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Abstract 

This project addresses the challenges for estimating effects of treatment in an educational 

experiment with high attrition rates. The project discusses the study of Principal Stratification, 

focusing on estimating the Average Treatment Effect of Always Post-test stratum - students 

who would take the post-test no matter which experimental group they belonged to. Since the 

previous methods for identifying that stratum resulted in principal scores (probabilities) larger 

than 1, new methods including Multinomial Regression and Expectation-Maximization 

algorithm are introduced in this project. In the experiment, middle school students used 

interventions including to enhance their math skills. The result shows that the treatment had a 

positive impact on post-test math scores. 

 

Key words: Randomized Controlled Trial (RCT), Attrition, Average Treatment Effect (ATE), 

Principal Stratification, Multinomial Regression, Expectation-Maximization (E-M) Algorithm 
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Executive Summary 

The purpose of this project is to determine the treatment effect in an educational experiment, 

as well as introducing new methods to address the high attrition rates. 

 

Introduction 

This project presents a study addressing challenges in middle school mathematics education, 

focusing on the effectiveness of game-based interventions like From Here to There (FH2T) and 

DragonBox. The study encountered a significant hurdle with a high attrition rate, prompting 

the development of an innovative solution. The project introduces a novel approach that 

combines multinomial regression with the Expectation-Maximization (E-M) algorithm to 

address attrition challenges. 

  

Traditional methods, such as excluding dropouts or assuming zero post-test scores, are known 

for introducing biases. The proposed approach enhances the analysis by accurately capturing 

nuances in student performance and engagement while effectively managing missing data. This 

integration of E-M algorithm and multinomial regression proves advantageous, offering a 

statistically sound treatment of attrition issues and providing valuable insights into the 

effectiveness of game-based education in middle school mathematics. The project's findings 

have broader implications for improving educational technology in mathematics education, 

emphasizing the importance of addressing attrition challenges in research methodologies. 

 

Background 

Randomized Controlled Trials (RCTs) stand as the gold standard in research design, ensuring 

unbiased estimates by randomly assigning participants. By randomly assigning participants to 

treatment and control groups, RCTs ensure unbiased estimates, allowing for clear and reliable 

comparisons between groups and facilitating the calculation of Average Treatment Effect 

(ATE), which is the average difference in outcomes between the treated and control groups 

attributable to the treatment under investigation. However, RCTs have challenges. Attrition, 
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defined as the departure of participants before the study's conclusion, introduces complexity. 

Non-random attrition can distort results, compromising the study's reliability.  

 

In the field of advanced methodologies, Principal Stratification emerges as a framework adept 

at handling post-treatment variables that are influenced by the treatment itself. Principal strata, 

defined by the causal states that individuals would be in under all treatment conditions, provide 

a nuanced understanding of treatment effects within specific subgroups. In this project, there 

are 4 principal strata: Always Post-test (AP) representing the students who would always take 

the post-test no matter which group they belonged to, Treatment Post-test (TP) representing the 

students who would only take the post-test if assigned to the treatment group, Control Post-test 

(CP) representing the students who would only take the post-test if assigned to the control 

group, and Never Post-test (NP) representing the students who would never take the post-test 

no matter which group they belonged to.  

 

One of the primary goals is to estimate the ATE for the Always Post-test AP stratum, or estimate 

the Survivor Average Treatment Effect (Bia et al., 2022). Monotonicity assumption ensures that 

none of the students belonged to TP - students who were assigned to Control and did not take 

the post-test would also not take the post-test if assigned to Treatment, and students who were 

assigned to Treatment and took the post-test would also take the post-test if assigned to Control. 

Principal Scores, representing the predicted probabilities of belonging to a specific principal 

stratum, remain essential in addressing potential biases when estimating causal effects, which 

explain the impact or influence of a particular treatment or intervention, within strata. 

 

The M-estimator is a way to estimate ATE in the AP stratum. It relies on Residualized Covariate 

Ignorability, assuming that the treatment assignment is independent of the potential outcomes 

given the observed covariates and their residuals. This assumption posits independence of 

potential outcomes and pre-treatment covariates conditional on principal scores and treatment 

assignment. However, estimating principal scores is still a challenging task. To solve this, 

previous methods include Logistic Regression and Bayes Theorem. However, these methods 

produced scores outside the meaningful probability range, posing limitations.  
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Methodology  

In this chapter, the project concentrates on estimating the treatment effect of the Always Post-

test (AP) stratum, in which the student would always take the post-test, and determining 

principal scores for AP in the control group. The process begins with a Multinomial Logit 

Model, utilizing the Expectation-Maximization (E-M) algorithm to categorize students into 

principal strata (AP, NP, CP). Key functions such as 𝐸𝑠𝑡𝑒𝑝𝑖, 𝐸𝑠𝑡𝑒𝑝, 𝑀𝑠𝑡𝑒𝑝𝑖, and 𝑀𝑠𝑡𝑒𝑝 

are introduced to address missing principal scores through an iterative convergence of the E-

M algorithm. 

  

Subsequent steps involve determining treatment effects through the construction of two linear 

models - one including both observations and principal strata, and the other considering only 

observations. The Bootstrap method is employed to estimate the standard error of the treatment 

effect, offering insights into its variability across 500 bootstrap iterations. Additionally, the 

Bootstrap approach generates a 95% confidence interval, providing a nuanced understanding 

of plausible values for the population treatment effect. The R codes for all these steps can be 

found in Appendix. 

  

Data 

The Data chapter delves into an educational experiment targeting middle school students to 

enhance their math skills, employing interventions such as From Here to There (FH2T), Dragon 

Box 12+ (DragonBox), and ASSISTments. Notably, FH2T and DragonBox utilize game-based 

approaches, fostering engagement through immersive gameplay and gradually introducing 

complex algebraic concepts. In contrast, ASSISTments serves as a non-game platform, 

providing personalized assignments and immediate feedback to support classroom learning. 

The dataset encompasses 3,271 students in a randomized controlled trial, with a narrowed focus 

on comparing the impact of game-based technologies FH2T and DragonBox. 

  



viii 
 

Key variables, including post-test outcomes, school identifiers, gender, attendance, pretest 

scores, race, and post-test scores, among others, contribute to a robust analysis. To address 

missing data, the "missForest" R package is employed, leveraging a random forest framework 

for iterative imputation. This comprehensive approach ensures a thorough exploration of the 

interventions' effectiveness, contributing valuable insights to educational strategies for middle 

school math improvement. 

 

Results 

The results chapter delves into key metrics and models derived from an experimental study. 

Notably, the attrition rate, indicative of students not completing the post-test, averaged at 40.8%, 

with varying rates across schools. School #1 exhibited an exceptionally high rate of 91%, 

emphasizing the influence of institutional engagement on test completion. Higher attrition rates 

were associated with students with elevated pre-test scores, suggesting a potential correlation 

between academic proficiency and test completion. Further analysis through principal score 

models unveiled coefficients illustrating preferences for certain categories over baselines, with 

school affiliation and pre-test scores prominently influencing student choices. 

  

The investigation extended to treatment effects, comparing the impact of DragonBox and FH2T 

on post-test math scores. The effect model indicates that on average, students using DragonBox 

have a 18.5% performance in the post-test than in the pre-test. The observed post-test model 

reflects a positive treatment effect but at a slightly lower magnitude of 16.9%. Rigorous 

examination via the Bootstrap method introduced uncertainty but reinforced the robustness of 

the effect model, suggesting potential improvements of up to 66.9% and 45.3%, or negative 

effects of up to 29.9% and 11.1%, in post-test scores with DragonBox, depending on whether 

the Control Post-test (CP) stratum is considered in the model. This comprehensive analysis 

underscores the nuanced factors influencing attrition rates and substantiates the positive impact 

of DragonBox on student performance in post-test math scores. 

 

Conclusion 
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This project addressed challenges in middle school mathematics education exacerbated by 

COVID-19, focusing on game-based technologies like FH2T and DragonBox. High attrition 

rates prompted a departure from traditional methods, leading to an innovative approach - 

multinomial regression with the Expectation-Maximization (E-M) algorithm. This 

methodology provided a nuanced understanding of student performance and effectively 

managed missing data, surpassing limitations of previous techniques. However, complexities 

in implementing the E-M algorithm and Bootstrap's method, along with reliance on 

assumptions, pose challenges. Future research should explore alternative, concise methods and 

address questions regarding assumption validity, ensuring broader applicability and reliability 

in enhancing middle school math education. Overall, this project contributes methodological 

advancements, refining the analysis of game-based technologies' impact on algebraic 

comprehension and advancing the reliability of educational research methodologies. 
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1 Introduction 

In recent years, the struggle of many middle school students to grasp mathematical concepts, 

compounded by the educational disruptions caused by the COVID-19 pandemic, prompted a 

team of researchers to launch an ambitious experiment. Their primary goal was to address the 

challenges in learning mathematics, particularly algebra, among middle schoolers. The 

experiment employed a scientifically rigorous approach, featuring a well-structured design and 

a meticulous student selection process through randomization to ensure a representative sample. 

