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Abstract 

This project studied a biologically based concrete repair method to understand micro-

characteristics and durability. Scanning electron microscopy (SEM) and rapid chloride 

permeability testing (RCPT) were used to study an enzyme modified (CA-Add) concrete and 

ordinary portland cement (OPC) concrete. Interfacial bonding of the repair to CA-Add substrate 

was visible in SEM. Permeability of CA-Add was lower than OPC.  Results showed differences 

between the concrete mixes, however further research is recommended.  
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To comply with the accreditation requirements established by the Accreditation Board for 

Engineering and Technology (ABET), the Department of Civil and Environmental Engineering at 

WPI requires all Major Qualifying Projects (MQP) to include a Capstone Design Experience. The 

Capstone Design Experience requires students to design a system, component, or process to meet 

desired needs. To fulfill this requirement, this MQP outlined and performed an experimental 

process to evaluate a method of biologically repairing concrete. The goal of the project was to 

address a lack of understanding of differences in the concrete matrices of normal OPC concrete 

and enzyme modified concrete. The project involved several design problems, including the design 

of unique molds as well as determining the best course of action for experimental set up and design. 

The MQP incorporated sustainability, environmental, and health and safety design constraints. 

 

Sustainability 

 The project was framed in the context of sustainability. A large proportion of bridges and 

concrete structures in the United States need repair. Many concrete repair methods that are 

currently used are not long lasting and tend to debond from the concrete. The repair method studied 

in this project is a novel way of healing concrete, and it uses sustainable ingredients. Carbon 

dioxide is everywhere, and carbonic anhydrase is present in all living organisms, making them 

readily available for use. 

 

Environmental 

 The enzyme repair method is environmentally friendly because it uses no harmful 

chemicals and involves biologically based healing in the concrete itself. The method of filling 

cracks uses water, carbon dioxide, tris, and carbonic anhydrase, none of which are harmful to the 

environment.  

 

Health and Safety 

 None of the ingredients in the repair method are harmful to human health. Some methods 

of fixing damaged concrete, such as epoxies, can be harmful to human health. The repair method 

in this study is safe to produce and use. 
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1.0 Introduction 

Concrete has been used as a building material since the days of the Roman Empire, 

although its uses have evolved since. It can be formed into almost any shape, is fire-resistant, 

inexpensive, and has a high compressive strength (Monaghan, 2017). The strength of concrete can 

be further increased by using steel reinforcing bars to prevent tensile cracking. Although concrete 

is a versatile material, it does have a number of flaws, namely its susceptibility to cracking. Cracks 

are often caused by environmental conditions, such as freeze thaw damage or corrosion by carbon 

dioxide and chloride. Environmental conditions, such as temperature, humidity, and weather 

patterns have been changing due to climate change, and it has affected concrete structures in a 

negative way.  

Climate change is a growing concern, it has already been observed that the global average 

land surface air temperature has risen by 1.53 °C (IPCC, 2019). Although climate change is 

directly affecting the durability of concrete, the production and construction of concrete structures 

further contributes to climate change. Concrete is produced in high volumes all over the world 

because it is needed for new construction projects as well as repair and maintenance in older 

structures. There have been numerous studies in the past years that have addressed the need for 

concrete to be a more sustainable and environmentally friendly material. Biologic and self-healing 

concrete has become a promising solution. Bacteria, and the enzymes they produce, have the 

ability to fill cracks and reduce the permeability of damaged concrete by precipitating calcium 

carbonate. It has become a novel and environmentally friendly possibility for concrete repair. 

This study focuses on a unique method of healing concrete using the enzyme carbonic 

anhydrase. The method is new, and the micro-characteristics of the repair and its durability are not 

well understood. In order to gain a deeper understanding of how the concrete matrix changes with 

the addition of carbonic anhydrase, scanning electron microscopy and rapid chloride permeability 

testing was used. The final outcomes of the project produced detailed visuals of the repair-concrete 

interface, and a quantitative comparison between normal concrete and concrete containing 

carbonic anhydrase. 
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2.0 Background 

 This chapter provides a detailed background on concrete and its many uses in the modern 

world. The section also discusses the benefits and drawbacks of concrete as a building material. 

Although widely used, concrete has several weaknesses when exposed to continual loading and 

unfavorable environmental conditions. There are a multitude of solutions currently used in industry 

to repair concrete, but they are often not long lasting. The chapter concludes with a discussion on 

innovative concrete repairs, and why those repairs can help make infrastructure sustainable and 

resistant to climate change.  

 

2.1 Climate Change and Concrete 

Concrete is one of the most used building materials in the world, and therefore needs to be 

produced in high volumes. In 2016, concrete production generated about eight percent of the total 

global carbon dioxide emissions, and 90% of that total is due to cement production (Rodgers, 

2018). As a material, concrete has a relatively low amount of embodied carbon dioxide, but it is 

the sheer amount produced every day that creates such a high level of emissions (Barcelo et al., 

2014). Concrete production and use is not sustainable, particularly with rising concerns about 

climate change. Wang et al. determined that the rising temperatures will most likely increase 

corrosion rates in concrete, with a fifteen percent increase in corrosion if there is a two degree 

increase in global temperature (2011). The high carbon footprint of concrete combined with the 

need for long lasting and inexpensive repairs are challenges that must be overcome in the future. 

Climate change is already affecting concrete structures due to changes in temperature, 

humidity, and extreme weather events. Two major methods of deterioration in concrete, 

carbonation and chloride-induced corrosion are influenced strongly by temperature and humidity. 

Wang et. al. states that higher temperatures increase carbonation, and there is evidence that 

chloride-induced corrosion is accelerated by carbonation (Wang et al., 2010). Carbonation is 

directly caused by atmospheric carbon dioxide, and the likelihood of carbonation induced 

corrosion has grown more likely as global carbon dioxide levels increase. Furthermore, increased 

temperature elevates the likelihood of both carbonation and chloride-induced corrosion in concrete 

structures (Wang et al., 2011). The effects of climate change on concrete infrastructure will only 

get worse in the future. There is a need for innovative solutions that can address issues with 

concrete durability and sustainability. 

 

2.2 An Overview of Concrete and Concrete Chemistry 

 Concrete is one of the most versatile and well known building materials in the world. It is 

also relatively easy to make. At its most basic, concrete is made up of cement, water, and aggregate. 

