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Abstract

Due to the way hospitals record information, patient health records are composed of

sparse and irregular multivariate time series data, with long breaks between visits and

varying physiological variables recorded each time. Such data can provide valuable ma-

chine learning opportunities for improving patient care. Since standard Recurrent Neural

Networks (RNNs) rely on fixed-length vector inputs, existing methods work by first con-

verting irregular data into regular. However, such conversion requires a priori specifying

a time interval to align values on, at the risk of negatively augmenting the original data

and/or meaning of the data expressed by such irregularity. To address this open problem,

we propose a novel end-to-end Reference-Network architecture (SIFT) for irregular mul-

tivariate time series to predict patient health outcomes. The architecture is composed of

a Reference Network, an Interpolator Network, and a Discriminator Network. SIFT is

able to extract the most informative data by adjusting the sampling interval to filter out

noise and pass only the most useful signals to the classifier. SIFT adapts the sampling

strategy (time interval data alignment) for values at which time points to interpolate,

this way paying more or less attention to different time windows. The reference network

is rewarded for sampling from the discriminative signal, and penalized for sampling from

noisy data. We validate our approach on a range of recently proposed models, includ-

ing GRU-D [1] and IPN [2]. Our experiments demonstrate that SIFT outperforms five

comparable imputation and interpolation methods in various settings, in both AUC and

Accuracy.



Acknowledgements

I would like to thank my advisor Professor Elke Rundensteiner, and my research

colleague Tom Hartvigsen (Data Science PhD student at WPI). Their guidance and

input over the past year has helped me learn an incredible deal about deep learning and

data mining, and taught me good research practices. I would also like to thank James

Kingsley of WPI Academic Research and Computing (ARC), for generously providing

access to high performance computing resources used in this work.

i



Contents

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Informative Missingness . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Model Framework 7

3.1 Reference Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Interpolator Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Discriminator Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Optimizing SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Experiments and Results 12

4.1 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.2 uWave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.3 PhysioNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.1 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.2 uWave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ii



4.3.3 PhysioNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Discussion and Conclusions 20

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



Chapter 1: Introduction

1.1 Background and Motivation

The classification of time series data is an important part of various domains, such as

healthcare [1, 3], meteorology [4], and financial marketing [5]. An important sub-set of

time series classification deals with performing classification on irregularly sampled time

series (ISTS). These time series are typically marked by irregularly-spaced gaps between

observations, usually resulting from sensor errors, influence of experts and various other

factors. For example, electronic health records (EHRs) record patient data such as phys-

iological signals, medications, diagnostic codes, in-hospital mortality, length of stay, and

are acquired by healthcare workers from doctors and nurses during routine hospital care

[2]. This information provides valuable insights into the progression of a patient’s health.

Unfortunately, such data is marked by the lack of alignment in the observation times

across various physiological variables, for instance the measurement of body temperature

or blood pressure. EHRs can give important insight into how patients respond to differ-

ent treatments and medications. By being able to interpret and make predictions on the

multivariate irregular time series found in EHRs, doctors and healthcare workers would

be able to forecast patient health outcomes without having to repeatedly record every

physiological signal.

1.2 State-of-the-art

Recently, there have been several approaches to the problem of sparse and irregular

time series data [1, 6, 7, 8, 9]. Arguably the simplest method for handling missing

observations in time series classification is through imputation [10]. Imputation is defined

as the process by which missing values are filled in [11], and the output of imputation

is an evenly spaced regular time series. Several imputation strategies exist, but the

most commonly used are zero (missing values replaced with zero), mean (missing values

replaced with mean), and forward fill (missing values replaced with last real observation).

While imputation can provide a straightforward and easy way to fill missing values, its
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simplicity can also be a limitation. Since the same imputed value is assigned to every

missing value, this can lead to significantly distorted distribution and underestimated

variance of imputed values. [11].

