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Abstract 

This project focused on utilizing in-house proprietary systems to analyze big data and 

perform educated predictive decision-making for investment and financial solutions. Using 

JavaScript, Python, and SQL our team automated the information gathering and data 

compilation of the target companies selected by Vestigo Ventures. Our team then analyzed 

the presently available data to make tactical and financial recommendations to the Vestigo 

Ventures executives. We then ended the project by developing a probabilistic device 

fingerprinting algorithm for Cogo Labs. 
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Executive Summary 

 Two primary companies spearheaded the overall structure of our project. The main 

company was Vestigo Ventures.  They acted as our sponsor and provided the bulk of the 

layout for our project. Cogo Labs was closely associated with Vestigo Ventures and had us 

work on an analysis of their databases. These analyses provided the information necessary to 

make predictive tactical decisions for future investments. In addition to our undergraduate 

team, there was a WPI graduate team that worked in tandem. Vestigo had four aims for this 

project, one of which was designed to aid Cogo Labs:  

1. To analyze Vestigo’s past and current deals and to present “lessons learned” from 

said analysis 

2. To improve Vestigo’s investment process  

3. To gather business experience for the undergraduate team  

4. To give Cogo new ways to analyze their big data to develop new capabilities in 

B2B signal search.  

The WPI graduate team realized these aims had overlapping objectives. They 

mitigated this issue by separating Vestigo’s aims into four subprojects:  

1. Venture Decisions Made Over Time 

2. Deal Analysis and Industry Engagement 

3. Signal Search and Market Landscape Analysis 

4. Device Fingerprinting 

The graduate report associated with this paper describes the rationale of these 

delineated goals. 

We worked with the graduate team to establish and review the goals of each project. 

Once established, we assisted the graduate team in defining the solutions and creating action 

items.  

 The first project, labeled “Venture Decisions Made Over Time” (hereafter known as 

“Project 1”, or “Data Mining”), addressed the first goal. We broke Project 1 into two tasks. 

The first task was compiling investment and company information into a “Deal Flow” 

spreadsheet. This task involved a Deal Flow mailbox where Vestigo forwarded all relevant 

information on investment opportunities. It warranted manual entry into a small component 

of Vestigo’s data. With the graduate team’s help, our Deal Flow spreadsheet took two weeks 

to finish.  
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The second task was to research and implement a procedure that automates this 

process. It made the methods of the first task quicker and more scalable. Our sponsors 

recommended the creation of an online form at the outset. Through our research we 

discovered that the React.js framework addressed Vestigo’s expectations for the form. Using 

the React framework we created the front end to this online form and sent entered 

information to Cogo’s database via a Python server. We automated the process using a 

combination of said server and several SQL queries. The queries executed within Cogo’s 

database. They pulled and recorded “confidence” levels for each potential investment from 

Cogo’s Apollo algorithm. This was intended to help Vestigo make informed executive 

decisions on whether to invest in an opportunity or not.  

We amplified the original functionality of our form by adding security and integrating 

the system with a customer relationship manager (CRM) platform. About a month into our 

project, one of our academic advisors raised a security concern. Thus, we revisited the 

objectives of the second task to implement security on the base iteration of our form. We 

drafted a STRIDE analysis for our security and brought it to our sponsors as outlined in 

Appendix H. They approved the plan and asked that we enact it. The plan included 

encryption, authentication, data validation, and administrator rights. Nearing the end of our 

development in Project 1, our sponsors asked that we research methods to connect our system 

into their CRM platform, Close.io. Vestigo regularly used Close.io in their deal-making. We 

incurred a minimal time cost when we integrated Close.io to our existing system. This was 

because Close.io had a Python API that we utilized to interact with our Python server. 

Therefore, no time was spent researching a compatible API. By the end of the development 

of our first project, we had a functioning frontend and backend with security measures 

implemented, and a system that updates information in Close.io with our results. 

 The second project, labeled “Deal Analysis and Industry Engagement” (hereafter 

known as “Project 2” or “Deal Analysis”) provided value to the first three goals. Our 

sponsors wanted us to analyze their previous deals to evaluate the efficacy of their decision 

making process. After developing the backend of our first project, where we gathered 

information from Apollo, we were able to derive a set of measurements for our Deal Flow 

spreadsheet. We used the measurements to evaluate Vestigo’s profile and present our 

findings. It was also requested by our sponsors and graduate team that we evaluate these 

companies using  a 4-point scoring system as laid out in Appendix D. In the 4-point scoring 

system, we evaluated a company based on its team, technology, market size, and valuation. 

After presenting our findings and our score evaluations, Vestigo used our data the following 
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week during a meeting with InTeaHouse, a global investment platform, and Ascensus, a 

technical based asset manager 10, 12. During these meetings Vestigo and their guest used our 

data for several business purposes. In the meeting with InTeaHouse, Vestigo used the data to 

select 12 potential companies to go on an expo across China to help their business expand to 

the other side of the world. In the meeting with Ascensus, Vestigo used the data to advertise 

the categorization of their decision making process. 

 For our third project, “Signal Search and Market Landscape Analysis” (hereafter 

known as “Project 3” or “Signal Search”), our sponsors requested a system to analyze a 

company from a scientific evaluation, and an updated Apollo algorithm to increase its 

sensitivity to B2B signals. We recommended that Vestigo continue the process outlined in 

our second project, Deal Analysis and Industry Engagement. We recognized that gathering 

information, labeling the company with a market segment, and labeling the company with an 

industry could be done automatically; leaving only the 4-point scoring to be done manually. 

However, complications with the project arose from interfacing with the Apollo algorithm. 

With information provided from Rob Fisher, we realized the algorithm’s current issue arises 

from an enlarged and outdated dataset that skews the results. The issue is correctable, but we 

projected that it required enough man hours to warrant a separate team.  

The resources available to the MQP team upon initiation of the third project were not 

enough to create a workable deliverable while maintaining quality in the other projects. We 

brought this concern to our sponsor’s attention and it was their recommendation to put the 

project on hold until all other projects were completed. Because we wanted a high quality in 

all projects we began, this project was never brought to development. As such, our concept 

design stands in hopes that this project will be undertaken by a new team at a later date. 

 For our fourth and final project, Device Fingerprinting (also known as “Project 4”), 

the task was to design a new algorithm for Cogo Labs’ fingerprinting database. The database 

contained 3.64 trillion entries with an attribute representing a website cookie. Out of the 3.64 

trillion cookie entries in Cogo’s database, only 30% have been assigned to users. The primary 

objective was for us to improve Cogo’s match rate from 30% to 45%. A secondary objective 

was to make this algorithm compatible with Safari browsers, as their cookies had an 

accelerated expiration rate. To begin this project, we met for a briefing from Matt Wiens, our 

device fingerprinting contact. Next, we met with the graduate team and listened to their 

interpretation and understanding of the project. After meeting with the graduates, we moved 

onto developing the concept.  
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Cogo sought the ability to take any two cookies in the database and calculate the 

probability they are related to the same user. We noted multiple complications with this 

method. First, it would require an excessive amount of storage. Second, the varying time 

complexity of each entry, and the size of the dataset resulted in a prohibitively long process 

time. These obstacles  made it impossible to get quick results.  

We then designed a new concept, which would take the most likely probabilities and 

store them. The revised design also went a step further by dissociating two entries from each 

other, and instead connected them via the concept of a Home IP. This concept allowed the 

grouping of a number of entries underneath an IP address they were most likely to correspond 

to. We then presented this idea to Matt Wiens, concluding that our end product would yield a 

list of users with their most likely associated Home IP, and a list of cookie entries with their 

most likely Home IP. By selecting a profile based off the Home IP, Cogo could accurately 

identify a cookie-user relationship by multiplying the two relative probabilities together. Matt 

Wiens agreed, and our development began.  

Throughout the course of the project, very little changed. The concept of our 

“coefficients” was introduced to represent the accuracy of identifying a user based on User 

Agent, Cookie ID, and IP address. There was also the introduction of a cookie dependent and 

cookie independent Home IP probability calculation, so as to address an indexing issue in our 

calculations. After designing our concept, we developed a small scale model to deal with a 

single cookie. This led to the discovery that the Cogo database is partitioned to increase 

process efficiency. We decided to alter our concept to take advantage of partitioning, 

otherwise the algorithm yielded a time complexity of ~3 hours per cookie. This would have 

resulted in ~1 million years total process time. We finished by altering our concept 

accordingly, presenting to Matt Wiens, and maintaining our small scale model 

implementation for the benefit of Cogo’s engineers.  
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1. Introduction 

 This report focuses on the accomplishments and findings of the Major Qualifying 

Project (“MQP”) team at the Vestigo Ventures (“Vestigo”) site in the Wall Street/Fintech 

project center. Vestigo is a venture capital (“VC”) group which seeks out meaningful 

investments in financial technology (“fintech”). Through their partnership with a previous 

investment/startup Cogo Labs (“Cogo”), Vestigo uses Cogo’s 5 petabytes (5120 terabytes in 

binary) of data to analyze which startup companies are most likely to go viral and become 

successful. This analysis is based on the startup company websites and other internet traffic 

pertaining to each startup. With this information, Vestigo is able to predict in a startup’s early 

stages where it is going, and can make an accurate investment decision. Our MQP team’s 

involvement with Vestigo covered all steps in the investment process from information 

gathering, data processing, information analysis, and decision making; all while being 

supported by in-depth data science research. To better organize this broad scope, the overall 

project was divided into the following 4 projects: Vestigo needed our MQP team to explore 

its venture decisions measured over time (Project 1), deal analysis & industry engagement 

(Project 2), and signal search and market analysis (Project 3); while Cogo needed a new 

device fingerprinting algorithm (Device Fingerprinting Project). Our MQP team worked on 

these projects under the guidance of a team of WPI graduates . 

