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Abstract 
 

The objective of this project is to design and build a computer controlled testing 

system for planar biaxial stretching of soft connective tissues.  The planar biaxial device 

designed in this paper has a four-axis control system as well as four components: a 

temperature-controlled testing chamber, a low friction sample attachment system, a 

stretching/force system, and a stress/strain measurement system. The device’s design is 

unique due to its low force capability (< 0.5N), low cost (< $15,000), and real-time 

computer control.
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1 Introduction 
 
 Advancements in wound healing are critical today due to various types of skin 

problems such as ulcers, bedsores, and skin burns.  For example, approximately 700,000 

patients are treated yearly for injuries ranging from minor first-degree burns to serious 

third degree burns [41].  Skin substitutes are essential to heal the wound properly, which 

are from culture tissues. 

 Researchers in the field of tissue engineering have produced cell-cultured 

tissues to further the advancements in the wound healing process.  Our advisor, Professor 

Kristen Billiar is currently growing such cultured tissue samples in his Tissues Mechanics 

and Mechanobiology Lab to understand how mechanical forces alter the cellular response 

and to investigate the subsequent changes in the mechanics of the tissues.  Generally, 

tissue engineered skin does not mimic the properties of native skin because it is soft, 

fragile, and easy to tear.   

The most common way to determine the mechanical properties of the tissue 

samples is by the uniaxial testing method.  This stretches the sample in one direction. 

However, it is insufficient because it does not obtain all the necessary data for a full 

mechanical representation of the sample.   

In order to obtain a complete characterization of a planar tissue, multi-axial 

testing is required.  This is necessary because the tissue is a three-dimensional structure 

and it experiences forces in multiple directions during stretching.  For very soft 

connective tissues, it is commonly assumed incompressible through its thickness [19].  

Therefore, biaxial testing is sufficient to retrieve the required data for a constitutive 
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equation.  This method stretches the sample in two directions, horizontal and vertical 

direction (the x and y axes, respectively).  

 The objective of this project is to design and build a computer controlled testing 

system for biaxial stretching of soft connective tissues.  The device will be used to 

measure the mechanical material properties of the tissues while subjecting to biaxial 

loads.  This will allow an accurate comparison between the sample and natural tissue.  

Through this analysis and comparison, an assessment of progress made in the field of 

tissue engineering can be made.  

 This paper includes the research obtained to provide a background for designing 

this device in terms of properties of skin and cultured tissues, previous systems, bath 

chamber, attachment methods,  motion control, stretching/force system,  displacement 

measurement, and LabVIEW.  It then gives a detailed account of the design process and 

the reasons for the final design.  Next, this paper displays the process of building the 

device, testing methods, and results and discussion of implications.  In the final chapter 

of this paper is the discussion on the design and the design process with 

recommendations for future work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 2



2 Background 

2.1 Properties of Skin 

There is a huge demand for artificial skin and reproduction of tissue mass to serve 

as space fillers or replace the organs (blood vessels, skin, nerve ending, organs, etc).  

Currently in research is the use of polymer materials with biological surfaces to mimic 

the properties of natural skin/tissues.  To achieve this, it is critical to understand the skin 

and its mechanical properties.  According to Lanir and Fung. [19], “precise knowledge of 

the mechanical properties of the skin will be of great value to plastic surgeons in 

designing the size, shape and orientation of skin grafts.”  The process of cell culture and 

possibly other polymer materials is the necessary step to proceed.  Subsequently, it is 

necessary to test the cultured material to determine the mechanical behavior.  By 

comparing the results with the mechanical behavior of skin, it will determine whether the 

cultured material can withstand the native environment that natural skin is exposed to 

everyday.  The artificial skin is highly demanded for severely burned patients, while the 

joints in the body are in need for soft connective tissues.  To have a detailed 

understanding of the skin, one must look into the properties and understand the 

composition of it [37]. 

Skin plays an important role in the body because it contains, holds, and protects 

all the internal organs from the external environment, therefore it needs to be strong and 

tough.  Because the skin is composed of more than one component, the skin is not 

homogenous throughout the body.  The skin accounts for 16 percent of human adult body 

weight [18] and consist of mostly collagen and elastin.  The collagen is responsible for 

the tensile strength of 1.5 to 3.5 x 102 MPa with the Young’s modulus measuring up to 1 
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GPa [18].  The skin also contains elastin, which is responsible for the “reversible 

deformation” and can stretch more than 100 percent of its original size, and can withstand 

up to 20 N/m, which depends on the location of the body.  Although there are still 

questions about the specific role of elastin [31], it is compliant and exhibits elastic 

behavior [32].   

In order to culture tissue samples to possibly be used as skin substitutes, they 

must be strong and tough.  Biaxial testing device is needed to test the cultured samples to 

study how mechanical forces affect the sample and the changes of its mechanical strength. 

Appendix A shows the standard graphs for all living tissues [25].   

2.2 Why Use Biaxial Testing Device? 

A biaxial testing device is essential to obtaining the proper data because soft 

tissue is a three-dimensional structure (oriented in layers of primarily planar networks 

with fibers running between the layers) [18].  An ideal testing device would be an in vivo 

multi-axial testing device by  Reihsner, Balogh, and Menzel [33] in Figure 1.  

 
 

Figure 1.  Multi-axial Testing Device of Reihsner, Balogh, and Menzel [33] 
Determines the strain in all directions 

due to anisotropic behavior of  the tissue sample 
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 The common method to test tissue samples were completed by the uniaxial 

devices.  However, they were not sufficient to determine the mechanical properties, such 

as fatigue strength and tensile strength, for all directions.  In one direction, the tissue may 

be isometric (fibers contracting but not changing in length); however, this does not apply 

in three-dimensional case because edges of the sample tissue are “not fixed but free to 

deform” [5], confirming that uniaxial tests do not provide the necessary data to derive the 

unique three-dimensional constitutive equations for skin [12].  Therefore, a multi-axial 

testing device is required to acquire all the necessary data for a stress/strain relationship 

[6]. (Strain is the change of length over initial length; stress is force over unit area.)    

Assumed incompressibility, the data from the two-dimensional test makes it 

possible to achieve the full three-dimensional constitutive equation [5, 19].  Other 

assumptions include: 

- Thickness of specimen is uniform throughout its entire length 

- Loads are uniformly distributed over an area in the central region of 

the sample [12] 

- St. Venant’s principle:  The strain measurement is taken at the central 

region of the tissue sample because it is free from distortions [6].   

2.3 Various Biaxial Testing Systems 

Several research groups have and are conducting experiments with biaxial testing 

to test various soft biological tissue samples to derive the three- dimensional constitutive 

relationship.  Some devices are similar, while some are completely different. 
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2.3.1 Two Linear Axes for Planar Specimen 

This is the most common type of device used to test soft tissues under biaxial 

loads.   

Lanir and Fung [19] were two of the earlier researchers who experimented with 

thin, rectangular rabbit skin samples by using this system.  Figure 2 shows the device 

they used to acquire the force-length time relations.  

 
 

Figure 2.  Pulley System by Lanir and Fung [19] 
Utilizes a pulley system to allow force distributor to be pulled by a constant 

weight, allowing a controlled slow/rapid stretching rate  
 
There were four major components involved in this biaxial device:  

1. Environment:  The specimen floats in the top half of a double compartment tray 

filled with physiological solution while a thermoregulation system is beneath.  

This is necessary to keep the sample submerged and maintained at 37 ºC.  

2. Actuators/stretching mechanism: There is a hand crank to physically turn to 

stretch the sample, which is hooked along the edges with small staples and silk 

sutures.  
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3. Force mechanism:  To measure the stress, one platform mounts on top of the 

sliding mechanisms while the other side attaches to a force transducer and this 

stretches the sample.   

4. Displacement measurement:  This system is a non contact displacement analyzer 

consists of a television camera, a video processor, and a television monitor, to 

measure the strain of the sample.  It cannot touch the sample because it is fragile.     

This system is capable of performing these experiments: 

• measuring the forces in main and transverse direction vs. the extension ratio 

• measuring two transverse forces and extension ratios 

• quickly stretching the specimen in one direction while the other axis is kept 

constant 

• measuring the stretched dimension as a function of time 

• observing the effect of temperature on the stress-strain relationship 

According to Nielsen, Hunter, and Smaill [28], the problem with Lanir’s method 

was the time consuming preparation, the point forces needed to be separate, and the strain 

rates did not measure as high as physiological rates.  Figure 3 shows his version of a 

biaxial device with a few variations to Lanir’s device.  
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Figure 3.  Biaxial Device by Nielsen, Hunter, and Smaill [28] 
Only used four attachments on each edge, point forces monitored  

individually, and loading was controlled by software system                  
 

 
The figure below is a device by Demer and Yin [5], using an isolated canine myocardium 

.  
 

Figure 4.  Biaxial Device by Demer and Yin [5] 
Sample located at center of bath with four attachments on each edge, utilizes the 

pulley and chain system, two video cameras used to monitor the targeted area 
 

Chew, Yin, and Zeger [3] used canine pericardium to find the pseudo strain-

energy function by characterizing its property.  May-Newman and Yin [26] and Chew, 
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Yin, and Zeger used the same device as before except there was no pulley system 

attached to the motors.  

Vito [40] used aorta samples from dogs to find the continuous axial loading and 

unloading, while maintaining the diameter.   

 
 

Figure 5.  Device by Vito [40] 
Used servomotors to drive each axis, needs to improve on  

processing speed and ease of software development, rate of 
loading was 0.025 cm/s producing a length 0.5-1.0 cm 

 
 Humphrey, Vawter, and Vito [12] worked on a technique to get an accurate 

tracking of the markers on the surface of the tissue sample.  

 
 

Figure 6.  Equibiaxial Stretching by Humphrey, Vawter, and Vito [12] 
Observation when tracking deformation of sample  

during equibiaxial stretching 
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Sacks and Chuong [36] has done related testing with similar devices, a pulley 

system is involved to insure there were equal tension for each pair of the suture lines  

 

            

Figure 7.  Billiar and Sacks System; Pulley System (left); Suture Attachments (right)  [35] 
Pulleys distribute forces equally onto the sample, sutures  

are used for the specimen to shear freely 

 

Mankinde, Thibodeau, and Neale [23] concentrated on developing a biaxial 

testing device for a cruciform shaped specimen. 
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Figure 8.  Biaxial Device of Makinde, Thibodeau, and Neale [23] 
Loading system involves load reaction frame and load train, out-of-plane 

design was ideal because of low cost, ease of manufacturing, and assembly 
 

Langdon, Chernecky, Pereira, Abdulla, and Lee [16] used a custom-built 

hydraulic testing system, using four independent servo-hydraulic actuators. This system 

used very up-to-date technology, and was far more scientific and technical than the 

previous designs.  Figure 9 shows all the involved components and how they connect to 

each other to get the results.   
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Figure 9.  Hydraulic System by Langdon et al. [16] 
Cantiliver grips are lined with sandpaper to hold samples,  

uses dichroic beam spliter and two high frame-rate cameras 
to view the central region 

2.3.2  Indentation / Inflation Test 

Lafrance, Yahia, Germain, Guillot, and Auger [15] used an indentation test for 

biaxial testing on living skin equivalents (SE) and dermal equivalent (DE).   

 
 

Figure 10.  Indentation Test by Lafrance et al. [15] 
A circumferential grip clamps and centers the samples 

 with the load axis of the spherical indenter 
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Van Noort, Black, Greaney, and Irvin [38] used an inflation device to measure the 

stress/strain relationship.  Perspex rings hold the tissue while the pressurized water fills 

the test chamber, causing the tissue to inflate until the point it bursts.  This method 

provides realistic measurements to help research in wound healing.  Hsu, Lui, Downs, 

Rigamonti, and Humphrey [11] also proceeded with a similar type of device.  