A more recent approach relies on constructing models with the ability to accept ir-

regular time series as input [12]. Several recent frameworks have relied on the Gaussian

Process (GP) [13, 7, 2]. Interpolation based on the GP allow for probability to be as-

signed to each estimated missing value. This is possible because of Gaussian distributions

which are defined by covariance matrices and mean vectors [14]. These two elements in

tandem allow for the derivation of the probability of an estimate. If we assume the mean

is zero, the covariance function fully defines the behavior of the GP, and it becomes

non-probabilistic. Methods relying on the probabilistic GP achieve much higher accuracy

compared to simple methods like imputation, but they are computationally expensive

and slow when used on large datasets.

The aforementioned methods of dealing with spare and irregular data have some shared

limitations. The key limitation is that these methods require ad-hoc selection of a sam-

pling rate at which to estimate values, which can significantly impact the classification

performance by either adding high levels of estimation error, or removing fine-grained

information. When the sampling interval is too long, the interpolation step is unable to

capture fine-grained signals. This doesn’t give the classifier enough useful information to

work with. When the sampling interval is short, it increases the missing data rate. This

forces the classifier to filter out noise, which can in turn reduce prediction accuracy.

1.3 Problem Definition

In this work we tackle the problem of performing accurate deep-learning classification

from irregularly-sampled multivariate time series. Given an irregularly sampled time

series, the goal of an interpolation model should be to sample the input data in such a

way that it may be used by an RNN, while also preserving temporal information about the

observations. Most commonly used sampling methods involve uniform sampling across
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the timeline, which depending on the length of the interval can either cause loss of

temporal information or an increase in missing data. It should be feasible to identify

points at which to sample the ISTS from, instead of relying on uniform sampling. By

being able to identify and extract relevant sections of sequential data and only passing

those into the model, we can retain temporal information without increasing noise caused

by missing data. Additionally, being able to compress a highly dense ISTS into a few key

points would intuitively point to improved classification accuracy, due to the classifier

not having to filter out any unnecessary noise itself. The objective is defined as reducing

number of reference timesteps (points that sampled from), while maintaining and possibly

even improving accuracy.

1.4 Challenges

We summarize three major challenges of this problem as follows:

• Noise/Signal Ratio: In a variety of tasks, regions of time series with important

signals are surrounded by noise which increases difficulty during network training.

The classifier has to spend significant time learning to filter out this noise, which

greatly increases training time and reduces overall accuracy.

• Observation Timing : In real-world datasets such as EHRs, variables are recorded

at varying, non-overlapping intervals. The fact that variables are not updated with

new observations at the same time can negatively impact models that don’t consider

changes across all variables when performing interpolation.

• Uniform Sampling : Commonly-used interpolation methods such as imputation rely

on uniform binning with an adjustable sampling rate. The ad-hoc selection of a

sampling rate can greatly influence accuracy, as coarse binning loses fine-grained

signal, but dense binning introduces too much noise to the classifier.
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1.5 SIFT

In this work, we present a novel deep learning architecture to the aforementioned chal-

lenges which we refer to as SIFT: Semi-parametric Interpolation of Filtered Timesteps.

The architecture is composed of two networks: a reference network and a predictor net-

work. In principle, the predictor network may take many forms, as long as it takes a

temporal sequence as input and performs classification on it. However, in line with re-

lated works [2, 15] we model this component as a Recurrent Neural Network (RNN) using

Gated Recurrent Units (GRU) for our transition function. The reference network learns

to focus interpolation on the most relevant parts of an irregularly-sampled time series

with respect to the classification task, similar to an attention mechanism. By focusing

on only the relevant parts of the time series, the reference network allows for the most

discriminative information to be propagated to the predictor network, reducing its need

to filter noise. Empirical studies on real-world tasks show that our approach outperforms

baseline methods in a variety of settings.

The main contributions of our work can be summarized as follows:

• We propose a reference learner network that is able to identify regions of relevant

signal in an input time series using deep learning. The reference learner network is

designed to be integrated with an existing interpolation architecture.

• We incorporate the reference learner network into an architecture that relies on a

Gaussian kernel to perform interpolation at the regions identified by the reference

network, which are then used to classify the time series.

• We apply our method to one synthetic and two real-world time-sensitive time series

classification tasks. The results of these experiments show that our method signifi-

cantly outperforms comparable baselines in several key metrics. Most importantly,

it gets much higher accuracy when using fewer estimated values.
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Chapter 2: Related Work

2.1 Overview

Many models and architectures have been developed in recent years that handle sparse

and irregular time series [1, 6, 7, 8, 9, 2]. The primary focus of many of these models is on

EHR data. In order to model EHR data, deep learning architectures have been employed.

