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Abstract

We propose the use of the scalar, fifth-order Hermite interpolation polyno-
mial in the Finite Element Method as an alternative to the vector finite
element approach to solutions of Maxwell’s equations in two dimensions. We
analyzed the behavior of electromagnetic waves in homogeneous waveguides
and inhomogeneous waveguides. As with vector finite elements, we are able
to suppress the spurious solutions by appropriately setting the boundary con-
ditions at interfaces. However with the derivative continuity provided by the
quintic Hermite shape functions , we are able to provide greater accuracy than
the vector finite element of equal polynomial order. Our scheme therefore
has proven successful in calculations involving electromagnetic fields while at
the same time providing better results than standard methods.
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Chapter 1

Introduction

The idea of guiding electromagnetic waves along conducting rods have been
of interest for a long time. As early as 1899, Sommerfeld thought of guiding
magnetic waves along a circular conducting wire [1]. With the advent of
digital computation it became possible to consider problems with waveguide
geometries and characteristics that had no closed-form analytical solutions.
In particular, the numerical simulation of electromagnetic waves in the mi-
crowave frequencies attracted much interest from their use in transmitters
and receivers of radio waves.

The Theory of Electromagnetic theory was developed by Faraday and
Maxwell as early as the 19th century. Shortly afterwards the theory was
verified experimentally by Hertz and the study of electromagnetic waves
or the study of light became of increasing interest among physicists. Al-
though the earlier works were concentrated on transmission of electrical sig-
nals of low frequency, many breakthroughs were made: of which, works from
the like of Oliver Heaviside have contributed to the development of modern
transmission-line theory [2]. In 1897, Lord Rayleigh presented an extensive
study of the propagation of electromagnetic waves and in particular of propa-
gation in cylindrical waveguides which highlighted the limitations of electro-
magnetic fields in propagation [3]. Lord Rayleigh realized that propagation
only occurred above a cutoff frequency of propagation which was dependent
on the cross-sectional dimension. Such allowed wave propagation was there-
fore of relatively high frequencies and was hard to reproduce on a practical
scale, hindering much of the research in waveguides. Rayleigh’s work was
then revived by the likes of G. Southworth [4] and W. Barrow [5] more than
40 years later with advances in emission of waves. The development of the
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magnetron during World War II provided the technology required for a reli-
able source of emission of radio waves. Subsequently, works by Schwinger and
Marcuvitz laid down the foundation for numerical simulation of waveguides
with an intergral equation formulation of the problem [6].

However as early as the 1970s, it was known that solving Maxwell equa-
tions numerically gave rise to solutions with no physical counterparts [7]. In
particular these solutions seemed to not obey the divergence conditions of the
electric and magnetic fields. These erratic solutions were thus called spurious
solutions. Extensive research to eliminate those non-physical solutions was
then carried out [8] [9]. One such attempt was carried out using the “penalty
method” [10] [11]. The penalty method introduces a term in the calculation
that force the solutions to obey the divergence condition of the field. However
this method require also the use of penalty factor together with the above
term. However the penalty method required a proper choice of the penalty
factor to be first identified to obtain correct solutions. Too small and too
large choices for the penalty are not able to completely eliminate spurious
solutions.

After numerous unsatisfactory results, the vector finite element method
was proposed [12] [13]. The vector finite element method make use of the
so-called edge elements. The edge elements are able to ensure the continuity
of the tangential components of the field across interfaces. By satisfying the
tangential boundary conditions, the spurious solutions are effectively elimi-
nated [14]. However while the edge elements are able to satisfy tangential
continuity across interfaces, they do not ensure the continuity of the normal
components of the fields. This lack of constraint on the normal fields leads
to “pixelated” solutions at the edges of the elements.

We propose the use of an alternative set of polynomial basis functions,
the scalar fifth-order Hermite interpolation polynomials for the numerical
calculations of electromagnetic fields. We solve the Maxwell’s equations in
two dimensions using the finite element method. In our approach, each
of the component of the field is represented by the scalar Hermite shape
functions. The Hermite shape functions allow us to ensure C2-continuity
along the boundaries as well as C1-continuity across the boundaries: thus
eliminating spurious solutions and allowing for more accurate solutions across
elements.

Furthermore the scalar formulation of our approach offers more flexibil-
ity in our calculations as compared with vector finite elements. For instance,
we are, in principle, able to consider coupled Schrödinger-Maxwell problems
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using a multi-physics formulation.
In the next chapter, we first go through the derivation of Hermite In-

terpolation Polynomials which we chose as our set of basis function for our
FEM approach. In the following chapters, we give an account of the physics of
homogeneous waveguides and inhomogeneous waveguides. We then present
solutions obtained from our FEM formulation and contrast with these stan-
dard results in literature.
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Chapter 2

Fifth-order Hermite

Interpolation Polynomials

2.1 Derivation of the Hermite Interpolation

Polynomials on the Standard Triangle

In our Finite Element Method, we seperate the domain in which we are
interested into smaller elements. In 2-d, we choose triangles as our smaller
elements as it is possible to replicate most shapes that the domain takes
accurately as long as the elements are small enough i.e. with sufficiently
dense meshes.

We therefore derive the Hermite shape functions for the standard tri-
angle, shown in Fig.2.1. In the standard triangle, the nodal coordinates are
specified as (ξ0, η0), (ξ1, η1), (ξ2, η2).

Figure 2.1: Standard Triangle
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Our aim is to derive a set of 18 polynomials corresponding to 3 sets of
6 functions satisfying the following conditions

N
(0)
i (ξj, ηj) = δijδk,0 ,

∂N
(ξ)
i (ξ, η)

∂ξ

∣

∣

∣

∣

∣

(ξj ,ηj)

= δijδk,ξ ,

∂N
(η)
i (ξ, η)

∂η

∣

∣

∣

∣

∣

(ξj ,ηj)

= δijδk,η ,

∂2N
(ξξ)
i (ξ, η)

∂ξ2

∣

∣

∣

∣

∣

(ξj ,ηj)

= δijδk,ξξ ,

∂2N
(ξη)
i (ξ, η)

∂η∂ξ

∣

∣

∣

∣

∣

(ξj ,ηj)

= δijδk,ξη ,

∂2N
(ηη)
i (ξ, η)

∂η2

∣

∣

∣

∣

∣

(ξj ,ηj)

= δijδk,ηη . (2.1)

So, the values and first and second derivatives of shape function N0

are 0 at all nodes except node 0, where its value is 1, and the values and
derivatives of shape function N

(ξ)
0 is 0 at all nodes except node 0 where its ξ

derivative is 1.
We now develop a set of polynomials with 18 terms in which the first

15 basis term comes from the Pascal triangle

< 1; ξ η; ξ2 ξη η2; ξ3 ξ2η ξη2 η3;

ξ4 ξ3η ξ2η2 ξη3 η4 > (2.2)

and the last three are chosen to be ξ5 − 5ξ3η2, ξ2η3 − ξ3η2, and η5 − 5ξ3η2,
such that the normal derivative along the edges will be cubic in ξ and η. The
shape functions are then just linear combinations of these basis functions.
Then from the set of restrictions on the shape functions defined in Eq. (2.1)
, we have 182 equations which we can put into the following 18× 18 matrix
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form




















a0 b0 . . . r0
a
(ξ)
0 b

(ξ)
0 . . . r

(ξ)
0

a
(η)
0 b

(η)
0 . . . r

(η)
0

a
(ξξ)
0 b

(ξξ)
0 . . . r

(ξξ)
0

...
...

. . .
...

a
(ηη)
2 b

(ηη)
2 . . . r

(ηη)
2







































1 0 . . . 0
ξ0 1 . . . 0
η0 0 . . . 0
ξ20 2ξ0 . . . 0
...

...
. . .

...
η50 − 5ξ30η

2
0 −15ξ20η

2
0 . . . 20η32 − 10ξ32



















= I.

(2.3)

It follows directly from the above matrix equation that the coefficient matrix
is just the inverse of the matrix formed by explicitly calculating the values
of the sets of the basis functions and their derivatives at each node. With
the coefficient matrix we then obtain the complete set of shape functions by
multiplying them into the basis functions.

2.2 Transformation of the Standard Polyno-

mials to an arbitrary triangle

In meshing the region concerned in FEM calculations, the triangles used
are rarely isosceles right-angled triangles but can take arbitrary forms. We
therefore require shape functions for interpolation over arbitraty triangles
compared to our previously derived shape functions for standard right angle
triangles. In order to generalize the shape functions for the arbitrary triangle,
we look at the transformation from the standard triangle to the arbitrary one.

Let ξ and η be the variables of the local coordinate system of the
standard triangle and let x and y be the global coordinate variables of the
arbitrary triangle. Also let xi, yi for i = 0, 1, 2 denote the vertex coordinates
for the arbitrary triangle.

Using the set of linear shape functions for triangles

N0(ξ, η) = 1− ξ − η ,

N1(ξ, η) = ξ ,

N2(ξ, η) = η . (2.4)
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we can write the global coordinates in terms of the local coordinates

x = x0N0 + x1N2 + x2N2

y = y0N0 + y1N2 + y2N2 (2.5)

Written in matrix form, we then obtain the transformation matrix from the
local coordinate system to the global one

[

x− x0

y − y0

]

=

[

x1 − x0 y1 − y0
x2 − x0 y2 − y0

] [

ξ
η

]

. (2.6)

It then follows that the inverse transformation from the arbitrary to the
standard triangle is obtained by pre-multiplying both side with the inverse of
the linear transformation matrix. By then observing that the transformation
matrix is none other than the Jacobian matrix

J =









∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η









(2.7)

We can obtain equations for the partial derivatives of the local variables
with respect to the global ones in terms of the partial derivatives of the
global coordinates with respect to the local ones. Taking the determninant
of the J, we have

|J| = ∂x

∂ξ
· ∂y
∂η

− ∂x

∂η
· ∂y
∂ξ

(2.8)

we then have

∂ξ

∂x
=

1

|J| ·
∂y

∂η
;

∂ξ

∂y
= − 1

|J| ·
∂x

∂η
;

∂η

∂x
= − 1

|J| ·
∂y

∂ξ
;

∂η

∂y
=

1

|J| ·
∂x

∂η
. (2.9)

This set of equalities will prove useful when trying to obtain the shape func-
tions for the global variables.

