyst and there was no support 

effect. Polycrystalline palladium foil was used as comparison standard because its surface 

was composed of various planes. This method has been effectively used to identify the 

structure sensitive reaction of ammonia synthesis on iron catalysts and rhenium catalysts 

[123, 124]. The surface during methane oxidation could be PdO or Pd metal, depending 

on the oxygen pressure and the reaction temperature; therefore, both phases need to be 

studied. 
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6.2 Experimental Methods 

The experiment system includes a methane combustion reactor and an ultrahigh vacuum 

(UHV) surface analysis chamber.  The reactor could be operated under either a batch 

mode or a continuous-stirred tank (CSTR) mode.  At low temperatures, a batch mode was 

employed so that CO2 could accumulate inside the reactor to reach a high enough 

concentration to be monitored using GC detector.  At high temperatures, experiments 

were performed under CSTR mode to avoid total consumption of methane due to the high 

reaction rate. For batch reactor mode, the reaction gases were introduced into the reactor 

cell from a gas manifold in the order of (H2O), N2, O2 and CH4. The reaction mixture was 

well mixed after 25 min circulation before the reaction started. For CSTR mode, the 

reaction gases were mixed before entering the reactor cell.  Desired gas concentrations in 

reactor were obtained by adjusting flow rate of different gases using mass flow 

controllers. In order to eliminate external mass transfer limitation, the reaction mixture 

was circulated in the reactor using gas circulation pumps (Metal Bellows, MB-21), and 

the circulation rate was adjusted using an adjustable valve.  The maximum flow rate 

could reach 4600 ml min-1.  

The palladium catalysts used for catalytic CH4 combustion in this research were 

polycrystalline foil (Alfa Aesar, 99.9%) and single crystals Pd(111), Pd(110) (both  

Princeton Scientific Corp., 1 mm thickness x 8.5 mm diameter, mis-alignment < 0.5o), 

and Pd(100) (Accumet Materials Co. 1 mm thickness x 8.5 mm diameter, mis-alignment 

< 0.5o).  These catalysts were held on the cart by two power pins. Electric current was 

applied through the power pins to resistively heat the sample.  Sample temperature was 
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measured by an alumel-chromel thermocouple spot-welded on the back of the foil or on 

the side of the single crystals.  Automatic control of the sample temperature was achieved 

by interfacing temperature controller (Eurotherm Model 2408) with TCR DC power 

supply (Electronic Measurements Inc).  An infrared lamp was mounted outside the 

reactor, facing the viewport on the reactor. Infrared light generated could go through the 

glass viewport and be focused on the catalyst. Catalysts were heated up using both IR 

heating and resistive heating. The gas phase composition was analyzed using a HP 6890 

series gas chromatograph equipped with a 15-ft Carbonxen 1000, 60/80 mesh column, 

and a thermal conductivity detector.  

The UHV analysis chamber was equipped with a double-pass cylindrical mirror analyzer 

(PHI Model 15-255G) used for X-ray Photoelectron Spectroscopy (XPS), a 15 kV 

double-anode X-ray gun (PHI 4-548), a UTI-100C quadrupole mass spectrometer, a OCI 

Low Energy Electron Diffraction analyzer (LEED) and a sputtering gun.  The X-ray gun 

was performed using Alkα (1486.6 eV) radiation at a power of 300 W. Survey spectra on 

XPS were recorded using analyzer pass energy of 100 eV; whereas, on the core level 

measurement the analyzer pass energy was 50 eV.  The temperature programmed 

desorption (TPD) analysis was performed at a constant heating rate of 5 K s-1.  A 

Labview program was designed to monitor the desorption species. Catalysts could be 

transferred between the CH4 combustion reactor and the UHV analysis chamber without 

being exposed to air by means of a transfer arm sealed inside a metal bellow. Thus, the 

surface details could be studied before and after reactions without contamination from 

air. 
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Cleaning of the fresh Pd catalysts consisted of two steps, namely methane combustion 

under high temperature and Ar+ ion sputtering.  The fresh palladium foil was treated by 

methane combustion at 773 K for 100 minutes with 4.5 Torr CH4, 18 Torr O2 and inert 

gases (He and N2) balanced to atmospheric pressure. The oxidized foil was then sputtered 

by 2 keV Ar+ followed by annealing at 873 K for 1 minute in vacuum.  The single 

crystals were first treated by methane combustion at 673-723 K for more than one hour 

with reactant mixture of 1.7 Torr CH4, 7 Torr O2 and inert gases balanced to atmospheric 

pressure.  The oxidized crystals were then sputtered by 2.0 keV Ar+ followed by 

annealing at 873 K for 1 min. These cleaning procedures have proven to be effective to 

remove the impurities from the near surface region of the catalysts.  Before each 

independent experiment, the sample was sputtered by 2.0 keV Ar+ ions and then annealed 

at 873 K for 1 minute under UHV conditions to resume the surface structure. 