These architectures have been developed Convolutional neural networks [16, 17], and

plenty state-of-the-art models utilize Recurrent neural networks (RNNs). For example,

several works utilize Long-Short Term Memory (LSTM) RNNs [18, 19, 12], and GRU

networks are also commonly used [20, 8, 1, 21]. Models relying on RNNs aim to overcome

the inherent limitation of how RNNs handle input data. Standard RNNs expect input

as a sequence of tokens, which does not account for unequally spaced gaps between

observations. This means that important temporal information is lost when working

with ISTS. This problem is commonly addressed using imputation before the altered

data is fed into a regular model.

2.2 Imputation

Imputation is the process of taking missing values in an input time series and filling them

in according to some heuristic, usually for the purpose of retaining temporal information

when using ISTS data on RNN-based models. The missing values are filled at a specified

sampling rate. The smallest possible sampling rate at which you could fill missing values

can be described as limi→0 Pi where i is the interval at which imputed values Pi are

sampled. However, fine-grained sampling rates are not only computationally inefficient,

they also greatly increase the noise/signal ratio [15]. Using more realistic sampling rates

can lead to undersampling, where two or more values occupy the same ”bin” of imputed

values, which can be solved by averaging the values inside the bin. Bins with no values

are filled based on an imputation heuristic. The heuristic can be simple, such as filling in

each missing value with the mean or with zero. These primitive heuristics can be quite

powerful, as a recent work [1] used a GRU-D network combined with simple imputation
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heuristics that incorporated mask and time interval information into the GRU model.

Missing variables would decay over time from the last observation to their empirical

mean, in order to model the decreasing relevance of an imputed value.

More elaborate imputation strategies exist, such as kernel methods [22] and Gaussian

processes [23, 24, 7]. For example, Ghassemi et al. (2015) successfully utilized multi-task

Gaussian process models to perform regression and classification on sparse and irregu-

lar EHR data [23]. However, they noted the computational cost of Gaussian processes

presents a significant limitation. A more recent work by Shukla et al. (2019) used a sep-

arate interpolation network based on Gaussian kernels to perform imputation [2]. Their

interpolation network relies on a combination of fine-grain and coarse interpolations, and

an intensity function, to model patterns in the timing of the observations. Clustering

models, also known as mixture models, have been used to overcome problems associated

with irregular data. These include Gaussian mixture models [9], and clustering with

learned distance metrics has also been utilized [25].

2.3 Informative Missingness

Research has been done on treating missingness as an informative [26, 1, 8, 27, 19]. These

approaches range from simply concatenating missing entries or timestamps to the RNN

input, to creating specialized RNN models that incorporate masking and time intervals.

Another approach that aims to tackle the same problem is utilizing attention mechanisms.

For example, Ma et al (2017) use a combination of three attention mechanisms on the

hidden state output of bidirectional RNNs [21]. Tan et al. (2019) presented a network that

would utilize a time-aware GRU (T-GRU) that can directly analyze irregularly sampled

data. It also utilized a dual-attention structure that would take into consideration both

data-quality and medical-knowledge [15]. Pham et al. (2017) make a similar modification,

albeit to an LSTM network, that allows it to directly parse irregular EHR data, while

also embedding information about admissions and interventions to the vector space [19].
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Chapter 3: Model Framework

We propose SIFT, which is the first ISTS classification architecture that can learn where

to sample an input time series, separating regions of uninformative noise from regions of

signal relevant to the classifier. This is accomplished by combining an attention mech-

anism with a separate interpolation network. The goal of SIFT is to provide a method

that can achieve high accuracy while requiring significantly less reference timesteps to

be sampled. A reference timestep refers to the limited amount of points an interpolation

strategy chooses to sample values from. An interpolation strategy samples values from

reference timesteps, usually for the purpose of using these sampled values to perform

classification or regression.

Interpolator NetworkReference Network Discriminator Network

x

t

+ / 

rk

Observed
Interpolated

Reference Learner

Smooth Interp.