 
 

Figure 11.  Inflation Test by Hsu et al. [11] 
Fluid chamber maintains the pressure from the transducer and the pump,  

3-way stopcock controls the inflated membrane   
 

The inflation devices are excellent devices to obtain mechanical properties of the 

skin in all directions, however, it lacks the versatility of a planar test and the sample’s 

size and range are dependent on the size of the nozzle and pressure  

2.4  Methods for Attaching Sample to Grips 
 

There has always been a problem with the method of attaching the sample to the 

grips (such as clamps, sutures with hooks, etc.). The reason for the concern is that the 

attachments introduce local stress concentration at certain points and may cause the strain 
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field to be non-uniform.  It can alter the geometry and cause uneven loads at the 

attachment sites.  It is necessary to keep the original orientation, fiber lengths, and 

boundary loadings preserved when mounting the sample because without maintenance, 

the data is not valid for an in situ testing [10].  

There are different methods of attachment, which include gluing the sample to the 

grips, but only for very thin samples. For thicker samples, gluing could cause shear 

stress/strain [21].  The solution to this problem is to take direct measurements of the 

tissue strain near the center of the sample because it will be adequately remote from the 

grips.  

2.4.1  Clamps 
 

Brouwer et al. [2] designed a device to have interchangeable jaws.  The jaw opens 

and closes at a constant, precise velocity until it reaches a set position and   force. 

 
 

Figure 12.  Interchangeable Jaws on Device by Brouwer et al. [2] 
Button force sensor receives the required force 

and stops the jaw from operating 
 

Reihsner, Balogh, and Menzel [33] used actual clamps with 400 grid abrasive 

paper, which was glued to the inside surface of the clamp. This allowed for “optimal 

compression of the specimen between the clamps can be found empirically as ‘mid 

position’ between slipping and jaw break”.  
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Langdon et al. [16] used a cruciate shape for the samples (3 cm with the central 

region of 2 cm) because it retains continuous fiber geometry of the tissue. Figure 13 

shows an example of a cruciate shaped sample by Flynn, Peura, Grigg, and Hoffman [8].    

 
 

Figure 13.  Cruciate-shaped Sample by Flynn, Peura, Grigg, and Hoffman [8] 
Clarifies the idea of what a cruiciate form looks like 

 
 The sample was mounted onto four plates, surfaced with #180 grit waterproof 

sandpaper, and the plates tightened with screws. An alignment jig was necessary to align 

the grips and arms properly.   

Lepetit, Favier, Grajales, and Skjervold [21] developed cryogenic grips for tensile 

tests (mostly used for ligaments and tendons), which were done in two ways (Figure 14). 

The first method uses cryoclamps, which the ends of the sample are frozen and 

mechanically clamped. This leads to damages or breaking the frozen area.  The second 

was cryofixation, in which molds the tissues into ice blocks, but thawing the samples is 

necessary.   
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Figure 14.  Cyrogenic Grips for Tensile Tests by Lepetit et a.l [21] 
This is a 3-minute process and allows for low resistance properties. 

 
 

One concern for using clamps is slippage, which occurs when the clamp is not 

tight enough.  This causes the grip’s displacement to be inaccurate and making the data 

invalid. If the clamp is too tight, this could lead to damage of the sample on the edges. 

 

2.4.2  Sutures/Staples 
 

Figures below show how the square/rectangular samples are attached to the 

device using sutures/staples.   

 

Figure 15.  Attachment of Sutures (Lanir and Fung [19]) 
Each side attached to motor carriage 

 with surgical staples 
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Figure 16.  Results After Loading (Liu and James [22])et al.) 
Edges of the sample deforms due to  

the applied load 
 

Gloeckner, Sacks, Billiar, and Bachrach. [9] used two loops of suture around each 

of the two small pulleys.  The horizontal common axle connects to a vertical pivoting rod 

(to allow frictionless rotation).  Sacks [36] also used 000 silk sutures, but they were 

looped 5 times around each side.  The samples were in their dehydrated state with the 

water bath empty when mounted to the controlled sample onto the device. Once mounted, 

saline filled the bath at room temperature, which left the sample to re-hydrate for an hour.  

For his next paper [35], there were only two loops of suture for each side (mounted on a 

pulley)and held by four stainless steel staples.  

The 25 mm x 25 mm sample used a 5-0 suture with five continuous loops per 

edge (1 loop/5 mm).  Within the sample size, the clamping does not affect the 15 mm x 

15 mm region at the center [14].  May-Newman and Yin [26] also did a similar setup.   

Lanir and Fung [19] used a rectangular shaped sample and had the specimen float 

in physiological solution.  They used 68 small staples; each connected by a silk thread 

that screw onto the force-distributing platform.  This allowed independent adjustment of 

each thread. Because of the staples and hooks, there exists a stress at the edges (1/20 
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normal stress); however, the central region (benchmark) was not be affected.  In the case 

of the sutures, the higher the stress, the more rigid the sutures will have to be.   

2.4.3  Hooks    

Currently, many material testing machines, such as the one developed by Instron 

[42] (Figure 17 and 18), utilize hooks to attach the sample to the testing device.  

 
 

Figure 17.  Instron's Planar Biaxial Test System:  Hooks and Sutures [42] 
Samples placed in and removed from the device quickly and easily 

 
 

 
 

Figure 18.  Schematic of Instron's Pulley System and Sutures [42] 
Hooks with sutures provide efficient mounting system 
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Using hooks are ideal for most devices because there is less damage when attaching the 

sample to the device.  The deformation will only occur at the point of the attachments. 

2.5  Test Chambers 

Many samples go through mechanical tests without requiring special 

considerations.  However, because it is necessary to have a “natural” environment for the 

samples, there are two main factors to keep in mind when handling the samples: 

temperature and saline solution.  

2.5.1  Temperature 

The temperature has an effect on the mechanical properties of the sample [19].  

Heat can change the composition of the sample by causing it to increase in stiffness or 

become more flexible. For example, drastic chemical changes can occur when the 

temperature is elevated for a collagen, which alters the physical properties [14].  This 

solution may achieve different desired temperatures by using foil heaters or a 

thermocouple to maintain the temperature.   

2.5.2  Saline 

For the many connective tissues, it is necessary to submerged them in saline 

solution throughout the experiment (before putting it on the machine until after the 

testing is completed).  However, the solution may cause the tissue sample to swell. For 

example, Lanir and Fung [19] observed swelling in his samples within 3-4 hours of being 

in the saline.  

In the past methods: 

• the sample was immersed 10-15 mm below the saline surface [14] 
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• DMEM solution has been used with HEPES to have the pH value of 7.2 

(which is near human pH value) [15]  

• Lanir and Fung [19] kept the solution at pH 7.4.  The test chamber is 

unique.  

• Nielsen, Hunter, and Smaill. [28] used a roller pump to circulate the 

saline solution throughout the experiment. The temperature ranged from 4 

degrees to 40 degrees C.   

These examples show that it is a crucial aspect to keep the samples near its native 

state (pH value of 7.4, human body temperature) and also to use the proper physiological 

solution. 

2.6  Actuators and Motors 

An objective stated for this project was to enable the device to stretch the samples 

automatically.  In order to achieve this, there needs to be a component that will drive the 

device.   

2.6.1  DC motor  

This is one of the most primitive methods of converting electrical energy into 

rotational mechanical energy.  The armature of the motor rotates when a current input 

signals the motor.    These motors are relatively cheap, and very simple to operate.   

 With this simple mechanism, controls are limited to on, off, and variable velocity.  

Removal of the current input is necessary to stop the motor.  Even though the power 

source may be off, current does not have the ability to stop instantly, which causes the 

armature to slow down before stopping.  Even if the time is very short, a small moving 
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current may move the armature a few degrees.  The reasons described above show that a 

DC motor is not a good positioning device.   

 
Figure 19.  Explanation of How DC Motor Functions [43] 

Constant current input makes the motor produce a constant rotational output,  
a changing current input changes the rotational velocity 

 

2.6.2  DC Stepper Motor   
This is a DC motor with more than one electromagnetic pole but has a rotating 

arm of a stepper  motor with a constant north or south pole.  The outer poles charge from 

on and off.  Stepper motors are simple rugged devices that are low in cost, high in 

reliability, and easy to operate. They have high torque at low speeds, however, the torque 

decreases at higher speeds [44].  Stepper motors are able to rotate continuously, however 

it rotates in steps.  It must briefly stop at each step before moving onto the next step.  It 

does not have the smooth velocity a regular DC motor would have.   
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Figure 20.  Diagram of Stepper Motor [45] 

Left: a stepper motor held at an initial rotation Charged poles at the  
top, bottom, left, and right are south poles. 

Right: the poles in the outer ring does not charged anymore while the new poles 
 (in counter clockwise to the previous poles) are charged.   

To rotate the arm, charge the poles to one pole clockwise or counter clockwise to the previous pole.  The 
more divisions and number of poles there are, the more steps the motor is able to have, which makes it 

possible to have micro stepping.  

 

2.6.3  DC Servo Motor   
Servo motors are DC motors (with high torque) while being able to position 

accurately.  This is possibly because servo motors are closed-loop systems while stepper 

motors are open-looped systems.  When the controller gives a signal to the stepper motor, 

it assumes that the motor has moved a certain distance. On the other hand, servo motor 

need to know that it has moved that distance.  There are encoders built in the back of 

servo motors, which tell the controller the exact number of revolutions and position of the 

rotating arm.  Because of this feature, servo motors are extremely costly.  One could 

place an encoder feedback at the end of a stepper motor, but it does not have high torque 

as the servos do  [46]. 

2.6.4  Pneumatic/Hydraulic Motor 
 

Compressed air or fluid drives the pneumatic/hydraulic motors to run instead of a 

current input. A piston chamber resides within the motor, where there are two pathways 
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for fluid to enter.  Since the armature of this motor moves in a linear manner, conversion 

from a circular output to a linear output is not needed.  However, the armature needs 

some sort of fluidic input, usually compressed gas, to power the movement.  .   

 
 

Figure 21.  Typical Setup for a Basic Pneumatic System [47] 
An installation of a network of tubing and controller for airflow is necessary,  

one pathway pushes the piston out while bringing the other piston in  
 

2.6.5  Linear Actuators 
 

Linear actuators are basically stepper motors attached to a threaded slider 

mechanism.  A belt or gear (depending if a higher velocity or torque is required) connects 

the stepper motor and threaded slider. The cost of this system may be more expensive 

than by purchasing the two components individually.  Versatility of a package system 

may also be lower than a custom system.   
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Figure 22.  Internal View of Linear Actuator [48] 
Linear actuators are prepackaged component (has motor and slider mechanism) 

 guaranteeing to be compatible with one another 

 

2.7  Motion Controllers  
 

Once selecting the motors, then it is easy to decide on a motion control system. 

This closed-loop motion control system involves the motion controller board and the 

amplifier/motor drive along with feedback devices, the motor drive and amplifier is the 

same item.) As there are movements, there are feedback devices like position sensors. 

The sensors provide information back to the controller, where the controller can tell what 

position and velocity the motor is operating.  Figure 23 explains the flow of motion 

control.   
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Figure 23.  Schematic of Motion Control [48] 
User can control various motion commands for motors to perform,  

motion controller sends the commands to motor drives as (+/-) 10 voltage step signals, 
signal converts to current, which the motors can read 

motor converts current to torque and produces motion, 
feedback devices provide information back to controller 

 
 

2.7.1  Motion Controller Board 

The motion controller board takes the motion profiles and calculates the 

trajectories (by using target position, velocity, and acceleration) so the motor will have 

the right amount of torque needed to cause motion. Having this controller board will 

prevent other interference (as if loading up another program will not delay or stop the 

motors from working).  The controllers also get feedback from position sensors, which 

ensure reliability, determinism, and stability of the system.    

 

2.7.2  Amplifier/Motor Drive 
 
 Once all the signals are converted, then flows to the amplifier/motor drive as 

voltages.  The type of motor drive must match the motor type (i.e. if stepper motors are 

used, then a stepper motor drive is necessary).  Another important factor to look into is 
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the current supply. If the current is too much for the motors to handle, then it will most 

likely damage the motors. If the current is too little, then the motors will not run and 

work at the speed it is capable of because it will not have the full amount of torque.  

