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Abstract

Inertial navigation is a relative navigation teajue commonly used by autonomous vehicles to
determine their linear velocity, position and otaion in three-dimensional space. The basic premwis
inertial navigation is that measurements of acetilemn and angular velocity from an inertial
measurement unit (IMU) are integrated over timgtoduce estimates of linear velocity, position and
orientation. However, this process is a particylanvolved one. The raw inertial data must first be
properly analyzed and modeled in order to ensuaeahy inertial navigation system (INS) that udes t
inertial data will produce accurate results.

This thesis describes the process of analyzingnaodkling raw IMU data, as well as how to use
the results of that analysis to design an INS. Beparate INS units are designed using two different
micro-electro-mechanical system (MEMS) IMUs. Tottdee effectiveness of each INS, each IMU is
rigidly mounted to an unmanned ground vehicle (U@l the vehicle is driven through a known test
course. The linear velocity, position and oriemtatestimates produced by each INS are then compared
the true linear velocity, position and orientatioh the UGV over time. Final results from these
experiments include quantifications of how well ledNS was able to estimate the true linear velgcity
position and orientation of the UGV in several €iffnt navigation scenarios as well as a direct

comparison of the performances of the two sepdgeunits.
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Section 1 — Introduction

As robotics technology continues to become morggdeat in modern society, the development
and production of autonomous vehicles continuesxfmand to meet the increasing demand for vehicles
that can safely explore treacherous, inhospitablédasd to reach locations. One of the most crucial
components of any autonomous vehicle, especiaklytasked with exploring and/or mapping unknown
environments, is its navigation system. Without #iglity to accurately determine its linear velgcit
position and orientation with respect to some lafgane of reference, an autonomous vehicle woeld b
drastically limited in terms of the tasks it coddcurately perform. Therefore, the implementatibaro
accurate navigation system on any autonomous etsi@n important aspect of the system designand i
imperative to the overall ability of the vehicleftomction properly.

One type of navigation system commonly implemerdedautonomous vehicles is called an
inertial navigation system (INS). Inertial navigati systems measure the accelerations and angular
velocities that an autonomous vehicle experientgsic@lly in three dimensions) and integrate those
measurements over time to produce estimates ofinkar velocity, position and orientation of the
vehicle. Inertial navigation is particularly usefubcause it can be implemented on almost any tfpe o
vehicle and in almost any type of environment. dmparison, many absolute navigation sensors such as
GPS receivers, Digital Magnetic Compasses (DMQs),leve a much more limited range of usefulness
and are typically most effective when used in reddy spacious outdoor environments.

The measurements of acceleration and angular weltat are required for inertial navigation
are produced by a sensor package called an iner@asurement unit (IMU). There are several differen
varieties of IMUs, but one of the more common Mg is the micro-electro-mechanical-system
(MEMS) IMU. MEMS IMUs are very inexpensive to maaafure, which makes them a popular choice
among robotics hobbyists. However, as is the casie any type of sensor, IMUs can never produce
perfect measurements of acceleration and angulacitye Since the measured accelerations and angula
velocities returned by the IMU are imperfect, illdas that any estimates of linear velocity, pasitand
orientation based on those measurements will berfegt as well. The end result is that after a tshor
period of time, the estimates of linear velocitgsition and orientation produced by an INS verchlyi
become inaccurate and unusable.

To compensate for the imperfections in the IMU sugaments, an INS typically has one or more
secondary navigation sensors that provide diredsomements of the linear velocity, position and/or
orientation of a vehicle. These secondary navigatensors could be anything from stereo vision

systems, to GPS receivers, to digital magnetic az®sgs (DMCs) or any other type of sensor that could



be used to measure linear velocity, position oerddtion. The information from these secondary
navigation sensors is incorporated into the INSwgisin Extended Kalman Filter (EKF). The EKF
produces correction terms that are used to adpgstrtitial estimates of linear velocity, positionda
orientation calculated from the imperfect IMU me&snents. Adding secondary navigation sensors into
an INS greatly increases its ability to produceusate estimates of the linear velocity, positior an
orientation of a vehicle over long periods of tinide block diagram in Figure 1.1 illustrates theiba
operation of a typical INS.
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Figure 1.1: A block diagram illustrating the basperation of a typical INS.



The goal of this thesis is to design, implement & two separate INS units based around two
low-cost MEMS IMUs. The results of the testing prdares are then used to determine how well each
individual INS performs as well as to determine ebhiMU is better suited for implementation in arSIN

This goal is achieved by following these basic step

+ Each IMU is analyzed and modeled using a seridabairatory experiments designed to isolate
and characterize the behavior of several well-desued types of errors common to MEMS
IMUs.

* An inertial navigation algorithm is designed thataorporates the information and error models
produced by the laboratory experiments.

* To collect test data for the inertial navigatiogaithm, the two IMUs are rigidly mounted to an
unmanned ground vehicle (UGV) and are configurelddganertial data at 25 Hz while the UGV
is driven via remote control through a predefinest tourse. The test course is designed such that
the true linear velocity, position and orientatiohthe UGV can be accurately measured at
periodic intervals along the course. This truthadatll serve as the secondary navigation
information that gets fed into the EKF componenthef inertial navigation algorithm.

* The inertial information recorded from each IMU itgr the navigation tests is then post
processed using the inertial navigation algorithfilne resulting navigation information is
analyzed and compared to the true linear velogitsition and orientation of the UGV to
determine which INS was able to more accuratelymaese the linear velocity, position and

orientation of the UGV over the course of the natimn tests.

The procedures described above are implemented tvgmlow-cost MEMS IMUs. The first is a
hobbyist-grade IMU from the website SparkFun.conmd ¢he second is a commercial-grade IMU from
the company Analog Devices, Inc. (ADI). The two IBIdan be seen in Figure 1.2. Both the SparkFun
and ADI IMUs contain a three-axis accelerometdhrae-axis gyroscope and an embedded temperature
sensor that is capable of measuring the interngbéeature of the IMU package in degrees CelsiusieSo
performance specifications from the SparkFun and IMY datasheets are listed in Table 1.1.

As Table 1.1 illustrates, the specifications fox DI IMU are superior to the specifications for
the SparkFun IMU in some categories, but not athein. Given that the ADI IMU costs four times as
much as the SparkFun IMU, it is intuitive to thitikat the navigation information produced using the
ADI IMU will be much better than the navigation @amfation produced using the SparkFun IMU.

However, the relative quality of two IMUs cannotdetermined just by looking at the differenceshigirt



Figure 1.2: The ADI IMU (on the left) and the Spaudk IMU (on the right).

SparkFun IMU ADI IMU
Unit Information
Model # SEN-10736 ADIS16364
Cost Per Unit $125 $500
Accelerometers
Range +2g +5¢g
Resolution 3.9 mg/LSB 1 mg/LSB
0g Bias Level + 40 mg (X an;jx \i;)axis) +80mg (Z 8 mg
Noise Performance < 3.9 mg RMS 5 mg RMS
Gyroscopes
Range + 2000 °/sec + 350 °/sec
Resolution 0.0696 °/sec/LSB 0.05 °/sec/LSB
Og Bias Level + 40 °/sec + 3°/sec

Noise Performance

0.38 °/sec RMS

0.8 °/sec RMS

Table 1.1: Selected performance specificationshferSparkFun and ADI IMUs [1-3].

price tags. Only after performing the experimentsied in this thesis can it be definitively s#idt one

IMU outperforms the other in terms of the abilitygrovide accurate navigation information.




The remaining sections of this thesis are brigfijmsiarized in the bulleted list below:

Section 2 presents the background research perfofarethis thesis. Each of the five papers
presented represents some previous research thdtelea conducted in the field of IMU error
modeling, IMU error calibration or inertial navigat.

Section 3 discusses the two main categories of 8vtdrs (deterministic and stochastic) in detail
and breaks both categories down into several segpoges. The mathematical representations of
each type of IMU error are also discussed.

Section 4 explains the laboratory experiments desigo isolate and quantify each of the IMU
errors discussed in Section 3. Each experimergssribed in detail, including its purpose, how it
is set up and the end results that are produced.

Section 5 describes the inertial navigation algomitin more detail. A brief explanation of the
basic principles of inertial navigation is providate assumptions made by the algorithm are
stated and each individual component of the irlemiavigation algorithm is thoroughly
explained.

Section 6 outlines the INS testing process. Theeadheed test course for the UGV is presented
along with a description of how the secondary natign information for the EKF component of
the inertial navigation algorithm is recorded.

Section 7 presents and discusses the results ebtdiom the UGV navigation testing. The
results are presented visually, displaying themested position and orientation of the UGV and
the true position and orientation of the UGV on #iagne graph. A comparison of the two INS
units is also presented to determine which INS alds to more accurately estimate the linear
velocity, position and orientation of the UGV otbke course of the navigation testing.

Section 8 lists some potential ideas for futurekyand Section 9 restates the goal of this thesis
and summarizes the general conclusions that camalde about the results that were obtained.
The Appendix contains supplemental figures detgitire complete results from all of the UGV

navigation testing trials.



Section 2 — Background Research

The field of inertial navigation has been extealiwvesearched and well documented over the
course of the last fifty years. There are many ighkl papers that document a variety of differeaysv
to model the various types of errors that commagpear in inertial data. This section presents difve
these papers and explains how they are relatdebtevdrk demonstrated in this thesis.

The first paper is titled “Calibration of Acceleneter Triad on an IMU with Drifting Z-
Accelerometer Bias” [4]. The goal of this paper waslesign a test that would quantify a seriesradre
parameters (bias, scale factor, dis-symmetry amdomnthogonality errors) for a three-axis accelertame
with the prior knowledge that the Z-axis accelertandias varies with time. Normally, this type ebt
would be conducted under the assumption that aletrror parameters being estimated remain autnsta
during the duration of the test. However, becahgez-axis accelerometer bias is known to vary with
time, this assumption cannot be made. A metho@gtimating the Z-axis accelerometer bias is prapose
that takes advantage of the correlation betweerZthris accelerometer bias and the non-orthoggnalit
errors of all three accelerometer axes. If the oxthegonality errors are assumed to be constant and
negligibly close to zero, then any non-zero valtieg appear in the estimated non-orthogonality serm
must be a result of the drift in the Z-axis accambeeter bias. This relationship between the non-
orthogonality errors and the Z-axis acceleromei&s Hrift can be used to estimate the steady-stdte
of the Z-axis accelerometer bias. The paper prakesvalidity of this concept through the use of a
computer simulation.

This paper proved to be a useful resource becaumscribes a multi-angle experiment that is
very similar to the one described in Section 43 &ssertion that the Z-axis accelerometer bidisczm
cause inaccuracies in all of the other error patamestimates seems difficult to believe, althotight
assertion may be based on how long the IMU isiteftach orientation. The Multi-Angle Experiment
conducted in this thesis records five minutes woftata at each orientation, so the amount of dhigis
that occurs at any given orientation is most liketyall enough to be considered negligible. If tresb
drift is assumed to be negligible, then the expenitbecomes much simpler because it can be assumed
that all of the error parameters remain constaat the duration of the test.

The second paper is titled “Research on Auto Carsgition Technique of Strap-Down Inertial
Navigation Systems” [5]. The goal of this paper washow that the heading estimates produced by an
INS could be improved by mounting it to a vehiclding a platform that constantly rotates about the
gravity vector. This is opposed to the more conesial method of mounting an INS rigidly to the body

of a vehicle. As the platform rotates, it generatesonstant angular velocity. This constant angular



velocity is measured by the INS and appears ird#ia as a change in one of the gyroscope biases. Th
additional bias term from the rotating platform emes that even when the heading of the vehicle is
constant, there is always some non-zero comporfeamigular velocity that the INS can measure. Also,
because the angular velocity of the rotating ptatfs known, error calibration routines can be oarthe
INS at all times. This results in more accuratedivgp estimates over longer periods of time. Theepap
goes on to prove this concept through the usecohgputer simulation that models the implementatibn
this type of INS mounting strategy on a vehiclesétang with a fixed heading over a twenty four hou
time period.

The rotating INS platform described in this pajgevery similar to the Rate Table Experiment
described in Section 4.4. Although the method desdrin the paper is for a continuous calibration
process, the core idea of exposing the gyroscap@sdonstant angular velocity in order to determine
scale factor and misalignment errors can be adafuedise in a more comprehensive laboratory
experiment. This paper provides some useful inftionaon how to structure the Rate Table Experiment,
and how to interpret the results that it produces.

The third paper is titled “Indoor 3D Position Eséition Using Low-Cost Inertial Sensors and
Marker-Based Video-Tracking” [6]. The goal of thimper was to develop an indoor object-tracking
system using a low-cost IMU and an external outkid&ing-in video tracking system. The paper states
that an IMU can be used to provide a rough estiroftke position, velocity, and orientation of drjext,
but that it is also subject to errors caused bgdsiand bias drifts. In order to compensate faetleerors,
an external video tracking system is used to peeiarrections for the IMU estimates. The data retdr
from the IMU and the video tracking system is syodized and fused together using an EKF, which
results in a more accurate estimate of the deteatigrtt's position, velocity, and orientation. Téyestem
was first tested on a set of experimental dataawige a proof of concept test for the system desagd
then was subsequently tested on an actual objeung tise system hardware to provide proof that the
system was capable of tracking real world objgéts.the real world test, a test subject’s hand wsssl
as the object to be tracked by the system. The iMid strapped to the subject’s wrist, and a fiducial
marker cube was attached to the subject’'s armttasaa target for the video tracking system tokiratie
results of both the simulated and real world expents showed that the system was capable of
accurately estimating the three-dimensional pasiéiod orientation of a detected object, and thé&ipos
estimates were accurate to within a few centimetétbe true position values. The results also sttbw
that the combination of the IMU and video tracksemsors resulted in a more robust and accuratensyst
than if either of the two sensors were used o then.

The primary reason for including this paper isease the structure of the EKF-based navigation

system is very similar to the inertial navigatidgasithm that is presented in this thesis. And wtilie



paper didn't mention any other IMU calibration tecjues other than the bias tracking and compensatio
mechanism of the EKF, it is still a valuable reseuto have because the navigation system that it
presents is similar in design to the inertial natiign algorithm that this thesis is based around.

The fourth paper is titled “Thermal Calibration MEMS Inertial Sensors for an FPGA-Based
Navigation System” [7]. This paper focused on hibth development and calibration of a custom IMU
that uses an FPGA-based processor to produceimeahkivigation information. It briefly discussecath
process of developing the IMU which contained lawgicaccelerometers and gyroscopes from Analog
Devices, Inc., and the FPGA-based processor whigé used for both data collection and navigation
calculations. However, the majority of the papescdssed the calibration routines that are requwed
compensate for the deterministic and stochastarein the IMU data. Error sources such as bidsas,
drifts, scale factors, misalignment errors, andrtizé sensitivity were all discussed, and methods fo
compensating for them were explained. Because #iesensitivity affects all of the other error
parameters, all of the IMU calibration testing vg@sformed under the umbrella of temperature regdlat
testing. The paper concluded by presenting theltsesti the calibration experiments, and by showing
how accurately they were able to compensate folMiukerrors.