Except notation, the turnover rate was calculated using the geometric Pd metal surface 

area assuming an average Pd surface atom density of 1.27*1015 atom cm-2 on 

polycrystalline foil [48], 1.53*1015 atom cm-2 on Pd(111), 0.94*1015 atom cm-2 on 

Pd(110) and 1.34*1015 atom cm-2 on Pd(100) .  The surface area should not change or 

change slightly with the variation of temperature for activation energy measurement or 

the variation of reactant concentration for reaction order measurement. Thus, using 

geometric Pd metal surface area was feasible to measure reaction orders and activation 

energies. 

The surface morphologies of Pd oxide were studied by scanning-tunneling microscopy 

(STM).  The experiments were carried out in a specially designed system consisting of 
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three stainless steel chambers: an Ultra-High Vacuum (UHV) analysis chamber, a UHV 

STM chamber and a high-pressure reaction cell. The catalytic CH4 combustion reaction 

was carried out in the reaction cell in batch reactor mode.  The single crystals were 

mounted on a standard RHK sample holder (RHK, Inc.).  The temperature was measured 

by a chromel-alumel thermocouple spot-welded onto the side of the sample. An infrared 

lamp was mounted outside the reaction cell to heat up the single crystal catalyst sample 

by focusing the infrared light onto the surface of the single crystals. A Eurotherm 2408 

temperature controller controlled the power output to the lamp based on the temperature 

reading from the catalyst.  STM images were obtained in UHV at ambient temperature 

using home-made Pt/Ir tips.  The catalyst sample was scanned at a bias voltage of 0.1-1 V 

and tunneling current of 0.1-1 nA.     

6.3 Experimental Results 

6.3.1 System Test 

A stainless steel foil with similar geometric surface area as Pd foil or single crystals was 

used to test background effect.  The turnover rate was less than 0.15 s-1 compared with 

the turnover rate of 9.3 s-1 on Pd foil under conditions of 6 Torr O2, 1.5 Torr CH4, and at 

1023 K.  Therefore, the contribution from background was less than 2%.  

To obtain kinetics data, the experiment must be free of mass and heat transfer limitation. 

The catalysts were non-porous solid metal, so there was no internal mass and heating 

transfer limitation. The temperature of catalyst was automatically controlled by external 
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heating system, so the system was free of external heat transfer limitation. The only 

concern in this system was external mass transfer limitation. Figure 6-1 shows the 

methane conversion as function of gas circulation rate. The results indicated that under 

the test conditions, there was no external mass transfer limitation when the circulation 

rate was higher than 3800 cc min-1 since methane conversion did not increase any more 

when the circulation rate was above this level. The circulation rate was higher than 3800 

cc min-1 during experiment, so no mass transfer limitation was involved in the 

experiment results 

6.3.2 Constancy of Single Crystal Surface Structure 

Figure 6-2 demonstrates the arrangement of surface atoms on the palladium single 

crystals with the simplest orientations, and Figure 6-3 shows corresponding LEED 

patterns obtained on the three single crystals used in this study. The LEED patterns were 

consistent throughout the study once the samples were cleaned.  

6.3.3 Surface Area Measurement 

 The oxygen coverage on Pd single crystals was calibrated by assuming that exposure of 

Pd(111) to O2 at room temperature would form an oxygen overlayer with 0.25 ML 

saturated coverage [11, 12].   The TPD spectrum after 0.25 ML adsorption on Pd(111) 

did not show oxygen desorption in our system. The amount of oxygen corresponding to 

0.25 ML was calculated from the desorption of H2
18O, C18O, C16O18O and C18O2 after 

adsorption of 18O2 at room temperature. The carbon or hydrogen might come from 
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hydrocarbon species deposited on the surface from the environment and carbon dissolved 

into the crystals during methane oxidation. 

