

Bloomberg Functionality Replication in Quartz
A Major Qualifying Project

Submitted to the Faculty of
Worcester Polytechnic Institute

in partial fulfillment of the requirements for the
degree in Bachelor of Science in

Management Engineering
by

Julia Alvidrez
and in

Computer Science
by

Daniel Tocco

January 8, 2014
Bank of America
Project Advisors:

Professor Micha Hofri - Computer Science
 Professor Kevin Sweeney - School of Business

 i

Abstract

Bloomberg Professional is a third party application used by the trading staff, middle and

back office users, and developers at Bank of America. It is used for many different functions

which include viewing market data, conducting electronic trading with customers, and reviewing

historical data. For this project, we will be developing an application that imitates the

Bloomberg DES, YAS, and CDSW functions using Bank of America’s in-house platform,

Quartz. The application will allow Bank of America to validate the quality of in-house reference

data and risk analytics as well as increase the number of employees who have access to this data

due to licensing restrictions on Bloomberg Professional.

 ii

Acknowledgements

We would like to acknowledge the following people whose efforts helped us complete

our project (in alphabetical order):

Professor Jon Abraham Worcester Polytechnic Institute

Paul Ashby BAML - Programmer Prof MKTS (Mgr)

William Carroll BAML - Tech Project Sr Manager

Stefano Cattani BAML - Programmer Prof MKTS

Andreas Clara BAML - Programmer Prof MKTS

Michael Dalgado BAML - Programmer Prof MKTS

Professor Arthur Gerstenfeld Worcester Polytechnic Institute

Professor Micha Hofri Worcester Polytechnic Institute

Andy Hudson BAML - Service Delivery Consultant

Richard Jervis BAML - Senior Trading Strategist I

Christopher Lawson BAML - Service Delivery Consultant

Cristina Malenchino BAML - Programmer Prof MKTS (Mgr)

Selina Pavan BAML - Programme Manager

Professor Kevin Sweeney Worcester Polytechnic Institute

 iii

Executive Summary

Bank of America is currently trying to replicate all of the third party applications and

infrastructure used by the front office using their in-house platform, Quartz. These applications

often have expensive subscriptions. Therefore, Bank of America has to limit the number of

subscriptions they purchase. The replication of these applications will increase the number of

employees who have access to the data displayed by these third party applications. The

replication will also assist in validating the in-house calculations and analytics in Quartz by

comparing the Quartz results to the results of the application being replicated.

 The goal of this project is to replicate Bloomberg Professional Terminal (BBG) screens

in Quartz. This application will only use Bank of America’s database, known as Sandra, to

obtain the market data - there will be no connection to any market data system.

Bloomberg Professional is a third party application used by Bank of America’s trading

staff, middle and back office, and developers. BBG provides analytic tools such as statistical &

comparative analysis and pre- to post-trade analysis which allows users to watch trends, validate

ideas, and generate value. Although the subscription to Bloomberg Profession is very expensive,

$20,000 per year, traders often feel “out of the market” if they use another application such as

Thomson Reuters.

For this reason, Bank of America is replicating the BBG screens in order to mimic the

functionality of the screens without the subscription. The following are the BBG screens being

replicated for this project:

• Bond Security Description Screen (Bond DES)
• Yield and Spread Analysis Screen (YAS)
• Credit Default Swap Security Description Screen (CDS DES)
• Credit Default Swap Valuation Screen (CDSW)

 iv

The DES screens provide description information of different securities including bonds and

credit default swaps. The editable and auto-calculating fields of the YAS screen allow users to

analyze the price of a bond. Users are able to create and value credit default swaps using the

CDSW screen.

 When completing the project, we followed an iterative development approach in order to

continually receive feedback to improve our application. The following are the steps we

followed (Bank of America, 2013):

Figure 1. Iterative Development Approach

As part of the project set-up, we completed the tutorials provided by Bank of America to

familiarize ourselves with Python and Quartz.

Once we felt comfortable using Quartz, we started developing the User Interface (UI) of

the application. We decided to use the Model-View-Controller (MVC) design pattern based on

other Quartz coding examples and past experiences. The UI framework we developed became

known as the View. As is necessary when using the MVC design pattern, we created the View

and Model simultaneously; whenever a field was created in the view its corresponding value was

defined in the Model.

We tested the results of the Qzap Application by comparing them to the Bloomberg

screens. If the Qzap Application and BBG matched we were confident that the Model was

obtaining the correct data from the database and the analytics were performed correctly.

 v

To receive feedback we would have code reviews with Stefano Cattani, Programmer Prof

MKTS, after a major event, such as the completion of a screen. During these informal

walkthroughs of the code, Stefano would make recommendations and suggestions for

improvement. We also demoed all of the screens to Richard Jervis, Senior Trading Strategist I,

to receive suggestions on improvement for the screens and feedback on the UI.

 Once the code was complete, it went through a formal code review were the entire code

was inspected. The reviewer ensured there was useful documentation, good coding practices

were followed, and the code ran without any obvious bugs. Once the quality of the code was up

to the expected standards, the reviewer pushed the code into production which meant the code

was live. This meant that employees at Bank of America would now have access to the Bond

DES, YAS, CDS DES, and CDSW replicated screens in Quartz.

 vi

Table of Contents
Abstract .. i
Acknowledgements ... ii
Executive Summary ... iii
Table of Figures ... viii
List of Acronyms and Key Terms ... x

1.0 Introduction .. 1

2.0 Motivation behind the Project .. 2

3.0 Literature Review... 3

3.1 Financial Terms .. 3

3.1.1 Bonds .. 3

3.1.2 Credit Default Swaps .. 4

3.2 Bloomberg Professional ... 5

3.2.1 Bloomberg DES Screens... 6

3.2.2 Bloomberg YAS Screen .. 8

3.2.3 Bloomberg CDSW Screen .. 9

3.3 Programming Practices and Terms .. 10

3.3.1 Development ... 10

3.3.2 Factory Methods ... 11

3.3.3 Design Pattern – Model-View-Controller ... 12

3.3.4 Directed Acyclic Graphs ... 12

3.4 About Quartz .. 14

3.4.1 Python ... 14

3.4.2 Quartz Development Process .. 14

3.4.3 QZDesktop .. 15

3.4.4 Sandra ... 19

4.0 Methodology .. 20

4.1 Project Set-up ... 21

4.1.1 The Quartz Project for Beginners – Getting Started ... 21

4.1.2 Meetings with Sponsor ... 21

4.2 Development .. 21

4.2.1 Development of the Overall Model .. 21

4.3 Testing .. 24

4.4 Feedback... 24

 vii

4.4.1 Code Review with Stefano.. 24

4.4.2 Interview with Richard Jervis ... 24

4.5 Release ... 25

5.0 Results .. 25

5.1 Qzap Application.. 25

5.1.1 Bond DES Screen ... 26

5.1.2 YAS Screen ... 28

5.1.3 CDS DES Screen .. 29

5.1.4 CDSW Screen in the Qzap Application .. 31

5.2 Challenges .. 32

5.2.1 DES (Bond & CDS) Screen .. 32

5.2.2 YAS Screen ... 33

6.0 Discussion .. 35

6.1 Developing using the Agile Method .. 35

6.1.1 Developing and Overall Model ... 35

6.1.2 Build a Features List ... 35

6.1.3 Plan by Feature ... 36

6.1.4 Design by Feature ... 36

6.1.5 Build by Features .. 36

6.2 Qzap Application Features ... 37

6.2.1 Error Message ... 37

6.2.2 Switching between Screens... 37

6.2.3 Qzap URL ... 38

7.0 Conclusion ... 39

8.0 Appendix ... i
I. Notes from Code Review with Stefano Cattani 2:30 PM 11/8/2013 i
II. Notes from Meeting with Christopher Lawson and Andy Hudson 9:00 AM 11/15/2013ii
III. Notes from Code Review with Stefano Cattani 11/28/2013 ... iii
IV. Notes for Meeting with Richard Jervis 3:00 PM 12/3/2013 ... iv