Aggregate, both fine and coarse, is inexpensive, easy to come by, and makes up seventy to eighty 

percent of concrete volume (Scientific Principles, 1995). Cement production on the other hand 

requires a slightly more involved process. Cement is formed during a high temperature process 

“during which minerals like clay, iron-ore, sand and limestone are partially melted and recombined 

at up to 2,700F in large kilns” (Monaghan, 2017, p.96). The resulting material is called clinker. 
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The clinker is ground up and combined with gypsum in order to regulate the setting time and create 

typical portland cement (Scientific Principles, 1995). Although concrete only has three main 

ingredients, cement, aggregate, and water, at a deeper level the minerals and hydration processes 

of concrete are far more complicated. 

 

2.2.1 Concrete Hydration 

Water is one of the main ingredients in concrete, and it is vital for workability, hardening, 

and it greatly influences material properties. Too much water in a mix can detract from strength 

due to unfilled voids in the concrete. Too little water and the concrete will not be workable and 

there will not be enough free water for concrete to gain maximum strength (Monaghan, 2017). 

There are numerous compounds found in cement powder responsible for the strength of the 

concrete, but the main ingredients are tricalcium silicate, dicalcium silicate, tricalcium aluminate, 

tetracalcium alumnioferrite, and gypsum (Monaghan, 2017). The most important minerals are 

tricalcium silicate and dicalcium silicate.  

 

 
Figure 1: The process of concrete hydration. Water is represented by black, alite is 

represented by red, belite is represented by blue, and the yellow is C-S-H gel. From left to right, 

the amount of C-S-H increases and the water filled pores decrease as the hydration process 

continues, adding to the strength of the concrete (Thomas & Jennings, 2018). 

 

Tricalcium silicate, also called alite, is the most common mineral in portland cement. It is 

illustrated in Figure 1 in red. Alite is responsible for the initial strength of the hardened concrete. 

Alite is highly reactive, and it quickly releases calcium and hydroxide ions as well as a significant 

amount of heat. The reaction causes calcium silicate hydrate gel, or CSH, to begin forming. CSH 

is illustrated in Figure 1 in yellow and is responsible for binding the particles together. Although 

CSH is not strong itself, it grows thicker over time, making it harder for the alite to react with 

water (Monaghan, 2017). Dicalcium silicate, or belite, reacts over a longer period and is 

responsible for increasing the concrete strength in the long run. It is illustrated in blue in Figure 1. 
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Belite reacts in a similar fashion to alite, but in a slower manner. It also produces CSH gel and 

contributes to the build-up of concrete strength over time (Scientific Principles, 1995). Both alite 

and belite produce calcium hydroxide, which helps to close pores and resist shrinkage (Monaghan, 

2017). Calcium, which is in both alite and belite, is an integral part of concrete hardening and it is 

one of the most vital ingredients in portland cement. Calcium is responsible for binding the 

concrete matrix together and giving it strength in the long run. 

 

2.2.2 Concrete Degradation 

While concrete is a relatively cheap and versatile material, it does have a number of 

drawbacks, one being its susceptibility to cracking. The degradation of concrete structures is 

inevitable over time, but cracking increases the permeability of the concrete and makes a structure 

more vulnerable to corrosion of steel reinforcement by water, air, or harmful chemicals 

(Muhammad et al., 2016). There are a number of ways for concrete structures to deteriorate, many 

of which are influenced by environmental conditions.  

Carbonation is one of the most significant threats to concrete, and is caused by the ingress 

of atmospheric carbon dioxide. It is influenced by temperature and humidity as well, with 

maximum carbonation occurring at fifty to seventy percent humidity (Šavija & Luković, 2016). 

The carbon dioxide reduces alkalinity of the concrete and makes the steel vulnerable to corrosion 

through depassivation. Carbonation also causes shrinkage, worsening existing cracks. During 

carbonation, carbon dioxide reacts with calcium hydroxide crystals and CSH gel to produce 

calcium carbonate. The process reduces the pH of the concrete and destroys the passive layer, 

leading to an increased threat of corrosion (Wang et al., 2010). Concrete is more susceptible to 

carbonation over time as the concrete is continually exposed to atmospheric carbon dioxide. There 

are also “changes in porosity, (micro)mechanical properties and appearance of cracks” that result 

from carbonation (Šavija & Luković, 2016, p. 286). On the other hand, carbonation can sometimes 

have positive effects on the properties of cement paste and concrete. It has been observed that 

strength, both compressive and tensile, can be increased by carbonation because the cement paste 

becomes stiffer. Another beneficial use of the carbonation process is accelerated carbonation 

curing. Fresh concrete is exposed to a high concentration of carbon dioxide which results in a rapid 

and high early age strength gain. Calcium hydroxide is converted to calcium carbonate, resulting 

in a high amount of calcite (Šavija & Luković, 2016). Overall, exposure to carbon dioxide can 

have positive effects for concrete in the short term but negative effects over time. 

Chloride-induced corrosion can also pose a significant threat to structures, particularly in 

marine environments. Cracks in concrete allow chloride ions to permeate the structure, which then 

leads to corrosion of the steel reinforcement. Chloride-induced corrosion is strongly influenced by 

the concrete cover depth over the reinforcement. A greater cover depth typically leads to less 

corrosion (Wang et al., 2010). The products from corrosion have more volume than the original 

steel, leading to significant internal stresses that cause cracking and a loss of steel cross-sectional 

area (Li et al., 2017). Both carbonation and chloride corrosion can result in structural deterioration 

and even failure of a structure. Other processes that cause deterioration include sulphate attack in 
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areas that have acidic sulfate soils, reactions between alkalis and the aggregate that cause 

expansion, and freeze thaw cycles that cause expansion of water in concrete pores (Wang et al., 

2010). While concrete is a strong building material, it has weaknesses that need to be addressed 

throughout the service lifetime of a structure. 

A case study involving surveys of industry experts by Gardner et al. found that the most 

common problem experienced with concrete structures is cracking and poor workmanship leading 

to cracking. Cracking was reported by almost ninety percent of survey respondents. Freeze thaw 

damage was reported by about fifty percent of respondents, while carbonation and chloride 

induced damage was reported by about thirty percent. Additionally, the study reported that bridges, 

particularly joints, bearings, and the deck were the most vulnerable to damage and therefore needed 

the most repairs (Gardner et al., 2018).  

 
Figure 2: Structurally deficient bridges in the U.S. Although the number of structurally 

deficient bridges in the U.S. has decreased, there is still a large number of bridges needing repair.  

(American Society of Civil Engineers, 2017). 