This paper contains useful information about IMUdlilration in general (Allan Variance
analysis, multi-angle experiments, etc.), but thmary reason for including it is because of theu®that
it puts on thermal sensitivity and how it can affédU calibration. Because MEMS sensors are so
sensitive to changes in temperature, it is impotianealize that any calibration routines perfodnom an
IMU will only yield results that will be usable dhe temperature that the test was performed at.
Therefore, in order to accurately compensate fdd iMrors at different temperatures, calibratiortireas
must be performed at a variety of different tempees so that a model can be constructed that
accurately describes how each of the different Idftdrs changes with respect to temperature. Thismpa
is a valuable reference to have because of thenmafiton that it provides regarding the effects of
temperature variation on the behavior of IMU errors

The fifth and final paper is titled “Estimation d@eterministic and Stochastic IMU Error
Parameters” [8]. This paper breaks down the problemMU calibration into two main components:
deterministic errors and stochastic errors. Expenits designed to quantify deterministic errorsudel
multi-angle and rate table experiments, which eggbe IMU to a series of controlled accelerationd a
angular velocities in order to determine how muble iMU measurements differ from the true
accelerations and angular velocities that the IMEatually experiencing. Experiments designed tdeho
stochastic errors include estimation techniquef siscKalman Filtering, which produces estimatethef
states of a dynamic system by using a model okyls¢em and imperfect measurements of the system

states. Stochastic errors are typically more diffitco compensate for due to their inherently rando



nature. The paper uses both simulated and real disitd to test the proposed calibration methods, and
presents the successful results that the researalege able to obtain. Overall, the results of gaper
showed that it is possible to improve the perforogaof an IMU by quantifying and modeling the vagou
deterministic and stochastic errors in the IMU datd then using that information to help compentate
the negative effects of the errors.

The primary reason for including this paper ig thé very similar to this thesis in terms of wha
it sets out to achieve and the methodology thaséis to achieve it. It attempts to estimate a samylar
group of IMU error parameters using a very simdaries of laboratory experiments, and it alsozgsi
many of the same mathematical concepts (primagdgt-squares estimation and Kalman Filtering) that
are used for performing error analyses in thisighdhe only major topic from this thesis that ffeper
doesn’t cover is temperature sensitivity testingei@ll, this paper is a valuable reference to Hmeuse
it describes several common types of IMU errors hod/ they behave, and it also provides a lot of

insight into how to design experiments that wiltibsolate and quantify those errors.



Section 3 — IMU Errors and Error Models

There are some IMUs that are capable of produamgedibly accurate measurements of
acceleration and angular velocity. However, theraa IMU that can produce perfect measurements of
acceleration and angular velocity. No matter howdyan IMU is, there will always be imperfections in
the inertial data that it returns. These impertedtiare caused by several different kinds of eriang
each has a different effect on the data. IMU erman be broken up into two primary categories:
deterministic errors and stochastic errors. Eadhede categories can then be further broken dotereal
series of subcategories, one for each differend kifherror. By understanding each of these erracs a
modeling their behavior mathematically, it becorpessible to compensate for them and improve the
overall quality of the IMU data.

It should be noted that there are many differgoes of IMU errors, and only a subset of them are
discussed in this thesis. A substantial amountimk tcan be devoted to precisely modeling and
understanding the behavior of all of the differéppes of IMU errors that have been previously
documented. However, after a certain extent thefitinom doing so becomes less and less. Because o
this, a specific group of IMU errors have been el that are deemed to be the most important end a
thought to have the largest effect on the integuityhe IMU data. Those are the IMU errors that are

explored in the following subsections.

Section 3.1 — Deterministic Errors

The first category of IMU error is deterministicrars. Deterministic errors can be precisely
determined and represented using either scalar ensndy matrices. Their values either remain comstan
over the course of time or vary in a way that can dxactly mathematically modeled. Once a
deterministic error has been accurately modelsdnidbdel will typically remain the same regardleks o
how long the IMU is allowed to run or whether poviercycled on the IMU. The following subsections
explain each type of deterministic error in detad present the mathematical models that are wsed t

characterize their behavior.
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Section 3.1.1 — Static Biases

The first type of deterministic error is static $8s8. A static bias is simply a positive or negative
constant that offsets data by a specific amounteRample of a static bias can be seen in Figure 3.1

Static biases in IMU data are modeled as a paxbfvectors as shown below:

by by
b, = |b) by = |b) Eq.3.1&3.2
bZ bZ

whereb, represents the static biases for the three-axisl@ometer and, represents the static biases
for the three-axis gyroscope. Normally these vectgould be enough to completely model the static
biases. However, due to the temperature sensiitieen of MEMS IMUSs, the values of the static biases
change with respect to temperature. The MEMS gy@ss in particular are more sensitive to
temperature than the MEMS accelerometers, but Isetimsors must be analyzed for the sake of
completeness. Because of this relationship betwleerstatic biases and temperature, the model of the
static biases changes from a single 3x1 vectortpadr series of 3x1 vector pairs arranged in a-lgqok
table based on temperature. The look-up table fakespecific input temperature and produces tidtics

bias vectors that correspond to that temperature.

Static Bias Example
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Figure 3.1: An example of an unbiased sine wavgelbdnd a biased sine wave with a positive stadis of 1 (red).
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Section 3.1.2 — Scale Factors and Misalignment En®

The second and third types of deterministic erapesscale factors and misalignment errors. Scale
factors will be examined first. Scale factors dmilar to static biases in that they offset dataalgpecific
amount. However, instead of offsetting data by dditve constant, scale factors offset data by a
multiplicative constant. An example of a scale dactan be seen in Figure 3.2. Scale factors in Hath

are modeled as a pair of 3x3 diagonal matricebasrs below:

S¥ 0 0 S§ 0 0
Se=[0 S; 0 Sg=10 S 0 Eq.3.3&3.4
0 0 SZ 0 0 S

whereS, represents the scale factors for the three-axislammeter and, represents the scale factors
for the three-axis gyroscope. As was the case thélstatic biases in Section 3.1.1, scale fact@siso
sensitive to temperature. Therefore, instead afidenodeled as a single 3x3 matrix pair, scale facto
must be modeled as a series of 3x3 matrix paienged in a look-up table based on temperature. The
look-up table takes in a specific input temperataumd produces the scale factor matrices that quones
to that temperature.

Now misalignment errors will be examined. Misaligent errors occur when the axes of an

IMU’s sensors are not properly aligned with theYXand Z directions defined by the IMU package. An

Scale Factor Example
2 T T T T

Amplitude
o
T

. N\ N

-1.5

Figure 3.2: An example of a non-scaled sine walgejtand a scaled sine wave with a positive seatof of 0.75 (red).
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X-Axis of IMU Sensors

I Mﬁ"/{/ Angle of Misalignment
>

X-Direction Specified
by IMU Package

Figure 3.3: An example of a misalignment betweenXtdirection specified by the IMU package andXhaxis of the IMU
sensors.

example of an axis misalignment can be seen inr&igL8.

Since IMUs are typically constructed in squareeamtangular formats, the X, Y and Z directions
are usually defined by the unit vectors that aracdy perpendicular to the faces of the IMU package
Ideally, the axes of the IMU should coincide witle tspecified X, Y and Z directions exactly. However
is very unlikely that this is actually the casealf axis is not properly aligned with its corresgiog
direction, then that axis will measure portionshe# accelerations and angular velocities that orcthie
other two directions.

Misalignment errors are particularly noticeable widealing with acceleration due to gravity.
Suppose that an IMU is sitting on a flat and ldablbench recording data. The axis parallel tagtlaity
vector will measure a very large acceleration caegdo the other two axes in the plane perpendic¢ala
the gravity vector (which should each measure ctoseero acceleration). If one of those two axes is
misaligned, even by a small amount, it will measummponent of the gravity vector that is projori
to the amount of misalignment. For example, a ngealent of just 1° with respect to the plane
perpendicular to the gravity vector would causeeasarement 09.80665 * sin(1°) = 0.1711 meters
per second squared in the misaligned axis. Thisuatmaf acceleration error may not seem like much of
problem, but it could be enough to drown out ondilgalistort the true acceleration being experiehoe
that axis. More importantly, as that accelerationore propagates through the inertial navigation
algorithm, it will cause the estimates of lineatoegty, position and orientation to drift significtly
within a matter of minutes or even seconds. In,fager the course of just five minutes the constant
acceleration error caused by a 1° misalignment evcegult in a final velocity error of 51.3449 met@er
second and a final position error of 7701.7 meters.

Misalignment errors in IMU data are modeled asia@fa@3x3 matrices as shown below:

13



xx xy Xz mgx m>Y mgz

mq mg mg g
X z
M, =|m)* m) m) My =|my" my” my Eq. 3.5 & 3.6
z
mgx may mgz mgx m;y mgz

whereM, represents the axis misalignments in the threg-agcelerometer and, represents the axis
misalignments in the three-axis gyroscope. Eacthefterms in thé/, andM, matrices specifies how
accelerations and angular velocities in X, Y andirZctions are measured by the X, Y and Z IMU axes.
For example, then,.” term specifies the component of acceleration én¥rdirection that is measured by
the X-axis of the IMU. Ideally, all of the diagortakms in theVl, andM, matrices would be equal to one
and all of the other terms would be equal to zeraking bothM, andM, equal to the identity matrik
That would mean that the IMU axes are perfectlgredd with the IMU package and each axis is only
ever measuring acceleration and angular velocaggabr about its own axis. In reality this is nettes
case, but the closer thié, and M, matrices are to the identity matrixthe smaller the misalignment
errors will be and the better the IMU data will be.

Scale factors and misalignment errors both affetttl Idata in very similar ways, and therefore
the mathematical models that define their behasi@r also very similar. Because their mathematical
models are so similar, the individual effects of ttwo errors are difficult to differentiate from en
another. To deal with this issue, the two erroesraodeled together as one joint error term. Thesdut
present a problem in the overall analysis of théJIata because the effects of the scale factors and
misalignment errors do not need to be known indégetly. Both of the errors can be compensated for
simultaneously if the combination of their effedts known. The combination of scale factors and

misalignment errors in the IMU data is modeled gsirpair of 3x3 matrices as shown below:

Co=MsSa  Cy=M,S, EQ.3.7&38

where C, represents the combination of the scale factors rarsalignment errors in the three-axis
accelerometer ang, represents the combination of the scale factadsh@salignment errors in the three-
axis gyroscope. The temperature sensitive naturtheofscale factors described earlier in this sactio
carries over into th€, andC, matrices as well. Therefore, as was the caseth&li, andS, matrices,
the C, andC, matrices must be modeled as a series of 3x3 madirs arranged in a look-up table based

on temperature instead of as a single static 3x@ixnaair. The look-up table takes in a specifipth
temperature and produces the combination of seal®rs and misalignment errors that corresponds to

that temperature.
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Section 3.2 — Stochastic Errors

The second category of IMU error is stochastiorstr Unlike deterministic errors, which are
inherently stable and repeatable, the behaviotaghastic errors is based around random proceghkes.
random nature of stochastic errors means that tadiles change constantly over the course of tinade a
there is no way to predict what the exact valua specific error term will be at any given pointiime.

It also means that if power is cycled on the IM@ tfalues of the stochastic errors will be compjetel
different from any previous time that the IMU wased. Because of their inherently random nature the
only way to model stochastic errors is by usingloan variables and probabilistic models. Howeveis it
assumed that the probability distributions usedhtmlel the stochastic errors remain the same ower th
course of time. The following subsections explaactetype of stochastic error in detail and preseat
mathematical models that are used to charactéreeliehavior.

Section 3.2.1 — Measurement Noise

The first type of stochastic error is measuremariten Measurement noise iS a zero-mean
random process that appears in sensor data andrebsts true nature. An example of measurement
noise can be seen in Figure 3.4. In order to atelyranodel measurement noise, two properties of the
measurement noise must be understood. The firpepnois the color of the measurement noise, aed th

Measurement Noise Example
2 T T

Amplitude
(=]

Figure 3.4: An example of a sine wave without ngidee) and a sine wave with a white Gaussian nmiseessy = 0,
o2 = 0.1) added to it (red).
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second property is the probability density funct{®®F) that the measurement noise samples are drawn
from.

The first property used to characterize measuremeise is called the noise color. A noise
process is said to have a certain color based enrdhlationship between its power spectrum and
frequency. For example, white noise has a powectspe that is flat or equal valued at all noise
frequencies. Pink noise has a power spectrum thatviersely proportional to frequency/(), and
Brownian or random walk noise has a power specthanis inversely proportional to the square of the
frequency {/f?2). Some noise colors are relatively easy to maaied, some noise colors are not. White
noise and Brownian noise are very simple to moddlae also very easy to work with mathematically.
Pink noise, on the other hand, cannot be repredenseng a finite model and can only ever be
approximated to within a certain degree of accurtiéfjite noise is one of the more common noise solor
found in both natural and man-made systems. Beda#uibes, noise processes will sometimes be assumed
to be white noise if no other information about tieése process seems to suggest otherwise. However,
the more appropriate method for determining th@rcof a noise process is to perform a mathematical
analysis such as an Allan Variance or Power Sde@emsity (PSD) analysis to get a definitive
characterization of the true color of the noiseeSthanalyses are described in more detail in $mctio
4.1.1 and 4.1.2 respectively.

The second property used to characterize measotenuise is called the noise probability
density function (PDF). A PDF is a function thasdébes how samples from a random noise process are
distributed. As was the case with noise color,dlee several different categories of noise PD&sdte
represented by different families of functions. oexamples of PDF families include Gaussian PDFs,
Uniform PDFs, Exponential PDFs, Poisson PDFs, Rglyl®DFs, and many more. One of the most
commonly used PDF families is the family of GaussRDFs (also referred to as Normal PDFs).

Gaussian PDFs are defined by the equation:

! _(X—liz)z Eqg. 3.9
f) = =—e 7 q.3.

wherey is the mean of the distribution and is the variance of the distribution. The Gaus§#&¥F has
several properties that make it easier to work witn most PDFs. First, the behavior of many natura
and man-made random processes can be accuratebledassing Gaussian PDFs. Second, a Gaussian
PDF can be completely defined using only two patamse the mean of the distributign and the
variance of the distributioar?. And third, if a linear operation is performed arGaussian distributed

random variable, the resulting random variable Is a&aussian distributed. This makes Gaussian
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distributed random variables very easy to work viithinear systems because any Gaussian distributed
random variable that goes into the system will poeda random variable at the output of the syskern t
is also Gaussian distributed, but with a potentidifferent mean and variance.

Because Gaussian distributed noise occurs so fndguend is so desirable mathematically, it is
common practice to initially assume that an unknowise process is Gaussian distributed if no other
information about the PDF of the noise is availgbies assumption can be justified based on thdr@len
Limit Theorem [9]). However, care must be takermsure that this assumption is not made recklessly
without proper justification. The actual PDF of aige process should always be verified if possible.

Verifying the PDF of a noise process is descrilvechore detail in Section 4.1.3.
Section 3.2.2 — Turn-On to Turn-On Bias Variation

The second type of stochastic error is turn-onuta-bn bias variation. In Section 3.1.1, static
biases were discussed and classified as a typetefndinistic error because their values remain teoms
over the course of time. However, that is only tifule static biases are being observed durinigpgles
continuous power cycle. If the static biases aiedgebserved over multiple continuous power cycles,
then there will be slight variations in their vaduieom power cycle to power cycle.

Suppose for example that an IMU is powered on tecioa sample of data, then powered down
after the data collection is complete and then peden again to perform a second data collectidneiV
the IMU powers on again to perform the second datkection, the values of the static biases will be
slightly different from the values that were obsghduring the first data collection. This variationthe
values of the static biases between power cycled@ the turn-on to turn-on bias variation modé&lse
turn-on to turn-on bias variation for each of tlive fatic biases is modeled as a random processawit
mean and a variance. These variances are used initialization of the EKF component of the inakti
navigation algorithm to provide initial covarianealues for the bias correction terms in the EKFates

vector.

Section 3.2.3 — Drifting Biases

The third type of stochastic error is drifting $8s. A drifting bias is a bias that starts off at a
specific value and then randomly drifts away frdrattvalue slowly over time (this type of behavisr i
commonly referred to as a “random walk” behaviém. example of a drifting bias taken from a sample

of gyroscope data can be seen in Figure 3.5. Urdilatic biases, drifting biases contain a random
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Drifting Bias Example
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Figure 3.5: An example of a drifting bias in a séergf IMU gyroscope data.

component that dictates how its value will changerdhe course of time. This random component must
be taken into account by whatever model is useapfroximate the behavior of the drifting bias. The
model chosen to approximate the behavior of thiireyi bias is the first-order Markov process model.