V. To – Do List as of 12/6/2013 .. ix

VI. To – Do List of 12/16/2013 ... xiv

Bibliography ... 1

 viii

Table of Figures

Figure 1. Iterative Development Approach ... iv

Figure 2. Credit Default Swaps ... 5

Figure 3. Bloomberg Bond DES Screen ... 7

Figure 4. CDS DES Screen ... 8

Figure 5. YAS Screen shot.. 9

Figure 6. CDSW Screen Shot ... 10

Figure 7. Feature-Driven Development Process ... 11

Figure 8. Model-View-Controller Pattern... 12

Figure 9. Car Transform Hierarchy .. 13

Figure 10. Car Transform Graph .. 13

Figure 11. Quartz Development Process .. 15

Figure 12. QZDesktop Screen Shot .. 16

Figure 13. QZDev Screen Shot ... 17

Figure 14. Bond DES Screen Shot .. 18

Figure 15. Powwow Screen Shot .. 19

Figure 16. Sandra Screen Shot .. 20

Figure 17. Iterative Development Approach .. 20

Figure 18. Qzap Application ... 26

Figure 19. Qzap Application Bond DES Screen ... 27

Figure 20. Qzap Application with ISIN USN9365BL23 DES Screen ... 28

Figure 21. Qzap Application YAS Screen .. 29

Figure 22. Qzap Application CDS DES Screen .. 30

Figure 23. Qzap Application CDSW Screen .. 32

Figure 24. Delegate Functions used in the YAS Screen ... 33

Figure 25. Delegate Functions used in the YAS Screen ... 34

Figure 26. "Bond Not Found" Error Message .. 37

Figure 27. Qzap Application YAS Screen .. 38

Figure 28. Qzap Application Screen ... 39

Figure 29. Bond DES Screen .. v

 ix

Figure 30. YAS Screen shot... vi

Figure 31. CDS DES Screen Shot... vii

Figure 32. CDSW Screen Shot .. viii

 x

List of Acronyms and Key Terms

Acronym Description of the Acronym
Accr Accrued

Act/360 Day Count Convention
Amrt Amortization
ASW Asset Swap Spread
BBG Bloomberg
BBID Bloomberg ID
Bps Basis Points
CDS Credit Default Swap

CDSD BBG Page Code for CDS Default Settings
CDSW Credit Default Swap Valuation

CG Capital Gain
CoCo Contingent Convertible Bond

Cpn Freq Coupon Frequency
Credit Dev Credit Development

CUSIP National Securities Identification Number for products issued from
both the United States and Canada

Def Exposure Default Exposure
DES BBG Page Code for Security Description

Dsc Curv Discount Curve
DV01 Dollar Duration

G-Spread Interpolated Bong Spread to Government
GUI Graphical User Interface

I-Spread Interpolated Bond Spread to Swap Curve
IR Interest Rate

ISDA International Swaps and Derivatives Association
ISIN International Securities Identification Number

Mmkt Money MarkIT Equivalent Yield
Mty Maturity
OAS Option Adjusted Spread

Pay AI Whether or not Accrued Interest is Paid
Pts Upf Points Upfront
Rec Risk Recovery Rate Risk

RED Reference Entity Database - a product supplied by the market used
throughout the industry

REF Reference

Start Cnst Started Constituents Count – number of constituents the index started
with

TITIM Telecom Italia ticker
UI User Interface

YAS BBG Page for Yield and Spread Analysis
Z-Spread Zero-volatility spread

 1

1.0 Introduction

Bank of America is a banking corporation which provides financial and investment

services to consumers, small businesses, and corporations. Currently, Bank of America has

approximately fifty-three million customers in more than forty countries throughout Europe, the

Middle East and Africa, Asia Pacific and the Americas (About Bank of America, 2013).

Quartz is Bank of America’s in-house platform. It is a Python based framework that was

developed in order for programmers to create applications to rapidly respond to the needs of its

users. Some of the uses of this platform are for market data, analytics, trades and risk measures.

Quartz core components are QzDev, Powwow, and the UI Framework.

The trading staff, middle and back office staff, and developers at Bank of America use

Bloomberg Professional - a computer system that provides financial software tools. Bloomberg

Professional is the main product of Bloomberg L.P., a financial software, data and media

company. It provides tools for analysis so the users can view market data, conduct electronic

trading with customers, and review historical data.

Bank of America is currently rebuilding many of the applications used by the front office

using only Quartz. The goal of our project is to develop an application that mimics the

functionality of several of the Bloomberg Professional screens. The Bloomberg Professional

screens that will be replicated are the Bond Security Description screen, the Yield and Spread

Analysis screen, the Credit Default Swap Security Description screen, and the Credit Default

Swap Valuation screen.

 2

2.0 Motivation behind the Project

Bank of America will be able to complete two objectives with the completion of this

project. The first objective is to validate the quality of in-house reference data and risk analytics

by comparing the results of the application we developed with Bloomberg Professional. The

second objective is to increase the number of employees who have access to real-time financial

data without requiring access to Bloomberg Professional.

 The application that we developed pulls financial data from Bank of America’s in-house

database. By comparing the results of the application to BBG, Bank of America will be able to

validate the data they collected as well as the analytics preformed on the data. This application

will display the data gathered by Bank of America in a similar format to Bloomberg Professional

which will ease the comparison of the data.

As of October 2011, there were approximately 290,500 full-time associates employed at

Bank of America. Bank of America currently has approximately 10,000 Bloomberg Professional

terminals in use globally. If an employee at Bank of America requires access to real time data

he/she will have to get a personal subscription to Bloomberg Professional, which are expensive

and very restrictive. The goal of this application is to provide employees with the same type of

analytics and quality of data that Bloomberg Professional would without the subscription

(Lawson & Hudson, 2013).

 3

3.0 Literature Review

3.1 Financial Terms

3.1.1 Bonds

A bond is a debt security that obligates the issuer to pay the bondholder a specified sum of

money, called interest, periodically. Once the bond reaches maturity the issuer must then repay

the face value of the bond known as the principle amount (What Is a Bond?, n.d.). Bonds are a

type of fixed-income security due to the rate at which interest is paid and the amount is typically

fixed at the time that the bond is put up for sale. A subordinated bond is one that will be paid

once other loan obligations (of the issuer) have been met. Along the ones mentioned previously

there are many other types of bonds, each with its own rules and regulations (Morris & Morris,

2012).

3.1.1.1 Callable Bonds

A callable bond is a type of bond in which the issuer is able to buy back the bond prior to

the maturity date. The issuer must pay the holder of the bond the call price, which was

determined in the legal agreement of the bond, if the issuer chooses to buy the bond prior to the

determined maturity date (Marshall, 2000).

The risk that the bond holder has if the issuer buys back the bond before the maturity date is

called the call risk. The issuer is more likely to buy back the bond if interest rates decline below

the coupon rate of the bond. If the issuer does buy back its bond, the bond holder gets their

money back sooner than expected and therefore has to reinvest on a bond (Marshall, 2000).

3.1.1.2 Floating Rate Note

A floating rate note is a type of bond that has a floating rate of interest rate. This interest

rate is determined by the benchmark reference rate of interest and the spread for that benchmark.

 4

Unlike a fixed interest rate which is constant over the life of the instrument, the floating interest

rate fluctuates based on the market conditions (Marshall, 2000).

3.1.1.3 Benchmark Bond

Benchmark Bonds are government bonds which are used as points of references to

measure the current state of the economy. The yield level of the United States Treasury long

bond is directly related to the current state of US interest rates, public-sector debt, and economic

growth. Investors use benchmark bonds to measure the value of the bond and compare the return

on investment of the bond (Choudhry, 2006). Benchmark bonds are used in the YAS screen.

3.1.2 Credit Default Swaps

A credit default swap is a contract between a protection seller and a buyer that provides

protection on a specified reference asset in the event of a default. The buyer pays a periodic

fixed fee to the protection seller in return for protection on the asset. This means that in the

event of a credit default, the protection seller pays the buyer the par value of the asset minus the

recovery which is the investor’s money that was not lost.