Students were assigned to various groups, each receiving a different educational intervention, 

with the aim of evaluating the effectiveness of innovative educational technologies in 

enhancing algebraic understanding. This study seeks to provide valuable insights into potential 

solutions for improving mathematical education at the middle school level. 

 

The experiment emphasized three educational technologies: From Here to There (FH2T), 

Dragon Box 12+ (DragonBox), and ASSISTments, chosen for their innovative approaches to 

teaching algebra and potential to enhance learning. FH2T employed real-world scenarios and 

problem-solving tasks, DragonBox utilized interactive gameplay, and ASSISTments provided 

personalized feedback and reports. The study aimed to investigate the impact of these distinct 

instructional strategies on algebraic comprehension. This project specifically focuses on FH2T 

and DragonBox, as both employ game-based elements for learning, allowing for a comparative 

analysis to uncover the most effective aspects of game-based education in enhancing 

mathematical proficiency among middle school students and optimizing their use in 

educational settings. 

 

One of the most significant challenges encountered during this experiment was the high 

attrition rate, the dropout of participants over the study's duration, a particularly pressing 

concern in the realm of educational technology research. Attrition poses substantial issues, 

potentially undermining the validity and reliability of findings. In the context of assessing the 

impact of educational technologies on middle school students' algebra comprehension, attrition 

threatened the study's integrity. It's problematic primarily because it can introduce sample bias, 



2 
 

as the characteristics of those who drop out may differ significantly from those who complete 

the study, potentially distorting results. This discrepancy is especially troubling in educational 

settings, where it may obscure the true effects of interventions being examined. 

 

Researchers have traditionally employed various methods to address attrition, with one 

common approach being the exclusion of dropouts from the analysis. However, this disrupts 

the experiment's randomization that ensures each participant has an equal chance of being 

assigned to any treatment group, potentially leading to biased results. Another conventional 

method is to assume that dropouts have a post-test score of zero, maintaining the sample size 

but introducing its own bias by not accurately representing their potential outcomes if they had 

stayed in the study. These challenges in handling attrition complicate the interpretation of 

treatment effects and underscore the importance of addressing attrition issues carefully in 

educational technology research. 

 

In addressing the challenges of educational research, various analytical methods have been 

employed previously. One method is to use the concept of principal stratification under 

monotonicity assumption. This approach involves categorizing individuals based on their 

potential outcomes, assuming a consistent direction of the effect of the treatment on whether 

the students took the post-test or not. In particular, we can think of estimating the average effect 

of people who would always take the post-test regardless of randomization. These people are 

categorized into Always Post-test (AP) stratum, which is sometimes referred to as the concept 

of Survivor Average Causal Effect. Based on the categories, or strata, the Logistic Regression 

(LR) model combining with Bayes Theorem is used to estimate probabilities and make 

inferences about the population. However, this method can sometimes produce probabilities 

that exceed the logical limit of one, indicating a potential flaw in the model when applied to 

certain types of data. Another method includes M-estimation, which involves creating 

estimators that are robust against certain types of modeling misspecifications. When combined 

with residualized covariate ignorability - a concept that assumes that any covariate related to 

both the treatment and the outcome is accounted for in the model - it can provide a powerful 
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tool for analysis. However, this method can be complex to implement and may require stringent 

assumptions that are not always met in practical educational research scenarios.  

 

In addressing the challenges posed by the high attrition rate in the study, this project introduces 

an innovative method to address the challenges posed by a high attrition rate in a study, 

departing significantly from traditional techniques. The core of this novel approach lies in the 

utilization of multinomial regression in conjunction with the Expectation-Maximization (E-M) 

algorithm. Multinomial regression is particularly well-suited for handling categorical data with 

more than two outcomes, crucial in contexts where educational outcomes can vary widely and 

are not limited to binary outcomes. By employing this regression model, the study can capture 

the nuances and variances in student performance and engagement more accurately. 

 

The E-M algorithm further enhances this approach by effectively managing missing or 

incomplete data, a common issue in studies with high attrition rates. Operating in two phases - 

the Expectation (E) step, which estimates missing data based on observed data, and the 

Maximization (M) step, which computes maximum likelihood estimations with the newly 

estimated data points - the E-M algorithm iteratively converges to a stable solution. This 

provides a robust means of handling missing data without relying on biased assumptions seen 

in traditional methods. 

 

The integration of the E-M algorithm with multinomial regression proves particularly 

advantageous in this context, allowing for a more nuanced and statistically sound treatment of 

attrition issues. This combination addresses limitations such as probability estimates exceeding 

one, a concern in methods like logistic regression and M-estimation, while offering a refined 

analysis of diverse educational outcomes. Ultimately, this combined approach excels in 

handling complex data structures and incomplete datasets, providing a more accurate and 

comprehensive analysis, crucial in educational research where data complexity and attrition 

are common challenges. 
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This report is designed to provide a comprehensive overview of the project and the findings. 

Chapter 2 delves into the background of previous methods used in similar studies, providing 

context for the current research. Chapter 3 elaborates on the methods proposed in this project, 

including multinomial regression and E-M algorithm for estimating the probabilities, M-

estimation in OLS model to determine the treatment effect, and Bootstrap method for 

estimating standard errors. Chapter 4 offers an in-depth look at the data used in the study, 

ensuring transparency and thorough understanding of the data sources and characteristics. 

Chapter 5 presents the results and analysis, highlighting the key findings and their implications 

for educational technology in middle school mathematics education. 
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2 Background 

This chapter discusses the concepts related to the project as well as presents the methods that 

had been tried previously. 

  



6 
 

2.1 Causal Inference Framework 

The causal inference framework forms the foundation of empirical research, aiming to ascertain 

the effects of various interventions or treatments under study. This framework, central to both 

the social and natural sciences, relies heavily on the concept of potential outcomes, a key 

theoretical approach in understanding the direct impact of treatments. 

 

2.1.1 Potential Outcomes 

Let 𝑍  represent the group that each student was assigned to. 𝑍 = 1  if a student is in the 

treatment group, whereas 𝑍 = 0 if a student is in the control group. 

 

Let 𝑌 represent the post-test score of each student and 𝑌(𝑍) represent the post-test score for 

a specific 𝑍 . In other words, 𝑌(1)  represents the post-test score for students in treatment 

group, whereas 𝑌(0) represents the post-test score for students in control group (Rubin, 1974). 

If a student did not take the post-test, then 𝑌 would be a missing value. Each student has both 

𝑌(1) and 𝑌(0), but only at most one of them is observed.  

 

Let 𝑍𝑖   represent the group that a specific student 𝑖  belong to, and let 𝑌𝑖  represent the 

observed post-test score of that student. Thus, for instance, if 𝑍𝑖 = 0, then 𝑌𝑖 = 𝑌𝑖(0), since 

𝑌𝑖(0) represents the post-test score that student 𝑖 would get if 𝑖 were assigned to the control 

group. 

 

At the core of the causal inference framework are two potential outcomes, 𝑌(0) and 𝑌(1). 

These outcomes represent the possible states of an individual or a system in the presence or 

absence of a treatment or intervention. As mentioned previously, 𝑌(1)  is the outcome 

observed under the treatment, while 𝑌(0) is the outcome observed under control. A critical 

aspect of this concept is that for any individual subject, only one of these outcomes is 

observable - either the state with the treatment or without it (ThinkCausal, n.d.). This limitation 

forms the "fundamental problem of causal inference (Holland 1986), “posing challenges in 

directly observing the counterfactual state.  
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2.1.2 Individual Treatment Effect (ITE) 

The Individual Treatment Effect (ITE) is measured as the difference between the two potential 

outcomes, 𝑌(1)  −  𝑌(0). This metric provides insights into the impact of the treatment on an 

individual level, allowing researchers to understand the direct effect of an intervention on each 

subject. However, the challenge lies in the fact that nobody can ever observe both outcomes 

for the same individual simultaneously, making the estimation of this effect complex and often 

requiring sophisticated statistical methods (Gelman et al., 2021). 

 

2.1.3 Average Treatment Effect (ATE) 

The Average Treatment Effect (ATE) is a statistical measure used in the field of causal inference 

to estimate the overall or average impact of a specific treatment or intervention across a group 

or population. It calculates the difference between the average outcome of the treated group 

and the average outcome of the untreated group, providing an aggregate assessment of the 

treatment's effectiveness on a larger scale. In other words, ATE can be obtained by calculating 

the average of the ITEs. ATE is valuable for making generalizable conclusions about the 

effectiveness of an intervention within a specific population, helping policymakers and 

researchers make informed decisions about the adoption of treatments or policies. 

 

2.2 Randomized Controlled Trials (RCT) 

A Randomized Controlled Trial (RCT) is a rigorous and widely recognized research design 

used in the field of experimental research and clinical studies. In an RCT, participants are 

randomly assigned to different groups, typically including a treatment group that receives the 

intervention or treatment being studied and a control group that does not receive the treatment 

or receives a placebo. Randomization helps ensure that any observed differences in outcomes 

between the groups are more likely to be attributed to the treatment itself rather than 

confounding factors.  

 

The strength of RCTs lies in their ability to provide unbiased estimates of treatment effects. 