Figure 1 – SIFT: Model Architecture

As shown in Figure 1, the architecture of SIFT consists of three main components: a

reference network, an interpolator network and a discriminator network. The reference

network is comprised of a smooth interpolator, and a neural network we will from now

refer to as the Reference Learner (RL). The smooth interpolator is used to make the

initial interpolation, which the RL uses to select the most informative reference timesteps.

The value at each reference timestep r needs to satisfy 0 ≤ r ≤ 1. Min-max scaling is

used to map r between 0 and 1 . Through training, the reference network learns how

to optimally pick out reference timesteps which contain discriminative information. The

values at the reference timesteps are passed to an RNN-based classifier that learns a

representation.
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3.1 Reference Network

The goal of the reference network is to find discriminative regions of signal in ISTS

data. The intuition behind this component is that certain ”discriminative” regions of the

input signal are more informative than others. Thus, given an input time series xn and

the number of reference timesteps to sample N , the network will return N × j points

sampled from Xn, where j is the number of input features. These points are sampled from

parts of the signal that the network believes are most informative. This is accomplished

by training the Reference Learner (RL) component to perform accurate estimations of

discriminative regions of signal on the input time series. The RL network consists of

four sequential layers. A ReLU activation is applied to each layer but the last. Careful

experimentation has shown that the RL learns best when a smoothed interpolation of the

input signal is fed into it. Therefore, we introduce a smooth interpolator component, that

uses a squared exponential Gaussian kernel with parameter αt. The RL expects a single

input vector xd, which is the output of the smooth interpolator, and the RL performs

reference timesteps selection independently across each input variable j.

The output of the reference network requires a certain property: For each reference

timestep rjd, the value at r needs to satisfy 0 ≤ r ≤ 1. This is due to the fact that the

both the timesteps and time series values of the input time series are normalized between

0 and 1. In order to guarantee the output of the network matches this property, min-max

feature scaling is applied to the output of the final layer of the network ht. Equation

1 shows the calculation of the final layer, while Equation 2 shows the min-max feature

scaling applied to it. Due to how the network scales the input, it means that r1 and

rk will always be 0 and 1, respectively. This results in the undesirable outcome where

there are 2 fewer reference timesteps being drawn from the discriminative regions of the

input time series. To prevent this from happening, we omit the maximum and minimum

value, which are always 1 and 0 respectively, after sorting. (Equation 3). When training

the SIFT architecture, the reference network is trained in tandem with the discriminator

network. Thus, the output of the RL is a sorted vector r ∈ [0, 1] that contains the set of
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reference timesteps.

ht = xwt + d (1)

rk = sort(
ht − ht,min

ht,max − ht,min

) (2)

rk′ = (r̂1, r2, r3, ..., rk−2, rk−1, r̂k) (3)

3.2 Interpolator Network

The interpolator network is inspired by the work of Shukla et al. (2019). The main

benefit of this approach is that it provides a framework for easier interpolation across

multiple variables. Their proposed Interpolation-Prediction Network (IPN) interpolates

the irregular multivariate input time sequence against the reference points rk provided

by the reference network. More specifically, it expects an ISTS (comprised of pairs of ob-

served timesteps td, and the observed values xd) and the reference timesteps rk to sample

on. The IPN network initially creates two transformations of the input data: a Smooth

interpolation σkd, and a Coarse interpolation γkd. The smooth and coarse interpolations

are individually produced for each input feature j. The smooth interpolation uses a

squared exponential Gaussian kernel exp(−α(rjk − tjd)2), with parameter α as αd. The

coarse interpolation uses the same squared exponential kernel with parameter α as kαd,

where k is a parameter that adjusts the scaling of α. Thus, we can define the equations

for smooth and coarse interpolation as follows:

w(r, t, α) = exp(−α(r − t)2) (4)

σkd =
1∑

t∈tw(rjk, td, αd)

Ldn∑
j=1

w(rjk, tjd, αd)xjd (5)

γkd =
1∑

t∈tw(rjk, td, kαd)

Ldn∑
j=1

w(rjk, tjd, kαd)xjd (6)

The interpolator network uses the smooth and coarse interpolations to provide three

output vectors to the discriminator: the cross-channel interpolant captures smooth trends
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across variables, the transient component captures transients, and the intensity function

captures temporal information about the observations.