2.3 Evaluation of the Polynomial Values and

Derivatives

In the above sections we obtained the shape functions for the standard tri-
angle and also went over the transformation from any arbitrary triangle to
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the standard triangle. In this section we will go over the steps to obtain
the proper shape functions in the global coordinates system from the local
coordinates system. First of all we observe that for the interpolation of a
function in the local coordinates system we have the following equation

f(ξ, η) =
∑

i

(

fiNi + f ′

i,ξN
(ξ)
i + f ′

i,ηN
(η)
i +

f ′′

i,ξξN
(ξξ)
i + f ′′

i,ξηN
(ξη)
i + f ′′

i,ηηN
(ηη)
i

)

(2.10)

However in most cases, we are actually working with arbitrary triangles
in a global coordinates system (x, y) . Therefore we are interested in f(x, y)
rather than f(ξ, η). Analogous to the previous equation we expect something
like

f(x, y) =
∑

i

(

fiMi + f ′

i,xM
(x)
i + f ′

i,yM
(y)
i +

f ′′

i,xxM
(xx)
i + f ′′

i,xyM
(xy)
i + f ′′

i,yyM
(yy)
i

)

(2.11)

where the set of shape functions M
(
i j) are polynomials in x and y.In order

to obtain these shape functions we look at the effect of differentiating the
functions with respect to the local coordinates. Using the chain rule the first
derivatives would yield

∂f

∂ξ
=

∂f

∂x

∂x

∂ξ
+

∂f

∂y

∂y

∂ξ
∂f

∂η
=

∂f

∂x

∂x

∂η
+

∂f

∂y

∂y

∂η
(2.12)

Similarly for the 2nd derivatives we have

∂2f

∂ξ2
=

∂2f

∂x2

(

∂x

∂ξ

)2

+ ·2 ∂2f

∂x∂y

(

∂y

∂ξ
· ∂y
∂ξ

)

+
∂2f

∂y2

(

∂y

∂ξ

)2

∂2f

∂ξ∂η
=

∂2f

∂x2

(

∂x

∂ξ
· ∂x
∂η

)

+
∂2f

∂x∂y

(

∂x

∂ξ
· ∂y
∂η

+
∂x

∂η
· ∂y
∂ξ

)

+
∂2f

∂y2

(

∂y

∂ξ
· ∂y
∂η

)

∂2f

∂η2
=

∂2f

∂x2

(

∂x

∂η

)2

+ 2 · ∂2f

∂x∂y

(

∂y

∂η
· ∂y
∂η

)

+
∂2f

∂y2

(

∂y

∂η

)2

(2.13)
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From the previous sets of equation and together with the fact that the
function value should be the same in both coordinate systems, we obtain the
following matrix equation

















f
f ′

ξ

f ′

η

f ′′

ξξ

f ′′

ξη

f ′′

ηη

















=



















1 0 0 0 0 0

0 ∂x
∂ξ

∂y

∂ξ
0 0 0

0 ∂x
∂η

∂y

∂η
0 0 0

0 0 0 (∂x
∂ξ
)2 2∂x

∂ξ

∂y

∂ξ
(∂y
∂ξ
)2

0 0 0 ∂x
∂ξ

∂x
∂η

∂y

∂ξ
∂x
∂η

+ ∂x
∂ξ

∂y

∂η

∂y

∂ξ

∂y

∂η

0 0 0 (∂x
∂η
)2 2∂x

∂η

∂y

∂η
(∂y
∂η
)2



































f
f ′

x

f ′

y

f ′′

xx

f ′′

xy

f ′′

y

















. (2.14)

By then substituting these sets of equations in Eq. (2.10) we obtain the
following relation

{M(x, y)}i = {N(ξ, η)}i ·T (2.15)

where T is the transformation matrix obtained above and Mi is the set
of shape functions associated with the ith node in the global coordinates.

Now that we have showed how to carry out the interpolation of a func-
tion over any triangle, we now turn to the interpolations of the derivatives
of that same function. In order to do so, we write the different differential
operators with respect to x and y in terms of the local coordinates ξ and η.
As an example we look at the differential operator for x-derivatives. Using
the chain rule we obtain

Dx =
∂ξ

∂x
Dξ +

∂η

∂x
Dη (2.16)

where for instance Dx is the operator corresponding to taking the derivative
with respect to x. In a similar way for the differential operator of double
derivative with respect to x first and then y, we have

Dxy =

(

∂ξ

∂x
· ∂ξ
∂y

)

Dξξ +

[(

∂ξ

∂x
· ∂η
∂y

)

+

(

∂ξ

∂y
· ∂η
∂x

)]

Dξη

+

(

∂η

∂x
· ∂η
∂y

)

Dηη (2.17)

Following the same procedure, we can find the different differential operators
with respect to the global coordinates in terms of their local counterparts
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and by then applying them to the ‘scaled’ interpolation polynomials for the
functions, we obtain the proper interpolation polynomials for the derivatives
in the global coordinates.

In the next chapter, we look at the homogoneous waveguides and using
the shape functions derived in this chapter, we solve for the allowed modes
of propagations in an FEM scheme.
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Chapter 3

Fields in a Conducting

Homogeneous Waveguides

3.1 The Equations of Motion for E and H

Fields

The electromagnetic fields in a waveguide are evaluated with the finite
element method using Hermite interpolation polynomials. While the FEM
allows us to consider a waveguide of arbitrary cross-section, we consider the
prototypical rectangular waveguide as an example to investigate the perfor-
mance of Hermite FEM. We shall assume that the waves propagate in the
longitudinal direction, labeled the z-direction, as shown in Fig. (3.1).
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X

Y

Z

Figure 3.1: A rectangular waveguide, with waves propagating in the z-
direction. The walls are assumed to be perfect conductors.

To calculate the electric and magnetic fields propagating through a
waveguide, we begin with Maxwell’s equations, in MKS units,

∇ ·D = ρ, (3.1)

∇×H− ∂D

∂t
= J, (3.2)

∇× E+
∂B

∂t
= 0, (3.3)

∇ ·B = 0. (3.4)

In the above, we express D and B in terms of the electric and magnetic fields
E and H,

D = ǫE, B = µH. (3.5)

If the medium is isotropic, the quantities ǫ and µ will be scalar quanti-
ties, rather than second-rank tensors. Let us define the dimensionless quan-
tities ǫr and µr so that

ǫ = ǫrǫ0, µ = µrµ0, (3.6)

where ǫ0 and µ0 are the permittivity and permeability of free space, respec-
tively.

In waveguide problems, we are usually concerned with time harmonic elec-
tromagnetic waves propagating through the waveguide with a known wave

12



number. Therefore we expect the electric and magnetic fields to have the
forms

E = Eo(x, y)e
i(kzz−wt), (3.7)

H = Ho(x, y)e
i(kzz−wt). (3.8)

Note that, for the perfect conductor at the periphery of the waveguide,
we set the current J equal to zero. Taking the time derivatives of Eqs. (3.7-
3.8) and substituting the results into Eqs. (3.2-3.3), we obtain

H = − i

µω
∇×E, (3.9a)

E =
i

ǫω
∇×H. (3.9b)

To perform finite element analysis on waves propagating through the
waveguide, it is convenient to use Maxwell’s equations to define an action
integral. Such an integral can be discretized within the framework of the
FEM. The fields are represented by Hermite interpolation polynomials on
triangles, multiplied by the values of the fields and their derivatives at the
vertices (nodes) of the triangle. The integration of the action can now be
performed over spatial variables to obtain the discretized action in terms of
the nodal parameters. Then a variation with respect to the nodal parame-
ters, the principle of stationary action, yields a matrix equation of motion
that is solved numerically to obtain solutions to the waveguide problem.

The Lagrangian density can be obtained either by substituting Eq. (3.9a)
into Eq. (3.9b) or vice versa. Substitution of Eq. (3.9a) into Eq. (3.9b) yields

E =
i

ǫω
∇×

(

− i

µω
∇×E

)

, (3.10)

which simplifies to

∇×
(

1

µ
∇×E

)

− ω2ǫE = 0. (3.11)

We can relate the frequency to the wave vector k0 by the relationships

ǫ0µ0 =
1

c2
, (3.12)

ω

c
= k0, (3.13)
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so that Eq. (3.11) becomes

∇×
(

1

µrµ0
∇× E

)

−
(

k2
0

ǫ0µ0

)

ǫrǫ0E = 0. (3.14)

Factoring out µ0, we obtain

∇×
(

1

µr

∇×E

)

− k2
0ǫrE = 0. (3.15)

Instead of the electric field formulation, we may express the governing
equation exclusively in terms of H by substituting Eq. (3.9b) into Eq. (3.9a),
yielding

H = − i

µω
∇×

(

i

ǫω
∇×H

)

, (3.16)

which simplifies to

∇×
(

1

ǫ
∇×H

)

− ω2µH = 0. (3.17)

Again invoking Eqs. (3.12-3.13) we obtain

∇×
(

1

ǫrǫ0
∇×H

)

−
(

k2
0

ǫ0µ0

)

µrµ0H = 0. (3.18)

Now factoring out ǫ0, we obtain

∇×
(

1

ǫr
∇×H

)

− k2
0µrH = 0. (3.19)

Next we investigate Eq. (3.15) and Eq. (3.19), observing that either equa-
tion may be used to set up the action integral.

