

Big Data Analytics and Tactical Decision Making
A Major Qualifying Project Report

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the degree of Bachelor of Science.

Submitted by:

 Andrew Aberdale: ____________________________________

 Juan Carlos Chávez Guerrero: ____________________________________

 Zhi Hui: ____________________________________

 Juan Pablo de Lima: ____________________________________

 Benjamin Sarkis: ____________________________________

 Rekik Tafesse: ____________________________________

Date: January 21, 2017

Project Sponsors

Vestigo Ventures

Cogo Labs

WPI Faculty Advisors

Professor Jon Abraham

Professor Michael Ciaraldi

Professor Reinhold Ludwig

Professor Kevin Sweeney

This report represents work of WPI undergraduate students submitted to the faculty as

evidence of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. For more information about the projects program at WPI,

see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

i

Abstract

This project focused on utilizing in-house proprietary systems to analyze big data and

perform educated predictive decision-making for investment and financial solutions. Using

JavaScript, Python, and SQL our team automated the information gathering and data

compilation of the target companies selected by Vestigo Ventures. Our team then analyzed

the presently available data to make tactical and financial recommendations to the Vestigo

Ventures executives. We then ended the project by developing a probabilistic device

fingerprinting algorithm for Cogo Labs.

ii

Table of Contents

Abstract i

Table of Contents ii

Acknowledgements iv

Executive Summary v

1. Introduction 1

2. Sponsor Background 3

2.1 Vestigo Ventures 3

2.2 Cogo Labs 4

3. Organization and Management 6

4. Project 1: Venture Decisions Measured Over Time 8

4.1 Background 8

4.2 Methodology 10

4.2.1 SQL Query to Extract Information from Apollo 10

4.2.2 Additional SQL Queries 11

4.2.3 Python Flask Server 12

4.2.4 Form with React.js 13

4.3 Results and Analysis 17

4.4 Recommendations 18

5. Project 2: Deal Analysis and Industry Engagement 19

5.1 Background 19

5.2 Methodology 20

5.3 Results and Analysis 21

6. Project 3: Market Landscape Analysis 23

6.1 Background 23

6.2 Methodology 23

6.3 Results and Analysis 24

6.4 Recommendations 24

7. Project 4: Device Fingerprinting 25

7.1 Background 25

7.2 Methodology 25

7.3 Results and Analysis 29

7.4 Recommendations 31

iii

Bibliography 33

Appendices 37

Appendix A: Terminology 37

Appendix B: Gantt 37

Appendix C: SQL queries 38

Appendix D: 4-point Scoring System 41

Appendix E: Rejected Decisions 41

Appendix F: Email Notifications 47

Appendix G: Device Fingerprinting Algorithm 49

Appendix H: STRIDE Analysis 51

iv

Acknowledgements

 We would like to express our appreciation for the contributions from the following

people:

Ian Sheridan for drafting our onboarding documents, and for the time he dedicated to

us when we required his assistance.

Mike Nugent for his involvement with both the graduate and undergraduate team, for

organizing our paperwork and meetings, and for the time he spent with us to ensure a high

level of quality in our projects.

Todd Federman for his online IT help regarding Cogo’s proprietary Python API and

server implementation, and for his suggestion to use Flask as our system backbone.

Matt Wiens for the time he spent with us designing our device fingerprinting

algorithm.

John Roland for introducing our team to Vestigo’s and Cogo’s operations and

leadership, for the history lesson on Vestigo and Cogo, and for his concise explanation of

Cogo’s proprietary database managing interface.

Rob Fisher for his help with Cogo’s proprietary database management system

(DBMS) , and for his software and SQL expertise regarding many of our projects.

Ken Koldewyn for his help with Docker, server technology, and Linux.

We would like to thank our sponsors, Vestigo Ventures and Cogo Labs and all their

employees for working alongside them, and for attaining our personal goals for this MQP.

The WPI graduate team: Alex Shoop, Khasan Dymov, Madhuri Surve, Zoey Chen for

giving us clear objectives and what deliverables satisfy these objectives, for the days they

spent with us solving technical issues, and for the time they spent working with Professor

Abraham on device fingerprinting to review our concept.

Professor Suzanne Mello-Stark for her security expertise. This was instrumental to

solving integrity issues regarding our online form.

Professor Kevin Sweeney for making this opportunity possible, for his leadership

role, and for his role as an advisor.

Finally, Professors Michael Ciaraldi, Jon Abraham, and Reinhold Ludwig for making

this an educational and fulfilling project, for outlining expectations clearly, and for their

feedback.

v

Executive Summary

 Two primary companies spearheaded the overall structure of our project. The main

company was Vestigo Ventures. They acted as our sponsor and provided the bulk of the

layout for our project. Cogo Labs was closely associated with Vestigo Ventures and had us

work on an analysis of their databases. These analyses provided the information necessary to

make predictive tactical decisions for future investments. In addition to our undergraduate

team, there was a WPI graduate team that worked in tandem. Vestigo had four aims for this

project, one of which was designed to aid Cogo Labs:

1. To analyze Vestigo’s past and current deals and to present “lessons learned” from

said analysis

2. To improve Vestigo’s investment process

3. To gather business experience for the undergraduate team

4. To give Cogo new ways to analyze their big data to develop new capabilities in

B2B signal search.

The WPI graduate team realized these aims had overlapping objectives. They

mitigated this issue by separating Vestigo’s aims into four subprojects:

1. Venture Decisions Made Over Time

2. Deal Analysis and Industry Engagement

3. Signal Search and Market Landscape Analysis

4. Device Fingerprinting

The graduate report associated with this paper describes the rationale of these

delineated goals.

We worked with the graduate team to establish and review the goals of each project.

Once established, we assisted the graduate team in defining the solutions and creating action

items.

 The first project, labeled “Venture Decisions Made Over Time” (hereafter known as

“Project 1”, or “Data Mining”), addressed the first goal. We broke Project 1 into two tasks.

The first task was compiling investment and company information into a “Deal Flow”

spreadsheet. This task involved a Deal Flow mailbox where Vestigo forwarded all relevant

information on investment opportunities. It warranted manual entry into a small component

of Vestigo’s data. With the graduate team’s help, our Deal Flow spreadsheet took two weeks

to finish.

vi

The second task was to research and implement a procedure that automates this

process. It made the methods of the first task quicker and more scalable. Our sponsors

recommended the creation of an online form at the outset. Through our research we

discovered that the React.js framework addressed Vestigo’s expectations for the form. Using

the React framework we created the front end to this online form and sent entered

information to Cogo’s database via a Python server. We automated the process using a

combination of said server and several SQL queries. The queries executed within Cogo’s

database. They pulled and recorded “confidence” levels for each potential investment from

Cogo’s Apollo algorithm. This was intended to help Vestigo make informed executive

decisions on whether to invest in an opportunity or not.

We amplified the original functionality of our form by adding security and integrating

the system with a customer relationship manager (CRM) platform. About a month into our

project, one of our academic advisors raised a security concern. Thus, we revisited the

objectives of the second task to implement security on the base iteration of our form. We

drafted a STRIDE analysis for our security and brought it to our sponsors as outlined in

Appendix H. They approved the plan and asked that we enact it. The plan included

encryption, authentication, data validation, and administrator rights. Nearing the end of our

development in Project 1, our sponsors asked that we research methods to connect our system

into their CRM platform, Close.io. Vestigo regularly used Close.io in their deal-making. We

incurred a minimal time cost when we integrated Close.io to our existing system. This was

because Close.io had a Python API that we utilized to interact with our Python server.

Therefore, no time was spent researching a compatible API. By the end of the development

of our first project, we had a functioning frontend and backend with security measures

implemented, and a system that updates information in Close.io with our results.

 The second project, labeled “Deal Analysis and Industry Engagement” (hereafter

known as “Project 2” or “Deal Analysis”) provided value to the first three goals. Our

sponsors wanted us to analyze their previous deals to evaluate the efficacy of their decision

making process. After developing the backend of our first project, where we gathered

information from Apollo, we were able to derive a set of measurements for our Deal Flow

spreadsheet. We used the measurements to evaluate Vestigo’s profile and present our

findings. It was also requested by our sponsors and graduate team that we evaluate these

companies using a 4-point scoring system as laid out in Appendix D. In the 4-point scoring

system, we evaluated a company based on its team, technology, market size, and valuation.

After presenting our findings and our score evaluations, Vestigo used our data the following

vii

week during a meeting with InTeaHouse, a global investment platform, and Ascensus, a

technical based asset manager 10, 12. During these meetings Vestigo and their guest used our

data for several business purposes. In the meeting with InTeaHouse, Vestigo used the data to

select 12 potential companies to go on an expo across China to help their business expand to

the other side of the world. In the meeting with Ascensus, Vestigo used the data to advertise

the categorization of their decision making process.

 For our third project, “Signal Search and Market Landscape Analysis” (hereafter

known as “Project 3” or “Signal Search”), our sponsors requested a system to analyze a

company from a scientific evaluation, and an updated Apollo algorithm to increase its

sensitivity to B2B signals. We recommended that Vestigo continue the process outlined in

our second project, Deal Analysis and Industry Engagement. We recognized that gathering

information, labeling the company with a market segment, and labeling the company with an

industry could be done automatically; leaving only the 4-point scoring to be done manually.

However, complications with the project arose from interfacing with the Apollo algorithm.

With information provided from Rob Fisher, we realized the algorithm’s current issue arises

from an enlarged and outdated dataset that skews the results. The issue is correctable, but we

projected that it required enough man hours to warrant a separate team.

The resources available to the MQP team upon initiation of the third project were not

enough to create a workable deliverable while maintaining quality in the other projects. We

brought this concern to our sponsor’s attention and it was their recommendation to put the

project on hold until all other projects were completed. Because we wanted a high quality in

all projects we began, this project was never brought to development. As such, our concept

design stands in hopes that this project will be undertaken by a new team at a later date.