 

Concrete repairs have significant economic impacts due materials, manpower, and the cost 

of service disruption to the public. Combined with the sheer number of concrete structures that 

need repair, there is a significant amount of money that needs to be invested into maintenance and 

repair of concrete. The American Society of Civil Engineers, or ASCE, has studied the need for 

infrastructure investment in the past as well. Every four years, ASCE releases a report card 

detailing the quality of infrastructure across the United States. The current infrastructure grade is 

a D plus. Figure 2 shows the percent of structurally deficient bridges in the US. The report card 

states that 9.1 percent of bridges in the U.S. are structurally deficient, and an estimated $123 billion 

is needed to update and repair the bridges (American Society of Civil Engineers, 2017). The 

National Academy of Engineering, or NAE, has identified fourteen engineering challenges that 

must be addressed in the 21st century, and one of them is to restore and improve urban 
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infrastructure. The NAE states that solutions must consider sustainability, environmental and 

energy-use considerations, and aesthetic elements (National Academy of Engineering, ) n.d.). 

Overall, there is a tremendous need for solutions that address repair and maintenance of concrete 

structures, especially as they continue to age and deteriorate. 

 

2.2.3 Concrete Repair 

According to a 2015 concrete repair guide prepared by the U.S. Department of the Interior 

Bureau of Reclamation, there are four main types of concrete repair. The first kind is sealers and 

coatings that repair small cracks and protect from surface damage. Sealers often have to be 

reapplied every other year in order to maintain protection. Some sealers dry rapidly and have a 

strong odor, making them a challenge to apply to structures (Monaghan, 2017). An example of a 

sealing repair is shown in Figure 3. The next type of repair is a thin repair. They provide a non-

permanent repair for cracks that are not deep or large. Thin repairs can sometimes cause more 

damage if the repair debonds from the concrete due to freeze thaw damage, or if the new and old 

concrete create an alkali-silica reaction. On the other hand, thick repairs are used for large cracks, 

and are typically the most cost effective and successful repairs. Lastly, there are crack and water 

leak repairs, which typically involve extra reinforcement placement or an injection of resin (von 

Fay, 2015). Although there are numerous ways to repair concrete structures, the repairs are not 

always effective over time. 

 

 
Figure 3: Epoxy crack repair. These types of repair are not always long lasting and often 

have to be reapplied every few years (von Fay, 2015).  

 

A case study by Grantham looked at 230 case histories of repairs of different concrete 

structures and different repair methods around Europe. The most common issue encountered in 

the structures was corrosion of steel reinforcement. In the end, the report found that only fifty 

percent of repairs to concrete were successful. In fact, twenty five percent of repairs failed outright 

(Grantham, 2011). The repairs were intended to last for the rest of the service life for the structure, 

but rarely lasted that long.   
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Another report prepared by the U.S. Department of the Interior Bureau of Reclamation 

found that most concrete repairs last only five to seven years. It is impossible to perfectly match 

the properties of a fully cured concrete specimen to a new repair. As a result, the repairs have a 

tendency to debond, allowing harmful contaminants to once again invade the concrete. 

Furthermore, many of the repairs had a high initial bond strength, but that is not always an accurate 

measure of bond durability. Structures experience variable loading throughout their lifetime due 

to environmental and internal conditions, leading to bond deterioration over time (Vaysburd, 

Bissonnette, & von Fay, 2014). Thin and thick repairs, also called patching repairs, can involve 

patching of concrete using either a cementitious material or a polymer based material. Grantham 

found that about fifty percent of patching repairs are successful, with polymer based materials 

being slightly more effective than cementitious repairs. The failures were most likely due to 

debonding of the repair and the concrete, although it was found that a combination of patch repair 

and a sealer was more successful that a patch repair alone (Grantham, 2011). Some other 

limitations of traditional concrete repair are sensitivity to moisture and heat, poor weather 

resistance, and degradation of repair due to differing thermal expansion coefficients (Seifan, 

Samani, & Berenjian, 2016). Overall, there are numerous repair methods used in industry today, 

but they are not always effective and long lasting.  

 

2.3 Innovative Concrete Repair  

 The need for innovative concrete repair methods and innovative cementitious materials has 

given rise to some unique solutions. In order to make concrete more sustainable, mixes often use 

recycled ingredients. Fly ash, for example, can form a cementitious material when combined with 

water that can substitute up to thirty percent of cement powder. Fly ash can also increase 

workability of concrete, leading to less water used in a mix (Monaghan, 2017). The process makes 

fly ash, an otherwise harmful byproduct of coal fired power plants, a useful and cheap alternative 

to ordinary portland cement. Another development in concrete repair has been the evolution of 

bacterially induced healing in concrete. 

 

2.3.1 A History of Bacterial Concrete 

 Self-healing in concrete is not a new phenomenon, and has been observed in many concrete 

specimens. The different mechanisms of autogenous healing are shown in Figure 4. Autogenous 

healing can occur when unhydrated cement particles are hydrated, or by carbonation of dissolved 

calcium hydroxide (Seifan et al., 2016). It is a natural process, but it depends on the amount of 

water and unhydrated cement particles that are present. Autogenous healing is not always an option 

for healing cracks in concrete because it is dependent on internal conditions and it cannot be 

regulated. A more promising method of healing concrete is through biomineralization. Some 

bacteria are able to precipitate minerals such as carbonates and silicates. Calcium carbonate, one 

of the common minerals in concrete, can be precipitated by bacteria as long as there is a source of 

calcium (Seifan et al., 2016). In many cases, the calcium carbonate is produced through urea 
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hydrolysis, using the enzyme urease, but it can also be produced using the enzyme carbonic 

anhydrase. 

 

 
Figure 4: Mechanisms of healing in concrete. Chemical processes are the most common 

autogenous healing methods. Continued hydration is common in concrete. Carbonation can lead 

to the precipitation of calcium carbonate, stiffening the cement and filling small cracks. 

Mechanical and physical processes are less common than chemical (De Belie et al., 2018).  

  

Henk Jonkers has been a pioneer in the field of bacterial concrete. His research evolved 

from studying bacterial calcification in different environments to the use of bacteria to heal cracks 

in concrete. One of the first articles Jonkers published on bacterial concrete was in 2010. The 

article begins by framing the bacterial concrete in the context of sustainability. Jonkers states that 

in previous studies, bacteria or derived ureolytic enzymes were applied externally to cracks. One 

of the drawbacks of the ureolytic enzymes is that the reaction can produce ammonium ions that 

lead to excessive nitrogen loading in the concrete. Jonkers tested the possibility of integrating 

bacteria into the concrete matrix, which ultimately led to numerous developments in the field of 

self-healing concrete (Jonkers et al., 2010). Jonkers determined that the next challenge was to find 

bacteria that could efficiently precipitate calcium carbonate in a harsh environment and effectively 

lay dormant in concrete until needed. Jonkers also discussed the need to quantify the behavior of 

self-healing and measure efficiency of crack healing. 