In order to define the Lagrangian density used in the action integral, we
use the vector identity

∇ · (P×R) = ǫijk (∂iPj)Rk − Pjǫjik∂iRk

= (∇×P) ·R−P · (∇×R) .
(3.20)
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Now let R = α∇×Q. Then from Eq. (3.20),

∇ · (P× (α∇×Q)) = (∇×P) · (α∇×Q)−P · (∇× (α∇×Q)) . (3.21)

This leads to the integrals

∫

V

d3r∇ · [P× (α∇×Q)] =

∫

V

d3r (∇×P) · (α∇×Q)

−
∫

V

d3rP · [∇× (α∇×Q)] .

(3.22)

The left side can be reduced to a surface integral by Gauss’s Theorem, so we
have

∫

V

d3rP · [∇× (α∇×Q)] =

∫

V

d3r (∇×P) · (α∇×Q)

−
∮

S

dsn̂ · [P× (α∇×Q)] .

(3.23)

We can now set Q = H, P = H∗, and α = ǫ−1
r to obtain

∫

V

d3rH∗ ·
[

∇× 1

ǫr
(∇×H)

]

=

∫

V

d3r (∇×H∗) · 1
ǫr

(∇×H)

−
∮

S

dsn̂ ·
[

H∗ × 1

ǫr
(∇×H)

]

.

(3.24)

Note that, since

P · (Q×R) = Q · (R×P) = R · (P×Q) , (3.25)

the surface term may be rewritten as

n̂ ·
[

H∗ × 1

ǫr
(∇×H)

]

= −H∗ ·
[

n̂× 1

ǫr
(∇×H)

]

. (3.26)

For time-harmonic fields, it has been shown in Eq. (3.9b) that E is propor-
tional to ǫ−1

r (∇×H). Assuming the waveguide to be constructed of a per-
fectly conducting material, one of the boundary conditions is that n̂×E = 0.
Thus, the surface term in Eq. (3.24) is exactly zero.

Suppose, instead of a perfect electric conductor, that we have a magnetic
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wall at the waveguide boundary. In this case the relevant boundary condition
is n̂×H = 0. In this case we may write the surface term as

n̂ ·
[

H∗ × 1

ǫr
(∇×H)

]

=
1

ǫr
(∇×H) · [n̂×H∗] . (3.27)

Since n̂×H∗ = 0, the surface term once again vanishes.

Note that it is possible to work instead with the electric field formulation
of Eq. (3.15). In this case, the surface term takes the form

∮

S

dsn̂ ·
[

E∗ × 1

µr

(∇×E)

]

. (3.28)

Note that, regardless of whether the perfect conductor (n̂ × E = 0) or the
magnetic wall (n̂ ×H = 0) case is used, Eq. (3.25) may be used to set the
surface term equal to zero.

The result is that, for a perfect electric or magnetic conductor, there will
not be a nonzero surface term in the action integral, regardless of whether
Eq. (3.15) or Eq. (3.19) is used.

Continuing from Eq. (3.19), we can now readily construct the action in-
tegral. Generally, it is preferable to work with the magnetic field formulation
because magnetic fields are continuous throughout most materials found in
nature. Suppose we define the operator L as

D = ∇×
(

1

ǫr
∇×

)

− k2
0µr. (3.29)

Then, following Jin [17, p.212], the operator can be used to construct an
action integral of the form

A =
1

2
〈DH,H〉 = 1

2

∫

V

d3rH∗ · (DH) , (3.30)

provided that the operator is self-adjoint; that is,

〈DH,H〉 = 〈H,DH〉 . (3.31)

The self-adjointness of D is verified in Jin’s book [17, p.215-p.216]. To elimi-
nate the double-curl from the action, we substitute Eq. (3.29) into Eq. (3.30).
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Then we reduce the overall derivative order of the action integral by invok-
ing Eq. (3.24), keeping in mind that the surface term vanishes for a perfect
electric or magnetic conductor. The drawback is that the differentiation of
the inverse of the dielectric may, in some cases, have an adverse effect on the
convergence rate of solutions for inhomogeneous waveguides. The resulting
action is

A =
1

2

∫

V

d3r

[

(∇×H∗) · 1
ǫr

(∇×H)− k2
0µrH

∗ ·H
]

. (3.32)

Similarly, using the electric field formulation of Maxwell’s equations yields

A =
1

2

∫

V

d3r

[

(∇× E∗) · 1

µr

(∇×E)− k2
0ǫrE

∗ · E
]

. (3.33)

The following section describes the discretization of the vector operators
involved in the action, allowing the minimization of the action to be solved
numerically. The magnetic field formulation, Eq. (3.32), will be used for most
of the subsequent calculations.

To formulate the Lagrangian density for our calcuation, we can also
start from the usual definition of the Lagrangian density for electromagnetic
fields, Eq (3.35).

L =
1

4

(

E ·D∗ −B ·H∗
)

(3.34)

=
1

4

(

ǫE · E∗ − µH ·H∗

)

From Eq. (3.9a) and Eq. (3.9b), we can easily get back Eq. (3.32) and
Eq. (3.33) since

A =

∫

Ld3r (3.35)

For example on subsitution of H from Eq. (3.9a), we get

A =
1

4

∫ {

1

ω2
(∇×H)

1

ǫ
(∇×H∗)− µH ·H∗

}

d3r

=
1

4

c2µ0

ω2

∫
{

(∇×H)
1

ǫr
(∇×H∗)− µrk

2H ·H∗

}

d3r

17



where we used

c =
1√
µ0ǫ0

and
c =

ω

k

The extra factor in front of the action integral is irrevelant in eigenvalue
problems and therefore, we are left with similar forms of the action integral
in both derivation.
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3.1.1 Array Representation of Fields and their Deriva-

tives

From Maxwell’s equations, we have the divergence condition,

∇ · (µrH) = 0, (3.36)

which makes it possible to remove one of the three vector components
from the action integral by expressing it in terms of the remaining two. Since
the fields are known to have a sinusoidal variation in the z-direction, it is
natural to eliminate the z-component of the field from the action. First we
define the transverse magnetic field, Ht, as Hxî+Hy ĵ+0k̂. We also introduce

the transverse gradient operator ∇t, as ∂x î + ∂y ĵ + 0k̂. In the following we
express the curl of the magnetic field in an array form,

∇×H = (∇×H)x





1
0
0



 î + (∇×H)y





0
1
0



 ĵ+ (∇×H)z





0
0
1



 k̂ (3.37)

In this format we express the curl as

∇×H =





∂yHz − ∂zHy

∂zHx − ∂xHz

∂xHy − ∂yHx



 (3.38)

The Transverse Curl Operator

Similarly, the matrix form of the transverse curl operator is

∇t ×Ht =





0
0

∂xHy − ∂yHx



 (3.39)

It is also helpful to write out the divergence condition in terms of the trans-
verse gradient operator,

∇t · µrHt + ∂zHz = 0, (3.40)

which can be rewritten for time-harmonic waves propagating in the z-direction
as

∇t · µrHt = −ikzHz. (3.41)
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We seek a means of expressing ∇ × H in terms of ∇t × Ht, eliminating
the axial component of the magnetic field from the action integral prior to
discretization. Such a method is described in detail by Jin [17, p.257-259].
First, we observe that

k2
0µrH

∗ ·H = k2
0µrH

∗

t ·Ht + k2
0µr |Hz|2 . (3.42)

The Lagrangian Density

We verify below the statement of Eq. (7.72) from Jin [17, p.257], that the
Lagrangian density of Eq. (3.32) may be rewritten as

A =
1

2

∫

V

d3r

[

(∇t ×H∗

t ) ·
1

ǫr
(∇t ×Ht)−H∗

t · k2
0µrHt − k2

0µr |Hz|2

+ (∇tHz − ∂zHt)
∗ · 1

ǫr
(∇tHz − ∂zHt)

]

.

(3.43)

First we prove that the sum of the first and fourth terms of Eq. (3.43)
yields the same result as the first term of Eq. (3.32). To prove this, rewrite
Eq. (3.38) as

∇×H =





P
Q
R



 , (3.44)

where

P = ∂yHz − ∂zHy,

Q = ∂zHx − ∂xHz,

R = ∂xHy − ∂yHx.

(3.45)

It follows that

(∇×H∗) · 1
ǫr

(∇×H) =
1

ǫ

(

|P |2 + |Q|2 + |R|2
)

. (3.46)

We rewrite some of the terms of Eq. (3.43) as

∇t ×Ht =





0
0
R



 (3.47)
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and

∇tHz − ∂zHt =





∂xHz − ∂zHx

∂yHz − ∂zHy

0



 =





−Q
P
0



 (3.48)

It follows from Eq. (3.47) and Eq. (3.48) that

(∇t ×H∗

t ) ·
1

ǫr
(∇t ×Ht) + (∇tHz − ∂zHt)

∗ · 1
ǫr

(∇tHz − ∂zHt)

=
1

ǫr
(R∗R + (−Q)∗(−Q) + P ∗P )

=
1

ǫr

(

|P |2 + |Q|2 + |R|2
)

= (∇×H∗) · 1
ǫr

(∇×H) .

(3.49)

Thus, the action of Eq. (3.32) is equivalent to the action of Eq. (3.43). The
equality of the terms containing µr has already been verified via Eq. (3.42).

Elimination of Hz

Continuing from Eq. (3.43), we now seek to eliminate terms involving Hz

from the action. Jin asserts that

1

ǫr
∇tHz · ∇tH

∗

z = ∇t ·
(

H∗

z

1

ǫr
∇tHz

)

−H∗

z∇t ·
(

1

ǫr
∇tHz

)

. (3.50)

We can verify Eq. (3.50) immediately by applying the product rule to the
middle term. Next, we verify Jin’s result that

∇t ·
(

1

ǫr
∇tHz

)

= ∂z∇t ·
(

1

ǫr
Ht

)

− k2
0µrHz. (3.51)

Beginning with the double-curl formulation of Maxwell’s equations from
Eq. (3.19), we take the z-component of each side,

[

∇×
(

1

ǫr
∇×H

)]

z

= k2
0µrHz. (3.52)
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We write Eq. (3.52) out term-by-term by multiplying Eq. (3.38) by ǫ−1
r and

then taking the curl of the product, yielding

[

∇×
(

1

ǫr
∇×H

)]

z

=∂x

[

1

ǫr
(∂zHx−∂xHz)

]

−∂y

[

1

ǫr
(∂yHz−∂zHy)

]

=∂z

[

∂x

(

1

ǫr
Hx

)

+∂y

(

1

ǫr
Hy

)]

−∂x

(

1

ǫr
∂xHz

)

−∂y

(

1

ǫr
∂yHz

)

=∂z∇t ·
(

1

ǫr
Ht

)

−∇t ·
(

1

ǫr
∇tHz

)

.