 For our fourth and final project, Device Fingerprinting (also known as “Project 4”),

the task was to design a new algorithm for Cogo Labs’ fingerprinting database. The database

contained 3.64 trillion entries with an attribute representing a website cookie. Out of the 3.64

trillion cookie entries in Cogo’s database, only 30% have been assigned to users. The primary

objective was for us to improve Cogo’s match rate from 30% to 45%. A secondary objective

was to make this algorithm compatible with Safari browsers, as their cookies had an

accelerated expiration rate. To begin this project, we met for a briefing from Matt Wiens, our

device fingerprinting contact. Next, we met with the graduate team and listened to their

interpretation and understanding of the project. After meeting with the graduates, we moved

onto developing the concept.

viii

Cogo sought the ability to take any two cookies in the database and calculate the

probability they are related to the same user. We noted multiple complications with this

method. First, it would require an excessive amount of storage. Second, the varying time

complexity of each entry, and the size of the dataset resulted in a prohibitively long process

time. These obstacles made it impossible to get quick results.

We then designed a new concept, which would take the most likely probabilities and

store them. The revised design also went a step further by dissociating two entries from each

other, and instead connected them via the concept of a Home IP. This concept allowed the

grouping of a number of entries underneath an IP address they were most likely to correspond

to. We then presented this idea to Matt Wiens, concluding that our end product would yield a

list of users with their most likely associated Home IP, and a list of cookie entries with their

most likely Home IP. By selecting a profile based off the Home IP, Cogo could accurately

identify a cookie-user relationship by multiplying the two relative probabilities together. Matt

Wiens agreed, and our development began.

Throughout the course of the project, very little changed. The concept of our

“coefficients” was introduced to represent the accuracy of identifying a user based on User

Agent, Cookie ID, and IP address. There was also the introduction of a cookie dependent and

cookie independent Home IP probability calculation, so as to address an indexing issue in our

calculations. After designing our concept, we developed a small scale model to deal with a

single cookie. This led to the discovery that the Cogo database is partitioned to increase

process efficiency. We decided to alter our concept to take advantage of partitioning,

otherwise the algorithm yielded a time complexity of ~3 hours per cookie. This would have

resulted in ~1 million years total process time. We finished by altering our concept

accordingly, presenting to Matt Wiens, and maintaining our small scale model

implementation for the benefit of Cogo’s engineers.

1

1. Introduction

 This report focuses on the accomplishments and findings of the Major Qualifying

Project (“MQP”) team at the Vestigo Ventures (“Vestigo”) site in the Wall Street/Fintech

project center. Vestigo is a venture capital (“VC”) group which seeks out meaningful

investments in financial technology (“fintech”). Through their partnership with a previous

investment/startup Cogo Labs (“Cogo”), Vestigo uses Cogo’s 5 petabytes (5120 terabytes in

binary) of data to analyze which startup companies are most likely to go viral and become

successful. This analysis is based on the startup company websites and other internet traffic

pertaining to each startup. With this information, Vestigo is able to predict in a startup’s early

stages where it is going, and can make an accurate investment decision. Our MQP team’s

involvement with Vestigo covered all steps in the investment process from information

gathering, data processing, information analysis, and decision making; all while being

supported by in-depth data science research. To better organize this broad scope, the overall

project was divided into the following 4 projects: Vestigo needed our MQP team to explore

its venture decisions measured over time (Project 1), deal analysis & industry engagement

(Project 2), and signal search and market analysis (Project 3); while Cogo needed a new

device fingerprinting algorithm (Device Fingerprinting Project). Our MQP team worked on

these projects under the guidance of a team of WPI graduates .

 This paper begins with a background on our sponsors and a brief description of the

sponsors’ goals for the projects. Then we describe how the team organized and managed

itself towards completing the projects. Next we go into each of the projects we worked on.

They are sectioned in the paper based on the order we started them. For each project, we

expand upon the background, methodology, results and analysis, and recommendations. They

act as subsections within each project. The background sections describe the reasoning and

value behind each major component of the MQP. In the methods sections, we talk about the

decisions and steps taken. The modular nature of the first project means that Project 1’s

method section has subsections of its own. Each method subsection represents a different

component of the overall system within the first project. No other methods section contain

subsections. A results section follows the methods section of each project. We then devote a

section to a discussion of future work and further development that we recommended to take

place moving forward. Project 2 does not have a recommendation because the deliverable of

the project itself was giving a recommendation. Finally, the paper wraps up with the project

in the context of the world at large and the departing thoughts of the team members involved.

2

 Throughout the paper are located both superscripted numbers and numbers within

brackets. The superscripted numbers reference a work cited by the corresponding number in

the Bibliography. Bracketed numbers indicate details on a design decision we abandoned and

why we abandoned said decisions. Each abandoned decision is referenced next to the

decision we took in the paper.

3

2. Sponsor Background

2.1 Vestigo Ventures

Vestigo Ventures is a Venture Capital group based in Cambridge, Massachusetts,

which invested in early-stage financial technology companies, ranging from the Seed (first

stage investment)33 to the “A” Series round (optimization stage of investment)34. Vestigo

fulfills a niche for early stage fintech firms in the Boston area. The company was founded in

May 2015 by investor Ian Sheridan 1. Since its founding, they have had investor and advisor

Mark Casady as their Advisory Board Chairman and General Partner 2. The most recent

addition to this team was Mike Nugent, who occupies the Managing Director role 3. David

Blundin, founder and Chairman of Cogo since 2006, fulfills the role as a General Partner of

Vestigo 4. These four individuals compose the senior staff of Vestigo who, along with a

twelve-member advisory board, evaluate the most promising fintech companies and

innovations.

During the past three years, Vestigo invested in three fintech startups. The first one

was LifeYield, a company focused on software-driven financial advice and portfolio

optimization 30. The second one was NetCapital, an open-market that connected

entrepreneurs and investors 31. The last one was Vestmark, which provides real-time

technologies as financial advisory solutions 32. In the following years Vestigo expected to

evaluate several fintech startups to expand their portfolio. To assist in the process, Vestigo

provides financial backing to Cogo in return for access to Cogo’s multi-petabyte database.

From this data, Vestigo reinforces their deal making process, as data provides objectivity in a

field dominated by emotional decisions 5.

As an early VC, Vestigo received over 270 fintech startup investment presentations

since March 29th, 2016 and continues to receive around three to five investment deals per

week. Their clientele derived from entrepreneurs across North America seeking early stage

investment. Any startups Vestigo is interested in go through Vestigo’s due diligence. Due

diligence is a rigorous process VC firms carry out to determine whether or not they will

invest in a company 6. Vestigo would first look at potential company’s key VC metrics such

as the company’s fundraising goal, funding round, and valuation. Then Vestigo would look

beyond the numbers and evaluate the company across 4-points: its team, technology, market

size, and valuation. In addition, Vestigo uses Cogo Labs’ proprietary Apollo database as a

key factor in decision making. Apollo is a database that complies clickstreams and using

Cogo’s proprietary algorithm, determines a “confidence” for a domain that it believes will go

4

viral. Vestigo leverages this data to understand the web traffic a prospective investment

generates.

With three to five companies approaching Vestigo on a weekly basis, keeping track of

investment opportunities could be difficult. It was important to have a central repository of

the companies and relevant information not only for making the due diligence process more

efficient, but also for evaluating Vestigo’s portfolio and industry engagement. The algorithm

Cogo set up for Apollo’s signal search sometimes missed an occasional viral website. Under

Vestigo we worked on three projects:

Project 1: Venture Decisions Made Over Time

Project 2: Deal Analysis and Industry Engagement

Project 3: Signal Search and Market Landscape Analysis

The overarching goal of these projects was to analyze Vestigo’s past and present deals

by mining data, evaluate Vestigo’s industry engagement and possibly work on improving

Apollo’s signal search. This would provide Vestigo with the proper data to make their

predictive tactical decisions for future investments. The majority of Project 1 involved

technical development after we realized a shortcoming in Vestigo’s data collection process,

while Projects 2 and 3 focused on more analytical work to evaluate Vestigo’s portfolio and

improve Apollo’s signal search.

2.2 Cogo Labs

Cogo Labs is a company located in Cambridge, Massachusetts that specializes in big

data analytics. Through analyzing digital traffic, Cogo could identify thriving markets,

products, and companies. Cogo monetized this data and profited by: aiding their in-house

startup companies with valuable market insight, pointing Vestigo to high potential companies

for investment, and selling valuable data to consumer groups. Cogo has an extensive team

that specialized in a wide variety of fields, especially business and technology, to effectively

manage their data. The current Chief Executive Officer of Cogo is Mira Wilczek, a 2004 MIT

graduate. She began as an Entrepreneur in Residence from 2013 to 2016 14. She started her

work with Cogo labs in 2013. Cogo’s current Vice President is Robert Fisher, a business and

economics graduate from North Carolina State University 15. In terms of Cogo’s business

operations, John McGeachie is the Chief Strategy Officer. He was instrumental for

Evernote’s success having created their Evernote Business division, which employed more

5

than 60 people worldwide. Mr. McGeachie had a background in both finance and technology,

having graduated from Dartmouth College with a Computer Science degree.

The model for Cogo derives from TripAdvisor’s search engine functionality 16. Their

most concrete application of this mastery is through their Apollo algorithm and interface.

While mostly proprietary, Apollo tracks the web presence of numerous website domain

names. Apollo labels the value of the presence as “confidence”. Not all websites may be

recognized by Apollo, as the presence is based off visits from a random sample. If not

enough of that random sample has visited the website, Apollo will not record it. Through

gathering clickstream data, Cogo incubates new startup ideas.

6

3. Organization and Management

 To maintain organization of the multiple projects, the graduate team configured

GitHub as a repository for all our code and as a progress tracker for each project. All

important members of Cogo, Vestigo, the graduate team, and our MQP team had access to

this repository. After our graduates organized our action items, we had to develop our

timeline. To do this, our MQP team created a Gantt chart. The Gantt chart as shown in

Appendix B sorts our action items by overarching objectives, resources, and dependencies.