2.7.3  Feedback Device 

Various types of devices to stop the motor from continuing the motion:   

1.  Limit Switch:   The purpose of this device is to signal the end of travel or to 

prevent the motor from exceeding the necessary distance.  Without a limit switch, 

the motor will reach the farthest position and the motor will continue to run, 

damaging it. With the limit switch, the motor would reach the limit switch, 

signaling the controller to stop running the motor and bring it to a complete halt. 

Disabling the limit switch will allow the motors to run.  

2. Home Switch:  This allows the user to set the limit for the positioning of the 

motor after reaching this point. The user can set the encoders to the value of zero 

or to any arbitrary number.  If the motor hits the limit switch before the motor 

switch, the motor will reverse its direction until it reaches a home switch or 

another limit switch.   

3. Index:  This component produces a signal for every revolution that motor makes.  

2.7.4  Data Output: Proportional-Integral-Derivative (PID) 

 It is significant for our system to have a continuous flow of data output because it 

is necessary to see the continuous movement of the soft tissue sample at a constant rate.  

The proportional-integral-derivative (PID) controls the output at a set level (determined 

by the user) even when the continuous parameters are wavering over/below the set level.  
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The PID also changes the process level from one point to another, instantly and 

accurately.  There are three components for the PID control. 

1. Proportional Control:  (Ratio Control) Adjusts the difference between the set 

level and the current level, therefore the correction is in proportion with the 

measure of error.   

2. Integral Control:  (Reset Control)  Returns the process back to the original set 

point by detecting the difference between the error and the set level and the 

amount of time the error continued.   

3. Derivative Control: (Rate Control) The corrective signal to fix the current point 

to the set point is dependent on the rate of change of the signal.   

 

For a closed-feedback loop, this is a typical PID function.  

An example of a basic control theory (Figure 24 – Figure 30 taken from National 

Instruments [49]), the controller is a dial, which is set for the position point (in degrees).   

If the dial were set from 0 ° to 108° in 3 seconds, then ideally, the user would like 

an instantaneous response to the controller like in Figure 24. 

 
 

Figure 24.  Ideal Position Curve [49] 
 

However, this will not happen.  More realistically, there would be a linear 

increase up to 108 °, which is seen in Figure 25.  
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Figure 25.  Realistic Curve 
Takes longer to reach desired position 

 
 

Figure 26 shows the curves undershooting or overshooting the desired mark.   

 
 

Figure 26.  Overshooting/Undershooting Curves 
Overshooting:  the amount of signal exceeds the set level when shifting  

from one voltage to another 
Undershooting:  ratio of signal that fluctuates between two set levels 

 (amplitude usually lies below the desired position) 
 
The next figure shows an oscillation waveform (underdamped)  

 
 

Figure 27.  Oscillation (Underdamped) Curve 
Takes a few seconds before it stabilizes in its proper position. 

Another type of curve is a damped response.  
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Figure 28.  Overdamped Response 
Curve is an exponential curve but takes 

 longer amount of time to reach the final position 
 

The last type of curve is a constant oscillation curve at the desired position.   

 
 

Figure 29.  Constant Oscillation Curve 
 

These five curves are not ideal, especially if accuracy and swiftness are necessary.  

The most realistic response to get from a PID control is the figure below. 

 
 

Figure 30.  Optimal Response from PID Control 
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2.8  Mechanisms for Linear Movement 
 

Not all of the motors listed previously provide linear movement.  Certain DC 

motors do come in a linear form; however, their strokes are limited by the size of the 

motor.  The most common method of transforming rotational force from a motor to a 

linear force is to put it through a mechanical slider.  These slider mechanisms typically 

allow the movement in one axis while keeping the other two axes and rotation still.  Low 

friction types have bearings within the slide.  Unlike actuators, which extend out from 

their resting position, slide rails supports on either left or right side, and a platform is 

what moves along the axis.  Because of this, rails are capable of handling a much higher 

perpendicular torque than linear actuators.   

Some common types include screw drive, ball screw drive, belt drive, and chain 

drive.  Belt and chain driven drives are simple mechanical devices where the belt/chain 

attaches directly to the motor shaft and the slide block.  The motor shaft is perpendicular 

to the motion of the slide block.  On a ball screw drive, the motor shaft is parallel to the 

motion of the rail block, which attaches to a threaded rail.  This will rotate when the 

motor rotates.  Depending on the pitch, one revolution of the motor may be one sixteenth 

of an inch to one-quarter inch.  Screw rails are capable of moving at much smaller 

intervals, however do not have as high of a velocity and acceleration as belt or chain 

drives.  Left and right hand threads are available along with different pitch angles.   

2.9  Force Measurement 
Since stress is the measure of force over area, there needs to be a device to 

measure the force produced by the actuating mechanism.  Knowing that we must 
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ultimately achieve linear motion and that many motors produce a rotational force, linear 

force transducers and torque transducers are ideal.  Such transducers are available in a 

variety of different sizes and ranges.  Some work in tension, others work in compression, 

and some work in both tension and compression.  The most common connection these 

transducers have is threaded males inputs.  The output is usually a signal output, which 

connects to an electronic device.   

 There are two features to consider for the transducers. It is possible to place an 

overload stop in the transducer, allowing the transducer to work in a certain range.  Once 

the load has peaked, a mechanical stop in the transducer prevents it from taking any more 

loads.  It is an option designed to prevent excess load from breaking the transducer.  The 

design of the apparatus determines the placement of the transducer. There are 

submergible load cells that have the capability to function when submerged in solution. 

2.10  Displacement Measurement 
 
 In order to measure the displacement of the tissue samples during loading, video 

cameras are necessary to perform non-contact image analysis.  Out on the market, there 

are many different types with a variety use of applications.  The four major distinctions 

between cameras are color, signal, signal format, and cost.  There are advantages and 

disadvantages for each of the options within these classes. 

2.10.1  Video Display  
 

Video cameras come in two types of display: color and monochrome.  Color 

cameras provide greater versatility in image display.  Depending on the application, color 

detail may be necessary.  Monochrome is a black and white display of the image 

captured.  Although color detail is absent, for applications which do not require color, 
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monochrome is usually the preferred option.  The advantages of monochrome over color 

include approximately 10% higher resolution than single-chip color cameras.  In addition, 

monochrome cameras have a better signal-to-noise ratio, increased light sensitivity, and 

greater contrast.  Monochrome cameras are also typically cheaper than equivalent color 

cameras.  

2.10.2  Signal  
 

Color and monochrome video cameras both are available in analog and digital 

signal outputs.  The main advantage to an analog signal is that it is usually lower in cost 

than a digital signal camera.  However, if high performance is more important than cost, a 

digital signal is usually the best option.  Digital signal cameras typically have higher 

resolutions, higher frame rates, less noise, and more features.  A disadvantage to digital 

cameras is they are very costly.   

2.10.3  Signal Format  
 

Analog and digital signals are available in a variety of signal formats.  The most 

common analog signal formats are NTSC (color signals) and EIA (monochrome signals) 

composite formats.  Other formats include Y-C s-video, and RGB (red-green-blue) 

formats.  Both Y-C and RGB split color information into separate channels, which results 

in superior image quality.  Types of digital signals include Cameralink, IEEE-1394 

firewire, RS-422, and RS-644.  Cameralink and IEEE-1394 are the most common 

formats.  Digital signals require a computer interface to display the images on a monitor.  

An advantage to IEEE-1394 cameras is that it is possible to connect the cameras directly 

to the computer with a firewire interface using a single cable.  Cameralink cameras 

require a separate acquisition card for connection to a computer interface [30]. 
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2.11  Computer Control 
 

In order for the device to run, as well as manipulate the forces and linear motion, 

a computer control system is essential.  This system will not only control the device 

during the stretching of the tissue samples but it will also calculate the stress and strain of 

the samples.  The computer control system will need to graph all of the acquired data as 

well as display the images taken by the camera. 

LabVIEW is a general visual language, which is made up of two main 

components.  The first is the front panel, which is the user interface.  This display 

consists of various inputs controlled by the user and outputs that display data.  The 

second is the block diagram, which contains the written code.  This displays various 

component icons through which data flow is wired.  The front panel and the block 

diagram are interconnected and relay information between each other.  Together the two 

components form an easy to use control program.    
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3  Design Approach 
 
 There are two common types of biaxial testing performed on elastic type 

materials: the linear stretch test and the inflation test.  Since the inflation test displaces 

samples in the z direction, a camera needs to be parallel to the x-y plane.  A second 

camera (placed either perpendicular to the sample or at some offset angle) is required to 

record the sample’s initial properties.   

 The linear stretch test stretches the sample along the x-y plane.  The sample, in 

theory, remains on the two-dimensional plane; therefore, a second camera is not needed.  

Both types of biaxial testing involve very different approaches and requirements, and 

based on the allotted resources, it would have been unreasonable to pursue both.  

Inflation testing lacks the versatility of a planar test and the sample’s size and range are 

dependent on the size of the nozzle and pressure.  In addition, the client has an inflation 

device; therefore, the team focused on designing a planar biaxial testing device.   

 When designing this device, we needed to keep in mind the client’s needs  and the 

physical constraints to building this device.  

• Client’s Need 

o Low cost -  budget of $10,000 

o Small and compact- to fit on a laboratory bench 

o Able to read low forces-  samples are compliant and fragile, so it can only 

withstand small loads before it reaches its fatigue strength and begins to 

tear 

o Real-time data output 
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• Physical Constraints 

o Biocompatibility- device must not react with the biological tissue samples 

and the physiological solution 

o Non-contact displacement analyzer- needed to take the measurements 

without touching the sample  

These constraints were determined by using the objective tree (Appendix B) and the 

pairwise comparison chart (Appendix C). 

3.1  Design Iteration #1 – Two Motor Design 
 

The basis of this design was to reduce the number of components and controls 

needed to operate the device. Before any cost analysis began, designs were based upon 

user friendliness and low cost.  There were three major areas to look at: movement, force 

feedback, and displacement feedback.   

In a uniaxial test, one end of the sample is stationary while the other end moves.   

A biaxial setup puts two of these together, which links both axes to one driving source.  

However, this did not fit within the specifications of versatility because each axis would 

loose the ability to have independent driving forces.  A simple solution to this problem 

was to use two driving mechanisms. Figure 31 shows a typical sample shape.  

 
 

Figure 31.  Shape of Typical Sample 
 

 35



 
 

Figure 32.  Deformation when Edges are Fixed 
Left: Shows the deformation when the – x and –y sides are fixed, 

while the load is applied to the other two sides. 
Right:  Undeformed shape superimposed on the deformed shape. 

 
The center of the sample changes between the start of a test to the end.  It would be more 

advantageous to keep the center of the sample at one location like in Figure 33.  

 

 
 

Figure 33.  Deformed Samples with Equal Loading 
Left: Example of a deformed sample with equal loads applies in all four directions. 

(Note the center of the sample is stationary) 
Right: Undeformed shape superimposed on the deformed shape. 

 
Rather than directly connecting the driving mechanism to one direction, the 

mechanism connects to both the positive and negative directions. Because there is no 

need to pull one axis unevenly in each direction, one mechanism can pull a certain 
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amount in the +/- x direction and the +/- y direction with the same amount of force.  

There are manual adjustments on the device to enable proper tension and centering of the 

sample.  

One way to achieve synchronous movement in two directions is with a threaded 

guide rail attached to a rotational motor or duel rod linear actuators (Figure 34).  These 

blocks attach to the arms that extend over the bath and into the solution where sutures and 

hooks grip the sample.  The arms from each rail would never collide with one another.  

There is plenty of room for a mounting system for the camera; however, the arms coming 

off the rails are extremely intricate.  

 
 

Figure 34.  Conceptual Design of a Possible Two-Motor Design 
Motor spins in one direction: guide rail blocks move apart.   

Vice versa if the motor spins in opposite direction.  
 

There were only two types of transducers suitable for this design: linear force 

transducers and torque transducers.  It was possible to place linear force transducers in 

the saline solution between the sutures and the arm connecting to the rail.  A torque 

transducer would need to hang over the saline bath, supported by the rail block with a 

lever arm that dips into the solution.   
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Finally, any non-contact displacement sensor would also work.  A camera, for 

example, mounted over the sample could work, provided there is enough lighting.  There 

was room between each drive mechanism on the base plate because we planned for 

supports to be built for the overhead camera table.  The overhead table would hold the 

camera, which would reside directly over the sample. 

