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Abstract 

The purpose of this thesis is to investigate the correlation between the penetration 

force of cutting fluids and machining stability. General studies are made to understand 

the classification of cutting fluids based on their chemical compositions. It is summarized 

why the proper selection of cutting fluid for different machining processes is important. 

The role of cutting fluids in machining process is documented as well as other related 

issues such as delivery methods, storage, recycling, disposal and failure modes. The 

uniqueness of this thesis is that it constructs a new mathematical model that would help 

to explain and quantify the influence of the penetration force of cutting fluid on 

machining stability. The basic principles of milling process, especially for thin wall 

machining are reviewed for building the mathematical model. The governing equations of 

the mathematical model are derived and solved analytically. The derived solutions are 

used to construct the stability charts. The results show that there is a direct correlation 

between the machining stability and the changes of the penetration force of the cutting 

fluid. It is shown that the machining stability region is narrowed as the penetration force 

of the cutting fluid increases while other machining variables are assumed to be constant. 

This narrowness of the stability region is more obvious at spindle speed over 6000 rpm. 
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Chapter 1. Machining and Cutting Fluids 

Cutting fluid, as a component of machining industry, has been introduced and 

applied for over 100 years. It is believed that W. H. Northcott is probably the first man to 

mention the improvement in productivity that can be achieved when cutting fluid is 

applied in machining process. This observation is published in his book “A Treatise on 

Lathes and Turning” in 1868 (see 2). In 1907, F. W. Taylor pointed out that by applying a 

heavy water stream on the tool/workpiece interface, the cutting speed can be increased 

significantly by 30%-40% (see 45). 

Since then, the technology of cutting fluids has been developed rapidly. Mineral, 

vegetable and animal oil have all been introduced, which played important role in 

enhancing various aspects of machining properties, including corrosion protection, 

antibacterial protection, lubricity, chemical stability and even emulsibility. However, due 

to the increasing cost of petroleum products, manufacturers starts to look for some 

substitutes for oil, which accelerates the development of water-based fluids with different 

chemical compositions performing different machining tasks. This effort also stimulates 

the use of synthetic or semi-synthetic water-based fluids that contain only little or even 

no oil. Study shows that water-based cutting fluids are now used in 80%-90% of all 

machining applications [1]. 

Cutting fluids play an important role in modern machining industry. They can 

impact the improvement of the surface finish, tool life and productivity significantly. Due 

to the importance of cutting fluids, significant issues have been raised in their application, 

recycling and disposal. Proper selection and application can reduce manufacturing cost 
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and improve productivity. On the other hand, manufacturing failure and wastes can be 

experienced by misuse of cutting fluids. And regarding to the environmental impacts and 

health hazards by cutting fluids, recycling and disposal of cutting fluid are also of great 

importance. Improper disposal actions can cause severe health and environmental 

problems. Such actions can even lead the substantial penalty level against companies by 

the government agencies [2]. 

Numerous studies have been conducted to either investigate the impacts of the 

cutting fluid on machining process or set up evaluation criteria to assist proper selection 

and application of the cutting fluid. The goal of this thesis is to review and evaluate 

cutting fluid related issues such as classification, functions, penetration forces and their 

impact on machining processes. And due to the complexity of cutting fluid and many 

issues that come with the application of cutting fluid, the thesis focus on investigating the 

correlation between the penetration force of cutting fluid and the machining stability. The 

mathematical model representing milling operation is constructed. The governing 

equations of the motion are solved analytically to establish a direct correlation between 

the penetration force of cutting fluid and the regimes of milling stability. As a result, 

machining stability charts are constructed and in each of the charts stable spindle speed 

are identified in terms of the correlation between the penetration force of cutting fluid and 

milling stability. 

The thesis is organized into seven chapters. Chapter 1 introduces the history and 

modern development of cutting fluids and the purpose and structure of the thesis. Chapter 

2 studies the classification of cutting fluids and their impact on the machining processes. 

Chapter 3 presents the role of cutting fluids in machining processes and other related 
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issues based on the literature and our own experience in working at WPI machine shop. 

Chapter 4 contains the performance evaluation of cutting fluids by previous researchers 

and reviews the classical milling processes. Chapter 5 describes the unique mathematical 

model, its governing equations, and presents the stability charts. Chapter 6 contains the 

results and discussions. In Chapter 7 we summarize the correlation between the 

penetration force of cutting fluid and machining stability. 
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Chapter 2. Classification of Cutting Fluids 

2.1. General Classification 

At the very first part of studying cutting fluid, it is of great importance to know 

what kinds of cutting fluid are currently available in the market. This will provide an 

opportunity to understand the forms and composition of the cutting fluid. Cutting fluids 

have been an integral part of machining industry for many years. Numerous kinds of 

cutting fluids are available in today’s market. They range from oil-based cutting fluid to 

water-based [3]. Figure 1 summarizes the classification of cutting fluids. All of these 

types of fluids are widely used in a variety of machining operations. Among these fluids, 

synthetic fluids and semi-synthetic fluids are most suitable at high speed machining. 

 

Figure 1: Classification of cutting fluids 
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2.2. Classification of Oil-based Fluids 

Oil-based fluids can be sub-categorized into two types: straight oils and soluble 

oils. Straight oils which contain no water are 100% petroleum or mineral oils. Some may 

have particular additives to enhance their properties. Additives such as sulfur, chlorine or 

phosphorus can improve the wettability, lubrication and antiwelding properties of oils. 

The advantages of the straight oils include excellent lubrication, good rust protection, 

good sump life, easy maintenance and rancid resistant. The disadvantages include poor 

heat dissipation, increased risk of fire and oily film on workpiece. The application of this 

type of oil-based fluids is limited to low-speed and severe cutting operations. 

Soluble oils which are also called emulsifiable oils or water-soluble oils are 60%-

90% petroleum or mineral oils mixed with emulsifiers and other additives. The oils are 

mixed with water and the emulsifiers cause the oil to distribute in the water thereby 

forming an “oil-in-water” emulsion [4]. The advantages of the soluble oils include good 

lubrication, improved cooling capabilities and good rust protection. This type of soluble 

oils can be used for light to heavy duty operations. The disadvantages are more 

susceptible to rust problems, bacterial growth, tramp oil contamination and evaporation 

losses. They may form precipitates on machine, misting and oily film on workpiece. And 

all of this would impact maintenance cost. 

2.3. Classification of Chemical Fluids 

 Chemical fluids can be sub-categorized into two types: synthetic fluids and 

semisynthetic fluids. Synthetic fluids contain no petroleum or mineral oils. It is provided 

as a concentrate and mixed with water before use. Synthetic fluids can be further 
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classified as simple, complex or emulsifiable synthetic fluids based on their components 

[5]. The advantages of the synthetic fluids are excellent microbial control, resistance to 

rancidity, nonflammable and good corrosion control. The superior cooling qualities of the 

synthetic fluids and their easy separation from the workpiece and chips prolong tool life 

and improve the quality of machining applications. The disadvantages are reduced 

lubrication and may cause misting, emulsify tramp oil and form residues. This 

contaminants have adverse effects on machining operations. 

Semisynthetic fluids which are also called semi-chemical fluids are a hybrid of 

soluble oils and synthetic fluids. Basically they contain small portion of mineral oils 

ranging from 2%-30% [6]. The balance portion mainly contains emulsifier, additives, 

agents and water. The advantages of semisynthetic fluids include good microbial control, 

resistance to rancidity and nonflammable. They have good corrosion control, good 

cooling and lubrication. This form of fluid can be easily separated from workpiece and 

chips. The disadvantages are water hardness impacts stability and may cause misting, 

foaming and allergy, emulsify tramp oil and form residues. 

2.4. Cutting Fluid Impacts on Machining Processes 

 The proper selection the cutting fluid is very critical for enhancing machining 

processes performances. Different types of cutting fluids can deliver various kinds of 

impact on the machining processes. There are substantial evidences in the literature why 

the inappropriate use of cutting fluid will reduce the quality of machining operations. 

 J.M. Vieira et al. [36] have concluded in their paper that for high speed machining 

of AISI 1020 steel under the cutting condition: 100-220 m/min for cutting speed, 0.1-0.25 
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mm/tooth for feed rate and 1.0-2.5 mm for depth of cut, semi-synthetic fluids will deliver 

the best cooling results. Their study also indicated that the best surface roughness was 

achieved when dry machining. This gives us the potential assumption that the cutting 

fluid could possibly affect the machining stability so as to degrade the machining quality. 

Xavior et al. [37] also conducted an experiment among coconut oil, soluble oil and 

straight oil for testing their impacts on the surface roughness and tool wear on AISI 304 

stainless steel under the cutting condition: 38.95/61.35/97.38 m/min for cutting speed, 

0.5/1.0/1.2 mm for depth of cut and 0.2/0.25/0.28 mm/rev for feed rate. Their results 

indicated that coconut oil performs better than the other two in terms of tool wear and 

surface roughness. Belluco et al. [38] performed a drilling test on austenitic stainless steel 

under the cutting condition: 25 m/min for cutting speed, 0.1 mm/rev for feed rate and 33 

mm for the total drilling depth using vegetable-based oil and mineral oil. They observed 

that vegetable-based oil produced better results than the mineral reference oil, the best 

performance being 177% tool life increase and 7% reduction in thrust force with respect 

to the commercial mineral oil. The results reflected not only the machining performance 

improvement but also potential advantages for environmental concerns. 

 As a result, it can be seen that for different machining operations and cutting 

conditions, the proper selection of cutting fluid is of great importance to maintain the 

machining stability and quality. 

 In the next chapter, the roles of cutting fluids will be documented. They include 

the basic functions of cutting fluid, delivery methods, storage, recycling, disposal and 

possible failure modes. Real machining cases are also examined briefly in terms of these 

issues mentioned above.  
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Chapter 3. Roles of Cutting Fluids in Machining Processes 

3.1. General Concepts 

In the previous chapter, we generally reviewed the classification of cutting fluids 

and evaluated on their impact on the machining processes. To understand cutting fluids, tt 

is of great importance to study their roles in machining processes as well. 

Typically, cutting fluids play various roles during machining processes. The roles 

include four main aspects which are cooling, lubrication, corrosion protection and chip 

removal. To understand the roles of cutting fluids in process machining, we review the 

deformation and friction in the cutting process. For simplicity, cutting forces involved in 

a cutting operation are always examined in terms of an orthogonal cutting geometry 

shown in Figure 2. 

 

Figure 2: Orthogonal cutting geometry 
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One parameter that is usually mentioned when talking about machining process is 

the cutting ratio. It is the ratio of depth of cut to thickness of chip. If the depth of cut is 

kept constant, as the shear angle increases, one can easily see that the thickness of the 

chip will decrease accordingly. This in turn reduces the cutting force. Consequently, the 

power required per unit volume of metal and the heat generated will be reduced as well. 

 

Figure 3: Orthogonal cutting deformation and friction zones 

 

Figure 3 shows that there are four principle deformation zones along the 

tool/workpiece and tool/chip interfaces. The primary deformation zone is where the most 

energy is consumed during deforming. If the shear angle increases, the volume of 

primary deformation zone will likely be reduced. 

The secondary deformation zone is where the built-up edge (BUE) forms. The 

BUE is a wedge-shaped quantity of workpiece material melted to the tip of the tool. It is 

usually even harder than the workpiece itself as a consequence of the strain hardening 

characteristics of the workpiece material. If the BUE is relatively large, it can decrease 
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the effective rake angle and constantly degrade the finish quality of the workpiece surface 

by forming and breaking away. By selecting a proper cutting fluid, the BUE can be 

controlled to some extent. 

Sliding friction would be another source of power consumption in cutting process. 

It occurs at both the tool/chip interface and the tool/workpiece interface. Tool/chip 

friction can be more significant than tool/workpiece friction, which can be a cause of rake 

wear of the tool. Tool/workpiece friction appears to be a cause of flank wear of the tool. 

3.2. Basic Functions of Cutting Fluids 

 The basic functions of cutting fluids typically include the following four 

considerations: cooling, lubrication, corrosion protection and chip removal which are 

going to be discussed in detail below. 

a) Cooling 

It is known that the energy generated in metal cutting operation both through 

deformation and sliding friction process appears to be thermal energy or heat. It is also 

indicated that over 60% of the thermal energy is generated in primary deformation zone; 

while the rest is generated in secondary deformation zone and sliding friction zones [7]. 