 5

Figure 2. Credit Default Swaps

The credit default swap lowers the risk of the investment by transferring the risk to a

counter party. The counter party is usually a larger institution therefore is able to take on a

higher risk investment (Choudhry, 2006).

3.2 Bloomberg Professional

Bloomberg Professional (BBG) is a financial software tools used by the trading staff,

middle and back office staff, and developers at Bank of America. It is the core product of

Bloomberg L.P’s, a financial software, data and media company. Currently, it is the market

leader with about 315,000 subscribers as of May 2013 (Seward, 2013).

Bloomberg Professional provides tools for data analysis which allows users to validate

ideas, watch trends, and generate value. The analytics tools provided included but are not

limited to:

• Statistical & Comparative Analysis
• Volatility Monitors & Analysis

 6

• Pre- to Post-Trade Analytics
• Portfolio & Risk Analytics

BBG offers its users two options for their subscriptions. The following are the access

levels and a description of what they offer:

• Bloomberg Anywhere

o Access available on any device such as any computer, terminal, or mobile

device

• Bloomberg Open

o Access available on only one terminal machine however it can it can have

multiple logins

Bloomberg is very restrictive and closely monitors the users of the subscriptions, even including

a biometric login on the Bloomberg Professional specific keyboard.

Although BBG does not publicize its prices, it is estimated that each subscription costs

around $2,000 a month – making it the most expensive compared to rivals such as Thomson

Reuters. They do offer a discounted price of $20,000 a year per subscription for institutions

which have two or more subscriptions (Seward, 2013).

3.2.1 Bloomberg DES Screens

The Security Description (DES) Screen in Bloomberg provides descriptive information

for different securities including corporate bonds, government bonds, syndicated loans, single-

name credit default swaps, and credit default swap indexes.

3.2.1.1 Bloomberg Bond DES Screen

In order to obtain the bond’s information the user can input different identifiers. The

most common identifier is the International Securities Identification Number (ISIN) but the bond

description or CUSIP can also be used. This identifier is the only user input for this screen.

 7

Figure 3. Bloomberg Bond DES Screen

3.2.1.2 Bloomberg CDS DES Screen

The user needs to input the ticker, currency, category of security, length of protection,

and the yield of the credit default swap in order to obtain the security description information.

Similar to the Bond DES Screen, there are no calculations and the values are obtained from the

Bloomberg servers.

 8

Figure 4. CDS DES Screen

3.2.2 Bloomberg YAS Screen

The Yield and Spread (YAS) screen allows for the analysis and pricing of a fixed income

security based on user inputs. The information for the fixed income security is also retrieved

with the same identifiers that the Bond DES screen accepts, including the ISIN number. The

user also needs to input a reference security, usually a government security, which is used as a

benchmark to compare the two securities. The yield and price of the reference bond are then

auto-populated. The user needs to input the spread of the bond which auto-calculates the yield

and price of the security. All of these fields are editable allowing the user to adjust the price,

yield, and spread of both securities to analyze relationship between the different fields in

different scenarios. When adjusting the price, yield, or spread any dependent fields are

automatically-updated. All other fields are automatically populated once the ISIN is entered.

The following are the formulas for the calculations:

• Spread
Yield of Fixed Income Security =
Spread of Fixed Income Security + Yield of Reference Fixed Income Security

• Price of the Fixed Income Security

 9

o Pfull = price of the default bond
o CD = the annualized coupon
o fD = coupon frequency
o T1, …, TN = time to each of the cash flow payments in a year
o yD = yield of defaultable bond

Figure 5. YAS Screen shot

3.2.3 Bloomberg CDSW Screen

The Credit Default Swap Valuation (CDSW) screen allows users to create and value

credit default swaps. Issuers can be searched to create a CDS or an equity, government,

municipal, preferred, corporate security, or CDS index can be chosen to be used as an issuer

reference.

 Like the YAS screen, most of the fields and values on this screen are editable, allowing

the user to adjust the spread, points up front, and price just to name a few. When fields and

values are adjusted any dependent fields are automatically updated and values are recalculated.

The following formulas are for the values in the screen:

 10

• Cash Amount = Principal + Accrued
• Principal = Clean Price (calculated internally)
• Accrued = Accrued Interest (calculated internally)
• Price = 100 – Points Upfront
• Points Upfront = Principle / 100,000

Figure 6. CDSW Screen Shot

3.3 Programming Practices and Terms

3.3.1 Development

For this project, we followed an agile method that is based on iterative and incremental

development called the feature-driven development process. Agile methods promote

evolutionary development and encourage rapid and flexible responses to change. The following

diagram depicts the steps of the feature-driven development process (Luca, 2012):

 11

Figure 7. Feature-Driven Development Process

We chose an agile method because of the flexibility of the method. When compared to a

traditional method, like the waterfall model which has strict steps, an agile method seemed most

appropriate due to the limited seven week time span. The end result for each screen was left

open and therefore could be updated throughout the project.

3.3.2 Factory Methods

The Graphical User Interface (GUI) was built by using the factory method design pattern

for the fields and labels. These fields and labels were then used to separate each section of the

screen into a new method. A factory method creates an object without specifying the exact

details of the object created; instead, the details are passed. This allows for differently formatted

objects to use the same method thus minimizing code. Another benefit of the factory method is

it creates a single place where developers can make changes that apply to all fields, labels or

similar attributes.

 12

3.3.3 Design Pattern – Model-View-Controller

The Model – View – Controller pattern is a coding style which separates an application

into three parts.

Figure 8. Model-View-Controller Pattern

Model
• contains the application data
• contains the business logic

View
• contains the code for how the is being displayed
• requests the data from the model

Controller
• manages how the view and model change based on the user inputs
• for this project the DAG cells take the place of most of the controller, the rest is integrated

into the model

3.3.4 Directed Acyclic Graphs

Directed Acyclic Graph (DAG) is a hierarchy where objects are defined relative to the

transformations on their parent objects. This hierarchy is also called a transformation hierarchy

and the objects that implement it are called DAG objects or nodes. In a DAG, there are two

types of nodes - transforms and shapes. In more simplistic terms, a DAG is a collection of nodes

 13

and directed edges, each edge connecting one node to another. Transforms are parent nodes that

must have at least one transform node as a parent. This means the shape nodes, being leaf nodes,

cannot have any children beneath them. Therefore, there is no way to start at some node N and

follow a sequence of edges that loops back to n again (Autodesk, n.d.). Normally the object-

hierarchy is shaped like a tree, as seen below:

Figure 9. Car Transform Hierarchy

With a DAG hierarchy the structure is shaped like, as the name suggests, a graph. Using the

same structure as seen above but the DAG objects, the hierarchy would look as such:

Figure 10. Car Transform Graph

Car Transform

Front Left
Wheel

Transform

Wheel Shape
1

Front Right
Wheel

Transform

Wheel
Shape 2

Back Left
Wheel

Transform

Wheel
Shape 3

Back Right
Wheel

Transform

Wheel
Shape 4

 14

3.4 About Quartz

Quartz is Bank of America’s in-house integrated platform used by all asset groups for

trades, market data, analytics, pricing and risk management. The primary programming

language used is Python but it also includes C++ and C# / .NET. Quartz’s core components are

Sandra, the User Interface Framework demo, and Powwow.

3.4.1 Python

Python is a general-purpose high-level programming language developed by Guido van

Rossum. It is known for being easy to read, learn, and modify. Python’s philosophy, “there

should be one – and preferably only one – obvious way to do it” is the complete opposite of

Perl’s “there is more than one way to do it” philosophy (Peters, 2004). When compared to other

languages such as Ruby, Scheme, or Java, Python’s distinguishing features are (About, 2013):

• Clear, readable syntax
• Exception-based error handling
• Extensive standard libraries and third party modules

3.4.2 Quartz Development Process

In order to promote Quartz’s integrated development environment, there are four steps

which team members are highly suggested to follow while developing in QZDev. The following

figure displays the four steps along with a small description of the step:

 15

Figure 11. Quartz Development Process

3.4.3 QZDesktop

The QZDesktop is the collection of all the strategic business applications, which every

employee at Bank of America has access to. The business applications we used while

completing our project were Powwow, QZDev, and the UI Demo.