3.3 Discriminator Network

The discriminator network takes the output from the interpolator and outputs a predic-

tion of the target value for the given input vector. This component of the model is flexible

and there are many state-of-the-art architectures for sequence classification. The output

of the interpolation can be vectorized and fed into a standard RNN network. Several

temporal and convolutional models such as GRU or LTSM can be used on time slices

of the interpolator output. In this work, we conduct experiments leveraging a two-layer

GRU network as the discriminator network due to its explicit modeling of the temporal

dynamics present in irregularly-sampled time series and to remain comparable to prior

work [2]. Each layer of the GRU computes functions defined by Equations 7-10.

qt = σ(Wirxt + bir +Wsrs(t−1) + bsr) (7)

zt = σ(Wizxt + biz +Wszs(t−1) + bsz) (8)

nt = tanh (Winxt + bin + qt ×Wsns(t−1) + bsn) (9)

st = (1− zt) ∗ nt + zt ∗ s(t−1) (10)

3.4 Optimizing SIFT

The process of training relies on iteratively updating all learnable parameters of SIFT,

which is done by minimizing errors made by the Discriminator, and maximizing optimal

reference timestep selection by the Reference Network. The Interpolator, Reference Net-

work and Discriminator are optimized together with respect to Negative Log Likelihood

loss defined in Equation 11, where y represents the prediction of the Discriminator as log

probabilities, ŷ the true label’s probability, and K the number of classes of the prediction
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labels.

L(y) = − 1

K

K∑
k=1

ŷy (11)

The final hidden state of the Discriminator, St, is projected into K-dimensional space

using a three-layer fully-connected network. A softmax function is applied to the resulting

vector, which allows the vector to be treated as prediction probabilities. Finally, we take

the natural logarithm of the vector, since this operation has the effect of penalizing

predictions that are confident and wrong. We can define the computation as follows:

P (Y = i|St,Who, bho) = softmax(WhoSt + bho) =
eWhoSt+bho∑
j e

WhoSt+bho
(12)

y = log(P (Y = i|St,Who, bho)) (13)

Where Who and bho represent the weights and biases of the three-layer network.

SIFT is an architecture composed of multiple components which are all optimized by

a single loss function. In such cases, proper training of the model relies on the back-

propagated gradients flowing from the loss function towards the beginning of the model,

through each component. This process can work correctly as long as every operation is

differentiable. Importantly, since the Reference Network uses a sort operation, we ensure

this operation is differentiable by sorting the gradients alongside the logits.
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Chapter 4: Experiments and Results

4.1 Baseline Models

For the baseline models, we compare our model to several imputation and interpolation

methods that rely on a GRU classifier.

• GRU-M: Imputation strategy where missing values are replaced by the local mean.

Multiple values occupying a bin are averaged.

• GRU-F: Imputation strategy where missing values are replaced by the the most

recently observed real value. Multiple values occupying a bin are averaged.

• GRU-Z: Imputation strategy where missing values are replaced by the zero. Multi-

ple values occupying a bin are averaged.

• GRU-D: Method proposed by Che et al. (2018) [1]. This method uses a modified

GRU network which causes imputed values to decay over time to their empirical

mean. The intuition behind this method is that as the time since the last real

observation increases, the value of an imputed value decreases, matching a decrease

in certainty that the imputed value is still representative of the actual data.

• IPN: Method proposed by Shukla et al (2019) [2]. This method uses a separate In-

terpolation Network that relies on Gaussian kernels to provide strong performance

at performing interpolation across multiple variables. However, it still relies on uni-

form sampling of reference timesteps, which can limit accuracy in certain situations

where signals are short, and reference timesteps are few.

To make baseline comparisons fair, only methods that utilize the concept of ”reference

points” that are sampled on are included in the baselines. Therefore, methods where the

entire input is passed, such as RNN-∆t, are excluded.
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Figure 2 – Random samples from the Synthetic data with varying µ and λ. Solid-blue
plots represent Class 0 (Domes), while dashed-red plots represent Class 1 (Spikes).