3.1.1  Pros and Cons 
 

This design was appealing because of the fact that there were fewer parts than 

other systems.  Rather than having four control variables, there are only two: one for each 

axis.  This resulted in having a compact design, which met the client’s need.  However, 

the hand cranked centering device was not as accurate as a computer-controlled jogging 

system.  It was also difficult to reach into the device to adjust the sample’s centroid 

location with components in the way.  The cost of machining special arms that would 

properly fit would most likely outweigh the advantage of fewer necessary movement 

mechanisms. 

3.1.2  Pass or Fail 
 

Due to the complexity of the parts, this design failed to meet our needs and our 

client’s.  Parts may overlap one another or become in the way of the camera.  As simple 

as the theory may sound, it would most likely be more difficult for the team as well as the 

client to use the device.   
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3.2  Design Iteration #2 – Four Axes Design  
 
 Our next design involved four axes of motion instead of two.  Each axis contained 

one motor, one linear actuator, one transducer, and one machined metal arm, which 

connected to the specimen (Figure 35).   

 
 

Figure 35.  Conceptual Drawing of a Four-Motor System 
One motor on each side of sample for more control  

on each axis and can have versatility   
 

Each actuator has an extension arm that protrudes and contracts along its axis. Then 

each actuator arm is attached to a machined connecting arm, which extends over the outer 

wall of the bath and downward into the bath.  A wire and hook system will then connect 

from the end of the connecting arm to the specimen through a suture.  As the motor 

drives the actuator to contract its arm, the connecting arm and hooks will stretch the 

specimen.   
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The square-shaped bath (2.5 cm x 2.5 cm) contains a saline solution, which the 

specimen floats in.  The bath is removable and most likely will be made of hard plastic to 

avoid corrosion.  Outside each of the four corners of the bath is a metal cylinder.  On top 

of the metal rods is a metal tabletop.  This table holds the camera directly above the 

specimen.   

Advantage to the four axes design: 

• More control of each individual axis 

• Easier to center the specimen before testing- actuators adjust to center the sample 

for the camera  

• Versatility- certain actuators  can be stationary while an individual axis stretched 

the specimen  

• Stationary overhead camera-  

o In the two axes design, centering the sample is not possible because the 

two opposite arms can only move outward or inward together. Therefore, 

to trace the markings, the overhead camera would need to move in the 

horizontal plane, in addition to the z-axis. This is not necessary for the 

four axes design.   

• Less complicated design and less machining required – only requires four 

identical, short arms.   

Disadvantages of four axes design: 

• Individual control of each axis- requires separate motor, actuator, and transducer.  

o Results in high costs  
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• Larger in total size- having four motors, actuators, transducers, and machined 

arms makes the design larger. This does not meet our advisor’s constraint for 

small space.   

 After looking into the initial four axes design, some problems were realized which 

needed to be changed.  The first mistake that we found was in the maximum distance that 

each arm would have to stretch.  Initially, we assumed that it would have to travel 

approximately 3 inches to stretch the tissue samples sufficiently.  By taking the minimum 

size sample of 10 mm, and the maximum size sample of 30 mm, we can determine the 

correct distance of motion needed.  Assuming a maximum stretching of 200%, we obtain 

a total distance of 80 mm of stretching by the sample and 40 mm of displacement by each 

arm.  Results can be shown in the below equation. 

MathCAD equation: 
KNOWN VALUES: 

Maximum initial specimen length (Li(max)): 30 mm 
Mininum initial specimen length (Li(min)): 10 mm 

Maximum strain (εmax): 200% 
Number or arms per axis (APA): 2 

 
UNKNOWN VALUES: 

Maximum distance of stretch (Dmax) = ? 
Maximum distance of movement (Smax) = ? 

Distance of movement for each arm (Darm) = ? 
 

(Li(max) + (Li(max)  * εmax)) = 90 mm  maximum distance of stretch (Dmax) 
Dmax - Li(min) = 80 mm  maximum distance of movement (Smax) 

Smax/APA = 40 mm/arm (~1.6 inches)  distance of movement for each arm (Darm) 
 

Therefore, the distance of movement for each arm became 2.5 inches each to be safe.   

 We also realized that the size of our bath was not large enough.  When the 

actuators fully contract, the machined arm will collide into the inner wall of the bath. 

Therefore, the dimension of the bath increased to avoid this problem.  Another length 

 41



problem was that we had estimated the motor length incorrectly.  The initial length of 2 

inches was incorrect and so the new length is approximately 3 inches. 

 A major change in the four axes design came when we chose different linear 

actuators and rotational torque transducers.  Instead of a linear actuator with an extending 

arm, we chose a rail system actuator for this design.  Due to the rail system, machining is 

necessary for the connecting arm to extend up and over the actuator end and outward 

over the bath wall.  

 
 

Figure 36.  Different Setup of Connecting Arm to Torque Transducer 
Connect each transducer to vertical stainless steel rod that extends downward into bath, 

then attaches to sample through a suture and hook system,  
rail and motors are offset to side to make room for torque tranducers 

 

 After listing both the advantages and disadvantages of the design, we chose 

iteration number two because the advantages outweighed the disadvantages when 

compared to our other iterations.  Even though the four axes design was more expensive 

than the two axes design, the difference in total cost was tolerable.  This was because we 

could build the four axes design while staying within our budget and provided much 
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greater experimental versatility and control.  The four axes design also provided a less 

complex design and required less machining.  These factors all contributed in the design 

selection process, and choosing iteration #2 as the design. 

3.3  Modifications to Four Axes Design 

 During the fabrication and assembly process, various components were changed.  

The basic concept of the device was not changed: it is still a planar biaxial device with 

four independent motion controls, two torque transducers and a camera.  The reasons for 

component changes were that certain materials were easily accessible to us, and that time 

and cost considerations changed what we were able to use.  Below is a CAD drawing of 

the modified design.   

 
 

Figure 37.  Conceptual Drawing of Final Design 
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 The final layout is smaller than design #2.  The most notable change is the use of 

extrusions over plating.  They are lighter and require less fabrication time.  This design 

was also created with draws for all components so that they may be machined properly.   

3.4  Design for Heated Test Chamber 

3.4.1  Purpose and Constraints 

The test chamber is a critical component in the biaxial device.  In this bath will be 

a tissue sample submerged in physiological solution, while a heating system maintains 

the temperature testing area at 37 ºC.  

The problems presented in designing the test chamber were: 
 

• It must be biocompatible, so whatever material we use cannot react negatively 

with the solution/tissue sample 

•  Maintaining constant human body temperature (the solution) 

• Easy to clean and prepare for the experiments 

• Design constraints for the test chamber (must be transparent to observe the tissue 

sample and must not reflect because of the camera). 

A variety of design iterations were developed for the heated test chamber.  The 

following three designs include a two chamber, inner and outer, bath.  The two-chamber 

system would provide an encompassing heated solution around the inner bath.  These 

methods were was not chosen for the final design for various reasons. 

3.4.2  First Design: Fish Tank Heater 
 
 The first design involved a small separate 5-gallon tank, which would sit along 

side the device.  A simple fish tank heater would be used to heat the water in the tank.   
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Figure 38.  Fish Tank Heater Bath Design 
Fish tank filter would suck water from bath through tube into tank, then  

siphon would displace the water through the tube back into bath 
 

Advantages for this design include being low cost and easy to build.  However, 

we did not select this design because of its various disadvantages.  The filter and siphon 

system would provide flow rate discrepancies, which would produce circulation 

problems.  Also, the fish tank-heater range was too low and would not heat the water up 

high enough to maintain body temperature of the saline solution. 

3.4.3  Second Design: Exterior Pump 
 
 The second design did not utilize a separate tank, but instead used only an exterior 

pump.  This small pump would be situated next to the device and connected to tubes 

running into the bath.  Advantages included its good circulation and even flow rates.  We 

also did not choose this design because a suitable heating system could not be found.  

Without the separate tank, there was no location for a heater to heat the water between 

the two chambers.   
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Figure 39.  Exterior Pumps to Heat Bath 
Uses a small pump to flow water through bath and provides good circulation,    
flow rates are the same since there is no tank and the pump is on the outside. 

3.4.4  Combination of the Two Previous Designs 

The last two-chamber design was a combination of the first two designs.  This 

included a separate 5-gallon tank situated next to the device.  

 
 

Figure 40.  Combination of Previous Two Designs 
One pump sucks water from bath into tank and the other pump would put  

water back into bath, with identical flow rates, 
small fish tank heater placed in tank to heat water 
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 Advantages for this method include an even flow rate, good temperature control 

and low cost.  Initially this design seemed promising, however the limited range of the 

fish tank heater proved detrimental.  We did not choose this design because the 

circulating water would not be able to be heated high enough to maintain body 

temperature in the inner solution.   

 

3.4.5  Third Design- Plexiglas® 

Plexiglas® is an acrylic sheet that is transparent like glass, but stronger. This type 

of plastic is an ideal material because it is transparent, lightweight, non-reflective, rigid, 

biocompatible, and easy to acquire. However, it has a low thermal conductivity ( 0.18 

W/mK).   We began by creating a chamber with ¼ inch thick clear acrylic plastic.  This 

however, created a problem with heat transfer, for it did not conduct heat very well. To 

solve this problem we looked at two possible solutions: either use a much thinner piece of 

acrylic, or find something with a higher thermal conductivity that will not react with the 

solution.   

Going to the local plastic distributor, we were able to acquire a thin sheet of 

acrylic (about 0.0625 inch thick).  With this acrylic sheet, the temperature we would need 

to set the heaters at will be 77 ºC.   

*Please look at Appendix F-1 for the calculations for heat transfer. 

3.4.6  Design #2 - Mylar 
 

Because the temperature of the heaters needed to be 77 ºC, we decided to find 

another material that would require less amount of heat to get the physiological solution 

to 37 ºC. The one possible material is thermoplastic film called Mylar, which is made 

from ethylene glycol and dimenthyl terephthalate.  The material properties of Mylar 
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makes it an ideal product for the project because it is strong, clear, has high mechanical 

properties, can withstand the range of temperature we need, and is can be extremely thin 

(paper thickness) [52].  Even though the thermal conductivity is lower than the acrylic 

sheet, (0.155 W/mK), the thinness of the sheet (about 1mm) provides better heat 

conduction.  However, it was hard to acquire a non-reflective Mylar because the 

company only sells it at bulk, raw form and would not provide a sample.  

*Please look at Appendix F-2 for the calculations for heat transfer.  

3.4.7  Final Solution 
 

The acrylic bath was chosen because it was easily accessible, unlike the Mylar.  

Even though the temperature was higher than we would like, it will work well with the 

project.  

The final design constituted of only one bath.  The bottom most layer of the bath 

was a ¼ inch thick aluminum plate.  Flexible Kaplon heating pads are attached to the 

bottom of the aluminum plate.  The high conductivity of the aluminum distributes heat 

throughout the plate, which achieves even heating.  On top of the aluminum plate, a thin 

sheet of acrylic was attached using a conductive resin.  The sheet of acrylic was 1/16 of 

an inch thick, and was needed to maintain the biocompatibility of the bath.  Acrylic with 

a thickness of ¼ inch was also used for the walls of the bath (Figure 41).  

 48



 

Figure 41.  Levels of Bath Chamber 
Heating pads below the aluminum heat the saline within the acrylic 

 chamber to maintain a constant heat on the sample. 
 

The increased thickness of the acrylic walls increased the insulation and reduced 

undesired heat loss.  The heating pads are connected to an Omega temperature controller.  

A thermal couple is situated into the center of the saline solution and indicates the 

solution temperature to the controller.  This controller can be set at any desired 

temperature and maintained at a constant level.  The advantages of this design include its 

simplicity, absence of circulation or pumping, even heating, and superior temperature 

control.  Figure 42 is a schematic of the final design chosen for the heated testing 

chamber.    
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deformation to the edges. Just for experimentation, only two hooks were applied in a 

uniaxial direction. 