The calibration of oxygen coverage on Pd(100) and Pd(110) was derived from the results 

on Pd(111).   The following equation demonstrates the way to get the calibration of 

oxygen coverage on Pd(100) surface. 

111
111

100

111

100
100 *

D
D

M
A
A

M =  

Where    Mabc is the integral area of O2 desorption peak corresponding to 1    

        ML coverage on the surface of Pd(abc) crystal  

Dabc is the atom density on the surface of Pd(abc) crystal 

   Aabc is the geometric surface area of Pd(abc) single crystal 

The calibration on Pd(110) was obtained following the same derivation. 

After methane oxidation, the PdO surface area was measured by a surface exchange 

experiment with labeled oxygen (18O isotope), which was performed by exposing the 

oxidized catalyst to 5 Torr 18O2 at 598 K for 12 seconds.  These conditions are chosen 

based on results from Au-Yeung et al. [49] to ensure the exchange between 16O in PdO 

and 18O2 isotope mostly occur at the surface, without appreciable diffusion into the bulk. 
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The oxygen uptake was calculated from the desorption of 18O2, 16O18O, H2
18O, C18O, 

C16O18O and C18O2.  

The surface area was also measured using STM images. The method using STM images 

relies on the generation of the surface topographic image by STM. Therefore, it can be 

used for samples that are conductive and can be outlined by the microscope tip.  The 

surface area was then calculated by taking discrete image pixels and joining them using a 

series of triangles.  Integration of the area of individual triangles gives the total area. 

The results of the surface area measurement on palladium after oxidation in O2 and 

catalytic combustion of a lean CH4 mixture (O2:CH4=10:1) at 600 K are summarized in 

Table 6-2.  The two proposed methods, integration of STM data and 18O exchange, 

agreed within ±20%.   

6.3.4 Structure Sensitivity of Reaction on Oxide Phase 

Single crystals of PdO with different orientations are not commercially available. 

Considering PdO in real catalysts is created by oxidizing the Pd particles which are 

composed mainly by facets of (111), (100) and (110), the oxide in this study was 

obtained by oxidizing the surface of the three crystals which should give the same PdO 

surface structure as on the corresponding facet in real catalysts.  The kinetic data obtained 

on PdO, including turnover rates, reaction orders and activation energies, were measured 

in a batch mode.  By assuming reaction order of 1 for CH4, -1 for H2O, 0 for O2 and CO2, 
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the methane conversion (X) has linear relationship with the square of time (t) in batch 

reactor [10]. 

2t*CX =  

The rate constant could be derived from the slope C, and then the turnover rate under 

certain reaction conditions was calculated. 

Figure 6-4 presents the comparison in XPS Pd 3d region taken from a clean Pd(111),  a 

Pd(111) after 130 minutes methane oxidation at 598 K and a Pd(110) after 130 minutes 

methane oxidation at 598 K. The clean Pd(111) is characterized by the Pd 3d5/2 peak at 

335.0 eV, which is in good agreement with the one in the literature [53].  For Pd(111) 

after 130 minutes methane oxidation, the Pd 3d5/2 peak shifted to a higher binding energy  

by ca. 1.8 eV with new position at 336.8 eV, characteristic of PdO [53].  The Pd 3d5/2 

peak obtained on Pd(111) after methane oxidation did not show broadening compared 

with the Pd 3d5/2 peak obtained on clean Pd(111), indicating that the major compound in 

the surface region was PdO. For Pd(110) after methane oxidation, broadening of Pd 3d5/2 

peak was observed at lower binding energy region. The broadening was contributed by a 

palladium metal peak, indicating that Pd metal was in the detectable range and the oxide 

formation on Pd(110) was slower than on Pd(111). To know how faster the oxidation 

process was on the Pd(111), XPS analysis was performed on Pd(111) after methane 

oxidation for 10 minutes. Comparing with the Pd 3d5/2 peak for Pd(110) after 130 

minutes methane oxidation, the broadening was much smaller for the Pd 3d5/2 peak 

obtained on Pd(111) only after 10 minutes methane oxidation (Figure 6-5). It was 
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unknown whether the metal in the near surface region would affect the methane oxidation 

rate. To compare the kinetics on PdO phas, Pd(110) was first oxidized at 700 K in 160 

Torr O2 for 30 minutes before the methane oxidation experiment started.  No peak 

broadening was observed from the XPS after pre-oxidation, indicating that the only 

compound in the near surface region was PdO.  No pre-oxidation was performed on 

Pd(100) before methane oxidation as the rate of PdO formation on Pd(100) was close to 

the rate on Pd(111). 