With guidance from the Gantt chart, we were able to complete our objectives while allocating

time for our other projects. Any time one or more team members did not complete an

objective in the expected time, the Gantt chart would reflect those changes across all other

dependent objectives. This meant if any unexpected circumstances arose, the Gantt Chart

software readjust the timeline for our remaining work.

To further maintain order within each project, our managerial structure took the initial

shape of the graduates leading while our MQP team followed. We then evolved it a step

further where each MQP team member would take charge of multiple action items, and

become the designated “specialist” or leader for that topic. It was then their responsibility to

ensure the task got completed, with or without aid from the team; depending on their

preference. If progress was made for an objective, the leading team member would update the

Git to reflect the news. Likewise, to keep the team on pace, any time an objective was

completed, Andrew would update the Git and the Gantt chart, and kept the team updated with

changes relevant to their development or the projects.

 When approaching each project our process would start with reading any materials we

had received from Vestigo or the graduate team. We would then contact and meet with the

graduate team to discuss objectives, lay out action items, and set up a follow up meeting. We

would then move into development. This phase always started with concept design, and a

project plan. Once we had developed both, we would contact the graduates and important

parties from Vestigo or Cogo. After confirming with said parties, we would then begin

development.

During development we broke the solution down into smaller parts and would run

constant tests to ensure quality. If each test came back with positive results, we would

continue development on the next part and present the most recent development to the

graduates. During any moment if we had a difficult question that would change the format of

our deliverable, we would pose the question to the affected parties at Vestigo and Cogo. The

7

objective of that step was to customize our deliverable to their needs. Finally, after we had

developed a functioning deliverable we confirmed with the graduates, then the sponsors that

it was satisfactory to the objectives. Any additional time we had, we spent testing and

reconfiguring, while simultaneously adjusting our concept/deliverable to better fit our

sponsor’s need. As the base iteration of our projects neared completion, our sponsors asked

us to undertake additions to these projects. Our sponsors understood the organization burden

of scope creep, and thus referred to them as “bonus” additions. The particular phenomenon of

extra additions occurred primarily in the first project. After all objectives and “bonuses” were

completed, we would measure our success by matching up our product to our initially defined

deliverable, what our sponsors wanted, and the overall functionality.

8

4. Project 1: Venture Decisions Measured Over Time

4.1 Background

This project was the first step towards evaluating Vestigo’s portfolio and decisions

over time. Through this project, our sponsors intended for us to familiarize ourselves with the

internal tools they used and get a look into their due diligence process. Vestigo received

investment proposals from 270+ companies when we began. We needed to gather

information on these 270+ companies to have a basis for analyzing Vestigo’s deals and

decisions. Upon compiling this information, we performed analysis to see how the companies

have been doing. These analyses determined whether Vestigo made the right decision to pass

or invest. In addition, we offered recommendations for the investments that were still open.

Open in this context means still under consideration for a deal with Vestigo.

The graduate students, whose role was managerial and advisory, laid down the

groundwork for this project by starting a spreadsheet (the Deal Flow spreadsheet), that

contained 271 companies from Vestigo’s past and present opportunities. The Deal Flow

spreadsheet included key VC metrics Vestigo uses to evaluate the companies. Some of the

VC metrics include the companies’ fundraising goal, funding round and their valuation. We,

the undergraduate team, continued the work towards filling the spreadsheet. There were two

ways to find the information needed to fill the spreadsheet: using the Deal Flow mailbox and

using online resources.

The Deal Flow mailbox is a mailbox Vestigo uses to keep track of its incoming deals.

Conversations Vestigo had with possible investment opportunities were forwarded to this

shared mailbox. A mail system worked well for personal conversation, crucial in the VC

world. However, it was inefficient going through emails to dig out VC metrics for each

company. In the VC world, the relative efficiency of a firm in selecting and monitoring

investments gave it comparative advantage over other firms 7. The Deal Flow mailbox system

was an inefficient way of keeping track and evaluating these incoming investment

opportunities. After sifting through thousands of emails, we found that there were still gaps in

the data. If Vestigo maintained this manual system with no additional methods, they would

remain at risk of facing challenges moving forward because this system is not scalable.

The second way we gathered information was by utilizing online resources. We used

resources such as Crunchbase, FormDs, and Pitchbook to find information on the list of

companies. Early on in the project, we found that there was a general lack of information out

there that described the key VC metrics for the companies. Finding funding information in

9

particular became a real challenge. We also had cases where the information available would

return conflicting results. These results would come directly from sources identified by Cogo

as the standard for investment data retrieval. For instance, FormDs reported that Riskalyze

raised $50 million 8 while Crunchbase reports that the company raised $23.5 million 9. A

reason for this could be the way Crunchbase and FormDs collect information. Crunchbase is

a crowd-sourced platform, meaning that both people and companies enter data on themselves

and others. FormDs is a database of companies that have filed a Form D. If the companies

happen to not file a Form D or update information in Crunchbase, inconsistencies such as the

one mentioned will arise. The general lack of consistent data made filling the Deal Flow

spreadsheet not a challenging task, but an impossible one without having direct contact with

the company.

Our two methods of gathering information were insufficient. After using the Deal

Flow mailbox and online resources, we found that 244 companies out of 271 (approximately

90%) of the companies were still missing some sort of information. Having necessary

information available and an efficient procedure in place is important for the success of a

venture capital firm 7. The obstacles we faced when trying to gather information resulted in

recognizing the need for a better, more efficient platform.

The graduate team proposed creating a form Vestigo could use to collect information.

The form would be used to fill in any gaps that were in the Deal Flow spreadsheet. In

addition, it would also be used when companies approach Vestigo in the future. We along

with the sponsors outlined the following requirements for the form:

1. Have new and existing companies be able to add and modify their information.

2. Prevent users from updating information that is not theirs.

3. Have a central database where the information is stored.

4. Have the form attached to a URL so Vestigo has the ability to integrate it to their

website and be able to share a link with prospective companies.

5. Utilize information that can be leveraged from Cogo Labs’ Apollo database.

6. Possibly integrate the automated system with Close.io.

7. Accommodate the needs of North American startups.

A successful implementation of this form would result in a streamlined and efficient

way of compiling information. The form would be instrumental in filling in the gaps in the

Deal Flow spreadsheet we were unable to fill. It would also facilitate the due diligence

process for Vestigo by offering a centralized location with necessary information on

investment opportunities.

10

4.2 Methodology

Upon realizing the shortcomings with Vestigo’s data collection process, we along

with the graduate students and the sponsors decided to create an online form with design

requirements described in section 4.1. This project required the creation of multiple modules.

For the components, we used JavaScript, React.js, Firebase, SQL, Python, Flask, Cogo's

proprietary database, and Cogo's proprietary Python API.

We started by uploading the Deal Flow spreadsheet we compiled with the graduate

students to a table in Cogo’s databases. Once we had the information in a centralized

location, we worked on an SQL query that would pull confidence levels and detection dates

for the companies from Apollo. After accomplishing that, we moved on to automating the

process of adding and modifying companies through an online form, and integrating the

system with the CRM Vestigo uses, Close.io.

4.2.1 SQL Query to Extract Information from Apollo

After we completed compiling information on the companies, we ported them into a

table we created in Cogo’s databases and started developing an SQL query

(update_from_apollo) within Cogo’s database. The update_from_apollo query gathered the

earliest and latest domain tracking detection dates within Cogo's proprietary database

managing interface and their corresponding confidence level (which is the output of Cogo’s

analysis algorithms). This was taken from a table in Cogo's proprietary database called

“apollo_histories” and used to update the relative attributes in the table we created.

The Deal Flow database (wpi_vestigo_deals) has 25 columns. Our SQL query updates

the following five columns: in_apollo, initial_detected_date, initial_confidence,

latest_detected_date and latest_confidence. In addition to updating these columns, it performs

simple arithmetic on the values that were mined and updates three additional columns:

total_days, total_confidence_growth and confidence_growth_per_day. The particulars of the

arithmetic used are found in the methods of Project 2. All of this information for the

companies is mined from Apollo using the company’s website.

In our SQL query we chose to use a WITH statement to temporarily define tables in

the query for the parameters we were going to pull from the Apollo database (Appendix E

[2]). Following the WITH statement was an UPDATE statement that updates all the columns

11

in the Deal Flow database using the information from Apollo and performs simple arithmetic

to update the remaining columns. The SQL query can be found in Appendix C.

With the backend SQL query working, we worked on automating the process of

updating the Deal Flow database by creating a form companies seeking investment can fill

out. To automate this process the system required multiple components of design: additional

SQL queries, a Python Flask server and a fillable form with a JavaScript backend. These

components are explained in further detail in the following sections. The overall flow of data

is as follows (Figure 1):

 Figure 1. Diagram describing flow of data

4.2.2 Additional SQL Queries

 In addition to the update_from_apollo query described in section 4.2.1, the design of

an automated system required three additional queries: update_existing_deals,

insert_new_deals and clear_survey_entries.

Early on, we found that when we upload a .tsv file, the datatype of the columns is

overwritten in the database. The update_from_apollo query required certain columns to be a

specific datatype to conduct algebraic operations. Because of this, we chose to create another

table that would act like a buffer (wpi_survey_entries). We would upload the .tsv file to the

wpi_survey_entries table. Then, using the update_existing_deals and insert_new_deals

queries, we casted the data types and moved the entry over to wpi_vestigo_deals.

We decided to have two separate queries, one that updated existing entries and one

that inserted new entries (Appendix E [3]). The update_existing_deals query went through

the wpi_vestigo_deals table and if the company is already in the table, the query updated

12

information for the company. The insert_new_deals query added new queries to the table.

This query checked that a company is not already in the database and inserted a new entry.