8 
 

When the assignment to treatment is random, the mean outcome Y for the treatment group 

reliably estimates the mean of the potential outcome 𝑌(1) for the entire population. Similarly, 

for the control group, the mean of 𝑌  represents an unbiased estimate of 𝑌(0) . This 

methodology allows for a clear comparison of outcomes with and without the treatment 

(ThinkCausal, n.d.), as well as the unbiased estimate of the ATE. 

 

2.3 Attritions in RCTs 

Attrition in an experiment refers to the phenomenon where participants who were initially part 

of the study or treatment group drop out or discontinue their involvement before the 

experiment's conclusion. This can occur for various reasons, such as personal circumstances, 

loss of interest, or adverse reactions to the treatment. The loss of participants can lead to biased 

results, especially when the characteristics of those who leave the study differ substantially 

from those who remain. 

 

The impact of attrition on RCTs is multifaceted. Primarily, it can lead to a reduction in sample 

size, diminishing the statistical power of the study. More critically, if the attrition is not random 

and correlates with either the treatment or the outcome, it can introduce systematic bias. This 

bias occurs because the final sample may no longer be representative of the original population, 

skewing the estimated effects of the treatment (Zhang & Rubin, 2003). In other words, if 

treatment and control group are comparable after randomization, they may no longer be 

comparable after attrition, since the subjects may attrit in one condition than in another.  

 

To illustrate the potential impact of attrition on study outcomes, consider the following example 

involving a scientist examining the effects of a specific diet on weight loss. Assume that there 

were 10 people assigned to the treatment group consuming diet food during the experiment and 

10 other people assigned to the control group consuming regular food during the experiment. 

The initial weights of all 20 people were measured, and both groups had the same mean and 

standard deviation. After a month, both groups had 5 people who dropped out, and the weights 

for the rest of the people were measured. The result is that the average weight in the treatment 
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group is much lower than the average weight in the control group. However, the fact is that the 

people who dropped out in the treatment group had higher initial weight than the people who 

did not drop out, whereas the people who dropped out in the control group had lower initial 

weight than the people who did not drop out. This discrepancy highlights the potential 

distortion in results due to non-random attrition, cautioning against simplistic conclusions 

regarding the diet's efficacy in weight loss. In conclusion, the susceptibility of randomized 

controlled trials to attrition underscores the importance of diligently addressing and analyzing 

participant dropout, as it can introduce bias and compromise the reliability of study findings. 

 

2.4 Principal Stratification 

2.4.1 Basic Definitions 

Let 𝑆 represent the observation of whether a student took the post-test. 𝑆 = 1 if a student 

took the post-test, whereas 𝑆 = 0 if a student did not take the post-test. 

 

Among all the students, there are 4 types of different observations in total. The number of each 

observation should be recorded. Table 1 shows the relationships of the 4 observations. 

 

Table 1: Observations of Students 

 𝒁 = 𝟏 𝒁 = 𝟎 

𝑺 = 𝟏 𝑆(1) = 1 : students in the 

treatment group that took the 

post-test. 

𝑆(0) = 1 : students in the 

control group that took the 

post-test. 

𝑺 = 𝟎 𝑆(1) = 0 : students in the 

treatment group that did not 

take the post-test. 

𝑆(0) = 0 : students in the 

treatment group that did not 

take the post-test. 

 

Principal stratification is a statistical framework that provides a way to handle causal inference 

in the presence of post-treatment variables that are affected by the treatment itself. This 

framework is particularly useful in the context, where the study is interested in the causal effect 

of a treatment on students' test scores, but not all students took the post-test.  

Principal strata are defined by potential outcomes under different treatment conditions. In this 

project, there are 4 principal strata: Always Post-test (AP), Treatment Post-test (TP), Control 
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Post-test (CP), and Never Post-test (NP). Table 2 represents the relationships of the 4 strata 

(Zhang & Rubin, 2003). 

 

Table 2: Principal Stratification of Students 

 𝑺(𝟏) = 𝟏 𝑺(𝟏) = 𝟎 

𝑺(𝟎) = 𝟏 

AP: students that take the post-

test no matter which group they 

belong to. 

CP: students that take the post-

test if they are assigned to 

control group and do not take 

the post-test otherwise. 

𝑺(𝟎) = 𝟎 

TP: students that take the post-

test if they are assigned to 

treatment group and do not 

take the post-test otherwise. 

NP: students that do not take 

the post-test no matter which 

group they belong to. 

 

The goal of principal stratification is to estimate the proportion of individuals in each principal 

stratum, especially the average effect within each stratum. In this project, for everyone with an 

observed outcome, AP and TP students can be compared in the treatment group, whereas AP 

and CP students can be compared in the control group. Therefore, the next goal is to estimate 

the treatment effects for the AP stratum. This is often referred to the Survivor Average Causal 

Effect.  

 

2.4.2 Monotonicity Assumption 

The monotonicity assumption in principal stratification implies that if a student takes the test 

under the treatment condition, they would also take the test under the control condition. In other 

words, no students belong to the TP stratum. Therefore, 𝑆(1) never becomes larger than 𝑆(0). 

This assumption is crucial for the analysis because it allows to infer the behavior of students 

under the control condition based on their behavior under the treatment condition. Table 3 

shows the principal strata of students based on the observation. 

 

Table 3: Principal Strata Under Monotonicity Assumption 

 𝒁 = 𝟏 𝒁 = 𝟎 

𝑺 = 𝟏 
All students are in CP 

stratum. 

Students are in either AP or 

CP. 

𝑺 = 𝟎 
Students are in either CP or 

NP. 

All students are in NP 

stratum. 
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However, in this project, the monotonicity assumption can lead to a huge error if a great number 

of students actually belong to the TP stratum.  

 

2.5 Principal Score 

Principal scores are the probabilities of belonging to each principal stratum, given the observed 

pre-treatment covariates 𝑋 . These scores can be used to adjust for confounding in the 

estimation of causal effects within strata. All principal scores can be represented in a formula. 

For example, the probability of being in the AP stratum conditional on 𝑋  is 𝑃(𝑆(1) =

1 𝑎𝑛𝑑 𝑆(0) = 1|𝑋). 

 

2.5.1 Principal Ignorability 

Principal Ignorability (PI) allows to estimate the causal effect of the treatment on the test scores, 

independently of the principal stratum to which a student belongs. This is crucial for the 

analysis because it allows to estimate the missing test scores independently of whether a student 

took the test or not. There are two types of PIs: weak PI and strong PI. Weak PI assumes that 

the scores are same if Z=0, and strong PI assumes that the scores are same if 𝑍 = 0 and 𝑍 =

1. Here are two formulas representing the concept of PI (Feller et al., 2017): 

 

𝐸(𝑌(0)|𝑋, 𝑆(1) = 1) = 𝐸(𝑌(0)|𝑋, 𝑆(1) = 0) = 𝐸(𝑌(0)|𝑋) . . . . . . (1) 

𝐸(𝑌(1)|𝑋, 𝑆(1) = 1) = 𝐸(𝑌(1)|𝑋, 𝑆(1) = 0) = 𝐸(𝑌(1)|𝑋) . . . . . . (2) 

 

where 𝐸 represents expected value. Weak PI assumes that formula (1) is true, and strong PI 

assumes both formulas are true. 

 

However, PI also has disadvantages. In this project, since the attrition rate is high, the missing 

data may not be random. Therefore, the PI assumption should be avoided, since it may lead to 

biased estimates.  
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2.5.2 M-estimator and Residualized Covariate Ignorability 

The M-estimator is a method for estimating the principal effects, the average effect within 

each principal stratum, based on the observed data. It “M-Estimation works by attempting to 

reduce the influence of outliers by replacing the squared residuals in Ordinary Least Squares 

(OLS) regression by another function of the residuals”. The basic formula is:  

 

∑ 𝜓𝑖(𝑌𝑖, 𝜃) = 0
𝑛

𝑖=1
 

 

where 𝜓𝑖 represents a function of 𝑌𝑖 and 𝜃, and both of them should be solved without 

depending on 𝑖 or 𝑛 (Stefanski & Boos, 2002). 

 

Residualized covariate ignorability is an assumption that allows to use the M-estimator. It 

assumes that, conditional on the principal scores and the treatment assignment, the potential 

outcomes are independent of the pre-treatment covariates. Here is the basic formula (Sales, 

2022): 

 

𝐸(𝑌𝐶 − 𝛾′𝑋|𝑋, 𝑆𝑇) = 𝐸(𝑌𝐶 − 𝛾′𝑋|𝑆𝑇), 

𝐸(𝑌𝑇 − 𝛾′𝑋|𝑋, 𝑆𝑇) = 𝐸(𝑌𝑇 − 𝛾′𝑋|𝑆𝑇). 