The reaction orders for CH4, O2 and H2O were measured on three single crystals at 598 K 

and the activation energy was measured at temperature between 558 K and 623 K.  

Figure 6-6 and Figure 6-7 gives an example of reaction orders and activation energy on 

Pd(110). Each turnover rate on the figure corresponds to one individual experiment in the 

batch reactor. Before each individual experiment, the sample was sputtered and then 

annealed at 973 K for 1 min. The reaction orders and activation energies were 

summarized in Table 6-1. The PdO surface area and the turnover rates were summarized 

in Table 6-2.  

6.3.5 Surface Morphology on Oxide phase 

The surface morphology of oxidized single crystals was studied by STM after methane 

oxidation at 598 K for 60 minutes. The oxide phase on three single crystals presented 

qualitatively similar surface structure with the formation of amorphous or polycrystalline 

PdO (Figure 6-8). This conclusion was also supported by LEED, which did not show 

spots except for bright background. The oxide clusters were in “semi-spherical 
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cauliflower” shape and 10-30 nm in diameter. It is difficult to tell whether the oxide 

clusters grew along any preferential direction due to the aggressive roughening of the 

surface.   

6.3.6 Structure Sensitivity of Reaction on Metal Phase 

The turnover rates, reaction orders and activation energies were measure on Pd metal 

under CSTR mode on Pd foil, Pd(111), Pd(100) and Pd(110). The metallic state was 

confirmed by XPS after quenching the sample inside the reaction mixture (Figure 6-9). 

During the quenching, temperature decreased from 907 K to 600 K in 30 seconds, and to 

520 K in 60 seconds, and then slowly cooled down to room temperature.  

The kinetic results on Pd metal were summarized in Table 6-1. Generally, the reaction 

orders and the activation energy are almost the same on the three single crystals and the 

palladium foil. Reaction order is 0.7 for CH4, 0 for O2 and –1 for H2O, and activation 

energy is in the range of 125 kJ⋅mol-1 to 140 kJ⋅mol-1. After correcting to 2.3 Torr O2, 

0.46 Torr CH4 and 0.05 Torr H2O, the turnover rate was 1.3 s-1 on Pd foil [10], 2.8 s-1 on 

Pd(111), 2.0 s-1 on Pd(110) and  2.2 s-1 on Pd(110) as shown in Table 6-2.  The surface 

area under reaction conditions was assumed to be identical to the geometric surface area 

of the clean metal phase.  
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6.4 Discussion 

The constancy of LEED patterns throughout the study indicates that the original surface 

structure of the three single crystals could be restored even after surface reconstruction 

during methane oxidation.    

The turnover rates obtained in this study on model catalysts are generally higher than the 

turnover rates reported in the literature on supported catalysts and palladium black (Table 

6-3).  For the model catalysts without initial cleaning procedure to remove the surface 

impurities, the turnover rate usually decreased to zero in 1 hour under standard conditions 

(598 K, 160 Torr O2 and 16 Torr CH4). Therefore, surface impurities and support effect 

might be the reasons for the lower turnover rates reported in the literature. 

6.4.1 Reaction Structure Sensitivity on Oxide Phase 

The turnover rates on PdO were similar on all model catalysts studied after correcting to 

the same reaction conditions (Table 6-2). The similar turnover rates indicate that methane 

oxidation is not sensitive to the PdO which grew from metal surface with different 

orientations. 