Table 1: An example of duplicate queries on basis of company name and domain.

 company domain round contact_email

Entry A Some Company someurl.com Angel

Entry B Some Company someurl.com contact@email.com

In Table 1, entries A and B would be treated as duplicates because they have the same

company name and website. Using a query to delete either of these entries would result in

losing either the ‘round’ or ‘contact_email’ information. By creating two separate queries that

will update or insert deals to the table, we avoid creating duplicates altogether and prevent

data loss. Once the entry is properly inserted or updated in the wpi_vestigo_deals table, the

clear_survey_entries query will delete everything in the wpi_survey_entries table.

4.2.3 Python Flask Server

For the backend design of this system, we utilized Cogo’s proprietary Python API

they use to interface with their databases. The API provided ways to perform a variety of

things including creating or editing queries, uploading .tsv files to tables, and queueing

queries. We familiarized ourselves with this API by creating a short script that uploads a

locally saved .tsv file and runs the update_from_apollo query.

The next step was to link the submissions from the form to this Python script. To

make the Python script accessible, we decided to use Flask, a “microframework” written in

Python 18. The Python Flask sets up a web application, and the Python script is triggered

when a request is sent to the URL. By turning our existing Python script into a Flask

application, we were able to navigate to a URL and trigger the .tsv upload and query

execution. Upon completing the query executions, the Flask server also utilized the Close.io

Python API to update a company’s information on the Close.io platform. Close.io is a

customer relationship management system where our sponsors track their email

communications with interested investors. Our sponsors use Close.io more regularly than

13

accessing the Deal Flow database, so integrating the automated form with Close.io became a

good addition to the overall system.

During this process, email notifications were sent using Flask-mail, an extension used

to send SMTP email messages from a Flask application. Four different email notifications

occurred during the execution of the form (Appendix F). The first one was a message

containing an automatically generated passcode, which was sent when a user signed up. The

second and third notifications occurred as a confirmation of form submission; one of the

emails got sent to the user submitting the form and the other one to Vestigo’s Deal Flow

mailbox. The last notification occurred when a user submitted an update, which got sent

directly to Vestigo’s Deal Flow email as well.

Finally, to deploy the Flask and the form, we used Docker. Docker is a software

technology that provided an additional layer of abstraction and automation of operating-

system-level virtualization on Windows and Linux 19. We set up two different containers, for

our two applications, the Flask and the form.

4.2.4 Form with React.js

 Prior to coding the form, the graduate team presented the idea of two forms. This

followed the principle of separating the case for adding a new entry and overwriting an old

entry. While this adhered to good coding principles, security flaws create a danger with this

approach. More forms mean more public points of entry into the proprietary database, thus

creating more risk for Vestigo. Hence our team decided to compose both functions into one

form. It would go against separation of concerns, but resulted in increased security (Appendix

E [4]).

We drafted our own form to overcome the partition between Cogo and the outside

world. The prospect of a form application developed through the use of the React.js

framework hosted in concert with the Flask server proved desirable to all parties. The sponsor

could realize their vision for the look and feel of the form, and we could manually script it to

facilitate integration into the overall system.

When a user clicks on the link to the form from anywhere, they are prompted with a

login screen (Figure 2). Should the user encounter the form for the first time, they can click

on the sign up button to send a randomly generated password to their email (Appendix E [5]).

With the password, the user then logs into the form and begins inputting data.

14

The form itself included two tabs: tell us your story and give us an update. On the first

tab, there are seven required fields (Figure 3). The user cannot submit until all the fields have

valid inputs. For example, fields that require email or money inputs required a certain format

to be considered acceptable. When the form detects that the client meets all requirements for

submission, the submit button turns green. Submission begins the information transfer from

the form to the Python Flask server.

The second tab gave the user the option to ‘give an update’, which is intended for use

when the company is already in contact with Vestigo (Figure 4). The layout for this option is

different: it contains three required fields and an optional ‘file upload’ to send a file to

Vestigo’s Deal Flow email with the update information. Just like in the first tab, each field

checks for valid input. An admin account exists to be used by specific members of Vestigo

Ventures. This admin account has its own set of credentials, and views the form in a different

way. While logged in with the admin account, the only required fields are company name and

domain. Further, this account has permissions to modify or update any company’s

information.

For transferring the form information, the form API generates three different requests

though the XMLHttpRequest format. The first one packages all information from the form in

a .tsv file. The .tsv file is encapsulated into a JSON file (Appendix E [6]), and sent through a

post request to the Flask server’s root route. Upon receiving the JSON file, the server obtains

it within the payload and writes it to a temporary .tsv file. Several functions from Cogo’s

proprietary API begin to execute.

The first function uploads the .tsv file information into the database. The next four

functions call four SQL queries and print out their execution for transparency. Upon

conclusion of these queries, the server deletes the .tsv file and returned “Done”. With an

automated data pipeline, the need for manually obtaining and uploading data becomes

obsolete.

The second request gathers basic user information from the state of the form API, and

sends it using the POST method to the Flask server. Instead of sending the information to the

‘/’ route, it sends information to the ‘/confirmation’ route. Then, the server script utilizes

Flask-mail to send a confirmation email to the user and Vestigo’s Deal Flow mailbox with

the purpose of letting them know that the form information was uploaded and processed

correctly (Appendix E [7]).

15

 Figure 2. The login screen of the form.

The third request is similar to the second one. It takes all of the information filled into

the form from the update tab and sends it through a POST request to the ‘./update’ app route.

Then, just like in the second request, it sends an email using the Flask-mail extension.

Additionally, the update tab has the option to include a file. If the user decides to upload a file

to support their message, it will be sent through the request and included in the email as an

attachment.

16

Figure 3. The main page of the form.

17

 Figure 4. The update page of the form

4.3 Results and Analysis

 Project 1 involved data mining and developing an automated system. When

researching the companies in the Deal Flow table, we found most companies lacked

information. This is one of the issues the automated form helped mitigate. The final system

pipelined data from the form to Close.io. It offered prospective companies a secure way of

giving their information to Vestigo. In addition, it used the confidence levels generated by

Apollo to aid Vestigo with its decision making.

When developing the automated system, there were a variety of challenges. We had to

develop on several platforms at once. The system’s components had to communicate with

one another and rely on the available resources, i.e. proprietary tools and the engineers on

site. We found the limitations on certain platforms impeded the process on the other

18

platforms. Proprietary tools and libraries held functionality that worked around said

limitations.

A modular design accommodated the various independent components of the form

system. The structure of the system eased test-driven development. We ran manual tests on

each part and made changes without affecting the operation of other components. Should a

future group change our system, they can refactor with ease one part at a time. Whenever we

made changes to the system, we experienced little difficulty due to the modular structure.

We ran a full system test once we confirmed the workability of each part. We drafted

several common use cases for a client’s interaction with the form. These tests realized the use

cases as well as potential malicious input. At the conclusion of testing we confirmed with our

sponsor that our pipeline worked as intended.

4.4 Recommendations

 We recommend the assignment of one specialist to support the project 1 system on

behalf of Vestigo. This person would need access to Cogo’s proprietary database managing

interface, have a good understanding of Python and SQL, and understand how Vestigo wants

to interact with their clients. Either Cogo or Vestigo may assign one of their employees to the

task.

19

5. Project 2: Deal Analysis and Industry Engagement

5.1 Background

Vestigo’s due diligence involves evaluating a company beyond its financial numbers.

Vestigo looks into a company’s team, technology, market size and valuation before moving

forward with the conversation. The goals of this project was to perform analysis on Vestigo’s

past and present deals, to gain an understanding of Vestigo’s industry engagement, and to get

exposure to the business world.

To evaluate the portfolio of a venture capital firm, one of the items that can be done is

evaluating the deals they passed on. Vestigo appreciates insight on deals that they passed on

that could have provided value. Another portion of evaluating a VC firm’s portfolio involves

looking at its industry engagement. For VC firms, having a specific industry focus reduces

their due diligence time to investigate potential investments. In addition, it increases the

firm’s ability to leverage their industry expertise and network. We conducted research on all

the companies in the Deal Flow spreadsheet to assess Vestigo’s industry engagement. We did

this by classifying the companies into one of four fund investment segments (Figure 5):

market structures, operation solutions, worksite management and personal wealth.

Figure 5. The four segments of fund investment

 The basis of successful VC deals derives from the quality of conversations with

potential clients. Our sponsors welcomed us to four of these meetings as a means of

understanding the practical aspects of venture deal making. The four companies we met with

were Ascensus, Horace Mann, Virtual Cove, and InTeahouse. All four acted in a different

field of fintech. Ascensus provides technological solutions to asset managers 10. Horace Mann

provides insurance to non-college educators 11. Virtual Cove uses virtual reality software to

visualize data 12. InTeahouse is a global investment platform 13. Beyond the VC context, the

20

goal of Vestigo is to establish long term relationships with all their clients including these

four.

5.2 Methodology

To conduct analysis on the deals Vestigo had received we used the queries we built in

Project 1 to pull the confidence levels from Apollo. As previously discussed in section 3.2.1,

the update_from_apollo query did simple arithmetic to calculate: total_days,

total_confidence_growth and confidence_growth_per_day.

• total_days is the difference between the initial and latest detected date

• total_confidence_growth is the difference between a company’s initial and latest

confidence

• confidence_growth_per_day is the total_confidence_growth divided by the time

interval between the initial detected date and the current date.

This was the most accurate depiction of confidence rate (Appendix E [8]).

Using the values generated by the query, we performed analysis on 20 companies that

saw the highest confidence_growth_per_day and whose current status was marked as open to

investment by Vestigo. After we had narrowed the selection down to 20 companies, we did

more specific research and used a 4-point scoring method evaluating each company on its

team, technology, market size, and valuation. We used information and data found on

Crunchbase, FormDs and other sources to do the research for each top 20 company and give

them score 1 to 5 for these four fields.

To rate the company’s team and technology, we used a metric Vestigo provided.