 Jonkers continued by studying different methods of encapsulating bacteria in concrete. A 

second study, published in 2011, investigated the possibility of encapsulating bacteria in expanded 

clay particles. The method showed promising results, particularly in wet environments, but Jonkers 

recognized that “the long term (years) durability and cost efficiency” of the bacterial concrete must 

be studied “before practical application can be considered” (Wiktor & Jonkers, 2011), p. 769). 

Furthermore, Jonkers has continued to frame a significant amount of his research in the context of 

sustainability. In a conference proceeding from 2017, Jonkers discusses a research program 

entitled Bio-Based Geo & Civil Engineering for a Sustainable Society. One of the objectives is to 

develop environmentally friendly biologically based materials, such as bacterial concrete (Jonkers, 
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2017). There are a number of programs, but all the research has a focus on reducing the carbon 

footprint of civil and geotechnical engineering projects.  

Most recently, Jonkers has published a review on the damage management potential of 

self-healing concrete. The study discusses natural autogenous healing in concrete, which is only 

sufficient for healing small cracks. Cementitious additives such as fly ash or blast furnace slag can 

also promote increased autogenous healing in concrete. The review gives a history of all non-

biological healing methods before discussing bacterial healing in concrete. The article discusses 

calcium carbonate formation by bacteria, and why it is effective at healing cracks in concrete. 

Calcium carbonate is compatible with the concrete matrix, has a strong bonding capacity, and 

results in densification of the concrete by filling pores and decreasing permeability (De Belie et 

al., 2018). Many bacteria strains have been used in studies on bacterial concrete, but most use the 

enzyme urease to facilitate calcium carbonate production. Jonkers recognizes that while bacterial 

self-healing is effective and environmentally friendly, there are a number of drawbacks that must 

still be investigated or overcome. The hydrolysis of urea produces ammonia as well as calcium 

carbonate, which could potentially corrode the steel reinforcement. Furthermore, the mechanisms 

of self-healing must be studied in un-ideal conditions outside of the laboratory in order to better 

understand how they work in the real world (De Belie et al., 2018). Overall, bacterial healing in 

concrete is an exciting field with many developments in the past years, but there are still many 

challenges and tests to be performed before it can be used commercially. The mechanisms behind 

self-healing need to be further studied, particularly the enzymes involved in the precipitation of 

calcium carbonate in concrete.  

 

2.3.2 Urease and Carbonic Anhydrase 

 There are two main enzymes that are involved in bio-mineralization: urease and carbonic 

anhydrase. In most studies on bacterial self-healing in concrete, the enzyme urease has been 

researched. Another enzyme, carbonic anhydrase (CA), is also related to calcium carbonate 

production. Urease precipitates calcium carbonate by the hydrolysis of urea, and reactions can 

occur if there is enough calcium. Urea hydrolysis can produce a significant amount of calcium 

carbonate in a short time, but it also produces ammonia that can sometimes be harmful, as 

discussed earlier (Achal & Pan, 2011). On the other hand, carbonic anhydrase in the context of 

bio-mineralization in concrete has been studied far less than urease. CA acts when carbon dioxide 

and water react to form bicarbonate. CA facilitates the reaction of bicarbonate and calcium to form 

calcium carbonate (Rahbar et al., 2019). Figure 6 illustrates the bio-mineralization process. It is a 

quick process, and it has the potential to increase healing in concrete structures. 

In most literature on self-healing concrete, carbonic anhydrase is rarely or never 

mentioned. CA is present in all organisms and is involved in all processes that involve carbon 

dioxide or bicarbonate (Achal & Pan, 2011). It is also associated with bio-mineralization, although 

it is only recently that CA has been studied in relation to bio-mineralization. Although there was 

comparatively less literature on CA, two studies by Qian et al. and Alshalif et al. researched the 

potential of carbonic anhydrase to sequester carbon dioxide in concrete and precipitate calcium 
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carbonate. Both studies were framed in the context of sustainability, and how the enzyme can be 

used to mitigate the effect of concrete repair on climate change. Qian et al. placed CA producing 

bacteria on concrete walls in order to absorb carbon dioxide and repair micro-defects through the 

precipitation of calcium carbonate. The concrete surface was treated with nutrients for the bacteria. 

The solution restored some strength to the structure, but there was a low bond strength between 

the surface and the deposited minerals (Qian et al., 2016). The study shows that carbonic anhydrase 

is environmentally friendly and has the potential to make concrete structures more durable and 

sustainable.  

 

 
Figure 5: Carbonic anhydrase reaction. CA facilitates the conversion of carbon dioxide to 

calcium carbonate, as long as there is a sufficient amount of calcium present (Rahbar et al., 2018). 

 

The other study, by Alshalif et al., looked at both urease and carbonic anhydrase and their 

potential to sequester carbon dioxide into concrete. Different strains of bacteria were studied, but 

the authors found that CA facilitated the production of calcium carbonate in all strains. The study 

showed that both enzymes can effectively sequester carbon dioxide, but the authors predicted that 

CA “has the most important role in the sequestration process of carbon dioxide” (Alshalif et al., 

2018, p.8). Overall, most literature on carbonic anhydrase has focused more on the carbon dioxide 

sequestering potential of the enzyme, and not its capacity to heal cracks in concrete. Carbonic 

anhydrase is productive, readily available, and environmentally friendly, making it a viable option 

for healing defects in concrete. 

 

2.3.3 Biologically Induced Healing and Carbonic Anhydrase 

 Recently, carbonic anhydrase has been studied as a repair method without the use of 

bacteria. Rahbar et al. developed a carbonic anhydrase solution that is saturated with carbon 

dioxide gas in order to precipitate calcium carbonate. The solution is topically applied on cracks 

in concrete specimens in order to facilitate healing. The repair is strong, fast acting, consumes 

carbon dioxide, and does not pose any risk to human health. The repair has also shown great 

promise in returning strength and reducing permeability (2018). Carbonic anhydrase is readily 

available for use, making the repair economic as well. Although a new method of healing concrete, 

the CA solution has a high potential for commercial use. Before that, more studies should be done 

to understand the material properties of the repair, particularly the bond between the repair and the 

concrete matrix. The study proposed in this report will involve an in-depth study of the repair-

concrete interface of the enzyme repair and its durability. 
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2.4 Summary 

The innovative repair methods discussed above have the potential to make infrastructure 

more sustainable and environmentally friendly. The United States is already behind on 

infrastructure management and repair, and climate change will only make matters worse. Wang et 

al. states that one of the main components “in climate adaptation is the...capability of the system 

to maintain its functionality and integrity” under the external stresses that come with a changing 

climate (2011, p.49). In recent years there has been several developments in the field of sustainable 

infrastructure, namely in biologically induced healing in concrete. The use of bacteria to heal flaws 

in concrete is well-studied and successful, but biologically mediated repair using enzymes has the 

potential to be just as effective.   