 

Among the observation of 𝑆(0) = 1, students belong to either AP or CP stratum. However, 

one of these strata always has less attrition. Principal score can be used to determine the 

number of students in AP stratum among both strata: 𝑝 = 𝑃(𝐴𝑃| 𝐴𝑃 𝑜𝑟 𝐶𝑃, 𝑋). The effect 

can be estimated by OLS using the following formula:  

 

𝑌 = 𝑏0 + 𝑏1 (1 − 𝑆) + 𝑏2 ∗ 𝑍 + 𝑏3 ∗ 𝑋 + 𝑒𝑟𝑟𝑜𝑟 

=>  𝐸(𝑌|𝑍, 𝑋)  =  𝑏0 + 𝑏1 ∗ 𝐸(1 − 𝑆|𝑍, 𝑋) + 𝑏2 ∗ 𝑍 + 𝑏3 ∗ 𝑋 

=>  𝐸(𝑌|𝑍, 𝑋)  =  𝑏0 + 𝑏1 ∗ (1 − 𝑝) + 𝑏2 ∗ 𝑍 + 𝑏3 ∗ 𝑋 𝑠𝑖𝑛𝑐𝑒 𝐸(1 − 𝑆|𝑍, 𝑋)  =  1 − 𝑝 

=>  𝑌 =  𝑏0 + 𝑏1 ∗ (1 − 𝑝) + 𝑏2 ∗ 𝑍 + 𝑏3 ∗ 𝑋 +  𝑒𝑟𝑟𝑜𝑟. 

 

The problem of obtaining 𝑝 should be solved in this process.  
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2.6 Previous Methods 

The methods that have been tried previously include Logistic Regression and Bayes Theorem 

(Dufresne, 2023). 

 

2.6.1 Logistic Regression (LR) 

Logistic regression is often used when there is a binary outcome. It is a statistical method that 

can be used to estimate the principal scores. It models the log-odds of the probability of 

belonging to a particular principal stratum as a linear function of the observed pre-treatment 

covariates. There are two types of LR models that were tried previously. One model estimates 

each principal score with LR-fit to different samples (𝑍 = 1 or 𝑍 = 0). The other model fits 

one big LR with interactions between 𝑋 and 𝑍.  

 

2.6.2 Bayes Theorem 

Bayes theorem is a fundamental principle in probability theory and statistics that describes how 

to update the probability of a hypothesis based on evidence. It can be used to estimate the 

principal scores by updating the prior probabilities of belonging to a particular principal stratum 

based on the observed data. The basic formula of Bayes Theorem is: 𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴) ∗

𝑃(𝐴)/𝑃(𝐵) . Using this formula, it can be concluded that 𝑃(𝐴𝑃|𝐴𝑃 𝑜𝑟 𝐶𝑃) =  𝑃(𝐴𝑃)/

𝑃(𝐴𝑃 𝑜𝑟 𝐶𝑃) , because 𝑃(𝐴𝑃 𝑜𝑟 𝐶𝑃|𝐴𝑃) = 1 . Since 𝑃(𝐴𝑃|𝑋)  can be calculated from the 

data of treatment group and 𝑃(𝐴𝑃 𝑜𝑟 𝐶𝑃|𝑋)  can be calculated from the data of control 

group, 𝑃(𝐴𝑃|𝐴𝑃 𝑜𝑟 𝐶𝑃) can be obtained by taking their ratio. 

 

2.6.3 Problems with Previous Methods 

While these methods have been useful, they have limitations. For example, they may result in 

a principal score greater than 1, which is not meaningful as a probability. In the previous study, 

the result shows that the maximum 𝑃(𝐴𝑃|𝐴𝑃 𝑜𝑟 𝐶𝑃)  is 1.16 instead of between 0 and 1. 

Furthermore, they may not adequately adjust for confounding, leading to biased estimates of 

the causal effects. New methods that address these issues are needed to improve the 
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understanding of the treatment's effectiveness. These methods will be discussed in detail in the 

next chapter.  
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3 Methodology 

From Chapter 2, it is discovered that students are in one of the three principal strata: Always 

Post-test (AP), Never Post-test (NP), or Control Post-test (CP). The goal of this chapter is to 

estimate the effect of AP. It is already known that students in treatment group who took the 

post-test are AP. However, principal strata of the control group are unknown - the students who 

took the post-test are either AP or CP. Therefore, it is needed to estimate the principal score of 

AP in the control group.  

 

To solve the problem, a multinomial logit model is built to determine which principal strata the 

students belong to. All the unknown principal strata are treated as “missing” or hidden. Then, 

the model is fitted with E-M algorithm. The algorithm is repeated several times until the result 

converges.  

 

Besides this, the project is also interested in the treatment effect, as well as the standard error. 

To find out the treatment effect, two linear models are built, one with observations and the 

principal strata, and the other with observations only. Then, the method of Bootstrap is used to 

determine the standard error. All of these steps were performed in R codes (R Code Team, 

2023), which can be found in Appendix. 
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3.1 Multinomial logistic regression 

Multinomial regression is an extension of logistic regression that is used when the dependent 

variable has more than two categories. In this project, the dependent variable is the principal 

stratum, which has three categories: AP, NP, and CP. The multinomial regression model 

estimates the probabilities of each category as a function of independent variables. It is a useful 

method for predicting categorical outcomes when dealing with more than two outcome options. 

The multinomial regression model works by modeling the log-odds of each category relative 

to the baseline category, which can be randomly chosen among the outcome categories. In this 

project, CP is chosen to be the baseline category. The model uses a set of predictor variables to 

estimate these log-odds and then applies the softmax function, a function that converts a vector 

of real numbers to a probability distribution, to convert these log-odds into probabilities for 

each category. The model produces coefficients for each predictor variable, which indicate how 

strongly they influence the likelihood of belonging to a particular stratum. 

 

The formulas of the model would be: 

 

𝑙𝑜𝑔(𝑃(𝐴𝑃)/𝑃(𝐶𝑃)) =  𝜃𝐴𝑃
𝑇  𝑋, and 

𝑙𝑜𝑔(𝑃(𝑁𝑃)/𝑃(𝐶𝑃)) =  𝜃𝑁𝑃
𝑇  𝑋,  

 

where 𝜃 represents the coefficients, and 𝑋 represents the covariates (PennState, n.d.). 

 

Since the strata cannot be observed for everyone, E-M algorithm is needed to determine the 

principal strata and their principal scores. The details of this algorithm will be discussed in the 

next section. 

 

3.2 E-M Algorithm 

The Expectation-Maximization (E&M) algorithm is a general iterative optimization method 

used to estimate the parameters of statistical models, particularly when dealing with incomplete 

or missing data. It's a two-step process that alternates between the E-step (Expectation step) 

and the M-step (Maximization step) to iteratively refine parameter estimates.  
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In the E-step, the primary goal is to calculate the expected values of the missing data or latent 

variables given the current parameter estimates. This step involves computing the posterior 

probabilities or responsibilities associated with the latent variables. These responsibilities 

represent the likelihood that a particular observation belongs to a particular category or class. 

In the M-step, the primary goal is to update the parameter estimates to maximize the expected 

log-likelihood calculated in the E-step. This step involves finding the parameter values that 

optimize the expected log-likelihood, treating the expected values of the latent variables as if 

they were observed. 

 

The algorithm is appropriate in this project because the complete data likelihood is intractable. 

Not all the information needed to fit in with the model are present. Therefore, it is needed to 

use this algorithm to fit the missing data. 

 

3.2.1 E-M Algorithm for Principal Scores 

Table 4 shows the formulas of the conditional probabilities of latent strata for each of the 4 

groups (Ding & Lu, 2016). 

 

Table 4: Conditional Probabilities of Latent Strata 

 𝒁 = 𝟏 𝒁 = 𝟎 

𝑺 = 𝟏 

𝑃(𝑈 = 𝐴𝑃|𝑋) = 1 

𝑃(𝑈 = 𝐶𝑃|𝑋) = 0 

𝑃(𝑈 = 𝑁𝑃|𝑋) = 0 

𝑃(𝑈 = 𝐴𝑃|𝑋) =  1/(1 + 𝑒−𝜃𝐴𝑃
𝑇 𝑋 ) 

𝑃(𝑈 = 𝐶𝑃|𝑋) =  1/(1 + 𝑒𝜃𝐴𝑃
𝑇  𝑋 ) 

𝑃(𝑈 = 𝑁𝑃|𝑋) = 0 

𝑺 = 𝟎 

𝑃(𝑈 = 𝐴𝑃|𝑋) = 0 

𝑃(𝑈 = 𝐶𝑃|𝑋) =  1/(1 + 𝑒𝜃𝑁𝑃
𝑇  𝑋 ) 

𝑃(𝑈 = 𝑁𝑃|𝑋) =  1/(1 + 𝑒−𝜃𝑁𝑃
𝑇 𝑋 ) 

𝑃(𝑈 = 𝐴𝑃|𝑋) = 0 

𝑃(𝑈 = 𝐶𝑃|𝑋) = 0 

𝑃(𝑈 = 𝑁𝑃|𝑋) = 1 

 

Under the monotonicity assumption, there might be some students who has 𝑆 = 0 while 𝑍 =

1 and 𝑆 = 1 while 𝑍 = 0, but there are no students who has 𝑆 = 0 while 𝑍 = 0 and 𝑆 =

1 while 𝑍 = 1. Therefore, if 𝑆 = 1 and 𝑍 = 1, then the student must be AP, and if 𝑆 = 0 and 