(3.53)

Substituting Eq. (3.52) into Eq. (3.53), we find that Eq. (3.51) is indeed true.

The Action Integral in Terms of Transverse Fields

Finally, we invoke the two-dimensional divergence theorem,

∫∫

Ω

[

∇t ·
(

1

ǫr
H∗

z∇tHz

)]

dΩ =

∮

Γ

[

1

ǫr
H∗

z∇tHz · n̂
]

dΓ, (3.54)

Which can be rewritten as
∫∫

Ω

[

∇t ·
(

1

ǫr
H∗

z∇tHz

)]

dΩ =

∮

Γ

[

1

ǫr
H∗

z

∂Hz

∂n

]

dΓ. (3.55)

Expanding the last dot product of Eq. (3.43) and substituting Eqs. (3.50),
(3.51), and (3.55) we obtain

A =
1

2

∫

V

d3r

[

(∇t ×H∗

t ) ·
1

ǫr
(∇t ×Ht)−H∗

t ·
(

k2
0µr −

k2
z

ǫr

)

Ht

+jkzH
∗

z∇t ·
(

1

ǫr
Ht

)

+
jkz
ǫr

∇tH
∗

z ·Ht −
jkz
ǫr

H∗

t · ∇tHz

]

+

∮

Γ

(

1

ǫr
H∗

z

∂Hz

∂n

)

dΓ,

(3.56)

where Γ denotes the outer edge of the waveguide cross-section. We can then
use the product rule to verify that

H∗

z∇t ·
(

1

ǫr
Ht

)

+
1

ǫr
∇tH

∗

z ·Ht = ∇t ·
(

1

ǫr
H∗

zHt

)

, (3.57)
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1

ǫr
H∗

t · ∇tHz = ∇t ·
(

1

ǫr
HzH

∗

t

)

−Hz∇t ·
(

1

ǫr
H∗

t

)

. (3.58)

Substituting Eq. (3.57) and Eq. (3.58) into Eq. (3.56), and again using the
two-dimensional divergence theorem, now yields

A =
1

2

∫

V

d3r

[

(∇t ×H∗

t ) ·
1

ǫr
(∇t ×Ht)−H∗

t ·
(

k2
0µr −

k2
z

ǫr

)

Ht

−ikzH
∗

z∇t ·
(

1

ǫr
Ht

)]

dΩ

+

∮

Γ

(

1

ǫr
H∗

z

∂Hz

∂n
− ikz

ǫr
H∗

zHn +
ikz
ǫr

HzH
∗

n

)

dΓ.

(3.59)

We now seek to simplify Eq. (3.59) by proving that

jωǫ0H
∗

zEτ̂ =
1

ǫr

(

H∗

z

∂Hz

∂n
− ikzH

∗

zHn

)

, (3.60)

where τ̂ denotes the direction tangent to the edge of the waveguide cross-
section. To verify Eq. (3.60), we begin by moving the ǫr term to the left side,
then invoke Eq. (3.9b) and cancel out the H∗

z term to obtain

− (∇×H)τ̂ =
∂Hz

∂n
− ikzHn (3.61)

We now rewrite Eq. (3.61) as

−τ̂ · (∇×H) = n̂ · ∇Hz − ∂z (H · n̂) (3.62)

Note that the tangential unit vector τ̂ may be represented as

τ̂ = ny î− nxĵ (3.63)

where nx and ny are components of the normal unit vector. It is obvious,
then, that n̂, τ̂ , and ẑ form an orthonormal basis. Expanding Eq. (3.62) in
terms of components, using Eq. (3.38), we get





ny

−nx

0



 ·





∂yHz − ∂zHy

∂zHx − ∂xHz

∂xHy − ∂yHx



 =





nx

ny

0



 ·









∂xHz

∂yHz

∂zHz



−





∂zHx

∂zHy

∂zHz







 (3.64)
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It is clear that both sides of Eq. (3.64) are equal. Thus Eq. (3.60) is true.
Furthermore, for a perfect electric conductor, there will be no tangential
electric field component. For a perfect magnetic conductor, there is no axial
magnetic field component at the waveguide boundary. Thus the surface
integral of Eq. (3.60) vanishes both for electric and magnetic conductors.
With this in mind, Eq. (3.59) now simplifies to

A =
1

2

∫

V

d3r

[

(∇t ×H∗

t ) ·
1

ǫr
(∇t ×Ht)−H∗

t ·
(

k2
0µr −

k2
z

ǫr

)

Ht

−ikzH
∗

z∇t ·
(

1

ǫr
Ht

)]

dΩ +

∮

Γ

(

ikz
ǫr

HzH
∗

n

)

dΓ.

(3.65)

Finally, we eliminate the z-component entirely, reducing the integral to two
dimensions, by using the divergence condition, Eq. (3.41), to obtain

A =
1

2

∫

Ω

d2r

[

(∇t ×H∗

t ) ·
1

ǫr
(∇t ×Ht)−H∗

t ·
(

k2
0µr −

k2
z

ǫr

)

Ht

+
1

µr

∇t · (µrHt)∇t ·
(

1

ǫr
H∗

t

)]

dΩ+

∮

Γ

(

ikz
ǫrµr

∇t · (µrHt)H
∗

n

)

dΓ.

(3.66)

Eq. (3.66) is the integral which we choose to discretize when performing the
finite element calculations. The advantage over previous expressions for the
action integral is that the overall derivative order in the action is reduced
from 2 to 1.
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3.2 Classification of Propagating Waves

The waves propagating in a waveguide may be broken down into three main
categories, based on the directions of the electric and magnetic fields. In
a transverse electromagnetic (TEM) wave, both the electric field and the
magnetic field are confined to the the transverse direction. If the wave is
propagating in the z-direction, the fields will only have components in the x-
and y-directions.

TEM waves can propagate at any frequency, but they do not appear
in simple waveguides consisting of a single enclosing surface. Since the TEM
wave is the solution to an electrostatic problem in two dimensions, it will not
appear if the entire enclosing boundary is an equipotential surface. However,
TEM waves are the dominant mode in structures with multiple surfaces, such
as coaxial cables, and may appear in waveguides with multiple dielectrics.

When the waveguide consists of a single hollow conductor, with a single
isotropic dielectric material, the only propagating modes will be the trans-
verse electric (TE) and transverse magnetic (TM) modes. In a TE mode, the
axial component of the electric field must equal zero everywhere. However,
the magnetic field is permitted to have components in all three directions.
This gives the boundary conditions

Ez = 0,

[

∂Bz

∂n

]

S

= 0, (3.67)

where S denotes the surface of the waveguide. In a TM mode, only the
electric field is permitted to have a component in the axial direction. Thus
the boundary conditions are

Bz = 0, [Ez]S = 0. (3.68)

Some examples of the different types of modes, reproduced from [19]
are given on the following two pages. Note a slightly counterintuitive choice
of nomenclature: transverse electric modes are also called H-modes, and
transverse magnetic modes are also called E-modes.
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Figure 3.2: Some examples of propagating E-modes in a rectangular waveg-
uide, reproduced from [19, p.59].
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Figure 3.3: Some examples of propagating H-modes in a rectangular waveg-
uide, reproduced from [19, p.63].
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3.3 Boundary Conditions

Due to the nature of the electric and magnetic field, at every interface, the
fields have to obey the boundary conditions given in [18, p. 18],

(D2 −D1) · n̂ = σ,

(B2 −B1) · n̂ = 0,

n̂× (E2 − E1) = 0,

n̂× (H2 −H1) = K,

(3.69)

where the subscripts refer to the electric and magnetic field in two
distinct dielectric materials, σ is the idealized surface charge density, and K

is the idealized surface current.
In other words, the normal component of the magnetic field and the

tangential component of the electric field are continuous across any interface.
Any discontinuity in the normal component of D is equal to the charge
density at the interface, and any discontinuity in the magnetic field equals
the current at the interface.

Suppose we are given a waveguide with a single dielectric material,
enclosed by a perfect conductor. We then have

n̂× E1 = 0,

n̂ ·H1 = 0,
(3.70)

while for perfect magnetic conductor we have

n̂×H1 = 0,

n̂ · E1 = 0.
(3.71)

We then express the normal unit vector in terms of its components

n̂ = nxx̂+ ny ŷ. (3.72)

Correspondingly the tangent unit vector can be written as

t̂ = nyx̂− nxŷ, (3.73)

and the directional derivative along the tangent as

t̂ · ∇ = ny∂x − nx∂y. (3.74)

28



3.3.1 Perfect Conductor

We now return to the case of the perfect conductor,

n̂× E1 = 0, (3.75)

n̂ ·H1 = 0. (3.76)

Then Eq. (3.75) yields

nxHx = nyHy, (3.77)

while Eq. (3.76) yields

∂yHx = ∂xHy. (3.78)

Suppose that we have a rectangular waveguide with walls parallel to
the xz- and yz-planes, as in Fig. (3.1). Then we can differentiate Eq. (3.77)
and Eq. (3.78) with respect to x and y to obtain a complete set of boundary
conditions for the waveguide.

For a boundary edge along x̂ (nx = 0), we obtain

Hy = 0,

∂xHy = 0,

∂yHx = 0,

∂2
xHy = 0,

∂2
yHx = 0,

∂x∂yHx = 0.