Push

Pushing will create a copy of the changes in production

Review

Commit changes to allow others to view

Test

Test different scenarios until you are confident the
version works well

Develop

Make Changes

 16

Figure 12. QZDesktop Screen Shot

3.4.3.1 Playground

Each developer at Bank of America has a playground which is a personal file where they

can create code that does not affect any files or data outside of that file. The playground was

used during the design and coding stages of each screen - before the code was deemed acceptable

and moved into the working code base.

3.4.3.2 QZDev

QZDev is Quartz’s integrated development environment (IDE) in which programmers

develop and test their code. It consists of the Python shell, Python libraries, Quartz libraries, as

well as other applications and tools.

 17

Figure 13. QZDev Screen Shot

3.4.3.3 User Interface Demo

The User Interface (UI) Demo application provides example code and displays the

customizable features of the different UI objects in Quartz. During the first week of our project,

we explored and examined the different UI objects to decide on the most appropriate for each

aspect of the screens. This was also used as a source of references for using DAG objects with

the UI objects which made up a majority of our screens.

 18

Figure 14. Bond DES Screen Shot

3.4.3.4 Powwow

Powwow is an instant messaging application which allows employees to communicate

with each other. It is designed for short messages with inquires about errors which occur while

developing a code. Powwow also acts as a monitor for the code base.

 19

Figure 15. Powwow Screen Shot

3.4.4 Sandra

Sandra is Bank of America’s in-house object database and is the source of all of the

information our project accessed in Quartz. The contents of the Sandra database can be viewed

in the Qzap Application DB Browser.

 20

Figure 16. Sandra Screen Shot

4.0 Methodology

In order to continually receive feedback on the code we developed, we followed an

iterative development approach while completing the project. The follow figure shows the

approach we followed:

Figure 17. Iterative Development Approach

 21

This chapter outlines the development, testing, and feedback steps we repeated until we felt the

code was up to expected standards which was when the final step, the release of the code,

occurred.

4.1 Project Set-up

4.1.1 The Quartz Project for Beginners – Getting Started

Bank of America provides new Quartz users with tutorials to familiarize themselves with

the in-house software. These tutorials demonstrate the features of the Quartz functions and have

step by step instructions on how to utilize these functions. We completed these tutorials during

the first days of our project which allowed us to understand the features of Quartz and the

programming language Python.

4.1.2 Meetings with Sponsor

During the first two weeks we met daily with our sponsor, Paul Ashby, to discuss our

progress during the day. In these meetings, we would discuss any problems we came across,

how to fix the problems, and our short term goals for the coming days. After the first two weeks

we became more familiar using Quartz and the expectations of our project so we started to meet

with our sponsor twice a week or whenever we had a major problem.

4.2 Development

4.2.1 Development of the Overall Model

This section describes the steps which we took when writing the code for the project. We

determined the order of the steps based on dependencies of the features – we started with the

features which had no dependencies and then proceeded to the more complex features.

 22

4.2.1.1 Developing the User Interface

We first created a framework for the screens which would allow for easy removal or

addition of different screen sections. These sections were divided into separate functions, or

modules, and combined in the panel. The following is example code for the Bond DES screen’s

panel:

def panel(self):
 return ui.VL([
 self.bondSelector(),
 [[self.issuerInformation(),
 self.securityInformation(),
 self.column1Row3(),
 self.column1Row4(),],
 [self.identifiersInformation(),
 self.bondRatings(),
 self.issuanceAndTrading(),
 self.switchToYAS()]]],

attr=self.panelAttr(), scroll=True)

Each module contains the UI elements that make up that section. The code below is an example

of the Issuer Information section:

def issuerInformation(self):
 issuerInfoLabel = self.makeDefaultHeader("Issuer Information", self.headerLabelAttr())

 nameLabel = self.makeDefaultLabel("Name", self.defaultLabelAttr())
 industryLabel = self.makeDefaultLabel("Industry", self.defaultLabelAttr())

 nameValueLabel = self.makeDefaultLabel(self.Binding().NameVal, self.defaultValueAttr())
 industryValueLabel = self.makeDefaultLabel(self.Binding().IndustryVal, self.defaultValueAttr())

 return self.addDefaultBorder(
 ui.VL([
 issuerInfoLabel,
 [nameLabel,
 nameValueLabel],
 [industryLabel,
 industryValueLabel]],

alignChildren=True))

All of the UI elements were created using a factory method. The factory method for

creating labels can be seen below. Using factories to create the UI elements created a single

 23

place to make changes in order to propagate any graphical changes to each element in the panel

that used that factory method. The following is example code of the label creating factory:

def makeDefaultLabel(self, name, attributes):

 return ui.Label(name, attr=attributes, halign=ui.Align.LEFT, size=(ui.Size.STRETCH, ui.Size.STRETCH))

4.2.1.2 Developing the Model

Once the framework, also known as the view, for the screen was complete, the model was

created - the controller was integrated into the view (see 6.1.1.2 Model – View – Controller for

more information). The model was created by adding DAG elements for the corresponding

value in the view. The following is an example of how the currency label in the view obtained

its value from the model:

View:
currencyValueLabel = self.makeDefaultLabel(self.Binding().CurrencyVal, self.defaultValueAttr())

Model:
 @DAG.cellfn(DAG.CanSet)
 def CurrencyVal(self):
 if self.Bond():
 return self.Bond().ReferenceData().Currency()

4.2.1.3 Loading the Object

In order for the Model to load the bond/CDS object, the attributes of the desired object

have to be entered onto the search field of the screen. For bonds, the Model communicates with

Sandra directly and receives a bond object. The process is more complicated for credit default

swaps. Instead of communicating with Sandra directly, the Model talks to an interface which

handles communication with Sandra itself. Once the given attributes match a CDS in the

database, the CDS object is returned.

4.2.1.4 Qzap Integration

Changing the QzDesktop application into a Qzap application did not require many

changes. An interface was implemented which required functions that updated the screen,

 24

returned the screen (as an object), and handled joining the URL’s parameters to the search fields.

Linking the URL’s parameters to the search fields allowed the URL to automatically update

itself whenever the values in the search field(s) were changed. It also allowed for the application

to receive parameters from the URL and load the requested object, should the screen be accessed

directly via a Qzap URL.

4.3 Testing

Our main method of testing the screens we created was comparing them to the

Bloomberg Professional Screens. If the values matched the fields, then we were loading the

correct object from the database or accessing the correct attribute. We were also able to use

Bloomberg Professional to confirm that the algorithms that calculated certain fields were correct.

If the numbers did not match, then we had to determine whether the error was caused by the code

or by the algorithms that calculated it.

4.4 Feedback

4.4.1 Code Review with Stefano

After the completion of a major milestone, such as the completion of a screen, we would

have a code review with Stefano Cattani – Programmer Prof MKTS. These code reviews were

informal walkthroughs of the code in which Stefano would make recommendations and

suggestions for improvement. Changes to the code were then made based on Stefano’s

suggestions and recommendations. Appendix I and III contain the notes from the code reviews

with Stefano Cattani.

4.4.2 Interview with Richard Jervis

Once the User Interface was complete and about half of the functions of the screens were

working correctly, we conducted an interview with Richard Jervis, a Senior Trading Strategist I,

 25

to receive feedback on the screens. Richard is a frequent user of Bloomberg Professional and a

potential user of our application. Appendix V contains our notes from this interview.