Only amorphous PdO was observed by STM in this study after methane oxidation 

(Figure 6-8).  However, high resolution TEM (HRTEM) studies by Datye et al. [37] and 

Lyubovsky et al. [125] and In-situ Raman studies by Su et al. [126] suggested the 

simultaneous growth of crystalline PdO during catalytic CH4 combustion.  However, thin 
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layers of amorphous PdO was observed by HRTEM covering on the surface of PdO 

crystals [37, 125].  Su et al. [126] found that amorphous PdO formed at first, and then it 

transformed to crystalline PdO. The rate of transformation accelerated at higher 

temperatures. These results indicate that amorphous PdO was more readily formed than 

crystalline PdO, and the transformation from amorphous PdO to crystalline PdO had to 

overcome an activation barrier. This is reasonable by thinking the Pd atom density in the 

oxide is only 60% of the density in the metal structure and a major lattice expansion 

should occur during PdO formation.  In summary, it could be possible that crystalline 

PdO was formed during methane oxidation, but was covered by a thin layer of 

amorphous PdO.  In this case, STM could only reflect the amorphous layer, but HRTEM 

and Raman could detect the crystalline PdO in the sublayer.  Since the structure of the 

surface PdO, not the bulk PdO, affects the methane oxidation, it becomes trivial to know 

whether there was crystalline PdO formed in the bulk.  As long as the surface oxide is 

amorphous, the rate of methane oxidation would not be different on different metal 

substrate.  Even if there were small domains of crystalline PdO on the surface that STM 

did not identify, theses PdO would not make major contribution to methane oxidation 

because the amount of defects was overwhelming comparing with the amount of 

crystalline PdO on the surface.  

Garbowski et al. [42] proposed that crystal planes with low atom density, like Pd(110) 

and Pd(100), were able to form PdO in a near epitaxial structure with the sublayer metal.  

If the metal itself is also in epitaxy with the support, there is no need for reorganization of 

the sublayer metal structure.  On the other hand, for planes with high atom density, such 

as Pd(111) plane, are not related to a square structure, thus catalytic activity, (i.e., 
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oxidation and reduction of the surface) cannot occur without profound metal 

reorganization.  This issue did not occur when the oxide was thermodynamic stable phase 

such as the case in this study.  A thick layer of oxide was either formed in the first few 

minutes of reaction (Pd(111) and Pd(100)), or created before reaction (Pd(110)).  The 

methane oxidation afterwards was performed on thick amorphous oxide instead of 

monolayer PdO on top of Pd crystal. When such thickness of PdO on top of metal phase, 

the lattice structure advantages of Pd(110) and Pd(100) do not exist any more.  

6.4.2 Reaction Structure Sensitivity on Metal Phase 

The turnover rates on Pd metal phase are close to each other after corrected to same 

conditions (Table 6-2), indicating that methane oxidation is not sensitive to the original 

metal surface orientations.  

Here we use Pd(110) as an example to calculate what species could be on the surface 

during reactions.  For the heat of O2 adsorption on Pd(110), Ertl et al. [58] reported 80 

kcal mol-1 when the coverage reached some point where LEED image gave a (1x3) 

pattern; 77 kcal mol-1 for a (1x2) pattern; 62 kcal mol-1 for a c(2x4) pattern and 48 kcal 

mol-1 for a c(2x6) pattern.  The heat of adsorption was obtained using Clausius-Clapeyron 

equation assuming a LEED pattern corresponds to same saturated oxygen coverage at 

different temperatures.  A saturated coverage of 0.23 ML was reported for the (1x3) 

LEED pattern [59] and 0.48-0.5 ML for c(2x4) LEED pattern [59, 60].  Jo et al. [61] 

believed that the (1x3) and (1x2) LEED patterns observed by Ertl et al. [58] corresponds 

to the streaky pattern they observed with coverage between (2x3)-1D and c(2x4).  A 
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coverage of 0.2 ML for the (2x3)-1D pattern and a coverage of 0.3 ML were reported for 

the streaky pattern [62]. For Ni(110), which has the same crystal structure and has the 

same surface atom orientation as Pd(110), a coverage of 0.33-0.35 ML was reported  for 

the (2x1) pattern [63, 64].  Considering the same LEED patterns correspond to same 

saturated coverage of oxygen as long as the single crystals have the crystal same structure 

and surface orientation, the streaky LEED pattern reported on Pd(110) might be the (1x2) 

pattern observed by Ertl et al. [58]. Thus, the coverage of 0.3 ML for the streaky pattern 

could be used for the corresponding oxygen coverage for (1x2) LEED pattern.  The 

c(2x6) LEED pattern was observed in our lab with the coverage in the range of 0.6-0.7 

ML.  On Rh(110), the oxygen coverage for the structure of c(2x2n) (n=3, 4 and 5) was 

proposed to be (n-1)/n [65], which agrees well with experimental results. Considering 