The only advantage of the heat generated in cutting process is that it could reduce a 

limited amount of forces required for deformation of the workpiece. However this 

advantage is too limited compared with its disadvantages. The high temperature can 

usually shorten the tool life, cause an undesirable surface finish and bring down the cycle 

time due to the reduction of cutting speed. Basically, a cutting fluid should at least 

acquire two key abilities to dissipate heat in good time during cutting process. One is to 



 

11 
 

gain access to the sources of heat and the other is to have the thermal capability to bring 

heat away. 

It is still not quite clear about how a cutting fluid make penetration into the 

deformation and sliding friction zones. Several mechanisms have been proposed to model 

the penetration process. It is believed that more than one such mechanism take actions at 

the same time. However it appears that cutting fluids do penetrate and thereby causing 

heat dissipation. 

And to remove the heat, the cutting fluid should have the following capabilities: 

thermal conductivity, specific heat, heat of vaporization and wettability with metal 

surfaces. Water-based fluids and dilute emulsions have a significant advantage over oil-

based fluids in terms of thermal properties since water has a higher thermal conductivity 

than organic oil. It is widely recognized in high-speed machining that water-based fluids 

are used effectively. Vaporization is an effective way to remove heat since a large 

amount of thermal energy generated by deformation and friction will transform fluid 

from liquid state to gas state. It is also of great importance that the cutting fluid is capable 

to wet the surface of the workpiece, since it will determine the effective cooling area. For 

this capability, it is good for the fluid to have a low surface tension so that it can spread 

on more area rather than only forming beads. 

To validate the heat dissipation mechanism, monitoring the tool life change could 

be an effective way as we mentioned previously. Other experiments indicate that 

increasing fluid penetration and applying high-pressure jets can enhance the cooling 

capabilities as well. 
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b) Lubrication 

It is believed that due to high pressure and relatively high temperature in most 

cutting operations, liquid film cannot be sustained along tool/workpiece interface for all 

the time. Thus the conditions in a typical cutting process are believed to approach 

boundary lubrication. In boundary lubrication, additives in the cutting fluid react with 

both the workpiece material and the tool material to form chemical products on the 

interface. This process is thought to include two interrelated mechanisms. First, the 

lubricant absorbs into the chip surface and restricts the adhesion of chip material to the 

tool. Second, reactive components of the fluid combine chemically with the freshly 

generated metal surface of the chip to produce a film of lower shear strength than that of 

the chip material, thus reducing sliding friction, forces and temperature. Extreme pressure 

additives are often used to fulfill this function. Effective boundary lubrication must 

achieve the requirements, namely the quantity of fluid additive should be sufficient to 

take effects; the reactive composites in the additive should be available at the interface; 

the temperature should be high enough to catalyze the reaction but not too high to make 

the compound decompose or melt; the sliding speed should be relatively slow to allow 

enough time for reaction to occur. Therefore if high cutting speed is applied, the fluid 

accessibility would be limited, time for surface reaction will be decreased and some 

lower-melting-point compound cannot be used. Most commercial cutting fluids employ 

compounds of chlorine or sulfur as extreme pressure additives. 
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c) Corrosion Protection 

It is of great importance to protect the workpiece from corrosion damage. One 

method used to control the corrosion is to add soda ash to the cutting fluid, which will 

likely increase the alkalinity of the fluid and reduce the possibility of rust. 

Mineral oils are found to be a great deterrent to rust, which is able to form a 

physical film along tool/workpiece interface to prevent chemical reaction from occurring. 

However, along with the increase of cutting speed and hardness of the material, the 

straight mineral oil may lack the ability to wet the machining surface. Thus some polar 

compound additives are added to form emulsifiable oils. These emulsifiable oils combine 

the cooling properties of water and lubrication abilities of mineral oil. These fluids as 

well as semi-synthetic fluids are alkaline in nature to prevent workpiece surface from 

corrosion damage [7]. 

Another widely-used fluid is the synthetic cutting fluid, which is defined as a 

water-extendible product free of oil. A combination of alkanolamine and sodium nitrite 

inhibitor package is used in this type of fluid. Therefore, this fluid can deliver superb 

properties in cooling, rust protection, hard-water compatibility and biological resistance 

[8]. Some other alternatives are also tested based on the concerns of healthy and 

environmental issues. 

d) Chip Removal 

The fourth major function of cutting fluid in machining process is to remove chips 

from the cutting zone. And the fluid will also prevent the machined surface from being 

scratched by chips. This action is especially useful when dealing with operations like 
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deep-hole drilling, in which the cutting fluid is used under pressure and is fed through the 

cutting tool to force the chips out of the hole. Proper selection of cutting fluid is still 

important to avoid excessive foam generation that will interrupt with the machining 

process [8]. 

Table 1 summarizes the advantages and disadvantages of each type of cutting 

fluid for these four basic functions based on a good (G)-moderate (M)-poor (P) criterion. 

Table 1: Pros and cons of each type of cutting fluid 

 Cooling Lubrication 
Corrosion 

Protection 
Chip Removal 

Straight oils P G G M 

Soluble oils M G M M 

Synthetic 

fluids 
G M G M 

Semi-

synthetic 

fluids 

G G G M 

 

3.3. Delivery Methods 

There are several methods available for use to deliver cutting fluids on the cutting 

area during process machining. Three major application strategies are commonly used. 

They are manual application, flood application and mist application [9]. 

The first strategy is manual application. It is often used for some very light duties 

like small jobs or for hobbyists. The cutting fluid will be applied directly through the 

cutting zone by the operator. The advantage of this method could be inexpensive and 
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easy to apply. However, there are bunch of disadvantages including intermittent 

application of fluid which we would like to avoid, poor chip removal capability and 

limited access to cutting zone since the operator can only brush the cutting fluid on the 

surface of the workpiece. Thus, the use of manual application of cutting fluid is very 

limited nowadays. 

The second strategy, which is the most common, is flood application. Compared 

with manual application, it is much more advantageous in terms of continuity of flow, 

efficiency of chip removal and accessibility to cutting zone. Instead of manual 

application by operator, a pump will deliver the cutting fluid from storage system to some 

in-machine piping system and finally penetrate to the cutting zone through a nozzle. Thus 

the cost of this application would be higher than manual but always reasonable for 

factory manufacturing. For different operations, various configurations and flow rates 

will be applied for optimized performance. For example, for turning operation, the flow 

rate could be 5 gallon per minute; but for screw machining, the flow rate could range 

from 35 to 60 gallon per minute based on the intensity of work. Frequently, two nozzles 

will be used in one operation: one is flooding the fluid on the workpiece surface and the 

other would be used to remove the chips and auxiliary cooling. For the shape of the 

nozzle, the round one would be capable for most common machining and some fan-

shaped nozzles will be used for wider cutters. 

The third strategy is mist application, which is best suited for high speed cutting 

while cutting area is small. It can be an alternative method when flood application is 

impractical. The disadvantage of mist application is the possibility of inhalation of the 

mist by the operators. Thus good ventilation system is required to avoid this damage 
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happening. Two types of mist generators are used: one is the aspirator type and the other 

is direct-pressure type. Other special application methods including chilled cutting fluid 

and highly pressurized bottled gas are also proved to be effective for some specific 

occasions. However, the cost of these applications is a big constraint which limits their 

use in machining industry. 

Numerous experiment evaluations have pointed out that it depends on the specific 

machining operation that what type of delivery methods should be chosen. Traditionally, 

it is ideal for most metal cutting applications to apply high-pressure and high-volume 

cutting fluids to force a stream directly into the tool/workpiece and tool/chip interface 

[10]. However, it cannot be always true. In the next chapter, a specific operation - thin 

wall machining will be focused on and some problems related to cutting fluids will be 

discussed. 

The infrastructure of the delivery system is also very important to know. The 

delivery system connects the storage system and the workpiece. It delivers cutting fluids 

through a pump, a piping system and nozzles. Cutting fluid can be delivered to workpiece 

through flood or mist application. For a flood application, fluid is directed under pressure 

to the workpiece interface in a manner that produces maximum results. Pressure, 

direction and shape of the stream are critical for an optimized performance. For a mist 

application, fluids are atomized and blown onto the workpiece in form of mist. The 

pressure and direction of the stream are also crucial to the success of the application. 

The pump is used to get coolant from a sump to the machine. It is always 

mounted at the side of the machine for an individual storage system or integrated in the 
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central reservoir system. A motor is usually accompanied to actuate the pump to work. 

Figure 4 shows a typical structure of the pump system of Haas Mill Drill Center that is 

used at WPI Washburn Shop. 

It is also very critical to acquire the specifications of the pump for machine tool. It 

reflects the capability of the pump for delivering the cutting fluid to the cutting space. 

This capability varies from pump to pump. Common pumps used with daily CNC 

machines are always centrifugal ones. A centrifugal pump can consume 3-5 horsepower 

and is capable to reach a maximum pressure to 200 psi (approximately 1380 kPa). This 

pressure can be adjusted by turning the valves either on the pump or on the piping system. 

Thus it can be recognized that the pressure force delivered to the cutting area can be very 

large [10]. 

 

Figure 4: Coolant pump for Haas Mill Drill Center 
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A flexible coolant pipe as shown in Figure 5 is widely used in cutting fluid system. 

Its length and angle can be adjusted easily without affecting the performance of the 

coolant. It is usually made of PVC, nylon, Delrin, etc. The diameter of a common round 

coolant nozzle is approximately 1 inch (25.4 mm). 

 

Figure 5: Flexible coolant pipe with a nozzle 

 

A nozzle can be either round or flat in terms of shape. Nozzles in different shapes 

can deliver various types of stream of cutting fluid, such as lamina flow or vortex flow. It 

can also be categorized into traditional and programmable one. For a traditional nozzle, 

the angle and direction can only be adjusted by hand. For a programmable nozzle, the 

position and the pressure can be controlled via a program. In some modern CNC, it has 

been a standard feature as shown in Figure 6. Such kind of programmable nozzle makes 

the precise tuning of the nozzle angle possible and can be easily controlled during 

machining process. Some machine controllers can even store the nozzle position for each 

tool. 
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Figure 6: Programmable nozzle 

 

 It is also noticed that not only the angular position of the nozzles matters for the 

performance of cutting fluids during the machining processes, but also the installed 

position where altitude can be a factor that influences the performance. Figure 7 shows 

the nozzles installed in Haas Mill Drill Center located at Worcester Polytechnic Institute, 

Washburn Shops. From the picture, it can be observed that there is an extremely long 

distance (approximately 10-15 inches) between the nozzle and cutting area. This could 

make the delivery of the cutting fluid inconsistent and finally result in an unstable 

machining. 
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Figure 7: Installment of the nozzles in Haas Mill Drill Center 

 

3.4. Other Related Issues of Cutting Fluid 

 Besides the functional roles and delivery methods, there are some other related 

issues about cutting fluid, including storage, recycling, disposal and failure modes. Each 

of these issues can impact on the machining process. These impacts will not have been 

studied in this thesis, but can be a good direction for the studies in the future. 
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a) Storage 

The proper storage of cutting fluids is of great importance to prevent 

contamination and deterioration. Some recommendations are given as follows for guiding 

the proper storage of cutting fluids [11]. 

• Storing of fluid in clean seal-able drums clearly marked, protected from 

frost or sunlight and preferably indoor; 

• Have adequate ventilation and fire extinguishers in the storage area; 

• Clean up spills with inert, mineral absorbent materials; 

• Keep strong oxidizing agents out of the storage area; 

• Do not use sawdust or oily cotton waste for spill control. 

The storage sump for cutting fluids can be either placed with machine tool or 

separately. For small work shop, the former is always applied due to its low cost and easy 

setup. However, it is believed that for higher level applications, a central cutting fluid 

storage system takes more advantages. Within such a system, the cutting fluid is stored in 

one place and shared by several machine tools. The disadvantage is lack of flexibility of 

the system. Since one system can often handle with one kind of cutting fluid at one time, 

it may be difficult for dealing with various kinds of machining jobs. 