4.5 Release

Throughout the course of the project informal code reviews were held whenever a major

point in the project was reached, typically when a screen reached a point of completion or a

major bug was fixed. However, the code review for the final release was more formal,

containing all of the new and changed files since the beginning of the project. After committing

the final code, a code review was requested and sent to be approved. The reviewer looked for a

number of things, mainly if there was useful documentation, good coding practices were

followed (organization and naming conventions), and that the code ran without obvious bugs. If

the code was up to the expected standards and free of obvious bugs, the review was approved

and the code was ready to be pushed to production. Pushed to production meant that once

QzDesktop was restarted, forcing it to update, the code was live. Any employee with access to

QzDesktop would be able to view the updates, changes, or access the new application.

5.0 Results

5.1 Qzap Application

The Qzap Application can be accessed through the DB Browser in the QZDesktop. The

user needs to input the respective URL to go to the designated screen. The following is a screen

shot of the application:

 26

Figure 18. Qzap Application

5.1.1 Bond DES Screen

The URL to access the Bond DES screen is Qzap://CreditStrats?app=bond_des. The

following is a screen shot of the Bond DES screen:

 27

Figure 19. Qzap Application Bond DES Screen

When using the bond DES screen, the user has the option of entering the bond’s CUSIP,

ALICE, Bloomberg, ISIN, RED Code, or ticker identifier. The most common identifier used to

look up a bond is the ISIN.

 28

Figure 20. Qzap Application with ISIN USN9365BL23 DES Screen

5.1.2 YAS Screen

The URL to access the YAS screen is Qzap://CreditStrats?app=yas. The following is a

screen shot of the YAS screen:

 29

Figure 21. Qzap Application YAS Screen

For the YAS Screen, the user has to input the identifier for both the bond and the

benchmark bond. Similar to the DES Screen the user can use the bond’s CUSIP, ALICE,

Bloomberg, ISIN, RED Code, or ticker identifier as the identifier. The user will also have to

input the yield of the reference bond and the spread. The price and yield of the main bond as

well as the settle dates will all be able to be adjusted by the user.

5.1.3 CDS DES Screen

The URL to access the CDS DES screen is Qzap://CreditStrats?app=cds_des. The

following is a screen shot of the CDS DES screen:

 30

Figure 22. Qzap Application CDS DES Screen

When using the DES Screen, the user has to input the CDS ticker and select the debt

type, restructuring type, currency, payment frequency, and the duration of the payments.

The following are the options for Debt Type:

• Receivable
• Hybrid
• Loan Lien 2
• Senior Secured
• Loan Lien 1
• Loan Lien 3
• Preferred Jr Subordinated
• Subordinated
• Senior Secured

The following are the options for Restructuring:

 31

• LCDS – CDS contract where the underlying is a syndicated loan
• MM – Modified Modified Restructuring
• SCN3
• SCN6
• MR – Modified Restructuring
• XR – No Restructuring
• CR – Complete Restructuring
• REC

The following are the options for the payment frequency:

• Continuous
• Simple
• Annual
• Semi-Annual
• Daily
• Monthly
• Bimonthly
• Quarterly
• Biweekly
• Weekly

The following are the options for the tenor:

• 0M
• 3M
• 6M
• 9M
• 1Y
• 2Y
• 3Y
• 4Y
• 5Y
• 7Y
• 10Y

5.1.4 CDSW Screen in the Qzap Application

The URL to access the CDSW screen is Qzap://CreditStrats?app=cdsw. The following is

a screen shot of the CDSW screen:

 32

Figure 23. Qzap Application CDSW Screen

When using the CDSW Screen, the user has to enter and select the same inputs as the

CDS DES Screen – the CDS ticker, the debt type, restructuring type, currency, payment

frequency, and the duration of the payments.

5.2 Challenges

5.2.1 DES (Bond & CDS) Screen

When copying and pasting ISINs into the DES screen, the error “Bond Not Found”

would occur due to trailing white space. A delegate function to handle changes to the identifier

and ticker field was created that removes any leading or trailing white space, capitalizes all

 33

letters, and updates the display of the screen. The ForceUppercase attribute was also added to

handle only the removal of white space.

5.2.2 YAS Screen

Unlike the DES screens, this screen contained cyclic relationships which DAG objects

are incapable of handling. When the spread was changed the yield changed and when the yield

changed, the spread change. This meant that without a 3rd party to handle the updating of each

variable, changing the spread or the yield would create an infinite loop of each variable updating

the other. As can be seen below we used delegate functions to handle whenever a value was

changed.

Figure 24. Delegate Functions used in the YAS Screen

 34

A relationship graph without text, shown below, is also included to demonstration the

dependencies more clearly.

Figure 25. Delegate Functions used in the YAS Screen

One characteristic of the DAG delegate function which was very useful was its ability to

ignore the delegate functions of other objects. For example, the spread of the bond could update

the yield without triggering the yield’s delegate function, thus avoiding the infinite loop.

 35

6.0 Discussion

6.1 Developing using the Agile Method

6.1.1 Developing and Overall Model

6.1.1.1 User Interface

We were given the ability to pick the design and layout of our application; the only

requirements we were given were the specific functionality of the screens. The idea behind the

replication of the appearance of Bloomberg Professional for users who have interacted with

Bloomberg to feel comfortable while using the replicated screens. Therefore, the users do not

have to learn how to use a new piece of software, especially if the replicated screens and

Bloomberg are used interchangeably.

6.1.1.2 Model – View – Controller

We decided to use a modified Model – View – Controller pattern based on past

experience and examples of code we reviewed. Since we knew the final appearance of the

screen but not the complete functionality, this pattern allowed us to fully create the view and

model separately without having to wait for the completion of the other. Due to the way Qzap

URLs functioned, we decided to integrate the majority of what would be found in the controller

into the view. Since DAG objects update their children when their value has been changed, they

handled the remaining aspect of what would normally be found in the controller (Goyal, 2008).

6.1.2 Build a Features List

At the beginning of the project, we came up with a minimum set of functionality for each

screen. The other features that needed to be added would be built upon the original functions.

After each screen was created, or a new set of features were added, we would sit down with the

 36

Credit Dev team to determine which features would be replicated and established a new features

list.

6.1.3 Plan by Feature

The implementation of each feature was based on the complexity of it and its

dependencies. For the YAS and CDSW screens, we took into account the user-editable auto-

updating fields and prioritized features based on the dependencies.

6.1.4 Design by Feature

Once we prioritized the features, we looked at the relationships between each, the

dependencies, and created a sequence diagram. This step was mainly needed of the YAS screen

as the yield, price, benchmark yield, benchmark price, and spread all had dependencies among

themselves and needed to maintain those relationships when any of those values were changed.

We knew that all values in the view had to have a corresponding value in the model but there

were also some value labels that retrieved their values from the model as well. At the

completion of this step, we moved onto building the actual view and model.

6.1.5 Build by Features

The different sections of the screens were created as modules with subsections that

allowed developers to easily add, remove, or reorder the appearance of a screen. Once the GUI

framework was built, we created the model and added DAG elements for the corresponding

value in the view. Once the DAG elements pulled the correct information from the database and

the UI elements displayed their corresponding DAG element, we added the bond/CDS loading

feature. The Qzap integration feature was added once all of the features functioned correctly.

 37

6.2 Qzap Application Features

6.2.1 Error Message

The following screen shot displays the error message, “Bond Not Found”, that appears in

order to inform the user that an incorrect identifier number has been entered.

Figure 26. "Bond Not Found" Error Message

6.2.2 Switching between Screens

A button was added in order to facilitate the switching of screens. The following are the

screens which can be switched between:

• Bond DES Screen YAS Screen
• YAS Screen Bond DES Screen
• CDS DES Screen CDSW
• CDSW CDS DES Screen

 38

Figure 27. Qzap Application YAS Screen

6.2.3 Qzap URL

In the Qzap Browser, a variety of different applications can be accessed via a URL.