4.2 Datasets

4.2.1 Synthetic Data

The synthetic data-set was devised as a simple classification problem that could be made

more difficult by adjusting its parameters. The data is defined as having two classes:

domes and spikes. As seen in Figure 2, both classes have distinct shapes when plotted

over the time axis.

While the problem is initially very easy, it can be made more difficult through two

adjustments: noise (µ) and signal length (λ). Noise can be added either on the signal,

or outside of the signal region. The addition of noise makes the problem more difficult

by making regions that contain informative signal less discernible. The manipulation

of signal length can also change the difficulty of the problem. By making the signal

longer, interpolation methods that sample uniformly can pick more points which lie on
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the signal. This increases classification accuracy since more relevant points are provided

to the discriminator network. By making the signal shorter, interpolation methods that

sample uniformly will sample less observations from the signal region, leading to lower

classification accuracy.

4.2.2 uWave

The uWave dataset is comprised of univariate recordings from the output of an accelerom-

eter. The data contains 4000 samples of triaxial accelerometer data collected from eight

users, with each recording having 94 observations. There are 8 possible classes, which

signify 8 different gesture patterns identified by a Nokia research [28]. This data is irreg-

ular because an accelerometer only captures input during movement - meaning gaps in

the data occur when the accelerometer is being held still.

4.2.3 PhysioNet

The PhysioNet dataset [29] has been widely used to evalute methods dealing with ISTS

EHR data. The PhysioNet dataset is comprised of physiological recordings from the first

48 hours of 12,000 ICU stays. In order to remain faithful to related work of the baseline

model(s), we remove features that don’t positively contribute to classification accuracy

[1]. Nine out of 41 features are chosen, and the selection is based on a recent work by

Monterio et al. [30], which showed that removing certain features from the PhysioNet

dataset can have a profound impact on accuracy, both in classification and regression. The

data is normalized based on the minimum and maximum value across each time series.

The data is front-padded with zeros in order to maintain the same sequence length across

all features and patients. For the classification problem, a balanced sampling of set-a,

set-b and set-c data is used for training. In order to fairly assess the performance of the

model, validation and testing are performed on an imbalanced subset of the data.
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4.2.4 Implementation Details

For all datasets, we split the data as 80% training and 20% testing. The training set

is used to tune the model’s parameters, while the testing set is used to evaluate certain

hyperparameter configurations. In order to accurately represent the performance of the

model and baselines, all results are averaged across 10 runs of the training process. In

this work, we rely on the Adam method for optimization, with the learning rate adjusted

according to the input dataset.

4.2.5 Experimental Setup

The experiments were performed on a linux platform, leveraging 13GB RAM, 2vCPU

@ 2.2GHz, and an Nvidia K80 GPU with 2 cores and 12GB VRAM. The source code

was written in Python 3.7.6, using libraries such as PyTorch 1.4.0, Numpy 1.17.3, and

scikit-learn 0.22.2.
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Figure 3 – Accuracy on Synthetic data while adjusting µ and λ. Confidence intervals
represent standard deviation over 10 replications.
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4.3 Experimental Results

4.3.1 Synthetic Data

The initial experiments are run on the synthetic dataset, which provides a controllable

setting with clearly defined input data. Two important adjustable hyperparameters are

found: the signal length λ, and the noise amount µ.

The hypothesis for the SIFT method is that it should be able to focus the interpolation

entirely on the signal region, ignoring noisy and irrelevant data. We can test this using

the synthetic data hyperparameters.
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Figure 4 – Accuracy on Synthetic data with fixed λ and µ. Confidence intervals represent
standard deviation over 10 replications.

Accuracy : SIFT should more accurately classify instances where less reference timesteps

land on the signal. This means a shorter signal combined with fewer reference timesteps

should provide the environment in which SIFT outperforms other methods. In order to

test this, we fix the number of reference timesteps to 4, and adjust λ and µ. In Figure 3,
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we show how adjusting λ and µ plays a role in classification accuracy. We see that when

λ is lower, and µ is higher, the classification task difficulty increases greatly. At λ = 0.1,

all methods have approximately the same accuracy. This is because the signal is very

small and difficult to dedect for any method, so methods get random accuracy. However,

as the signal becomes more apparent as we increase λ, SIFT begins to outperform all the

other baselines.