 

 
 

Figure 43.  Rice Paper with Hooks 
With a light background, this is the sample before any forces were applied. 

 

However, the test failed because the hooks sliced right through the edges.  

Therefore, another way of hooking onto the sample was using a suture staple.  

 

Figure 44.  Suture Staple with Two Hooks 
The circled area highlights where the hooks tore through  

from the previous experiment.  
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So then, after having a hard time with the rice paper, we decided to use Latex. 

Latex is stronger than the rice paper; therefore, the hooks will not tear through the edges.   

3.5.2  Graphite Markers 
 
We acquired a graphite pencil from the local arts/craft store to mark on the rice 

paper and Latex samples.   

 

Figure 45.  Latex Sample with Marking 
The graphite marker marks very well on the Latex sample. 

 
 

 
 

Figure 46.  Rice Paper with Marking 
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The marking does not show up as well on the rice paper. 
 

 The solution to this problem is to use an actual graphite piece and gluing it onto 

the sample piece by using Krazy glue.  

3.5.3  Applying Force onto the Latex Sample 
 
 Feeling confident about the strength of the Latex sample, we decided to pull the 

hooks and see how far it can stretch before deformation occurs at the edges.  

 

Figure 47.  Slight Pull 
This is a slight pull on the Latex sample.   

 

 
 

Figure 48.  Stronger Pull 
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Figure 49.  Maximum Pull 
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4  Methodology 

4.1  Motion 

4.1.1  Motors 
 

Based on our design, the cheapest piece of equipment, which is adequate for the 

task, is a stepper motor   Stepper motors provide the proper controlled movements at the 

proper velocities.  There is no need for an encoder feedback like one would find on a 

servo, because a camera takes care of that.  DC motors are simple on/off motors, most 

widely used for constant velocity.  Once the power is off, the armature still continues, 

which would not work for this application.  Pneumatics and hydraulics were also ruled 

out because not only would there be a need for a fluidic supply, there needs to be a power 

supply, which controls the fluids going into the pistons.   

The size of stepper motor needed for this device was size 17” or 23” stepper 

motors.  US Digital Corporation sold size 23” stepper motors for $59, and Advanced 

Micro Systems size 17” stepper motor.  Intelligent Motion Systems created their own line 

of stepper motors called MDrive.  These stepper motors have encoders connected to the 

end of the motor, which provides a closed loop feedback.  The video system captures the 

position feedback for this system, thus, those encoders are not required.   

4.1.2  Controllers 
   

After deciding to use stepper motors, our controller board must be compatible 

with these motors. Three different companies were concentrated on for our motion 

control system.  Three important criteria we kept in mind when finding the right type of 

motion control for our system:  1. must be compatible with LabVIEW 2. compatible with 

stepper motors 3.  Low-cost (under a $10,000 budget) 
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1.  National Instruments: 

     This Texas based company was the first choice for motion controllers because it uses 

LabVIEW so there are no concerns whether or not our controller board would be 

compatible with the computer software.  There were different categories for controllers:  

a. NI 7330 series (Low cost component):  These devices are used for simple point-

to-point applications and come in 2 or 4-axis stepper motor control board.  They 

have Real-Time System Integration (RTSI), which allows smooth communication 

with the data acquisition board.  The price ranges from $745 to $1045.     

a. NI 7340 Series (Mid Range Stepper/Servo Control):  This device applies to 

control stepper and servomotors.  It meets the high performance needs by the 

users, like contouring and electronic gearing. Since it involves more power, a 

third party motor drive is necessary.  The price ranges from $895 to $2195. 

b. NI 7350 Series (High Performance Stepper/Servo Motion Control):  This device 

can go up to eight axes and can configure to a stepper or servo control. It has all 

the added features like blended motion trajectory, hydraulic control, and 64 lines 

of digital I/O.  These features however are more then we need.  The price ranges 

from $1695 to $2595.   

*Please look at Appendix D-1 for the features of each series 

After comparing the features, we narrowed it down to the NI 7330 series because the 

other two series provided features that were not necessary for our system. Within the NI 

7330 series, there were three different controller boards: 

a. NI PCI-7332:  This controller is for a two axes stepper controller, which we could 

not use because we needed a four axes controller. 
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b. NI PXI-7334:  This is a four axes stepper controller; however, there is a trigger 

bus component in the computer, which is more than we needed. We needed the 

PCI card for our system. 

c. NI PCI-7334:  This was our choice for the motion controller because it is a four 

axes stepper controller and contains a PCI card. In addition, the price was 

reasonable ($945). 

*Please see Appendix D-2 for detailed features of each controller.  

Along with the controller board, we also needed a motor drive.  The only motor 

drive that was compatible with the PCI 7334 was the MID-7604, 4 axis Integrated 

Stepper Driver Power Unit with the power of 115 V, which converts to 2 amps.  The 

price for this motor drive was $1,975.50.   Along with the cable needed to connect the 

components, the total price from National Instruments was $2,961.00. (This includes 

the educational discounts.) 

2. Precision MicroControl Corp:  Comparing the controllers to the NI PCI 7334 

controller, the MFX PCI 1040 is very similar for features.  It is compatible with 

LabVIEW; however, the price is too high. It cost $1,395.00 for the controller and 

there would need to be additional cable/wiring.  In addition, this company did not 

provide motor drives, meaning we would have to search for other companies to 

provide the power.  Therefore, we decided not to order the controllers from this 

company.   

*Please see Appendix D-3 for features 

3.   Galil Motion Control:  The DMC -1842 PCI bus was a similar controller to the NI 

PCI 7334. It uses a four axes system, which can have a combination of stepper/servo 

motors.  Multitasking is possible with the maximum of eight programs at the same 
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time.  There were also various modes of motion like point-to-point positioning, 

contouring, linear and circular interpolation, and electronic gearing.  However, the 

additional features on the controllers are not necessary for our system and the price 

was a bit too high for our needs ($1,195.00).  The motor drive needed for this 

controller was the AMP-19540 and cost about $795.00.  The great thing about the 

Galil Motion Control system was there was no extra cabling needed, unlike the 

National Instruments.    

Another type of controller from Galil that we researched was the DMC-2143, which 

connected to the computer by Ethernet; therefore, an IP address was necessary.  

Again, no extra cabling was required to connect the controller to the motor drive. If 

we had purchased the motion control system from Galil, we would have saved 

approximately $1,000.00. However, after talking to the application engineer from 

Galil, there were still some uncertainties about the products.  He also mentioned that 

we would have had to provide our own power supply for the motor drive, and we 

would have had to build some kind of fixture with a DIN rail mount to secure it well 

or else it would stand-alone.  This meant that more money was required to run this 

system.  In comparison with the National Instrument system, it was not as 

advantageous as we initially thought. 

*Please see Appendix D-4 for specs.   

We chose to use the National Instruments’ motion control system.  
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4.1.3  Rails 
 

A screw-driven slide connects to the end of the motor to translate the rotational 

motion of the motor to linear motion.  We chose a Kerk SRZ4005Tx6” rail because of its 

low cost and its customizing ability.  Looking at the design and examples of working 

devices, a stroke size was calculated.  Although the targeted samples may not require the 

full range of the rails, there may often be error, or other samples placed in the device.  

These rails are relatively cheap, and they work.  Companies such as Thomson Industry 

produces linear rails, however they are plain slides without a method to drive them.   

4.2  Force Measurement 

4.2.1  Force Transducer 
 

The first idea used was to make a linear force transducer compatible with the 

system, as it was the easiest to work with.  Even after searching everywhere, we could 

not find a linear transducer that was less than 50 grams, nor one that was submergible.  

Transducers specialized for biomedical applications were hard to work with, as we 

designed each part for a specific task.   

Rotational transducers however do have a low enough range and adjustable lever 

arm lengths.  We selected a Futek TFF-400 20 oz-in. rotational transducer with overload 

protection.   Calculations in Appendix E demonstrate how we chose the range of the 

transducer.  
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4.2.2  Signal Conditioning/Filter 
 

During the search for a controller board and a filtering system, the most important 

specification needed, besides being compatible with force transducers, was the need to 

connect to LabVIEW.  The proper filter and circuit board we selected based on the force 

transducer.  The filter part chose was a SCC SG24 2 channel full bridge filter, which fits 

into a power bus (SC-2345.  A noise rejecting cable connects this to the NIPCI – 6221 M 

Series DAQ board.  We purchased all of these components from National Instruments.  

There was also software available for interpreting the data.  It was because that all these 

components would work together with the software, and the price was reasonable 

National Instrument parts we selected. 

4.3  Displacement Measurement System 
 
 We did extensive research on displacement measurement systems to fully 

understand the many components of such a system.  There are many options to choose 

from when selecting a measurement system.  Display, signal, signal format, cost, lens, 

and frame grabber board considerations are necessary.   

 The camera and vision system chosen for our final design was a Sony XC-ST50 

CCD Camera.  The camera is monochrome and has an analog signal.  We chose a 

monochrome camera instead of color because monochrome has a greater quality of 

resolution.  The advantage of color would be in its visual versatility.  However, for this 

application, we did not need color since the measurement system would just have to 

differentiate between the light specimen and the dark carbon markers.  Monochrome 

cameras were also slightly less expensive than their color equivalents.  The selection of 

 60



an analog camera over a digital camera we made was primarily on cost.  Digital camera 

packages, which included an additional digital driver, were approximately twice the cost 

of analog camera packages.  It was determined that the finances were not available to 

spend in excess of two thousand dollars for a digital camera system.  This decision was 

acceptable because an analog camera would sufficiently perform the tasks needed for this 

application.  The signal format decides whether the signal is digital or analog.  Because 

of this, our selection for signal format was EIA (Electronic Industries Association). 

 These factors determined the type of camera system, which we purchased.  We 

discussed other factors were with a professional from Edmunds Industrial Optics Inc. 

including lens size and focal range.  We also chose a maximum viewing area of 90 mm2 

for our application.  The lens (Edmund’s Y54-363 10x CCD C-Mount Lens) we chose, 

based on the recommendation from an Edmunds professional, contains a ½” CCD format.  

This CCD format is the field of view that the lens is able to focus on.  To reduce total 

project costs, we did not purchase this lens.  We then acquired a lens currently from 

Professor Billiar’s lab.  If this lens does not achieve the desired performance, we will 

purchase the initial lens selected.  We selected a frame grabber board PCI 1405 single 

channel color/monochrome based on the Edmunds professional advice.  This board will 

adequately convert the frame-by-frame signal into a format compatible with LabVIEW 

software.  

4.4  Control System Overview 
  

A control system has the primary function of collecting and analyzing feedback 

from a given set of functions in order to control these functions.  Monitoring or 
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systematically modifying parameters can implement this control.  In this case, the control 

system chosen is a computer system with LabVIEW software.   

 The team chose LabVIEW because of its multipurpose system, which can do 

everything from controlling the input of data, to acquiring the results, as well as 

analyzing and graphing those results.  Since LabVIEW already exists on the WPI 

campus, it was cost-effective as well as time conscious.  Instead of spending time 

designing and implementing an entire control system, we only had to build our program 

within LabVIEW. 

 This control system controls the rate at which the motors run the movement of the 

actuators, the temperature of the saline bath, and the camera.  Each of these elements has 

their own circuit in LabVIEW and a simple key on the front panel controls the element.  

The controller boards help to connect the components such as the motors, the actuators, 

the camera and the bath heater to LabVIEW through the input/output connections. 

 In the schematic below, the elements of this device, which are controlled by 

LabVIEW, are shown as well as how they connect from one to another.  Also seen in this 

diagram are the controller boards and their connection to LabVIEW.  Overall, this system 

was the most effective way of controlling our device and has the ability to collect data. 
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Figure 50.  Schematic of Control System 

 

4.5  Data Acquisition 
  

Once the user can control the system, next comes the acquiring of the data that the 

system produces.  Data acquisition is the process of receiving data from both internal and 

external sources.  It uses a combination hardware and software to measure the data 

quantitatively.   