 This paper begins with a background on our sponsors and a brief description of the 

sponsors’ goals for the projects. Then we describe how the team organized and managed 

itself towards completing the projects. Next we go into each of the projects we worked on. 

They are sectioned in the paper based on the order we started them. For each project, we 

expand upon the background, methodology, results and analysis, and recommendations. They 

act as subsections within each project. The background sections describe the reasoning and 

value behind each major component of the MQP. In the methods sections, we talk about the 

decisions and steps taken. The modular nature of the first project means that Project 1’s 

method section has subsections of its own. Each method subsection represents a different 

component of the overall system within the first project. No other methods section contain 

subsections. A results section follows the methods section of each project. We then devote a 

section to a discussion of future work and further development that we recommended to take 

place moving forward. Project 2 does not have a recommendation because the deliverable of 

the project itself was giving a recommendation. Finally, the paper wraps up with the project 

in the context of the world at large and the departing thoughts of the team members involved. 
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 Throughout the paper are located both superscripted numbers and numbers within 

brackets. The superscripted numbers reference a work cited by the corresponding number in 

the Bibliography. Bracketed numbers indicate details on a design decision we abandoned and 

why we abandoned said decisions. Each abandoned decision is referenced next to the 

decision we took in the paper. 

  



3 

2. Sponsor Background 

2.1 Vestigo Ventures 

Vestigo Ventures is a Venture Capital group based in Cambridge, Massachusetts, 

which invested in early-stage financial technology companies, ranging from the Seed (first 

stage investment)33 to the “A” Series round (optimization stage of investment)34. Vestigo 

fulfills a niche for early stage fintech firms in the Boston area. The company was founded in 

May 2015 by investor Ian Sheridan 1. Since its founding, they have had investor and advisor 

Mark Casady as their Advisory Board Chairman and General Partner 2. The most recent 

addition to this team was Mike Nugent, who occupies the Managing Director role 3. David 

Blundin, founder and Chairman of Cogo since 2006, fulfills the role as a General Partner of 

Vestigo 4. These four individuals compose the senior staff of Vestigo who, along with a 

twelve-member advisory board, evaluate the most promising fintech companies and 

innovations.  

During the past three years, Vestigo invested in three fintech startups. The first one 

was LifeYield, a company focused on software-driven financial advice and portfolio 

optimization 30. The second one was NetCapital, an open-market that connected 

entrepreneurs and investors 31. The last one was Vestmark, which provides real-time 

technologies as financial advisory solutions 32. In the following years Vestigo expected to 

evaluate several fintech startups to expand their portfolio. To assist in the process, Vestigo 

provides financial backing to Cogo in return for access to Cogo’s multi-petabyte database. 

From this data, Vestigo reinforces their deal making process, as data provides objectivity in a 

field dominated by emotional decisions 5.  

As an early VC, Vestigo received over 270 fintech startup investment presentations 

since March 29th, 2016 and continues to receive around three to five investment deals per 

week. Their clientele derived from entrepreneurs across North America seeking early stage 

investment. Any startups Vestigo is interested in go through Vestigo’s due diligence. Due 

diligence is a rigorous process VC firms carry out to determine whether or not they will 

invest in a company 6. Vestigo would first look at potential company’s key VC metrics such 

as the company’s fundraising goal, funding round, and valuation. Then Vestigo would look 

beyond the numbers and evaluate the company across 4-points: its team, technology, market 

size, and valuation. In addition, Vestigo uses Cogo Labs’ proprietary Apollo database as a 

key factor in decision making. Apollo is a database that complies clickstreams and using 

Cogo’s proprietary algorithm, determines a “confidence” for a domain that it believes will go 
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viral. Vestigo leverages this data to understand the web traffic a prospective investment 

generates.  

With three to five companies approaching Vestigo on a weekly basis, keeping track of 

investment opportunities could be difficult. It was important to have a central repository of 

the companies and relevant information not only for making the due diligence process more 

efficient, but also for evaluating Vestigo’s portfolio and industry engagement. The algorithm 

Cogo set up for Apollo’s signal search sometimes missed an occasional viral website. Under 

Vestigo we worked on three projects:  

Project 1: Venture Decisions Made Over Time  

Project 2: Deal Analysis and Industry Engagement  

Project 3: Signal Search and Market Landscape Analysis 

The overarching goal of these projects was to analyze Vestigo’s past and present deals 

by mining data, evaluate Vestigo’s industry engagement and possibly work on improving 

Apollo’s signal search. This would provide Vestigo with the proper data to make their 

predictive tactical decisions for future investments. The majority of Project 1 involved 

technical development after we realized a shortcoming in Vestigo’s data collection process, 

while Projects 2 and 3 focused on more analytical work to evaluate Vestigo’s portfolio and 

improve Apollo’s signal search.  

 

2.2 Cogo Labs 

Cogo Labs is a company located in Cambridge, Massachusetts that specializes in big 

data analytics. Through analyzing digital traffic, Cogo could identify thriving markets, 

products, and companies. Cogo monetized this data and profited by: aiding their in-house 

startup companies with valuable market insight, pointing Vestigo to high potential companies 

for investment, and selling valuable data to consumer groups. Cogo has an extensive team 

that specialized in a wide variety of fields, especially business and technology, to effectively 

manage their data. The current Chief Executive Officer of Cogo is Mira Wilczek, a 2004 MIT 

graduate. She began as an Entrepreneur in Residence from 2013 to 2016 14. She started her 

work with Cogo labs in 2013. Cogo’s current Vice President is Robert Fisher, a business and 

economics graduate from North Carolina State University 15. In terms of Cogo’s business 

operations, John McGeachie is the Chief Strategy Officer. He was instrumental for 

Evernote’s success having created their Evernote Business division, which employed more 
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than 60 people worldwide. Mr. McGeachie had a background in both finance and technology, 

having graduated from Dartmouth College with a Computer Science degree.  

The model for Cogo derives from TripAdvisor’s search engine functionality 16. Their 

most concrete application of this mastery is through their Apollo algorithm and interface.  

While mostly proprietary, Apollo tracks the web presence of numerous website domain 

names. Apollo labels the value of the presence as “confidence”. Not all websites may be 

recognized by Apollo, as the presence is based off visits from a random sample.  If not 

enough of that random sample has visited the website, Apollo will not record it. Through 

gathering clickstream data, Cogo incubates new startup ideas.  
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3. Organization and Management 

 To maintain organization of the multiple projects, the graduate team configured 

GitHub as a repository for all our code and as a progress tracker for each project. All 

important members of Cogo, Vestigo, the graduate team, and our MQP team had access to 

this repository. After our graduates organized our action items, we had to develop our 

timeline. To do this, our MQP team created a Gantt chart. The Gantt chart as shown in 

Appendix B sorts our action items by overarching objectives, resources, and dependencies. 

With guidance from the Gantt chart, we were able to complete our objectives while allocating 

time for our other projects. Any time one or more team members did not complete an 

objective in the expected time, the Gantt chart would reflect those changes across all other 

dependent objectives. This meant if any unexpected circumstances arose, the Gantt Chart 

software readjust the timeline for our remaining work.  

To further maintain order within each project, our managerial structure took the initial 

shape of the graduates leading while our MQP team followed. We then evolved it a step 

further where each MQP team member would take charge of multiple action items, and 

become the designated “specialist” or leader for that topic. It was then their responsibility to 

ensure the task got completed, with or without aid from the team; depending on their 

preference. If progress was made for an objective, the leading team member would update the 

Git to reflect the news. Likewise, to keep the team on pace, any time an objective was 

completed, Andrew would update the Git and the Gantt chart, and kept the team updated with 

changes relevant to their development or the projects.  