Rh(110) and Pd(110) have same crystal structure and surface orientation, the c(2x6) on 

Pd(110) should correspond to the same oxygen coverage of 0.67 ML.  In summary, the 

heat of adsorption at corresponding coverage is 80 kcal mol-1 at 0.23 ML, 77 kcal mol-1 at 

0.30 ML, 62 kcal mol-1 at 0.50 ML and 48 kcal mol-1 at 0.67 ML. With those four sets of 

data, the equilibrium pressure at our experiment temperature (973 K) with certain oxygen 

coverage could be obtained using Clausius-Clapeyron equation. Using empirical equation 

of Freundlich, the equilibrium oxygen pressure was found to be 0.8 Torr for 1 ML 

coverage at 973 K by extrapolating from the available equilibrium pressure at other 

coverage. Thus, from the thermodynamic point of view, the surface of Pd(110) should be 

mostly covered by adsorbed oxygen at 973 K when exposing to 2.3 Torr O2.   
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One concern is whether the oxygen adsorption rate could surpass the methane adsorption 

rate under reaction conditions so that thermodynamically favored situation mentioned 

above could be reached.  At temperature between 273 K and 673 K, the sticking 

probability of oxygen on Pd(110) was about 1 at zero coverage, and dropped to 0.1 at 

coverage about 0.5 ML [66].  The sticking probability at 973 K with coverage less than 

0.5 ML was found greater than 0.1 by extrapolating the sticking probability at lower 

temperature. The initial sticking probability of methane on Pd(110) was found to increase 

exponentially with the average translational energy of methane which was calculated as: 

gp
h TC

M
m

E =  

Where is the molecular mass of heavy species, hm pC  is the average heat capacity of the 

gas mixture, and M  is the average molecular mass of the gas mixture[67, 68].  

Meanwhile, The initial sticking probability was also found to increase strongly with 

methane molecule vibrational energy, but increase weakly with solid phase temperature 

[67-69].  The gas phase temperature during experiment could not be precisely determined 

but was estimated in the range between 600 K and 973 K. The average translational 

energy was then between 22 kJ mol-1 and 31 kJ mol-1 based on the fact that N2 was the 

majority composition of gas mixture (>90 vol%) and also the heavy species.  The initial 

sticking probability was, therefore, in the range of 3*10-4 to 3*10-3 assuming it did not 

change with solid phase temperature. The sticking probability of methane on Pd(110) 

decreased linearly with oxygen coverage [68], 

)1()( 0,00 αθθ −= tottot SS  

Where  α has value about 2.3 
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Stot is the sticking probability of methane at oxygen coverage of θ0 

S0,tot is the sticking probability of methane at oxygen coverage of 0 

 

Based on these facts, the sticking probability of oxygen should be at least two orders of 

magnitude higher than the sticking probability of methane even with 0.5 ML oxygen 

coverage. Though the sticking probability of oxygen continues to drop as coverage 

increases, the large difference between the sticking probability of oxygen and methane 

indicate that oxygen adsorption rate should still surpass methane adsorption rate at a 

oxygen coverage higher than 0.5 ML.  Thus, from the kinetic point of view, the Pd(110) 

surface should be mostly covered by adsorbed oxygen under reaction conditions. The 

similar turnover rates on the three single crystals and the Pd foil indicate that the same 

situation occurred on the surface of the other single crystals and the Pd foil. 

Methane dissociation is regarded as the rate-determining step for methane oxidation on 

metal phase. Since methane oxidation is structure insensitive to the original surface 

orientation, methane dissociation should be structure insensitivity to the original surface 

orientation. Methane dissociation on clean metal Pd was reported as structure sensitive 

reaction [67, 68, 127-129]. Calculation showed that the dissociation barrier for 

CH4 CH3+H is 0.66eV for flat Pd(111), 0.38eV for step on Pd(111) and 0.41 for kink 

on Pd(111)[129].  Since the metal surface was covered by adsorbed oxygen under 

reaction conditions, methane dissociation should occur predominantly on Pd sites bonded 

with oxygen instead of bare metal sites, which agrees with the reaction order of near zero 

for oxygen. Oxygen adsorption on palladium single crystals could modify the surface 

structure at low temperature [50, 112]. The similar turnover rates on Pd(111), Pd(100) 
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and Pd(110) indicate that modified surfaces have the same chemical properties toward 

methane dissociation.  