The drifting bias model is described by the reaigrgiquation:

ba(@) = pba(i — 1) + (i) Eq. 3.10

whereb, (i) is the value of the drifting bias at tiniee is a scale factor, andis a zero-mean white
Gaussian noise (WGN) process with unknown variarige During each iteration of the equation, the
current value of the drifting bia${(i)) is correlated with the previous valuk; (i — 1)) through the
scale factor ¢¢), and a sample from the WGN processi)) is added in to simulate the random
component of the drifting bias. One of the benebitsusing the first-order Markov process model to
approximate the behavior of the drifting biasethat because it is a recursive model that is drivem
WGN process, it is very simple to integrate inte thquations of an EKF. In terms of the inertial
navigation algorithm as a whole this means thist diso very simple to compensate for the effetth®
drifting biases, which will improve the overall diy of the linear velocity, position and orientati

estimates that the inertial navigation algorithrodarces.
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Section 4 — Laboratory Experiments

In Section 3, several types of IMU errors were désed and the mathematical models for
characterizing their behavior were developed. Beistion describes the laboratory experiments tleat a
used to determine values for the parameters of¢heric IMU error models from Section 3. Each & th
experiments is designed to isolate the effectsnefar more of the IMU errors so that their behacian
be studied independently of the effects of the rolilié) errors. Then, by controlling the accelerasand
angular velocities that the IMU experiences duangexperiment, the specific error being studiedlman
accurately quantified. By the end of this sectieach of the IMU errors will have a specific mathéoz
model that is tailored to the individual SparkFumd DI IMUs being used in this thesis.

Each of the following subsections describes a fipegkperiment in detail, including what the
goal of the experiment is, how the experiment isupe how the experiment is run, the type of dhtd ts

recorded and how that data is used to calculatdakiged IMU error parameters.
Section 4.1 — 12-Hour Static IMU Data Experiment

The goal of the 12-Hour Static IMU Data Experimento gather a twelve hour sample of static
IMU data so that the behavior of the measuremeiserand drifting biases can be analyzed. Becaugse th
IMU is kept static (meaning that the IMU experienice accelerations other than those caused by the
Normal force opposing gravity and no angular veiesiother than those caused by the rotation of the
Earth) during the duration of the experiment, théy @rrors that affect the data are measuremersenoi
drifting biases, static biases and misalignmenarsrrin order to isolate the effects of the measerd
noise and drifting biases, it will be assumed gwitracting the average value of the data fronettize
data sample will be enough to sufficiently remdve éffects of the static biases and misalignmewotsr
The experiment is run for twelve hours to ensued the drifting biases have enough time to accrue a
significant amount of drift (ten to twelve hoursosid be enough time for the drifting biases in pidgl
IMU to drift off by a noticeable amount). Once theasurement noise and drifting biases have been
isolated, their behaviors can be properly analyzed.

The 12-Hour Static IMU Data Experiment is conddcby following the series of steps in the

bulleted list below:

 The IMU is securely mounted on a test fixture tbab be adjusted to ensure that the IMU is

completely level (See Figure 4.1).
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Figure 4.1: The test fixture for the 12-Hour Stdkit) Data Experiment.

The test fixture is then enclosed in a hybridizaficcubator to prevent the internal temperature of
the IMU from changing radically during the courdelee test (See Figure 4.2). Because this test
lasts for so long, it is inevitable that the intrtemperature of the IMU will change over time as
the temperature of the room changes. Keeping tHg iMthe incubator keeps the temperature
fluctuations to a minimum.

The IMU is then powered on and allowed to comeaipemperature (the initial powering on of
the IMU causes its internal temperature to rise@pmately 1-2°C).

Once the IMU has reached a stable temperaturajatelogging begins. The data logging lasts
for twelve hours. It is important that the IMU reim& completely motionless during this time.
Ideally, the IMU should be left alone in a roomitself with no people around it to ensure that
no unintended vibrations or other disturbances apipethe recorded data.

Once the data has been recorded, it is filteregnoove outliers and other anomalies. For each
data point £(n)) in the sample, the difference betwegm) and the mean value of the sample
(%) is calculated. If the absolute value of thatetiéince is above a certain threshold (typically 1
meter per second squared for the accelerometers dagree per second for the gyroscopes) then

x(n) is replaced with the median value of the veftdgn — 1) x(n) x(n+ 1)]. If x(n) is the
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Figure 4.2: The test fixture for the 12-Hour Stakitt) Data Experiment enclosed in a hybridizatiooubator.

first or the last data point in the sample, theis iteplaced with the median value of the vector
[ x(n) x(n+1)] or the median of the vectdi(n —1) x(n) x] respectively. This
process removes all of the outliers and other aliesntom the raw inertial data.

» After the data has been filtered, the average vafuthe recorded data from each individual
sensor axis is subtracted from every point inéspective data sample to remove the effects of
the static biases and misalignment errors. Thdtimeguata samples represent only the effects of

the measurement noise and the drifting biases.

The following subsections describe the various oashthat are used to analyze the data gathered

from this experiment.
Section 4.1.1 — Allan Variance Analysis

The first analysis performed on the static IMUad&t called an Allan Variance analysis. Allan
Variance was originally developed by Dr. David WllaA as a method for analyzing the frequency
stability of precision oscillators [10]. Howeves mentioned previously in Section 3.2.1, Allan ade
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can also be used to analyze a noise process aednilet the color or combination of colors that best
models its behavior.

The method for calculating Allan Variance is alioi@s. Suppose there exists a time series of
discrete data points(t) that iSN elements long and every element is separateddoypstant amount of
time At. An integern is chosen and(t) is divided intom segments of: data points. If there are any
points left over at the end af(t) that don't fill up an entire segment then they tacated. A time
T = nAt is computed that represents the amount of timarmghby each segment, and the time average
of each of them segments is computed to produce a series of aa®ragenoted by
(ai(1), ay(7) ...a;,(1)). The averages are then used to compute the Altairance(s? (1)) for a given

value ofr using the equation

m—1

o?(7) = ﬁ 2 (@111(1) — 4;(1)? £q. 4.1

This process is then repeated for values oénging between 1 ar(@/10). The upper limit of N/10)

is imposed because if there are fewer than nineages used in the calculation of the Allan Variance
then the results begin to lose their significartd.[Once the Allan Variance has been calculatest av
sufficient range ofi values, the square root of the Allan Variancelédathe Allan Deviation) is plotted
against the corresponding valuestobn a set of log-log axes. This final result islezlthe Allan
Deviation function.

Once the Allan Deviation function of a noise prgédias been calculated and plotted, some
insights can be gained about the color of thatenpi®cess. Each type of noise color produces dfigpec
type of Allan Deviation function that is unique tioat noise color. For example, the Allan Deviation
function of white noise is a line with a slope ¥ {as seen in Figure 4.3). The Allan Deviation tiorc
of pink noise is a line with a slope of 0, and &llan Deviation function of Brownian or random walk
noise is a line with a slope of +%. Using this w&gelationship between the Allan Deviation funatio
and noise color, it is possible to identify thearadf any noise process by calculating its Allarviagon
function and comparing it to the Allan Deviatiomfiions of each noise color. Therefore, the cofdahe
IMU measurement noise can be determined by congptiti@ Allan Deviation function of the static IMU
data (which only contains the effects of the meam@nt noise and drifting biases) and comparing it t
the Allan Deviation functions of each of the notsdors. The Allan Deviation functions of the stati¢U
data can be seen in Figures 4.4 and 4.5.

The Allan Deviation functions in Figures 4.4 and 4ll have very similar characteristics.

Initially, whent is small, the Allan Deviation functions are alidarly decreasing. These portions of the
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Allan Deviation Function of MATLAB Generated WGN
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Figure 4.3: The Allan Deviation function of a sampf WGN generated by MATLAB.
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Figure 4.4: The Allan Deviation functions of statiata from the ADI IMU accelerometers and gyrossope

Allan Deviation functions reflect the behavior ¢fet measurement noise. Because of the slow-moving
nature of the drifting biases, wheris small the effects of the measurement noisepoweer the effects

of the drifting biases. However, agyets larger, the Allan Deviation functions allrsta flatten out and
curve back up towards a slope value of +%. Thestops of the Allan Deviation functions reflect the

behavior of the drifting biases. Asgets larger, the effects of the drifting biaseststo become more
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Allan Deviation Functions of Static SparkFun Accelerometer Data
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Figure 4.5: The Allan Deviation functions of statiata from the SparkFun IMU accelerometers andsgapes.

ADI IMU

Allan Deviation

Function Slope SparkFun IMU

Allan Deviation
Function Slope

X-Axis Accelerometer -0.4968 (nfjés X-Axis Accelerometer -0.5023 (M)ks
Y-Axis Accelerometer -0.4941 (nijés Y-Axis Accelerometer -0.5012 (M)ks
Z-Axis Accelerometer -0.4954 (n)ts Z-Axis Accelerometer -0.4951 (M

X-Axis Gyroscope

-0.4980 (°/s)/s X-Axis Gyroscope

0.4977 (°/s)ls

Y-Axis Gyroscope

-0.4955 (°/s)/s Y-Axis Gyroscope

0.4832 (°/s)/s

Z-Axis Gyroscope

-0.4943 (°/s)/s Z-Axis Gyroscope

0.4978 (°/s)Is

Table 4.1: Measurement noise Allan Deviation fumttslope values for the ADI and SparkFun IMUs.

prevalent, and eventually they overpower the effettthe measurement noise. Since the ultimate @oal
this analysis is to determine the color of the IM¢asurement noise, the later portions of the Allan
Deviation functions will be ignored for now and test of the analysis will focus on the early paitthe

Allan Deviation functions where the effects of theasurement noise are the strongest. The lateop®rt

of the Allan Deviation functions will be discussedre in Section 4.1.4.

Upon inspection, the portions of the Allan Deviatifunctions that reflect the behavior of the
measurement noise are very similar to the Allani&@n function of white noise. To verify that the
Allan Deviation functions of the measurement nalegruly match up with the Allan Deviation function

of white noise, the value of their slopes must btemined. The calculated slopes of the measurement

noise Allan Deviation functions are listed in Tadlé.
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As Table 4.1 shows, all of the slopes are vergelm the value of -% that is indicative of white
noise. This confirms that the IMU measurement noee be accurately modeled using the white noise

model.
Section 4.1.2 — Power Spectral Density (PSD) Analgs

The second analysis performed on the static IMta dacalled a Power Spectral Density (PSD)
analysis. Like the Allan Variance analysis desdfilkarlier, a PSD analysis provides another metbod f
determining the color of a noise process. PSD aeralare commonly used in the field of signals amaly
to determine the amount of power that a signaldiaspecific frequencies. Its most basic mathemlatica

form is defined as the Fourier transform of theoaatrelation function of the signal being analyzed

S(f) =F(R®) Eq. 4.2

whereS(f) is the PSD an&(7) is the autocorrelation function of the signal. Hwer, there are many
variations of PSD and many different ways in whiatan be calculated. The method used in this shissi
called the Welch method. The Welch method was dgesl by Peter Welch in 1967 as a more
computationally efficient way of estimating the P8Da signal by calculating the Fourier transforoifis
small, overlapping segments within the signal avetaging them together to produce an estimateeof th
PSD of the entire signal [12].

The Welch method is briefly described below, amtiare detailed description can be found in
Welch’s paper [12]. Suppose there exists a timeserf discrete data poinkj) that isN elements long
and every element is separated by a constant anobuime At. First, X(j) is divided up intaK fixed-
length, overlapping segments such that the segnuawsr the entire length of (j) as illustrated in
Figure 4.6. Each of thE segments is then filtered by subtracting the ayeralue of the segment from
each of the data points within the segment to rearany biases that may be in the data [13]. Thesh) ea

X(4) |

Figure 4.6: The division of a time serig§)) into a group oK fixed-length overlapping segments [12].
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of the K segments is multiplied by a windowing function yastandard windowing function such as
Gaussian, Hamming, Hann, etc. can be used) afaitser transform is calculated using the fast fesur
transform (FFT) algorithm. This results K Fourier transforms that are then averaged together
produce an estimate of the PSD of the entire tienesX (j). The Welch PSD analyses performed in this
thesis were performed using a Gaussian windowingtion of size 16384 and an overlap of 50% [12].

As was the case with Allan Variance, there is @amique relationship between the color of a
noise process and its PSD. These power spectruineqaency relationships were described earlier in
Section 3.2.1, but they will be briefly restatedenfor convenience. White noise has a power spectnat
is flat or equal valued at all noise frequenciesggen in Figure 4.7), pink noise has a power gpadhat
is inversely proportional to frequenc¥/(f), and Brownian or random walk noise has a powectspm
that is inversely proportional to the square of freguency {/f?2). Using these unique relationships
between PSD and noise color, it is possible totifjethe color of any noise process by calculaiisg?SD
and comparing it to the PSDs of each noise coloerdfore, the color of the IMU measurement noise ca
also be determined by taking the PSD of the siitid data and comparing it to the PSDs of each ef th
noise colors. The PSDs of the static IMU data easd®en in Figures 4.8 and 4.9.

As Figures 4.8 and 4.9 show, the PSDs are all gablgrlat, which is indicative of white noise.
However, in the range of frequencies less than 1théz PSDs start to stray away from the flat spectr
model. This behavior is caused by the drifting éasAs the frequency gets lower the effects of the
drifting biases begin to overpower the effectshaf ineasurement noise and the PSDs start to stiay aw

from the flat model. But when the frequency geghbr, the effects of the measurement noise begin to

Welch PSD of MATLAB Generated WGN
10 . T —T Ty : R

Power
N
(@]

10

&

10
Frequency

Figure 4.7: The Welch PSD of a sample of WGN geedray MATLAB.
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Welch PSDs of Static ADI Accelerometer Data
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Figure 4.8: The Welch PSDs of static data fromAB¢ IMU accelerometers and gyroscopes.
5 Welch PSDs of Static SparkFun Accelerometer Data
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Figure 4.9: The Welch PSDs of static data fromSparkFun IMU accelerometers and gyroscopes.

overpower the effects of the drifting biases, @&l RSDs fit very closely with the flat model. Assitae
case with the Allan Deviation functions, the lowerquency portions of the PSDs will be ignored for
now and the primary focus will be on the portiofshe PSDs above the 1Hz frequency.
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ADI IMU

PSD Slope

X-Axis Accelerometer

8.3417 * 1(m/s)*/HZ

Y-Axis Accelerometer

8.5088 * 10(m/<)?/HZ

Z-Axis Accelerometer

1.0463 * TO(m/<)’/HZ

X-Axis Gyroscope

1.7595 * 10(°/sy/HZ*

Y-Axis Gyroscope

2.1995 * 10(°/sY/HZ

Z-Axis Gyroscope

2.2977 * 10(°/sfIHZ

SparkFun IMU

PSD Slope

X-Axis Accelerometer

7.4451 * TO(m/S)?’/HZ

Y-Axis Accelerometer

4.9229 * T(m/<S)°/HZ"

Z-Axis Accelerometer

1.5559 * Tqm/<)°/HZ

X-Axis Gyroscope

1.1222 * 10(°/sfIHZ

Y-Axis Gyroscope

1.3046 * 10(°/sf/HZ

Z-Axis Gyroscope

1.2000 * 10(°/sY/HZ

Table 4.2: Measurement noise PSD slope valuesigéoADI and SparkFun IMUs.

To verify that the PSDs of the measurement noiseudp match up with the PSD of white noise,
the value of their slopes is calculated. The caleul slopes of the measurement noise PSDs are iliste
Table 4.2.

As Table 4.2 shows, all of the slopes of the mesamsant noise PSDs are very close to zero,
which indicates that the measurement noise PSDsalbessentially flat. This further confirms thaiet
IMU measurement noise can be accurately modeled) tise white noise model.