However, in order to rate the company’s valuation and market size we had to come up with

our own metric. Valuation is how much a company is worth. For some of the companies in

our list, this information was available but for others it wasn’t. So, we based our valuation

ratings on the funding data we could find for the company. We believed the amount of

funding that a company has raised can represent the confidence of other investors indirectly

answering how much the company is worth.

Scoring the market size was tricky. Market size represented the number of individuals

in a certain market who are potential buyer or sellers of a certain product/service.

Determining the company’s market size based on the information we have available to us was

challenging. We did some research and came up with this formula:

𝑚𝑎𝑟𝑘𝑒𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ∗ 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

21

where the number of target customers refers to the total portion of the market the service can

reach. For instance, something like life insurance would have a high number of target

customers because the insurance industry is quite large. We gave the companies a 1-5 rating

for their ‘number of target customers’. To determine a company’s penetration rate, we looked

at what proportion of the customers the company could get within the industry. When rating

the penetration rate of the company, we looked at the novelty of the idea and the amount of

competition that exists in the industry. A company that is very novel and has little

competition would receive a high penetration rate. We gave companies a rating of 1, 3 or 5

for their penetration rate. Using the equation stated above, we had a market volume scale that

ranged from 1-25. Using this score we determined the market size rating on a scale of 1-5.

After we finished the four-point scoring on team, technology, valuation and market size, we

picked three companies with the highest score for our recommendations to Vestigo. The more

detailed rubric we used for the four-point scoring can be found in Appendix D.

To analyze Vestigo’s industry engagement, we classified all the companies in the

Deal Flow table into one of the four segments Vestigo invests in. The four segments are:

market structures, operation solutions, worksite management, and personal wealth. Market

structures deals with trading analysis, risk analysis, algorithmic trading and blockchain.

Operation solutions include internal tools/software, frontend/backend and technical stakes.

Worksite management encompasses employer benefits from a high-level perspective, i.e.

from the perspective of the business. Financial services related to the individual, such as a

personal financial advisor, fall under the personal wealth category. We assigned each

company to exactly one segment. Each assignment required research evaluated alongside the

four-point scoring rubric.

We concluded our Deal Analysis by presenting our findings and results to Mike

Nugent and Ian Sheridan.

5.3 Results and Analysis

Project 2 involved the due diligence process of Vestigo’s deal making. We classified

all 271 companies in the Deal Flow database into four categories: Market Structures (MS),

Operation Solutions (OS), Worksite Management (WM) and Personal Wealth (PW) as

described in section 3.3. Two super-categories, B2B and B2C further defined Vestigo’s

investment goals. Ninety companies belonged to OS, 79 of them belonged to MS, 62

companies belonged to PW, 18 companies belong to WM, and 21 companies lacked enough

22

information for categorization. The OS and MS companies best performed the functions of

the B2B super-category, while the WM and PW companies fit the B2C super-category. In

other words, other businesses act as the customers of OS and MS businesses, while WM and

PW services have individual persons as clientele. This process followed the guidelines of the

graduate team’s recommendation.

Figure 6. Market Segments Distribution

For all companies in the Deal Flow spreadsheet, there are three statuses: passed, open,

or invested. The spreadsheet displays three companies as invested and 58 as passed. Passed

means that Vestigo passed on the opportunity without investing in the company. Open means

they are open to the possibility of investment but remain unsure about commitment. We ran

the update_from_apollo query described in section 3.2.1 and found that Apollo detected 67 of

the 271 companies in our table. For those 67, we recorded their confidence level and

confidence growth rate fields. We found that 46 of the 67 had a positive confidence growth

and 5 companies saw a decline in their confidence. The remaining 16 companies had no

change in their confidence level because Apollo only detected the company’s domain once.

Apollo detected around 25% of companies. This was significantly lower than the

sample size needed for accurate measurement. Given our population of 271, a desired

confidence level of 99%, and a margin of error of 1%, the calculated sample should be 267 24.

While a value 67 companies missed the desired margin of 267 companies by a value of 200,

it gave us a way of narrowing down the list of companies based on the web traffic they

generate. Furthermore, filtering the companies using the 4-point scoring added dimension to

the way we were analyzing the companies. An analysis based on team, technology, and

market size added breadth to our confidence analysis. We presented the top 20 deals Vestigo

passed on and the top 20 that are still in the open category. In the interests of Vestigo, we

focused on the five companies that are still open and had the highest scores after the 4-point

scoring. The sample of the Deal Flow table is confidential and is not in this paper.

23

6. Project 3: Market Landscape Analysis

6.1 Background

 Cogo’s current signal search algorithm has been invaluable for B2B communication.

However, for this project Vestigo wanted a tangible and applicable algorithm to aid in fintech

investment decisions. As such, this project came in two parts; improving the Apollo

algorithm’s signal search parameters for Rob Fisher to review, and performing a market B2B

landscape analysis for Vestigo based on the results of the new signal search algorithm. As

mentioned in section 2.1, Vestigo uses Apollo as a key factor in decision making but misses

the occasional viral website. The risk of missing viral websites means that if an investment

opportunity grew substantially in a short amount of time, then Vestigo missed a chance to

capitalize on its growth. Therefore, improving upon Apollo’s signal search would be useful in

ensuring an earlier detection for virality.

6.2 Methodology

For this project we discovered two key objectives; improving the Apollo algorithm’s

signal search parameters for Rob Fisher to review, and performing a market landscape

analysis for Vestigo based on the results of the new signal search algorithm. After finishing

the Deal Analysis Project ,our team understood that the market landscape analysis could be

completed for all Apollo entries; provided they were indexed by the industry and market

segment of best fit. Without sorting through the database by hand, our team had determined

the most efficient way to accomplish this was creating an automated sequence for parsing and

search terms that would take place immediately after the signal search. We concluded this

code would act on a table in our database containing Pitchbook data that Cogo had previously

purchased; otherwise, it would run on a domain’s website as a “catch-all” and look for

particular keywords. After we had devised this concept, we had suspected the level of

complexity for implementation would interfere with our other projects. Knowing this, we

brought the issue to Mike Nugent and Rob Fisher. Mike agreed with our suspicion and made

the executive decision to postpone the project until all other projects (Venture Decisions

Measured Over Time, Deal Analysis Project , Device Fingerprinting) were fully developed.

This postponement includes the possibility passing off this project to another group.

24

6.3 Results and Analysis

 Our core deliverable, the basic concept outlined in section 6.2, satisfied our sponsor’s

expectations. After presenting our project, our sponsors noted that we had found a “failure

mode” of the company. Only one scientist at Vestigo understood the entirety of the Apollo

algorithm and could make updates to it. We derived no further deliverable from this project.

6.4 Recommendations

 We had one recommendation for Vestigo Ventures and one more recommendation for

Cogo labs. Vestigo Ventures should give resources for one or more specialists to learn and

master the Apollo algorithm. Cogo Labs assign a research team to follow up on this project.

A workable alternative to a research team possibility is another WPI MQP team. Before

pursuing this project, the aims should be reevaluated by Vestigo and Cogo to ensure they are

up-to-date. The assigned team can decide if our findings remain problematic.

25

7. Project 4: Device Fingerprinting

7.1 Background

Cogo Labs had 3 petabytes of consumer profile data consisting of ~800 million

profiles. Big data can be evaluated over three dimensions known as the 3Vs: volume, variety

and velocity 29. According to a Cogo employee, Cogo obtained nearly 5 billion rows of data

daily from a random population. This grouping covered 80% of the United States populace,

therefore in addition to volume and velocity, the data Cogo compiled guaranteed variety.

By using this database and an extensive cookie match network, Cogo could pinpoint

an exact user 30% of the time, given that the user goes through any of the websites monitored

by Cogo or its partners. Cogo used emd5 hashes in their process of matching cookies with

users. An emd5 hash derived from the MD5 hashing algorithm 17. However, the emd5

algorithm hashes email addresses in particular. This is done before the data touches Cogo’s

network as a means to maintain the privacy of the user and for ethical concerns. Cogo does

not want Personally Identifying Information (“PII”) to touch their network. PII included a

non-hashed email, phone number, date of birth, and social security. In the case that an emd5

could not be traced to a cookie, other browsing signatures facilitate detection. Such signatures

included user agent (the physical device used), IP address, and browser version. The

objectives of this project were to increase Cogo’s match rate from 30% to 45%, and to make

the system compatible with Safari browsers.

The concept of device fingerprinting originated a little over ten years ago 20. General

implementation began seven years ago 21. Given the novel concept of fingerprinting, our

group began the project reading through several research papers pertaining to browser

fingerprinting. Much of the following material derived from the methods outlined in a

Microsoft research paper 22. We were tasked with designing a new algorithm for Cogo to

build off of. After weeks of development, we decided to build a Python program to

implement and exemplify the algorithm.

7.2 Methodology

Our first step in making the fingerprinting probabilistic model was to design a concept

that would tie a user to a particular cookie. We were informed by our Cogo Labs mentor for

this project, Matt Wiens, that only approximately 30% of the database has a user tied to a

cookie (stored in the scratch.matches table of the Matches database), hence we need to

26

connect the other 70% of the data in scratch.ad_requests table to a valid user. To bridge the

gap between users and entries, we noted that all entries have the same three fields in the

database; apxlv_id (cookie id), user_agent (device information), and ip (Internet Protocol

Address). We used a combination of these fields to determine the probability of an entry

matching a user. Particularly, we developed the concept of Home IP addresses. We based our

Home IP concept on the frequency of IP addresses. The most frequently appearing IP address

for a particular cookie would likely be the Home IP address of this cookie(Appendix E [9]).

We could then use this Home IP as a best guess as the home location of the user it’s

associated to.

In many of the following formulas, there are three probability coefficients; C, U, and

I. They represent the accuracy of using cookie, user agent, and IP address to identify a unique

user, respectively. As we explored multiple possibilities for setting our coefficient, we have

listed three options for the choice of these coefficients. All three of these options have been

thoroughly tested, and our findings have been placed into section 4.4 of this paper.