Similar to a URL used in a web browser, it contains parameter values for the application. In

regards to our project, the benefit of the Qzap URL is that if a bond or CDS is loaded into one of

the screens, the link automatically updates itself. This means that displaying the screen with that

specific bond or CDS on another computer or on another tab is easy, the Qzap URL just has to be

copied. An example URL for the Bond DES screen would look as such:

Qzap://CreditStrats?search_type=ISIN&app=bond_des&search_value=AT0000A12GN0

• Qzap:// indicates that the link should be opened in the Qzap Browser
• CreditStrats is the Directory
• App is the desired application
• Search_type and search_value are the parameters for the Bond DES application

 39

Figure 28. Qzap Application Screen

7.0 Conclusion

In conclusion, we were able to replicate the Bloomberg Professional bond and credit

default swap Security Description Screen and the Yield and Spread screen, as well as create the

foundation for the Credit Default Swap Valuation screen.

By retrieving the information we needed from the object database, Sandra, we were able

to successfully replicate three out of the four screens. Both DES screens are able to pull data

from Sandra about the selected bond or CDS and display it to the user. The YAS screen allows

for users to edit fields such as the price, spread, yield, and benchmark yield, to name a few. Any

 40

fields dependent on the changed fields will recalculate themselves, thus fields automatically

updating themselves based on any changes made to the bond or benchmark bond. The CDSW

screen is the only screen that is not fully functional - the calculations are off. Despite the

incorrect calculations, the rest of the data displayed is correctly retrieved from Sandra, CDSs can

be loaded, and fields automatically recalculate themselves when details of the CDS are changed

such as the notional or spread values.

Despite running into some challenges along the way such as the cyclic dependencies

among the fields of the YAS screen all four applications were developed and tested to

completion. Upon completion, the code was reviewed by the credit dev team, accepted, and

pushed into production. This means that all Bank of America employees that have access to the

Qzap Browser, now have access to the four applications that were produced and can use them at

their leisure.

Due to the seven week time constraint, we were not able to complete all aspects of the

screens. We have included a [INSERT APPENDIX] “To - Do” list which includes the next steps

for this project along with what needs to be improved upon had we been given more than seven

weeks. With the completion of this project, Bank of America will be able to validate their in-

house date by comparing their results to the results of Bloomberg in addition to enabling more

employees at BAML to have access to this type of data analysis.

 1

8.0 Appendix

I. Notes from Code Review with Stefano Cattani 2:30 PM 11/8/2013

Bond DES Screen & CDS DES Screen:
• Make attributes functions so there is a single place to make changes
• Clean up some of the code to better define the Model & View
• Clean up the ratings function, use a lambda statement for it
• Set up try/catch when loading a bond to catch when the loading fails or the bond isn’t found

 2

II. Notes from Meeting with Christopher Lawson and Andy Hudson 9:00 AM
11/15/2013

Our Project Is For:
• Research Team
• Trader Assistance
• Prove Quartz Analytics

Bloomberg:
• For anyone who wants live data via a GUI
• Very restrictive & watched
• Different Access Levels:

o Bloomberg Anywhere: Can be used to access Bloomberg on any device (any computer,
terminal, mobile, etc…)

o Bloomberg Open: terminal machine, can only be used on a specific machine (can have
multiple logins), cannot use remote desktop access

• Login Security
o Biometric Logic

• Cost: $20,000 per person per year
• Bloomberg has the fixed income market, without Bloomberg a company/trader is “out of

the market”

Thompson Reuters:
• Competitor of Bloomberg
• More relaxed security, can distribute data more
• Previously a news agency, uses that network to get its data
• Thompson has a deal with Libor to get its data before others

Thompson versus Bloomberg:
• Some data different
• Uses different markets to get data from so some spreads & analytics different
• Depends on market working in
• Small (insignificant) differences

Traders:
• Prefer Bloomberg over Thompson
• Chat feature is significant for Bloomberg
• Users are increasing for Bloomberg

 3

III. Notes from Code Review with Stefano Cattani 11/28/2013

YAS Screen
• Make the identifier field more prominent
• Show description of benchmark bond instead of dropdown
• Tweak the market data date
• When changing the spread or benchmark bond yield, the bond in focus’ yield should change

(previously changing the benchmark bond’s yield would trigger the spread to change)
• Changing the bond in focus’ price should change its yield, not the spread
• Only make Z-Spread editable
• Remove OAS values and other value not being used (e.g. Yield Calculations section)
• Minor UI Tweaks

Bond DES:
• Remove Bloomberg prefix on ratings label
• Only display ratings with Bloomberg prefix

All:
Allow switching to related screen (ex: Bond DES to YAS) via buttons or Qzap links

 4

IV. Notes for Meeting with Richard Jervis 3:00 PM 12/3/2013

We interviewed Richard Jervis, a Senior Trading Strategist I, in order to receive feedback

on the application we developed. During this interview, we demoed the four screens of the

application. When asked about the user interface, he agreed with our decision that making the

application appear similar to Bloomberg will facilitate the switching between Bloomberg and the

Qzap Application (Jervis, 2013).

The following sections contain screen shots of the screens during the time of the

interview and bullet points of Richard Jervis’s comments and suggestions for improvement for

each screen. His time-permitting/long-term goal suggestions are denoted by ‘[Additional]’.

These were additions that he thought would be helpful for users but are not needed to use any of

the four screens.

 5

Bond DES Screen

Figure 29. Bond DES Screen

• Add a field that gives a more detailed description of the rank
• Add call data for callable bonds
• Change static “BULLET” label
• Display only the Bond Ratings which are prefaced with ‘Bloomberg’
• [Additional] Link to a page displaying all children for the parent of the currently

selected bond

 6

YAS Screen

Figure 30. YAS Screen shot

• Capability to handle both callable and floating rate bonds

 7

CDS DES Screen

Figure 31. CDS DES Screen Shot

• Ensure that the CDS is liquid – Don’t display non-liquid CDS
• [Additional] Link to a page displaying all children for the parent of the currently

selected bond

 8

CDSW and CDS DES Screen

Figure 32. CDSW Screen Shot

• [Additional] New method of selecting the credit default swap properties (typing
options instead of selecting from a drop down menu)

All Screens

• [Additional] Ability to Toggle between Bloomberg and internal terminology

The final screen shots of each of the screens are shown in chapter 5.0 Results. The

specific changes made in regards to Mr. Jervis’s recommendations are stated. Due to the time

constraints of our project, we were not able to implement all of Mr. Jervis’s recommendations.

 9

V. To – Do List as of 12/6/2013

Working Functionality
Bond DES:
• Load Bond using different identifiers

o If no bond found message is shown
• Display basic details about bond
• Can use a standalone app or in Qzap (Qzap://CreditStrats?app=bond_des)
• Can see selected Bond in YAS
• Sanitizes the identifier put before using it to search for a bond

CDS DES:
• Load CDS
• Display basic details about cds
• Can use a standalone app or in Qzap (Qzap://CreditStrats?app=cds_des)
• Can see selected in the CDS in CDSW

YAS:
• Load Bond
• Load Benchmark Bond
• Display spread, yield, price, and other values related to the bond
• Allow user to change values and have related fields automatically update
• Can use a standalone app or in Qzap (Qzap://CreditStrats?app=yas)
• Can see the DES screen for either of the two selected Bonds
• Sanitizes the identifier input before using it to search for a bond

CDSW:
• Load CDS
• See trading and calculated values for CDS
• User can change fields such as notional and spread and related fields will automatically be

recalculated
• Can use a standalone app or in Qzap (Qzap://CreditStrats?app=cdsw)
• Can see DES screen for selected CDS
• Sanitizes the Ticker input before using it to search for a CDS

All:
• When values in search fields are changed the url (in Qzap) is automatically updated & can be

used to bring up the same screen in another tab/window/instance of the Qzap browser
• When switching from one screen to another using the supplied buttons

o Standalone apps will open a standalone instance

 10

o Qzap apps will open a new Qzap tab with the app loaded

Note: for [x], x is the variable name in the Model

Errors, Bugs, Issues, & Needs Improvement
Bond DES:
• Bond Ratings: Shows long names directly from database
• Bullet [BulletLabelVal]: Is currently a static label, doesn’t pull anything from the database
• Rank [RankVal] from DB/Bond doesn’t match Bloomberg
• Announcement Date [AnnouncementDateVal] isn’t getting any date value from the database