Based on the results from both the Allan Varianeg BSD analyses, the white noise model is
clearly the model that best fits the IMU measureinmaise. Now that the color of the measurementenois
has been determined, all that remains is to detertie PDF of the measurement noise to complete the

measurement noise model.
Section 4.1.3 — Probability Density Function (PDFAnalysis

The third analysis performed on the static IMUad& called a Probability Density Function
(PDF) analysis. The process of determining the IBDER noise process is relatively simple. The noise
samples are arranged in histograms that displapuh@er of times a specific value appears in ttiseno
process. Curves can then be fitted to the genbeglesof these histograms to see which family of £DF
most accurately models the noise distribution. Figli10 shows the histogram of a sample of WGN with

a Gaussian distribution superimposed on top of it.

28



4 Gaussian Distribution Overlaid on MATLAB Generated WGN Histogram Data
45 T T T T T

Number of Occurences

0
WGN Values

Figure 4.10: A histogram of a sample of WGN gerestdty MATLAB with a Gaussian distribution fitted ito

ADI IMU Measurement Noise Histograms
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Figure 4.11: A histogram of the measurement noisegsses from the ADI IMU.

This is the method that will be used to estimate RIDFs of the IMU measurement noise. The
histograms of the IMU measurement noise can be sedfigures 4.11 and 4.12. The gaps in the
histograms occur because the continuous accelesadiod angular velocities being measured by the IMU

are quantized and converted into a digital fornyafub analog to digital converter (ADC) so that ticeyn
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SparkFun IMU Measurement Noise Histograms
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Figure 4.12: A histogram of the measurement noisegsses from the SparkFun IMU.
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Figure 4.13: The ADI IMU measurement noise histaggavith Gaussian distributions fit to them.

be transmitted and processed digitally. The genshalpe of the histograms seems to suggest that
Gaussian PDFs would accurately model the measutemeise distributions. Because Gaussian
distributions can be completely defined using amlgnean and a variance and each of the measurement

noise processes is zero-mean by definition, thepawariance of each measurement noise process can

30



Gaussian Distributions Overlaid on SparkFun IMU Measurement Noise Histograms
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Figure 4.14: The SparkFun IMU measurement noigedriams with Gaussian distributions fit to them.

ADI IMU Sample Variance SparkFun IMU Sample Variance
X-Axis Accelerometer | 1.1267 * 10(m/s)” | X-Axis Accelerometer | 9.3624 * 10(m/s)*
Y-Axis Accelerometer |  1.2580 * 10(m/S)” | Y-Axis Accelerometer | 6.1601 * 10(m/s)*
Z-Axis Accelerometer | 1.4302 * TOm/s)? | Z-Axis Accelerometer | 2.1651 * FQm/<)?

X-Axis Gyroscope 2.2280 * 10(°/sY | X-Axis Gyroscope 1.4673 * T0(°/sY
Y-Axis Gyroscope 2.7662 * 10(°/sf | Y-Axis Gyroscope 5.7326 * 10(°/sY
Z-Axis Gyroscope 2.9154 * 10(°/sf | Z-Axis Gyroscope 1.5098 * 10(°/sy

Table 4.3: The sample variances of the IMU measanemoise processes.

be used to create a family of Gaussian distribstibat should accurately model each of the measmem
noises processes.

The sample variances used to compute the Gaus@aibutions can be seen in Table 4.3.
Figures 4.13 and 4.14 show the Gaussian distribsitBuperimposed on top of the measurement noise
histograms to provide a visual representation off lawcurately they model the measurement noise
distributions. These histograms are only a visoafiemation of the measurement noise PDFs. It cteld
proven that the PDFs are Gaussian through hypethesting, but visual confirmation is considereddo
enough for this analysis because the Gaussianibdistms very closely match the shape of the
measurement noise histograms. Therefore, the PDEsedMU measurement noises will be modeled

using Gaussian PDFs parameterized by the sampbneas of the measurement noises.
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Combining the results obtained from the Allan “ade, PSD and PDF analyses, it is clear that
the IMU measurement noise can be most accuratetiel®d using the WGN model. This is the model
that will be used to represent the IMU measuremmaise in the EKF component of the inertial

navigation algorithm.
Section 4.1.4 — Drifting Bias Analysis

The fourth and final analysis performed on thdistdMU data is called the Drifting Bias
analysis. Recall from Section 3.2.2 that the baidragf the drifting bias is modeled using a firstter
Markov process (see Equation 3.10 from Sectior3B.2vhich falls under the family of random walk
models. Therefore, the drifting biases should pcedéllan Deviation functions with slopes of +%2. $hi
was discussed briefly back in Section 4.1.1, witere@s shown that at the tail end of the Allan n
functions the slopes started to swing from -% ta ¥#is reflects the fact that as the length of tihee
average parametergets larger and larger, the effects of the dgfimases start to overpower the effects
of the measurement noise, which is why the effettie drifting biases show up more predominantly a
the tail ends of the Allan Deviation functions.

The process of estimating the parameters for iteedrder Markov processes that characterize
the drifting biases begins by first isolating theftihg biases from a sample of static IMU data. As
mentioned previously, the sample of static IMU dgltauld be at least twelve hours in length to emsur
that the drifting biases have an adequate amoutitnefto diverge from their initial values. Theftrig
biases can be isolated from a sample of static thta by first subtracting the sample means of dta d
samples from each individual sensor axis to rentbeeeffects of the static biases and then perfayrain
moving average on the data to remove the effecthedimeasurement noise. The remaining portions of
the IMU data represent the drifting biases.

The parameters of the first-order Markov procems be estimated by exploiting a couple of
mathematical properties of the first-order Markowegess model. There are two parameters that must be
estimated for each drifting bias: a scale fagt@nd a noise varianeg, that is the variance of the WGN
process that drives the first-order Markov procddse parameterp can be found by analyzing the
autocorrelation function (ACF) of the drifting bidkhe value of the ACF of a first-order Markov pess
at a lag valuet) equal to one represents the amount of correlafianexists between any two data points
in the first-order Markov process that are sepdraieone timestep. Referring back to the discussion
the drifting biases in Section 3.2.3, the parametaevas also defined as the amount of correlation that

exists between any two data points in a driftingstthat are separated by one timestep. Therefore s
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ADI IMU ) 0%,

X-Axis Accelerometer | 0.9887 1.9239 *'1Qm/s)*
Y-Axis Accelerometer | 0.9912 3.5379 *'10m/s)°
Z-Axis Accelerometer | 0.9907  2.4626 *1(m/S)?

X-Axis Gyroscope 0.9923  4.3040 * §Q°/sy

Y-Axis Gyroscope 0.9789  8.2511 *§Q°/sy

Z-Axis Gyroscope 0.990§  8.1647 *'1(°/sy
SparkFun IMU ) o2,

X-Axis Accelerometer |  0.9907  1.0827 *'10m/s)*
Y-Axis Accelerometer | 0.9905  3.8738 * 1(m/<S)?
Z-Axis Accelerometer | 0.9907  3.9915 *1(m/S)?

X-Axis Gyroscope 0.99077 1.1606 * 2q°/sy
Y-Axis Gyroscope 0.9809  1.5477 *1q°/sy
Z-Axis Gyroscope 0.990§  2.1167 *1(°/sy

Table 4.4: The estimated values of the driftingsHiest-order Markov process parameters.

these two values represent the same statisticaitiyathe value ofep for each drifting bias can be
estimated by simply calculating the ACF of the tird bias data and using the value of the ACF laga
value of one [14].

Once thep parameter has been estimated, there is anothérematical property of the first-
order Markov process that can be exploited to precan estimate of thef,; parameter. The variance of

a first-order Markov process is defined as

2
Opd

Eq. 4.3
— (pZ

var(by) = 1

wherevar(by) is the variance of the first-order Markov proc@eghis case the drifting bias). Therefore,
an estimate of the noise variangg, can be produced by taking the variance of theingibias data and
multiplying it by the quantity1 — ¢2). Now that both the ando?; parameters have been estimated, the
first-order Markov process that represents the Wiehaf the drifting bias is complete. Table 4.4l
the values that were obtained for all of the dritbias first-order Markov process parameters [14].

The results displayed in Table 4.4 show that omaethe drifting biases in the gyroscopes tend
to drift more noticeably than drifting biases i thccelerometers do. The results also show thatiles
of ¢ for both IMUs are very close to one and the ngegances are all very small. These values suggest
that the amount of bias drift is fairly minimal,dait shouldn’t have a large impact on the overakgrity

of the raw inertial data.
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Section 4.2 — Power Cycle Experiment

The goal of the Power Cycle Experiment is to detee the amount of variance in the values of
the accelerometer and gyroscope static biases.ekperiment is similar to the 12-Hour Static IMUtBa
Experiment, except the length of the data sampleo@imuch shorter (approximately five minutes) and
group of static data samples will be taken in betwpower cycles of the IMU in order to determine th
turn-on to turn-on bias variance. A power cycldé$ined as the act of turning the IMU off and thertk
on again at a later time. As was the case withlthélour Static IMU Data Experiment, the only errors
that affect the data during data collection are susmment noise, drifting biases, static biases and
misalignment errors. In order to isolate the effeat the static biases, each data sample is lindeal
length of five minutes, over which time the effeofghe drifting biases are considered to be négé&g
Each data sample is then averaged together to geagigingle set of average values for the datalsamp
The measurement noise in the data cannot be ggrfeatoved, but its effects are dramatically redlce
to the point of being negligible (i.e. variancestba order of 10 to 10° (m/S)? for the accelerometers
and 1C° to 10’ (°/sy for the gyroscopes) once the data sample is asdraggether because the
measurement noise is zero-mean. The effects ofntisalignment errors are also considered to be
negligible for the purposes of this experiment. ©tite static biases have been isolated, their @hiav

Figure 4.15: The test fixture for the Power Cyclg&iment.
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Figure 4.16: The test fixture for the Power Cyclg@&iment enclosed in a hybridization incubator.

between power cycles of the IMU can be properlyiyeea.

below:

The Power Cycle Experiment is conducted by foltaythe series of steps in the bulleted list

The IMU is securely mounted on a test fixture tbah be adjusted to ensure that the IMU is
completely level (See Figure 4.15). The test figtig then enclosed in a hybridization incubator
to minimize fluctuations in the internal temperataf the IMU during the course of the test (See
Figure 4.16).

The IMU is then powered on and allowed to comeaipeiperature (the initial powering on of
the IMU causes its internal temperature to rise@pmately 1-2°C).

Once the IMU has reached a stable temperatureyearfinute data sample is taken. It is
important that the IMU remains completely motioslésiring this time.

After the data sample is taken, the IMU is unplubgad powered off for five minutes. After five
minutes, the IMU is plugged back in and powered Bine IMU is allowed to come up to
temperature again and once the internal temperatuthe IMU has stabilized, another five

minute data sample is taken. Then the IMU is ungdagand powered off for another five
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ADI IMU

Turn-On to Turn-On Bias Variation

X-Axis Accelerometer

6.7203 * 10(m/s)*

Y-Axis Accelerometer

8.7258 * 10(m/s)*

Z-Axis Accelerometer

4.2737 * Tqm/<S)?

X-Axis Gyroscope

7.2805 * 10(°/sY

Y-Axis Gyroscope

1.9517 * 10(°/sY

Z-Axis Gyroscope

4.4230 * 10(°/sY

SparkFun IMU

Turn-On to Turn-On Bias Variation

X-Axis Accelerometer

1.1761 * 19(m/S)?

Y-Axis Accelerometer

1.5348 * 1(m/S)?

Z-Axis Accelerometer

4.3348 * TQ(m/s)*

X-Axis Gyroscope

2.1586 * 10(°/sy

Y-Axis Gyroscope

2.4880 * 10(°/sy

Z-Axis Gyroscope

5.1009 * 10(°/sy

The calculated values of the turn-otutn-on bias variation for the ADI and SparkFun 18U

samples have been collected.

shows the results.

minutes before the next data sample is taken. prosess repeats until twenty distinct data

Once the data has been recorded, it is filteredrtmve outliers and other anomalies (see Section
4.1 for a more detailed description of the filtgriprocess). Then the inertial data in each
individual data sample is averaged together to dtiaily reduce the effects of the measurement
noise. The resulting averaged data sets represéntiee static biases of each of the individual
sensor axes. The twenty data points for each iddalisensor axis are then grouped together and
the sample variances of those twenty data poitcalculated to determine the turn-on to turn-
on bias variation for each of the individual serexes.
After performing the Power Cycle Experiment in thanner described above, specific values for

the turn-on to turn-on bias variations for both &2l and SparkFun IMUs were calculated. Table 4.5

Section 4.3 — Multi-Angle Experiment

The goal of the Multi-Angle Experiment is to detéme the values of the static biases, scale
factors and misalignment errors for an IMU’s acuomigeter as well as the extent to which those values
are affected by temperature. This experiment i®dam the fact that gravity is a known source of
constant acceleration. By fixing the IMU in a knowrientation it is possible to calculate the amanint

acceleration due to gravity that each IMU axis #th@xperience. These ideal accelerations can then b
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Figure 4.18: The Multi-Angle Experiment test fixtuenclosed in the hybridization incubator. The Ri@s are used to
ensure that the test fixture remains stationarylevel during the course of the experiment.

compared to the measured accelerations producttedilU and based on that comparison the values of
the static biases, scale factors and misalignnreotsefor the accelerometer can be estimated.

Due to the temperature sensitive nature of thedimses and scale factors, this experiment must
be conducted over a range of different temperatérésok-up table can then be created using theltses
from each temperature. Since the ADI IMU is alretetyperature calibrated by the manufacturer, only
the SparkFun IMU is tested over multiple tempeesguil he static biases, scale factors and misalighme
errors for the ADI IMU accelerometer will be repeated by a single set of parameters.

The Multi-Angle Experiment is conducted by followirthe series of steps in the bulleted list
below:
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Before conducting the experiment, an appropriaefieture must first be created. An image of
the test fixture can be seen in Figure 4.17. Thefigture consists of a fixed wooden frame with
a rotating arm mounted to it such that the axisotdtion is perpendicular to the gravity vector.
The IMU is rigidly mounted to the rotating arm sublat one of its axes is aligned with the test
fixture’s axis of rotation and the other two axes exposed to gravity in varying degrees based
on the rotating arm’s orientation. The test fixtina@s several pre-drilled holes in it that mark
increments of 45° all the way around the test fixtrhere is a screw embedded in the rotating
arm that can be screwed into these holes, whicwalthe rotating arm to be fixed at increments
of 45° all the way around the test fixture.

In order to determine how sensitive the staticdsaend scale factors are to temperature, data will
be collected from an array of different temperaufRoom Temperature, 35°C, 40°C, 45°C,
50°C, 55°C and 60°C). To maintain these target tratpres during the course of the
experiment, the test fixture is enclosed in a Hdibation incubator (as shown in Figure 4.18). A
digital level is used to make sure that the fixtisréevel inside the incubator and that its axis of
rotation is as perpendicular to gravity as possible

Once the test fixture has been placed inside thadaior, the orientation of the IMU with respect
to gravity is measured using the digital level amcbrded.

The incubator is then allowed to saturate at thet farget temperature. Once the incubator has
saturated, the IMU is powered on and its interaaigerature is allowed to saturate at the target
temperature.

After the IMU has come up to temperature, a fivawute static data sample is taken. After the
data sample has been collected, the IMU is unpliggel the incubator is set for the next target
temperature. Once the incubator saturates at thetarget temperature, the IMU is powered on
and allowed to saturate at the new target tempera@nce the IMU has come up to temperature,
another five minute static data sample is takemnTthe IMU is unplugged, the incubator is set
for the next target temperature and the processatepuntil all of the target temperatures have
been covered.

After covering all of the target temperatures, tist fixture is rotated to the next 45° increment.
The orientation of the IMU is measured again udimg digital level and recorded. The data
logging procedure is then repeated at each ofdtget temperatures with the IMU in its new
orientation.

This process is repeated until all eight orientegion the test fixture have been tested. Then the
IMU is removed from the test fixture and remounsedh that the previously untested IMU axis

(the axis in-line with the rotation of the testtfire) will be exposed to gravity. The eight
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orientations of the test fixture are tested agaithé same manner as before, resulting in a tbtal o
sixteen orientations.