The choice for this project was, again, LabVIEW since it has a data acquisition 

system already built in.  The LabVIEW also has machine vision software (which takes 

output from the camera in real time) and has a timed loop, which allows the user to 

develop multi-rate real time applications using a high-level program interface.   In this 

application, each loop is assigned a unique priority, with a maximum of 128 real time 

tasks.  In this project, tasks were assigned individual loops and place on timers as seen in 

Computer 2. Transducers  
3. Cameras AD Board 

 

 
Camera 
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the figures below.  The bottom figure synchronized multiple loops to start and stop 

together which was instrumental in controlling the many components of the device 

including the motors and the actuators.  This was important since it could stop the whole 

system at the same time so as not to destroy the sample. 

 
Figure 51.  Diagram of Timed Circuits 

 
Figure 52.  Timed Loop with Priorities 

 
Figure 53.  Synchronization of Timed Loops 

  

LabVIEW not only acquires the data but also displays it on the front panel of the 

VI.  This allows for graphing of the data and provides ease in the analysis of the data.   
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5.0  Assembly of Device 

5.1  Components 

The assembly of all components for the device can be found in APPENDIX G.  The 

Schematic section includes CAD drawings of fabricated components.  Specification 

information can be found in APPENDIX H, which also includes the company where the 

components were purchased.  Along with APPENDIX H, there is an excel sheet with 

price and what company we ordered from. The components are listed based on section in 

the following order: 

• Sample Attachment 

• Bath Chamber 

• Framework 

• Stretching 

• Force Measurement 

• Displacement Measurement 

Now we will discuss basic construction information: 

• 6061 Aluminum was used as much as possible.  It is inexpensive and easy to 

machine. 

• Bolts and screws were used rather than welds to attach components.  Screw sizes 

were chose based on the spec of the components.  Custom parts all used #8-32 

screws. 

• Most of the plastic used was Acrylic (Plexiglas®).  However, Lexan is a much 

better material to use because it does not chip as much during machining, and so it 

was used for the pulley frame. 

 65



• Plextic® was used to attach plastic to each other (used on the frame and arm).  

This substance melts the two plastics together and holds the two in place.   

• An aluminum plate of the same dimension (except ¼” thick) of the chamber base 

was fabricated.   

• Thermo grease was used to eliminate the air between the heating pads and 

aluminum plate, as well as the plate to the plastic.   

• Stock metals were purchased from Peterson Steel and plastic stock from Plastics 

Unlimited. 

• Electronic components were purchased from radio shack or the ECE dept. stock 

room.  Many cables, including the stepper motors, heating pads and PID 

controller unit were extended.  Match cable sizes up, solder and wrap with heat 

shrink.   

The shafts on the motor (metric) and rail (English) were mismatched.  The bore on the 

flexible couple on the motor end was drilled out to the correct size.  The couple will only 

fit on one way. 

5.2  LabVIEW 

In order for the biax device to work properly, the entire system needs to be 

networked together.  Using the software program LabVIEW, the system can be easily 

controlled and monitored by the user.  LabVIEW is a graphical, data flow programming 

software which enables signal acquisition, measurement analysis, and data presentation.  

The end program provides the user with an easy user interface and process control.  Two 

programs were written to integrate and control the motors, image acquisition (IMAQ), 
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and the force acquisition.  The following section explains the performance of the 

Labview programs  and its control and display. 

5.2.1  INITIALIZE.VI 
 

The first program is called INITIALIZE.vi and is used for preparing the sample 

for an experiment. This program is used for attaching, tightening, and centering the 

sample, as well as for adjusting the threshold range.  IMAQ is needed to monitor the 

sample’s movement during preparation and stretching.  

 
 

Figure 54.  Displacement Measurement 
Camera model Sony XC-ST50 used to measure the  

displacement of graphite markers on sample  
 

 The LabVIEW program obtains an image signal from the camera through a NI PCI-1405 

image acquisition board. 
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Figure 55.  Initial Image of Graphite Markers 
Sample with four graphite markers, after centering the sample. 

This image is then threshold to locate the four graphite markers through contrast 

recognition.   

    

 
 

Figure 56.  Threshold Image of Graphite Markers 
Displays the graphite markers on the interface in real-time and  

shows the user the locations of markers.  
 

Each pixel is displayed in either black or red, depending on whether the contrast 

is dark or light.  There is a threshold range control on the interface to allow the user to 

adjust the range depending on the lighting environment.  The user is also provided with 

buttons for easy motor control.     
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Figure 57.  Initialize.VI 
Buttons include: move X positive axis in, move X positive axis out, 

move X negative axis in, move X negative axis out, 
move Y positive axis in, move Y positive axis out, 

move Y negative axis in, move Y negative axis out, move sample right, 
move sample left, move sample up, and move sample down. 

 

These controls can be used to tighten and center the sample before testing.  Once the 

sample is ready for testing, there is a stop button that ends the program. 

5.2.2  FINAL.VI 

       The second program is called FINAL.VI and this performs the biaxial stretch test 

and where both stress and strain experienced in the sample is measured.    The FINAL.VI 

interface contains two main inputs for the user, which control the strain applied to the 
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sample.  The first is the percent strain, which is input as how far to stretch the sample in 

relation to its original dimensions.  For example, if the user wanted to stretch the sample 

10%, they would enter 0.1 into the percent strain input.  The second is the rate of 

stretching, which is input as how fast the sample is stretched (in s-1).  If the user wanted 

the 10% strain to be completed in one second, they would enter 0.1 into the strain rate 

input. 

5.2.3  Image Acquisition (IMAQ) 
 
 IMAQ is again needed to monitor the sample’s movement during stretching.  The 

camera obtains a threshold image similar to the threshold image in the INITIALIZE.VI  

This threshold image is again displayed on the interface in real-time and shows the user 

the locations of the graphite markers as they are stretched.   

 
 

Figure 58.  Centroids on Graphite Markers 
Threshold image calculates the centroids of  
markers through particle analysis and are  

continually tracked during stretching 
 

 The displacement measurements of the markers are then used to calculate the average 

strain, which is then plotted on a strain vs. time graph.   This process is performed in a 

while loop, and continually graphs the average strain in real-time throughout the 

stretching of the sample.  
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5.2.4  Transducer Data Acquisition 
 
 Data must also be obtained from the two torque transducers in order to measure 

ing.  Data is gathered from the NI SC-2345 

ignal Conditioning Board, which obtains the force measured by the transducers.  The 

FINAL.VI interface contains inputs for the user that are used to determine the stress. 

the stress applied to the sample during stretch

S

 
 

Figure 59.  FINAL.VI 
Inputs include width of sample in both axes, thickness of sample, and  

Length of arm attached to transducer 
 

These inputs then calculate the sample according to the force, 

which is being applied.  This hile loop, and continually 

graphs the average stress in real-time during stretching.  This graph is displayed to the 

user on the interface. 

 the average stress in 

process is also performed in a w
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5.2.5  Required Inputs for INITIALIZE.VI and FINAL.VI 
 

The two LabVIEW programs provide easy to use interfaces for the user.  Table 1 

lists the required inputs and outputs for both the INITIALIZE.vi and the FINAL.vi.   

      
INITIALIZE.vi FINAL.vi 

Input Output Input Output 

Threshold range 

 

Threshold image 

 

Percent strain Threshold image 

Axis jog buttons 

 

 Rate of stretching Stress v. time graph 

  Sample length Strain v. time graph 

  Sample width  

  Sample thickness  

  Length of arm  

  Threshold range  

 
Figure 60.  Inputs and outputs for VI 

This compares the inputs and outputs of the INITIALIZE.vi 
and FINAL.vi in our LabVIEW program. 

 
 All of the obtained data is then saved to an excel spreadsheet for further analysis.   
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Figure 61.  Data in Excel Spreadsheet 
Stress and strain data taken at real-time for each axis  

 
 

After testing, the user can reset all input settings and vary the parameters 

depending on the results.  APPENDIX I explains the step by step procedure for running 

the LabVIEW program.  The program can be easily modified in the future to 

accommodate new needs or testing methods as described in the Recommendations 

section of this paper. 
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6.0  Discussion  
 The entire device was designed with versatility in mind.  Every component on the 

device can be replaced by the same or similar components.  For this reason, components 

were not permanently welded on to the device, but are all attached securely to the device.  

The software is also very versatile and additional programming can be added at any time 

should the user choose to remodel the software.   

 The device had a simple method of attaching the sample with the use of fishing 

hooks.  These hooks were placed on a pivoting mechanism, which was crucial to 

distribute the forces evenly on the sample.  This modified design resulted in very low 

friction forces and allowed the user to easily wrap the sutures around the pulleys.   

 The shape of the bath chamber allowed us to reduce the overall size of the device.  

There was also less solution in the chamber, which required less physiological solution.  

The smaller size also reduced the heating time for the physiological solution to reach 

37ºC (with a simple controller unit with a steady state relay to heat the base of the 

chamber). 

 One of the sections, which was completed with few difficulties, was the 

framework.  Because of our decision to use the specialized aluminum extrusions, the 

fabrication and assembly time was greatly reduced.  Users are also able to make very 

quick adjustments by loosening various bolts.   

 The motion system was a very simple design.  A stepper motor was mounted to a 

threaded rail.  Each rail has a theoretical travel of 25 microns, although the system will 

never reach this accuracy.   

 A unique component of the device is the force measurement system required to 

calculate the stress.  Using torque transducers, the problem of finding submergible linear 
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transducers, was eliminated.  The arm, which extends from the transducer to the bath, 

translates the force to a torque.  We can also adjust the range of forces it can measure by 

changing the length of the arm.   

 The displacement measurement components consisted of a vision system with a 

camera mounted above the sample.  The camera obtains images of the markers on the 

center of the sample and tracks their centroid movements.  The centroid displacements 

are then converted into lengths, which then allow the device to calculate the strain.   

 Overall, the user interface is relatively simple.  There is an initialization program 

to set up the sample for testing: proper tensioning, thresholding, and centering.  A second 

program is used to actually test the sample.  The user inputs the necessary parameters and 

the device pulls to the designated strain.  Once the test is complete, the device will save 

the data into a spreadsheet file where the user can analyze the data.   
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7.0  Recommendations 
 

After nine months of design, construction, and testing, this team has created a 

working planar biaxial test device for soft compliant tissues.  However due to time 

constraints, few design elements were not completed.  This includes installing limit 

switches and allowing the stress to be plotted in real-time. 

Since there are stop buttons on the device and stop encoders in the program, limit 

switches are not vital.  However, if installed, they can prevent the possibility of the force 

mechanism colliding into the machine mount ends.  This just provides an additional 

safety factor for the user so the device could be run without constant monitoring. 

The device is programmed to have the stress measurements gathered during the 

entire stretch of the sample.  Upon completion of the test, all stress experienced by the 

sample is displayed on a graph in the interface.  Further work should include 

programming the stress measurements to be gathered and displayed in real-time. 

Other programming recommendations include allowing the user to test samples 

using force control rather than displacement control.  The system, as it stands now, only 

allows the user to input the strain desired and the strain rate.  A few modifications to the 

existing code could allow the user to input force or stress rather than strain.  Another 

testing method would be cyclic testing.  This involves the sample being stretched and 

relaxed over a certain number of cycles.  Additions to the back panel of LabVIEW would 

allow for the interface to include a ‘number of cycles’ input for the user. 

The LabVIEW program we designed could also be simplified combine the 

INITIALIZE.vi and FINAL.vi to one VI.  An improvement in the vision loop speed is 

also another programming recommendation.  This would include making the loop run 
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faster as well as cleaning the programming window to be in the order that the program 

runs.   

Further testing of the device should be done on various samples to be able to 

compare data, analyze accuracy, and prove that sample attachment does not harm the 

sample.  Since the design and construction took a great deal of time, only latex samples 

were tested.  Future research in sample attachment could be done to find another suitable 

method for connecting the sample to the device. 

Further testing could also lead to analysis of the time scale for the stress and strain 

data.  Tests were never performed to identify the number of points per collection while 

acquiring the stress and strain data.  There may be more programming needed in this 

aspect to ensure that the stress and strain data are on the same time scale and match up. 