𝑍 = 0, then the student must be NP.  
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If 𝑆 = 1  and 𝑍 = 0 , then the student is either AP or CP. From the model 𝑙𝑜𝑔(𝑃(𝐴𝑃)/

𝑃(𝐶𝑃)) =  𝜃𝐴𝑃
𝑇  𝑋 , it can be obtained that 𝑃(𝐴𝑃) = 𝑃(𝐶𝑃) ∗ 𝑒𝜃𝐴𝑃

𝑇  𝑋 . Since AP and CP are 

disjoint, then 𝑃(𝐴𝑃) + 𝑃(𝐶𝑃) = 1. Therefore, 𝑃(𝐴𝑃) = 1 − 𝑃(𝐶𝑃) =  𝑃(𝐶𝑃) ∗ 𝑒𝜃𝐴𝑃
𝑇  𝑋  =>

 (1 + 𝑒𝜃𝐴𝑃
𝑇  𝑋 ) ∗ 𝑃(𝐶𝑃) = 1 =>  𝑃(𝐶𝑃) = 1/(1 + 𝑒^(𝜃𝐴𝑃

𝑇  𝑋 )) , and 𝑃(𝐴𝑃) = 1 − 𝑃(𝐶𝑃) =

1 −  1/(1 + 𝑒𝜃𝐴𝑃
𝑇  𝑋 ) =  1/(1 + 𝑒−𝜃𝐴𝑃

𝑇  𝑋 ) . Similarly, if a student has 𝑆 = 0  and 𝑍 = 1 , then 

the student is either NP or CP, and 𝑃(𝐶𝑃) = 1/(1 + 𝑒𝜃𝑁𝑃
𝑇 𝑋 ) and 𝑃(𝑁𝑃) = 1/(1 + 𝑒−𝜃𝑁𝑃

𝑇 𝑋). 

 

Next, to perform the E-M algorithm, here are the key functions defined: 

 

𝑬𝒔𝒕𝒆𝒑𝒊: This function calculates the E-step for each student (in other word, 𝑖). It takes inputs 

including as 𝑍 (0 or 1), indicating treatment group or control group, ℎ𝑎𝑠𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡 (0 or 1), 

indicating whether the student took the post-test, 𝑋 , representing predictor variables, and 

𝑐𝑜𝑒𝑓𝑠, which are initially random coefficients. The inputs 𝑍 and ℎ𝑎𝑠𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡 indicate the 

group that the student belongs to, and then the function calculates and returns the probabilities 

of belonging to the "AP", "NP", and "CP" strata for the given student based on the probability 

formulas of that group. 

 

𝑬𝒔𝒕𝒆𝒑: This function is responsible for performing the E-step for all students. It takes inputs 

𝑍, ℎ𝑎𝑠𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡, 𝑋, and the coefficients (𝑐𝑜𝑒𝑓𝑠) for all students. It uses the 𝐸𝑠𝑡𝑒𝑝𝑖 function 

for each student and returns a probability table with the probabilities for all students. 

 

𝑴𝒔𝒕𝒆𝒑𝒊: This function begins the M-step by creating the weight table for each student (𝑖). It 

takes inputs such as 𝑖, 𝑍, ℎ𝑎𝑠𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡, and the probabilities (𝑝𝑟𝑜𝑏𝑠) calculated in the E-step. 

Within this function, the weight table is created, including 𝑖, 𝑈, which is either "AP", "CP", 

or "NP", and 𝑤, the weight based on the values in the probability table. The table has either 1 

or 2 rows. For the 1-row tables, 𝑈 is either “AP” or “NP”, and w is always 1. For the 2-row 

tables, the values of 𝑖 are the same for both rows. The first row of 𝑈 is either “AP” or “NP”, 

and the second row of 𝑈 is always “CP”. The values of w are equal to the principal scores 
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calculated from the E-step.  

 

𝑴𝒔𝒕𝒆𝒑: This function manages the M-step for all students. It takes inputs 𝑍, ℎ𝑎𝑠𝑃𝑜𝑠𝑡𝑡𝑒𝑠𝑡, 

𝑋 , and the probability table (𝑝𝑟𝑜𝑏𝑠 ) for all students. In this function, weight tables for all 

students are combined, and then a multinomial regression model is fitted using "CP" as the 

baseline category. The model is a weighted multinomial logit, with weights equal to estimated 

probabilities. The coefficients from this model are extracted and used as the updated 

coefficients. 

 

To see why the model makes sense, it can be first assumed that there is an infinite number of 

people in a population. Assuming that the principal scores are correct, each person in the sample 

represents all people with the same covariates. For example, if there is a white male from school 

#1, and he is 90% AP and 10% CP, then among all white males from school #1 in the population, 

there are 90% of people in AP and 10% of people in CP. The data from this experiment can be 

regarded as a finite random sample from the population, and in the E-M algorithm, the samples 

are weighted to represent the population. 

 

3.2.2 Iteration step 

The iteration step alternately performs E-step and M-step until the convergence is achieved. To 

execute this step, random coefficients (𝑐𝑜𝑒𝑓𝑠) are initialized as the initial coefficient table, and 

then these coefficients are used along with the 𝐸𝑠𝑡𝑒𝑝  function to calculate the initial 

probability table (𝑝𝑟𝑜𝑏𝑠). The previous-probability table (𝑝𝑟𝑜𝑏𝑠1) is initialized with values 

set to 1 plus the initial probability table. Then, a series of E-steps and M-steps is performed 

until a convergence criterion is met. In this project, the convergence criterion is that all values 

in the two probability tables have a difference below the tolerance, which is set to be 0.001. In 

each iteration, the new probability table is calculated using the M-step and E-step. The process 

is repeated until the convergence criterion is met. 
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3.3 Determining Treatment Effect 

As mentioned in sec 2.6.2, the M-estimation in OLS model involves minimizing a certain 

objective function to estimate the parameters of the model. In the context of estimating 

treatment effects, the OLS model is often applied to analyze experimental data with observed 

post-test scores. The covariates included in the model typically consist of various factors that 

may influence the outcome of interest, such as pretest scores, demographic characteristics, or 

other relevant variables. The crucial aspect of the OLS model in estimating the treatment effect 

lies in the coefficient associated with the treatment variable. This coefficient quantifies the 

difference in the outcome variable between the treatment and control groups, thereby providing 

a direct measure of the treatment's impact while controlling for the effects of the included 

covariates. By examining this coefficient, the effectiveness of the treatment can be accessed 

while accounting for potential confounding factors, making OLS a valuable tool for causal 

inference in experimental studies. 

 

The treatment effect, or ATE, represents the average difference in outcomes between the 

treatment group and the control group. In this project, the treatment effect specifically measures 

how the treatment affects post-test scores. A positive treatment effect indicates that the 

treatment has a beneficial impact on students' performance, while a negative effect suggests 

the opposite. 

 

To determine the ATE, an OLS model, called “effect model”, is built to estimate the ATE for 

the AP stratum. Before building the model, the data for students who took the post-test is 

extracted from the original dataset. The model is built based on the 𝑍 (0 or 1), covariates 𝑋 

and the probability variable (𝑃 ) obtained from the 𝑝𝑟𝑜𝑏𝑠  table. Then, as a comparison, a 

second OLS model, called “observed post-test model”, is fit. This model only includes 𝑍 and 

the covariates 𝑋 and does not include the principal scores. This is the current conventional 

approach that assumes that attrition is ignorable, or there is no CP stratum. In both models, 

emphasis is placed on the coefficients of Z, as they signify the Average Treatment Effect (ATE) 

of the treatment. It is worth noting that the Effect Estimate is derived from linear regression 
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involving principal scores, while the regression without principal scores yields the 

conventional effect estimate, assuming a binary classification of students as either AP or NP. 

This dual approach allows for a comparison between the method and the conventional one to 

assess if the method yields different results. 

 

3.4 Bootstrap 

The primary goal of bootstrapping is to estimate the standard error of the treatment effect, 

which helps gauging the variability of the estimate. Additionally, the bootstrap samples will be 

used to calculate a 95% confidence interval for the treatment effect, which provides a range of 

plausible values for the population treatment effect. 

 

To perform the bootstrap, the sample size is set to be the total number of students (𝑛), and the 

number of bootstrap iterations (𝐵) is set to be 500. For each of the 500 bootstrap iterations (𝑏), 

a random sample from the original dataset is taken as a replacement. Within each bootstrap 

iteration, the prognostic scores are estimated using the E-M algorithm, similar to the procedure 

outlined in earlier sections of this chapter. This involves updating the coefficients and 

probabilities using the E-step and M-step until convergence is achieved. After estimating the 

prognostic scores, the treatment effect is estimated in each bootstrap sample. A subset of the 

sample consisting of students who took the post-test is created, and then the probability of 

being in the "Control Post-test (CP)" stratum (𝑃 ) is calculated. Two models are fitted: the 

"effect" model and the "observed post-test" model. The treatment effects are extracted from 

these models. These steps are repeated for all 500 bootstrap iterations, generating 500 treatment 

effect estimates for both the "effect" model and the "observed post-test" model. 