(pulling BondReferenceData().AnnounceDate())

CDS DES:
• The selected tenor is not used

YAS:
• Workout Risk [RiskWkoVal] produces error rather than producing value
• OAS fields and yield calculations have been removed (but the code is still there)
• A description of the benchmark bond has been added to replace the benchmark bond

dropdown [benchmarkBondComboBox in View, BenchmarkBondType in Model]

CDSW:
• Debt Type combo box [FirstDebtType] needs a dictionary to link different subordinations to

one of the three possible choices
• ISDA Standard Upfront Model [FirstISDA] is only choice for dropdown
• No difference between “Buy” or “Sell” choices [FisrtBuy]
• None of the “Market” combo boxes are functional
• Pts Upf can’t be changed
• Price can’t be changed
• Pen Coupon [PenCouponVal] calculator assumes that the date for a:

o BiMonthly is maturity date – 15 days
o BiWeekly is 3 days before the maturity date

• Many of the combo boxes have a singular value or wrong choices as the selected value does
not affect anything

• The value for DV IR01 [IRVal] is incorrect

All:

• User editable fields only force numeral values
o Does not specify max input value
o Does not specify min input value

 11

Unimplemented/Not Completed
Bond DES:

Issuer Information:
• Industry [IndustryVal]

Security Information:
• Iss Price [IssPriceVal]
• Calc Type [CalcTypeVal]

Identifiers:
• BBGID [BbgidVal]

Issuance & Trading:
• Book Runner [BookRunnerVal]
• Exchange [ExchangeVal]

YAS:
Bond Details:
• List of Benchmark Bonds [BenchmarkBondChoices]
• Coupon Schedule [YieldDurationChoices]
• Type of Yield [durationYieldValue1 & durationYieldValue2]
• Callable vs Maturity Dropdown? [YieldDurationVal]

Yield Calculations Section:
• Equiv

o ComboBox [EquivDurationVal]
o Value [Equiv2Val]

• Mmkt ComboBox [MmktDurationChoices]
• True Yield ComboBox [ListofYieldCalc]
• Current Yield [CurrentYieldVal]

Spread Section:
• G-Sprd [GSpreadVal]
• I-Sprd [ISpreadVal]
• Basis [BasisVal]
• TED [TEDVal]

Risk Selection:
• OAS Values (All):

o Modified Duration [ModOasVal]
o Risk [RiskOasVal]

 12

o Convexity [ConvexOasVal]
o Dollar Value of a Change in Rates [DvOasVal]
o Benchmark Risk [BenchOasVal]
o Risk Hedge [HedgeOasVal]

• Workout
o *Workout Modified Duration [ModWkoVal]
o *Workout Convexity [ConvexWkoVal]
o *Workout Dollar Value of a Change in Rates [DVWkoVal]
o Workout Benchmark Risk [BenchWkoVal]
o Workout Risk Hedge [BenchWkoVal]
o Workout Proceeds Hedge [ProceedsRiskWkoVal]

Invoice:
• After Tax

o Inc Percentage [TaxIncPercentVal]
o CG Percentage [TaxCGPercentVal]
o Value [AfterTaxVal]

CDS DES:
Credit Default Swap Contract Information:
• Day Count [DayCountVal]
• Disc Curve [DisCurveVal]

Outstanding Debt
• Amt Debt O/S [AmtDebtOSVal]

CDSW:
Deal
• REF Obligation [FirstREF]
• Use Curve Recov Rate [CurveRecoveryRateVal]
• Restructuring [RestructuringVal]
• Backstop Date [BackstopDateVal]
• Pay Al [PayAlVal]

Calculator
• Cash Settled On [SettledOnVal]
• Cash Calculated On [CalculatedOnVal]
• Accrued

o # days [AccruedLabel]

 13

ISDA Standard Upfront Model
• Rec Risk

o Percentage [RecRiskLabel]
o Value [RecRiskVal]

• Def Exposure [DefExposureVal]

Market
• Swap Curve

o Label [StdCurveLabel]
o ComboBox 1 [FirstSwap]
o ComboBox 2 [FirstSwapTwo]

• CDS Curve
o Label [SeniorCurveLabel]
o Combo 1 [FirstCDSCurve]
o Combo 2 [FirstCDSCurveTwo]
o Combo 3 [FirstCDSCurveThree]

• Prob [ProbVal]
• Type of Data [GraphDataTypeVal]
• Data Length Span [GraphTimeFrameVal]
• Graph

o Data [GraphData] (Not connected in View, look for graphData)
o Spec [ChartSpec] (In View, graphSpec)

 14

VI. To – Do List of 12/16/2013

Working Functionality
Bond DES:
• Load Bond using different identifiers

o If no bond found message is shown
• Display basic details about bond
• Can use a standalone app or in Qzap (Qzap://CreditStrats?app=bond_des)
• Can see selected Bond in YAS
• Sanitizes the identifier put before using it to search for a bond

CDS DES:
• Load CDS
• Display basic details about cds
• Can use a standalone app or in Qzap (Qzap://CreditStrats?app=cds_des)
• Can see selected in the CDS in CDSW
• Sanitizes the ticket input before using it to search for a CDS

YAS:
• Load Bond
• Load Benchmark Bond
• Display spread, yield, price, and other values related to the bond
• Allow user to change values and have related fields automatically update
• Can use a standalone app or in Qzap (Qzap://CreditStrats?app=yas)
• Can see the DES screen for either of the two selected Bonds
• Sanitizes the identifier input before using it to search for a bond
• Any date before today cannot be selected for the settle date for either Bond or Benchmark

CDSW:
• Load CDS
• See trading and calculated values for CDS
• User can change fields such as notional and spread and related fields will automatically be

recalculated
• Can use a standalone app or in Qzap (Qzap://CreditStrats?app=cdsw)
• Can see DES screen for selected CDS
• Sanitizes the Ticker input before using it to search for a CDS

All:
• When values in search fields are changed the url (in Qzap) is automatically updated & can be

used to bring up the same screen in another tab/window/instance of the Qzap browser

 15

• When switching from one screen to another using the supplied buttons
o Standalone apps will open a standalone instance
o Qzap apps will open a new Qzap tab with the app loaded

Note: for [x], x is the variable name in the Model

Errors, Bugs, Issues, & Needs Improvement
Bond DES:
• Bond Ratings: Shows long names directly from database
• Bullet [BulletLabelVal]: Is currently a static label, doesn’t pull anything from the database
• Rank [RankVal] from DB/Bond doesn’t match Bloomberg
• Announcement Date [AnnouncementDateVal] isn’t getting any date value from the database

(pulling BondReferenceData().AnnounceDate())

CDS DES:
• The selected tenor is not used

YAS:
• Workout Risk [RiskWkoVal] produces error rather than producing value
• OAS fields and yield calculations have been removed (but the code is still there)
• A description of the benchmark bond has been added to replace the benchmark bond

dropdown [benchmarkBondComboBox in View, BenchmarkBondType in Model]
• Settle Dates ([SearchBenchSettleDate] and [SearchSettleDate]), if changed from default, are

not reflected in the Qzap URL

CDSW:
• Debt Type combo box [FirstDebtType] needs a dictionary to link different subordinations to

one of the three possible choices
• ISDA Standard Upfront Model [FirstISDA] is only choice for dropdown
• No difference between “Buy” or “Sell” choices [FisrtBuy]
• None of the “Market” combo boxes are functional
• Pts Upf can’t be changed
• Price can’t be changed
• Pen Coupon [PenCouponVal] calculator assumes that the date for a:

o BiMonthly is maturity date – 15 days
o BiWeekly is 3 days before the maturity date

• Many of the combo boxes have a singular value or wrong choices as the selected value does
not affect anything

• The value for DV IR01 [IRVal] is incorrect
• CDSI.FirstCouponDate always returns “None” [StCouponVal]

 16

All:

• User editable fields only force numeral values
o Does not specify max input value
o Does not specify min input value