12 

3.0 Project Methods 

This chapter provides an overview of the methods that were used to complete the project. 

The goal of the project was to study the durability of the enzyme modified concrete using scanning 

electron microscopy (SEM) and rapid chloride permeability testing (RCPT). SEM was used to 

produce detailed visuals of the interface between the calcium carbonate repair and the concrete. It 

was also used to look at the differences in the concrete matrix between a control sample and a 

sample that contained carbonic anhydrase. Previously, the micro-characteristics of the enzyme 

modified concrete was not well understood. The SEM graphics allowed for a qualitative analysis 

of the enzyme modified concrete and led to a better understanding of the strength and durability 

of the enzyme modified concrete. 

 RCPT was the second test performed in the study. Testing followed the procedure outlined 

by ASTM standard C1202. The test measures the resistivity of the concrete by using 60 volts of 

electricity to push chloride ions into the concrete (ASTM, 2019). Although it does not accurately 

predict field conditions, the test is widely accepted by the concrete industry because it is non-

destructive and gives a good prediction of the permeability of concrete. The test can have large 

variability in results, even in samples that are very similar (Jacobs & Malpas, 2019). Although the 

test can be inaccurate for measuring field conditions, it was constructive in determining if there is 

a significant difference between the resistivity of normal OPC concrete and the enzyme modified 

concrete. 

 

3.1 Sample Preparation for SEM 

The samples used in the scanning electron microscope were small cylinders, 25mm in 

diameter and 5mm in height. The dimensions were chosen because they are the maximum height 

and width that can be used in the Phenom G1 Scanning Electron Microscope. In order to create 

the samples, a reverse mold was created using Solidworks and printed using rapid prototyping. A 

few iterations were printed until the final design was chosen. Ultimately, it was found that having 

three cylinders in one mold was the easiest to demold the silicone from the plastic. After printing, 

the mold was placed on a vibrating table and filled with silicone.  The mold was left on the 

vibrating table for 10 minutes. It was then covered with plastic wrap and left to set for 24 hours. 

After 24 hours, the silicone mold was removed and hot-glued to a small sheet of clean acrylic. The 

mold was placed atop a piece of acrylic in order to create a smooth top on the sample. A surface 

with flat topography is easier to observe with SEM, and the acrylic provided a smooth finish on 

the cylinders. The final mold is shown in Figure 6.  
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Figure 6: The silicon mold used to make concrete samples with a small v-shaped notch. 

Samples were used for SEM. Three cylinders were put in each mold for efficiency and ease in 

demolding. 

 

A small v-shaped notch was added in the middle of the cylinder on the top face. The notch 

was added in order to create a clear boundary between the concrete and the CA repair. A clear 

boundary with a smooth surface allowed for an easy comparison between the CA repair and the 

concrete substrate under SEM. Two types of samples were studied under the scanning electron 

microscope. The first type was a control sample with ordinary portland cement and water, and the 

notch left as is. The second type CA-Add, had the same proportions of cement and water but with 

carbonic anhydrase added. The notch was also filled with the calcium carbonate repair. A sample 

with the notch filled with the calcium carbonate repair is shown next to a non-repaired sample in 

Figure 8.  

All samples mixed for SEM had a 0.4 water to cement ratio. The ratio was chosen because 

it was found to be the most workable when making the small disks. The control sample contained 

50g of cement powder and 20g of water. The CA samples contained the same amount of cement 

powder and water, but also contained 10 μL of 100 μM carbonic anhydrase. For the samples 

containing CA, the cement powder was first weighed out on a bench scale and added to a small 

beaker. Next, 10g of water was measured out in a separate beaker. The carbonic anhydrase was 

then added to the beaker of water using a pipette to rinse out the micro-centrifuge tube three times. 

The tube containing the enzyme is rinsed three times to make sure all the enzyme is out of the 

container and in the mix. Once the enzyme is in the beaker, the rest of the 20g of water was 

measured out and added to the cement powder. The cement was mixed until the texture was smooth 

with no lumps. The acrylic and silicone mold was placed on a vibrating table and the three disks 

were filled with cement. The top was smoothed over and the mold was left on the vibrating table 

for 10 to 15 minutes. The vibrating table was turned off and the mold was wrapped in plastic wrap 

and left in a flat, dry space for 24 hours. After 24 hours the disks were demolded left in a moist 

curing room. 
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3.2 Preparation of the calcium carbonate repair 

In order to fill the v-shaped notch in the CA-2 samples for SEM, the calcium carbonate 

repair was prepared after the samples cured for 7 days in a moist curing room. On day 7, the 

samples were taken out of the curing room and the top surfaces were covered with scotch tape. 

Scotch tape was chosen because it kept the surface of the sample smooth but did not impede the 

repair solution from filling the notch. After taping, the samples were placed in separate 80 mL 

beakers.  

 In a large graduated cylinder, 800 mL of deionized water was measured out. A 1000 L 

Erlenmeyer flask was placed atop a stir plate beneath a fume hood. Half of the deionized water 

added to the flask. A small bench scale was used to measure 400 mL of 2M𝐶𝑎𝐶𝑙2,or 88.792g. The 

scale was also used to measure 400 mL of 0.1M tris, or 4.844g. The calcium chloride and tris were 

added to the flask using a funnel, using a transfer pipette to rinse the measuring dishes. The stir 

plate was turned on high in order to let the calcium chloride and tris dissolve completely. Once the 

mixture turned clear, carbon dioxide gas was added. The gas was added to the mixture using a 

carbon dioxide canister with a hose and nozzle attached. The gas was turned on to a low bubble in 

the mixture. The last ingredient for the calcium carbonate repair is the enzyme itself. 20 µL of 100 

µM carbonic anhydrase was added to the mixture, using a pipette to rinse out the microcentrifuge 

tubes three times in order to get all the enzyme in the mixture. The four-part mixture is shown in 

Figure 7.  

Figure 7: The four-part enzyme mixture for topically applied repairs. The four ingredients are 

water, calcium chloride, carbon dioxide, and carbonic anhydrase, with tris added to stabilize the 

pH.  A pH meter was used to monitor the pH as it fell to a neutral level. The stir plate kept the 

mixture homogeneous.  