 When approaching each project our process would start with reading any materials we 

had received from Vestigo or the graduate team. We would then contact and meet with the 

graduate team to discuss objectives, lay out action items, and set up a follow up meeting. We 

would then move into development. This phase always started with concept design, and a 

project plan. Once we had developed both, we would contact the graduates and important 

parties from Vestigo or Cogo. After confirming with said parties, we would then begin 

development.  

During development we broke the solution down into smaller parts and would run 

constant tests to ensure quality. If each test came back with positive results, we would 

continue development on the next part and present the most recent development to the 

graduates. During any moment if we had a difficult question that would change the format of 

our deliverable, we would pose the question to the affected parties at Vestigo and Cogo. The 
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objective of that step was to customize our deliverable to their needs. Finally, after we had 

developed a functioning deliverable we confirmed with the graduates, then the sponsors that 

it was satisfactory to the objectives. Any additional time we had, we spent testing and 

reconfiguring, while simultaneously adjusting our concept/deliverable to better fit our 

sponsor’s need. As the base iteration of our projects neared completion, our sponsors asked 

us to undertake additions to these projects. Our sponsors understood the organization burden 

of scope creep, and thus referred to them as “bonus” additions. The particular phenomenon of 

extra additions occurred primarily in the first project. After all objectives and “bonuses” were 

completed, we would measure our success by matching up our product to our initially defined 

deliverable, what our sponsors wanted, and the overall functionality. 
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4. Project 1: Venture Decisions Measured Over Time 

4.1 Background 

This project was the first step towards evaluating Vestigo’s portfolio and decisions 

over time. Through this project, our sponsors intended for us to familiarize ourselves with the 

internal tools they used and get a look into their due diligence process. Vestigo received 

investment proposals from 270+ companies when we began. We needed to gather 

information on these 270+ companies to have a basis for analyzing Vestigo’s deals and 

decisions. Upon compiling this information, we performed analysis to see how the companies 

have been doing. These analyses determined whether Vestigo made the right decision to pass 

or invest. In addition, we offered recommendations for the investments that were still open. 

Open in this context means still under consideration for a deal with Vestigo. 

The graduate students, whose role was managerial and advisory, laid down the 

groundwork for this project by starting a spreadsheet (the Deal Flow spreadsheet), that 

contained 271 companies from Vestigo’s past and present opportunities. The Deal Flow 

spreadsheet included key VC metrics Vestigo uses to evaluate the companies. Some of the 

VC metrics include the companies’ fundraising goal, funding round and their valuation. We, 

the undergraduate team, continued the work towards filling the spreadsheet. There were two 

ways to find the information needed to fill the spreadsheet: using the Deal Flow mailbox and 

using online resources.  

The Deal Flow mailbox is a mailbox Vestigo uses to keep track of its incoming deals. 

Conversations Vestigo had with possible investment opportunities were forwarded to this 

shared mailbox. A mail system worked well for personal conversation, crucial in the VC 

world.  However, it was inefficient going through emails to dig out VC metrics for each 

company. In the VC world, the relative efficiency of a firm in selecting and monitoring 

investments gave it comparative advantage over other firms 7. The Deal Flow mailbox system 

was an inefficient way of keeping track and evaluating these incoming investment 

opportunities. After sifting through thousands of emails, we found that there were still gaps in 

the data. If Vestigo maintained this manual system with no additional methods, they would 

remain at risk of facing challenges moving forward because this system is not scalable.   

The second way we gathered information was by utilizing online resources. We used 

resources such as Crunchbase, FormDs, and Pitchbook to find information on the list of 

companies. Early on in the project, we found that there was a general lack of information out 

there that described the key VC metrics for the companies. Finding funding information in 
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particular became a real challenge. We also had cases where the information available would 

return conflicting results. These results would come directly from sources identified by Cogo 

as the standard for investment data retrieval. For instance, FormDs reported that Riskalyze 

raised $50 million 8 while Crunchbase reports that the company raised $23.5 million 9. A 

reason for this could be the way Crunchbase and FormDs collect information. Crunchbase is 

a crowd-sourced platform, meaning that both people and companies enter data on themselves 

and others. FormDs is a database of companies that have filed a Form D. If the companies 

happen to not file a Form D or update information in Crunchbase, inconsistencies such as the 

one mentioned will arise. The general lack of consistent data made filling the Deal Flow 

spreadsheet not a challenging task, but an impossible one without having direct contact with 

the company.  

Our two methods of gathering information were insufficient. After using the Deal 

Flow mailbox and online resources, we found that 244 companies out of 271 (approximately 

90%) of the companies were still missing some sort of information. Having necessary 

information available and an efficient procedure in place is important for the success of a 

venture capital firm 7. The obstacles we faced when trying to gather information resulted in 

recognizing the need for a better, more efficient platform. 

The graduate team proposed creating a form Vestigo could use to collect information. 

The form would be used to fill in any gaps that were in the Deal Flow spreadsheet. In 

addition, it would also be used when companies approach Vestigo in the future. We along 

with the sponsors outlined the following requirements for the form: 

1. Have new and existing companies be able to add and modify their information. 

2. Prevent users from updating information that is not theirs. 

3. Have a central database where the information is stored. 

4. Have the form attached to a URL so Vestigo has the ability to integrate it to their 

website and be able to share a link with prospective companies. 

5. Utilize information that can be leveraged from Cogo Labs’ Apollo database. 

6. Possibly integrate the automated system with Close.io. 

7. Accommodate the needs of North American startups. 

A successful implementation of this form would result in a streamlined and efficient 

way of compiling information. The form would be instrumental in filling in the gaps in the 

Deal Flow spreadsheet we were unable to fill. It would also facilitate the due diligence 

process for Vestigo by offering a centralized location with necessary information on 

investment opportunities.  
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4.2 Methodology 

Upon realizing the shortcomings with Vestigo’s data collection process, we along 

with the graduate students and the sponsors decided to create an online form with design 

requirements described in section 4.1. This project required the creation of multiple modules. 

For the components, we used JavaScript, React.js, Firebase, SQL, Python, Flask, Cogo's 

proprietary database, and Cogo's proprietary Python API.  

We started by uploading the Deal Flow spreadsheet we compiled with the graduate 

students to a table in Cogo’s databases. Once we had the information in a centralized 

location, we worked on an SQL query that would pull confidence levels and detection dates 

for the companies from Apollo. After accomplishing that, we moved on to automating the 

process of adding and modifying companies through an online form, and integrating the 

system with the CRM Vestigo uses, Close.io. 

 

4.2.1 SQL Query to Extract Information from Apollo 

After we completed compiling information on the companies, we ported them into a 

table we created in Cogo’s databases and started developing an SQL query 

(update_from_apollo) within Cogo’s database. The update_from_apollo query gathered the 

earliest and latest domain tracking detection dates within Cogo's proprietary database 

managing interface and their corresponding confidence level (which is the output of Cogo’s 

analysis algorithms). This was taken from a table in Cogo's proprietary database called 

“apollo_histories” and used to update the relative attributes in the table we created.  

The Deal Flow database (wpi_vestigo_deals) has 25 columns. Our SQL query updates 

the following five columns: in_apollo, initial_detected_date, initial_confidence, 

latest_detected_date and latest_confidence. In addition to updating these columns, it performs 

simple arithmetic on the values that were mined and updates three additional columns: 

total_days, total_confidence_growth and confidence_growth_per_day. The particulars of the 

arithmetic used are found in the methods of Project 2. All of this information for the 

companies is mined from Apollo using the company’s website.  

In our SQL query we chose to use a WITH statement to temporarily define tables in 

the query for the parameters we were going to pull from the Apollo database (Appendix E 

[2]). Following the WITH statement was an UPDATE statement that updates all the columns 
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in the Deal Flow database using the information from Apollo and performs simple arithmetic 

to update the remaining columns. The SQL query can be found in Appendix C.  

With the backend SQL query working, we worked on automating the process of 

updating the Deal Flow database by creating a form companies seeking investment can fill 

out. To automate this process the system required multiple components of design: additional 

SQL queries, a Python Flask server and a fillable form with a JavaScript backend. These 

components are explained in further detail in the following sections. The overall flow of data 

is as follows (Figure 1): 

 

    Figure 1. Diagram describing flow of data 

4.2.2 Additional SQL Queries 

 In addition to the update_from_apollo query described in section 4.2.1, the design of 

an automated system required three additional queries: update_existing_deals, 

insert_new_deals and clear_survey_entries.  

Early on, we found that when we upload a .tsv file, the datatype of the columns is 

overwritten in the database. The update_from_apollo query required certain columns to be a 

specific datatype to conduct algebraic operations. Because of this, we chose to create another 

table that would act like a buffer (wpi_survey_entries). We would upload the .tsv file to the 

wpi_survey_entries table. Then, using the update_existing_deals and insert_new_deals 

queries, we casted the data types and moved the entry over to wpi_vestigo_deals.  