Inappropriate storage of cutting fluids could result in some problems including 

tramp oils, particle contaminants or bacteria and fungi generation. Figure 8 shows the 

storage sump for Haas Mill Drill Center located at Worcester Polytechnic Institute, 

Washburn Shops. It can be seen from the figure that if the coolant sump or tank is not 

well sealed and exposed to the outside environment for a long time after use, the 
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problems mentioned above truly exist there and it is believed that it could lead to 

potential machining problems. 

 

Figure 8: Contaminants in coolant sump 

 

b) Recycling 

The quality of the cutting fluid will eventually reach a point that routine 

maintenance is no longer effective. Then, it needs to be recycled or even disposed. To 

recycle the fluid, the critical aspect is to recycle it at right time. The cutting fluid will 

become not suitable for recycling if it degrades over the limit [12]. That is why 

monitoring the quality and performance of cutting fluid is of great importance in fluid 

management. 

The conventional equipment for recycling is listed in Table 2. 
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Table 2: Conventional contaminant removal equipment 

Equipment Contaminant Removed 

Skimmers Tramp Oil 

Coalescers Tramp Oil, Particulates 

Flotation Tramp Oil, Particulates 

Settling Tanks Particulates 

Magnetic Separators Particulates 

Hydrocyclones Particulates 

Filtration Equipment Particulates 

Centrifuges Tramp Oil, Particulates, Bacteria 

 

Basically, the frequency for recycling the cutting fluid depends on the life 

expectancy of the fluid itself. If the cutting fluid is required to be disposed after two or 

three months, it should be treated monthly or if it is disposed only after two or three 

weeks, it should be treated weekly. Typically, the contaminated fluid is sucked out of the 

individual sump of each machine and placed in a batch-treatment recycling unit for 

contaminant removal. 

Some built-in recycling systems have already been deployed in modern CNC 

machines. However, the impacts of these systems are limited due to the cost or other 

issues. Figure 9 shows part of the recycling system in Haas Vertical Machining Center 

VF-4SS located at Worcester Polytechnic Institute, Washburn Shops. The screw 

mechanism in the picture is used to move out the chips away with the cutting fluids. 

Some invisible filtration equipments are installed between this mechanism and the sump 

at the bottom of the machine. However, by observing the sump after a long period 
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machining time, it is found that there are still contaminants such as tramp oils and micro 

chips in the sump floating above the cutting fluid. 

 

Figure 9: Recycling mechanism in Haas VF-4SS 

 

c) Disposal 

Even with the best recycling system, the cutting fluid will eventually deteriorate 

and require being disposed. Due to extremely strict regulations by Federal and State 

environment and health agencies, it is increasingly difficult to dispose the waste fluids. It 

is required by regulations that the generator of the waste fluids is responsible for 

determining whether the fluid is nonhazardous or hazardous. The cost for disposing the 

waste fluid can range from 25 to 50 cents per gallon for nonhazardous waste up to 

hundreds of dollars per drum for hazardous waste [4]. If the waste fluid is determined to 

be hazardous, it must be disposed in EPA-certified treatment facilities while if it is 
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nonhazardous, it can be disposed in different ways such as being hauled to a treatment 

facility, following permission from local wastewater treatment authorities or discharged 

to a municipal sanitary sewer system. 

The fluid should be disposed instead of recycling if any of the following happens: 

• pH value is less than 8.0 while the normal range should be 8.5 to 9.4; 

• Fluid concentration is less than 2.0% while the normal range should be 3.0% 

to 12.0%; 

• Appearance is dark grey to black while the normal range should be milky 

white; 

• Odor is strongly rancid or sour while the normal is a mild chemical smell. 

Based on the current methods to recycle and dispose the cutting fluids and some 

investigations in local manufacturing companies, it is concluded that it really costs a lot 

of money to deal with the used cutting fluid, either to recycle or to dispose. According to 

these concerns, we propose to establish a real-time monitoring system for the 

performance of the cutting fluid in machining process. Such a system should be capable 

to monitor the impact of cutting fluid on the machining process and make adjusts 

according to the machining deviation automatically or give warnings to the machine 

operator. Figure 10 shows a schematic structure of such a system. It is ideal to be a 

closed-loop system which is able to self control with less human input. Also the storage 

section of such a system should be more flexible than the current storage sump. Since it is 

ideal for the storage drums to be sealed from the manufacturer to the machine tool all the 

time, an interchangeable storage section could be constructed to make sure that the 
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cutting fluid will not be contaminated before reaching the cutting area. And the other 

advantage of such a storage system could be that it can handle with different types of 

cutting fluid easily and simultaneously by just switching on and off among several valves.  

And more efficient filtration section should also be considered in such a system. Various 

types of filtration equipment should be deployed for different sources of contaminants. 

The purpose is to make sure that the cutting fluid is cleaned as much as possible before 

returning to the storage section. 

 

Figure 10: A schematic system for all-in-one solution of cutting fluid 

 

d) Failure Modes 

If the cutting fluid is not dealt with in a proper way in terms of one or more 

aspects mentioned above, the machining process might fail in different ways. Table 3 is a 

summary of failure modes and their causes and solutions [13]. 
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Table 3: List of failure modes 

Failure Mode Causes Solutions 

Foaming 

Concentration too high Adjust concentration 

Machine cleaner in sump 

Check pH 

Allow machine to run, cleaner 

should dissipate 

Mechanical 
Check machinery and repair as 

required 

Soft water Sample water, treat it necessary 

High tramp oil content 

Skim off oil 

Check hydraulic lines for leaks 

and repair as required 

Rusting 

Concentration too low Adjust concentration 

Poor mixing Add concentrate to water 

High tramp oil content 

Skim off oil 

Check hydraulic lines for leaks 

and repair as required 

Poor Tool 

Life 

Concentration too low Adjust concentration 

Wrong product being used Look up for right products 

Large amounts of biocide added to 

sump or system 

Refer to operation manual for 

right amounts 

High tramp oil content 

Skim off oil 

Check hydraulic lines for leaks 

and repair as required 

Odor 

Low concentration Adjust concentration 

Low pH Check pH 

High tramp oil content 

Skim off oil 

Check hydraulic lines for leaks 

and repair as required 

Contamination Sample and look for further 
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assistance from agents 

Skin 

Irritation 

High concentration Adjust concentration 

High pH Check pH 

High tramp oil content 

Skim off oil 

Check hydraulic lines for leaks 

and repair as required 

Dirty shop clothes Use only clean cloths 

Allergies 
Have operators checked for 

allergies 

Out-of-shop influences Check pH 

Residue in 

Machine 

High concentration Adjust concentration 

High tramp oil content 

Skim off oil 

Check hydraulic lines for leaks 

and repair as required 

Incorrect mixing Refer to operation manual 

High misting operations 
Check ventilation system 

Adjust coolant nozzles 

  

 Here are some common solutions for otential failure modes that could happen 

when applying cutting fluids. Future studies may focus on building an intelligent expert 

system with a knowledge library to help workshops to identify the cutting fluid problems 

and provide proper solutions. Besides, more failure modes can be added to this 

knowledge library, such as my following analysis. 

 In the next chapter, previous studies on evaluating the performance of cutting 

fluids during machining processes will be reviewed. And since the specific milling 

operation will be selected as the object we are going to model on for our own analysis, 

the classical milling processes will also be reviewed, especially on thin wall machining.  
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Chapter 4. Performance Evaluation of Cutting Fluids 

4.1. Previous Studies 

 Numerous preceding papers and works have been brought up to study the 

performance evaluation of cutting fluids. Most of them focus on the impact brought by 

cutting fluids on machining processes in terms of the type of the cutting fluid, the 

delivery methods and different machining operations. Some of these studies are to try to 

find some direct correlation between some aspects of cutting fluids and machining 

performance. While some are to make efforts to establish some evaluation criteria to 

assist the selection and application of cutting fluids in machining processes. 

 Axinte et al. [39] discussed effectiveness and resolution of five cutting tests 

including turning, milling, drilling, tapping and VIPER grinding and their quality output 

measures used in a multi-task procedure for evaluating the performance of cutting fluids 

when machining aerospace materials. The resolution given by experimental data was 

evaluated and a comparison of robustness in ranking the performance of cutting fluids 

based on different output measures and cutting tests was presented. 

Sales et al. [40] demonstrated some scratch test techniques which can be used to 

provide a quick and cost effective evaluation of cutting fluids. Apparent coefficient of 

friction and specific energy for the scratch steel samples under several lubrication 

conditions provided a good indicator of cutting fluid performance which was followed by 

evaluation of the surface finish and the cutting force of the ABNT NB 8640 steel with 

emulsion and synthetic cutting fluids, at 5% of concentrations, and mineral oil in the 

turning process. Comparative tests were carried out under dry and wet conditions. Results 
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showed that the linear scratch test was not efficient while the scratch test was efficient 

tool in the classification of cutting fluids. 

Axinte et al. [41] also described the results of a comprehensive evaluation 

program for cutting fluid efficiency when machining the aerospace alloy Inconel 718. 

The machining methods included milling, drilling, tapping and VIPER grinding, Results 

from three cutting fluids including semi-synthetic fluids, synthetic fluids and emulsified 

oils were. Cutting forces, torque and spindle power were acquired during machining. 

Geometry accuracy surface texture and surface integrity of the workpiece were analyzed. 

The experimental results demonstrated the difficulty for identifying the best cutting fluid, 

especially when several different machining methods are employed on the machine tool. 

It was unlikely that a single fluid could show the best performance on all machining trials. 

Therefore, they established a multi-criteria model to assess the performance of cutting 

fluids according to the time schedule for the customer. This methodology based on 

various tests was proved to be able to evaluate the effectiveness of cutting fluid very 

comprehensively. 

Although amounts of studies have been performed previously, almost all of these 

studies are based on the experimental results without mathematical modeling and analysis. 

Very few of them focus on the dynamic impacts of cutting fluid on the machining 

processes, especially the machining stability. This thesis attempts to establish a 

correlation between the penetration force of cutting fluid and machining stability.. 

Based on the author’s own machining experience, this thesis is going to focus on 

milling operations and thin wall. Thus in the following sections, general knowledge of 
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milling operations and thin wall machining is reviewed for the modeling analysis in the 

next chapter. 

4.2. Review on Milling Operations 

Milling is the most widely used machining process the cutting tool carries out a 

rotary motion and the workpiece is fed in a linear motion during milling. It is mostly used 

for machining flat surfaces, slots and contoured features. Unlike turning, milling is 

always a multi-point cutting process using face milling cutters or end mills. Generally 

speaking, milling can be classified into two types based on different orientations of 

spindle: one is horizontal milling and the other is vertical milling [14]. 

The characteristics of horizontal milling include: 

• The cutting teeth are arranged on the surface of the cylindrical tool; 

• There is a contact between the cylindrical surface of the cutter and the 

machined surfaces; 

• The machined surface is parallel to the cutter’s axis of rotation. 

The characteristics of vertical milling include: 

• The cutting edges are situated both on the face of the end mill and on its 

cylindrical surface; 

• There is a contact between the face of the milling cutter and the machined 

surfaces; 

• The machined surface is generated at right angle to the cutter axis of 

rotation. 
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Milling operation can also be classified into two types based on the rotary 

direction of the spindle with respect to the feed direction of the workpiece. They are 

conventional milling and climb milling [14]. 

In conventional milling, the feed direction of workpiece is opposite to the 

direction of the milling cutter. In climb milling, the feed direction of workpiece is in the 

direction of the milling cutter. 

The advantages of conventional milling include: 

• It is safer in operation due to the separating forces between the cutter and 

workpiece; 

• Fragments of built-up edge are absent from the machined surfaces; 

• The tool life is not affected by the sandy surfaces; 

• Working loads are not applied suddenly at the teeth; 

• Looseness in moving parts does not damage the cutting motion. 

The advantages of climb milling include: 

• It is possible to use simplified fixtures to mill parts that cannot be easily 

held on the table; 

• Machined surface are not affected by the revolution marks and easily 

polished; 

• It requires lower machining power; 

• The tendency of vibrations is low; 

• There is less tool wear on the cutting edge; 
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• It provides favorable cutting conditions that lead to better surface finish. 

Generally speaking, climb milling is much preferred in today’s machining 

practice. It can provide favorable cutting conditions such as lower cutting forces and less 

tool wear which lead to better surface quality. Because the cutter is always tending to 

climb on the workpiece, climb milling requires much stiffer equipment such as machine 

tool and fixtures without looseness in the feeding mechanism. Along with the spreading 

use of CNC machining center and other rigid machine tools, climb milling has been 

applied over 99% out of all the milling processes in industry nowadays. 