 

The standard error of the treatment effect is calculated as the standard deviation of the treatment 

effect estimates obtained from the bootstrap samples. It provides a measure of the variability 

of the treatment effect estimate across different samples, helping people understand the 

precision of the estimate. 
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The 95% confidence intervals for both effect model and observed post-test model are calculated 

using the ATE calculated previously plus and minus the 1.96 times the standard error obtained 

from the bootstrap. The confidence interval provides a range of values in which it can 

reasonably be expected the true treatment effect to fall with 95% confidence. 
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4 Data 

This chapter describes the data used for this project. 
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4.1 Interventions of the Experiment 

The data used in the project, also known as fh2t data, is based on an educational experiment on 

middle school students. The purpose of this experiment was to find out ways to help the 

students study math better. In this experiment, 3 educational technologies are involved to be 

interventions: From Here to There, Dragon Box 12+, and ASSISTments. The first two 

technologies have game-based practices, while the other only has regular practices.  

 

"From Here to There" is designed as an interactive digital game that aims to enhance students' 

understanding of algebraic concepts through engaging gameplay that incorporates real-world 

scenarios and problem-solving tasks. The game's structure encourages students to apply 

algebraic thinking to navigate through various levels, each progressively challenging their 

skills and understanding. This immersive approach is intended to make learning algebra both 

accessible and enjoyable, promoting deeper engagement with the subject matter. 

 

"Dragon Box 12+" is an advanced version of the Dragon Box series, tailored for older students 

with its focus on more complex algebraic concepts. The game uses a unique approach to 

teaching algebra by gradually introducing abstract symbols and equations through playful, 

intuitive puzzles. Initially, students interact with objects and characters within the game, which 

later morph into algebraic representations. This gradual transition from concrete to abstract 

helps students build a strong conceptual understanding of algebra, making the subject more 

approachable and less intimidating. 

 

"ASSISTments" is a versatile online platform featured in the study, designed to support and 

enhance classroom learning. Unlike the other two technologies, ASSISTments is not a game 

but a tool that provides personalized homework assignments, immediate feedback, and detailed 

reports to both students and teachers. It allows educators to track student progress in real-time, 

enabling targeted interventions and support. This platform is particularly useful for identifying 

areas where students struggle, allowing for timely and effective remediation. ASSISTments' 

adaptability and data-driven approach make it an invaluable resource in diverse educational 
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settings, particularly during the challenges posed by the COVID-19 pandemic. There are 2 

versions of ASSISTments in the study, one with immediate feedback and hints during the 

practices, and the other is an "active control" condition where there are no hints available, and 

the feedback can only be viewed after finishing the practices.  

 

4.2 Data Overview 

To test the effectiveness of these interventions, the experiment measured the pre-test scores of 

the students before using the technologies and their post-test scores after using the technologies. 

 

The full dataset consists of data for 3,271 students that belong to one of the 4 experimental 

groups: FH2T, DragonBox, Instant, and Delay. The experiment involves a randomized 

controlled trial (RCT), which means that all the students are randomly assigned to the 4 groups. 

Since the data comes from an RCT, the randomization assumption is satisfied, which means 

that the treatment assignment process is unbiased and independent of any potential 

confounding variables, thus enhancing the internal validity of the study and allowing for more 

reliable causal inferences to be drawn from the observed outcomes. Among the 4 groups, the 

“FH2T” and “DragonBox” groups represent the students using From Here to There and Dragon 

Box 12+ respectively. The students in “Instant” and “Delay” both used ASSISTments as their 

interventions, where students in “Instant” could get immediate feedback during the practices, 

while the students in “Delay” could not. Therefore, it is appropriate to compare FH2T and 

DragonBox, since both groups used a game-based technology, or Instant and Delay, since both 

groups used the same technology with different form of practices.  

 

In this project, it is believed that game-based technology has stronger effect than regular 

practice technology, so FH2T VS DragonBox is chosen to be analyzed in the project instead of 

Instant VS Delay. After this selection, there are 1,960 students in total to be analyzed in this 

project. Since DragonBox requires the students to download an app while FH2T does not, it is 

believed that the DragonBox group has higher attrition rate than the FH2T group, and there 

exists students who would not be able to take the post-test if assigned to DragonBox but would 
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be able to take the post-test if assigned to FH2T, since some students may have trouble 

downloading the app. However, it can be assumed that a student in DragonBox who took the 

post-test would also take the post-test in FH2T, and a student in FH2T who did not take the 

post-test would also not take the post-test in DragonBox. Therefore, DragonBox is assigned to 

be the treatment group, and FH2T is assigned to be the control group, since monotonicity 

assumption can be held under this condition. 

 

4.3 Variables 

Each student has 230 variables in total. Among all variables, the study is interested in 

randomized conditions, the outcomes, and the covariates that may affect the outcome. Table 5 

describes all variables that are kept in the analysis. 

 

Table 5: Table of Variables 

Variable 

Type (C for 

categorical and 

N for numerical) 

Role Description Interpretation 

Posttest Binary Outcome 

1 for students 

who took the 

post-test, and 0 

for students who 

did not take the 

post-test 

1 - 59.2% 

0 - 40.8% 

SchIDPre C Covariate 
The school that a 

student attended 

1 - 8.5% 

2 - 4.1% 

3 - 6.4% 

4 - 10.1% 

5 - 10.1% 

6 - 40.1% 

8 - 6.8% 

9 - 6.8% 

11 - 6.2% 

condition_ 

assignment 
C 

Randomized 

condition 

Treatment: 

DragonBox 

Control: FH2T 

DB - 33.4% 

FH - 66.6% 

Gender C Covariate 
M for male and F 

for female 

M - 52.6% 

F - 47.4% 

Present.Days7 N Covariate Number of hours Range: 0-175 
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that a student 

presented in every 

7 days 

Mean: 164.1 

SD: 18.9 

pre.total_math_ 

score 
N Covariate 

Pretest score of a 

student 

Range: 0-10 

Mean: 4.18 

SD: 2.53 

pre.avg_time_on_ 

tasks 
N Covariate 

Average number 

of hours that a 

student worked 

on the tasks 

Range: 0-1020 

Mean: 84.1 

SD: 209.3 

accelerated Binary Covariate 

1 for students 

who took the 

accelerated class, 

0 otherwise 

1 - 19.4% 

0 - 80.6% 

race C Covariate 
The race of a 

student 

Asian - 26.0% 

Black - 5.1% 

Hispanic - 15.3% 

White - 49.5% 

Other - 4.1% 

post.total_math_ 

score 
N Outcome 

Post-test score of 

a student 

Range: 0-10 

Mean: 3.89 

SD: 2.93 

 

The outcome is whether a student took the post-test as well as the post-test score. The 

randomized conditions are treatment (DragonBox) and control (FH2T). There are 7 covariates, 

including 3 categorical variables, 3 numerical variables, and 1 binary variable. There are a total 

of 1,960 students from 9 different schools.  

 

4.4 Fitting missing variables 

There are some students who have missing values in one or more covariates. To fit the missing 

data, an R package called “missForest” is used. It operates based on a random forest framework, 

using an ensemble of decision trees to predict and impute missing values iteratively. This 

package simplifies the imputation process, making it a valuable tool for researchers and data 

analysts when working with datasets plagued by missing values, ensuring that meaningful and 

accurate imputations are made to facilitate subsequent statistical analyses. 
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5 Results 

This chapter displays the results for the project. 

  



29 
 

5.1 Attrition 

The attrition rate is a metric used to measure how many testees are lost during a particular 

experiment. In this project, the attrition rate represents how many students in the study did not 

take the post-test. The way to calculate the attrition rate is easy: simply divide the number of 

students who did not take the post-test by total number of students. 

 

The attrition rates for each randomized condition are: 284/654 = 0.434 for treatment group, 

and 516/1306 = 0.395 for control group. The overall attrition is: 800/1960 = 0.408. 

To find out which factors affect the attrition rate the most, it is needed to get the attrition rates 

for each covariate. Table 6 shows the attrition rates for each factor. 

 

Table 6: Attrition Rates by Factor 

𝑿 Count of Posttest==0 Total Count Attrition Rate 

SchIDPre1 152 167 0.910 

SchIDPre2 40 81 0.494 

SchIDPre3 27 126 0.214 

SchIDPre4 32 197 0.162 

SchIDPre5 19 198 0.096 

SchIDPre6 397 802 0.495 

SchIDPre8 51 134 0.381 

SchIDPre9 24 133 0.180 

SchIDPre11 58 122 0.475 

GenderM 428 1030 0.416 

GenderF 372 930 0.4 

Present.Days7 >=165 612 1503 0.407 

Present.Days7 < 165 188 457 0.411 

pre.total_math_score >

=5 
383 946 0.405 

pre.total_math_score 

<5 
417 1014 0.411 

pre.avg_time_on_tasks 

>= 110 
288 543 0.530 

pre.avg_time_on_tasks 

< 110 
512 1417 0.361 

accelerated 114 380 0.3 

Not accelerated 686 1580 0.434 

raceAsian 228 509 0.448 

raceBlack 44 99 0.444 
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raceHispanic 110 300 0.367 

raceWhite 384 971 0.395 

raceOther 34 81 0.420 

 

It is obvious that the factor that affects the most is the school that the students attended. One of 

the schools, school #1, has an extremely high attrition rate of over 0.9, whereas some schools, 

like school #5, have very low attrition rates. This might be because some schools did not pay 

so much attention to the experiment, so that students may forget about the post-test, whereas 

some schools paid a lot of attention to the experiment, so that the teachers might urge all the 

students to complete the post-test. 