Figure 4 provides a comparison between SIFT’s performance with a smaller λ, com-

pared to baselines. As intuitively expected, SIFT seems to perform significantly better

in situations where a uniform sampling of reference timesteps can’t draw enough points

from the signal. Additionally, increasing λ results in the expected behavior of equalizing

the SIFT method with the baseline methods.

4.3.2 uWave
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Figure 5 – Accuracy on uWave data while adjusting reference timestep count. Confidence
intervals represent standard deviation over 10 replications.
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The uWave dataset represents a univariate ISTS problem, which can be considered

similar to the Synthetic data. Unlike the synthetic dataset, there are no parameters

instrinsic to the dataset, so we can instead evaluate SIFT’s performance by adjusting the

number of reference timesteps. As mentioned several times throughout this work, we can

expect that most methods will perform worse with less reference timesteps, and better

with more. However, SIFT should be able to outperform other methods when using a

smaller number of reference timesteps.

Accuracy : In Figure 5, we show that the results are in-line with the expected outcome.

That is, SIFT performs tremendously well compared to other methods, when there are

few reference timesteps. In fact, SIFT achieves over 50% accuracy with only 1 reference

timestep on uWave, which is an 8-class classification problem. The baseline methods

match SIFT’s accuracy at 30 reference timesteps, but SIFT is already achieving the same

accuracy at only about 15 - half the reference timesteps.
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Figure 6 – Accuracy on PhysioNet data while adjusting reference timestep count. Confi-
dence intervals represent standard deviation over 10 replications.
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4.3.3 PhysioNet

PhysioNet is a multivariate dataset, in which the binary classification problem presents us

with highly imbalanced data. In order to evaluate our method, we perform experiments

in a similar style to the uWave ones. We adjust the number of reference timesteps, and

evaluate how each baseline performs. Compared to the previous datasets, PhysioNet is a

more complex and difficult problem by several orders of magnitude. Accordingly, we can

expect the models to behave slightly differently than in the previous experiments.

AUC : In Figure 6, we show that SIFT still outperforms the baseline methods on the

PhysioNet dataset. An interesting phenomenon is observed: the IPN and GRU-Z methods

begin to perform worse as reference timesteps increase. This effect seems to validate our

initial hypothesis: more data is not always preferable, if it is not being sampled from the

correct signal region. This is further solidified by SIFT heavily outperforming the IPN

baseline as we increase the reference timesteps, despite them both relying on a similar

interpolation strategy.
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Chapter 5: Discussion and Conclusions

5.1 Summary

In this work, we develop a novel architecture for the classification of irregularly sampled

time series. Our Reference Network approach tackles limitations of existing imputa-

tion strategies on irregular time series data. We demonstrate that the addition of the

Reference Learner component to an interpolation network can result in a more discrim-

inative and informative interpolation. The Reference Learner accounts for the varying

importance of different regions of an input signal, and adjusts the points of interpolation

accordingly. This approach allows the classifier to learn more pertinent representations

of the time series by filtering out data not useful for classification, with little perfor-

mance overhead. Our experimental results on both synthetic and real-world datasets

show statistically significant improvements in classification tasks over several relevant

and comparable methods and architectures. Specifically, SIFT outperforms the baseline

methods in situations where fewer points are sampled from an input time series, by being

able to focus on only the relevant and discriminative regions of the input signal.

5.2 Future Work

This work is extensible in several directions. For example, the approach of the Reference

Network is very similar to an attention mechanism. The implementation of the Reference

Network relies on a straightforward and robust architecture consisting of an interpolator

and a fully-connected four layer network (Reference Learner). However, novel approaches

to attention mechanisms are published every year. It would be prudent to explore al-

ternative implementations to the Reference Learner, by exploring the advances made

in attention mechanisms. Additionally, the problem of this work can be viewed as an

approach to dimensionality reduction. Our experiments show that using SIFT, input

data can be compressed into lower dimensionality, while providing comparable or higher

accuracy. This can be further explored as a way to perform data compression while

maintaining discriminative regions of time series data.
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