(3.79)

Likewise, for a boundary edge along ŷ (ny = 0), we obtain

Hx = 0,

∂yHx = 0,

∂xHy = 0,

∂2
yHx = 0,

∂2
xHx = 0,

∂x∂yHy = 0.

(3.80)
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3.3.2 Magnetic Wall

In the case of the Magnetic Wall we have the boundary conditions

n̂×H1 = 0, (3.81)

n̂ · E1 = 0. (3.82)

Using Eqs.(3.81-3.82), we obtain a set of boundary conditions for the
magnetic wall case. For a boundary edge along x̂ (nx = 0), we obtain

Hx = 0,

∂xHx = −∂yHy,

∂yHy = 0,

∂2
yHy = 0,

∂x∂yHx = ∂x∂yHy.

(3.83)

For a boundary edge along ŷ (ny = 0), we obtain

Hy = 0

∂xHx = −∂yHy,

∂xHy = 0,

∂2
xHx = −∂x∂yHy,

∂2
xHy = 0.

(3.84)

3.4 Results of E&M Calculations

After discretizing the action integral, FEM was performed on the two-dimensional
waveguide cross-section using a set of Hermite interpolation elements. The
Hermite elements exhibit C1 continuity throughout the finite element mesh.
These elements were obtained from [15, p.227].Since they also possess sec-
ond derivative degrees of freedom, is is possible to include second derivative
boundary conditions. However, it is not guaranteed that the second deriva-
tive terms will be continuous across interelement boundaries.
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Before considering the effects of different dielectric materials, a homoge-
neous waveguide was simulated with ǫr = 1, µr = 1, kz = 1.00. The resulting
functions were classified according to their z-components. Modes which ex-
hibited a substantial z-component of the magnetic field were classified as
H-modes, while those with a substantial z-component of the electric field
were classified as E-modes. For the homogeneous waveguide with a single
conducting boundary, no mixing of the different modes is expected to occur.

The resulting eigenfunctions are presented in Figs.(3.4-3.6). The nu-
merically calculated modes bear a close resemblance to the analytically de-
termined modes shown in Figs.(3.2-3.3).

0 5 10 15 20

X

0

2

4

6

8

10

Y

0

0.02

0.04

0.06

0.08

0.1

0.12

(a) H10 mode
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(b) H01 mode
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(c) H20 mode
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Figure 3.4: Modes 1− 4 for a perfectly conducting waveguide, kz = 1.0 with
waveguide dimensions in a 2:1 ratio.
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(b) E21 mode
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(c) H21 mode
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(d) H30 mode

Figure 3.5: Modes 5− 8 for a perfectly conducting waveguide, kz = 1.0 with
waveguide dimensions in a 2:1 ratio.
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Figure 3.6: Modes 9−10 for a perfectly conducting waveguide, kz = 1.0 with
waveguide dimensions in a 2:1 ratio.

In addition, the eigenvalues corresponding to four propagating modes
are plotted against the value of kz in Fig.(3.7). Errors in the eigenvalue
calculations for the homogeneous waveguide varied from 1E − 15 to 1E − 8,
as shown in Table 1. This highlights the high accuracy obtained with our
scheme especially for the first mode.
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Figure 3.7: Eigenvalues of several propagating modes, plotted along with
their predicted values. The predicted and actual eigenvalues are nearly in-
distinguishable on the plot.
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Table 3.1: Numerically calculated eigenvalues versus their predicted values
for the ten lowest-energy modes of the homogeneous rectangular waveguide.

Predicted Actual Error
1.024674011 1.024674011 1.00E-15
1.098696044 1.098696042 2.20E-09
1.098696044 1.098696046 2.30E-09
1.123370055 1.123370055 3.40E-10
1.123370055 1.123370056 5.90E-10
1.197392088 1.197392092 3.70E-09
1.197392088 1.197392093 4.90E-09
1.222066099 1.222066102 3.10E-09
1.320762143 1.320762178 3.50E-08
1.320762143 1.320762182 3.90E-08
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Chapter 4

Inhomogeneous Waveguides

4.1 Implication of Imhomogeneity of Waveg-

uides

Inhomogeneous, or composite, waveguides consist of multiple dielectric
materials in the same cross-section. Generally, the addition of new dielectrics
to a waveguide tends to complicate calculations, because the permeability
and permittivity are discontinuous at the interface between dielectrics. How-
ever, it is possible to avoid the discontinuity problems by approximating the
interface between dielectrics with a continuous function, roughly resembling
a step function.

Suppose, for example, we are given a rectangular waveguide with rela-
tive permittivities ǫ1 and ǫ2 on the left and right of an interface, respectively,
as shown in Fig. (4.1). Instead of forcing the dielectric to be discontinuous at

the interface, it is possible to simplify calculations by expressing the dielectric
as a smooth function closely resembling a step function,
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ε2

d

h ε1

a

Figure 4.1: The dimensions of a partially filled waveguide are shown. These
dimensions will be used when calculating the solutions to Maxwell’s equations
within the waveguide.

ǫr(x) =

[

tanh (s (x− a)) + 1

2

]

(ǫ2 − ǫ1) + ǫ1. (4.1)

The parameter s determines how sharp the transition between dielectric prop-
erties is. In the limit as s becomes arbitrarily large, the permittivity function
becomes a step function. For ǫ1 = 1 and ǫ2 = 2, the effects of various values
of s are illustrated in Fig. (4.2). When utilizing the form of the permit-
tivity or permeability given by Eq. (4.1), it is vital to consider the partial
derivatives of the dielectric properties when discretizing the action integral
of Eq. (3.66). If the reciprocal of the dielectric function is represented by a
smooth function which changes only in a small region surrounding the inter-
face, then the mesh should be refined close to the interface so that the finite
elements can accurately represent the derivative of the smoothed function.
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Figure 4.2: Typical plots of the permittivity as defined in Eq. (4.1), for
various values of the sharpness parameter s. Here ǫ1 = 1, ǫ2 = 2, and
a = 14.5.
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4.2 Exact Solutions for the Inhomogeneous

Waveguide

We calculate the exact eigenvalues and eigenfunctions of an inhomo-
geneous waveguide with cross-section dimensions d× h, having relative per-
mittivity ǫr = ǫ1 in the region 0 ≤ x < a and ǫr = ǫ2 in the region a < x ≤ d,
as shown in Fig. (4.1). During the finite element calculations, the dielectric
in the left region was assumed to be air, so that ǫ1 = 1 and ǫ2 ≥ ǫ1.

Recall that Maxwell’s equations may be expressed as

∇×
(

1

ǫr
∇×H

)

− k2
0µrH = 0. (3.19)

By assuming that the change from ǫ1 to ǫ2 occurs over an infinitesimally
thin region centered at x = a, one may express the inverse of the dielectric
function as a step function,

1

ǫr
=

(

1

ǫ2
− 1

ǫ1

)

θ (x− a) +
1

ǫ1
, (4.2)

Assume that µr = 1 everywhere. Note that we can rewrite the double curl
as

∇×
(

1

ǫr
∇×H

)

= ∇
(

1

ǫr

)

× (∇×H) +
1

ǫr
∇× (∇×H) . (4.3)

The second term in Eq. (4.3) can be simplified by noting that

∇× (∇×H) = ∇ (∇ ·H)−∇2H, (4.4)

and also by noting that the divergence of H is zero for uniform permeability.
By including the type of permittivity expressed in Eq. (4.2), the gradient in
Eq. (4.3) can be rewritten as

∇
(

1

ǫr

)

=





δ (x− a) Λ
0
0



, where Λ =
1

ǫ2
− 1

ǫ1
. (4.5)

so that Eq. (3.19) can be rewritten as




δ (x− a) Λ
0
0



×





∂yHz − ∂zHy

∂zHx − ∂xHz

∂xHy − ∂yHx



− 1

ǫr
∇2H− k2

0H = 0. (4.6)
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The cross product in Eq. (4.6) can be expressed as





δ (x− a) Λ
0
0



× (∇×H) =





0
−δ (x− a) Λ (∂xHy − ∂yHx)
δ (x− a) Λ (∂zHx − ∂xHz)



 . (4.7)

Finally, we have three equations for the three vector components:

1

ǫr
∇2Hx + k2

0Hx = 0, (4.8a)

δ (x− a) Λ (∂xHy − ∂yHx) +
1

ǫr
∇2Hy − k2

0Hy = 0, (4.8b)

δ (x− a) Λ (∂zHx − ∂xHz)−
1

ǫr
∇2Hz − k2

0Hz = 0. (4.8c)

In the following, we begin considering these vector components in order to
determine the eigenvalues and eigenfunctions for the inhomogeneous waveg-
uide. The solutions to Eqs. (4.8a) and (4.8b) will be considered. Note that
it is only necessary to solve the set of differential equations for Hx and Hy,
not Hz. Having assumed that the magnetic field has a sinusoidal variation
in the z-direction, the divergence condition may be expressed as

∂xHx + ∂yHy + ikzHz = 0. (4.9)

Once Hx and Hy are determined, the divergence condition may be used to
calculate Hz.