Figure 11 presents the difference between conventional milling and climb milling. 

 

Figure 11: (a) Conventional milling vs. (b) Climb milling 

 

 No matter what type of milling it is, the cutting forces involved in milling 

operation are tangential force perpendicular to the cutter radius and normal force along 

the radius. The directions of the cutting forces are different depending on the type of 

milling. 
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The resolution of forces in conventional milling and climb milling are shown in 

Figure 12. 

 

Figure 12: Cutting forces resolutions in (a) Conventional milling and (b) Climb 
milling 

 

Cutting forces are widely recognized as an optimum performance estimator of 

machining operations [15]. Large cutting forces are result of the extreme conditions at the 

tool-workpiece interface. This interaction can be directly related to the tool wear and, in 

the worst of the cases, lead to failure of the tool [16]. Consequently, tool wear and cutting 

forces are related, although that relationship is different for each different wear 

mechanism shown in Figure 13 (flank, crater, tool breakage). 
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Figure 13: Tool wear on end mill 

 

Cutting forces are also related with chatter and process instability [17-18]. Chatter 

results in a loss of accuracy of machined parts or in damages of the machines structure. 

The unexpected variations of the cutting forces can be responsible for the damage of the 

ceramic hybrid bearings of the high-speed spindle, which means an important time and 

money waste during repairs. The study of this situation will be easier if cutting forces 

were recorded according with the part geometry. Finally, the machine and tool 

deformations due to cutting forces affect the surface finish and the dimensions of 

machined parts. 

Cutting forces in milling operations can be measured in different ways. One way 

is to monitor the power consumed and calculate the forces based on the classical model 

mentioned above. The other way is to directly monitor the forces on each axis by 

deploying the dynamometer. Figure 14 shows a schematic representation for measuring 

forces using dynamometer and computer. 
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Figure 14: Measuring the cutting forces in milling 

 

4.3. Thin Wall Machining 

At present, thin walls are commonly applied in machining aeronautical and 

aerospace components. Figure 15 shows some applications such as torpedoes and 

airplane wings manufactured as thin wall machining. Thin wall parts contribute a lot to 

decrease the weight of these products which have strict requirement for weight or 

corrosion protection. 
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Figure 15: Applications of thin wall machining 

 

Trial machining of thin wall parts have been done regularly at Worcester 

Polytechnic Institute, Washburn Shops as lab contents for computer-aided manufacturing 

class. During the labs, parts in different geometries shown in Figure 16 were machined at 

various cutting conditions. Based on the machining experience and results, it was found 

that machining in high speed would yield a good result while the machining stability 

could not be guaranteed always. A fixture for machining thin wall parts was also applied 

to improve the stiffness of the workpiece as to try to decrease the machining chatters as 

shown in Figure 17. 
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Figure 16: Thin wall machining instants 

 

 

Figure 17: (a) Thin wall part (b) Dedicated fixture for machining thin wall parts 
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Due to its very low stiffness, thin walls are difficult to machine. Wall deflection 

or forced vibration and regenerative chatter can easily reduce the quality of thin wall 

machining. These problems were studied by Smith and Dvorak [19]. They indicated that 

one major limitation to the widespread use of high speed machining for the production of 

thin components is the stability of the machining operation. As the wall becomes thinner, 

it loses stiffness, and consequently, chatter will become more problematic. Such kind of 

chatter during machining can result in poor surface quality, or even cutting through the 

thin wall. 

Some problems have been pointed out on thin wall machining from previous 

research. The first problem is caused by the wall static deformation produced by the 

cutting forces that generate an excess of uncut material. Wall deformation reduces the 

tool immersion into the wall, and therefore, cutting forces decrease. As the operation 

approaches the lower part of the wall, the stiffness becomes higher, and so the 

deformation is smaller and the tool engagement is higher. It can result in an increase of 

the cutting forces. 

The second problem is caused by the machining dynamics. It is especially 

important when the natural frequency of the wall is close to the teeth passing frequency. 

It must be taken into account that the natural frequencies of a wall is continuously 

decreasing during milling due to the progressive reduction of both the mass and stiffness 

of the wall. 
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The third problem is caused by self-excited vibration, which is the cutting process 

itself that generates oscillations. The origin of these oscillations, or chatter, is the 

dynamic excitation produced by the wavy irregular part surface generated by precedent 

tool tooth. This phenomenon is difficult to detect because the natural frequency of walls 

changes during machining. 

Lopez de Lacalle et al. [15] also indicated that these three types of problems may 

happen at the same time. It can make it difficult to determine what the true origin of those 

irregular marks that appears on a milled thin wall. However, besides these three problems 

mentioned above, no one has considered about the impact of cutting fluid during 

machining thin walls. Because of the application of high speed machining, it would 

generate a relatively large amount of heat. And for soft materials like aluminum, the 

chips are very adhesive to generate built-up edges and require to be flushed away 

instantly during machining. Thus the use of cutting fluid is necessary in thin wall 

machining. Therefore, the following analysis in the next chapter will focus on the impact 

that is brought by the factor of cutting fluid on the machining stability.  
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Chapter 5. Mathematical Modeling of Milling Chatter and Cutting 

Fluid   

5.1. Establishment of the Mathematical Model 

The single degree of freedom model describing the correlation between the 

penetration force of cutting fluid and regenerative chatter milling is governed by the 

delay differential equation: 

𝑚𝑚𝑥̈𝑥(𝑡𝑡) + 𝑐𝑐𝑥̇𝑥(𝑡𝑡) + 𝑘𝑘𝑘𝑘(𝑡𝑡)

= ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1� + ∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�, 𝜇𝜇2� 

(1) 

 

where 𝑚𝑚 is the mass of the milling cutter, 𝑐𝑐 and 𝑘𝑘 are the viscous damping and stiffness 

coefficients, respectively. The function ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1� is the change in 

cutting force along the 𝑥𝑥-direction and it is dependent upon the angular position 𝛼𝛼𝑗𝑗 (𝑡𝑡) of 

the milling cutter of 𝑗𝑗-tooth at a specific time 𝑡𝑡, the variation of the feed ∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� 

per 𝑗𝑗 -tooth generating 𝑠𝑠𝑗𝑗𝑗𝑗 -chip segments, and the parameter  𝜇𝜇1 . The parameter 𝜇𝜇1 

represents the product of the width of cut 𝑤𝑤 and the ratio of the regenerative cutting force 

𝑘𝑘1 and stiffness 𝑘𝑘 of cutter model.  For 𝜅𝜅 ≤ 𝑗𝑗 = 1,2,3,⋯𝑛𝑛 and 𝑛𝑛 being a real integer, we 

let 𝑧𝑧𝑗𝑗  to denote the total number of teeth in the cutter and 𝑧𝑧𝑗𝑗𝑗𝑗  to represent the number of 𝑗𝑗-

tooth of the milling cutter that are simultaneously in contact with the workpiece. The 

regenerative time, denoted by 𝜏𝜏1 is defined as 𝜏𝜏1 = 2𝜋𝜋 �𝑧𝑧𝑗𝑗𝑗𝑗 Ω�⁄  where Ω is spindle speed 

of the milling cutter in revolution per minute. Furthermore, let 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) and 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) 
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denote the entering angular position of the milling cutter of the 𝑗𝑗 -tooth at 

ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

and exiting angular position at chip thickness  ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

, 

respectively. The feed per tooth ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�  is described as  ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� =

2𝜋𝜋𝜋𝜋 �𝑧𝑧𝑗𝑗𝑗𝑗 Ω�⁄ , where 𝑟𝑟 is the feedrate or the feed velocity of the machine tool table. And 

then the 𝑗𝑗-tooth of the milling cutter removes material in the form of chips for 𝑧𝑧𝑗𝑗 =

𝑧𝑧𝑗𝑗𝑗𝑗 when the inequalities 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) and ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

≤

ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

 hold. These inequalities, in particular, indicate that 

machining is attainable, and that there is a continuous engagement between the 𝑗𝑗-tooth 

and workpiece. 

We make use of the fact that, the engagement may be discontinued at some 

specific time in the interval  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡)so as to define the milling 

engagement regime in the interval 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡), namely 

𝜒𝜒𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 � ∶= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 �

=

⎩
⎪
⎨

⎪
⎧ 1, ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�

𝑚𝑚𝑚𝑚𝑚𝑚
≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�

𝑚𝑚𝑚𝑚𝑚𝑚

0, ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� > ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑥𝑥

> ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

−1, ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

< ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� < ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

� 

(2) 

  

where the value of 𝜒𝜒𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 � = 1 indicates that 𝑗𝑗-tooth of the milling cutter are 

cutting and for  𝜒𝜒𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 � = 0 , they are not cutting. In the interval  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤

𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) , interrupted or intermittent nonlinear milling forces may cause a 
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temporary disengagement between the 𝑗𝑗-teeth of the milling cutter and workpice, and the 

value of 𝜒𝜒𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 � = −1 represents this aspect. 

The angular position 𝛼𝛼𝑗𝑗 (𝑡𝑡) of the milling cutter of 𝑗𝑗-tooth is defined as 𝛼𝛼𝑗𝑗 (𝑡𝑡) =

Ω𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡0) where 𝛼𝛼𝑗𝑗 (𝑡𝑡0) is the equally spacing angle between adjacent milling teeth on 

the cutter (see Figure 18) at some specific initial time 𝑡𝑡0. 

 

Figure 18: Angular position of cutter engagement 

 

We know that 𝛼𝛼𝑗𝑗 (𝑡𝑡0) = 2𝜋𝜋 𝑧𝑧𝑗𝑗⁄  and also 𝛼𝛼𝑗𝑗 (𝑡𝑡0) = 𝛼𝛼𝑗𝑗 (𝑡𝑡) 𝑧𝑧𝑗𝑗𝑗𝑗⁄ , and from these two 

expressions yield 

𝛼𝛼𝑗𝑗 (𝑡𝑡0) =
2𝜋𝜋𝑧𝑧𝑗𝑗𝑗𝑗 + 𝑧𝑧𝑗𝑗𝛼𝛼𝑗𝑗 (𝑡𝑡)

𝑧𝑧𝑗𝑗 𝑧𝑧𝑗𝑗𝑗𝑗
 

(3a) 

 

And hence we define angular position 𝛼𝛼𝑗𝑗 (𝑡𝑡) of the milling cutter of 𝑗𝑗-tooth as 



 

44 
 

𝛼𝛼𝑗𝑗 (𝑡𝑡) = Ω𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡0) =
𝑧𝑧𝑗𝑗𝑗𝑗

𝑧𝑧𝑗𝑗𝑗𝑗 − 1�
Ω𝑡𝑡 +

2𝜋𝜋𝑧𝑧𝑗𝑗𝑗𝑗
𝑧𝑧𝑗𝑗

� 
(3b) 

With the equally spacing angle 𝛼𝛼𝑗𝑗 (𝑡𝑡0), the magnitude of cutting force variation on 

each 𝑗𝑗-tooth of the milling cutting will be the same, but for unequal spacing angle 𝛼𝛼𝑗𝑗 (𝑡𝑡0), 

the impact of cutting force variation on each 𝑗𝑗-tooth changes. In such a situation we have 

the angular position 𝛼𝛼𝑗𝑗 (𝑡𝑡) of the milling cutter of 𝑗𝑗-tooth as the form 

𝛼𝛼𝑗𝑗 (𝑡𝑡) =
𝑧𝑧𝑗𝑗𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑗𝑗𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚 )− 1�
Ω𝑡𝑡 +

2𝜋𝜋𝑧𝑧𝑗𝑗𝑗𝑗
𝑧𝑧𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑗𝑗𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚 )�

 
(4) 

 

where 𝑧𝑧𝑗𝑗𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚  is the minimum number of 𝑗𝑗-tooth that are simultaneously in contact with 

the workpiece at a particular time and maximum number is  𝑧𝑧𝑗𝑗𝑗𝑗 ,𝑚𝑚𝑎𝑎𝑎𝑎 = 𝑧𝑧𝑗𝑗𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚 +

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧𝑗𝑗𝑗𝑗 − 𝑧𝑧𝑗𝑗𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚 ). The contact length of arc of the 𝑗𝑗-tooth in the interval 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤

𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) is given by 𝑙𝑙 = 𝛼𝛼𝑗𝑗 (𝑡𝑡)𝐷𝐷 2⁄  where 𝐷𝐷 is the diameter of the milling cutter. 