6.5 Conclusion 

Catalytic methane oxidation on palladium was insensitive to the original surface 

orientation, when both PdO and Pd metal were the thermodynamic stable phases. Study 

of the oxide surface morphology by STM revealed qualitatively similar surface structure 

with the formation of amorphous PdO even though the initial metal structure of Pd(111), 

Pd(100) and Pd(110) was quite different, which explains the similar turnover rates on the 

oxide which grew from different crystal phases. Estimated calculation suggests that under 

reaction conditions, the metal phase should be fully covered by chemisorbed oxygen. The 

oxygen-covered surface should have the same chemical properties for methane oxidation, 

even though the underneath crystal structure is different. 
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Table 6-1 

(a) Activation Energy for Catalytic Methane Combustion 
On PdO On Pd 

Catalyst Temp Range 

(K) 

Ea 

(kJ mol-1) 

Temp Range 

(K) 

Ea 

(kJ mol-1) 

Pd foil 558-623 125 933-1003 125 

Pd(111) 558-623 136 928-978 127 

Pd(100) 558-623 121 928-978 127 

Pd(110) 558-623 154 928-978 140 

 

(b) Reaction Orders for Catalytic Methane Combustion 
On PdO On Pd 

Reaction Orders Reaction Orders Catalyst Temp 

(K) CH4 O2 H2O 

Temp 

(K) CH4 O2 H2O 

Pd foil 598 0.7 0.2 -0.9 973 0.7 0.0 0.0 

Pd(111) 598 0.7 0.0 -1.1 953-973 0.7 -0.15 0.0 

Pd(100) 598 0.8 0.1 -0.1 953 0.9 0.0 0.0 

Pd(110) 598 0.7 0.26 -1.0 953-973 0.9 -0.1 0.0 
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Table 6-2: Turnover Rates on Model Catalysts 

On PdO On Pd  

Catalyst Surface Area by 18O2 
exchange (cm2/cm2) 

Surface Area by 
STM (cm2/cm2) 

TORa 

(s-1) 

TORb 

(s-1) 

Pd foil 2.2 N/A 2.5 1.3 

Pd(111) 2.6 3.2 2.8 2.8 

Pd(100) 2.0 2.2 4.7 2.0 

Pd(110) 1.9 1.6 1.3 2.2 
acorrected to 598 K, 160 Torr O2, 16 Torr CH4 and 1 Torr H2O 

bcorrected to 973 K, 2.3 Torr O2, 0.46 Torr CH4 and 0.05 Torr H2O 
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Table 6-3 Summary of Turnover Rates from Literature 
Reaction Order 

Catalyst Particle 
Size (nm) 

Activation 
Energya 

(kJ mol-1) CH4 O2 H2O 

TORb 

(s-1) 
Reference 

Pd black 10 135 0.7 0.1 -0.8 0.5d [10] 

Pd/Si-Al2O3 2.6-6.2 170-184 - - -1.0 0.1e [8] 

Pd/Al2O3 49-134 150 - - - 0.07-0.16e [8] 

Pd/ZrO2 4.3-81 170 - - - 0.1-0.7e [8] 

Pd/ZrO2 3-9 185 1.1 0.1 -1.0 0.5-3.0e [43] 

Pd/ZrO2 5.5-12.5 N/A - - - 0.3e [45, 71] 
a Assuming reaction order for water is –1, the activation energy was corrected for the water inhibition 
effect. 

bTOR calculated at 598 K, 16 Torr CH4, 1 Torr H2O, and N2 balanced to 800 Torr.  Reaction orders were 
assumed to be 1 for CH4, 0 for O2 and –1 for H2O 
cSurface area measured from 18O2 exchange 
dNumber of sites measured from BET surface area (47 m2g-1) 
e For plug flow reactor, partial pressures for reactants and products are the average of values of inlet and 
exit concentration  
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Figure Captions: 

 
Figure 6-1 Methane conversion as a function of reactants circulation rate at 863 K with 

1.5 Torr O2, 0.38 Torr CH4 and inert gases balanced to atmospheric pressure 

Figure 6-2 Schematic Drawing of Atom Orientation on (a)Pd(111) (b)Pd(100) (c)Pd(110) 