Finally, if the user wanted, all of the aluminum parts could be anodize to prevent 

rust or corrosion.  However, tests would be needed to ensure that all of the parts could 

still connect after anodization.  This would include that all rails could still slide into 

place, bolts and screws could be tightened properly, and the size of the device does not 

increase significantly so as not to fit on a laboratory bench top. 
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APPENDIX A:  Standard Graphs for All Living Tissues  
[25] 
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Viscoelastic Behaviors 
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APPENDIX B:  The Objective Tree 
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APPENDIX C: Pair-wise Comparison Chart 
 
The purpose of these charts is to rate the importance of our objectives based on what our 
client wants.   
 
Instructions: 

• Compare column to row 
• If the objective in the column is higher on the objective list than the row 

place a 1 in the square 
• If the objective in the column is lower on the objective list than the row place 

a 0 in the square 
• If the objectives are of equal importance place a ½ in each box. 
• The total number of points will be placed in the TOTAL column (these will 

be tallied by row) 
 
 

Main Objectives 
 

 BIOCOMPATIBIL
ITY 

PERFORMAN
CE 

SIZ
E 

LO
W 
COS
T 

TOTA
L 

BIOCOMPATIBIL
ITY 

-------------------------------
-------------- 

0 .5 .5 0 

PERFORMANCE 0 ------------------------
---------- 

1 1 2 

SIZE 0.5 1 -------
-------

- 

0 1.5 

LOW COST 0.5 1 0 --------
---- 

1.5 
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Secondary Objectives 
 
 

 PRECISION 
/ 

ACCURACY 

USER 
FRIENDLY 

SELF 
MOTORIZED 

NON-
CONTACT 

DISPLACEM
ENT 

ANALYZER 

PERFORM 
AT DIFF. 
TEMPS. 

NON-
CORROSIVE 
MATERIALS 

STERILE TRANSPORTABLE PLACED IN 
INCUBATOR

DURABLE LOW 
COST 

TOTAL 

PRECISION / 
ACCURACY 

-----------------
------- 

1 1 .5 1 1 1 1 1 1 1 9.5 

USER FRIENDLY 1 ------------------
----- 

0 0 .5 0 1 1 1 1 0 5.5 

SELF 
MOTORIZED 

1 0 ----------------
--------------- 

.5 1 1 1 1 1 1 1 8.5 

NON-CONTACT 
DISPLACEMENT 

ANALYZER 

.5 0 .5 -----------------------
-----------------------

----------- 

1 1 1 1 1 1 1 8 

PERFORM AT 
DIFF. TEMPS. 

1 .5 1 0 ----------------
------- 

0 1 1 1 1 0 6.5 

NON-CORROSIVE 
MATERIALS 

1 0 1 1 0 ------------------
---------- 

1 1 1 1 1 8 

STERILE 1 1 1 1 1 1 ------------
------------

0 .5 0 0 6.5 

TRANSPORTABLE 1 1 1 1 1 1 0 ---------------------------
-------------- 

1 1 0 8 

PLACED IN 
INCUBATOR 

1 1 1 1 1 1 .5 1 ------------------
--------- 

.5 0 8 

DURABLE 1 1 1 1 1 1 0 1 .5 --------------
------------ 

0 7.5 

LOW COST 1 0 1 0 0 1 0 0 0 0 --------
----- 

3 
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APPENDIX D-1: National Instruments (Series 
Comparison)  
 (www.nationalinstruments.com) 

 

Feature 7330 Series 7340 Series 7350 Series
Maximum Number of Axes 4 2,4 2,4,6,8 
Servo Control - • • 

Closed loop stepper control • • • 

Linear Interpolation • • • 

Configurable auxiliary DIO • • • 

RTSI • • • 

S-curve • • • 

Configurable Move complete criteria • • • 

Software limits • • • 

High speed capture • • • 

Blending • • • 

Upgradeable firmware • • • 

NI Motion Software API • • • 

Circular, spherical, and helical interpolation • • • 

Contouring - • • 

Electronic Gearing - • • 

On-board programming functionality - • • 

Static Friction compensation - • • 

Sinusoidal Commutation - - • 

Buffered Breakpoints - - • 

4 MHz Periodic Breakpoints - - • 

Buffered High Speed Capture - - • 

Number of axes per 62.5 microsecond PID rate 1 1 2 
Static PWM outputs 2 2 2 
DIO Lines 32 32 64 
Digital to analog converter - 16 bit 16 bit 
Analog to digital converter 12 bit 12 bit 16 bit 
Maximum Step output rate 4 MHz 4 MHz 8 MHz 
Encoder rate 20 MHz 20 MHz 20 MHz 
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APPENDIX D-2:  National Instruments (Low Cost Motion 
Control)    
 
(www.ni.com) 
 
NI PCI-7332 

• Firmware you can upgrade  
• Quadrature encoder or analog feedback  
• RTSI bus for powerful synchronization with other NI measurement products  
• Linear interpolation for coordinated, multiaxis motion control  
• Four 12-bit ADCs with ±10 V range  

NI PXI-7334 

• Quadrature encoder or analog feedback  
• PXI trigger bus for powerful synchronization with other NI measurement products  
• 3D linear interpolation for coordinated, multiaxis motion control  
• Four 12-bit ADCs with ±10 V range  
• Firmware you can upgrade  

NI PCI-7334 

• Firmware you can upgrade  
• 4-axis stepper motor control board  
• Quadrature encoder or analog feedback  
• RTSI Bus for powerful synchronization with other NI measurement products  
• 3D linear interpolation for coordinated, multiaxis motion control  
• Four 12-bit ADCs with ±10 V range  
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APPENDIX D-3: Precision MicroControl Corp Motion 
Control 
 
 (www.pmccorp.com) 
 

Features of Multiflex PCI 1040 

 
4 axes of pulse control (stepper or pulsed servo) in an economical half-length PCI 
card  

 Available with 4 optional encoders - providing up to 4 axes of closed-loop control 

 Multi-axis point-to-point & coordinated motion 

 Trapezoidal, S-curve and parabolic profiles  

 5 MHz pulse outputs for high-speed microstepping  

 20 million encoder counts/sec for high speed and resolution 

 Open and closed-loop stepper control 

 1 KHz closed-loop update rate each axis 

 On-the-fly trajectory and direction changes 

 Eight 14-bit analog inputs (option) 

 On-board multi-tasking and programmable interrupts free host PC for other tasks 

 
Consistent real-time behavior: Peak performance is maintained no matter which 
features are enabled 

 Dedicated high-speed I/O (capture & compare) 

 
All I/O signals conveniently available via high-density VHDCI-SCSI connectors on 
bracket 

 
All I/O signals are differential or complementary twisted-pairs for superior noise 
immunity 

 
Fully programmable in C/C++, VB, Delphi, LabVIEW or easy-to-use command 
language 

 
Comprehensive and powerful software API for the ultimate in high-level 
programming flexibility 

 
Includes Motion Integrator™ suite of graphical installation, tuning and diagnostic 
programs at no extra charge 

 

 88

http://www.pmccorp.com/
http://www.pmccorp.com/support/mcapi.php


APPENDIX D-4: Galil Motion Control 
 
(www.galilmc.com) 
 
DMC-1842 

• Accepts up to 12 MHz encoder frequencies for servos and 3 MHz for steppers 

• Advanced PID compensation with Velocity and Acceleration feedforward, 
integration limits, notch filter and low-pass filter. Sample times to 62.5 
microseconds per axis 

• Modes of motion include jogging, point-to-point positioning, contouring, 
linear and circular interpolation, electronic gearing and ECAM 

• Multitasking for concurrent execution of up to eight application programs 

• Non-volatile memory for application programs, variables and arrays 

• Home input and forward and reverse limits accepted for every axis 

• 8 Uncommitted inputs and 8 outputs 

• Expanision for 64 I/O available with DB-14064 

• High speed position latch and output compare 

• Sinusoidal commutation for brushless servo motors 

• High-density shielded cable minimizes EMI 

• Custom hardware and firmware options available 

• Ceramic Motor Option allows precise control for all Ceramic Motors. 

• Connects directly to AMP-19540 4-axis drive for cost-effective, multi-axis 
controller/drive solution. Drives brush or brushless servos up to 500 Watts 
each  
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DMC-2143 

• Ethernet connectivity : 10Base-T 

• One RS232 port up to 19.2kb 

• Ethernet supports multiple masters and multiple slaves allowing communication 
with multiple computers and I/O devices 

• Supports Modbus protocol for communication with I/O devices 

• Accepts up to 12 MHz encoder frequencies for servos and 3 MHz for steppers 

• Advanced PID compensation with Velocity and Acceleration feedforward, 
integration limits, notch filter and low-pass filter. Sample times to 62.5 
microseconds per axis 

• Modes of motion include jogging, point-to-point positioning, contouring, linear 
and circular interpolation, electronic gearing and ECAM 

• Multitasking for concurrent execution of up to eight application programs 

• Non-volatile memory for application programs, variables and arrays 

• Dual encoders, home input and forward and reverse limits accepted for every axis 

• 8 TTL uncommitted inputs and 8 outputs for 1- through 4-axis models; 16 inputs 
and 16 outputs for 5- through 8-axis models 

• Add 8 analog inputs and 40 digital I/O with DB-28040 

• Connects to Galil's IOC-7007 Intelligent I/O controller for additional analog and 
digital I/O on the Ethernet 

• High speed position latch and output compare for each axis 

• Sinusoidal commutation for brushless servo motors 

• 1-4 axes card: 4.25" x 7.0" 
5-8 axes card: 4.25" x 10.75" 

• DIN-Rail mount option 

• Accepts +5V, +/-12V DC inputs; DC-to-DC converter option for single 18V to 
72V DC input 

• DMC-21x2 uses 100-pin SCSI connector for each set of 4 axes 
DMC-21x3 uses 96-pin DIN connector for each set of 4 axes 
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• Custom hardware and firmware options available 

• Ceramic Motor Option allows precise control for all Ceramic Motors. 

 

SDM-20640 (motor drive) 

• Connects to Galil DMC-18xx PCI bus motion controller to provide a complete 
controller/drive solution with minimal wiring 

• 18V to 80V dc; 7 Amps continuous, 10 Amps peak per axis 

• Drives four servo motors up to 500 Watts each 

• Configurable for driving brush or brushless motors 

• High-bandwidth PWM drives with 60 kHz switching frequency 

• Compact 6.8" x 8.75" x 1" metal enclosure 

• Provides 15-pin Hi-density D-sub connectors for X,Y,Z and W axes 

• Connects to DMC-18xx PCI controller with single 100-pin SCSI cable 

• Shunt Regulator option is available 
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APPENDIX E: Calculations Loads for Force Transducers 
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APPENDIX F-1:  Plexiglas® Thermal Conduction 
 
 
 
Aluminum Thermal Conductivity = k3 

T3

323K

333K

343K

350K

353K

363K

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟

⎠

:=  

k3 250
W

m K⋅
:=  A 36in2

:=  q 90W:=  

s 0.25in:=  

T2

322.902

332.902

342.902

349.902

352.902

362.902

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟

⎠

K=  T2
q s⋅

k3 A⋅
⎛
⎜
⎝

⎞
⎠

− T3+:=  

Saline Thermal Conductivity = k1 

k1 0.7
W

m K⋅
:=  A 36in2

:=  q 90W:=  

T0 310K:=  s 1 mm⋅:=  

T1
q s⋅

k1 A⋅
⎛
⎜
⎝

⎞
⎠

T0+:=  T1 315.536K=  

Plexiglas Thermal Conductivity = k2 

k2 0.18
W

m K⋅
:=  A 36in2

:=  q 90W:=  

s

0.342

0.807

1.271

1.596

1.736

2.2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟

⎠

mm=  s
T2 T1−( ) k2⋅ A⋅⎡⎣ ⎤⎦

q
:=  
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 0.0625in 1.587mm=  

350 273− 77=  

320 330 340 350 360 370
0

0.5

1

1.5

2

2.5

s
1

mm
⋅

T3

The temperature of the outside of the aluminum plate will have to be approximately 77 C to maintain 
a temperture of 37 C in the saline solution. 
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APPENDIX F-2:  Mylar Thermal Conduction 
 