 

Another factor that affects the attrition rate might be the pre-test score. Students who had higher 

pre-test scores had higher attrition rates. This might be because students who had lower grades 

wanted to practice more, so they regarded the post-test as the final practice, while the students 

who had higher grades might not need the final practice.  

 

5.2 Coefficients from Principal Score Model 

Table 7 shows the coefficients obtained by using the E-M algorithm. In the model, CP is set to 

be the baseline, and the coefficients represent the relationship between the independent 

variables and the log-odds of being in a particular category (AP or NP) compared to the baseline 

category (CP). The “virtual:accelerated” represents the students who took both virtual and 

accelerated class. There are no standard errors in this table, because the model is not the 

standard multinomial regression model. 

 

Table 7: The Coefficients Table 

 AP NP 

(Intercept) 2.737 11.636 

SchIDPre2 3.640 0.965 

SchIDPre3 -7.274 -11.627 

SchIDPre4 -6.364 -10.790 

SchIDPre5 9.273 3.943 

SchIDPre6 -6.517 -9.048 

SchIDPre8 -7.658 -10.917 
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SchIDPre9 6.110 1.792 

SchIDPre11 -9.460 -12.042 

GenderM -4.225 -4.065 

Present.Days7 0.059 0.024 

pre.total_math_score -0.011 -0.064 

pre.avg_time_on_tasks -0.007 -0.004 

accelerated 0.205 -1.341 

raceBlack 1.722 1.071 

raceHispanic 17.282 16.771 

raceother 13.284 12.791 

racewhite 1.632 1.265 

virtual:accelerated 15.586 16.229 

 

When a coefficient is positive, it shows that as the independent variable increases, the category 

is preferred over the baseline category, and vice versa. For example, let’s compare AP with CP. 

The factor “SchIDPre2” has a positive coefficient, which means that students in school #2 

prefer more AP than CP compared to the students from other schools. Another example is 

“pre.total_math_score”, which has a negative coefficient. This shows that if a student has a 

higher pre-test score, it is less likely for the student to be AP than CP. A larger coefficient 

represents a stronger preference of the category over the baseline category, and vice versa. 

 

For each categorical factor, there is also a “baseline factor”. The baseline factors are SchIDPre1, 

GenderF, and raceAsian. The “Intercept” represents the student who belongs to the baseline 

factors and has a value of 0 for all numerical factors. In this model, the “Intercept” represents 

a student who is belonged to School #1, whose gender is Female, who never presents in school, 

who has a pre-test score of 0, who does not spend any time on tasks, who is not taking the 

accelerated class, and whose race is Asian. The intercept value is positive for both AP and NP 

and the value of NP is higher than AP, representing that this student is most likely to be NP and 

least likely to be CP.  

 

5.3 Coefficients & SEs from effect models 

There are two models built for estimating treatment effect: one is effect model, where the post-

test score is the outcome, and the covariates and the probability of being CP are independent 
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variables; the other one is observed post-test model, where the probability of being CP is not 

included in the model. The main difference between the two models is that the observed model 

ignores bias, since it assumes that CP=0. 

 

The coefficient of Z represents the treatment effect, or in other words, how is the treatment 

affecting the post-test score. The effect model has a coefficient of 0.185. This means that, on 

average, students who were using Dragon Box 12+ could get 18.5% more questions correct on 

the post-test math scores compared to students using From Here to There, holding other factors 

constant. This positive coefficient suggests that the treatment had a statistically significant 

positive impact on math scores. The observed post-test model has a coefficient of 0.169. This 

coefficient also indicates a positive treatment effect, suggesting that students who were using 

Dragon Box 12+ could get 16.9% more questions correct on the post-test math scores compared 

to students using From Here to There. The higher value in the effect model suggests that if 

assumed that CP students exist, there will be a higher treatment effect.  

 

5.4 Effects estimates, SEs, and CIs 

Using the Bootstrap method for 𝐵 = 500 and 𝑡𝑜𝑙 = 0.001, the new effect models have a 

standard error of 0.247, and the new observed post-test models have a standard error of 0.144. 

The 95% confidence intervals are (-0.299, 0.669) for the effect models and (-0.111, 0.453) for 

the observed post-test models. This suggests that if considering the principal strata for the 

students, then it is possible for them to perform 66.9% better using DragonBox, or 29.9% better 

using FH2T, or anything between. If not considering the principal strata, then it is still possible 

for students to perform 45.3% better using DragonBox, or 11.1% better using FH2T, or 

anything between. The result indicates that the effect model has more uncertainty but is more 

warranted and more robust. 
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6 Conclusion 

This project embarked on a mission to address the pressing challenges in middle school 

mathematics education, exacerbated by the COVID-19 pandemic, through a meticulous and 

scientifically rigorous experiment. By focusing on the effectiveness of game-based educational 

technologies, particularly From Here to There (FH2T) and DragonBox, the study aimed to 

contribute valuable insights into improving algebraic comprehension among middle school 

students. The challenges encountered, notably the high attrition rate, prompted a critical 

examination of traditional methods and the development of an alternative approach. Attrition, 

a pervasive issue in educational research, has the potential to distort results, introducing bias 

and compromising the validity of findings. 

 

Examining the landscape of previous methods sheds light on the nuanced nature of addressing 

attrition. Principal stratification under monotonicity assumption, Logistic Regression 

combined with Bayes Theorem, and M-estimation with residualized covariate ignorability were 

among the methods utilized previously. While these approaches presented valuable insights, 

they also posed challenges, including potential flaws in probability estimates and the 

complexity of implementation. In response to these challenges, this project introduced an 

innovative approach that deviates significantly from traditional techniques. Leveraging 

multinomial regression alongside the E-M algorithm, the aim was to provide a more robust and 

accurate analysis of the impact of game-based educational technologies while addressing the 

intricacies of high attrition rates. 

 

Multinomial regression proved instrumental in handling the categorical nature of educational 

outcomes, offering a nuanced understanding of student performance and engagement. The 

integration of the E-M algorithm emerged as a powerful tool for managing missing or 

incomplete data, a prevalent issue in studies with high attrition rates. By iteratively estimating 

missing data in the Expectation step and refining maximum likelihood estimations in the 

Maximization step, the E-M algorithm provided a stable and unbiased solution. This combined 

approach surpasses in handling complex data structures and incomplete datasets, addressing 
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limitations seen in previous methods. By presenting a statistically sound treatment of attrition 

issues, the methodology employed in this project contributes to a more accurate and 

comprehensive analysis - an imperative in the field of educational research where data 

complexity and attrition are commonplace challenges. 

 

However, there are still problems existing in the methodology. While the E-M algorithm is 

powerful, it relies on certain assumptions, and its effectiveness can be influenced by the quality 

of these assumptions. In practical scenarios, meeting all the stringent assumptions of the E-M 

algorithm may be challenging, potentially affecting the accuracy of the results. Furthermore, 

the integration of multinomial regression with the E-M algorithm, as well as the Bootstrap’s 

method for estimating the standard error, can be complex to implement. Therefore, it is a worth 

thinking question that whether there is a more concise and straightforward method to get the 

same purpose.  

  

Besides that, there are still several questions that future researchers should think about. First, 

it is important to highlight that the methods in this project are applied based on the monotonicity 

assumption. When this assumption is not true, the methods may lead to more biased results. 

Therefore, the ways to determine whether the assumption is true, as well as the methods applied 

when the assumption is not true, should be deeply considered and developed by future 

researchers. Moreover, further researchers should also investigate the conditions to apply the 

methods in this project, as well as the conditions to use other methods, including conventional 

methods and the methods proposed in the future. 