 

Once the enzyme is added the pH of the mixture jumps to about 12. The tris is added in 

order to stabilize the pH, but it should be monitored with pH strips or a pH meter. Once the pH 
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falls to 7, the carbon dioxide gas was turned off. After turning off the gas, the flask was removed 

from the fume hood. Six 50 mL centrifuge tubes were filled with 45 mL of the enzyme mixture. 

The tubes were placed in a centrifuge for 9 minutes at 5000 rpm. The centrifuge concentrates most 

of the calcium carbonate at the bottom of the tube. The supernatant on top was poured into a large 

beaker, leaving about 5-10 mL of supernatant mixed with the concentrated repair. The tube was 

capped and shaken for 5 seconds and the concentrate was poured into a separate, smaller beaker. 

The process was repeated for all six centrifuge tubes. The centrifuge tubes were filled again with 

the mixture from the flask and placed in the centrifuge. The entire process was repeated until the 

mixture from the flask was entirely depleted. Once the mixture was separated into supernatant and 

concentrate, about 35 mL of the supernatant was poured over each sample. The samples were 

covered with parafilm, labeled, and left to sit for 48 hours. The final repaired sample and a non-

repaired sample are shown side by side in Figure 8. 

 

 
Figure 8: On the left is a repaired sample containing carbonic anhydrase in the concrete mixture 

(CA-Add). On the right is a control sample containing only water and OPC (Con). The two samples 

were among those compared using SEM. 

 

 After 48 hours, the supernatant was removed from the 80 mL beakers using an auto pipette 

and put in a separate beaker. The pH of the supernatant is between 6 and 7 and was disposed of 

down the drain. The samples were placed in a desiccator so they could be dried for use in the 

scanning electron microscope. The samples were in the desiccator for three days. Each day a 

vacuum pump was run for one hour. After day three, the samples were placed in a storage 

desiccator. 

 

3.3 Rapid Chloride Permeability Testing 

Two different types of samples were prepared for rapid chloride permeability testing: a 

control sample and a sample containing carbonic anhydrase (CA-Add). The exact mix design is 

shown in Table 1. The mixes are 51.4% coarse aggregate by weight. A large amount of coarse 

aggregate was used in order to increase the resistivity of the concrete during testing. The coarse 

and fine aggregate used in the mixes was saturated surface dry. While pouring, the concrete was 
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tamped 20 to 25 times every two inches in order to leave as few air voids as possible. The mix 

ratio filled two 4 inch by 8 inch cylinders. The concrete cylinders were removed from the mold 

after 24 hours and left in a moist curing room at ambient temperature. Two batches of samples 

were tested. The first batch cured for about two weeks, and the second batch of testing occurred 

around 11 weeks. 

 

Table 1: RCPT mix design. All ratios are the same except for the addition of carbonic anhydrase 

in the CA-add mix. Both mixes are 51.4% coarse aggregate by weight. 

 Control CA-Add 

Cement (g) 1377.5 1377.5 

Coarse Aggregate (g) 3970.5 3970.5 

Fine Aggregate (g) 1983.5 1983.5 

Water (g) 394 394 

Enzyme (µL) N/A 5 

 

 The rapid chloride permeability test followed the procedure outlined in ASTM standard 

C1202. Before testing, all 4 inch by 8 inch cylinders were cut into 50 mm disks. A water cut with 

an industrial 18” diamond blade (Highland Park Lapidary Co., Whitinsville, MA) was used to cut 

the cylinders. The top 50 mm disk was discarded, and the middle 50 mm disk was used from each 

cylinder. The diamond blade left a slight lip on the edge of the disks. In order to protect the screen 

of the RCPT set-up, the raised edge was carefully chipped off with a chisel and hammer. 

Two days before testing, all solutions needed for the test were prepared. The needed 

solutions are degassed water, sodium chloride, and sodium hydroxide. For the degassed water, two 

large flasks were filled with deionized water and capped with a tin foil hat. The flasks were placed 

on a hot plate and left to boil for one hour to completely degas the water. After one hour, the flasks 

were removed from the hot plate and left overnight to cool. 

 Two solutions are needed for RCPT: 3N sodium hydroxide and 3% sodium chloride. The 

3% sodium chloride was prepared first. A 1000 mL flask was filled with 250 mL of deionized 

water and placed on a stir plate with a small stir bar in the bottom of the flask. Using a bench scale, 

15g of sodium chloride was measured and added to the flask. Another 235 mL of deionized water 

was added, and the stir plate was turned on high. The flask was covered with a tin foil hat and left 

to mix until the solution turned clear. Once the solution was clear, the stir plate was turned off and 

the solution was left to sit overnight. The 3N sodium hydroxide solution was prepared next. 

Another 1000 mL flask was placed on a stir plate with a small stir bar. Using a bench scale, 60g 

of sodium hydroxide was measured and added to the flask. Next, 500 mL of deionized water was 

added. The flask was capped with a tin foil hat and the stir plate was turned on high. Once the 

solution turned clear the stir plate was turned off. The reaction of sodium hydroxide and water is 

exothermic, so the solution was left to cool overnight.  
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On the day before testing all samples sat in a vacuum chamber for 3 hours. The sample was 

placed in the bottom of a small vacuum chamber, and the rubber gasket around the chamber was 

brushed with silicone oil. The chamber was closed, and a vacuum pump was turned on for 3 hours. 

After 3 hours, degassed water was added to the vacuum and the sample sat for 1 hour in the water 

vacuum. After 1 hour, one of the nozzles in the chamber was opened and the sample was left to sit 

and return to ambient pressure for 18 hours. The actual test was performed using the Proove’it 

system by Germann Instruments. testing apparatus and ran for 6 hours, according to the ASTM 

standard. The test set up is shown in Figure 9.  

 

 
Figure 9: The RCPT test set up using the Proove’it system by Germann Instruments. One side of 

the apparatus contains 3% Sodium Chloride, and the other side contains 3N Sodium hydroxide. 

The instrument provides 60V of electricity to push chloride ions into the concrete over 6 hours. 