The influence of the cutting fluid on cutting force variation has been one of the most 

difficult influences to define and quantify. It is difficult to evaluate the influence from 

knowledge of general practices of applying coolants into machining operations without 

taking into considerations of the cutting fluid properties, velocities, forces and mass flow 

rates. Attempt is made below to establish relations for cutting fluid influence. 

Before the mathematical analysis, the model that is studied is presented as follow. 

Figure 19, Figure 20 and Figure 21 show the case that cutting without cutting fluid or we 

say dry machining which include the operation setups, motion geometry and force 

resolutions. Figure 22, Figure 23 and Figure 24 indicate the case that cutting fluid 

impacts on the milling operation as compared with the first case. 
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Figure 19: Cutting without cutting fluid - Operation setups 

 

Figure 20: Cutting without cutting fluid - Motion geometry 
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Figure 21: Cutting without cutting fluid - Force components 

 

Figure 22: Cutting with cutting fluid - Operation setups 
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Figure 23: Cutting with cutting fluid - Motion geometry and dynamic model 

 

Figure 24: Cutting with cutting fluid - Force components 
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5.2. The Influence of Cutting Fluid Force on Milling 

Determination of the force variation ∆𝑔𝑔𝑐𝑐𝑐𝑐 = ∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�, 𝜇𝜇2� of 

the cutting fluid requires information about the mass flow rate 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)� of the 

cutting fluid into the interval  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) of chip 

thickness ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

, namely 

𝑚̇𝑚 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�

= � �ℑ �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)� + Θ111 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�
𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡)

𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡)

−Θ222 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)��𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡) 

(5) 

 

where  ℑ �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)� is the mass flow rate that is carried by the milling cutter as it 

rotates, Θ111 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)� represents the rate at which cutting fluid is flooded into the 

milling process by ℓ-nozzle placed at some angular position with respect to the location 

of cutting fluid streamline with coolant angular velocities  𝜗𝜗𝑙̇𝑙(𝑡𝑡) , ℓ = 1,2,3⋯𝑛𝑛 . 

Θ222 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)� is the rate of cutting fluid mass that is outside the milling operation. 

The parameter 𝜇𝜇2 denotes the ratio of the fluid force coefficient 𝑘𝑘�1 and stiffness 𝑘𝑘 of the 

milling cutter. This is the force with which the cutting fluid penetrates the machining 

operation. The variation of the chip thickness from ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� to ∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� 

inside the interval  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡)  influences the fluid penetration force 

and mass flow rate 𝑚̇𝑚 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�. During machining, the cutting fluid moves ahead in 
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a given time instant at a point of least resistance from the chips. Coolants in recirculation 

stages transport contaminants such as debris, chips and bacteria. Contaminations such as 

tramps oil or chips would decrease fluid delivery force and mass flow rate because they 

can clog the orifice diameter of the coolant nozzles. The contaminants will slow down the 

rate of return of the cutting fluid from the nozzles into the interval 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤

𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) at depth of cut 𝑑𝑑  and chip thickness  ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ≤

ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

. The contaminants may present a hazard to the operator if not 

properly collected and filtered. Insufficient and or intermittent coolant application in 

milling operation, in particular, can lead to a situation where the cutting fluid may enter 

the interval 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) with stable spindle speeds but can be circulated 

up to unstable spindle speeds before exiting the interval. One can think of this situation as 

a change in the penetration force of the coolant and mass flow rate 𝑚̇𝑚 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)� with 

respect to the combined influence of the chip thickness variation ∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� and the 

applied torques on the 𝑗𝑗-tooth of the milling cutter that arise from the gravitational, 

damping and stiffness of the coolant and milling forces. Naturally one cannot, in general, 

determine the quantities of  Θ111 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�  and  Θ222 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�  because of the 

very long travel period of the cutting fluid before it reaches its intended storage systems. 

Large coolant recirculation systems, coolant viscosities and degradations over time, 

cutting tool geometry, coolant routes and application methods, machining conditions, 

nozzle diameters and locations, and workpiece materials and shapes determine whether or 

not there is sufficient mass of coolant to provide adequate cooling and chip clearing 

capability. The considerations of high performance machining lead times are important in 
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designing a machining process and selecting an appropriate coolant. In this thesis work, a 

great simplification of the force variation ∆𝑔𝑔𝑐𝑐𝑐𝑐 = ∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�,𝜇𝜇2� of the 

cutting fluid in the interval 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) is thus the combined Fourier-

Taylor series representations 

∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�, 𝜇𝜇2�

= 𝑤𝑤�𝑘𝑘�1 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥 �𝑡𝑡 − 𝜏𝜏𝑙𝑙�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)���

+ 𝑤𝑤�𝑘𝑘�2 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥 �𝑡𝑡 − 𝜏𝜏𝑙𝑙�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)���
2

+ 𝑤𝑤�𝑘𝑘�3 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥 �𝑡𝑡 − 𝜏𝜏𝑙𝑙�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)���
3

+ ⋯𝑂𝑂 �𝑤𝑤�𝑘𝑘�5 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥 �𝑡𝑡 − 𝜏𝜏𝑙𝑙�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)���
5
� 

(6a) 

 

where the time-varying cutting fluid delay 𝜏𝜏𝑙𝑙�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)� is the cosine and sine waves 

defined by 

⎩
⎪
⎨

⎪
⎧ 𝜏𝜏𝑙𝑙�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)� = 𝜏𝜏1 + 𝜀𝜀𝛾𝛾𝑙𝑙 �𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 0 ≤ 𝜀𝜀 ≪ 1

𝛾𝛾 �𝛼𝛼𝑗𝑗 (𝑡𝑡)� = � 𝑎𝑎𝑚𝑚
(1) cos𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=0

+ � 𝑎𝑎𝑚𝑚
(2) sin𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=1

� 

(6b) 

 

and the Fourier constants 𝑎𝑎𝑚𝑚
(0), 𝑎𝑎𝑚𝑚

(1)and  𝑎𝑎𝑚𝑚
(2), namely 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑎𝑎𝑚𝑚

(0) =
1

Γ �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�
∙

� �� 𝑎𝑎𝑚𝑚
(1) cos𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=0

+ � 𝑎𝑎𝑚𝑚
(2) sin𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=1

�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)

Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙𝑙̇ (𝑡𝑡)�

0

𝑎𝑎𝑚𝑚
(1) =

1

Γ �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�
∙

� �� 𝑎𝑎𝑚𝑚
(1) cos𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=0

+ � 𝑎𝑎𝑚𝑚
(2) sin𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=1

� cos𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)𝑑𝑑𝑑𝑑

Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙𝑙̇ (𝑡𝑡)�

0

𝑎𝑎𝑚𝑚
(2) =

1

Γ �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�
∙

� �� 𝑎𝑎𝑚𝑚
(1) cos𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=0

+ � 𝑎𝑎𝑚𝑚
(2) sin𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=1

� sin𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)𝑑𝑑𝑑𝑑

Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙𝑙̇ (𝑡𝑡)�

0

� 

(6c) 

 

and 𝜔𝜔𝑚𝑚  are the amplitudes and frequencies of the cutting fluid delivered into the milling 

operation. Using the fact that 

𝑥𝑥(𝑡𝑡) − 𝑥𝑥 �𝑡𝑡 − �𝜏𝜏2 + 𝜀𝜀𝛾𝛾𝑙𝑙 �𝛼𝛼𝑗𝑗 (𝑡𝑡)��� ∶= 𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2)

+ 𝜀𝜀 � 𝑥̇𝑥 �𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)� 𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏2

𝑡𝑡−�𝜏𝜏2+𝜀𝜀𝛾𝛾𝑙𝑙�𝛼𝛼𝑗𝑗 (𝑡𝑡)��
 

(6d) 

    

we can write Equation (6a) as follows 
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∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�, 𝜇𝜇2�

= −𝑤𝑤� �𝑘𝑘�1 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏1) + 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏1

𝑡𝑡−�𝜏𝜏1+𝜀𝜀𝛾𝛾𝑙𝑙(𝛼𝛼𝑗𝑗 (𝑡𝑡))�
�

+ 𝑘𝑘�2 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏1) + 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏1

𝑡𝑡−�𝜏𝜏1+𝜀𝜀𝛾𝛾𝑙𝑙(𝛼𝛼𝑗𝑗 (𝑡𝑡))�
�

2

+ 𝑘𝑘�3 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏1) + 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏1

𝑡𝑡−�𝜏𝜏1+𝜀𝜀𝛾𝛾𝑙𝑙(𝛼𝛼𝑗𝑗 (𝑡𝑡))�
�

3

+ ⋯𝑂𝑂�𝑘𝑘�5 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏1)

+ 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏1

𝑡𝑡−�𝜏𝜏1+𝜀𝜀𝛾𝛾𝑙𝑙(𝛼𝛼𝑗𝑗 (𝑡𝑡))�
�

5

�� 

(6e) 

 

 

The time delay 𝜏𝜏2  corresponds to the nominal value of the mass of the fluid 

delivered into the milling operation for  ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ≤

ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

  and in the interval 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡).  This time delay 𝜏𝜏2 

is determined by the length of travel of the coolant and velocity it travels with as it 

enters  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡). 𝑤𝑤  is the width in which the coolant is delivered 

inside the interval  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) . The parameters 𝑘𝑘�1, 𝑘𝑘�2,⋯𝑘𝑘�𝑗𝑗 , 𝑗𝑗 =

1,2,3,⋯  represent the coefficients of the nonlinearity after Taylor expansion of 

∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�,𝜇𝜇2� at some nominal value of the mass flow rate of the 

cutting fluid in the interval  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) . The time-varying delay 
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parameter 𝛾𝛾𝑙𝑙 �𝛼𝛼𝑗𝑗 (𝑡𝑡)� and the nonlinearity will continue to fluctuate no matter how small 

or large the induced cutting force variation  ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1�  is. The 

appearance of  𝛼𝛼𝑗𝑗 (𝑡𝑡)  in the Fourier representation of the mass 

variation ∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�, 𝜇𝜇2� serves to explain the correlation between this 

variation and that of the cutting force  ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1�  in the 

interval  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) . The angular position of the nozzles, which is 

freely adjusted to different positions between the machine-tool spindle and work piece 

and oil or chip contaminants, may transport high gravitational and damping torques as the 

cutting fluid enters in the interval  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) . The Fourier 

representation of  ∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�,𝜇𝜇2� in Equation (6) thus gives us better 

estimates of the amplitudes and frequencies of the cutting fluid delivered into j-teeth of 

the milling cutter at  𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡)  and of depth of cut d and chip 

thickness  ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ≤ ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑚𝑚𝑚𝑚𝑚𝑚

. The Fourier 

representation has a sufficient structure to evaluate relationships and phenomena for long 

term variations of both  ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1� 

and ∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�, 𝜇𝜇2�. The amplitudes, frequencies and stability regimes 

of the milling operation of various mass of the cutting fluid in the interval 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) ≤

𝛼𝛼𝑗𝑗 (𝑡𝑡) ≤ 𝛼𝛼𝑗𝑗 ,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑡𝑡) can be calculated in a more direct way. The threshold of the attainable 

variations of  ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1�  and  ∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�, 𝜇𝜇2�  is 

represented by the finite nature of the nonlinearities and sizes of the time varying delays. 

Generalization of this representation to other forms of cutting fluids and machining 
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operations is attainable as well. The small parameter 𝜀𝜀 has values of the form 0 ≤ 𝜀𝜀 ≪ 1, 

and it is scaling factor of the nonlinearities in  ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1� 

and ∆𝑔𝑔𝑐𝑐𝑐𝑐 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑚̇𝑚�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜗𝜗𝑙̇𝑙(𝑡𝑡)�, 𝜇𝜇2�. The next section is concerned with the aspects of 

deriving the cutting force variation ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1� in terms of the chip 

thickness variation ∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�. 