Figure 6-3 LEED patterns for (a) bare Pd(111) surface (b) bare Pd(100) surface (c) bare 

Pd(110) surface 

Figure 6-4 XPS core level scan on clean Pd(111), Pd(111) and Pd(110) after methane 

oxidation at 598 K for 130 minutes 

Figure 6-5 XPS core level scan of Pd3d5 after methane oxidation at 598 K 

Figure 6-6 Reaction Order dependence for Pd(111) on methane (10-32 Torr CH4, 160 

Torr O2, N2 balanced to 800 Torr), oxygen ( 80-320 Torr O2, 16 Torr CH4, 

N2 balanced to 800 Torr), and water (4-8 Torr H2O, 160 Torr O2, 16 Torr 

CH4, N2 balanced to 800 Torr) 

Figure 6-7 Arrhenius plot for the combustion of CH4 over Pd(110) at 16 Torr CH4, 160 

Torr O2 and N2 balanced to 800 Torr. The apparent activation energy was 

150 kJ mol-1 

Figure 6-8  STM images of (a) Pd(111) after CH4 oxidation in 16 Torr CH4, 160 Torr O2 

and 624 Torr N2, at 600 K for 60 min. (b) Pd(110) after CH4 oxidation in 16 

Torr CH4, 160 Torr O2 and 624 Torr N2, at 600 K for 60 min. (c) Pd(100) 
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after CH4 oxidation in 16 Torr CH4, 160 Torr O2 and 624 Torr N2, at 600 K 

for 60 min. The sample bias is 0.1-1 V, the tunneling current is 0.5 nA 

Figure 6-9 Comparison of XPS Pd3d core level scan of clean metal foil, foil after lean 

reaction at 903 K with 0.76 Torr O2, 0.15 Torr CH4 and inert gases (N2 and 

He) balanced to atmospheric pressure. 
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Figure 6-1 Methane conversion as a function of reactants circulation rate at 863 K with 
1.5 Torr O2, 0.38 Torr CH4 and inert gases balanced to atmospheric pressure 
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    (a)    (b)    (c) 

Figure 6-2 Schematic Drawing of Atom Orientation on (a)Pd(111) (b)Pd(100) 
(c)Pd(110) 
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Figure 6-3 LEED patterns for (a) bare Pd(111) surface (b) bare Pd(100) surface (c) 

bare Pd(110) surface 
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Figure 6-4 XPS core level scan on clean Pd(111), Pd(111) and Pd(110) after methane 
oxidation at 598 K for 130 minutes 
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Figure 6-5 XPS core level scan of Pd3d5 after methane oxidation at 598 K 
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Figure 6-6 Reaction Order dependence for Pd(111) on methane (10-32 Torr CH4, 
160 Torr O2, N2 balanced to 800 Torr), oxygen ( 80-320 Torr O2, 16 Torr CH4, N2 
balanced to 800 Torr), and water (4-8 Torr H2O, 160 Torr O2, 16 Torr CH4, N2 
balanced to 800 Torr) 
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Figure 6-7 Arrhenius plot for the combustion of CH4 over Pd(110) at 16 Torr CH4, 
160 Torr O2 and N2 balanced to 800 Torr. The apparent activation energy was 150 

kJ mol-1 
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                                   (a) 

 
                                    (b) 

 
(c) 

 

 
Figure 6-8  STM images of (a) Pd(111) after CH4 oxidation in 16 Torr CH4, 160 Torr 

O2 and 624 Torr N2, at 600 K for 60 min. (b) Pd(110) after CH4 oxidation in 16 Torr 

CH4, 160 Torr O2 and 624 Torr N2, at 600 K for 60 min. (c) Pd(100) after CH4 

oxidation in 16 Torr CH4, 160 Torr O2 and 624 Torr N2, at 600 K for 60 min. The 

sample bias is 0.1-1 V, the tunneling current is 0.5 nA  
 
 
 
 
 
 
 
 
 

 147



 

350 345 340 335 330 325 320

 clean foil
 reaction at 903 K335.0

Si
gn

al
 In

te
ns

ity

Binding Energy / eV

 

Figure 6-9 Comparison of XPS Pd3d core level scan of clean metal foil, foil after 
lean reaction at 903 K with 0.76 Torr O2, 0.15 Torr CH4 and inert gases (N2 and He) 
balanced to atmospheric pressure.  
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