4.2.1 Boundary Conditions

Before discussing the solution to the differential equation governing
each component, it is prudent to discuss the boundary conditions governing
a rectangular conducting waveguide with sides parallel to the x- and y-axes.
We know in this case that the electric field can only have a normal component
and the magnetic field can only have a tangential component at the boundary,
so that

n̂ ·H = 0, (4.10)

n̂×E = 0. (4.11)
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Expanding Eq. (4.10) we have

nxHx + nyHy = 0. (4.12)

For the left and right boundaries, which are parallel to the y-axis, Eq. (4.12)
simplifies to

Hx = 0 at x = 0, d. (4.13)

For the top and bottom boundaries, we get

Hy = 0 at y = 0, h. (4.14)

In addition, Eq. (4.11) may be used to generate derivative boundary condi-
tions at the edges. Recall that one of Maxwell’s equations reads

∇×H− ∂D

∂t
= J. (4.15)

Assuming that dielectric properties do not vary over time and there is no
current density at the boundary, we have

∇×H = ǫ
∂E

∂t
. (4.16)

Assuming that the electric and magnetic fields have time-harmonic forms,
Eq. (4.16) simplifies to

∇×H = −iωǫE. (4.17)

Solving Eq. (4.17) for E and substituting into Eq. (4.11) yields

n̂×
(

− 1

iωǫ
∇×H

)

= 0. (4.18)

Expand the cross product to obtain





ny (∂xHy − ∂yHx)
−nx (∂xHy − ∂yHx)

nx (∂zHx − ∂xHz)− ny (∂yHz − ∂zHy)



 =





0
0
0



 . (4.19)

So the first and second vector components of the cross product each yield

∂xHy = ∂yHx. (4.20)
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On the left and right boundaries, we have already shown that Hx = 0. Since
these edges are parallel to the y-axis and Hx = 0 along these edges, it follows
that ∂yHx = 0. From Eq. (4.20) we then obtain a derivative condition on
Hy:

∂xHy = 0, at x = 0, d. (4.21)

Similarly, on the top and bottom edges, the derivative condition is

∂yHx = 0, at y = 0, h. (4.22)

Together, Eqs. (4.13), (4.14), (4.21), and (4.22) constitute all the boundary
conditions for a conducting waveguide of width d and height h.

4.2.2 The x-Component of the Magnetic Field

Before considering the y- or z- components of the field, we separate and
solve Eq. (4.8a),

1

ǫr
∇2Hx + k2

0Hx = 0. (4.8a)

We assume time-harmonic variation in the z-direction,

Hx (x, y, z) = Hx (x, y) e
i(kzz−ωt), (4.23)

and separate the solution further by writing

Hx (x, y, z) = Xx (x) Yx (y) e
i(kzz−ωt). (4.24)

The subscript x is used as a reminder that Eq. (4.24) is the separated form
of the x-component of the field. Factoring out the exponential term incor-
porating the dependence on z and t, we reduce Eq. (4.8a) to the separated
form

− 1

ǫr

∂2Xx

∂x2
Yx −

1

ǫr

∂2Yx

∂y2
Xx +

1

ǫr
k2
zXxYx − k2

0XxYx = 0. (4.25)

Finally, divide Eq. (4.25) by XxYx and multiply by −ǫr to obtain

X ′′

x

Xx

+
Y ′′

x

Yx

+
(

k2
0ǫr − k2

z

)

= 0. (4.26)

Next we proceed to investigate the different possible solutions to the sep-
arated equations. Note that every term in Eq. (4.26) can be considered a
constant, because the first is only dependent on x, the second is only depen-
dent on y, and the rest are all constants. We will begin by investigating the
y-dependence of Hx.
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y-Dependence: Y ′′

x /Yx > 0

Suppose that the y-dependent term of Eq. (4.26) is positive, i.e.

Y ′′

x

Yx

= κ2
y. (4.27)

The general solution to this equation is

Yx (y) = C1 cosh (κyy) + C2 sinh (κyy) . (4.28)

Recalling the boundary conditions from Eq. (4.22), we determine that the
only allowable solution is C1 = 0, C2 = 0. Thus there are no non-trivial
solutions of this type for Yx.

y-Dependence: Y ′′

x /Yx = 0

Suppose that the y-dependent term of Eq. (4.26) is exactly zero,

Y ′′

x

Yx

= 0. (4.29)

Integration yields the general form of the solution,

Yx (y) = C1y + C2. (4.30)

Recalling the boundary conditions from Eq. (4.22), we determine that the
only allowable solution is C1 = 0, but the derivative boundary conditions
are satisfied for any value of C2. Thus the non-trivial solution for Yx (y) is a
constant.

y-Dependence: Y ′′

x /Yx < 0

Suppose that the y-dependent term of Eq. (4.26) is negative, i.e.

Y ′′

x

Yx

= −k2
y . (4.31)

The general solution to this equation is

Yx (y) = C1 cos (kyy) + C2 sin (kyy) . (4.32)
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The boundary conditions from Eq. (4.22) require that C2 = 0. However, a
non-trivial solution does exist of the form

Yx (y) = C1 cos (kn,yy) , kn,y =
nπ

h
, n = 0, 1, 2 · · · , (4.33)

where the solution n = 0 is the constant solution which was identified in the
previous case, Y ′′

x /Y = 0. Now that all possible solutions for Yx have been
determined, we seek solutions for Xx. The equation of Xx can be set up by
substituting Eq. (4.33) into Eq. (4.26):

X ′′

x

Xx

=
(nπ

h

)2

+ k2
z − k2

0ǫ1, 0 ≤ x ≤ a, (4.34a)

X ′′

x

Xx

=
(nπ

h

)2

+ k2
z − k2

0ǫ2, a ≤ x ≤ d. (4.34b)

In the following we solve these equations for all possible functional forms of
Xx.

x-Dependence: Fully Exponential Solution

Assume that the right-hand sides of Eqs. (4.34a) and (4.34b) are both posi-
tive, yielding equations of the forms

X ′′

x

Xx

= κ2
1,x, 0 ≤ x ≤ a. (4.35a)

X ′′

x

Xx

= κ2
2,x, a ≤ x ≤ d. (4.35b)

In order to satisfy Dirichlet boundary conditions at x = 0 and x = d the
solutions must be hyperbolic sine functions,

Xx (x) = C1 sinh (κ1,xx) , 0 ≤ x ≤ a. (4.36a)

Xx (x) = C2 sinh (κ2,x (x− d)) , a ≤ x ≤ d. (4.36b)

The derivatives may be expressed as

Xx (x) = C1κ1,x cosh (κ1,xx) , 0 ≤ x ≤ a. (4.37a)

Xx (x) = C2κ2,x cosh (κ2,x (x− d)) , a ≤ x ≤ d. (4.37b)
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We require Hx and its derivative to be continuous. By substituting x = a
into the expressions for Hx and its derivative, we obtain

C1 sinh (κ1,xa) = C2 sinh (κ2,x (a− d)) . (4.38a)

C1κ1,x cosh (κ1,xa) = C2κ2,x cosh (κ2,x (a− d)) . (4.38b)

Divide Eq. (4.38a) by Eq. (4.38b) to obtain a dispersion relation for κ1,x and
κ2,x.

1

κ1,x

tanh (κ1,xa) =
1

κ2,x

tanh (κ2,x (a− d)) . (4.39)

Since a < d, the right side of this equation is less than or equal to zero for any
value of κ2,x. The left side is greater than or equal to zero for any value of
κ1,x. Therefore, the dispersion relation is only satisfied when κ1,x = κ2,x = 0.
This is a trivial solution which equals zero everywhere.

x-Dependence: Fully Sinusoidal Solution

Assume that the right-hand sides of Eqs. (4.34a) and (4.34b) are both nega-
tive, yielding equations of the forms

X ′′

x

Xx

= −k2
1,x, 0 ≤ x ≤ a, (4.40a)

X ′′

x

Xx

= −k2
2,x, a ≤ x ≤ d. (4.40b)

In order to satisfy Dirichlet boundary conditions at x = 0 and x = d the
solutions must be sine functions,

Xx (x) = C1 sin (k1,xx) , 0 ≤ x ≤ a, (4.41a)

Xx (x) = C2 sin (k2,x (x− d)) , a ≤ x ≤ d. (4.41b)

The derivatives may be expressed as

Xx (x) = C1k1,x cos (k1,xx) , 0 ≤ x ≤ a, (4.42a)

Xx (x) = C2k2,x cos (k2,x (x− d)) , a ≤ x ≤ d. (4.42b)

We require Hx and its derivative to be continuous. By substituting x = a
into the expressions for Hx and its derivative, we obtain

C1 sin (k1,xa) = C2 sin (k2,x (a− d)) , (4.43a)
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C1k1,x cos (k1,xa) = C2k2,x cos (k2,x (a− d)) . (4.43b)

Divide Eq. (4.43a) by Eq. (4.43b) to obtain a dispersion relation for k1,x and
k2,x.

1

k1,x
tan (k1,xa)) =

1

k2,x
tan (k2,x (a− d)) . (4.44)

Since both k1,x and k2,x may be defined in terms of the parameters k0, n, and
kz, the dispersion relation may be solved to determine the allowed values of
k0 for this type of mode. The dispersion relation for a completely sinusoidal
field is well-documented. [19] [20]

x-Dependence: Sinudoidal and Exponential Solutions

Suppose that the right-hand side of Eq. (4.34a) is positive, and the right-
hand side of Eq. (4.34b) is negative. In this case, the equations take the
forms

X ′′

x

Xx

= κ2
1,x, 0 ≤ x ≤ a, (4.45a)

X ′′

x

Xx

= −k2
2,x, a ≤ x ≤ d. (4.45b)

In order to satisfy Dirichlet boundary conditions at x = 0 and x = d the
solutions must be hyperbolic sine and sine functions, respectively:

Xx (x) = C1 sinh (κ1,xx) , 0 ≤ x ≤ a, (4.46a)

Xx (x) = C2 sin (k2,x (x− d)) , a ≤ x ≤ d. (4.46b)

The derivatives may be expressed as

Xx (x) = C1κ1,x cosh (κ1,xx) , 0 ≤ x ≤ a, (4.47a)

Xx (x) = C2k2,x cos (k2,x (x− d)) , a ≤ x ≤ d. (4.47b)

We require Hx and its derivative to be continuous. By substituting x = a
into the expressions for Hx and its derivative, we obtain

C1 sinh (κ1,xa) = C2 sin (k2,x (a− d)) , (4.48a)

C1κ1,x cosh (κ1,xa) = C2k2,x cos (k2,x (a− d)) . (4.48b)
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Divide Eq. (4.48a) by Eq. (4.48b) to obtain a dispersion relation for κ1,x and
k2,x.