We decided to have two separate queries, one that updated existing entries and one 

that inserted new entries (Appendix E [3]). The update_existing_deals query went through 

the wpi_vestigo_deals table and if the company is already in the table, the query updated 
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information for the company. The insert_new_deals query added new queries to the table. 

This query checked that a company is not already in the database and inserted a new entry.  

Table 1: An example of duplicate queries on basis of company name and domain. 

 

 company domain round contact_email 

Entry A Some Company someurl.com Angel  

Entry B Some Company someurl.com  contact@email.com 

 

   

In Table 1, entries A and B would be treated as duplicates because they have the same 

company name and website. Using a query to delete either of these entries would result in 

losing either the ‘round’ or ‘contact_email’ information. By creating two separate queries that 

will update or insert deals to the table, we avoid creating duplicates altogether and prevent 

data loss. Once the entry is properly inserted or updated in the wpi_vestigo_deals table, the 

clear_survey_entries query will delete everything in the wpi_survey_entries table. 

 

4.2.3 Python Flask Server 

For the backend design of this system, we utilized Cogo’s proprietary Python API 

they use to interface with their databases. The API provided ways to perform a variety of 

things including creating or editing queries, uploading .tsv files to tables, and queueing 

queries. We familiarized ourselves with this API by creating a short script that uploads a 

locally saved .tsv file and runs the update_from_apollo query.  

The next step was to link the submissions from the form to this Python script. To 

make the Python script accessible, we decided to use Flask, a “microframework” written in 

Python 18. The Python Flask sets up a web application, and the Python script is triggered 

when a request is sent to the URL. By turning our existing Python script into a Flask 

application, we were able to navigate to a URL and trigger the .tsv upload and query 

execution. Upon completing the query executions, the Flask server also utilized the Close.io 

Python API to update a company’s information on the Close.io platform. Close.io is a 

customer relationship management system where our sponsors track their email 

communications with interested investors. Our sponsors use Close.io more regularly than 
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accessing the Deal Flow database, so integrating the automated form with Close.io became a 

good addition to the overall system. 

During this process, email notifications were sent using Flask-mail, an extension used 

to send SMTP email messages from a Flask application. Four different email notifications 

occurred during the execution of the form (Appendix F). The first one was a message 

containing an automatically generated passcode, which was sent when a user signed up. The 

second and third notifications occurred as a confirmation of form submission; one of the 

emails got sent to the user submitting the form and the other one to Vestigo’s Deal Flow 

mailbox. The last notification occurred when a user submitted an update, which got sent 

directly to Vestigo’s Deal Flow email as well. 

Finally, to deploy the Flask and the form, we used Docker. Docker is a software 

technology that provided an additional layer of abstraction and automation of operating-

system-level virtualization on Windows and Linux 19. We set up two different containers, for 

our two applications, the Flask and the form. 

 

4.2.4 Form with React.js 

 Prior to coding the form, the graduate team presented the idea of two forms. This 

followed the principle of separating the case for adding a new entry and overwriting an old 

entry. While this adhered to good coding principles, security flaws create a danger with this 

approach. More forms mean more public points of entry into the proprietary database, thus 

creating more risk for Vestigo. Hence our team decided to compose both functions into one 

form. It would go against separation of concerns, but resulted in increased security (Appendix 

E [4]). 

We drafted our own form to overcome the partition between Cogo and the outside 

world. The prospect of a form application developed through the use of the React.js 

framework hosted in concert with the Flask server proved desirable to all parties. The sponsor 

could realize their vision for the look and feel of the form, and we could manually script it to 

facilitate integration into the overall system.  

When a user clicks on the link to the form from anywhere, they are prompted with a 

login screen (Figure 2). Should the user encounter the form for the first time, they can click 

on the sign up button to send a randomly generated password to their email (Appendix E [5]). 

With the password, the user then logs into the form and begins inputting data. 
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The form itself included two tabs: tell us your story and give us an update. On the first 

tab, there are seven required fields (Figure 3). The user cannot submit until all the fields have 

valid inputs. For example, fields that require email or money inputs required a certain format 

to be considered acceptable. When the form detects that the client meets all requirements for 

submission, the submit button turns green. Submission begins the information transfer from 

the form to the Python Flask server.  

The second tab gave the user the option to ‘give an update’, which is intended for use 

when the company is already in contact with Vestigo (Figure 4). The layout for this option is 

different: it contains three required fields and an optional ‘file upload’ to send a file to 

Vestigo’s Deal Flow email with the update information. Just like in the first tab, each field 

checks for valid input. An admin account exists to be used by specific members of Vestigo 

Ventures. This admin account has its own set of credentials, and views the form in a different 

way. While logged in with the admin account, the only required fields are company name and 

domain. Further, this account has permissions to modify or update any company’s 

information.  

For transferring the form information, the form API generates three different requests 

though the XMLHttpRequest format. The first one packages all information from the form in 

a .tsv file. The .tsv file is encapsulated into a JSON file (Appendix E [6]), and sent through a 

post request to the Flask server’s root route. Upon receiving the JSON file, the server obtains 

it within the payload and writes it to a temporary .tsv file. Several functions from Cogo’s 

proprietary API begin to execute.  

The first function uploads the .tsv file information into the database. The next four 

functions call four SQL queries and print out their execution for transparency. Upon 

conclusion of these queries, the server deletes the .tsv file and returned “Done”. With an 

automated data pipeline, the need for manually obtaining and uploading data becomes 

obsolete. 

The second request gathers basic user information from the state of the form API, and 

sends it using the POST method to the Flask server. Instead of sending the information to the 

‘/’ route, it sends information to the ‘/confirmation’ route. Then, the server script utilizes 

Flask-mail to send a confirmation email to the user and Vestigo’s Deal Flow mailbox with 

the purpose of letting them know that the form information was uploaded and processed 

correctly (Appendix E [7]). 

 



15 

 

   Figure 2. The login screen of the form. 

 

The third request is similar to the second one. It takes all of the information filled into 

the form from the update tab and sends it through a POST request to the ‘./update’ app route. 

Then, just like in the second request, it sends an email using the Flask-mail extension. 

Additionally, the update tab has the option to include a file. If the user decides to upload a file 

to support their message, it will be sent through the request and included in the email as an 

attachment.  
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Figure 3. The main page of the form. 
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    Figure 4. The update page of the form 

4.3 Results and Analysis 

         Project 1 involved data mining and developing an automated system. When 

researching the companies in the Deal Flow table, we found most companies lacked 

information. This is one of the issues the automated form helped mitigate. The final system 

pipelined data from the form to Close.io. It offered prospective companies a secure way of 

giving their information to Vestigo. In addition, it used the confidence levels generated by 

Apollo to aid Vestigo with its decision making. 

When developing the automated system, there were a variety of challenges. We had to 

develop on several platforms at once. The system’s components had to communicate with 

one another and rely on the available resources, i.e. proprietary tools and the engineers on 

site. We found the limitations on certain platforms impeded the process on the other 
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platforms. Proprietary tools and libraries held functionality that worked around said 

limitations. 

A modular design accommodated the various independent components of the form 

system. The structure of the system eased test-driven development. We ran manual tests on 

each part and made changes without affecting the operation of other components. Should a 

future group change our system, they can refactor with ease one part at a time. Whenever we 

made changes to the system, we experienced little difficulty due to the modular structure. 

We ran a full system test once we confirmed the workability of each part. We drafted 

several common use cases for a client’s interaction with the form. These tests realized the use 

cases as well as potential malicious input. At the conclusion of testing we confirmed with our 

sponsor that our pipeline worked as intended. 

 

4.4 Recommendations 

         We recommend the assignment of one specialist to support the project 1 system on 

behalf of Vestigo. This person would need access to Cogo’s proprietary database managing 

interface, have a good understanding of Python and SQL, and understand how Vestigo wants 

to interact with their clients. Either Cogo or Vestigo may assign one of their employees to the 

task. 
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5. Project 2: Deal Analysis and Industry Engagement 

5.1 Background 

Vestigo’s due diligence involves evaluating a company beyond its financial numbers. 

Vestigo looks into a company’s team, technology, market size and valuation before moving 

forward with the conversation. The goals of this project was to perform analysis on Vestigo’s 

past and present deals, to gain an understanding of Vestigo’s industry engagement, and to get 

exposure to the business world.  

To evaluate the portfolio of a venture capital firm, one of the items that can be done is 

evaluating the deals they passed on. Vestigo appreciates insight on deals that they passed on 

that could have provided value. Another portion of evaluating a VC firm’s portfolio involves 

looking at its industry engagement. For VC firms, having a specific industry focus reduces 

their due diligence time to investigate potential investments. In addition, it increases the 

firm’s ability to leverage their industry expertise and network. We conducted research on all 

the companies in the Deal Flow spreadsheet to assess Vestigo’s industry engagement. We did 

this by classifying the companies into one of four fund investment segments (Figure 5): 

market structures, operation solutions, worksite management and personal wealth. 