5.3. The Cutting Fluid Force in Machining 

The cutting force variation along the 𝑥𝑥-direction as seen in Figure 8 is given by 

∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1�

= −𝑤𝑤�𝜒𝜒𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 � × 𝑓𝑓𝑗𝑗𝑗𝑗 �∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡),𝑑𝑑�𝑘𝑘𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝜇𝜇1��

𝑧𝑧𝑗𝑗

𝑗𝑗=1

 

(7) 

 

where 𝑓𝑓𝑗𝑗𝑗𝑗 �∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡),𝑑𝑑�� is the cutting force variation that is dependent only on the 

feed ∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� per tooth and depth of cut 𝑑𝑑 . 𝑘𝑘𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝜇𝜇1� is the cutting force 

coefficient per unit area and is equivalent to 𝐹𝐹𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝜇𝜇1�. By the geometry of the 

cutter-workpiece interaction in Figure 15 we have the expressions for ∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� 

and 𝐹𝐹𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝜇𝜇1�, as follows 

ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� = 𝑠𝑠𝑗𝑗𝑗𝑗 sin𝛼𝛼𝑗𝑗 (𝑡𝑡) (8a) 

 

with 
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∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� = ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

− ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�
𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= �𝑠𝑠𝑗𝑗0 + 𝑥𝑥(𝑡𝑡) − 𝑥𝑥 �𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)�� sin𝛼𝛼𝑗𝑗 (𝑡𝑡) − 𝑠𝑠𝑗𝑗0 sin𝛼𝛼𝑗𝑗 (𝑡𝑡)

= �𝑥𝑥(𝑡𝑡) − 𝑥𝑥 �𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)�� sin𝛼𝛼𝑗𝑗 (𝑡𝑡) 

(8b) 

 

and the cutting force 

𝐹𝐹𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝜇𝜇1� = 𝐹𝐹𝑗𝑗𝑗𝑗 cos𝛼𝛼𝑗𝑗 (𝑡𝑡) + 𝐹𝐹𝑗𝑗𝑗𝑗 sin𝛼𝛼𝑗𝑗 (𝑡𝑡) (8c) 

 

with the relationship 𝐹𝐹𝑗𝑗𝑗𝑗 = 𝐹𝐹𝑗𝑗𝑗𝑗 tan𝛽𝛽 yield 

𝐹𝐹𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝜇𝜇1� = 𝐹𝐹𝑗𝑗𝑗𝑗 cos𝛼𝛼𝑗𝑗 (𝑡𝑡) + 𝐹𝐹𝑗𝑗𝑗𝑗 tan𝛽𝛽 sin𝛼𝛼𝑗𝑗 (𝑡𝑡) = 𝐹𝐹𝑗𝑗𝑗𝑗 �cos𝛼𝛼𝑗𝑗 (𝑡𝑡) + tan𝛽𝛽 sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�

= �1 + tan2 𝛽𝛽 𝐹𝐹𝑗𝑗𝑗𝑗 cos�𝛼𝛼𝑗𝑗 (𝑡𝑡) − 𝜗𝜗0� 

(8d) 

 

where 

cos𝜗𝜗0 =
1

�1 + tan2 𝛽𝛽
,   sin𝜗𝜗0 =

tan𝛽𝛽
�1 + tan2 𝛽𝛽

 
(8e) 

 

and this lead to the simplification of Equation (7) into the form 
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∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1�

= −�1 + tan2 𝛽𝛽𝑤𝑤�𝜒𝜒𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 �

𝑧𝑧𝑗𝑗

𝑗𝑗=1

× 𝑓𝑓𝑗𝑗𝑗𝑗 �∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡),𝑑𝑑�𝑘𝑘𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡),𝜇𝜇1� cos�𝛼𝛼𝑗𝑗 (𝑡𝑡) − 𝜗𝜗0� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)� 

(8f) 

 

The minus sign −∆𝑓𝑓𝑥𝑥  of the cutting force variation of the 𝑗𝑗-tooth indicates that a 

positive relative displacement of the cutter removes a feed ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� per tooth of 

material and at depth of cut 𝑑𝑑. 𝑠𝑠𝑗𝑗0 is the segment at the steady state nominal feed per 𝑗𝑗-

tooth of the milling cutter. 𝑥𝑥(𝑡𝑡) is the state of the milling cutter and 𝑥𝑥(𝑡𝑡 − 𝜏𝜏(𝑡𝑡)) is the 

earlier state 𝑥𝑥(𝑡𝑡 − 𝜏𝜏(𝑡𝑡))  at time  𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡) . It is known that cutting force  𝐹𝐹𝑗𝑗𝑗𝑗 =

𝐹𝐹𝑗𝑗𝑗𝑗 �𝑤𝑤, 𝑟𝑟,𝑑𝑑,ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�� is function of the cutting parameters, namely, the width of 

cut 𝑤𝑤, feedrate 𝑟𝑟, depth of cut 𝑑𝑑 and feed per tooth ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝜅𝜅 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�. For the depth of cut 

variation, we define the corresponding cutting force coefficients 𝑘𝑘𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝜇𝜇1� as follow 

𝑘𝑘𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝜇𝜇1� ∶= −�
𝜕𝜕𝑗𝑗𝐹𝐹𝑗𝑗𝑗𝑗 �𝑤𝑤, 𝑟𝑟,𝑑𝑑,ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)��

𝑗𝑗! 𝜕𝜕𝑑𝑑𝑗𝑗
�

𝑑𝑑=𝑑𝑑0

= 𝑘𝑘1 + 𝑘𝑘2(𝑘𝑘1),𝑘𝑘3(𝑘𝑘1), +⋯𝑘𝑘𝑗𝑗+1(𝑘𝑘1),   𝑗𝑗 = 1,2,3,⋯ 

(9) 

 

where 𝜕𝜕
𝑗𝑗𝐹𝐹𝑗𝑗𝑗𝑗 (∙)

𝑗𝑗 !𝜕𝜕𝑑𝑑𝑗𝑗
 are 𝑗𝑗-partial derivatives of 𝐹𝐹𝑗𝑗𝑗𝑗 �𝑤𝑤, 𝑟𝑟,𝑑𝑑,ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�� with respect to 𝑑𝑑 . 

And  𝑘𝑘𝑗𝑗  are the respective cutting coefficients after the Taylor expansion of  𝐹𝐹𝑗𝑗𝑗𝑗 =

𝐹𝐹𝑗𝑗𝑗𝑗 �𝑤𝑤, 𝑟𝑟,𝑑𝑑,ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)�� . Next we consider the Taylor expansion of 
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𝑓𝑓𝑗𝑗𝑗𝑗 �∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ,𝑑𝑑� with respect to the feed ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� per tooth and compute 

the Taylor coefficients at depth of cut 𝑑𝑑 = 𝑑𝑑0, thus we obtain 

𝑓𝑓𝑗𝑗𝑗𝑗 �∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ,𝑑𝑑�

= (1!)−1𝑓𝑓𝑗𝑗𝑗𝑗
(1)(𝑑𝑑0)�𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)

+ (2!)−1𝑓𝑓𝑗𝑗𝑗𝑗
(2)(𝑑𝑑0)��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�2

+ (3!)−1𝑓𝑓𝑗𝑗𝑗𝑗
(3)(𝑑𝑑0)��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�3

+ ⋯𝑂𝑂 �𝑓𝑓𝑗𝑗𝑗𝑗
(5)(𝑑𝑑0)��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�5� 

(10a) 

 

where  𝑓𝑓𝑗𝑗𝑗𝑗 �∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ,𝑑𝑑� , 𝑗𝑗 = 1,2,⋯  are again the partial derivatives and 

comparing this Equation (10a) with Equation (9), we have 

𝑓𝑓𝑗𝑗𝑗𝑗 �∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� ,𝑑𝑑�

= 𝑘𝑘1�𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)

+ 𝑘𝑘2��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�2

+ 𝑘𝑘3��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�3

+⋯𝑂𝑂 �𝑘𝑘5��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�5� 

(10b) 

 

Hence the substitution of Equations (9) and (10) into (8) gives 
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∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1�

= −𝑤𝑤�𝜒𝜒𝑗𝑗𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 �

𝑧𝑧𝑗𝑗

𝑗𝑗=1

cos�𝛼𝛼𝑗𝑗 (𝑡𝑡) − 𝜗𝜗0� �𝑘𝑘1�𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡

− 𝜏𝜏𝑗𝑗 (𝑡𝑡)) sin𝛼𝛼𝑗𝑗 (𝑡𝑡) + 𝑘𝑘2��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�2

+ 𝑘𝑘3��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�3

+⋯𝑂𝑂 �𝑘𝑘5��𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏𝑗𝑗 (𝑡𝑡)� sin𝛼𝛼𝑗𝑗 (𝑡𝑡)�5�� 

(11) 

 

Now using the fact that 𝜏𝜏𝑗𝑗 (𝑡𝑡) = 𝜏𝜏₂ + 𝜀𝜀𝛾𝛾𝑗𝑗 (𝛼𝛼𝑗𝑗 (𝑡𝑡)) so that 

𝑥𝑥(𝑡𝑡) − 𝑥𝑥 �𝑡𝑡 − �𝜏𝜏₂ + 𝜀𝜀𝛾𝛾𝑗𝑗 (𝛼𝛼𝑗𝑗 (𝑡𝑡))�� ∶= 𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2)

+ 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏2

𝑡𝑡−�𝜏𝜏₂+𝜀𝜀𝛾𝛾𝑗𝑗 (𝛼𝛼𝑗𝑗 (𝑡𝑡))�
 

(12a) 

  

We thus obtain the period cutting function  ∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1� as 

follows 
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∆𝑓𝑓𝑥𝑥 �𝛼𝛼𝑗𝑗 (𝑡𝑡),∆ℎ𝑗𝑗𝑗𝑗 �𝑠𝑠𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 𝜇𝜇1�

= −𝑤𝑤�𝑘𝑘1 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2) + 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏2

𝑡𝑡−�𝜏𝜏₂+𝜀𝜀𝛾𝛾𝑗𝑗 (𝛼𝛼𝑗𝑗 (𝑡𝑡))�
�

+ 𝑘𝑘2 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2) + 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏2

𝑡𝑡−�𝜏𝜏₂+𝜀𝜀𝛾𝛾𝑗𝑗 (𝛼𝛼𝑗𝑗 (𝑡𝑡))�
�

2

+ 𝑘𝑘3 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2) + 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏2

𝑡𝑡−�𝜏𝜏₂+𝜀𝜀𝛾𝛾𝑗𝑗 (𝛼𝛼𝑗𝑗 (𝑡𝑡))�
�

3

+ ⋯𝑂𝑂�𝑘𝑘5 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2)

+ 𝜀𝜀 � 𝑥̇𝑥�𝑡𝑡 + 𝛼𝛼𝑗𝑗 (𝑡𝑡)�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)
𝑡𝑡−𝜏𝜏2

𝑡𝑡−�𝜏𝜏₂+𝜀𝜀𝛾𝛾𝑗𝑗 (𝛼𝛼𝑗𝑗 (𝑡𝑡))�
�

5

�� 

(12b) 

 

where the time-varying regenerative delay 𝜏𝜏𝑙𝑙�𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 ,Ω� is defined by 

⎩
⎪
⎨

⎪
⎧ 𝜏𝜏𝑗𝑗 �𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 ,Ω� = 𝜏𝜏2 + 𝜀𝜀𝜀𝜀 �𝛼𝛼𝑗𝑗 (𝑡𝑡)� , 0 ≤ 𝜀𝜀 ≪ 1

𝛾𝛾 �𝛼𝛼𝑗𝑗 (𝑡𝑡)� = � 𝑏𝑏𝑚𝑚
(1) cos𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=0

+ � 𝑏𝑏𝑚𝑚
(2) sin𝜔𝜔𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=1

� 

(12c) 

 

and the Fourier constants 𝑏𝑏𝑚𝑚
(0), 𝑏𝑏𝑚𝑚

(1)and  𝑏𝑏𝑚𝑚
(2), namely 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑏𝑏𝑚𝑚

(0) =
1

Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 ,Ω�
∙

� �� 𝑏𝑏𝑚𝑚
(1) cos𝜔𝜔�𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=0

+ � 𝑏𝑏𝑚𝑚
(2) sin𝜔𝜔�𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=1

�𝑑𝑑𝛼𝛼𝑗𝑗 (𝑡𝑡)

Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝑧𝑧𝑗𝑗𝑗𝑗 ,Ω�

0

𝑏𝑏𝑚𝑚
(1) =

1
Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 ,Ω�

∙

� �� 𝑏𝑏𝑚𝑚
(1) cos𝜔𝜔�𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=0

+ � 𝑏𝑏𝑚𝑚
(2) sin𝜔𝜔�𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=1

� cos𝜔𝜔�𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)𝑑𝑑𝑑𝑑

Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝑧𝑧𝑗𝑗𝑗𝑗 ,Ω�

0

𝑏𝑏𝑚𝑚
(2) =

1
Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡), 𝑧𝑧𝑗𝑗𝑗𝑗 ,Ω�

∙

� �� 𝑏𝑏𝑚𝑚
(1) cos𝜔𝜔�𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=0

+ � 𝑏𝑏𝑚𝑚
(2) sin𝜔𝜔�𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)

∞

𝑚𝑚=1

� sin𝜔𝜔�𝑚𝑚 𝛼𝛼𝑗𝑗 (𝑡𝑡)𝑑𝑑𝑑𝑑

Γ�𝛼𝛼𝑗𝑗 (𝑡𝑡),𝑧𝑧𝑗𝑗𝑗𝑗 ,Ω�

0

� 

(12d) 

 

Substituting Equations (6) and (12) into (1), and using only the linear part of Equations (6) 

we obtain the following equation 

𝑥̈𝑥 + 2𝜁𝜁𝜔𝜔0𝑥̇𝑥 + 𝜔𝜔0
2𝜇𝜇1�𝑥𝑥 − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏1)� +𝜔𝜔0

2𝜇𝜇2�𝑥𝑥 − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2)�

= −𝜀𝜀𝜔𝜔0
2𝜎𝜎3 �𝑥𝑥 − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2) + � 𝑥̇𝑥(𝑡𝑡 + 𝜃𝜃)𝑑𝑑𝑑𝑑

𝑡𝑡−𝜏𝜏2

𝑡𝑡−𝜏𝜏(𝑡𝑡)
�

3

− 𝑂𝑂(𝜀𝜀5) 

(13) 

 

where 𝜀𝜀𝜎𝜎3 denotes the presence of the nonlinearity of the cutting force variation 

We study the linear stability of this equation so as to establish regimes of stable 

milling process and safe coolant penetration forces. 

5.4. Linear Stability Analysis 

The linear stability of Equation (12) is examined by considering the linearized 

solutions to the delay differential equation 
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𝑥̈𝑥 + 2𝜁𝜁𝜔𝜔0𝑥̇𝑥 +𝜔𝜔0
2𝑥𝑥 + 𝜔𝜔0

2𝜇𝜇1�𝑥𝑥 − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏1)� + 𝜔𝜔0
2𝜇𝜇2�𝑥𝑥 − 𝑥𝑥(𝑡𝑡 − 𝜏𝜏2)� = 0 (13a) 

 

whose transcendental characteristic equation is 

𝛥𝛥(𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2) ∶= 𝜆𝜆2 + 2𝜁𝜁𝜔𝜔0𝜆𝜆 + 𝜔𝜔0
2 + 𝜔𝜔0

2�𝜇𝜇1�1− 𝑒𝑒−𝜆𝜆𝜏𝜏1� + 𝜇𝜇2 �1 − 𝑒𝑒−𝜆𝜆𝜏𝜏2� � = 0 (13b) 

 

is obtained after making the substitutions 𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆𝜆𝜆) , 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜆𝜆(𝑡𝑡 − 𝜏𝜏)) 

and 𝜏𝜏 ∈ [𝜏𝜏₁, 𝜏𝜏₂] . The force coefficient 𝜇𝜇₁  is considered as the bifurcation that is 

continuously perturbed by a small value 𝜀𝜀𝜀𝜀₁ at its critical value 𝜇𝜇1𝑐𝑐  and we write 𝜇𝜇₁ =

𝜇𝜇1𝑐𝑐 + 𝜀𝜀𝜀𝜀 . By Hopf bifurcation conditions [21-22] and reference cited therein, we 

let  𝜆𝜆1,2 = 𝜐𝜐(𝜇𝜇₁) ± 𝑗𝑗𝑗𝑗(𝜇𝜇₁) , 𝑗𝑗 = √−1  with  𝜐𝜐(𝜇𝜇₁) > 0 , 𝜔𝜔(𝜇𝜇₁) ≠ 0  and  𝜐𝜐(𝜇𝜇1𝑐𝑐) = 0 , 

ℜ𝑒𝑒{𝑑𝑑𝑑𝑑(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂)/𝑑𝑑𝑑𝑑₁} ≠ 0 be the eigenvalues of (4b). All the remaining eigenvalues of 

𝛥𝛥(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂) = 0 have negative real parts. Then, the substitution of 𝜆𝜆₁ = 𝜐𝜐(𝜇𝜇₁) + 𝑗𝑗𝑗𝑗(𝜇𝜇₁) 

into 𝛥𝛥(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂) = 0, and setting the real and imaginary parts of the resulting algebraic 

equations to zero, we have 

𝛥𝛥(𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2) ∶= 𝐺𝐺111(𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2) + 𝑗𝑗𝑀𝑀111 (𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2) = 0,       𝑗𝑗 = √−1 (14a) 

 

where the symbols 𝐺𝐺₁₁₁(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂) and 𝑀𝑀₁₁₁(𝜆𝜆, 𝜇𝜇₁,𝜇𝜇₂) denote the real and imaginary parts 

accordingly 

�
𝐺𝐺₁₁₁(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂) ∶= 𝑣𝑣2 +𝜔𝜔0 

2 −𝜔𝜔2 + 2𝜁𝜁𝜔𝜔0𝑣𝑣 + 𝜔𝜔0
2 �
𝜇𝜇1�1− 𝑒𝑒−𝜆𝜆𝜏𝜏1 cos𝜔𝜔𝜏𝜏1� +
𝜇𝜇2 �1 − 𝑒𝑒−𝜆𝜆𝜏𝜏2 cos𝜔𝜔𝜏𝜏2� 

� = 0

𝑀𝑀111 (𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2): = 2(𝑣𝑣 + 𝜁𝜁𝜔𝜔0)𝜔𝜔− 𝜔𝜔0 
2 �𝜇𝜇1𝑒𝑒−𝜆𝜆𝜏𝜏1 sin𝜔𝜔𝜏𝜏1 + 𝜇𝜇2𝑒𝑒−𝜆𝜆𝜏𝜏2 sin𝜔𝜔𝜏𝜏2� = 0

� 
(14b) 
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and by putting 𝜐𝜐 = 0 at Hopf bifurcation yields 

�
𝐺𝐺₁₁₁(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂) ∶= 𝜔𝜔0 

2 −𝜔𝜔2 + 𝜔𝜔0
2{𝜇𝜇1(1− cos𝜔𝜔𝜏𝜏1) + 𝜇𝜇2 (1 − cos𝜔𝜔𝜏𝜏2) } = 0

𝑀𝑀111 (𝜆𝜆, 𝜇𝜇) ∶= 2𝜁𝜁𝜔𝜔0𝜔𝜔 − 𝜔𝜔0 
2 {𝜇𝜇1 sin𝜔𝜔𝜏𝜏1 + 𝜇𝜇2 sin𝜔𝜔𝜏𝜏2} = 0

� 
(14c) 

 

or equivalently 

�
𝜔𝜔0

2𝜇𝜇1(1 − cos𝜔𝜔𝜏𝜏1) = −{(𝜔𝜔0 
2 −𝜔𝜔2) +𝜔𝜔0 

2 𝜇𝜇2 (1− cos𝜔𝜔𝜏𝜏2)}
𝜔𝜔0

2𝜇𝜇1 sin𝜔𝜔𝜏𝜏2 = 2𝜁𝜁𝜔𝜔0𝜔𝜔− 𝜔𝜔0
2𝜇𝜇2 sin𝜔𝜔𝜏𝜏2

� 
(14d) 

 

Now squaring both sides of Equations (14d) and adding the result together will 

lead to 

2𝜔𝜔0
4𝜇𝜇1

2(1− cos𝜔𝜔𝜏𝜏1)

= {(𝜔𝜔0 
2 −𝜔𝜔2) + 𝜔𝜔0 

2 𝜇𝜇2 (1− cos𝜔𝜔𝜏𝜏2)}2 + {2𝜁𝜁𝜔𝜔0𝜔𝜔 − 𝜔𝜔0
2𝜇𝜇2 sin𝜔𝜔𝜏𝜏2}2 

(15a) 

 

where the substitution of the first equation in (14d) into (15a), namely 

2𝜔𝜔0
2𝜇𝜇1{(𝜔𝜔0 

2 −𝜔𝜔2) + 𝜔𝜔0 
2 𝜇𝜇2 (1− cos𝜔𝜔𝜏𝜏2)}

= {(𝜔𝜔0 
2 −𝜔𝜔2) + 𝜔𝜔0 

2 𝜇𝜇2 (1 − cos𝜔𝜔𝜏𝜏2)}2 + {2𝜁𝜁𝜔𝜔0𝜔𝜔 −𝜔𝜔0
2𝜇𝜇2 sin𝜔𝜔𝜏𝜏2}2 

(15b) 

 

and thus we obtain the explicit expression for the bifurcation parameter 𝜇𝜇₁ 

𝜇𝜇1(𝜏𝜏1, 𝜏𝜏2,𝜔𝜔, 𝜇𝜇2) =
1

2𝜔𝜔0 
2 𝑟𝑟112

(𝑟𝑟111
2 + 𝑟𝑟112

2 ) 
(15c) 
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with 𝑟𝑟₁₁₁ and 𝑟𝑟₁₁₂ donating 

�
𝑟𝑟₁₁₁ = −{(𝜔𝜔0 

2 −𝜔𝜔2) + 𝜔𝜔0 
2 𝜇𝜇2 (1 − cos𝜔𝜔𝜏𝜏2)}

𝑟𝑟₁₁₂ = 2𝜁𝜁𝜔𝜔0𝜔𝜔 − 𝜔𝜔0
2𝜇𝜇2 sin𝜔𝜔𝜏𝜏2

� 
(15d) 

 

We compute Hopf's transversality condition by differentiating implicitly (13b) 

with respect to 𝜇𝜇₁, namely 

𝑑𝑑
𝑑𝑑𝜇𝜇1

{∆(𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2)} =
𝑑𝑑∆(𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2)

𝑑𝑑𝑑𝑑
×
𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇1

+
𝑑𝑑∆(𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2)

𝑑𝑑𝜇𝜇1
= 0 

(16a) 

 

from which the real and imaginary parts when 𝜆𝜆1,2 = 𝜐𝜐(𝜇𝜇₁) ± 𝑗𝑗𝜔𝜔(𝜇𝜇₁) are given by 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇1

�
𝜆𝜆1,2=𝜐𝜐(𝜇𝜇₁)±𝑗𝑗𝑗𝑗 (𝜇𝜇₁)

= �− �
𝑑𝑑∆(𝜆𝜆, 𝜇𝜇1,𝜇𝜇2)

𝑑𝑑𝜇𝜇1
��

𝑑𝑑∆(𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2)
𝑑𝑑𝑑𝑑 �

−1

�
𝜆𝜆1,2=𝜐𝜐(𝜇𝜇₁)±𝑗𝑗𝑗𝑗 (𝜇𝜇₁)

= �−
𝜔𝜔0 

2 (1− cos𝜔𝜔𝜏𝜏1 + 𝑗𝑗 sin𝜔𝜔𝜏𝜏1)
𝑟𝑟113 + 𝑗𝑗𝑟𝑟114

�
𝜆𝜆1,2=𝜐𝜐(𝜇𝜇1)±𝑗𝑗𝑗𝑗 (𝜇𝜇1),𝜐𝜐(𝜇𝜇1𝑐𝑐)=0

∶= �𝐺𝐺222 (𝜆𝜆, 𝜇𝜇1,𝜇𝜇2) + 𝑗𝑗𝑀𝑀222 (𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2)}𝜆𝜆1,2=𝜐𝜐(𝜇𝜇1)±𝑗𝑗𝑗𝑗 (𝜇𝜇1),𝜐𝜐(𝜇𝜇1𝑐𝑐)=0 

(16b) 

 

where by writing 



 

64 
 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇1

�
𝜆𝜆1,2=𝜐𝜐(𝜇𝜇₁)±𝑗𝑗𝑗𝑗 (𝜇𝜇₁)