 
Calculations for heat transfer using Mylar instead of Plexiglass 

Area 36 in2
⋅:=  Area 0.023m2

=  To 310.15K⋅:=  q 90W:=  

Ss 1 10 3−
× m=  Saline Thickness = Ss Ss 1 mm⋅:=  

ks 0.7
W

m K⋅
⋅:=  Saline Thermal Conductivity = ks 

Sm 1 10 4−
× m=  Mylar Thickness = Sm Sm 0.1 mm⋅:=  

km 0.155
W

m K⋅
⋅:=  Mylar Thermal Conductivity = km 

Sa 6.35 10 3−
× m=  Aluminum Thickness = Sa Sa 0.25 in⋅:=  

ka 250
W

m K⋅
⋅:=  Aluminum Thermal Conductivity = ka 

Heat through saline: 

T1
q Ss⋅( )

ks Area⋅
To+:=  

T1 315.686K=  

Heating through mylar: 

T2
Sm q⋅

km Area⋅
T1+:=  T2 318.186K=  

Heating through aluminum 

T3
Sa q⋅

ka Area⋅
T2+:=  T3 318.284K=  

318.284 273− 45.284=  

T3 45.3 C⋅:=  The bath will only need to go up to 
45.3 C to get the sample 
area at body temperature of 37 C. 
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APPENDIX G-1:  Pivot Mechanism 
 
 

- 

- 

- 

-  

 

Component Required: 
- Vee Jewel Assembly
- Vee Jewel Bearings 
- Vee Jewel Pivots 

Fabricated Components: 
- Pulley Frame 
- Pulley 
- Short Arm
104
Vee Jewels and Teflon purchased from 
Smallparts.com 
Pivot Mechanism should be machined 
from Lexan, not Acrylic 
For plastic: Plastics Unlimited Inc. in 
Worcester 
For metal: Peterson Steel corporation in
Worcester 
 



APPENDIX G-2:  Bearings - Vee Jewel Assembly 

 
VJA-1 selected
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VJ-0469 selected 
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VJPX-1D selected 
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APPENDIX G-3:  Dimensions of Pulley Frame 
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APPENDIX G-4:  Dimensions of Pulley 
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APPENDIX G-5:  Assembly of Bath Chamber 

Use Plextic to glue Acr
1” x 0.25 x 2”        X 4 p
1” x 0.25 x 4.75”   X 4 p
1” x 0.25 x 5”        X 4 p

 110
ylic 
ieces 

ieces 
ieces 

 



APPENDIX G-6:  Dimensions of Chamber Base 

The aluminum plate, which fits 
under, has the same dimensions 
as this one; however it is ¼”  
thick plate of aluminum. 
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APPENDIX G-7:  Dimensions of Framework Pieces 

 

1515 Extrusions from 
80/20 used.  See 

Appendix H 
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 113



APPENDIX G-8: CAD Drawings of Motor Mounts 

 

6061 Aluminum is used for all parts. 
Obtained from Peterson Steel 
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APPENDIX G-9:  Dimensions for Motor Plates 
 

Motor Plate 
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Motor Plate 1 
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Motor Plate 2 
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Motor Plate 3 
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APPENDIX G-10:  CAD Drawings of Transducer Mounts 

 

All parts constructed 
from 6061 Aluminum. 
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APPENDIX G-11:  Dimensions of Transducer Mounts 

 

Transducer Mount 1 
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Transducer Mount 2a 

 

 121



 

Transducer Mount 2b 
*See arm section* 
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Transducer Mount 3 
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Transducer Mount 4 
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APPENDIX G-12:  CAD Drawings for Assembly of Motors and Transducers 

 
 
 This configuration uses: 

- Transducer Mount 1 
- Transducer Mount 2a 
- Transducer Mount 3 
- Transducer Mount 4 
- Arm 

The short arm from the Pivot 
Mechanism is glued to each arm.   
Both arms constructed from plastic.
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APPENDIX G-13:  Dimensions of Arm 
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APPENDIX H:  Excel Sheet with Part Number, Description, Company, and Price 
 Parts List   

Part Number Description Company Price 
Bath Chamber      

CNI 3223 PID controller, temperature/procss with 2 control outputs Omega Engineering  195.00
XC-20-K24 Kapton insulated thermocouple wire Omega Engineering  24.00
KH-104/10 Kapton insulated flexible heaters (1 x 4 in), 10 W/in^2 Omega Engineering  31.00

Framework      
1515 Aluminum extrusions,  242" Air Incorporated 121.00
4332 2 Hole gusset triangle bracket Air Incorporated 4.05
4307 2 Hole joining strip Air Incorporated 3.25
3630 Stainless 5/16 - 18-3 nut/bolt assembly Air Incorporated 1.05
2367 Foot mounting plate Air Incorporated 15.75
2207   Anti-vibration feet Air Incorporated 14.55

Motion      
AM17-44-3MT Stepper motor, size 17 Advanced Micro 

Systems 
48.00

A 5Z 7-10606 Flexible Couple, bore size: 0.188", overall length: 1.1875" Sterling Instruments 16.00
SRZ4005Tx6" Kerk rail, lead pitch, 0.05, 6" travel Kerk Motion 

Products Inc.  
81.90

SR4000ES End support for 4000 series  Kerk Motion 
Products Inc.  

7.50

778417-01 PCI 7334 Low cost stepper motion controller  National Instruments 850.50
777936-01 MID 7604, 4-axis integrated stepper driver power (115V) National Instruments 1975.50
186380-02 SHC68-C68-S 68 pin, VHDCI, 2m National Instruments 135.00
Force Measurement      
FSH00270 TFF40, 20 oz-in, reaction torque sensor with center through hole Futek 950.00
777459-37 Signal conditioning module, SCC-SG24, 2-channel, full bridge, 10 V 

excitation 
National Instruments 265.50

777458-02 Signal conditioning carrier, SC-2345, hinged lid, universal AC) National Instruments 220.50
779066-01 PCI 6221 M series multifunction DAQ, two 16 bit analog outputs National Instruments 427.50
192061-01 SHC68-68 EPM  Noise rejecting, shielded cable National Instruments 85.50

Displacement 
Measurment 

     

Y55-698 Sony SC-ST50 analog/monochrome camera Edmunds Optic 750.00
778838-01 PCI 1405 Single channel color/monochrome image acquisition National Instruments 535.50
183882-02 IMAQ-BNC-1 analog camera cable, 2m National Instruments 45.00
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APPENDIX H-1:  AM Series Stepper Motors 
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APPENDIX H-2:  Universal Joints 
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APPENDIX H-3:  Futek Torque Transducer 
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APPENDIX H-4:  Kerk Screwrail Assemblies 
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APPENDIX H-5:  PID Controller 
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APPENDIX H-6:  Kapton Flexible Heaters 
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APPENDIX H-7:  Thermocouple Wire 
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APPENDIX H-8:  Stepper and Servo Motor Drives 
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APPENDIX H-9:  Motion Controller 
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APPENDIX H-10:  Image Acquisition 
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APPENDIX H-11:  Data Acquisition Board 
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APPENDIX H-12:  Signal Conditioning Modules  
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APPENDIX I:  Procedure for Running a Sample Test 
 

The following section will go through the procedures of running a sample test.  

Preparation of the sample for testing must first be performed.  First, the bath must be filled 

with the physiological solution that the sample has been kept in during culture.  Carefully 

remove the sample from the solution and measure its length, width, and thickness.  Record 

this data for later testing input.  Turn on the PID temperature controller and set to 37°C (or 

desired temperature).  The heating pads should turn on and the solution will begin to heat 

up.  See PID controller instruction manual for operational details.  

While the bath solution is heating up, cut 8 pieces of silk sutures approximately 3-4 

inches in length.  Obtain 16 standard fly fishing hooks size #16.  Tie a hook to both ends 

of each piece of suture with a clinch knot.  (See APPENDIX J for clinch knot tying 

instructions)  Attach four hooks to each side of the sample so that two small loops are 

created on each side.  Hooks should be spaced as evenly as possible and approximately a 

1/8 – 1/4 of an inch from the edge.  Once the bath has reached the desired temperature 

(37°C) the sample can be mounted into the device. 

 Turn on both the power button and the enable button on the front of the NI-MID 

7604 board.  Open up LabVIEW 7.1 located on the desktop.  Open the INITIALIZE.vi 

program within LabVIEW.  Run the program by clicking on the right arrow in the top-left 

corner of the window.  Use the axis jog buttons to move the four arms inward, to provide 

adequate space to attach the sutures to the pulleys.  Loop each suture around a pulley while 

using the axis jog buttons to move the arms out.  Continue to move all axis arms out as 

needed until the sample becomes taut.  Use the control buttons to move the sample up, 

down, left, or right as needed to center the sample.  Finally, use the threshold range control 
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to adjust the threshold image until only the four markers are visible.  Once satisfied with 

the initial parameters press the stop button to end the INITIALIZE.vi program. 

 Immediately after ending the INITIALIZE.vi program, open the NI Measurement 

and Automation Explorer program located on the desktop.  In the collapsible tree on the 

left  open the folders in order shown  below. 

 

open Devices and Interfaces folder  open PCI-7334(1) folder  open Interactive folder 

 open 1-D Interactive folder 

 

 The new screen in the main window should display an interface for controlling the 

four stepper motors.  Within the trajectory parameters section select Axis 1 from the Axis 

collapsible list.  Within the current trajectory data section press the reset position button 

and click apply.  Repeat this process for all four axes to reset all current motor positions.  

This step is very important and cannot be skipped.  Failure to have current positions reset 

before final testing may result in damaging the motors and/or linear rails.  Once reset is 

complete, Measurement and Automation Explorer may be closed. 

 The sample and device are now ready for final testing.  Open Labview 7.1 from the 

desktop.  Open  the FINAL.vi program within Labview.  Next, enter the following 

required data into the appropriate data inputs.  The example values will change depending 

on the testing parameters desired by the user.  For this example the test performed will be a 

10% strain of the sample in 1 second.  Enter 0.1 into the percent strain input.  Enter 0.1 

into the strain rate input.  Enter the measured length, width, and thickness of the sample.  

Enter the length of the stretching arm attached to the force transducers.  Enter the exact 
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same threshold range parameters as set in the INITIALIZE.vi program.  The device is now 

ready for testing.   

Run the program by clicking on the right arrow button located in the top left corner 

of the window.  Monitor test while program is running.  If at any time there is a 

malfunction in the program or device, click stop to end the program.  If motors do not halt 

after clicking stop, turn off the enable button on the NI-MID 7604 board.  Once the test is 

complete, the user will be prompted to save the data gathered to file as an excel 

spreadsheet.  Name the file and click save to desired location.   

Graphs can be cleared by right clicking on the graph and selecting data operations and 

then clear graph.  Memory of position is saved between tests.  In order to return to the 

initial position, enter 0 into the percent strain input and run the FINAL.vi program again.  

The device can also be reset for a new test again with the INITIALIZE.vi program; 

however this again requires the resetting of current axis positions within Measurement and 

Automation Explorer before final testing.        
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APPENDIX J:  Clinch Knot Instructions 
Source: http://www.killroys.com/knots/clinch.htm 

Use to tie hook to end of suture.  

 

step 1:  

Insert one 
end of 
suture 
through eye 
of hook. 

  

 

step 2:  

Hold hook 
in left hand 
and with 
right hand 
wind the 
end of the 
suture 
around 
standing 
part of 
suture five 
times, 
keeping a 
small loop 
immediately 
adjacent to 
hook eye 
open. This 
loop is easy 
to keep 
open if you 
pinch it 
between 
thumb and 
forefinger 
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of left hand.

  

 

step 3:  

Bring 
wrapped 
end of 
suture back 
through 
loop next to 
the hook 
eye and 
grasp with 
thumb and 
forefinger 
of left hand.

  

 

step 4:  

Tighten by 
pulling the 
standing 
part of 
suture and 
the hook in 
opposite 
directions. 
Do not pull 
on the 
wrapped 
end of the 
suture - 
merely hold 
it alongside 
the hook. 
Trim loose 
end of 
suture close 
to knot. 
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