1

κ1,x
tanh (κ1,xa)) =

1

k2,x
tanh (k2,x (a− d)) . (4.49)

This dispersion relation may be used to determine the allowed values of k0
for this type of mode.

Note that the opposite case, in which the field is sinusoidal in the left
region and exponential in the right region, is not possible if ǫ2 ≥ ǫ1. Based
on Eqs. (4.34a) and (4.34b), the quantity X ′′

x/Xx must be greater in the
left region than in the right region. Having a sinusoidal solution in the
left region and an exponential solution in the right, however, requires that
X ′′

x/Xx is negative in the left region and positive in the right region, leading
to a contradiction.

The combination of a sine and a hyperbolic sine solution is analogous to
an asymmetric quantum well. The sinusoidal solutions in the region with ǫ1,
which may be considered the shallower quantum well, are similar to below-
barrier states which will tunnel through the shallower region while exhibiting
exponential decay.

In conclusion, two types of non-trivial solution are possible for Hx. One
exhibits a sine-like behavior throughout the waveguide cross-section. The
other exhibits a sine-like behavior in the region of higher dielectric constant
and a hyperbolic sine-like behavior in the region of lower dielectric constant.
Both types of solutions are either constant or exhibit a cosine-like dependence
in the y-direction.

4.2.3 The y-Component of the Magnetic Field

Now we consider the functional form of solutions to Eq. (4.8b),

δ (x− a) Λ (∂xHy − ∂yHx) +
1

ǫr
∇2Hy − k2

0Hy = 0, (4.8b)

These solutions will be similar to those for the Hx component, except
for discontinuities arising from the Dirac δ function term. First we integrate
Eq. (4.8b) across the dielectric interface:
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∫ a+∆

a−∆

[

δ (x− a) Λ (∂xHy − ∂yHx) +
1

ǫr
∇2Hy + k2

0Hy

]

dx = 0. (4.50)

The integration of every term will be treated separately, and we will
take the limit as ∆ approaches zero to determine the behavior of the magnetic
field and its derivatives across the discontinuity in ǫr. First, consider the last
term in the integral, k2

0Hy. Because the magnetic field must be continuous,
integration over an infinitesimally small region leads to

lim
∆→0

∫ a+∆

a−∆

[

k2
0Hy

]

dx = 0. (4.51)

Next, consider the Laplacian operator term, recalling that

1

ǫr
= Λθ (x− a) +

1

ǫ1
. (4.52)

Expanding the Laplacian operator, we have

1

ǫr
∇2Hy =

1

ǫr

(

∂2
xHy + ∂2

yHy − k2
zHy

)

. (4.53)

During integration, the k2
z term will vanish in the limit as ∆ approaches

zero due to Hy being continuous. As we will see later, the Dirichlet boundary
conditions on Hy at the top and bottom edges require that the y-dependence
must take the form of a sine function of frequency mπ/h for some positive
integer m. Therefore we can express the second derivative with respect to y
as

∂2
yHy = −

(mπ

h

)2

Hy, (4.54)

and this term will also cancel as ∆ approaches zero due to the continuity
of Hy.

We perform integration by parts on the term carrying two derivatives
with respect to x:

lim
∆→0

∫ a+∆

a−∆

[

1

ǫr
∂2
xHy

]

dx = lim
∆→0

[

1

ǫr
∂xHy

]a+∆

a−∆

− lim
∆→0

∫ a+∆

a−∆

[Λδ (x− a) ∂xHy] dx.

(4.55)
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Note that the integral term on the right-hand side of Eq. (4.55) cancels
the ∂xHy term in Eq. (4.50), simplifying that integral to

lim
∆→0

∫ a+∆

a−∆

[Λδ (x− a) (∂yHx)] dx− lim
∆→0

[

1

ǫr
∂xHy

]a+∆

a−∆

= 0. (4.56)

Finally, since all of the allowed solutions for Hx are continuous, the
term containing the Dirac delta function in Eq. (4.56) can be integrated,
leaving

Λ∂yHx (x = a) +
∂xHy,L

ǫ1
− ∂xHy,R

ǫ2
= 0, (4.57)

1

ǫ2
(∂xHy,R − ∂yHx (x = a)) =

1

ǫ1
(∂xHy,L − ∂yHx (x = a)) (4.58)

where ∂xHy,L and ∂xHy,R represent the x-derivatives as x approaches a
from the left and right, respectively. Note that this may be rewritten as

lim
x→a−

1

ǫ1
(∇×Ht) = lim

x→a+

1

ǫ2
(∇×Ht) , (4.59)

which imposes an internal boundary condition on the axial electric field.
Continuing from Eq. (4.58), substitute the solutions for Hx,

Hx =

{

C1n sin(k1na)
C1n sinh(κ1na)

}

cos(
nπy

h
), x = a−, (4.60a)

Hx = C2n sin(k2n(a− d)) cos(
nπy

h
), x = a+, (4.60b)

Where the curly braces may be interpreted as meaning that the solution
can take one form or the other for a given value of n. By enforcing continuity
of Hx at x = a, the two expressions can be used to express C1,n as a function
of C2,n or vice-versa,

C1,n =
C2,n sin(k2(d− a))
{

sin(k1na)
sinh(κ1na)

} . (4.61)

Differentiating the expressions for Hx and substituting into Eq. (4.58),
we get
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1

ǫ2

(

∂xXy,R(x) sin(
mπy

h
)− nπ

h
C2n sin (k2n(d− a)) sin(

nπy

h
)
)

=
1

ǫ1

(

∂xXy,L(x) sin(
mπy

h
)− nπ

h
C2n sin (k2n(d− a)) sin(

nπy

h
)
)

, (4.62)

noting that satisfaction of the boundary conditions at y = 0 and y = h
requires that Hy has a sine function variation in the y-direction. To ensure
continuity across the boundary, we require either n = 0, m = 0, or n = m.
The case investigated here, n = m with both n andm nonzero, can be used to
couple the solutions for Hx and Hy for a certain frequency and permittivity.

In addition, if both field components are nonzero, they must propagate
at the same frequency. It follows that k2 has the same value for both com-
ponents. Also, either k1 or κ1 will be the same for both fields, depending
on whether the fields assume trigonometric or hyperbolic forms, respectively.
As will be shown in the following sections, the y-component of the magnetic
field will be of the functional form

Hy =

{

D1n sin(k1na)
D1n sinh(κ1na)

}

cos(
nπy

h
), x = a−, (4.63a)

Hy = D2n sin(k2n(a− d)) sin(
nπy

h
), x = a+. (4.63b)

Again, we use the continuity of the field at x = a to express one coeffi-
cient in terms of the other,

D1,n =
D2,n sin(k2(d− a))
{

cos(k1na)
cosh(κ1na)

} . (4.64)

Substitute this result into Eq. (4.62) and cancel the common factor of
sin(nπy/h) to obtain

1

ǫ2

(

D2nk2n sin (k2n(d− a))− nπ

h
C2n sin (k2n(d− a))

)

=
1

ǫ1

(

D2nk2n

{

−k1 sin (k1a)
−κ1 sinh (κ1a)

}

− nπ

h
C2n sin (k2n(d− a))

)

. (4.65)

This equation can be rearranged to provide an expression for D2n in
terms of C2n:
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1

ǫ2

(

D2n sin (k2n(d− a)) k2n −
nπ

h
C2n sin (k2n(d− a))

)

=

1

ǫ1

(

D2n cos (k2(d− a))

{

−k1n tan (k1na)
κ1n tanh (κ1na)

}

− nπ

h
C2n sin (k2n(d− a))

)

(4.66)

D2n =

(

1
ǫ2
− 1

ǫ1

)

nπ
h
C2n sin (k2n(d− a))

1
ǫ2
k2n sin (k2n(d− a))− 1

ǫ1
cos (k2n(d− a))

{

−k1n tan (k1na)
κ1n tanh (κ1na)

} .

(4.67)

Since the values of k1n, κ1n, and k2n are all found by solving the differ-
ential equation for Hx, Eq. (4.67) provides a means of coupling Hx and Hy

and relating the values of the amplitudes of these field components.
Next we consider the case Hx = 0, for which we can revise Eq. (4.57)

to define the interface boundary condition as

∂xHy,L

ǫ1
=

∂xHy,R

ǫ2
. (4.68)

Assuming thatHy is separable, we write it asHy = Xy (x) Yy (y) e
i(kzz−ωt),

yielding the separated form of the differential equation,

X ′′

y

Xy

+
Y ′′

y

Yy

+
(

k2
0ǫr − k2

z

)

= 0. (4.69)

We now consider the special case Hx = 0, for which the field Hy is
continuous across the interface at x = a and the derivative ∂xHy obeys
Eq. (4.68). At the edges of the waveguide cross section, the field is governed
by the boundary conditions given in Eqs. (4.14) and (4.21). We seek to
determine all valid expressions for Hy for this case.

y-Dependence: Y ′′

y /Yy > 0

Suppose that the y-dependent term of Eq. (4.69) is positive, i.e.

Y ′′

y

Yy

= κ2
y. (4.70)
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The general solution to this equation is

Yy (y) = C1 cosh (κyy) + C2 sinh (κyy) . (4.71)

Recalling the boundary conditions from Eq. (4.22), we determine that the
only allowable solution is C1 = 0, C2 = 0. Thus there are no non-trivial
solutions of this type for Yy.

y-Dependence: Y ′′

y /Yy = 0

Suppose that the y-dependent term of Eq. (4.69) is exactly zero,

Y ′′

y

Yy

= 0. (4.72)

Integration yields the general form of the solution,

Yy (y) = C1y + C2. (4.73)

Recalling the boundary conditions from Eq. (4.22), we determine that the
only allowable solution is C1 = 0 and C2 = 0. Unlike Yx, Yy is not satisfied
by a constant solution because the boundary conditions at y = 0 and y = h
act on the function instead of its derivative.

y-Dependence: Y ′′

y /Yy < 0

Suppose that the y-dependent term of Eq. (4.69) is negative, i.e.