= �−
𝜔𝜔0 

2 (1− cos𝜔𝜔𝜏𝜏1 + 𝑗𝑗 sin𝜔𝜔𝜏𝜏1)
𝑟𝑟113 + 𝑗𝑗𝑟𝑟114

�
𝜆𝜆1,2=𝜐𝜐(𝜇𝜇1)±𝑗𝑗𝑗𝑗 (𝜇𝜇1),𝜐𝜐(𝜇𝜇1𝑐𝑐)=0

∶= �𝐺𝐺222 (𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2) + 𝑗𝑗𝑀𝑀222 (𝜆𝜆, 𝜇𝜇1,𝜇𝜇2)}𝜆𝜆1,2=𝜐𝜐(𝜇𝜇1)±𝑗𝑗𝑗𝑗 (𝜇𝜇1),𝜐𝜐(𝜇𝜇1𝑐𝑐)=0 

(16c) 

 

with the notations 𝑟𝑟₁₁₃, 𝑟𝑟₁₁₄, 𝐺𝐺₂₂₂(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂), 𝑀𝑀₂₂₂(𝜆𝜆, 𝜇𝜇₁,𝜇𝜇₂): 

⎩
⎪
⎨

⎪
⎧𝐺𝐺₂₂₂(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂) = −

1
𝑟𝑟113

2 + 𝑟𝑟114
2 �𝜔𝜔0

2�(1 − cos𝜔𝜔𝜏𝜏1)𝑟𝑟113 + sin𝜔𝜔𝜏𝜏1 𝑟𝑟114��

𝑀𝑀₂₂₂(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂) = −
1

𝑟𝑟113
2 + 𝑟𝑟114

2 �𝜔𝜔0
2�(1− cos𝜔𝜔𝜏𝜏1)𝑟𝑟114 − sin𝜔𝜔𝜏𝜏1 𝑟𝑟113��

� 

(16d) 

�
𝑟𝑟113 = 2𝜁𝜁𝜔𝜔0 + 𝜔𝜔0

2𝜏𝜏1𝜇𝜇1 cos𝜔𝜔𝜏𝜏1 + 𝜔𝜔0
2𝜏𝜏2𝜇𝜇2 cos𝜔𝜔𝜏𝜏2

𝑟𝑟114 = 2𝜔𝜔 − 𝜔𝜔0
2𝜏𝜏1𝜇𝜇1 sin𝜔𝜔𝜏𝜏1 + 𝜔𝜔0

2𝜏𝜏2𝜇𝜇2 sin𝜔𝜔𝜏𝜏2
� 

(16e) 

 

and thus it can be seen that 

ℜ�
𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇1

�
𝜆𝜆1,2=𝜐𝜐(𝜇𝜇1)±𝑗𝑗𝑗𝑗 (𝜇𝜇1),𝜐𝜐(𝜇𝜇1𝑐𝑐)=0

= 𝐺𝐺222 (𝜆𝜆, 𝜇𝜇1, 𝜇𝜇2)𝜆𝜆1,2=𝜐𝜐(𝜇𝜇1)±𝑗𝑗𝑗𝑗 (𝜇𝜇1),𝜐𝜐(𝜇𝜇1𝑐𝑐)=0 > 0 
(16f) 

 

if the choice of values for the model parameters are such that the inequality (16g) holds. 

𝜔𝜔0
2�(1 − cos𝜔𝜔𝜏𝜏1)𝑟𝑟113 + sin𝜔𝜔𝜏𝜏1 𝑟𝑟114� < 0 (16g) 

 

This means that the pair of eigenvalues 𝜆𝜆₁, ₂ = 𝜐𝜐(𝜇𝜇₁) ± 𝑗𝑗𝑗𝑗(𝜇𝜇₁) of 𝛥𝛥(𝜆𝜆, 𝜇𝜇₁, 𝜇𝜇₂) =

0 with 𝜐𝜐(𝜇𝜇1𝑐𝑐) = 0, 𝜔𝜔(𝜇𝜇1𝑐𝑐) ≠ 0 will cross the imaginary axis from left to right in the 

complex plane with a nonzero speed as the bifurcation parameter 𝜇𝜇₁  varies near its 
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critical value 𝜇𝜇1𝑐𝑐 . Also, it ensures that the steady state stability of the system is lost 

at 𝜇𝜇₁ = 𝜇𝜇1𝑐𝑐 . 

We derive the explicit expression for 𝜏𝜏₂ by rewriting equations (5d) as follows 

𝜔𝜔0
2(1− cos𝜔𝜔𝜏𝜏1)
𝜔𝜔0

2𝜇𝜇1 sin𝜔𝜔𝜏𝜏1
= −

𝜔𝜔0
2 −𝜔𝜔2 + 𝜔𝜔0

2𝜇𝜇2(1 − cos𝜔𝜔𝜏𝜏2)
2𝜁𝜁𝜔𝜔0𝜔𝜔 − 𝜔𝜔0

2𝜇𝜇2 sin𝜔𝜔𝜏𝜏2
=
𝑟𝑟111

𝑟𝑟112
 

(17a) 

 

or equivalently 

1 − cos𝜔𝜔𝜔𝜔₁
sin𝜔𝜔𝜔𝜔₁

=
𝑟𝑟111

𝑟𝑟112
 

(17b) 

 

where using the fact that cos²𝜔𝜔𝜔𝜔₁ + sin²𝜔𝜔𝜔𝜔₁ = 1 and the trigonometric identity 

𝑡𝑡𝑡𝑡𝑡𝑡(
𝜔𝜔𝜔𝜔₁

2
) = �

sin2 𝜔𝜔𝜔𝜔₁
2

cos2 𝜔𝜔𝜔𝜔₁
2

= �
1/2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁)
1/2(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁)

= �
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁)(1− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁)
(1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁)(1− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁)

= �
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁)²

(𝑠𝑠𝑠𝑠𝑠𝑠²𝜔𝜔𝜔𝜔₁)
= �

(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠₁ �  =

1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐₁
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠₁

  

(17c) 

 

so that 

�
𝜔𝜔𝜏𝜏1

2
� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �

𝑟𝑟111

𝑟𝑟112
�+ 𝜋𝜋𝜋𝜋, 𝜅𝜅 = ,1,2,3,⋯𝑛𝑛,⋯ (17d) 

 

and thus we obtain 
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𝜏𝜏₁ =
2
𝜔𝜔

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(
𝑟𝑟111

𝑟𝑟112
) + 𝜋𝜋𝜋𝜋}, 𝜅𝜅 = ,1,2,3,⋯𝑛𝑛,⋯ (17e) 

 

and with 𝜏𝜏₁ = 2𝜋𝜋/(𝑧𝑧𝑐𝑐Ω), we get the spindle expression 

Ω =
2𝜋𝜋
𝑧𝑧𝑐𝑐𝜏𝜏1

=
𝜋𝜋𝜋𝜋

tan−1 �𝑟𝑟111
𝑟𝑟112

�
, 𝜅𝜅 = ,1,2,3,⋯𝑛𝑛,⋯ (17f) 

 

Using Equations (15) and (17), we obtain the stability charts as presented in 

Figure 25 and Figure 26 for the following cases: 1) cutting without cutting fluids, 2) 

cutting with cutting fluids. All the stability charts are plotted using Matlab and the 

constants selected are listed below [33].  

Natural Frequency 𝜔𝜔0 = 6038.7 𝐻𝐻𝐻𝐻 

Damping Factor 𝜁𝜁 = 0.025% 

Nominal Time Delay for Cutting Fluid Factor 𝜏𝜏2 = 3.5 × 10−4 

 



 

67 
 

 

Figure 25: Stability lobes - Cutting without cutting fluid [2 flutes, 3 flutes and 4 
flutes] 

 

 

Figure 26: Stability lobes - Cutting with varying penetration force of cutting fluid 

  

High Speed Region 
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Chapter 6. Results and Discussions    

Based on the study and the stability charts we obtain, a correlation between 

process regenerative chatter and the penetration force of cutting fluid is observed and 

quantified as follows: 

1) The study shows that the end mill with more flutes delivers better stability 

regimes. However for machining soft material like aluminum, fewer flutes are preferred 

to remove chips continuously. The result points to the selection of three flutes for 

widening the stability regimes. 

2) In high speed machining (Spindle speed > 6000RPM), when we assumed that 

all the other machining constants and variables are not changed and the penetration force 

of cutting fluid is more significant than other disturbance factors, increased penetration 

force of the cutting fluid will reduce the stability region of the machining proportionally. 

3) From the stability chart, we observe that dry machining at high spindle speed is 

preferred within our model. However, the use of cutting fluid is necessary in order to 

control the machining temperature and remove chips continuously. Generally, these 

disturbance factors such as the temperature, lubrication and chips were not considered in 

this research.  

4) The accurate selection of the penetration force of the cutting fluid is of great 

importance if one is to balance among the concerns of regenerative chatter, cutting fluid 

contaminants, penetration forces and high temperatures. 
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Several preceding studies were also reviewed to compare with our results 

obtained here. Ezugwu et al. [42] have tried to machine nickel-base Inconel 718 alloy 

with ceramic tools under finishing conditions with various coolant supply pressures. In 

their experiment, they cut the same material with three sets of cutting speed: 200 m/min, 

270 m/min and 300 m/min and two sets of feed rate: 0.1 mm/rev and 0.2 mm/rev while 

the depth of cut was held always. The cutting fluid they used for trials was a high 

lubricity emulsion coolant containing alkanolamine salts of the fatty acid and 

dicyclohexylamine. The concentration of the coolant was six percent. Then they applied 

three different pressure of cutting fluid: 11 MPa, 15 MPa and 20.3 MPa. Cutting forces, 

tool life, surface roughness and surface integrity were four considerations as results of the 

trials. Some of the results were reported based on their experiment: Lower tool life were 

generated when machining with the highest pressure of the coolant jet (20.3 MPa) and 

accelerated notch wear on both flank and rake faces of the ceramic tool during machining 

were more significant when increasing the pressure of the coolant jet. Both of these 

results will reflect our analytical results to some extent. And lower cutting forces were 

generated when machining at higher coolant supply due to improved cooling and 

lubrication at the cutting interface and as a result of chip segmentation caused by the high 

pressure coolant jet. For cutting force, another similar research has done by 

Mazurkiewicz et al. [43]. They cut 1020 steel for all the trials with different pressure of 

coolant: 70 MPa, 140 MPa, 210 MPa and 280 MPa. Their results (Figure 27) showed that 

when increasing the pressure of the coolant jet proportionally, the cutting force was 

reduced mainly due to the cooling and lubrication enhancement. However it should be 

paid attention that the decreasing speed (slope) was significantly slowed when increasing 
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the coolant pressure. This phenomenon was not specified and analyzed in their research. 

And it could be highly possible to be caused by the results from our model. Besides both 

Mazurkiewicz et al. and Sharma et al. [44] have mentioned respectively in their papers 

that the cooling and lubrication of the tool-chip interface by the coolant jets can account 

for the reduction in friction in the contact region between the tool and the workpiece and 

the generation of the short curl chip which may also affect the machining stability. 

 

Figure 27: Cutting force under different pressure of coolant 

 

To fully understand the impact of the penetration force of the cutting fluid and its 

correlation with machining stability for wide-range materials would require the analysis 

of nonlinear effect. The study of nonlinear effect is a recommended future work. 
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Chapter 7. Conclusion 

Today, there are increasing efforts to discover ways to optimize machining 

processes. Among all the manufacturing processes, machining creates great financial 

wealth. With the rapid advancement of numerically controlled machine tools and the 

ability to design and simulate complex machining task with CAD/CAM software, high 

speed milling operations, for example, now provide industries an opportunity to remove 

substantial volumes of materials at super high feeds and spindle speeds. In this thesis, we 

have established a direct correlation between the penetration force of the cutting fluid and 

stability of the milling process at specific spindle speeds. A mathematical model is 

constructed and the governing equations are derived in terms of the cutting conditions, 

the coolant penetration force and mass flow rate. Stability charts are constructed with and 

without the penetration force of the coolant. It is found that by increasing the penetration 

force of the coolant, the machining stability regimes become narrow when other 

machining variables are assumed not to be changed. The study also shows how changing 

number of the flutes impact stable spindle speed. It is discovered that the use of higher 

number of flutes in process milling expands the regimes of stability.  
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