 

Figure 5. The four segments of fund investment 

 The basis of successful VC deals derives from the quality of conversations with 

potential clients. Our sponsors welcomed us to four of these meetings as a means of 

understanding the practical aspects of venture deal making. The four companies we met with 

were Ascensus, Horace Mann, Virtual Cove, and InTeahouse. All four acted in a different 

field of fintech. Ascensus provides technological solutions to asset managers 10. Horace Mann 

provides insurance to non-college educators 11. Virtual Cove uses virtual reality software to 

visualize data 12. InTeahouse is a global investment platform 13. Beyond the VC context, the 
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goal of Vestigo is to establish long term relationships with all their clients including these 

four. 

 

5.2 Methodology 

To conduct analysis on the deals Vestigo had received we used the queries we built in 

Project 1 to pull the confidence levels from Apollo. As previously discussed in section 3.2.1, 

the update_from_apollo query did simple arithmetic to calculate: total_days, 

total_confidence_growth and confidence_growth_per_day.  

• total_days is the difference between the initial and latest detected date  

• total_confidence_growth is the difference between a company’s initial and latest 

confidence  

• confidence_growth_per_day is the total_confidence_growth divided by the time 

interval between the initial detected date and the current date. 

This was the most accurate depiction of confidence rate (Appendix E [8]). 

Using the values generated by the query, we performed analysis on 20 companies that 

saw the highest confidence_growth_per_day and whose current status was marked as open to 

investment by Vestigo. After we had narrowed the selection down to 20 companies, we did 

more specific research and used a 4-point scoring method evaluating each company on its 

team, technology, market size, and valuation. We used information and data found on 

Crunchbase, FormDs and other sources to do the research for each top 20 company and give 

them score 1 to 5 for these four fields.  

To rate the company’s team and technology, we used a metric Vestigo provided. 

However, in order to rate the company’s valuation and market size we had to come up with 

our own metric. Valuation is how much a company is worth. For some of the companies in 

our list, this information was available but for others it wasn’t. So, we based our valuation 

ratings on the funding data we could find for the company. We believed the amount of 

funding that a company has raised can represent the confidence of other investors indirectly 

answering how much the company is worth. 

Scoring the market size was tricky. Market size represented the number of individuals 

in a certain market who are potential buyer or sellers of a certain product/service. 

Determining the company’s market size based on the information we have available to us was 

challenging. We did some research and came up with this formula:  

𝑚𝑎𝑟𝑘𝑒𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ∗  𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒  
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where the number of target customers refers to the total portion of the market the service can 

reach. For instance, something like life insurance would have a high number of target 

customers because the insurance industry is quite large. We gave the companies a 1-5 rating 

for their ‘number of target customers’. To determine a company’s penetration rate, we looked 

at what proportion of the customers the company could get within the industry. When rating 

the penetration rate of the company, we looked at the novelty of the idea and the amount of 

competition that exists in the industry. A company that is very novel and has little 

competition would receive a high penetration rate. We gave companies a rating of 1, 3 or 5 

for their penetration rate. Using the equation stated above, we had a market volume scale that 

ranged from 1-25. Using this score we determined the market size rating on a scale of 1-5. 

After we finished the four-point scoring on team, technology, valuation and market size, we 

picked three companies with the highest score for our recommendations to Vestigo. The more 

detailed rubric we used for the four-point scoring can be found in Appendix D. 

To analyze Vestigo’s industry engagement, we classified all the companies in the 

Deal Flow table into one of the four segments Vestigo invests in. The four segments are: 

market structures, operation solutions, worksite management, and personal wealth. Market 

structures deals with trading analysis, risk analysis, algorithmic trading and blockchain. 

Operation solutions include internal tools/software, frontend/backend and technical stakes. 

Worksite management encompasses employer benefits from a high-level perspective, i.e. 

from the perspective of the business. Financial services related to the individual, such as a 

personal financial advisor, fall under the personal wealth category. We assigned each 

company to exactly one segment. Each assignment required research evaluated alongside the 

four-point scoring rubric. 

We concluded our Deal Analysis by presenting our findings and results to Mike 

Nugent and Ian Sheridan. 

 

5.3 Results and Analysis 

Project 2 involved the due diligence process of Vestigo’s deal making. We classified 

all 271 companies in the Deal Flow database into four categories: Market Structures (MS), 

Operation Solutions (OS), Worksite Management (WM) and Personal Wealth (PW) as 

described in section 3.3. Two super-categories, B2B and B2C further defined Vestigo’s 

investment goals.  Ninety companies belonged to OS, 79 of them belonged to MS, 62 

companies belonged to PW, 18 companies belong to WM, and 21 companies lacked enough 
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information for categorization. The OS and MS companies best performed the functions of 

the B2B super-category, while the WM and PW companies fit the B2C super-category. In 

other words, other businesses act as the customers of OS and MS businesses, while WM and 

PW services have individual persons as clientele. This process followed the guidelines of the 

graduate team’s recommendation. 

Figure 6. Market Segments Distribution 

For all companies in the Deal Flow spreadsheet, there are three statuses: passed, open, 

or invested. The spreadsheet displays three companies as invested and 58 as passed. Passed 

means that Vestigo passed on the opportunity without investing in the company. Open means 

they are open to the possibility of investment but remain unsure about commitment. We ran 

the update_from_apollo query described in section 3.2.1 and found that Apollo detected 67 of 

the 271 companies in our table. For those 67, we recorded their confidence level and 

confidence growth rate fields. We found that 46 of the 67 had a positive confidence growth 

and 5 companies saw a decline in their confidence. The remaining 16 companies had no 

change in their confidence level because Apollo only detected the company’s domain once. 

Apollo detected around 25% of companies. This was significantly lower than the 

sample size needed for accurate measurement. Given our population of 271, a desired 

confidence level of 99%, and a margin of error of 1%, the calculated sample should be 267 24. 

While a value 67 companies missed the desired margin of 267 companies by a value of 200, 

it gave us a way of narrowing down the list of companies based on the web traffic they 

generate. Furthermore, filtering the companies using the 4-point scoring added dimension to 

the way we were analyzing the companies. An analysis based on team, technology, and 

market size added breadth to our confidence analysis. We presented the top 20 deals Vestigo 

passed on and the top 20 that are still in the open category. In the interests of Vestigo, we 

focused on the five companies that are still open and had the highest scores after the 4-point 

scoring. The sample of the Deal Flow table is confidential and is not in this paper. 
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6. Project 3: Market Landscape Analysis 

6.1 Background 

 Cogo’s current signal search algorithm has been invaluable for B2B communication. 

However, for this project Vestigo wanted a tangible and applicable algorithm to aid in fintech 

investment decisions. As such, this project came in two parts; improving the Apollo 

algorithm’s signal search parameters for Rob Fisher to review, and performing a market B2B 

landscape analysis for Vestigo based on the results of the new signal search algorithm. As 

mentioned in section 2.1, Vestigo uses Apollo as a key factor in decision making but misses 

the occasional viral website. The risk of missing viral websites means that if an investment 

opportunity grew substantially in a short amount of time, then Vestigo missed a chance to 

capitalize on its growth. Therefore, improving upon Apollo’s signal search would be useful in 

ensuring an earlier detection for virality. 

 

6.2 Methodology 

For this project we discovered two key objectives; improving the Apollo algorithm’s 

signal search parameters for Rob Fisher to review, and performing a market landscape 

analysis for Vestigo based on the results of the new signal search algorithm. After finishing 

the Deal Analysis Project ,our team understood that the market landscape analysis could be 

completed for all Apollo entries; provided they were indexed by the industry and market 

segment of best fit. Without sorting through the database by hand, our team had determined 

the most efficient way to accomplish this was creating an automated sequence for parsing and 

search terms that would take place immediately after the signal search. We concluded this 

code would act on a table in our database containing Pitchbook data that Cogo had previously 

purchased; otherwise, it would run on a domain’s website as a “catch-all” and look for 

particular keywords. After we had devised this concept, we had suspected the level of 

complexity for implementation would interfere with our other projects. Knowing this, we 

brought the issue to Mike Nugent and Rob Fisher. Mike agreed with our suspicion and made 

the executive decision to postpone the project until all other projects (Venture Decisions 

Measured Over Time, Deal Analysis Project , Device Fingerprinting) were fully developed. 

This postponement includes the possibility passing off this project to another group. 
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6.3 Results and Analysis 

         Our core deliverable, the basic concept outlined in section 6.2, satisfied our sponsor’s 

expectations. After presenting our project, our sponsors noted that we had found a “failure 

mode” of the company. Only one scientist at Vestigo understood the entirety of the Apollo 

algorithm and could make updates to it. We derived no further deliverable from this project. 