First, by assuming all users could be accurately identified by cookie, user agent, and

IP lead us to temporarily setting all coefficients to 1. In which, we could take a more

scientific approach. However, we understood our calculations would be less accurate to what

they were meant to represent. This was used strictly for testing and proof of concept until the

graduate team had time to work out the coefficients with us.

Second, we used the numbers coming from the Microsoft research paper we found 23.

The authors of this paper applied their algorithm to calculate the percentage of fingerprints

that correspond to a host. The result is C = 0.8235, U = 0.6201. In order to calculate the IP

coefficient, we reverse-engineered the calculation of UA-IP combined coefficient in

conjunction with the user agent coefficient, which equals to I = 0.4899.

Third, we decided to use a similar method from the one explained in the Microsoft

paper14 to calculate our own coefficients. This method was designed by the graduate team,

while the detailed calculation was done by our undergraduate team. We used the total counts

for cookie, IP and user agent divided by the total count of entries in scratch.matches table.

To start our calculation process, we noted that there are two datatables within the

Matches database: scratch.matches and scratch.ad_requests. Scratch.matches contains the

fields emd5 (a hashed email address for security), apxlv_id , user agent, ip, and numerous

additional fields that we did not use. Additionally, scratch.ad_requests contains the same

fields except emd5. We gathered all emd5s, ips, and user agents from each entry in the

scratch.matches table and scratch.ad_requests table for one unique cookie and inserted them

27

into a table named scratch.wpi_device_fingerprinting (a.k.a “ALPHA”) to calculate our

Home IP, which is simply the most frequent IP address amongst all entries of the same

cookie.

When gathering all this information and inserting it into the ALPHA table, we found

the execution time of the queries for a single cookie to be around of three hours. After some

research on the database's structure using the “explain” SQL command, we figured out that

Cogo’s database was partitioned (or subdivided) by the date the entry was created.

Additionally, the scratch.ad_requests table was partitioned by cookie suffix. The partitioning

of this data allows for improved performance when executing queries on these tables 23.

Hence we decided to execute our queries between 2 dates, while also sticking to a particular

cookie ID suffix. Taking advantage of the database’s partitioning, we reduced the execution

time of queries to an average of 3 minutes for testing purposes only.

We then counted the number of times the Home IP and IP are the same within the

same entry, multiplied by our coefficients, then divided that by the total number of entries

within ALPHA(Appendix E [10]).

This calculation became the cookie_dep_hip_prob (or cookie dependent Home IP

probability), signifying the probability a Home IP was accurate while indexing by the cookie

(Appendix E [11]). This was done so Cogo could see the probability of a Home IP belonging

to a user with respect to the entirety of the Home IP profile where all entries have the same

cookie (i.e. the same user). After calculating, we moved the results from ALPHA to a

theoretical BETA table. At the time of the paper’s writing, all aspects of the BETA table were

based off projection as opposed to empirical analysis. As such, no post-process storage is

required. For implementation of 2 or more cookies, all Home IP’s would need to be

calculated before calculating probability. In this instance, the BETA table would need to be

initialized for post-process storage of a set of entries for one unique cookie at a time. After

moving our data from ALPHA to BETA, we deleted all entries in ALPHA to prevent

duplication. To end our first phase, we repeat this process for every unique cookie in the

database. This resulted in every cookie being mapped to a Home IP address(Appendix E

[12]).

In the second phase, after all entries have been assigned a Home IP, we copied all

entries with a unique Home IP from BETA back to ALPHA. Within ALPHA we counted the

28

number of times the Home IP and ip fields are the same for an entry, then multiplied by our

coefficients, and divided that by the total number of entries in ALPHA.

This calculation became the cookie_ind_hip_prob (or cookie independent Home IP

probability), signifying the probability the Home IP is accurate regardless of indexing by the

cookie, much like the cookie_dep_hip_prob. The utility here mimicked the utility of the

cookie_dep_hip_prob as well: so that Cogo can see the probability of the Home IP belonging

to a user with respect to the entirety of the Home IP profile and all the relevant entries. We

started to calculate the end deliverable: the cookie_prob. This signified the probability that

the cookie belonged to the Home IP (i.e. user). We did this by taking each entry in ALPHA,

and retrieving how frequently the entry’s cookie, user agent, and/or IP show up in the rest of

the table. Then for the individual frequencies of cookie, user agent(Appendix E [13]), and ip

we completed the following formula for our first entry (Appendix E [14]).

Where:

X = C * Cookie_Frequency

Y = U * UA_Frequency

Z = I * IP_Frequency

We took our final calculation and inserted it into our first entry cookie_prob

field(Appendix E [15][16]). Then we iterated through our list of entries in ALPHA,

performing the same steps, from cookie_dep_hip_prob to cooie_prob, for each one

(Appendix E [17]). After calculating, we removed all entries with that Home IP (partition)

from our BETA table, and inserted all entries from ALPHA into BETA to replace the

partition. Finally, we deleted all entries in ALPHA to optimize space for future space usage.

We then did these calculations for all unique Home IP’s within BETA. Our ideal deliverable

was all entries within BETA having a Home IP, and a cookie_prob. This datatable will act as

29

an archive on all entries and users, and should pre-process the information for quick

acquisition.

 Figure 7. Device Fingerprinting Process

7.3 Results and Analysis

The underlying structure of the ad_requests and matches tables exclusively allowed

removing and adding by partitions, not by entries. The data scientists at Cogo Labs designed

this database for data browsing, not data manipulation. Under this constraint we implement

the fingerprinting algorithm to work only for one cookie, given that we could neither store

nor update individual entries inside this database. In addition, the execution time for our

30

algorithm on one cookie took three minutes. An application of the algorithm to every cookie

in the database would not return a result in a reasonable time for Cogo Labs.

Executing our Python implementation of the algorithm for our test cookie

“a6309b2f5240ace44dcc8df60d56cf19” took 4 hours to perform all calculations. Figure 8

shows the results of these calculations. The execution time varies from cookie to cookie, thus

4 hours is not indicative of every cookie. For this test run, we set all accuracy coefficients to

be 1. The emd5 field showed whether the entry comes from the matches table or ad_requests

table. If the emd5 field was null, this shows that the entry belonged to the ad_requests table.

If the emd5 field held a non-null value, it belonged in the matches table. The Home IP for all

entries shown in Figure 8 are the same because we joined entries from both tables on the

Home IP field. Cookie_dep_hip_prob and cookie_ind_hip_prob show identical results

because the coefficients for both calculations are equal to 1. Cookie_prob will always contain

the value 1 because the sample size of one cookie equals our population of one cookie. From

a mathematical perspective, this makes the product of the cookie probability formula equal to

0, in turn making cookie probability equal to 1.

Figure 8. Device fingerprinting implementation results with coefficients equal to 1.

The results shown above were different from our hypothesis. Cookie probabilities

should never be 1 given the impossibility of a certain match between a cookie and a user. The

values of the cookie_dep_hip_prob and cookie_ind_hip_prob fields between each record

should be different. The reason behind these abnormalities derived from the values of our

coefficients. We decided to try with a different set of coefficients as a possible remedy. We

used probability coefficients calculated from the Microsoft paper 13 for a second test run. We

31

set C=0.8235, U=0.6201, I=0.4899. Figure 9 displays the results of the second test run.

Cookie_dep_hip_prob and cookie_ind_hip_prob have different values and cookie_prob does

not keep the value of 1. These results reflect our hypothesis.

Figure 9. Device fingerprinting implementation results using Microsoft paper coefficients.

7.4 Recommendations

 We suggested three recommendations for Cogo Labs. We first recommended that

Cogo Labs revised the table partition in the Matches database. Particularly, Cogo Labs should

have partitioned the matches table by cookie suffix in conjunction with the date partition.

This partition structure would mimic the partition structure in ad_requests. The addition of

these partitions would improve the execution time of the Python implementation down to a

projected 5 minutes. Next, we recommended that Cogo Labs considers calculating their own

accuracy coefficients used in the Home IP probability and cookie probability calculations.

The Microsoft Research coefficients may not be entirely correct for Cogo Labs’ case.

Microsoft evaluated their coefficients based on around 100 million entries in their Outlook

Database. Cogo Labs had trillions of entries of more detailed data, hence the need to tailor

these coefficients for Cogo Labs’ situation. Finally, we recommended a full implementation

the fingerprinting algorithm, as shown in Appendix F. The Python implementation made by

the MQP team works around the current partition issue in the database. Thus, it worked for

one cookie and not all cookies in tandem. Fully implementing the algorithm would

successfully perform the calculations for all cookies in the database.

32

8. Concluding Remarks

 Cogo Labs and Vestigo used their data in a niche model applied at only a handful of

companies. The employees of both companies eased a rapid work pipeline that capitalized on

the strengths of each team member. Such a frictionless, unstructured environment proved

beneficial to the working environment. This project displayed a full picture of the investment

market in practical application. Furthermore, Cogo’s integration of big data with investment

served as a microcosm for the multifaceted future of modern fintech. With big data analytics

just emerging in today’s world as a cutting-edge technology, it had piqued our interest into

learning more about the topic. To that end, two of our team members will pursue Data

Science in an academic context. As of the writing of this paper Andrew Aberdale was

applying for an MS in Data Science, and Benjamin Sarkis was applying for a Data Science

minor to append to his BS in Computer Science. A parallel phenomenon occurred with our

sponsor in the late 1980’s. Ian Sheridan shared with us during this project how he used to be

a “gopher” in the New York Stock Exchange, and how he was there for the first 10,000

automated transactions on the Exchange floor. He reflected on that experience as bringing

perspective to what he had done, and what Cogo Labs had done. It is a hope of the

undergraduate team members that the work of this project will become common place in the

future.

33

Bibliography

All bibliographic citations are based off the IEEE standard.