 

 In order to prevent leaks and create a strong seal in the test set-up, the ASTM standard was 

modified slightly, and the following procedure was used. First, the four bolts were placed in one 

of the voltage cells. Silicone oil was brushed onto one side of one of the rubber gaskets. The side 

with the silicone oil was placed on the metal of the voltage cell with the bolts. Then, Dow Corning 

high vacuum grease was applied around one edge of the concrete sample. The greased side of the 

sample was then pushed into the rubber gasket. More vacuum grease was added around the other 

edge of the sample. Next, the acrylic middle piece was placed around the sample. The second 

rubber gasket was placed around the top of the sample. Silicone oil was carefully brushed on top 

of the rubber gasket and the second voltage cell was placed on top with the metal touching the 

silicone oil. Next, a washer and nut were placed on each bolt. The assembly was tightened in a star 

pattern until the acrylic parts meshed together. The assembly tightness was checked by filling up 
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each voltage cell with degassed water. If any leaks were detected, more vacuum grease was added 

to the outside of the assembly. If no leaks were detected, the cells were emptied of water and filled 

with their respective solutions. Next, the assembly wires were connected to the machine, making 

sure not to cross the red and black wires. The temperature probe was added and placed in the cell 

with sodium chloride. The test generates a significant amount of heat, so a small fan was placed 

near the assembly to aid in cooling. The actual test was then started and ran for 6 hours according 

to the ASTM C1202 standard.  

 After 6 hours, the test set up was taken apart and cleaned. After disconnecting the wires, 

the solutions were emptied from the cells and disposed of in a hazardous waste container. The 

bolts were loosened in a star pattern and each assembly part was wiped off with paper towels 

before being placed in a tub of warm water and dish soap. Because vacuum grease is hard to 

remove, it is important to wipe off as much grease as possible before placing the part in water. 

Each part was scrubbed for 2-4 minutes and rinsed before being placed in a separate container to 

dry. The concrete samples were discarded after the test.   
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4.0 Experimental Results and Discussion 

SEM was used to qualitatively assess the strength and durability of the enzyme modified 

concrete, while RCPT was used to quantitatively compare normal OPC concrete to the enzyme 

modified concrete. The images and results gathered show that there are differences in durability 

and makeup of the different concrete mixes.  

 

4.1 SEM Imaging 

 Control and enzyme modified samples were examined using a Phenom G1 scanning 

electron microscope. The complete collection of images is shown in Appendix A. Figure 10 shows 

the interface between the CA-Add concrete substrate and the repair. The crystalline structures are 

precipitated calcium carbonate from the enzyme repair method. Although the crystal growth is 

asymmetrical, the size of the crystals is even. The crystals all appear to be in focus in the images, 

which suggests that the trough is evenly filled. The interface between the concrete and the crystals 

is clearly distinguished, and there appears to be direct bonding between the concrete and the 

crystals. The ridged contours in the concrete substrate are from the 3D printed mold. 

 
Figure 10: Images of the interface between the repair and the concrete. From left to right the 

magnification is 2000x, 1000x, and 500x. The crystals are precipitated calcium carbonate. The 

image shows that there are several gaps in the repair matrix, but the trough is evenly filled. 

 

Figure 11 shows a precipitated calcium carbonate crystal at full magnification (20000x). 

The surface topography is rough, and the crystal contains several cracks, but there is good bonding 

between neighboring crystals. Not all the calcium carbonate crystals are cracked, but the 

distribution appears to be random. 
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Figure 11: An SEM graphic of a calcium carbonate crystal at 20000x. The crystal has several 

imperfections and cracks, but it appears to be well bonded to other crystals.  

 

There also appears to be interfacial growth of calcium carbonate crystals in the concrete 

matrix near the boundary of the repair. Figure 12 shows direct interfacial growth of calcium 

carbonate crystals in the CA-Add concrete. Figures 10 and 12 show the variable crystal adherence 

onto a CA-Add substrate; each is from identical but separate samples prepared side-by-side in the 

laboratory. While Figure 10 shows direct crystal growth on the concrete, the crystals in Figure 12 

appear to sit in a glue-like substance and grow into the substrate. This suggests that the CA-Add 

substrate is the promoting an advanced bond between the calcium carbonate repair material and 

the cement matrix, but not in all specimens. The interfacial growth suggests that the addition of 

carbonic anhydrase to the concrete mix changes the properties of the bond to the repair. However, 

the variable appearance suggests that further work is needed to obtain consistent repair 

characteristics.   
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Figure 12: SEM graphic of the repair-concrete interface. The red circles show areas of direct 

interfacial growth of calcium carbonate crystals onto the concrete matrix. The area pictured is at 

the edge of the calcium carbonate filled notch. The magnification of the image is 1500x. 

 

 The surfaces of the control and CA-Add samples were also examined. Away from the 

notched area, the topographies of the samples were visually similar. There was no crystal growth 

on the CA-Add samples away from the filled notch. The two samples are compared side-by-side 

at 5000x magnification in Figure 13. 
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Figure 13: An SEM graphic of the surfaces of CA-Add and control samples respectively. The 

topographies of the different samples are similar in roughness and homogeneity. The magnification 

of the image is 5000x.  

  

4.2 Rapid Chloride Permeability 

 RCPT was determined to be the most appropriate method for comparing the durability of 

the enzyme modified concrete to normal OPC concrete. Although RCPT can have a large amount 

of variation in results and is not always accurate for predicting durability in real environmental 

conditions, it demonstrated that there is a difference in the resistance of the CA-Add mix to the 

control mix. The overall results shown in Table 3 and Figure 14 show that the concrete mix 

containing carbonic anhydrase has a greater resistance to chloride ion penetration. The 

permeability class is determined according to ASTM standard C1202. The exact classifications are 

outlined below in Table 2. 
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Table 2: According to ASTM C1202, samples passing a charge greater than 4,000 coulombs has 

high permeability. Samples passing between 2,000 and 4,000 coulombs have moderate 

permeability. Samples passing between 1,000 and 2,000 coulombs have low permeability, and 

samples passing less than 1,000 coulombs have low to negligible permeability. 

 

Charge Passed 

(coulombs) 

Chloride Ion 

Penetrability 

>4,000 High 

2,000-4,000 Moderate 

1,000-2,000 Low 

100-1,000 Very Low 

<100 Negligible 

 

 The cumulative results for RCPT are shown below in Table 3. Each sample type has two 

averages, one for a two-week curing time and one for an 11-week curing time. All samples had 

the same mix proportions and were prepared the same way. 
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Table 3: Chloride ion penetrability and charge passed in control and CA-mod samples. The 

average charge passed for samples cured at two weeks is eleven percent lower for CA-mod samples 

than control samples. At two months, the average for CA-mod is 39 percent lower than the average 

for control. 