 

6.4 Recommendations 

         We had one recommendation for Vestigo Ventures and one more recommendation for 

Cogo labs. Vestigo Ventures should give resources for one or more specialists to learn and 

master the Apollo algorithm. Cogo Labs assign a research team to follow up on this project. 

A workable alternative to a research team possibility is another WPI MQP team. Before 

pursuing this project, the aims should be reevaluated by Vestigo and Cogo to ensure they are 

up-to-date. The assigned team can decide if our findings remain problematic. 
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7. Project 4: Device Fingerprinting 

7.1 Background 

Cogo Labs had 3 petabytes of consumer profile data consisting of ~800 million 

profiles. Big data can be evaluated over three dimensions known as the 3Vs: volume, variety 

and velocity 29. According to a Cogo employee, Cogo obtained nearly 5 billion rows of data 

daily from a random population. This grouping covered 80% of the United States populace, 

therefore in addition to volume and velocity, the data Cogo compiled guaranteed variety.  

By using this database and an extensive cookie match network, Cogo could pinpoint 

an exact user 30% of the time, given that the user goes through any of the websites monitored 

by Cogo or its partners. Cogo used emd5 hashes in their process of matching cookies with 

users. An emd5 hash derived from the MD5 hashing algorithm 17. However, the emd5 

algorithm hashes email addresses in particular. This is done before the data touches Cogo’s 

network as a means to maintain the privacy of the user and for ethical concerns. Cogo does 

not want Personally Identifying Information (“PII”) to touch their network. PII included a 

non-hashed email, phone number, date of birth, and social security. In the case that an emd5 

could not be traced to a cookie, other browsing signatures facilitate detection. Such signatures 

included user agent (the physical device used), IP address, and browser version. The 

objectives of this project were to increase Cogo’s match rate from 30% to 45%, and to make 

the system compatible with Safari browsers.  

The concept of device fingerprinting originated a little over ten years ago 20. General 

implementation began seven years ago 21. Given the novel concept of fingerprinting, our 

group began the project reading through several research papers pertaining to browser 

fingerprinting. Much of the following material derived from the methods outlined in a 

Microsoft research paper 22. We were tasked with designing a new algorithm for Cogo to 

build off of. After weeks of development, we decided to build a Python program to 

implement and exemplify the algorithm. 

 

7.2 Methodology 

Our first step in making the fingerprinting probabilistic model was to design a concept 

that would tie a user to a particular cookie. We were informed by our Cogo Labs mentor for 

this project, Matt Wiens, that only approximately 30% of the database has a user tied to a 

cookie (stored in the scratch.matches table of the Matches database), hence we need to 
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connect the other 70% of the data in scratch.ad_requests table to a valid user. To bridge the 

gap between users and entries, we noted that all entries have the same three fields in the 

database; apxlv_id (cookie id), user_agent (device information), and ip (Internet Protocol 

Address). We used a combination of these fields to determine the probability of an entry 

matching a user. Particularly, we developed the concept of Home IP addresses. We based our 

Home IP concept on the frequency of IP addresses. The most frequently appearing IP address 

for a particular cookie would likely be the Home IP address of this cookie(Appendix E [9]). 

We could then use this Home IP as a best guess as the home location of the user it’s 

associated to.  

In many of the following formulas, there are three probability coefficients; C, U, and 

I. They represent the accuracy of using cookie, user agent, and IP address to identify a unique 

user, respectively. As we explored multiple possibilities for setting our coefficient, we have 

listed three options for the choice of these coefficients. All three of these options have been 

thoroughly tested, and our findings have been placed into section 4.4 of this paper. 

First, by assuming all users could be accurately identified by cookie, user agent, and 

IP lead us to temporarily setting all coefficients to 1. In which, we could take a more 

scientific approach. However, we understood our calculations would be less accurate to what 

they were meant to represent. This was used strictly for testing and proof of concept until the 

graduate team had time to work out the coefficients with us. 

Second, we used the numbers coming from the Microsoft research paper we found 23. 

The authors of this paper applied their algorithm to calculate the percentage of fingerprints 

that correspond to a host. The result is C = 0.8235, U = 0.6201. In order to calculate the IP 

coefficient, we reverse-engineered the calculation of UA-IP combined coefficient in 

conjunction with the user agent coefficient, which equals to I = 0.4899. 

Third, we decided to use a similar method from the one explained in the Microsoft 

paper14 to calculate our own coefficients. This method was designed by the graduate team, 

while the detailed calculation was done by our undergraduate team. We used the total counts 

for cookie, IP and user agent divided by the total count of entries in scratch.matches table.  

To start our calculation process, we noted that there are two datatables within the 

Matches database: scratch.matches and scratch.ad_requests. Scratch.matches contains the 

fields emd5 (a hashed email address for security), apxlv_id , user agent, ip, and numerous 

additional fields that we did not use. Additionally,  scratch.ad_requests contains the same 

fields except emd5. We gathered all emd5s, ips, and user agents from each entry in the 

scratch.matches table and scratch.ad_requests table for one unique cookie and inserted them 



27 

into a table named  scratch.wpi_device_fingerprinting (a.k.a “ALPHA”) to calculate our 

Home IP, which is simply the most frequent IP address amongst all entries of the same 

cookie. 

When gathering all this information and inserting it into the ALPHA table, we found 

the execution time of the queries for a single cookie to be around of three hours. After some 

research on the database's structure using the “explain” SQL command, we figured out that 

Cogo’s database was partitioned (or subdivided) by the date the entry was created. 

Additionally, the scratch.ad_requests table was partitioned by cookie suffix. The partitioning 

of this data allows for improved performance when executing queries on these tables 23. 

Hence we decided to execute our queries between 2 dates, while also sticking to a particular 

cookie ID suffix. Taking advantage of the database’s partitioning, we reduced the execution 

time of queries to an average of 3 minutes for testing purposes only. 

We then counted the number of times the Home IP and IP are the same within the 

same entry, multiplied by our coefficients, then divided that by the total number of entries 

within ALPHA(Appendix E [10]).  

 

 

This calculation became the cookie_dep_hip_prob (or cookie dependent Home IP 

probability), signifying the probability a Home IP was accurate while indexing by the cookie 

(Appendix E [11]). This was done so Cogo could see the probability of a Home IP belonging 

to a user with respect to the entirety of the Home IP profile where all entries have the same 

cookie (i.e. the same user). After calculating, we moved the results from ALPHA to a 

theoretical BETA table. At the time of the paper’s writing, all aspects of the BETA table were 

based off projection as opposed to empirical analysis. As such, no post-process storage is 

required. For implementation of 2 or more cookies, all Home IP’s would need to be 

calculated before calculating probability. In this instance, the BETA table would need to be 

initialized for post-process storage of a set of entries for one unique cookie at a time. After 

moving our data from ALPHA to BETA, we deleted all entries in ALPHA to prevent 

duplication. To end our first phase, we repeat this process for every unique cookie in the 

database. This resulted in every cookie being mapped to a Home IP address(Appendix E 

[12]). 

In the second phase, after all entries have been assigned a Home IP, we copied all 

entries with a unique Home IP from BETA back to ALPHA. Within ALPHA we counted the 
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number of times the Home IP and ip fields are the same for an entry, then multiplied by our 

coefficients, and divided that by the total number of entries in ALPHA.  

 

 

This calculation became the cookie_ind_hip_prob (or cookie independent Home IP 

probability), signifying the probability the Home IP is accurate regardless of indexing by the 

cookie, much like the cookie_dep_hip_prob. The utility here mimicked the utility of the 

cookie_dep_hip_prob as well:  so that Cogo can see the probability of the Home IP belonging 

to a user with respect to the entirety of the Home IP profile and all the relevant entries. We 

started to calculate the end deliverable: the cookie_prob. This signified the probability that 

the cookie belonged to the Home IP (i.e. user). We did this by taking each entry in ALPHA, 

and retrieving how frequently the entry’s cookie, user agent, and/or IP show up in the rest of 

the table. Then for the individual frequencies of cookie, user agent(Appendix E [13]), and ip 

we completed the following formula for our first entry (Appendix E [14]). 

 

 

 

Where: 

X = C * Cookie_Frequency 

Y = U * UA_Frequency 

Z = I * IP_Frequency 

 

We took our final calculation and inserted it into our first entry cookie_prob 

field(Appendix E [15][16]). Then we iterated through our list of entries in ALPHA, 

performing the same steps, from cookie_dep_hip_prob to cooie_prob, for each one 

(Appendix E [17]). After calculating, we removed all entries with that Home IP (partition) 

from our BETA table, and inserted all entries from ALPHA into BETA to replace the 

partition. Finally, we deleted all entries in ALPHA to optimize space for future space usage. 