» After the experiment is over, each of the five mndata samples is filtered to remove outliers
and other anomalies (see Section 4.1 for a moraleeétdescription of the filtering process).
Then the average of each data sample is calcukategroduce the average X, Y and Z
acceleration for each data sample. Because thesdatples are only five minutes long, the
effects of the drifting biases are considered toégligible. However, since the IMU is power
cycled in between data samples, turn-on to turmias variation must be accounted for in the
data analysis. The measurement noise in the dateothe perfectly removed, but its effects are
dramatically reduced to the point of being negligiti.e. variances on the order of 1t 10°
(m/s)? for the accelerometers and™®@ 10’ (°/sy for the gyroscopes) once the data sample is
averaged together because the measurement nas®imean.

» The final result is that for each target tempemttirere should be an average X, Y and Z
acceleration for each of the sixteen distinct IMtieotations. This data can then be processed
using a least squares estimation algorithm to oeter the static biases, scale factors and
misalignment errors for the accelerometer at ed¢hentarget temperatures. A lookup table can
then be created by interpolating between the tamgaperatures to determine the static biases,

scale factors and misalignment errors for any giment temperature.
Section 4.3.1 — Linear Least Squares Estimation Ahgsis

For each target temperature, the Multi-Angle Ekpent produces an average measured X, Y
and Z acceleration for each of the sixteen IMU mtagons. Also, because the actual orientatiorhef t
IMU at each orientation set point was recorded gigindigital level, the actual accelerations thatewe
experienced by the IMU at each of the sixteen ¢at@ons can be calculated as well. These values
represent the true accelerations that would hagallidbeen measured by the accelerometer if itccoul
produce perfect measurements. To estimate thesrafube static biases, scale factors and misakgrhm
errors for the accelerometer, the measured actelesawill be compared to the true accelerations
through a process called linear least squares a&#im(LLSE). LLSE is an estimation technique that

applies to linear systems with Gaussian distributade in the form of

y:Hx-{-u Eq. 4.4
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wherex is some unknown state vector to be estimatied, a known observation matrix that performs an
operation on ther parametersy is a vector of measurements made of thparameters after being
operated on by, andv is a zero-mean WGN process with a covariance m&trihat obscures the
measurement datp. LLSE provides a method for optimally estimatirig {erms of minimum error
variance) the value of based on the imperfect measurement$his optimal estimate can be produced

by using the equation

£=(HTRH)"'HTR 1y Eq. 4.5

whereX is the optimal estimate of the state veat¢t5].

These equations can be interpreted to fit the flata the Multi-Angle Experiment and produce
an estimate of the static biases, scale factors raisdlignment errors for the accelerometer. The
relationship between the measured accelerationdraadaccelerations, incorporating the effectshef t

static biases, scale factors and misalignmentgrior

am = Caa; + by +w, Eq. 4.6

wherea,, is the measured acceleratian,is the true acceleration, ang is the IMU measurement noise.
This equation can be rearranged to fit the fornicgfiation 4.4. The averaged X, Y and Z acceleration
measurements are used to populateythesctor, the true X, Y and Z acceleration values ased to
populate thed matrix, the static bias, scale factor and misafignt error parameters to be estimated are
used to populate the vector and the IMU measurement noise is used polpte thev vector. The new

linear vector equation is

0 0 ay ay a; 0 0 O] Sx|+]|w Eq. 4.7
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yl = Hlx + vl Eq 4.8

This equation is mathematically the same as Equati6, but it is in a form that is more conducige t
LLSE. Equation 4.8, however, is only enough to espnt data from a single orientation. In orderde u
the data from all sixteen orientations in the LL&A&orithm, sixteen of these matrix equations aeated,
each one using the data from one of the individMi&) orientations. The individual equations are then

stacked together to produce one combined matriatezjuas shown in Equation 4.9.

Y1 Hy %1

H v
y;Z = :2 x+ ;2 - y=Hx+v Eqg. 4.9
Y16 Hig V16

The last matrix that needs to be populated is tvargance matrib®. The R matrix is populated

ADI IMU b, C,
[—0.0259] 1.0002 —0.0085 —0.0008
Room Temperature| [—0.0763| (m/S) 0.0100 1.0003 —0.0048
0.0148 —0.0005 —0.0005 1.0001
SparkFun IMU b, C,

[ 0.2663 ] [1.0529 —0.0160 0.0040]

Room Temperature| [—0.1030] (m/s) 0.0124 1.0630 0.0093

| —0.6025] 0.0039 —0.0051 1.0167

[ 0.2211 ] [1.0521 —0.0175 0.0030]

35°C —-0.1137 (m/32) 0.0139 1.0665 0.0100

—0.5437 0.0047 —0.0054 1.0186

[ 0.2213 ] [1.0528 —0.0176 0.0031]

40°C —0.1248| (M/S) 0.0141 1.0673 0.0102

| —0.5848] 0.0048 —0.0062 1.0174

[ 0.2258 ] [1.0539 —0.0176 0.0034]

45°C —0.1419 (m/sz) 0.0139 1.0684 0.0109
[ 0.6261 | 0.0034  —0.0065 1.0172]

[ 0.2316 ] [1.0546 —0.0177 0.0034]

50°C —0.1561 (m/32) 0.0140 1.0691 0.0112

—0.6583 0.0038 —0.0076 1.0154

[ 0.2383 ] [1.0556 —0.0178 0.0036]

55°C —0.1723| (/<) 0.0137 1.0700 0.0121

| —0.6905] 0.0027 —0.0077 1.0154

[ 0.2427 ] [1.0564 —0.0178 0.0041]

60°C —0.1887 (m/32) 0.0138 1.0706 0.0123
|—0.72641 10.0027 —0.0084 1.01351]

Table 4.6: The estimated values of the static bjeseale factors and misalignment errors for thé &l SparkFun IMU
accelerometers.
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by repeating the three accelerometer turn-on to-durbias variances (discussed in Section 4.2)gdloa
diagonal of the matrix as shown in Equations 4dd411. Thek matrix is populated with the turn-on to
turn-on bias variances because the IMU is poweyetkd in between individual data samples. The turn-
on to turn-on bias variances account for the shgirtations in the accelerometer static biasesdabetir

over multiple independent data samples as a reftlits power cycling.

a,fx 0 0 R' 0
R=[0 g O R=|: - : ] Eg. 4.10 & 4.11
0 0 o2 0 -+ R'lygyas

Now that all of the required matrices are knowrgytttan be plugged into Equation 4.5 to
produce estimates of the static biases, scalerfaatw misalignment errors for the accelerometer.

After performing the Multi-Angle Experiment in tlreanner described above, specific values for
the static biases, scale factors and misalignmentsefor both the ADI and SparkFun accelerometers

were estimated for all of the target temperaturable 4.6 shows the results.

Section 4.4 — Rate Table Experiment

The goal of the Rate Table Experiment is to deteentine values of the static biases, scale factors
and misalignment errors for an IMU’s gyroscope &l was the extent to which those values are afecte
by temperature. This experiment is very similadasign to the Multi-Angle Experiment described in
Section 4.3. In the Multi-Angle Experiment, gravitias used as a known source of constant acceleratio
to determine the static biases, scale factors dmdlignment errors for an accelerometer. Unfortelyat
there is no convenient naturally occurring sourfceomstant angular velocity that can be exploitethis
experiment to determine the static biases, scattorfa and misalignment errors for a gyroscope.
Therefore, a stepper motor is used to create a tkreowd controllable angular velocity for the gyrgseo
to measure. By mounting the IMU to the stepper matal rotating it at a known and constant angular
velocity, it is possible to calculate the amountaofular velocity that each IMU axis should expece
These ideal angular velocities can then be comparéide measured angular velocities produced by the
IMU and based on that comparison the values oftagc biases, scale factors and misalignment rror
for the gyroscope can be estimated.

As was the case with the Multi-Angle Experimeht temperature sensitive nature of the static
biases and scale factors means that the Rate Eablkeriment must also be conducted over a range of

different temperatures. A look-up table can thencheated using the results from each temperature.
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Figure 4.19: The Rate Table Experiment test fixtuith the IMU mounted to it in all three configuits.

since the ADI IMU is already temperatureilwated, only the SparkFun IMU is tested over

multiple temperatures. The static biases, scaléofmcand misalignment errors for the ADI IMU

gyroscope will be represented by a single set rpaters.

below:

The Rate Table Experiment is conducted by follgnvthe series of steps in the bulleted list

Before conducting the experiment, an appropriaefieture must first be created. An image of
the test fixture can be seen in Figure 4.19. Tkse figture consists of a stepper motor with a
rotating platform attached to the shaft via a sleaftar. The IMU is mounted to the rotating
platform such that one of its axes is in line wiitle axis of rotation of the stepper motor. The
stepper motor is controlled using a microcontroNenich sends digital signals to a stepper motor
controller at a constant frequency. These signatsrthine when the motor should step and in
what direction. The frequency of the signals comirgm the microcontroller determines the
angular velocity of the stepper motor. The steppetor is mounted to a wooden base to ensure
that it doesn’t move during the duration of thetites The wooden base has feet that can be
adjusted to ensure that the stepper motor platferievel and the axis of rotation of the stepper
motor is parallel to gravity. The test fixture isvpered using an external 12V power source to
ensure that the stepper motor has enough powetaterat a constant velocity.

Unlike many of the other experiments performechis thesis where the IMU remains stationary
for the duration of the experiment, in this expeiththe IMU is constantly rotating. This means
that data from the IMU cannot be logged onto a astewpusing a direct USB connection because
the USB cable would very quickly become tangleduatbthe test fixture and could potentially
damage the test fixture, the IMU or itself. To a@ne this problem the IMU was outfitted with
a 3.3V external lithium polymer battery to suppgiymth power and a data logger that reads the
inertial data coming out of the IMU over its seipalrt and records the data directly into a text fil
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that is stored on an on-board 2GB microSD card fsgare 4.20). The microSD card can then be
removed after the experiment has concluded andatefrom the experiment can be transferred
from the microSD card to a computer.

In order to determine how sensitive the staticdsaend scale factors are to temperature, data will
be collected from an array of temperatures (Roomnperature, 35°C, 40°C, 45°C and 50°C
because the lithium polymer battery used in thigegxnent is only rated for temperatures up to
50°C). To maintain these target temperatures duhiagourse of the experiment, the test fixture
is enclosed in a hybridization incubator (as shawhigure 4.21). A digital level is used to make
sure that the test fixture is level inside the latior and that the axis of rotation of the stepper
motor is as parallel to gravity as possible. Sitim¥e is no direct USB connection between the
IMU and a computer during this experiment, monitgrthe internal temperature of the IMU is
more difficult. To overcome this problem, a secamehtical IMU is placed inside the incubator
to act as a stationary temperature reference. tHtiersary IMU is connected to a computer with
a direct USB connection and its internal tempegatsiobserved in real time during the course of
the experiment. Because the two IMUs are identited, unknown internal temperature of the
rotating IMU can be inferred from the known intdrteanperature of the stationary IMU.

The incubator is then allowed to saturate at thet farget temperature. Once the incubator has

Figure 4.20: The IMU data logging peripherals.
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Figure 4.21: The Rate Table Experiment test fixemelosed in the hybridization incubator.

saturated, the IMU is powered on and its interaaigerature is allowed to saturate at the target
temperature.

After the IMU has come up to temperature, the steppotor circuitry is powered on and the
IMU begins to rotate at a specific angular velochyfive minute data sample is taken while the
IMU is rotating. After the data sample has beerectéd the stepper motor circuitry is powered
off, the IMU is unplugged and the incubator is &®t the next target temperature. Once the
incubator saturates at the new target temperatwwd MU is powered on and allowed to saturate
at the new target temperature. Once the IMU hasecomto temperature, the stepper motor
circuitry is powered on again and another five rtendata sample is taken while the IMU is
rotating. Then the stepper motor circuitry is pozeeoff, the IMU is unplugged, the incubator is
set for the next target temperature and the praegesats until all of the target temperatures have
been covered.

After covering all of the target temperatures, diaéa logging procedure is repeated at each of the
target temperatures again using a different angakarcity for the stepper motor. This process is
repeated for five different angular velocities @gcees per second, +90 degrees per second and
+180 degrees per second). Then the IMU is removem the test fixture and remounted such
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that one of the previously untested IMU axes (ofdghe axes perpendicular to the stepper
motor’s axis of rotation) will be exposed to theaton of the stepper motor. The five angular
velocities are tested again in the same mannerefwmebfor the two remaining IMU axes,
resulting in a total of fifteen angular velocities.

» After the experiment is over, each of the five mndata samples is filtered to remove outliers
and other anomalies (see Section 4.1 for a moralee@tdescription of the filtering process).
Then the average of each data sample is calculatpdoduce the average X, Y and Z angular
velocity for each data sample. Because the datalsamare only five minutes long, the effects of
the drifting biases are considered to be negligiblewever, since the IMU is power cycled in
between data samples, turn-on to turn-on bias ti@mianust be accounted for in the data
analysis. The measurement noise in the data cdmngerfectly removed, but its effects are
dramatically reduced to the point of being negligiti.e. variances on the order of 1t 10°
(m/s)? for the accelerometers and™®@ 10’ (°/sy for the gyroscopes) once the data sample is
averaged together because the measurement nas®imean.

» The final result is that for each target tempemathere should be an average X, Y and Z angular
velocity for each of the fifteen distinct IMU cogfirations with the stepper motor. This data can
be processed using the same least squares estimfg@ithm that was used in the Multi-Angle
Experiment to determine the static biases, scalerfsand misalignment errors for the gyroscope
at each of the target temperatures. A lookup tabtethen be created by interpolating between
the target temperatures to determine the stat®ebjascale factors and misalignment errors for

any given input temperature.

Section 4.4.1 — Linear Least Squares Estimation Ahgsis

For each target temperature, the Rate Table Expetiproduces an average measured X, Y and
Z angular velocity for each of the fifteen IMU canfrations with the stepper motor. Also, the actual
angular velocities that were experienced by the IMUach of the fifteen configurations are known.
These values represent the true angular velocitias would have ideally been measured by the
gyroscope if it could produce perfect measuremehtsestimate the values of the static biases, scale
factors and misalignment errors for the gyroscdpe,measured angular velocities will be compared to
the true angular velocities using the same LLSErélgn that was used to analyze the data from the
Multi-Angle Experiment (see Section 4.2.1 for marormation on how the LLSE algorithm works and
how to convert the data into the proper matrices #ne required by the algorithm). The parameters f

Equations 4.6 and 4.7 remain the same with theptixerethat angular velocities are used in place of
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ADI IMU b, Cy
[—0.0746] 1.0010 —-0.0007 -—0.0005
Room Temperature| | 0.0325 | (°/s) [ 0.0017 1.0006 —0.0117]
| —0.2106 —0.0057 —0.0218 1.0039
SparkFun IMU b, Cy
[—0.9049] 0.9849 -0.0059 -0.0159
Room Temperature| | 0.0824 | (°/s) [0.0057 0.9897 0.0043 ]
| 1.3259 | 0.0047  0.0152 1.0008
[—1.0624] 0.9908 0.0130 —0.0033]
35°C 1.4117 | (°/s) 0.0051 0.9925 0.0014
1.3279 0.0115 0.0102 0.9979
[—1.1308] [0.9907 0.0129 —0.0032]
40°C 2.2828 | (°/s) 0.0051 0.9926 0.0012
1.3470 0.0112 0.0102 1.0019
[—1.2068] [0.9902 0.0125 —0.0031]
45°C 3.3385 | (°/s) 0.0045 0.9894 0.0010
1.3662 0.0106 0.0104 1.0018
[—1.2657] 0.9902 0.0125 —0.0031]7
50°C 4.1985 | (°/s) 0.0046 0.9887 0.0009
1.3921 0.0107 0.0103  0.9995
[—1.3078]
55°C 5.0648 | (°/s) *N/A
1.4165
[—1.3621]
60°C 6.0811 | (°/s) *N/A
1.4481

*NOTE: Gyroscope scale factor matrice&; X could not be calculated for 55°C and 60°C becahselithium polymer
battery used for the Rate Table Experiment was mtid for temperatures up to 50°C. The gyroscaqe matricesHj,) for
the 55°C and 60°C temperatures were calculated fhencorresponding Multi-Angle Experiment data sets

Table 4.7: The estimated values of the static bjeseale factors and misalignment errors for thé &l SparkFun IMU
gyroscopes.

accelerations. Once all of the appropriate matriwege been calculated and organized into the proper
format (as dictated by Equations 4.8 and 4.9), tbeyy be plugged into Equation 4.5 to produce an
estimate of the static biases, scale factors asdlighment errors for the gyroscope.