 

Sample 

Charge Passed 

(Coulombs) Perm. Class Days Cured 

Average 

(Coulombs) 

Control 

4320 High 15 

4302 5341 High 15 

3244 Mod 23 

3509 Mod 77 

4085 5085 High 80 

3581 Mod 82 

CA-Mod 

3643 Mod 14 

3868 3156 Mod 14 

4806 High 14 

2707 Mod 76 

2760 2833 Mod 76 

2740 Mod 76 

  

 The RCPT results are represented graphically in Figure 14. The two linear trend lines are 

between the averages of the two types of samples at two weeks of curing and two months of curing.  
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Figure 14: Graphic representation of RCPT results. The permeability of control samples decreased 

at 36.2 coulombs per week, while the permeability of CA-Add samples decreased at 184.7 

coulombs per week. 

  

Although the CA-Add average was lower than the control average at both ages, the results 

were not statistically significant for either age.  The p-value of a student’s t-test for the two-week 

age was 0.61. The result was not unexpected, because the averages of the 2-week test groups are 

different only by 217 coulombs. Furthermore, the data set is not extensive, which may contribute 

to the high p-value. The p-value of a student’s t-test for the 11-week age was 0.13. Both t-test 

values suggest that the means are similar, and the data is not statistically significant. It is possible 

the t-test values are so high because the number of samples in each group is only 3. However, the 

reduction in the p-value from 0.61 to 0.13 over 2 to 11 weeks, respectively, shows promise that 

with more data points and refined methods, a more statistically significant outcome could be 

obtained. 

Although the data showed no statistical significance, there was a greater decline in 

permeability and lower averages overall in the CA-Add mix. The result was achieved with only 

the addition of 5 µL of 100 µM carbonic anhydrase. The number of samples tested during the 

project was mostly limited by time during the study. It is recommended to further study the CA-

Add mix by conducting more rapid chloride permeability tests in the future at different ages of 

curing.   
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5.0 Conclusions and Recommendations 

  

This study was concerned with the micro-characteristics of the enzyme modified concrete 

as well as its durability. The SEM images suggest that although there are some gaps in the repair 

matrix, the trough it evenly filled and there is good bonding between neighboring crystals. All 

samples prepared for SEM imaging followed strict laboratory procedures. All samples were cast 

on a smooth acrylic surface to create flat surfaces. The notch that was filled with the repair had to 

be small, only 1 mm deep. In order to create such precision, a small printer nozzle was used to 

create the mold. All samples contained the same mix proportions and were prepared the same way. 

The samples that had the notch filled with the enzyme repair were carefully taped so the repair 

would only fill the notch and not affect the concrete surface. Even with the strict procedures, there 

were many differences observed in crystal growth. Some crystals appear to have grown on top of 

the concrete, while other crystals have grown into the concrete matrix and created a stronger bond. 

Furthermore, some precipitated crystals have cracks and chips, while others do not. Further study 

is needed to understand why there is such variation in crystal growth, even in the same sample. 

Furthermore, the enzyme repair method itself used few ingredients, but took a large amount 

of time to repair the small notches. A strict laboratory procedure was followed, but the procedure 

does not seem viable on a large scale. The procedure also does not seem viable for large 

applications, since it is topically applied and needs a large amount of solution to effectively fill a 

crack or notch. Although the repair is not commercially viable in its current state, it could be an 

ecologically sensitive alternative to concrete repair. Carbonic anhydrase is biodegradable and 

poses no risk to human health. Furthermore, the repair consumes carbon dioxide and could 

potentially sequester it from the environment. The repair is still in early stages of development, 

and with more study it could have the potential to be a successful alternative in concrete repair. 

The RCPT results determined that the average permeability of samples tested at 11 weeks 

was 39% lower for enzyme modified samples than control samples. Although the results are 

promising, they were of no statistical significance based on a student’s t-test. All samples prepared 

for RCPT followed strict laboratory procedures. The mix design was the same for all samples, with 

a large proportion of coarse aggregate in order to increase the resistivity of the samples. The 

samples were cut with a diamond saw to create smooth surfaces, and the ASTM 1202 test 

procedure was modified to create a better seal with vacuum grease on the test setup. Even with 

strict methods and practice, there was still large variation in results. This is likely because RCPT 

is not a consistently repeatable test. According to the ASTM C1202 standard, results from the same 

batch of concrete can differ by up to 34% (ASTM, 2019). Conducting more RCPT testing on 

normal and enzyme modified concrete would give more data and hopefully results that are similar 

to the ones found in this study. The number of samples tested was limited by time and manpower 

during the study, but more data would increase the likelihood of finding statistically significant 

results. The enzyme modified concrete could also be studied with a less variable testing method, 

which would increase confidence in the results.  
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In the future, energy dispersive X-ray analysis (EDX) could be conducted to study the 

elemental makeup of the enzyme modified concrete. EDX would aid in understanding the 

differences between normal OPC concrete and CA modified concrete by determining if there is 

more calcium present in the enzyme modified samples, or if it is similar to OPC concrete in terms 

of minerals present. The presence of more calcium in the enzyme modified concrete would suggest 

that there is more calcium carbonate due to the addition of the enzyme. Calcium carbonate makes 

the concrete matrix denser and less permeable by filling pores within the concrete. EDX would aid 

in understanding the differences between OPC concrete and enzyme modified concrete.  

Additionally, strength testing, both compressive and tensile, would determine if the repair 

method returns strength to damaged specimens. Testing the enzyme modified concrete on a larger 

scale could be a next step in studying the repair method. It would also give insight on the 

quantitative bond strength of the repair. Another investigation could be conducted to see if 

differing amounts of carbonic anhydrase in the mix design affects the durability or strength of the 

concrete.  

Overall, the enzyme repair method is a new and innovative way of healing cracks in 

concrete and strengthening the concrete itself. Biologic concrete, namely the use of bacteria to heal 

concrete, has been studied increasingly often in the past. Most studies focus on the use of the 

enzyme urease to precipitate calcium carbonate. One drawback of urease is that it creates ammonia 

during hydrolysis. The ammonia can corrode any steel reinforcing that is present. Carbonic 

anhydrase does not create ammonia or any other harmful byproducts. The use of carbonic 

anhydrase in biologic concrete is relatively new and there are many unknowns to be investigated. 

There is still much to be understood about the enzyme repair, but the current results are promising 

and there are many paths to explore in the future. 
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Appendix A: SEM Image Gallery 
Images of CA-Add samples with the calcium carbonate repair: 
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Surface characteristics of CA Add samples: 
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Surface characteristics of control samples: 
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Unfilled trough of control samples (with unhydrated cement crystals): 
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Calcium carbonate repair crystals: 
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Appendix B: RCPT Results 
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Control 4 
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Control 6 
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CA-Add 1 
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CA-Add 2 
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CA-Add 3 
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CA-Add 4 
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CA-Add 5 
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CA-Add 6 

 