We then did these calculations for all unique Home IP’s within BETA. Our ideal deliverable 

was all entries within BETA having a Home IP, and a cookie_prob. This datatable will act as 
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an archive on all entries and users, and should pre-process the information for quick 

acquisition. 

 

 Figure 7. Device Fingerprinting Process 

 

7.3 Results and Analysis 

The underlying structure of the ad_requests and matches tables exclusively allowed 

removing and adding by partitions, not by entries. The data scientists at Cogo Labs designed 

this database for data browsing, not data manipulation. Under this constraint we implement 

the fingerprinting algorithm to work only for one cookie, given that we could neither store 

nor update individual entries inside this database. In addition, the execution time for our 
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algorithm on one cookie took three minutes. An application of the algorithm to every cookie 

in the database would not return a result in a reasonable time for Cogo Labs. 

Executing our Python implementation of the algorithm for our test cookie 

“a6309b2f5240ace44dcc8df60d56cf19” took 4 hours to perform all calculations. Figure 8 

shows the results of these calculations. The execution time varies from cookie to cookie, thus 

4 hours is not indicative of every cookie. For this test run, we set all accuracy coefficients to 

be 1. The emd5 field showed whether the entry comes from the matches table or ad_requests 

table. If the emd5 field was null, this shows that the entry belonged to the ad_requests table. 

If the emd5 field held a non-null value, it belonged in the matches table. The Home IP for all 

entries shown in Figure 8 are the same because we joined entries from both tables on the 

Home IP field. Cookie_dep_hip_prob and cookie_ind_hip_prob show identical results 

because the coefficients for both calculations are equal to 1. Cookie_prob will always contain 

the value 1 because the sample size of one cookie equals our population of one cookie. From 

a mathematical perspective, this makes the product of the cookie probability formula equal to 

0, in turn making cookie probability equal to 1. 

 

 

Figure 8. Device fingerprinting implementation results with coefficients equal to 1. 

The results shown above were different from our hypothesis. Cookie probabilities 

should never be 1 given the impossibility of a certain match between a cookie and a user. The 

values of the cookie_dep_hip_prob and cookie_ind_hip_prob fields between each record 

should be different. The reason behind these abnormalities derived from the values of our 

coefficients. We decided to try with a different set of coefficients as a possible remedy. We 

used probability coefficients calculated from the Microsoft paper 13 for a second test run. We 
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set C=0.8235, U=0.6201, I=0.4899. Figure 9 displays the results of the second test run. 

Cookie_dep_hip_prob and cookie_ind_hip_prob have different values and cookie_prob does 

not keep the value of 1. These results reflect our hypothesis. 

 

Figure 9. Device fingerprinting implementation results using Microsoft paper coefficients. 

 

7.4 Recommendations 

         We suggested three recommendations for Cogo Labs. We first recommended that 

Cogo Labs revised the table partition in the Matches database. Particularly, Cogo Labs should 

have partitioned the matches table by cookie suffix in conjunction with the date partition. 

This partition structure would mimic the partition structure in ad_requests. The addition of 

these partitions would improve the execution time of the Python implementation down to a 

projected 5 minutes. Next, we recommended that Cogo Labs considers calculating their own 

accuracy coefficients used in the Home IP probability and cookie probability calculations. 

The Microsoft Research coefficients may not be entirely correct for Cogo Labs’ case. 

Microsoft evaluated their coefficients based on around 100 million entries in their Outlook 

Database. Cogo Labs had trillions of entries of more detailed data, hence the need to tailor 

these coefficients for Cogo Labs’ situation. Finally, we recommended a full implementation 

the fingerprinting algorithm, as shown in Appendix F. The Python implementation made by 

the MQP team works around the current partition issue in the database. Thus, it worked for 

one cookie and not all cookies in tandem. Fully implementing the algorithm would 

successfully perform the calculations for all cookies in the database. 
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8. Concluding Remarks 

         Cogo Labs and Vestigo used their data in a niche model applied at only a handful of 

companies. The employees of both companies eased a rapid work pipeline that capitalized on 

the strengths of each team member. Such a frictionless, unstructured environment proved 

beneficial to the working environment. This project displayed a full picture of the investment 

market in practical application. Furthermore, Cogo’s integration of big data with investment 

served as a microcosm for the multifaceted future of modern fintech. With big data analytics 

just emerging in today’s world as a cutting-edge technology, it had piqued our interest into 

learning more about the topic.  To that end, two of our team members will pursue Data 

Science in an academic context. As of the writing of this paper Andrew Aberdale was 

applying for an MS in Data Science, and Benjamin Sarkis was applying for a Data Science 

minor to append to his BS in Computer Science. A parallel phenomenon occurred with our 

sponsor in the late 1980’s. Ian Sheridan shared with us during this project how he used to be 

a “gopher” in the New York Stock Exchange, and how he was there for the first 10,000 

automated transactions on the Exchange floor. He reflected on that experience as bringing 

perspective to what he had done, and what Cogo Labs had done. It is a hope of the 

undergraduate team members that the work of this project will become common place in the 

future. 
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Appendices 

Appendix A: Terminology 

  

Venture Capital (“VC”): “Venture Capital is financing that investors provide to startup 

companies and small businesses that are believed to have long term growth potential.” 25 

 

Financial Technology (“Fintech”): “Fintech is a portmanteau of financial technology that 

describes an emerging financial services sector in the 21st century. Originally, the term 

applied to technology applied to the backend of established consumer and trade financial 

institutions. Since the end of the first decade of the 21st century, the term has expanded to 

include any technological innovation in the financial sector, including innovations in 

financial literacy and education, retail banking, investment and even cryptocurrencies like 

bitcoin.” 26 

 

Clickstream: “A series of mouse clicks made while using a website or in linking to multiple 

websites.” 27 

Appendix B: Gantt 
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Appendix C: SQL queries 

1. wpi_update_from_apollo query 
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2. wpi_update_existing_deals query 
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3. wpi_insert_new_deals query
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Appendix D: 4-point Scoring System 

 

 

 

Appendix E: Rejected Decisions 

Throughout the course of the project, we tried and discussed many options that were 

ultimately scuttled. Each subsection follows the format: 

[X] Rejected Decision Name: 
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 Description 

The “[X]” is referenced in the paper next to the decision we ultimately took. 

---------------------------------------------------------------------------------------------------------------- 

 

[1] Date form: 

We tried using the format “mm/dd/yyyy” initially. 

[2] JOIN statements in update query: 

 An initial iteration of this query involved the use of SQL JOIN statements. JOIN  

statements could not do calculations in the order we wanted them to. WITH  

statements allowed for this flexibility. 

[3] Dealing with new companies and existing companies in the update query: 

 We considered creating an entry for each submission and have a query that would act  

as a garbage collector to remove ‘duplicate’ entries. A duplicate entry would be one  

that has the same company name and domain (Table 1). However, we found that this  

design could potentially result in data loss if the two entries have the same company  

and domain name, but otherwise differ. 

 Another option that was considered was coding in a condition that would  

check if the entry already existed in the table before adding it in and update  

accordingly. However, this proved to be inefficient as well as difficult to design and  

did not integrate effectively into the architecture. 

[4] Form Decision: 

Our form underwent two key iterations over the course of the project. The sponsors 

and the graduate team gave the suggestion of Google Forms, which offers various script APIs 

that facilitate data conversion, form behavior, and security. The added benefit of an excel 

sheet tied to all form responses allows access to the functionality associated with Google 

Sheets. We wrote a script that automatically creates an updated .tsv file in the form’s 

directory whenever the sheet changed from a new form entry. From the JavaScript backend 

(Google Apps Script for this specific case), we attempted to send a post request to the Flask 

server we set up locally. However, through several trials, we discovered a partition between 

the form API and Flask that prevented Flask from receiving the post request. The script was 

running on Google’s server; a post to a “localhost” was directed to a host on the Google 

server instead of our local Flask server.  

The first attempt at surmounting the partition began with moving the Python server to 

a different platform. Google Cloud Platform would host the server and thus integrate with the 
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google scripts associated with the form. Flask could have an address reachable from the form. 

This method would work if we only used public libraries. Through further investigation, the 

proprietary library for the database we accessed could not be used outside of Cogo’s interior 

network. The library required authentication to Cogo’s network for proper use. Furthermore, 

the triggers we had set up in Google scripts could not be refactored to the python server; 

direct communication between Flask and the form could not occur. The library’s reliance on 

Cogo eliminated the option of having the Python Flask hosted on the Google Cloud Platform. 

We decided to move away from Google APIs and the Google platform to create a form from 

scratch. 

[5] Password/Hashing decision: 

 Earlier iterations of the password security option involved hashing. Our first hashing  

idea was inspired from the method employed by when2meet. However, much of 

when2meet’s security lies in their unique hashing for each survey. Since we have one url that 

Vestigo wants to use, this security aspect is not available to us. The other aspect of the 

when2meet system is trust, which is not strong enough security in high-stakes environment 

Venture capitalism.28  

 The second hashing idea was one random hash per survey. It was the strongest  

security option, yet it would have required heavy refactoring before adding it. Our table 

would require an extra field as well as implementing hash generation functionality in 

JavaScript. The amount of security behind Cogo’s network rendered this option not 

productive. 