  

In essence, this project strives to offer a methodological advancement in addressing the 

challenges posed by attrition in educational technology research. By refining the understanding 

of the impact of game-based educational technologies on algebraic comprehension, this study 

contributes to the ongoing dialogue on enhancing middle school mathematics education, 

paving the way for more robust and reliable research methodologies in the future. 
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Appendix: R codes for Methodology 

library(nnet) 

library(foreign) 

library(ggplot2) 

library(reshape2) 

library(missForest) 

library(parallel) 

 

dat = read.csv('fh2tDat.csv') 

 

model_data = dat[, c("Posttest", "SchIDPre", "RACE", "virtual", "courseName", 

"condition_assignment", "Gender", "Present.Days7", "pre.total_math_score", 

"pre.avg_time_on_tasks")] 

model_data$accelerated <- model_data$courseName=="Accelerated Mathematics" | 

model_data$courseName=="Accelerated Math - Virtual" 

model_data$accelerated <- as.integer(model_data$accelerated) 

model_data$courseName <- NULL 

model_data$race=c("Hispanic", "AmeInd", "Asian", "Black", "PacIs", "white", "multi") 

[model_data$RACE] 

model_data$race[model_data$race%in%c('AmeInd', 'multi', 'PacIs')] <- "other"  

model_data$SchIDPre <- as.factor(model_data$SchIDPre) 

model_data$condition_assignment <- as.factor(model_data$condition_assignment) 

model_data$RACE <- NULL 

model_data$Gender <- as.factor(model_data$Gender) 

model_data$race <- as.factor(model_data$race) 

 

fullData=result$ximp 

 

dotProduct <- function(x,y){ 

  product=x*y 

  dotProduct=sum(product) 

  return(dotProduct) 

} 

 

DBFHdata=subset(fullData,condition_assignment%in%c("DragonBox", “FH2T")) 

DBFHdata$Z <- ifelse(DBFHdata$condition_assignment=="DragonBox",1,0) 

X <- model.matrix(Posttest ~ . +virtual:accelerated-virtual -Z -condition_assignment,data=DBFHdata) 

coefs=cbind(AP=rnorm(ncol(X)),NP=rnorm(ncol(X))) 

 

Estepi <- function(Z,hasPosttest,X,coefs){ 

 

  probs=c(AP=0,NP=0,CP=0) 
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  if(Z==1 & hasPosttest){ 

    probs["AP"]=1 

  } 

  if(Z==0 & hasPosttest){ 

    probs["AP"]=1/(1+exp(-dotProduct(coefs[, “AP"],X))) 

    probs["CP"]=1/(1+exp(dotProduct(coefs[, “AP"],X))) 

  } 

  if(Z==1 & !hasPosttest){ 

    probs["NP"]=1/(1+exp(-dotProduct(coefs[, “NP"],X))) 

    probs["CP"]=1/(1+exp(dotProduct(coefs[, “NP"],X))) 

  } 

  if(Z==0 & !hasPosttest){ 

    probs["NP"]=1 

  } 

  return(probs) 

} 

 

 

Estep <- function(Z, hasPosttest,X, coefs){ 

  probs=matrix(nrow=length(Z),ncol=3) 

  colnames(probs)=c('AP', ‘NP', ‘CP') 

  for(i in 1:length(Z)) 

    probs[i,]=Estepi(Z[i],hasPosttest[i],X[i,],coefs) 

  return(probs) 

} 

 

probs=Estep(DBFHdata$Z,DBFHdata$Posttest,X,coefs) 

 

makeMultDat <- function(dat){ 

  dat$i=1:nrow(dat) 

  dat$U=character(nrow(dat)) 

  sdat <- split(dat,list(Z=dat$Z,hasPosttest=dat$Posttest)) 

 

  sdat <- lapply(sdat, \(x){ 

    if(x$Z[1]==1 & x$Posttest[1]==1){ 

      x$U <- 'AP' 

    } else if(x$Z[1]==0 & x$Posttest[1]==1){ 

      x <- rbind( 

        within(x,U <- 'AP'), 

        within(x,U <- 'CP')) 

    } else if(x$Z[1]==1 & x$Posttest[1]==0){ 

      x <- rbind( 

        within(x,U <- 'NP'), 

        within(x,U <- 'CP')) 
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    } else x$U <- 'NP' 

    return(x) 

  }) 

  return(do.call('rbind',sdat)) 

} 

 

 

Mstepi <- function(i,Z,hasPosttest,probs){ 

  if(Z==1 & hasPosttest){ 

    return(data.frame(i=i,U='AP',w=1)) 

  } 

  if(Z==0 & hasPosttest){ 

    return(data.frame(i=i,U=c('AP', ‘CP'),w=probs[c('AP', ‘CP')])) 

  } 

  if(Z==1 & !hasPosttest){ 

    return(data.frame(i=i,U=c('NP', ‘CP'),w=probs[c('NP', ‘CP')])) 

  } 

  if(Z==0 & !hasPosttest){ 

    return(data.frame(i=i,U='NP',w=1)) 

  } 

} 

 

Mstep0 <- function(Z,hasPosttest,X,probs){ 

  multDat=Mstepi(i=1,Z=Z[1],hasPosttest=hasPosttest[1],probs=probs[1,]) 

  for(i in 2:length(Z)) 

    multDat=rbind(multDat,Mstepi(i=i,Z=Z[i],hasPosttest=hasPosttest[i],probs=probs[i,])) 

 

 

  Xmult=X[multDat$i,-1] 

  multDat$U <- as.factor(multDat$U) 

 

  multDat$U2 <- relevel(multDat$U, ref="CP") 

  test <- multinom(U2 ~ Xmult, data = multDat, weights=w) 

 

  coefs<- t(coef(test)) 

  return(coefs) 

} 

 

Mstep <- function(multDat,Xmult,probs){ 

  multDat$w <- 0 

  for(uu in c('AP', 'CP', 'NP')){ 

    ind <- which(multDat$U==uu) 

    multDat$w[ind] <- probs[multDat$i[ind],uu] 

  } 
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  multDat$U <- as.factor(multDat$U) 

 

  multDat$U2 <- relevel(multDat$U, ref="CP") 

  test <- multinom(U2 ~ Xmult, data = multDat, weights=w) 

 

  coefs<- t(coef(test)) 

  return(coefs) 

} 

 

coefs= cbind( 

  AP=coef(glm(DBFHdata$Posttest[DBFHdata$Z==1]~X[DBFHdata$Z==1,-1],family=binomial)), 

  NP=coef(glm(1-DBFHdata$Posttest[DBFHdata$Z==0]~X[DBFHdata$Z==0,-1],family=binomial))) 

 

probs=Estep(DBFHdata$Z,DBFHdata$Posttest,X,coefs) 

probs1=probs+1 

 

multDat <- makeMultDat(DBFHdata) 

Xmult <- X[multDat$i,-1] 

 

iter=0 

maxDiff=NULL 

while(!all(abs(probs1 - probs) < 0.001)){ 

  iter=iter+1 

  probs2=probs 

  invisible(capture.output(coefs<-Mstep(multDat,Xmult,probs))) 

  probs=Estep(DBFHdata$Z,DBFHdata$Posttest,X,coefs) 

  probs1=probs2 

  maxDiff=c(maxDiff,max(abs(probs1-probs))) 

  print(paste(iter,round(maxDiff[iter],3))) 

  if(iter>500) break 

} 

 

mainCoefs <- coefs 

mainProbs <- probs 

 

effData=subset(DBFHdata,Posttest==1) 

effData$P=probs[DBFHdata$Posttest==1, ‘CP'] 

effData$Y=dat[rownames(effData), ‘post.total_math_score'] 

effMod=lm(Y~.+virtual:accelerated-Posttest-virtual-condition_assignment,data=effData) 

obsPostMod=lm(Y~.+virtual:accelerated-Posttest-virtual-condition_assignment-P,data=effData) 

eff.est=coef(effMod)['Z'] 

obs.est=coef(obsPostMod)['Z'] 
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DBFHdata$Y <- dat[rownames(DBFHdata), ‘post.total_math_score'] 

n <- nrow(DBFHdata) 

begin=Sys.time() 

B=500  

tol = 0.001 

 

est1= function(b) { 

  cat('.') 

  rows <- sample(1:n,n,replace=TRUE) 

  newdat=DBFHdata[rows,] 

  newX <- X[rows,] 

 

  multDat <- makeMultDat(newdat) 

  Xmult <- newX[multDat$i,-1] 

  coefs=mainCoefs#cbind(AP=rnorm(ncol(X)),NP=rnorm(ncol(X))) 

  probs=Estep(newdat$Z,newdat$Posttest,X,coefs) 

  probs1=probs+1 

  iter=0 

  maxDiff=numeric(200) 

  conv <- 1 

  while(!all(abs(probs1 - probs) < tol)){ 

    iter=iter+1 

    probs1=probs 

    invisible(capture.output(coefs<-Mstep(multDat,Xmult,probs))) 

    probs=Estep(newdat$Z,newdat$Posttest,X,coefs) 

    maxDiff[iter]=max(abs(probs1-probs)) 

    if(iter>200){ 

      conv <- maxDiff[iter] 

      probs1=probs 

    } 

  } 

  effDataNew=subset(newdat,Posttest==1) 

  effDataNew$P=probs[newdat$Posttest==1, ‘CP'] 

  effModNew=lm(Y~.+virtual:accelerated-Posttest-virtual-condition_assignment,data=effDataNew) 

  eff <- unname(coef(effModNew)['Z']) 

 

  ObsPostMod=lm(Y~.+virtual:accelerated-Posttest-virtual-condition_assignment-

P,data=effDataNew) 

 

  obsPostEff=unname(coef(ObsPostMod)['Z']) 

 

  return(c(eff=eff,obsPostEff=obsPostEff,conv=conv,iter=iter)) 
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} 

 

bsRes <- vapply(1:B,est1,est1(1))#,mc.cores=ncores) 

save(list=ls(),file='results.RData') 

 

effs <- bsRes['eff',] 

obsPostEffs <- bsRes['obsPostEff',] 

conv <- bsRes['conv',] 

 

print(Sys.time()-begin) 

 

save(list=ls(),file='results.RData') 

 

save(mainCoefs,mainProbs,eff.est,obs.est,effs,obsPostEffs,file='bsResults.RData') 

 

 