(1) Ian Sheridan. “Ian Sheridan.” Internet: https://www.linkedin.com/in/iansheridan1/, 2017.

[Nov. 6, 2017]

(2) Mark Casady. “Mark Casady.” Internet: https://www.linkedin.com/in/mark-casady-5a662b8/,

2017. [Nov. 7, 2017]

(3) Michael Nugent. “Michael Nugent.” Internet: https://www.linkedin.com/in/minugent/, 2017.

[Nov. 6, 2017]

(4) David Blundin. “David Blundin.” Internet: https://www.linkedin.com/in/david-blundin-

11220a/, 2017. [Nov. 6, 2017]

(5) Mark Casady, Spoken Word

(6) “The due diligence process in venture capital,” MaRS, 06-Dec-2013. [Online]. Available:

https://www.marsdd.com/mars-library/the-due-diligence-process-in-venture-capital/. [15-

Dec-2017].

(7) R. Amit, J. Brander and C. Zott, "Why do venture capital firms exist? theory and canadian

evidence," Journal of Business Venturing, vol. 13, (6), pp. 441-466, 1998.

(8) “Riskalyze Inc.,” Riskalyze Inc. - Other Technology- Lee FormDs.com - SEC filings of

fundraisings and investments in hedge funds, private equity firms, startups, and growing

companies. Internet: http://www.formds.com/issuers/riskalyze-inc, 2017. [Dec. 1, 2017]

(9) Crunchbase, “Riskalyze.” Internet: https://www.crunchbase.com/organization/riskalyze.

[Dec. 1, 2017]

(10) Ascensus. “The Largest Independent Retirement Savings and College Savings Provider.”

 Internet: https://www2.ascensus.com/. 2017. [Dec. 12, 2017].

(11) Horace Mann. “In service to educators since 1945.” Internet:

 https://www.horacemann.com/. 2017. [Dec. 12, 2017].

(12) InTeahouse. “A Global Network of Innovators and International Investors.” Internet:

 https://inteahouse.com/. 2017. [Dec. 12, 2017].

(13) VirtualCove. “Immersive Data Visualization.” Internet: http://www.virtualcove.com/.

 2017. [Dec. 12, 2017].

https://www.linkedin.com/in/iansheridan1/
https://www.linkedin.com/in/minugent/
https://www.crunchbase.com/organization/riskalyze
https://www2.ascensus.com/
https://www.horacemann.com/
https://inteahouse.com/
http://www.virtualcove.com/

34

(14) Mira Wilczek. “Mira Wilczek.” Internet:

 https://www.linkedin.com/in/mira-wilczek-6558052/, 2017. [Dec. 5, 2017]

(15) Robert Fisher. “Robert Fisher.” Internet:

 https://www.linkedin.com/in/robert-fisher-49463316/, 2017. [Dec. 5, 2017]

(16) Dennis Keohane. “CarGurus follows the plan...the TripAdvisor plan.” Internet:

 https://utterlybiased.com/2017/04/07/cargurus-follows-the-plan-the-tripadvisor-plan/,

 April 7, 2017. [Nov. 15, 2017]

(17) R. Rivest, “The MD5 Message-Digest Algorithm,” Internet:

 https://www.ietf.org/rfc/rfc1321.txt, April 1992. [Nov. 15, 2017]

(18) Armin Ronacher, “Flask, web development, one drop at a time.” Internet:

 http://flask.pocoo.org/, 2017. [Oct 30, 2017].

(19) Docker Docks. “Select a Storage Driver.” Internet:

 https://docs.docker.com/engine/userguide/storagedriver/selectadriver/. 2017. [Dec. 12,

 2017].

(20) Tadayoshi Kohno, Andre Broido, K. C. Claffy. “Remote physical device fingerprinting.”

 IEEE Transactions on Dependable and Secure Computing, vol. 2, pp. 93-108, June 20,

 2005. http://ieeexplore.ieee.org/abstract/document/1453529/?reload=true

(21) P. Eckersley, "How Unique Is Your Browser?" in Proceedings of the 10th Privacy

 Enhancing Technologies Symposium (PETS), 2010.

 https://panopticlick.eff.org/static/browser-uniqueness.pdf

(22) Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, Martin Abadi. “Host

 Fingerprinting and Tracking on the Web: Privacy and Security Implications.”

Microsoft,

 February 2012.

 https://www.microsoft.com/en-us/research/wp-content/uploads/2012/02/ndss2012.pdf

https://www.linkedin.com/in/mira-wilczek-6558052/
https://www.linkedin.com/in/robert-fisher-49463316/
https://utterlybiased.com/2017/04/07/cargurus-follows-the-plan-the-tripadvisor-plan/
https://www.ietf.org/rfc/rfc1321.txt
http://flask.pocoo.org/
https://docs.docker.com/engine/userguide/storagedriver/selectadriver/
http://ieeexplore.ieee.org/abstract/document/1453529/?reload=true
https://panopticlick.eff.org/static/browser-uniqueness.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/02/ndss2012.pdf

35

(23) Jaumin Ajdari, Nehat Mustafa, Xhemal Zenuni, Bujar Raufi, Florije Ismaili. “Impact of

 table partitioning on the query execution performance.” International Journal of

 Computer Science Issues, Vol. 13, pp. 52 - 58, July 2016. [Dec. 4, 2017]

 http://ijcsi.org/articles/Impact-of-table-partitioning-on-the-query-execution-performance.php

(24) Survey Monkey, “Sample Size Calculator.” Internet:

 https://www.surveymonkey.com/mp/sample-size-calculator/, 2017. [Dec. 4, 2017].

(25) Investopedia. “Venture Captial.” Internet:

 http://www.investopedia.com/terms/v/venturecapital.asp, 2017. [Oct. 28, 2017].

(26) Investopedia. “Fintech.” Internet: http://www.investopedia.com/terms/f/fintech.asp,

 2017. [Oct. 28, 2017].

(27) Wendy W. Moe, Peter S. Fader. “Capturing Evolving Visit Behavior In Clickstream

 Data.” Journal of Interactive Marketing, vol. 18, pp. 5 - 19, Winter 2004.

 http://mmdcommunications.com/pdf/Monitoring%20web%20traffic.pdf

(28) Don. “RE: Question on security issues of when2meet’s password system.” Personal

 E-mail (Dec. 4, 2017).

(29) Russom, P. (2011). Big Data Analytics. TDWI Best Practices Report, pp.6-9

 https://vivomente.com/wp-content/uploads/2016/04/big-data-analytics-white-paper.pdf

 [Jan. 17, 2018].

(30) LifeYield. “Make more. Keep more.” Internet: https://www.lifeyield.com/main/, 2017.

 [Jan. 17, 2018]

(31) Netcapital. “We connect entrepeneurs and investors to help businesses grow.” Internet:

 https://netcapital.com/, July 7, 2017. [Jan. 17, 2018]

(32) Vestmark. “Unified Wealth Management.” Internet: http://www.vestmark.com/, 2018.

 [Jan. 17, 2018]

http://ijcsi.org/articles/Impact-of-table-partitioning-on-the-query-execution-performance.php
https://www.surveymonkey.com/mp/sample-size-calculator/
http://www.investopedia.com/terms/v/venturecapital.asp
http://www.investopedia.com/terms/f/fintech.asp
http://mmdcommunications.com/pdf/Monitoring%20web%20traffic.pdf

36

(33) Investopedia, “The Stages in Venture Capital Investing,” Investopedia.

 https://www.investopedia.com/exam-guide/cfa-level-1/alternative-investments/venture-

 capital-investing-stages.asp [Jan. 17, 2018]

(34) S. Delventhal, “Series A, B, C Funding: What It All Means and How It Works,”

 Investopedia. https://www.investopedia.com/articles/personal-finance/102015/series-b-c-

 fun ding-what-it-all-means-and-how-it-works.asp [Jan. 17, 2018]

37

Appendices

Appendix A: Terminology

Venture Capital (“VC”): “Venture Capital is financing that investors provide to startup

companies and small businesses that are believed to have long term growth potential.” 25

Financial Technology (“Fintech”): “Fintech is a portmanteau of financial technology that

describes an emerging financial services sector in the 21st century. Originally, the term

applied to technology applied to the backend of established consumer and trade financial

institutions. Since the end of the first decade of the 21st century, the term has expanded to

include any technological innovation in the financial sector, including innovations in

financial literacy and education, retail banking, investment and even cryptocurrencies like

bitcoin.” 26

Clickstream: “A series of mouse clicks made while using a website or in linking to multiple

websites.” 27

Appendix B: Gantt

38

Appendix C: SQL queries

1. wpi_update_from_apollo query

39

2. wpi_update_existing_deals query

40

3. wpi_insert_new_deals query

41

Appendix D: 4-point Scoring System

Appendix E: Rejected Decisions

Throughout the course of the project, we tried and discussed many options that were

ultimately scuttled. Each subsection follows the format:

[X] Rejected Decision Name:

42

 Description

The “[X]” is referenced in the paper next to the decision we ultimately took.

--

[1] Date form:

We tried using the format “mm/dd/yyyy” initially.

[2] JOIN statements in update query:

 An initial iteration of this query involved the use of SQL JOIN statements. JOIN

statements could not do calculations in the order we wanted them to. WITH

statements allowed for this flexibility.

[3] Dealing with new companies and existing companies in the update query:

 We considered creating an entry for each submission and have a query that would act

as a garbage collector to remove ‘duplicate’ entries. A duplicate entry would be one

that has the same company name and domain (Table 1). However, we found that this

design could potentially result in data loss if the two entries have the same company

and domain name, but otherwise differ.

 Another option that was considered was coding in a condition that would

check if the entry already existed in the table before adding it in and update

accordingly. However, this proved to be inefficient as well as difficult to design and

did not integrate effectively into the architecture.