After performing the Rate Table Experiment in thanmer described above, specific values for
the static biases, scale factors and misalignmeatsefor both the ADI and SparkFun gyroscopes were

estimated for all of the target temperatures. Tdbleshows the results.
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Section 5 — The Inertial Navigation Algorithm

Now that all of the IMU error sources have beeopprly analyzed and quantified, the next step
is to develop the inertial navigation algorithmttkall produce estimates of the linear velocity sfimn
and orientation of a vehicle based on the raw IMitadand the secondary navigation information. The
following subsections provide a basic overviewlsf entire inertial navigation algorithm as a whaled
more detailed descriptions of the individual comgatis of the inertial navigation algorithm as well.

Section 5.1 — Coordinate Frames

The first step in understanding the inertial natimn algorithm is to understand the various
coordinate frames that are used to describe howifeppieces of information are interpreted. Theriral
navigation algorithm presented in this thesis dsas coordinate frames: the Body frame, the Navigat
frame, the Earth frame and the Inertial frame. Fédail shows the four coordinate frames and how the
are related to each other.

Each of the four coordinate frames used by thetiglenavigation algorithm will now be
explained in more detail. The first coordinate feain the chain is the Body frame. The origin of the
Body frame is fixed to the center of the vehicle dnother more applicable reference point) andtss
are oriented such that the X-axis points out thiotlge front of the vehicle, the Z-axis points down
through the bottom of the vehicle and the Y-axigfsoout through the right side of the vehicle. The
Body frame translates and rotates with the vehdslét moves through three-dimensional space, aad th

origin of the Body frame is used as the refereraiatdor the (X, y, z) position of the vehicle. TBedy

Earth Z-Axis ! 1
(North Pole) Local Tangent Plane

Inertial Frame

Rotation of the Earth North

/ Navigation Frame

X

Local Tangent Plane

N

Earth X-Axis

Body Frame
(Prime Meridian)

East

Figure 5.1: The four coordinate frames used byrbgial navigation algorithm.
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frame is also used to define the positive accetaraand angular velocity conventions for the system
Positive accelerations are defined as acceleratimtsoccur along the positive axes of the Bodyn&a
and positive angular velocities are defined as shiowigure 5.2.

The next coordinate frame up the chain from theyBioame is the Navigation frame. The origin
of the Navigation frame is initially set at thersitag location of the vehicle and its axes arermted such
that the X-axis points due North, the Z-axis posttsight down towards the center of the Earth thed
Y-axis points due East (this is also commonly meférto as the North, East, Down or NED convention).
Unlike the Body frame, the Navigation frame doed nmtate with the vehicle. Its orientation is
permanently fixed according to the NED conventibime Navigation frame may or may not translate with
the vehicle depending on how far the vehicle travil order to fully understand how the Navigation
frame is defined, the next coordinate frame upctie@n must first be introduced.

The next coordinate frame up the chain from theiddgtion frame is the Earth frame. The origin
of the Earth frame is fixed at the center of thetleand its axes are oriented such that the X-aaists
out of the Earth along the prime meridian, the &aoints out of the Earth through the North Poid a
the Y-axis is aligned to complete the right-handetiogonal coordinate system. The Earth frame estat
about its Z-axis along with the Earth (at a ratapproximately fifteen degrees per hour) so thatXh
axis of the Earth frame is always aligned with Emame Meridian.

In navigation applications where the vehicle isigating over a small area, the origin of the

Positive
X rotation

Positive
y rotation

C j Positive

Z rotation

Yz

Figure 5.2: The positive angular velocity convensialefined by the Body frame.
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Navigation frame remains permanently fixed at tame location on the Earth’s surface (the starting
location of the vehicle) and does not translaténlie vehicle. If the vehicle is navigating ovesraall
enough area, then the curvature of the Earth’saserfs so slight that it can be considered nedégib
Because the curvature of the Earth’s surface isigilelg in this scenario, the navigation of the i
can be constrained to a single planar surfaceddsté a curved surface. This surface is called_theal
Tangent Plane (LTP), and it is defined as the ptarated by the X- and Y-axes of the Navigatiomia
The LTP is a perfectly flat surface that is tangenthe surface of the Earth at a single point diagting
location of the vehicle). Using the LTP greatly plifies many aspects of the inertial navigation
algorithm, but the downside is that it is only aeta over small areas. Using the LTP to define the
position of the vehicle becomes more and more inate as the vehicle travels further and furtheayaw
from its starting location.

In navigation applications where the vehicle isigating over a large area (i.e. navigating on a
more global scale like an airplane would), the iarigf the Navigation frame is moved to coincidelwit
the origin of the Body frame and it translates vk vehicle as it moves across the Earth’s surfiace
these global-scale navigation scenarios, the curwaif the Earth becomes non-negligible and thesefo
the assumptions made by the LTP become unrealidte.vehicle must be modeled as navigating on the
curved surface of the Earth instead of the plandiase of the LTP. This means that the positiothef
vehicle must be represented in terms of spherioatdinates (latitude, longitude, altitude) instezd
planar coordinates (NED). Although, because thehEr not perfectly spherical in shape, an oblate
spheroid model of the Earth is used to more acelyrahodel the true shape of the Earth. The Global
Positioning System (GPS) uses the WGS84 modeleoEtrth to produce more accurate measurements
of the latitude, longitude and altitude of a GP&ieer on the surface of the Earth.

The last coordinate frame in the chain is the lakftame. The Inertial frame is a coordinate
frame whose origin is fixed at some point in owgpace far away from the surface of the Earth. Rer t
purposes of this thesis, the inertial frame is $ynyeated as a reference frame that can be uselolsterve

the rotation of the Earth.

Section 5.2 — Assumptions

This subsection lists the assumptions that areerbgidhe inertial navigation algorithm presented

in this thesis. Each of the assumptions is desgrifbéhe bulleted list below.

e It is assumed that the vehicle is always navigatmgr a small enough area that the LTP

assumptions are always valid (i.e. the origin @& Navigation frame remains fixed at a single
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point on the Earth’s surface (the starting locatddrihe vehicle) and doesn't translate with the
vehicle). Therefore, the position of the vehiclegierenced to the Navigation frame as opposed
to the Earth frame and is denoted using NED plapaition coordinates.

It is assumed that the inertial data returned leylkhU conforms to the conventions of positive
acceleration and positive angular velocity defingdthe Body frame (seen Section 5.1 for
details). If this is not the case, then the IMUadadust be appropriately transformed to match the
positive acceleration and positive angular velociipventions defined by the Body frame. It is
also assumed that any external misalignments batiee IMU package and the vehicle are
small enough that their effects can be consideesgligible. Therefore, the orientation of the
IMU and the orientation of the vehicle are consédeto be the same at all times.

It is assumed that when the inertial navigatioroatgm begins, the initial linear velocity of the
vehicle is always zero (a.k.a. the vehicle starts standstill), the initial position of the veldds
always at the origin of the Navigation frame (0,0D,and the initial heading of the vehicle is
always zero degrees (a.k.a. aligned with the X-akifie Navigation frame). It is also assumed
that the heading of the vehicle is referenced #ltical environment as opposed to the Earth’'s
magnetic North Pole. Because the heading of th&hels locally referenced, its initial heading
can be set to any desired starting value and awaflltzero degrees is chosen for the sake of
simplicity.

It is assumed that the inertial data recorded sptexific timet is constant over the length of a
single timeste@t, meaning that the acceleration and angular vgiafithe vehicle is assumed
to be constant from timeuntil immediately before the next timesteg At when a new sample

of inertial data is read from the IMU.

Section 5.3 — Inertial Navigation Algorithm Overviev

This subsection provides a high-level overvievthaf inertial navigation algorithm. A basic block

diagram of the inertial navigation algorithm candsen in Figure 5.3. As Figure 5.3 shows, the imlert

navigation algorithm is broken up into three pha3ée first phase of the inertial navigation aljom is

the initialization phase. The initialization phasecurs before the vehicle begins to move. Durirg th

initialization phase, the initial linear velocitposition and orientation of the vehicle are deteedi

Assumptions are made about the initial linear vigjoand position of the vehicle, but determining th

initial orientation of the vehicle is more difficulThe initial roll and pitch of the vehicle areteamined

using a process called self-leveling, where measemn¢s from the accelerometers are used to determine
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Figure 5.3: A high-level block diagram of the in@rhavigation algorithm.

how the IMU (and by extension, the vehicle) is ol with respect to gravity. In outdoor environtsen
the initial heading of the vehicle can be determibg using an external sensor system (such asitaldig
magnetic compass (DMC) or a three-axis magneton&iemeasure the global heading of the vehicle

with respect to the Earth’s magnetic North Poleinidoor environments or other environments where
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globally referenced heading information isn't dtgimecessary, the initial heading of the vehic@ be
measured with respect to other features or locaraarks within the environment.

After the initialization phase ends and the vehiobgins to move, the algorithm enters the
estimation phase. During the estimation phasetiatedata from the IMU is used to produce initial
estimates of the linear velocity, position and mi@gion of the vehicle as it moves through its
environment. The effects of the static biases estadtors and misalignment errors are removed tien
inertial data as well as the effects of other exkfactors such as the angular velocity causethby
rotation of the Earth. Then, the corrected anguédocity data is used to estimate the orientatibthe
vehicle. Once the orientation of the vehicle hasnbdetermined, the corrected acceleration data is
converted from the Body frame into the Navigatioanie, the effects of gravity are removed and the
corrected acceleration data is integrated over tisiag Runge-Kutta numerical integration to estemat
the linear velocity and position of the vehicle €Ténd result of the estimation phase is initiahestes of
the linear velocity, position and orientation oé trehicle.

After the estimation phase, the algorithm enteesdtrrection phase. In the correction phase, an
EKF is used to combine the dynamics of the stoahastors (i.e. measurement noise processes,mdyifti
biases, etc.) and secondary navigation informatmmproduce correction terms for the initial linear
velocity, position and orientation estimates pradu the estimation phase. These correction tanas
applied to the initial estimates from the estimafphase to produce the final estimates of line&rcity,
position and orientation for a specific timestepwéver, the EKF can only generate correction tdafms
secondary navigation information is available. $ahere is a timestep where no new secondary
navigation information is available, then the estiion phase of the algorithm will be executed drel t
estimation-error covariances of the EKF will begagated, but no correction terms will be producged b
the EKF. In these instances, the initial estiméitesn the estimation phase of the algorithm becohnee t
final estimates of linear velocity, position andeatation for that timestep.

After the correction phase, the algorithm loopskbsx the estimation phase and the process
described above is repeated using a new set ofiaheneasurements from the IMU and any new
secondary navigation information. The estimatiod aorrection phases of the algorithm are repeated
indefinitely in this manner until the vehicle ighear powered off or another goal condition is resth

The following subsections will provide a more digtdidescription of each of the three phases of

the inertial navigation algorithm.
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Section 5.4 — The Initialization Phase

This subsection explores the initialization phafte inertial navigation algorithm in more detalil
and explains how the initial linear velocity, pamit and orientation of the vehicle are determinebdasic
block diagram of the initialization phase can bernsen Figure 5.3. At the beginning of the algorithm
(time t,), the vehicle has some known initial linear vetpciposition and orientation. As mentioned
previously in Section 5.2, it is assumed that th&al linear velocity of the vehicle is zero, timtial
position of the vehicle is at the origin of the hgtion frame (0, 0, 0) and the initial headingtioé
vehicle is zero degrees.

Before the vehicle begins to move, there is a ssdgond period of time where the vehicle
remains stationary. During this time, the inertiaglvigation algorithm performs a process called-self
leveling. Self-leveling is very similar to the Muklngle Experiment described earlier in Section #h3
that it uses gravity as a source of known and emstcceleration to determine the initial roll goitth of
the IMU, and by extension the vehicle. These ihiti@asurements of roll and pitch are used alonf wit
the initial heading of the vehicle to create adimn cosine matrix (DCM) that describes the initiaee-
dimensional orientation of the vehicle. The selfeiing routine is performed using a recursive lineast
squares estimation process that is very similam® used in the Multi-Angle Experiment to estimidie
combined scale factor and misalignment error medrfor the accelerometei&,j. Refer to Section 4.3.1

for more details.

Section 5.5 — The Estimation Phase

This subsection explores the estimation phase@efrertial navigation algorithm in more detalil
and explains how raw inertial measurements fromithid are used to produce initial estimates of the
linear velocity, position and orientation of thehide. A detailed block diagram of the estimatidrage
of the inertial navigation algorithm is shown irg&ie 5.4.

The purpose of the estimation phase is to cakewatinitial estimate of what the linear velocity,
position and orientation of the vehicle will betla¢ future timestep + At. At the current timestep the
vehicle has some linear velocity, position and riagon, and the future linear velocity, positionda
orientation of the vehicle at time+ At is estimated using inertial information read frtme IMU at the
current timestep. As stated previously in Section 5.2, the inertiata recorded at a specific times

assumed to be constant over the length of a simgéstepAt.
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Figure 5.4: A detailed block diagram of the estioraphase of the inertial navigation algorithm.

The estimation process begins by reading a seawfimertial measurements (three-dimensional
acceleration, three-dimensional angular velocityd a@emperature) from the IMU. Based on the
temperature measurement, the corresponding stasesd and scale factors for the accelerometers and
gyroscopes are retrieved from a look-up table aseduo calculate compensation terms as shown in
Equations 5.1 and 5.2.

y:Cx+b Eq.5.1

x=C1ly—-C'b Eq. 5.2

wherex is the true acceleration or angular velocjtys the measured value of the acceleration or angul
velocity, ™1 is the scale factor and misalignment error comaims term andC~1b is the static bias
compensation term. These compensation terms aredapglied to the raw inertial data to remove the
effects of the static biases, scale factors andiligisment errors. The compensated acceleration and

angular velocity terms are denoted by the variapfeand@?,;.
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Next, another compensation ter@Z() is applied to the angular velocity data to remdive
effects of the rotation of the Earth. The rotatadrthe Earth creates a very small angular veldtiat is
constantly measured by the gyroscopes. Over tilaatigular velocity will propagate through the tradr
navigation algorithm and cause the estimated aiimt of the vehicle to drift. The angular velocdf
the Earth is originally referenced to the Z-axistloé Earth frame, but it can be transformed in® th
Navigation frame if the latitude, longitude andtatle of the vehicle are known. And because thecleh
is assumed to be navigating on the LTP (see Seétid)) the origin of the Navigation frame remains
fixed at a single point on the Earth’s surface #retefore the transformation between the Earth éram
and the Navigation frame always remains the sarmis. Means that the angular velocity of the Earth ca
be expressed in the Navigation frame as a congtee#-dimensional angular velocity term. The qugnti
@72, is calculated by transforming the angular velooitghe Earth from the Navigation fram@,) into

the Body frame using the transpose of the DCM tbptesents the current orientation of the vehitle a

~ T . . .
time t, which is (R{}(t)) . The quantity®?; is then subtracted from the compensated angulacite

data (2;) to produce the quanti®?,.
The next step in the process is to calculate wigbtientation of the vehicle will be at the future
timestept + At. This is done by propagating tR¢ (t) matrix forward through time based on the fully

compensated angular velocity dafg,. Equations 5.3 through 5.6 define how a generiaVDig
propagated forward through time [16,17].

1 -4, A6,

R}t + At) = RI(b) | A0, 1 —A6, Eq.5.3
—06, A6, 1

Af, = w, At A6, = w, At AG, = w,At Eq.5.4-5.6

The R (t + At) matrix is then used to calculate the initial esties of the roll, pitch and heading of the
vehicle at the future timestept At.

Now that the angular velocity data has been pemzbshe next step is to process the acceleration
data. First, the compensated acceleration ¢f&tgaig converted from the Body frame into the Navigat
frame using the DCM that represents the currer@ntation of the vehicleR(t)) and the effects of
gravity are removed as shown in Equation 5.7. Taslilts in the fully compensated acceleration term

ar(t). This fully compensated acceleration term is thetegrated over time using Runge-Kutta
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numerical integration to calculate the initial asites of the linear velocity and position of théicke at

the future timestep + At as shown in Equations 5.8 and 5.9 [18].

ar(t) = RO + g EqQ.5.7
. . At . . At .
D(t+ At) = 0(t) + <\ de (t) + 4a7 (t + 7) + ar(t + At) Eq.5.8
. . ~ At?( - At
Pt +A0) = P(0) + DDA+~ G1(O) + 28 (t + 7) Eq. 5.9

The initial estimates of linear velocity, positiamd orientation produced in this phase of the
inertial navigation algorithm accurately model thee linear velocity, position and orientation bt
vehicle over short periods of time, but imperfesti@nd drifts in the IMU data will eventually cauke
estimates to diverge from the true linear velogiysition and orientation of the vehicle. In thetnghase
of the algorithm, the correction phase, the dynanot the stochastic IMU errors and secondary
navigation information will be incorporated into &KF to produce correction terms for these initial
estimates. The correction terms generated by the &i{ help to correct the errors and drifts thailt
up in the initial estimates of linear velocity, fim and orientation due to the imperfections drifts in

the inertial data returned by the IMU.

Section 5.6 — The Correction Phase

This subsection explores the correction phaséfrtertial navigation algorithm in more detalil
and explains how the dynamics of the stochastic Idfkdrs and secondary navigation information are
combined in an EKF to produce correction termstifier initial estimates of linear velocity, positiand
orientation from the estimation phase of the athami A block diagram of the correction phase of the
inertial navigation algorithm is shown in Figur&5.

The purpose of the correction phase is to gene@tection terms for the initial estimates of
linear velocity, position and orientation that areduced in the estimation phase of the inertiglgaion
algorithm. Specifically, there are fifteen correctiterms that need to be generated: three eactindor
accelerometer and gyroscope biases (denotédasandAb, respectively), three for the linear velocity
estimates (denoted a%7'), three for the position estimates (denotedg®) and three for the orientation

estimates (denoted a#?,). These correction terms are generated using &h BK EKF is a recursive
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Figure 5.5: A detailed block diagram of the corni@tiphase of the inertial navigation algorithm.

Bayesian estimator that estimates one or more dignstates over the course of time. The fifteen-elem
state vector of the EKF is shown in Equation 5.10.

x(t) = [Ab, AV} Apl  Ab, AB{,’n]T Eq. 5.10

The basic operation of a generic EKF is as folloas EKF is implemented with three main
steps: an initialization step, a propagation stepan update step. During the initialization seapjnitial
estimate of the state vecto£*(0)) and an initial estimation-error covariance mat¢x*(0)) are
determined based on any knowledge that is availabtait the initial state of the system. During the
propagation step an a priori estimate of the statdor is generated based on the system model that
defines how the states behave and the estimation-@variance matrix is updated based on the syste
model as well. During the update step an a postestimate of the state vector is generated basdtie
a priori state estimate from the propagation stepeither direct or indirect measurements of somallo
of the states in the state vector. The estimatioorecovariance matrix is also updated based on the
measurement model that defines the relationshipd®t the measurement data and the state vector. The
propagation and update steps are then repeateaydesich subsequent iteration of the EKF to produce

new estimates of the dynamic state vector ovecdlese of time.
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The EKF presented in this thesis follows a sligHdifferent approach than a generic EKF. The
initialization step occurs the same way, and atiaingstimate of the state vect&*(0)) and an initial
estimation-error covariance matri®¥(0)) are determined based on any knowledge that igahl@

about the initial state of the system (as showqoations 5.11 and 5.12).

£*@)=[0 o o o0 o] Eq.5.11
[0hc 0 0 0 0]
lo 1 0 0o o

Pr@=l0o o 1 o o Eq. 5.12
[0 0 0 o2l 0
0O 00 0 I

The initial estimate of the state vectdit(0)) is set to zero because during the first timegtep
linear velocity, position and orientation of thehide are already known so no correction terms are
necessary. The initial estimation-error covarianwarix (P*(0)) is set up as a diagonal matrix with
Identity matrices along its diagonal except for gusitions that correspond to the bias correctiates.
These positions are populated with the turn-oruta-bn bias variation terms calculated in Sectidh 4
because they represent the initial variabilitytia values of the static biases.

After the initialization step, the EKF moves onth@ propagation step. During the propagation
step, the dynamics of the stochastic IMU errors @ased to generate the a priori estimation-error
covariance matrix, but no a priori state estimatesgenerated. The a priori estimate of the seteov is
simply set to contain all zeroes.

The equations for implementing the propagation stefhe EKF are shown in Equations 5.13
through 5.16 [19,20].

—pad 0 0 0 0
[—Rﬂ(t) 00 0 RpO(G-® X)]
Fio)y=| 0 I 0 0 0 Eq. 5.13
0 0 0 —g4l 0
0 00 -I (—@5;(t) x)
[(of)? 0 0 0 0]
0 o2l 0 0 0
Q= 0 0 0'51 0 , 0 Eq.5.14
0 0 0 (a7)1 0
0 0 o0 0 o1}
A(t) =1+ F(t)At Eq. 5.15
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P=(t) = A(t)PT(t — ADA(DT + QAL Eq. 5.16

The terms in the state transition matrB({)) show how each of the states in the state vector
(x(t)) are related to each other at the current timestep variance terms along the diagonal of the
process noise covariance matr{X) (represent the inherent randomness of each afttties in the state
vector & (t)). The first and fourth variance terms along treggdnal represents the variances of the WGN
processes that drive the drifting biases of thelacometers and gyroscopes respectively. The semmhd
fifth variance terms along the diagonal represehes variances of the measurement noises for the
accelerometers and gyroscopes respectively. Fjrthlythird variance term along the diagonal regmes
the variances of the position correction statdhénstate vectoAp?).

Equations 5.15 and 5.16 define how the a prioiregton-error covariance matrix for the current
timestep P~(t)) is calculated based on the state transition mé&bri the current timestefF(t)), the a
posteriori estimation-error covariance matrix frone previous timestepP{ (t — At)) and the process
noise covariance matrixQ{.

After the propagation step, the EKF moves on taugate step. During the update step, the EKF
uses the a priori estimation-error covariance mafrom the propagation step and any available
secondary navigation information to generate aafetorrection terms for a specific timestep. As
mentioned previously, the update step of the EKBrily executed when new secondary navigation
information is available. If there is no new secanydnavigation information for a specific timestépen
correction terms cannot be generated and onlyrityigagation step of the EKF is executed. Typicdhig
secondary navigation information is produced byepasate sensor system such as GPS or a visual
odometry system. The secondary navigation infoilonaftdr the inertial navigation algorithm presenied
this thesis is generated using a combination ob agxlocity updates (ZUPTSs), position fixes and
orientation fixes. A ZUPT is a period of time whign@ vehicle is known to have both a linear and &rgu
velocity of zero. If the ZUPT occurs at a knowndbon, then the position and orientation of theiekeh
can be recorded as well. These accurate measureofetie true position and orientation of the vihic
are referred to as position and orientation fixaspectively.

The equations for implementing the update stefhn@fBKF are shown in Equations 5.17 through
5.22 [19,20].

y(t) = [Avd Apl  Ab, AH},’n]T Eq. 5.17
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01 000
0 01 00
= Eq. 5.18
H=10 001 0 a
0 00 0 I
[aAZvl 0 0 0 ]
0 ol 0 0
R = 7 Eq. 5.19
0 0 oil O
0 0 0 aipl
K@) =P (®O)H"(HP~(t)HT +R)! Eq. 5.20
() = K(@®)y(t) Eqg.5.21
Pr®)=U-K®OHP ®)I - K@®OH)T + K{ERK®)T Eq. 5.22

The terms in the measurement data vecyqt)] represent the twelve secondary navigation
information terms that are recorded when the vehiddergoes a ZUPT at a specific titndhe terms in
the measurement matrik] show how the terms in the measurement data véefoy) are related to the
terms in the state vectow(t)). The variance terms along the diagonal of the sumament noise
covariance matrix K) represent the variances of each of the measuteniterthe measurement data
vector (/(t)). The first variance term along the diagonal reprgs the variances of the measurements
that are made of the velocity correction stateg!j. The second term along the diagonal represents th
variances of the measurements that are made gbgigon correction statedg’). The third term along
the diagonal represents the variances of the memsunts that are made of the gyroscope bias camecti

states 4b,). And finally, the fourth term along the diagomepresents the variances of the measurements

that are made of the orientation correction stétég, ).

Equation 5.20 defines how the optimal gain mataxthe current timesteg(t)) is calculated
based on the a priori estimation-error covariancatrisn for the current timestepP{(t)), the
measurement matrix() and the measurement noise covariance maRjxEquation 5.21 defines how
the a posteriori estimate of the state vector lier ¢urrent timestept( (¢t)) is calculated based on the
optimal gain matrix for the current timesteff(¢)) and the measurement data vector for the current
timestep ¢(t)). And finally, Equation 5.22 defines how the a teo®ri estimation-error covariance
matrix for the current timeste@P{(t)) is calculated based on the a priori estimatignrecovariance
matrix for the current timeste@P{(t)), the optimal gain matrix for the current timest@gf(t)), the

measurement matri/() and the measurement noise covariance matjix (
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After the update step, assuming that secondarygatiwn information was available during the
current timestep and the update step was succggséuformed, the fifteen correction terms genetdig
the EKF are used to update the quantities that¢begspond to within the inertial navigation algaom.

The equations for applying the correction termsegated by the EKF are shown in Equations
5.23 through 5.27 [20].

b, = by + Ab, Eq. 5.23
vy =03 + Av} Eq. 5.24
De = Pe + Ape Eq.5.25
by = by + Abg Eq. 5.26
6r = 07 + ABD, Eq. 5.27

Once the fifteen quantities in the above equatttmnge been updated, the correction phase of the
inertial navigation algorithm is over. The inertravigation algorithm moves on to the next timesteg
the estimation and correction phases are repeatad a new set of inertial data from the IMU anakesv
set of secondary navigation information (if anyaisilable). The estimation and correction phasdbef
inertial navigation algorithm are repeated indéély in this manner until the vehicle is either mved

off or another goal condition is reached.
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Section 6 — UGV Navigation Test Plan

Once the inertial navigation algorithm has beemmletely developed and coded, it must be
tested using inertial data from a real-world nati@ascenario. To acquire this data, both the Spamk
and ADI IMUs were rigidly mounted to a UGV, whictas/then driven through a predefined test course.
The UGV was driven through the test course threedi (starting and ending in the same place each
time), resulting in three independent sets of iakdata for each IMU. The inertial data recordeahf
both IMUs during these tests was used to deterimiwe accurately the inertial navigation algorithnm ca
track the linear velocity, position and orientatimfra moving vehicle. This section will explain tbeerall
methodology behind the UGV testing, including hawrtial data was logged from the two IMUs, how
the test course was set up, how the vehicle wagmrand how the true linear velocity, position and

orientation of the vehicle was determined.
Section 6.1 — The Test Course

The UGV test course was set up on the third faddhe Atwater Kent building on the Worcester
Polytechnic Institute campus. This location wassemofor several reasons. Indoor environments (and
hallways in particular) are typically very struadrand flat with few obstructions. This means toat
vehicle driving through an indoor environment isarttially navigating along a single planar surfioe
is also level with gravity. Deviations from thiseial surface (i.e. uneven or un-level patches oflto)
are expected to be fairly minimal and shouldn’t dnaduch of an effect on the vehicle’s ability to
maneuver through the environment. Indoor envirortsane also simple to measure and map, which is
essential for accurately placing position markergather truth data for the inertial navigationoaitinm.

The test course itself is rectangular in shaperaedsures 22 meters long by 16.5 meters wide. A
rectangular test course was chosen so that thelgefould travel in a loop and finish at the sapeation
that it started at. This loop closure is a usefatrio to have because after one complete loop eoteht
course, the vehicle should ideally be at the esache location that it started at. Any discrepancies
between the estimated starting and finishing locatif the vehicle can be used as a metric to assess
accuracy of the inertial navigation algorithm.

To generate secondary navigation information fer BiKF component of the inertial navigation
algorithm (as described in Section 5.6), the vehitiust be periodically stopped at specific known
locations along the test course so that ZUPTsitipasfixes and orientation fixes can be recorded. |

order to mark the locations where the vehicle sthdnd stopped, position markers were laid out at two
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Figure 6.1: The position markers outlining the timas of ZUPTs along the length of the test course.

meter intervals along the entire length of the testrse as seen in Figure 6.1 (with the exceptfawo
position markers that had to be laid out at two arwhlf meter intervals due to the 16.5 meter ket
two of the hallways). The position markers were laut directly in the center of the hallways, atgba
served as convenient waypoints to help keep th&leefitom straying off of the predefined test caurs
Since the position markers were laid out at knawtarivals, the position and orientation of the vish@an
be accurately determined when it is stopped orot@pspecific marker.

In a more elaborate INS, the secondary navigatidarmation would come from a physical
sensor system (GPS for example) at a frequencyherotder of 1Hz or faster. However, due to the
spacing of the position markers and the relatively top speed of the vehicle, secondary navigation
information was only recorded at approximately & {Bjpproximately once every ten seconds). Because
of the long stretches in between secondary nawigainformation readings, the drifts and other
imperfections in the inertial data have a longeoant of time to accumulate.
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Section 6.2 — Configuring and Driving the UGV

The vehicle used to navigate the test course watugky A100 UGV from the company
Clearpath Robotics. A picture of the Husky A100 UGAh be seen in Figure 6.2. The Husky A100 UGV
is a six-wheeled, skid-steered vehicle, which makateal for outdoor environments with rough témra
However, this wheel configuration can present spnadlems when trying to maneuver on the carpeted
surfaces typically found in many indoor environngerecause of the high-traction, all-terrain treafls
the vehicle’'s wheels and the skid-steering natdirbowv the vehicle turns there is a lot of frictitimat
builds up between the wheels of the vehicle anaténpet. This friction results in turning movemethiat
are jerky and non-fluid. To get around this isseh of the vehicle’'s six wheels was coated imglsi
layer of duct tape (as seen in Figure 6.3) whignificantly reduced the traction of the vehiclaies as
well as the coefficient of friction between the i@#'s wheels and the carpet. This reduction intion
allowed the vehicle to make turns that were muchenflaid and continuous.

Before each test run, both the SparkFun and ADI $Mgre rigidly mounted to the vehicle as
shown in Figure 6.4. At the beginning of each test the vehicle was kept stationary for sixty seto
while the two IMUs recorded inertial data. The d&tam this initial stationary period was used to

ny

Figure 6.2: The Husky A100 UGV.
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Figure 6.3: The wheels of the Husky A100 UGV coateduct tape to reduce the coefficient of frictioetween the wheels
and the carpeted floor.

Figure 6.4: The SparkFun and ADI IMUs rigidly moedtto the Husky A100 UGV.
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Figure 6.5: The Husky A100 UGV positioned at thgibaing of the test course.

perform the self-leveling routine discussed in Becb.4. The vehicle initially began each test atirone

of the corners of the test course as shown in Eigub. It was then manually driven through a single
complete loop of the test course, stopping forseeconds at each one of the designated positionemsark
to record ZUPTSs, position fix and orientation fiatd, until it arrived back at its original startitogation.
Throughout the test run, inertial data was contirslyplogged from both the SparkFun and ADI IMUs at
a rate of 25Hz.

Another feature of the Husky A100 UGV is that istebuilt in speed control algorithm, which
means that it can be commanded to drive forwamskwards or turn in either direction at a spedaiite.
The forward velocity of the vehicle was kept at angtant rate of 0.5 meters per second whenever
possible during the course of a test run. The Vetioly accelerated or decelerated when it waseith
starting from or slowing to a stop respectivelykdwise, the turning velocity of the vehicle wasakept
at a constant rate of approximately 0.4 rad/s tjinout the course of any turning maneuvers, anaitiav
only accelerate or decelerate when it was eithet giarting or just ending a turning maneuver

respectively.
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Section 7 — Results and Discussion

This section presents and discusses the resuttsned from the UGV navigation testing
described in Section 6. All of the results preséntethis section are from the same navigationrigst
trial (Trial #3). The complete results from all éer of the navigation testing trials are locatedha
Appendix. The first three subsections contain #sults obtained from running the two INS units tigio
some specific navigation scenarios and the correfipg discussion of those results. The final sulosec
contains a direct comparison of the two INS unitd an evaluation of which INS was able to prodinee t
most accurate estimates of the linear velocityjtiomsand orientation of the UGV over the lengthtioé

test course.

Section 7.1 — Inertial Data Only

The results presented in this subsection illustrate the SparkFun-based and ADI-based INS
units perform when they are limited to using onhertial data from the IMUs and no secondary
navigation information. Figure 7.1 shows the est@naf the position and orientation of the vehimler
time produced by the two INS units versus the postion and orientation of the vehicle over time.

Figure 7.1 shows just how important secondary raigg information is to the success of the

inertial navigation algorithm. With no secondaryvigation information to help compensate for the
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Figure 7.1: Estimated position and orientationhef tehicle versus true position and orientatiothefvehicle (Inertial data
only).
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inaccuracies and drifts in the inertial data, tmeors in the estimated linear velocity, positiondan
orientation of the vehicle grow unbounded over tifideft unchecked these errors become very large
very quickly, which is why accurately compensatfagthe drifts and other imperfections in the iradrt
data using secondary navigation information is gehpart of successfully navigating using inertial

Sensors.

Section 7.2 — Inertial Data and ZUPTs

The results presented in this subsection illustrate the SparkFun-based and ADI-based INS
units perform when they are limited to using omgriial data from the IMUs and velocity fixes (i.e.
ZUPTSs). Figure 7.2 shows the estimates of the iposéind orientation of the vehicle over time proghic
by the two INS units versus the true position anémgation of the vehicle over time.

Compared to the results from Section 7.1, the t®snlFigure 7.2 clearly show that the linear
velocity information obtained from periodically pemming ZUPTs helps to significantly limit the erso
in the estimated linear velocity, position and oté&ion of the vehicle over time. The secondary
navigation information obtained from these ZUPTisva$ the EKF to generate correction terms for the
initial linear velocity estimates based on the tiaédata from the IMU. Applying these correcti@rms
to the initial linear velocity estimates producesaf estimates of the linear velocity, position and

orientation of the vehicle that are much more aateur
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Figure 7.2: Estimated position and orientationhaf ¥ehicle versus true position and orientatiothefvehicle (Inertial data
and ZUPTs only).
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Section 7.3 — Inertial Data, ZUPTs and Position an@rientation Fixes

The results presented in this subsection illustrate the SparkFun-based and ADI-based INS
units perform when they are free to use all ofittfermation that is available to them (i.e. indrtiata
from the IMUs, velocity fixes (ZUPTs) and positiamd orientation fixes). These results represent the
navigation capabilities of the fully completed INBits. Figure 7.3 shows the estimates of the mositi
and orientation of the vehicle over time producedthe two INS units versus the true position and
orientation of the vehicle over time.

As shown previously in Section 7.2, the additiorse€ondary linear velocity information into the
system greatly increased the accuracy of the estimaroduced by both INS units. Now, by adding
secondary position and orientation information itite system as well, the accuracy of the estimates
increased even further. Figure 7.3 shows how ariah@avigation system can produce accurate linear
velocity, position and orientation estimates whensi provided with enough secondary navigation
information to sufficiently compensate for the tifand other imperfections in the IMU data. The
estimates are still not perfect, but the secondayigation information for these experiments was
collected at a relatively low frequency (approxielatonce every ten seconds). In most commercial; re
time INS units, secondary navigation informatioigahered much more quickly (approximately once per
second or faster), so EKF corrections are typicgdéiperated at a much higher frequency. And as EKF
corrections are generated more and more frequeh#yestimates produced by the INS become more and

more accurate.
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Figure 7.3: Estimated position and orientationhef ¥ehicle versus true position and orientatiothefvehicle (Inertial data,
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Section 7.4 — SparkFun and ADI IMU Comparison

The results presented in this final subsectionigea direct comparison of the navigation results
generated by the SparkFun-based INS and the ADdebl$S. For the purposes of this comparison, each
INS had access to the inertial data from its rehpetMU and all of the available secondary navigat
information collected during the UGV navigationtge§.e. ZUPTSs, position fixes and orientation fixe

The two INS units are compared in two ways. Th& fiomparison is a visual comparison of how
well each INS was able to track the linear velqqitysition and orientation of the vehicle over tiagit
drove around the predefined test course. The secongparison is a numeric comparison of the
estimation errors from each of the INS units (ite differences between the estimated linear gloci
position and orientation from the INS units and thes linear velocity, position and orientationtbe
vehicle over time). These comparisons are showRigares 7.4 through 7.7. Figure 7.4 displays the
estimated position and orientation of the vehialerdime from each of the INS units on the samelgra
versus the true position and orientation of theialelover time. Figure 7.5 displays the estimataddr
velocity of the vehicle over time from each of tNS units on the same graph versus the target mel®c
for the vehicle over time. And finally, Figures 7afd 7.7 display the errors between the linearciglo
position and orientation estimates produced by @Athe INS units and the true linear velocity, ifioa

and orientation of the vehicle over time.
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Figure 7.4: A visual comparison of the position anigntation estimates produced by the SparkFusébasd ADI-based
INS units.
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Figure 7.5: A visual comparison of the linear véipestimates produced by the SparkFun-based arieb&Bed INS units.
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Figure 7.6: Errors in the estimated linear velqggitysition and orientation of the vehicle over ti(A®I).

As Figures 7.4 through 7.7 show, the navigatiota deom the ADI INS is clearly much more
accurate than the navigation data from the SparkiR@ris in terms of both the visual comparison trel
numerical comparison. This result is intuitiveltisfying given the cost differential between theotw
IMUs, and it supports the common-sense hypothbaisas the cost per unit of a MEMS IMU increases,

the quality of the IMU and of the inertial datattitareturns increases proportionally.
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Figure 7.7: Errors in the estimated linear velqgitysition and orientation of the vehicle over ti(B@arkFun).

The primary conclusion to take away from these Itess that the analysis and modeling of
typical MEMS IMU error sources did make the indrtdata from the SparkFun IMU better overall, and
the performance gap between the SparkFun and AIsIMid decrease, but the inertial data from the
SparkFun IMU is still not as high-quality as theriial data from the ADI IMU is. The inertial daftam
the ADI IMU is still much better overall, due latgen part to how the internal mechanisms of the tw
IMUs are set up. While both the SparkFun and ADUBVare constructed using MEMS technology, the
ADI IMU has several sophisticated internal mechasigtemperature calibration, low-pass filtering;. et
that operate on the inertial data before it is kb by the user. By comparison, the SparkFun IMU i
much simpler and contains less sophisticated iatenechanisms for preprocessing the raw data ftem i
inertial sensors. Since the inertial data from A& IMU is already cleaned up to some extent, it is
inherently more accurate than the inertial datenftbe SparkFun IMU is. Because of this, the ADI IMU
has a distinct advantage over the SparkFun IM@&rims of producing accurate navigation information.

Furthermore, because each of the INS units usesxdmt same secondary navigation information
to calculate their EKF correction terms, any défeces in the final navigation results are entirelated
to the quality of the inertial data produced by tMiJs. Therefore, the suitability of each IMU for
navigation applications can be assessed by obgewtitich INS produced the better overall navigation
results. And given the results displayed in Figutdsthrough 7.7, it can be concluded that the RADWU
definitely produces better overall inertial datartithe SparkFun IMU does, and is therefore mucteibet

suited for inertial navigation applications thae ®parkFun IMU is.
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Section 8 — Future Work

This section lists several new ideas that coulgmally be implemented in future iterations of
this research to either improve the quality oftbgults obtained from the IMU calibration expeririseor
the inertial navigation algorithm or add a new comgnt or functionality to the existing researcht thes

already been accomplished.

* Perform unit to unit testing. Testing multiple @ifént IMUs of the same model number would
help to determine how widely errors vary in betwelifferent units. Unit to unit testing would
determine whether or not each individual IMU mustdeparately analyzed or if the results from
a single analysis would be enough to model theefar all IMUs of a specific model number.

» Automate the IMU laboratory experiments. Many of ixperiments used to estimate the IMU
error parameters require the same action to benpeetl over and over again. These experiments
could be greatly improved and simplified by autan@the process.

* Analyze the performance of the EKF in more deptier€ are many aspects of Kalman Filtering
not touched upon in this thesis, and they coulé)X@ored in more detail to further improve the
performance of the EKF implemented in the inertialvigation algorithm. Some examples
include analyzing the estimation-error covariancatrives P,) and analyzing the EKF
innovations {, — HXy).

» Find a new testing location and/or testing vehitlsing a six-wheeled, skid-steered vehicle on a
high-friction carpeted surface doesn’t make for Itlest testing environment. In future iterations
of this research or similar research, it would msdwese to find a vehicle with a smoother steering
mechanism as well as a testing location with a foseefficient of friction. This will hopefully
result in smoother vehicle motions during the darebf navigation testing.

» Improve the test course. The test course that wad for the navigation tests performed in this
thesis proved to be adequate. However, in orddegsb navigation performance with a higher
degree of accuracy, a more structured test couitbeavhigher degree of overall precision would
be required. An improved method for gathering sdaoy navigation information for the inertial
navigation algorithm would also be required.

» Use real secondary navigation information. Secondavigation information could be obtained
much more frequently from a real sensor system (GR&eo camera systems, etc.). More
frequent secondary navigation information woulddléa more frequent EKF correction terms,

which in turn would greatly increase the accurafcthe navigation testing results.
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Section 9 — Conclusion

The goal of this thesis was to design, implemedttast two separate INS units based around two
low-cost MEMS IMUs. The results of the testing prdares were then used to determine how well each
individual INS performed and which IMU is betteritsd for implementation in an INS. To achieve this
goal, each IMU was first analyzed and modeled usirggries of laboratory experiments designed to
isolate and characterize the behavior of severdtdeeumented types of MEMS IMU errors. Then, an
inertial navigation algorithm was designed thabiporated the information and error models produced
by the laboratory experiments. The inertial navayaglgorithm was tested by rigidly mounting theotw
IMUs to a UGV and then driving the UGV via remotentrol through a predefined test course. The
inertial information recorded from each IMU duritige navigation tests was then post processed using
the inertial navigation algorithm. Finally, the wéitng navigation information was analyzed and
compared to the true linear velocity, position amigntation of the UGV to determine which INS was
able to more accurately track the linear velogysition and orientation of the UGV over time.

There are several primary results to take awaw fituis thesis. The first result is that the analysi
and modeling of typical MEMS IMU error sources dithke the inertial data from the SparkFun IMU
better overall, but it was not enough to bring 8parkFun IMU up to the performance level of the ADI
IMU. The ADI IMU proved to ultimately be much bettéor inertial navigation applications than the
SparkFun IMU was. The second result is that whikertial data is the primary component of an INS,
secondary navigation information plays an equatipartant role in the overall success of the INS. As
secondary navigation information is obtained maegdently, the results from the INS will improve
proportionally. The third and final result is thiihigh quality inertial data is essential to theesess of a
system, the best way to obtain that data is mé&stylito invest in a high quality IMU with internal
mechanisms that preprocess the raw data from #réahsensors. Low-cost, hobbyist-grade IMUs such
as the SparkFun IMU are better suited for applicetiwhere high quality inertial data is not essénti
such as impulse recognition, sensor fusion witheeosd type of sensor, wheel slippage detection,
unintended vehicle motion detection and self-lexglr orientation detection.

Overall, this thesis showed that it is possibleat@lyze and model several types of common
MEMS IMU errors and design an INS that uses thosm enodels along with inertial data and secondary
navigation information to estimate the linear véhgcposition and orientation of a UGV over time to
within a certain degree of accuracy. However, ideorfor the INS to be successful, the IMU supplying
the inertial data to the system must be high quaitough to produce accurate measurements of the

accelerations and angular velocities that the Welixperiences over time.
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Appendix

The Appendix displays all of the results generdigdoth the SparkFun-based and ADI-based
INS units for all three of the navigation testin@als. Both of the INS units were allowed to use th
inertial data from their respective IMUs and all thie secondary navigation information that was
available to them (i.e. ZUPTs, position fixes anmgemtation fixes). Each of the following subsecton
displays the full results from a specific UGV naatign testing trial. The complete results includapis

displaying the following information:

* The estimated linear velocity of the vehicle verdesdesired target velocities for the vehicle

» The estimated position and orientation of the Mehiersus the true position and orientation of
the vehicle

* The errors between the linear velocity, positiod anientation estimates produced by the two

INS units and the true linear velocity, positiordaientation of the vehicle over time

Section A.1 — Full Results of UGV Navigation Testip (Trial #1)
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Figure A.1: Estimated linear velocity of the vebielersus target velocities (ADI).
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Estimated X-Axis Velocity (SparkFun) ~Target Velocities
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Figure A.2: Estimated linear velocity of the vehisfersus target velocities (SparkFun).
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Figure A.3: Estimated position and orientationhe vehicle versus true position and orientatiothefvehicle (ADI).
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Figure A.4: Estimated position and orientationtaf vehicle versus true position and orientatiothefvehicle (SparkFun).
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Figure A.5: Linear velocity, position and orientatiestimation errors over time (ADI).
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Section A.2 — Full Results of UGV Navigation Testip (Trial #2)
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Figure A.8: Estimated linear velocity of the vehisfersus target velocities (SparkFun).
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Estimated Vehicle Position and Orientation (ADI)
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Figure A.9: Estimated position and orientationta vehicle versus true position and orientatiothefvehicle (ADI).

Estimated Vehicle Position and Orientation (SparkFun)

30 T T T T : :
o ZUPT Locations
—True Position
—Estimated Position
25F
PU—

— 20F 1
4
Q
@
£
c 15 b
gel
.*ﬁ
(o]
(2
g 10+ i
<
ey
=
2

5, |

0, |

35 20 -15 -10 5 0 5 10
East Axis Position (meters)

Figure A.10: Estimated position and orientationhaf vehicle versus true position and orientatiothefvehicle (SparkFun).
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Figure A.12: Linear velocity, position and oriempat estimation errors over time (SparkFun).
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Section A.3 — Full Results of UGV Navigation Testip (Trial #3)
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Figure A.14: Estimated linear velocity of the vaaieersus target velocities (SparkFun).
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Estimated Vehicle Position and Orientation (ADI)
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Figure A.15: Estimated position and orientationhaf vehicle versus true position and orientatiothefvehicle (ADI).
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Figure A.16: Estimated position and orientationhaf vehicle versus true position and orientatiothefvehicle (SparkFun).
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Velocity Errors (ADI)
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Figure A.17: Linear velocity, position and oriempat estimation errors over time (ADI).
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Figure A.18: Linear velocity, position and oriempat estimation errors over time (SparkFun).
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