 Finally, our sponsor offered to send out surveys in controlled batches. Within each 

batch, we could try hashing each survey. While this would require only as many hashes as 

there are surveys per batch, it would create an unneeded burden on the sponsors. They would 

have to manually search through each batch and a specific hash for a particular survey. 

[6] On coding the .TSV into JSON: 

 The original iteration of passing a .TSV with encoded JSON involved simply passing  

the raw .TSV. However, there was no reliable content-type or mime-type for .TSVs, so we 

used JSON, as there are several standards associated with it. 

[7] Functionality for sending emails: 

 The question of how we would implement email functionality required both  

solidifying which libraries we would use and where in the entire system the email  

would be sent from. We tried two options, both inside the frontend of the  

form. The first of these was react-html-email for structuring and sending emails. We  
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valued the formatting feature of this module from node-package-modules, but it 

would require restructuring the whole application. A proper react-email could not be  

sent unless we had meteor.js integrated into the React.js application from the  

beginning. 

 After abandoning react-html-email, we attempted the use of nodemailer.  

Nodemailer worked very well with react and gmail, but could only be applied on the  

backend of a React app. Since our backend was in Python, nodemailer was immediately 

discarded. From here, we looked at backend python libraries and chose the decision specified 

in the paper. 

[8] Confidence Growth Decision:  

 For the time interval when calculating confidence_growth_per_day, we first  

considered using the time interval from the first day the domain was detected by  

Apollo to the latest detection date. However, we noticed that some of the domains  

were not been detected for one year ago or only been detected for a few days, which  

made the confidence growth rate either outdated or abnormally high. In addition, this  

particular kind of data does not tell the full story because apollo does not guarantee  

picking the initial start date of the company, only the time when it is visible.  We  

decided that this did not accurately represent the company's growth so we adjusted  

our confidence_growth_per_day calculation as depicted in the paper. 

[9] Develop Home IP only based on emd5: 

 Since the Home IP can be a unique identifier for a user, we first developed based on 

emd5. But only 30% of our data in scratch.matches table have emd5 so that using emd5 will 

shrink our results. Therefore we decided to use apxlv_id which both of our tables have to 

make Home IP more completely covered the whole database. 

[10] The order of calculating the cookie_dep_hip_prob 

 When calculating the cookie_dep_hip_prob, we first wanted to do it in our second 

phase. But it ends up with the same result if we calculate in first phase. Also, doing it in 

phase two will have more complicated calculation and take more time.  

[11]Device Fingerprinting Indexing: 

We considered indexing by a combination of cookie, user agent, and ip as opposed to just 

cookie. However, we then realized it would make our Home IP calculations more exclusive, 

which in turn would yield skewed calculations. We decided to just index on cookie to prevent 

damage to our calculations. However, should Cogo invest more time in this, it may be 

worthwhile to reconsider this option. 
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[12] Device Fingerprinting deliverable: 

At the beginning of the device fingerprinting project, we were given a introduction packet by 

Mike Nugent and the grads. This packet outlined our projects and the expected deliverables. 

The primary deliverable for device fingerprinting was expected to be a system take could take 

two cookies and find the likelihood that they are related to each other. At that time we 

understood the process time would take a while, so we foresaw that the project would require 

preprocessing and storage. We ran the calculations for a choose function of pairs for 3.64 

trillion (1*10^12) entries and found that to store all our calculated entries, it would take about 

6.6 septillion (1*10^24) entries worth of additional space. 

[13] User Agent String analysis by parts 

 Analyzing the user agent string by parts would allow us to know exactly how similar 

2 user agent strings are. However, we cannot calculate the accuracy coefficients for each of 

the user agents string parts. Hence, we rejected this design and compared user agent strings as 

a whole, given that we had an accuracy coefficient for the whole user agent string. 

[14] Device Fingerprinting final calculation: 

After we had completed most of our algorithm, we focused on a long standing issue. Our 

system would take the highest probability, as opposed to the most frequent. We addressed 

this by minorly altering the code from a “MAX” SQL function to one based off of  

“COUNT(apxlv_id)”/”COUNT(*)”. This focused the system to look for the most frequent 

probability, which is a more accurate indicator than looking for the maximum probability. 

 [15] Rename cookie_prob to home_ip_cookie_match_prob 

The graduate team suggested renaming cookie_prob field but the name they suggested is far 

too long and complex. It is unnecessary and over-descriptive. 

 [16] Multiply cookie_prob by the hip_prob 

 Because the cookie_prob is based on the concept of Home IP, we should consider the 

accuracy of the Home IP. We provided Cogo two frame of reference for the Home IP 

probability and developed cookie_prob independent to the Home IP probability. So Cogo 

Labs can choose which frame they want to refer.  

  [17] Calculate cookie_prob for every entry 

Calculating cookie probability for every entry can take a lot of time to do. Some of the entries 

in the database can have duplicates, so we decided to keep track of the results for each entry 

and refer to that result when the algorithm finds a duplicate entry.  
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Appendix F: Email Notifications 
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Appendix G: Device Fingerprinting Algorithm 

Constants 

We are assuming, we can always accurately identify someone based on the cookie. 

Therefore coefficients for calculations are below. These are in place incase Cogo decides 

there is a different associated percentage chance with accurately identifying a user based on a 

specific field. These variables allow for easy change. 

Assumed accuracy (Currently in use): 

C=1 

U=1 

I=1 

Microsoft Paper (Not in use): 

C=0.8235 

U=0.6201 

I=0.4899 

 

STEP 1: Determine the HOME_IP and COOKIE_DEP_HIP_PROB 

INPUT TABLES: match.matches, match.ad_requests 

1)  

a) Gather ALL rows from match.matches and match.ad_requests WHERE cookie = cookie.  

i) Eg. cookieA has 20 rows from match.matches, and cookieA has 10 rows from 

match.ad_requests, then in total we’ll take 30 rows. 

ii) Eg. cookieB does not exist in match.matches, but cookieB has 40 rows from 

match.ad_requests. Then in total we will take in 40 rows. 

b) Store these rows into the Alex DB table, scratch.wpi_device_fingerprinting [call this 

ALPHA]. 

2) Within ALPHA, calculate home_ip field. We define: 

home_ip as “the most frequent IP address for a given cookie.” 

3) Within ALPHA calculate cookie_dep_hip_prob. Formula is the following: 
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4) Append all entries from ALPHA to BETA. (BETA will be partitioned by HOME_IP or some 

derivative of it) 

5) Delete all entries in ALPHA 

6) Do this repeatedly for each cookie instance from match.matches and match.ad_requests 

STEP 2: Calculate COOKIE_IND_HIP_PROB 

INPUT TABLE: BETA 

1) Gather all rows from BETA table for a given home_ip, say Home_IP = 1. Say for eg within 

our BETA table we have 30 rows of cookieA with Home_IP=1 and 20 rows of cookieB with 

Home_IP=1.  

a) Place these (eg. 50) rows into ALPHA. 

b) Delete these rows from BETA (that means “delete this partition”). 

2) Within ALPHA, calculate cookie_ind_hip_prob field. Formula is the following:  

 

STEP 3: Calculate COOKIE_PROB  

1) Still within ALPHA, get the frequency count of Cookie, UA, and IP across the “home-ip 

rows”. 

 

 

 

2) Calculate the “probability coefficients in home-ip world” 

a) Formula to use: 

i) X = C * Cookie_Frequency 

ii) Y = U * UA_Frequency 

iii) Z = I * IP_Frequency 

3) Finally, calculate cookie_prob: 

 

4) Append all entries from ALPHA to BETA. 

5) Delete all entries in ALPHA 
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Appendix H: STRIDE Analysis 

Summary of Threats 

Security Threat Explanation Developer Mitigation Operator Mitigation 

No authentication Anyone can pretend to 

be any company with 

no authentication. 

Add an authenticator 

system. 

(Policy decision) 

Onus is on the 

developer, not the 

operator. 

Reverse Engineering Credentials of quake 

are in source code, not 

encrypted. 

Encrypt the 

credentials in 

separate file. 

Limit privileges of 

quake account. 

Several overwrite 

submissions. 

If an attacker figures 

out the name of a 

submitted company, 

they can continually 

update contact info, and 

lead to some fake route. 

Ensure that all 

submissions are 

securely logged a 

unique password or 

hashkey. 

Send out controlled 

batches of surveys. 
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STRIDE (Spoofing) Tree:
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STRIDE (Tampering) Tree:
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STRIDE (Repudiation) Tree:

 