Y ′′

y

Yy

= −k2
y . (4.74)

The general solution to this equation is

Yy (y) = C1 cos (kyy) + C2 sin (kyy) . (4.75)

The boundary conditions from Eq. (4.14) require that C1 = 0. However, a
non-trivial solution does exist of the form

Yy (y) = C2 sin (km,yy) , km,y =
mπ

h
, m = 1, 2, 3 · · · , (4.76)

where the solution m = 0 is omitted for Hy because it leads to Hy equalling
zero throughout the entire waveguide cross-section. Now that all possible
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solutions for Yy have been determined, we seek solutions forXy. The equation
of Xy can be set up by substituting Eq. (4.76) into Eq. (4.69):

X ′′

y

Xy

=
(mπ

h

)2

+ k2
z − k2

0ǫ1, 0 ≤ x ≤ a, (4.77a)

X ′′

y

Xy

=
(mπ

h

)2

+ k2
z − k2

0ǫ2, a ≤ x ≤ d. (4.77b)

In the following we solve these equations for all possible functional forms of
Xy.

x-Dependence: Fully Exponential Solution

Assume that the right-hand sides of Eqs. (4.77a) and (4.77b) are both posi-
tive, yielding equations of the forms

X ′′

y

Xy

= κ2
1,x, 0 ≤ x ≤ a, (4.78a)

X ′′

y

Xy

= κ2
2,x, a ≤ x ≤ d. (4.78b)

In order to satisfy derivative boundary conditions at x = 0 and x = d the
solutions must be hyperbolic cosine functions,

Xy (x) = C1 cosh (κ1,xx) , 0 ≤ x ≤ a, (4.79a)

Xy (x) = C2 cosh (κ2,x (x− d)) , a ≤ x ≤ d. (4.79b)

The derivatives may be expressed as

Xy (x) = C1κ1,x sinh (κ1,xx) , 0 ≤ x ≤ a, (4.80a)

Xy (x) = C2κ2,x sinh (κ2,x (x− d)) , a ≤ x ≤ d. (4.80b)

We require Hy to be continuous, and require its derivative to obey Eq. (4.68).
By substituting x = a into the expressions forHy and its derivative, we obtain

C1 cosh (κ1,xa) = C2 cosh (κ2,x (a− d)) , (4.81a)

C1κ1,x

ǫ1
sinh (κ1,xa) =

C2κ2,x

ǫ2
sinh (κ2,x (a− d)) . (4.81b)
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Divide Eq. (4.81b) by Eq. (4.81a) to obtain a dispersion relation for κ1,x and
κ2,x.

κ1,x

ǫ1
tanh (κ1,xa) =

κ2,x

ǫ2
tanh (κ2,x (a− d)) . (4.82)

Since a < d, the right side of this equation is less than or equal to zero for any
value of κ2,x. The left side is greater than or equal to zero for any value of
κ1,x. Therefore, the dispersion relation is only satisfied when κ1,x = κ2,x = 0.
This is a trivial solution which equals zero everywhere.

x-Dependence: Fully Sinusoidal Solution

Assume that the right-hand sides of Eqs. (4.77a) and (4.77b) are both nega-
tive, yielding equations of the form

X ′′

y

Xy

= −k2
1,x, 0 ≤ x ≤ a, (4.83a)

X ′′

y

Xy

= −k2
2,x, a ≤ x ≤ d. (4.83b)

In order to satisfy derivative boundary conditions at x = 0 and x = d the
solutions must be cosine functions,

Xy (x) = C1 cos (k1,xx) , 0 ≤ x ≤ a, (4.84a)

Xy (x) = C2 cos (k2,x (x− d)) , a ≤ x ≤ d. (4.84b)

The derivatives may be expressed as

Xy (x) = −C1k1,x sin (k1,xx) , 0 ≤ x ≤ a, (4.85a)

Xy (x) = −C2k2,x sin (k2,x (x− d)) , a ≤ x ≤ d. (4.85b)

We require Hy and to be continuous, and require its derivative to obey
Eq. (4.68). By substituting x = a into the expressions for Hy and its deriva-
tive, we obtain

C1 cos (k1,xa) = C2 cos (k2,x (a− d)) , (4.86a)

C1k1,x
ǫ1

sin (k1,xa) =
C2k2,x
ǫ2

sin (k2,x (a− d)) . (4.86b)
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Divide Eq. (4.86b) by Eq. (4.86a) to obtain a dispersion relation for k1,x and
k2,x.

k1,x
ǫ1

tan (k1,xa)) =
k2,x
ǫ2

tanh (k2,x (a− d)) . (4.87)

Since both k1,x and k2,x may be defined in terms of the parameters k0, m,
and kz, the dispersion relation may be solved to determine the allowed values
of k0 for this type of mode.

x-Dependence: Sinudoidal and Exponential Solutions

Suppose that the right-hand side of Eq. (4.77a) is positive, and the right-
hand side of Eq. (4.77b) is negative. In this case, the equations take the
forms

X ′′

y

Xy

= κ2
1,x, 0 ≤ x ≤ a, (4.88a)

X ′′

y

Xy

= k2
2,x, a ≤ x ≤ d. (4.88b)

In order to satisfy derivative boundary conditions at x = 0 and x = d the
solutions must be cosine and hyperbolic cosine functions,

Xy (x) = C1 cosh (κ1,xx) , 0 ≤ x ≤ a, (4.89a)

Xy (x) = C2 cos (k2,x (x− d)) , a ≤ x ≤ d. (4.89b)

The derivatives may be expressed as

Xy (x) = C1κ1,x sinh (κ1,xx) , 0 ≤ x ≤ a, (4.90a)

Xy (x) = −C2k2,x sin (k2,x (x− d)) , a ≤ x ≤ d. (4.90b)

We require Hy and to be continuous, and its derivative to obey Eq. (4.68).
By substituting x = a into the expressions for Hy and its derivative, we
obtain

C1 cosh (κ1,xa) = C2 cos (k2,x (a− d)) . (4.91a)

C1κ1,x sinh (κ1,xa) = −C2k2,x sin (k2,x (a− d)) . (4.91b)

Divide Eq. (4.91b) by Eq. (4.48a) to obtain a dispersion relation for κ1,x and
k2,x.

κ1,x

ǫ1
tanh (κ1,xa)) = −κ2,x

ǫ2
tanh (k2,x (a− d)) . (4.92)
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This dispersion relation may be used to determine the allowed values of k0
for this type of mode.

As explained in the section concerning Hx, the opposite case, in which
the field is sinusoidal in the left region and exponential in the right region,
is not possible if ǫ2 ≥ ǫ1. Based on Eqs. (4.77a) and (4.77b), the quantity
X ′′

y /Xy must be greater in the left region than in the right region. Having a
sinusoidal solution in the left region and an exponential solution in the right,
however, requires that X ′′

y /Xy is negative in the left region and positive in
the right region, leading to a contradiction.

Therefore all solutions for Hy will fall into one of two groups. The first
type of solution has a cosine-like behavior in both regions, with a sine-like
dependence on y. The second type has a cosine-like behavior in the region of
higher dielectric constant and a hyperbolic cosine-like behavior in the region
of lower dielectric constant, again with a sine-like dependence on y. Unlike
the case of Hx, a non-trivial solution which is independent of y cannot be
achieved. This is because a nonzero constant does not satisfy the y-dependent
part of the separated equation.
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4.3 Results for Inhomogeneous Waveguide

In Fig.(4.3), we display our numerical results obtained using FEM.

Figure 4.3: Numerical result for the dispersion relation using FEM with
Hermite interpolation polynomials contrasted with the analytical dispersion
relation

We observe that we obtain a few extra modes in our numerical calcula-
tions compared to what we would expect from our analytical consideration
of the inhomogeneous waveguide in the earlier sections. These solutions do
not appear to be spurious since they obey the boundary conditions imposed
on them as well as obeying the divergence condition of the fields. We are
currently looking at any other possible combination of solution in our the-
oretical consideration of the expected spectrum. On the numerical side, we
are looking at further insight into the extra modes by considering TM and
TE modes separately.
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Chapter 5

Conclusion

Early attempts at using the discretization method represented by the Finite
Element Method in solving the Maxwell’s equations in waveguides have led
to the occurrence of spurious solutions as with the Lagrange interpolation
polynomials do not implicitly satisfy the proper inter-element boundary con-
ditions. As from 1985, with the advent of vector finite element method and
edge elements, the spurious solutions were eliminated from the EM fields cal-
culations. The edge elements are able to provide tangential continuity along
the edges which in effect eliminates spurious solutions. However the edge
elements do not impose any continuity condition on the normal component
of the field to the edge. This introduces inaccuracies in the calculation of the
fields.

We developed an independent alternative through scalar, fifth-order
Hermite interpolation polynomials that allow us to represents vector fields
in an FEM scheme. The Hermite interpolation polynomials ensures 2nd-
derivative continuity within elements and 1st derivative continuity from one
element to another. We investigated our approach over several standard
test cases. In each case, we observe superior level of accuracy. We are able
to obtain eigenvalues up to 3 orders of magnitude higher than calculations
done with vector finite elements of similar polynomial order. We are also
able generate electromagnetic field distribution in exquisite details in both
homogeneous waveguides and inhomogeneous waveguides.

We have shown throughout this project that via scalar quintic Hermite
interpolation polynomials, we obtain higher flexibility in regards to specify-
ing boundary conditions allowing us to eliminate spurious solutions in waveg-
uide problems and at the same time yielding solutions with higher accuracy.
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Moreover our calculations using Hermite FEM provide great prospects in cal-
culations other than waveguides. For instance, using a similar approach, it is
possible to reproduce through Hermite FEM, the band spectrum of photonic
crystals. In addition our scalar FEM approach allows for the possibility of
multiphysics simulation combining the Maxwell’s equation with Shrödinger
equation.
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