Unimplemented/Not Completed
Bond DES:

Issuer Information:
• Industry [IndustryVal]

Security Information:
• Iss Price [IssPriceVal]
• Calc Type [CalcTypeVal]

Identifiers:
• BBGID [BbgidVal]

Issuance & Trading:
• Book Runner [BookRunnerVal]
• Exchange [ExchangeVal]

YAS:
Bond Details:
• List of Benchmark Bonds [BenchmarkBondChoices]
• Coupon Schedule [YieldDurationChoices]
• Type of Yield [durationYieldValue1 & durationYieldValue2]

Yield Calculations Section:
• Equiv

o ComboBox [EquivDurationVal]
o Value [Equiv2Val]

• Mmkt ComboBox [MmktDurationChoices]
• True Yield ComboBox [ListofYieldCalc]
• Current Yield [CurrentYieldVal]

Spread Section:
• G-Sprd [GSpreadVal]
• I-Sprd [ISpreadVal]
• Basis [BasisVal]
• TED [TEDVal]

 17

Risk Selection:
• OAS Values (All):

o Modified Duration [ModOasVal]
o Risk [RiskOasVal]
o Convexity [ConvexOasVal]
o Dollar Value of a Change in Rates [DvOasVal]
o Benchmark Risk [BenchOasVal]
o Risk Hedge [HedgeOasVal]

• Workout
o *Workout Modified Duration [ModWkoVal]
o *Workout Convexity [ConvexWkoVal]
o *Workout Dollar Value of a Change in Rates [DVWkoVal]
o Workout Benchmark Risk [BenchWkoVal]
o Workout Risk Hedge [BenchWkoVal]
o Workout Proceeds Hedge [ProceedsRiskWkoVal]

Invoice:
• After Tax

o Inc Percentage [TaxIncPercentVal]
o CG Percentage [TaxCGPercentVal]
o Value [AfterTaxVal]

CDS DES:
Credit Default Swap Contract Information:
• Day Count [DayCountVal]
• Disc Curve [DisCurveVal]

Outstanding Debt
• Amt Debt O/S [AmtDebtOSVal]

CDSW:
Deal
• REF Obligation [FirstREF]
• Use Curve Recov Rate [CurveRecoveryRateVal]
• Restructuring [RestructuringVal]
• Backstop Date [BackstopDateVal]
• Pay Al [PayAlVal]

Calculator
• Cash Settled On [SettledOnVal]
• Cash Calculated On [CalculatedOnVal]

 18

• Accrued
o # days [AccruedLabel]

ISDA Standard Upfront Model
• Rec Risk

o Percentage [RecRiskLabel]
o Value [RecRiskVal]

• Def Exposure [DefExposureVal]

Market
• Swap Curve

o Label [StdCurveLabel]
o ComboBox 1 [FirstSwap]
o ComboBox 2 [FirstSwapTwo]

• CDS Curve
o Label [SeniorCurveLabel]
o Combo 1 [FirstCDSCurve]
o Combo 2 [FirstCDSCurveTwo]
o Combo 3 [FirstCDSCurveThree]

• Prob [ProbVal]
• Type of Data [GraphDataTypeVal]
• Data Length Span [GraphTimeFrameVal]
• Graph

o Data [GraphData] (Not connected in View, look for graphData)
o Spec [ChartSpec] (In View, graphSpec

Bibliography

About. (2013, Oct. 15). Retrieved from Python.org: http://www.python.org/about

About Bank of America. (2013). Retrieved November 13, 2013, from Bank of America:

http://about.bankofamerica.com/en-us/index.html

Autodesk. (n.d.). Retrieved December 5, 2013, from DAGNodes:

http://download.autodesk.com/us/maya/2010help/Nodes/DAGNode.html

Choudhry, M. (2006). The CDS Basis I: The relationship Between Cash and Synthetic Credit

Markets. In The Credit Default Swap Basis. Bloomberg Press.

Goyal, S. (2008). Major Seminar On Feature Driven Development. Technical University

Munich. Retrieved from http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf

Jervis, R. (2013, December 3). Director - Senior Trading Strategist I. (J. Alvidrez, & D. Tocco,

Interviewers)

Lawson, C., & Hudson, A. (2013, November 15). Assistant Vice President - Service Delivery

Consultant. (D. Tocco, & J. Alvidrez, Interviewers)

Marshall, J. F. (2000). Dictionary of Financial Engineering. New York: Whiley.

Morris, V. B., & Morris, K. M. (2012). Guide to Money & Investing. Lightbulb Press.

Peters, T. (2004, August 19). The Zen of Python. Retrieved from Python:

http://www.python.org/dev/peps/pep-0020/

Seward, Z. M. (2013, May 15). This is How Much a Bloomberg Terminal Costs. Retrieved

November 15, 2013, from Yahoo! Quartz: http://finance.yahoo.com/news/much-

bloomberg-terminal-costs-181855473.html

What Is a Bond? (n.d.). Retrieved from The Wall Street Journal: http://guides.wsj.com/personal-

finance/investing/what-is-a-bond/

	Abstract
	Acknowledgements
	Executive Summary
	Table of Figures
	List of Acronyms and Key Terms
	1.0 Introduction
	2.0 Motivation behind the Project
	3.0 Literature Review
	3.1 Financial Terms
	3.1.1 Bonds
	3.1.1.1 Callable Bonds
	3.1.1.3 Benchmark Bond

	3.1.2 Credit Default Swaps

	3.2 Bloomberg Professional
	3.2.1 Bloomberg DES Screens
	3.2.1.1 Bloomberg Bond DES Screen

	3.2.2 Bloomberg YAS Screen
	3.2.3 Bloomberg CDSW Screen

	3.3 Programming Practices and Terms
	3.3.1 Development
	3.3.2 Factory Methods
	3.3.3 Design Pattern – Model-View-Controller
	3.3.4 Directed Acyclic Graphs

	3.4 About Quartz
	3.4.1 Python
	3.4.2 Quartz Development Process
	3.4.3 QZDesktop
	3.4.3.1 Playground
	3.4.3.2 QZDev
	3.4.3.3 User Interface Demo
	3.4.3.4 Powwow

	3.4.4 Sandra

	4.0 Methodology
	4.1 Project Set-up
	4.1.1 The Quartz Project for Beginners – Getting Started
	4.1.2 Meetings with Sponsor

	4.2 Development
	4.2.1 Development of the Overall Model
	4.2.1.1 Developing the User Interface
	4.2.1.2 Developing the Model
	4.2.1.3 Loading the Object
	4.2.1.4 Qzap Integration

	4.3 Testing
	4.4 Feedback
	4.4.1 Code Review with Stefano
	4.4.2 Interview with Richard Jervis

	4.5 Release

	5.0 Results
	5.1 Qzap Application
	5.1.1 Bond DES Screen
	5.1.2 YAS Screen
	5.1.3 CDS DES Screen
	5.1.4 CDSW Screen in the Qzap Application

	5.2 Challenges
	5.2.1 DES (Bond & CDS) Screen
	5.2.2 YAS Screen

	6.0 Discussion
	6.1 Developing using the Agile Method
	6.1.1 Developing and Overall Model
	6.1.1.1 User Interface
	6.1.1.2 Model – View – Controller

	6.1.2 Build a Features List
	6.1.3 Plan by Feature
	6.1.4 Design by Feature
	6.1.5 Build by Features

	6.2 Qzap Application Features
	6.2.1 Error Message
	6.2.2 Switching between Screens
	6.2.3 Qzap URL

	7.0 Conclusion
	8.0 Appendix
	I. Notes from Code Review with Stefano Cattani 2:30 PM 11/8/2013
	II. Notes from Meeting with Christopher Lawson and Andy Hudson 9:00 AM 11/15/2013
	III. Notes from Code Review with Stefano Cattani 11/28/2013
	IV. Notes for Meeting with Richard Jervis 3:00 PM 12/3/2013
	V. To – Do List as of 12/6/2013
	VI. To – Do List of 12/16/2013

	Bibliography