[4] Form Decision:

Our form underwent two key iterations over the course of the project. The sponsors

and the graduate team gave the suggestion of Google Forms, which offers various script APIs

that facilitate data conversion, form behavior, and security. The added benefit of an excel

sheet tied to all form responses allows access to the functionality associated with Google

Sheets. We wrote a script that automatically creates an updated .tsv file in the form’s

directory whenever the sheet changed from a new form entry. From the JavaScript backend

(Google Apps Script for this specific case), we attempted to send a post request to the Flask

server we set up locally. However, through several trials, we discovered a partition between

the form API and Flask that prevented Flask from receiving the post request. The script was

running on Google’s server; a post to a “localhost” was directed to a host on the Google

server instead of our local Flask server.

The first attempt at surmounting the partition began with moving the Python server to

a different platform. Google Cloud Platform would host the server and thus integrate with the

43

google scripts associated with the form. Flask could have an address reachable from the form.

This method would work if we only used public libraries. Through further investigation, the

proprietary library for the database we accessed could not be used outside of Cogo’s interior

network. The library required authentication to Cogo’s network for proper use. Furthermore,

the triggers we had set up in Google scripts could not be refactored to the python server;

direct communication between Flask and the form could not occur. The library’s reliance on

Cogo eliminated the option of having the Python Flask hosted on the Google Cloud Platform.

We decided to move away from Google APIs and the Google platform to create a form from

scratch.

[5] Password/Hashing decision:

 Earlier iterations of the password security option involved hashing. Our first hashing

idea was inspired from the method employed by when2meet. However, much of

when2meet’s security lies in their unique hashing for each survey. Since we have one url that

Vestigo wants to use, this security aspect is not available to us. The other aspect of the

when2meet system is trust, which is not strong enough security in high-stakes environment

Venture capitalism.28

 The second hashing idea was one random hash per survey. It was the strongest

security option, yet it would have required heavy refactoring before adding it. Our table

would require an extra field as well as implementing hash generation functionality in

JavaScript. The amount of security behind Cogo’s network rendered this option not

productive.

 Finally, our sponsor offered to send out surveys in controlled batches. Within each

batch, we could try hashing each survey. While this would require only as many hashes as

there are surveys per batch, it would create an unneeded burden on the sponsors. They would

have to manually search through each batch and a specific hash for a particular survey.

[6] On coding the .TSV into JSON:

 The original iteration of passing a .TSV with encoded JSON involved simply passing

the raw .TSV. However, there was no reliable content-type or mime-type for .TSVs, so we

used JSON, as there are several standards associated with it.

[7] Functionality for sending emails:

 The question of how we would implement email functionality required both

solidifying which libraries we would use and where in the entire system the email

would be sent from. We tried two options, both inside the frontend of the

form. The first of these was react-html-email for structuring and sending emails. We

44

valued the formatting feature of this module from node-package-modules, but it

would require restructuring the whole application. A proper react-email could not be

sent unless we had meteor.js integrated into the React.js application from the

beginning.

 After abandoning react-html-email, we attempted the use of nodemailer.

Nodemailer worked very well with react and gmail, but could only be applied on the

backend of a React app. Since our backend was in Python, nodemailer was immediately

discarded. From here, we looked at backend python libraries and chose the decision specified

in the paper.

[8] Confidence Growth Decision:

 For the time interval when calculating confidence_growth_per_day, we first

considered using the time interval from the first day the domain was detected by

Apollo to the latest detection date. However, we noticed that some of the domains

were not been detected for one year ago or only been detected for a few days, which

made the confidence growth rate either outdated or abnormally high. In addition, this

particular kind of data does not tell the full story because apollo does not guarantee

picking the initial start date of the company, only the time when it is visible. We

decided that this did not accurately represent the company's growth so we adjusted

our confidence_growth_per_day calculation as depicted in the paper.

[9] Develop Home IP only based on emd5:

 Since the Home IP can be a unique identifier for a user, we first developed based on

emd5. But only 30% of our data in scratch.matches table have emd5 so that using emd5 will

shrink our results. Therefore we decided to use apxlv_id which both of our tables have to

make Home IP more completely covered the whole database.

[10] The order of calculating the cookie_dep_hip_prob

 When calculating the cookie_dep_hip_prob, we first wanted to do it in our second

phase. But it ends up with the same result if we calculate in first phase. Also, doing it in

phase two will have more complicated calculation and take more time.

[11]Device Fingerprinting Indexing:

We considered indexing by a combination of cookie, user agent, and ip as opposed to just

cookie. However, we then realized it would make our Home IP calculations more exclusive,

which in turn would yield skewed calculations. We decided to just index on cookie to prevent

damage to our calculations. However, should Cogo invest more time in this, it may be

worthwhile to reconsider this option.

45

[12] Device Fingerprinting deliverable:

At the beginning of the device fingerprinting project, we were given a introduction packet by

Mike Nugent and the grads. This packet outlined our projects and the expected deliverables.

The primary deliverable for device fingerprinting was expected to be a system take could take

two cookies and find the likelihood that they are related to each other. At that time we

understood the process time would take a while, so we foresaw that the project would require

preprocessing and storage. We ran the calculations for a choose function of pairs for 3.64

trillion (1*10^12) entries and found that to store all our calculated entries, it would take about

6.6 septillion (1*10^24) entries worth of additional space.

[13] User Agent String analysis by parts

 Analyzing the user agent string by parts would allow us to know exactly how similar

2 user agent strings are. However, we cannot calculate the accuracy coefficients for each of

the user agents string parts. Hence, we rejected this design and compared user agent strings as

a whole, given that we had an accuracy coefficient for the whole user agent string.

[14] Device Fingerprinting final calculation:

After we had completed most of our algorithm, we focused on a long standing issue. Our

system would take the highest probability, as opposed to the most frequent. We addressed

this by minorly altering the code from a “MAX” SQL function to one based off of

“COUNT(apxlv_id)”/”COUNT(*)”. This focused the system to look for the most frequent

probability, which is a more accurate indicator than looking for the maximum probability.

 [15] Rename cookie_prob to home_ip_cookie_match_prob

The graduate team suggested renaming cookie_prob field but the name they suggested is far

too long and complex. It is unnecessary and over-descriptive.

 [16] Multiply cookie_prob by the hip_prob

 Because the cookie_prob is based on the concept of Home IP, we should consider the

accuracy of the Home IP. We provided Cogo two frame of reference for the Home IP

probability and developed cookie_prob independent to the Home IP probability. So Cogo

Labs can choose which frame they want to refer.

 [17] Calculate cookie_prob for every entry

Calculating cookie probability for every entry can take a lot of time to do. Some of the entries

in the database can have duplicates, so we decided to keep track of the results for each entry

and refer to that result when the algorithm finds a duplicate entry.

46

47

Appendix F: Email Notifications

48

49

Appendix G: Device Fingerprinting Algorithm

Constants

We are assuming, we can always accurately identify someone based on the cookie.

Therefore coefficients for calculations are below. These are in place incase Cogo decides

there is a different associated percentage chance with accurately identifying a user based on a

specific field. These variables allow for easy change.

Assumed accuracy (Currently in use):

C=1

U=1

I=1

Microsoft Paper (Not in use):

C=0.8235

U=0.6201

I=0.4899

STEP 1: Determine the HOME_IP and COOKIE_DEP_HIP_PROB

INPUT TABLES: match.matches, match.ad_requests

1)

a) Gather ALL rows from match.matches and match.ad_requests WHERE cookie = cookie.

i) Eg. cookieA has 20 rows from match.matches, and cookieA has 10 rows from

match.ad_requests, then in total we’ll take 30 rows.

ii) Eg. cookieB does not exist in match.matches, but cookieB has 40 rows from

match.ad_requests. Then in total we will take in 40 rows.

b) Store these rows into the Alex DB table, scratch.wpi_device_fingerprinting [call this

ALPHA].

2) Within ALPHA, calculate home_ip field. We define:

home_ip as “the most frequent IP address for a given cookie.”

3) Within ALPHA calculate cookie_dep_hip_prob. Formula is the following:

50

4) Append all entries from ALPHA to BETA. (BETA will be partitioned by HOME_IP or some

derivative of it)

5) Delete all entries in ALPHA

6) Do this repeatedly for each cookie instance from match.matches and match.ad_requests

STEP 2: Calculate COOKIE_IND_HIP_PROB

INPUT TABLE: BETA

1) Gather all rows from BETA table for a given home_ip, say Home_IP = 1. Say for eg within

our BETA table we have 30 rows of cookieA with Home_IP=1 and 20 rows of cookieB with

Home_IP=1.

a) Place these (eg. 50) rows into ALPHA.

b) Delete these rows from BETA (that means “delete this partition”).

2) Within ALPHA, calculate cookie_ind_hip_prob field. Formula is the following:

STEP 3: Calculate COOKIE_PROB

1) Still within ALPHA, get the frequency count of Cookie, UA, and IP across the “home-ip

rows”.

2) Calculate the “probability coefficients in home-ip world”

a) Formula to use:

i) X = C * Cookie_Frequency

ii) Y = U * UA_Frequency

iii) Z = I * IP_Frequency

3) Finally, calculate cookie_prob:

4) Append all entries from ALPHA to BETA.

5) Delete all entries in ALPHA

51

Appendix H: STRIDE Analysis

Summary of Threats

Security Threat Explanation Developer Mitigation Operator Mitigation

No authentication Anyone can pretend to

be any company with

no authentication.

Add an authenticator

system.

(Policy decision)

Onus is on the

developer, not the

operator.

Reverse Engineering Credentials of quake

are in source code, not

encrypted.

Encrypt the

credentials in

separate file.

Limit privileges of

quake account.

Several overwrite

submissions.

If an attacker figures

out the name of a

submitted company,

they can continually

update contact info, and

lead to some fake route.

Ensure that all

submissions are

securely logged a

unique password or

hashkey.

Send out controlled

batches of surveys.

52

STRIDE (Spoofing) Tree:

53

STRIDE (Tampering) Tree:

54

STRIDE (Repudiation) Tree:

