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Executive Summary 
The credit derivatives market has been growing rapidly over the past years. Credit 

risk, like market risk or interest risk, is part of the risk family in the financial industry. A 

number of credit derivatives have been developed to protect investors against credit risk. 

As more and more participants appeared, the market calls for more quantitative ways to 

measure risks, and eventually to price credit derivatives more properly. The credit 

derivative class can be divided into two basic categories according to the number of 

credit risk products being protected, single-name and multi-name credit derivatives. The 

product is from only one issuer for the single-name credit derivatives, while there would 

be several issuers for products in multi-name derivatives. This paper focuses on the 

copula approach to the pricing of multi-name credit derivative baskets. 

A copula function is basically a multi-dimensional distribution function with 

uniform marginal distributions. It explains the connections between the marginals from a 

more fundamental level. Unlike the traditional use of linear correlation, a copula function 

is able to separate the specific marginal distributions from the underlying dependence 

structure of the random vector. Thus with the same linear correlation, there can exist a 

number of random vectors with different copula functions. The copula function of a 

random vector does not change when monotonic transformations are applied to the 

marginals, while linear correlation stays unchanged only when linear transformation is 

performed to the marginal distributions. Another point worth noticing is the concept of 

tail dependence, which stands for the close dependence of the marginals in extreme cases. 

Copula functions also take into account this phenomenon which is very common in the 

financial field. 
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The problem to be solved in this project is to price a basic form of a first-to-

default credit derivative basket via Monte Carlo simulation for different copula functions. 

Several typical members of the copula family are studied. The simulated results are 

compared to see the properties of different copula functions, including tail dependence, 

etc. An interface is developed during the course of the project to automate the simulation 

process and create graph for simulated random vectors. The functions also include the 

generation of meta-distributions, in which case the marginals are arbitrary, which is more 

closely related to the market.  

The product to be priced is basically an insurance policy that covers the loss of 

the first bond to default in a portfolio of two. The idea is to obtain the proper premium for 

the basket from equate the present value of the coverage and the string of premiums. The 

probabilities involved in the calculations are acquired from simulations of individual 

cases, as a number of copula functions have implicit forms. Different amounts for 

premiums resulted from investors entering at different points in time before maturity are 

also part of the calculation. 

Several set of analysis were performed and the results were compared and 

discussed. The copula model proves to be a more precise and complex approach in 

evaluating risks and pricing multi-name credit derivative baskets. 
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Abstract 
The goal of this project is to price multi-name credit derivatives using a copula 

approach. The properties and advantage copula functions have to other traditional 

methods are carefully evaluated. Monte Carlo simulations are studied and performed to 

obtain numerical results for copula functions with explicit and implicit forms. A model 

was developed to price a basic form of a first-to-default basket using different copula 

functions. The outcomes are analyzed and comparisons are carried out.
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1. Introduction 
More and more attention has been paid to risks financial products are exposed to 

other than market risk or interest risk. Credit risk, which consists of default risk and 

credit spread risk, is an important member of the risk family. Default risk is the risk that a 

party fails to carry out pre-promised payments.  Credit spread risk is the risk “due to the 

possible widening of the credit spread or worsening in credit quality” (Arvanitis, Gregory 

4) that exists even when a party does not default. Various credit derivative products have 

been developed to protect investors against potential credit risks. With the ongoing credit 

crisis in the financial market worldwide, properly quantifying credit risk has become 

extremely important.  

This project would focus mainly on multi-name credit derivative baskets that 

protect against default risk of one or a combination of securities inside a portfolio, rather 

than single-name credit derivative, which only covers securities from a single issuer. A 

large part of the pricing process calls for analysis of default correlation, namely, the 

correlation between the survival times (the amount of time before default happens) of the 

securities in the basket. The relationship between the survival times of different securities 

can be very complicated. The application of linear correlation, which only retains its 

power over linear transformations, would be very limited. The need for a more complex 

model led to the introduction of copula functions into the evaluation of default correlation. 

A copula function is an n-dimensional distribution function which contains a lot 

more information about its marginal distribution than linear correlation. It would not be 

affected by monotone transformations applied to the marginal distributions, as it 

“provides a way of isolating the description of the dependence structure”(Embrechts, 
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Frey, McNeil 184) from the behaviors of the marginals. Alternative dependence measures 

could also be derived from copulas, like rank correlations and coefficients of tail 

dependence. Rank correlations are “simple scalar measures of dependence that depend 

only on the copula of a bivariate distribution and not on the marginal distribution.” 

(Embrechts, Frey, McNeil 206) Coefficients of tail dependence are “measures of the 

strength of dependence in the tails of a bivariate distribution” (Embrechts, Frey, McNeil 

206), which provide measures of extremal dependence. The latter of the two plays a big 

part in the financial world, as the occurrence of extreme events tend to cluster together. 

In the course of the project, a software interface is developed in Excel VBA. The 

workbook automates the process of Monte Carlo Simulation to produce pairs of marginal 

distributions with certain copula functions, outputs scatter plots for one or a pair of 

chosen copulas, and does pricing for a basic form of first-to-default basket. Analysis of 

the impacts of different copula functions have on the premiums of the first-to-default 

baskets are also performed and followed by results. 
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2. Copula Functions 
2.1 Definition 

An n-dimensional copula is a function [ ] [ ]1,01,0: →nC , a mapping of the unit 

hypercube into the unit interval, for which the following properties must hold 

1.  is increasing in each component . ( nuuuC ,,, 21 K ) iu

2.  for all ( ) ii uuC =1,,,1,,1 KK { } [ ]1,0,,,1 ∈∈ iuni K . 

3. For all ( ) ( ) [ ]nnn bbbaaa 1,0,,,,,,, 2121 ∈KK  with ii ba ≤  we have 
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where  and  for all jj au =1 jj bu =2 { }nj ,,1K∈ . 

Basically,  is a multivariate distribution function with uniform marginal 

distributions. 

C

 

2.2 Sklar’s Theorem 

Let F  be a joint distribution function with marginals . Then there exists 

a copula  such that, for all  in 

nFF ,,1 K

[ ] [ 1,01,0: →nC ] nxx ,,1 K [ ]∞∞−=ℜ , , 

. If the marginals are continuous, then  is unique. ( ) ( ) (( nnn xFxFCxxF ,,,, 111 KK = )) C

There is an important Corollary to Sklar’s Theorem, when we apply  

{ },)(:inf)( iii uyFyuFx ≥== ←  ,10 ≤≤ iu  ,,,1 ni K=  

( ) ( ).)(,),(,, 111 nnn uFuFFuuC ←←= KK . 

Sklar’s Theorem indicates that the marginals and the dependence structure of a 

multivariate distribution can be separated, and how a Copula function works in such 
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process to “couple together” the marginal distributions. The Corollary is used for the set 

up of the simulation of random numbers generated by a specific copula, as it states how 

copulas can be “extracted” from multivariate functions with continuous marginals. It also 

“shows how copulas express dependence on a quantile scale, since the value  

is the joint probability that  lies below its -quantile.” (Embrechts, Frey, McNeil 187) 

( )nuuC ,,1 K

iX iu

 

2.3 Examples of Copulas 

2.3.1 Fundamental Copulas 

The independence copula is the case where the 

marginal distributions are independent. 

( ) ∏
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=Π
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i
in uuu
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1 ,,K

The comonotonicity copula ( ) { }nn uuuuM ,,min,, 11 KK =  has perfectly 

positively dependent marginals. 

The countermonotonicity copula ( ) { }0,1max, 2121 −+= uuuuW  is the joint 

distribution function of the random vector )1,( UU − , where , i.e., the 

marginals are perfectly negatively dependent. 

)1,0(~ UU

The Fréchet bounds are bounds for every copula ( )nuuC ,,1 K , 

. Clearly the upper and lower bounds are 

the comonotonicity and the countermonotonicity copulas. 
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2.3.2 Gaussian and t Copulas 

If ),(~ ΣμdNY  is a Gaussian random vector, then its copula is a Gaussian copula. 

, where ))(,),(())(,,)(()( 1
1

1
11 dPdd

Ga
P uuuXuXPuC −− ΦΦΦ=≤Φ≤Φ= KK )(Σ℘=P  

is the correlation matrix of Y , Φ  is the standard univariate normal distribution function 

and  is the joint distribution function of . PΦ ),0(~ PNX d
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Figure 1. 1000 simulated points for Gaussian copula with uniform marginals and 

correlation 0.7 

Similarly, the d-dimensional t copula  

))(,),(()( 1
1

1
,, dP

t
P ututtuC −−= υυυυ K  

where  is the univariate t distribution function and  is the joint distribution 

function of 

υt Pt ,υ

),0,(~ PtX d υ , and P  is the correlation matrix. 
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Figure 2. 1000 simulated points for t copula with uniform marginals, correlation 0.9, 
and df 3 

Meta distribution is the case where the marginal distributions are arbitrary 

distributions instead of just uniform distributions. 
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Figure 3. 1000 simulated points for Gaussian copula with correlation 0.7, the 
marginals are standard normal distribution, and normal distribution with mean 1, sd 4 
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2.3.3 Archimedean Copulas 

Archimedean copulas have the form , where ))()((),( 21
1

21 uuuuC φφφ += − φ  is a 

decreasing function from [  to ]1,0 ),0[ ∞ , with ∞=)0(φ , 0)1( =φ , also known as the 

generator of the copula, and  is its inverse. For such a function 1−φ φ , its pseudo-inverse 

is defined as . Hence  is a 

copula if and only if 

∞≤<
≤≤

=
−

−

t
tt

t
)0(,0

)0(0),(
{)(

1
]1[

φ
φφ

φ ))()((),( 21
]1[

21 uuuuC φφφ += −

φ  is convex with the properties mentioned previously. 

We would be talking mainly about three copulas in the Archimedean family: 

Gumbel copula, Clayton copula, and Frank copula. 

Gumbel: { }θθθ
θ

1

2121 ))ln()ln((exp),( uuuuC Gu −+−−= , .1 ∞<≤ θ  
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Figure 4. 1000 simulated points for Gumbel copula with uniform marginals and 
parameter 2 
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Figure 5. 1000 simulated points for Clayton copula with uniform marginals and 
parameter 4 
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Figure 6. 1000 simulated points for Frank copula with uniform marginals and 
parameter 10 
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2.4 Measures of Dependence 
2.4.1 Rank Correlation 

“Rank correlations are simple scalar measures of dependence that depend only on 

the coupla of a bivariate distribution and not on the marginal distributions, unlike linear 

correlation, which depends on both.” (Embrechts, Frey, McNeil 206) 

Kendall’s tau is a measure of concordance for bivariate random vectors. Two 

points  and  are concordant if ),( 11 yx ),( 22 yx 0))(( 2121 >−− yyxx , discordant in 

. Now for a random vector , 0))(( 2121 <−− yyxx ),( 21 XX )~,~( 21 XX  is an independent 

copy of . Kendall’s tau can be defined as  ),( 21 XX

)))~)(~(((),( 221121 XXXXsignEXX −−=τρ . 

For random variables  and  with marginal distribution functions  and , 

Spearman’s rho is given by 

1X 2X 1F 2F

))(),((),( 221121 XFXFXXs ρρ = . 

For example, Gaussian and t copulas, the rank correlations have 

ρ
π

ρτ arcsin2),( 21 =XX  

ρ
π

ρ
2
1arcsin6),( 21 =XXs  
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2.4.2 Coefficients of Tail Dependence 

Coefficients of tail dependence are also measures of pairwise dependence of two 

random variables that only depend on the copula functions. They provide information 

about extremal dependence, i.e., “measure of the strength of dependence in the tails of a 

bivariate distribution.” With tail dependence we would be able to tell how closely the two 

marginals are related in extreme cases, which is very important in the credit world. 

Let  and  be random variables with marginal distribution functions  and 

. The coefficient of upper tail dependence of  and  is 

, provided a limit 

1X 2X 1F

2F 1X 2X

))(|)((),(: 1122
1

21 lim qFXqFXPXX
q

uu
←←

→

>>==
−

λλ ]1,0[∈uλ  exists, 

where  denotes the generalized inverse of G , i.e., ←G { }yxGxyG ≥=← )(:inf)( . If 

]1,0(∈uλ , then  and  are said to show upper tail dependence of extremal 

dependence in the upper tail; if 

1X 2X

0=uλ , they are asymptotically independent in the 

uppertail. Similarly, the coefficients of lower tail dependence is 

, provided a limit ))(|)((),(: 1F≤122
0

21 lim qXqFXPXX
q

ll
←←

→

≤==
+

λλ ]1,0[∈lλ  exists.  

Gaussian copula and Frank copula do not have tail dependence. The coefficients of 

t copula is 1),
1

)1)(1((2 1 −>
+

−+
−= + ρ

ρ
ρυλ υt . Gumbel copula does not have lower tail 

dependence, and the coefficient of its upper tail dependence is θλ
1

22 −=u . Clayton 

copula does not have upper tail dependence, and the coefficient its lower tail dependence 

is 
0,0

0,2{
1

≤
>=

−

θ
θλ θ

l . 
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Figure 7. 1000 simulated points for Gaussian & t copula with uniform marginals and  
correlation 0.9, t copula has df 3 

Type: Kendall's 
tau: 

Spearman's 
rho: 

Upper Tail 
Dependence:

Lower Tail 
Dependence: 

Gaussian 0.712867 0.89145613 0 0 
t 0.712867 0.89145613 1.355111947 1.355111947 

 
Table 1. Measures of dependence for Gaussian & t copula with uniform marginals and  

correlation 0.9, t copula has df 3 
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Figure 8. 1000 simulated points for Clayton & Gumbel copula with uniform marginals 
 and correlation 0.9 

Copula: Kendall's 
tau: 

Spearman's 
rho: 

Upper Tail 
Dependence:

Lower Tail 
Dependence: 

Theta: 

Clayton 0.6666667 0.849203469 0 0.840896415 5.56309 
Gumbel 0.5 0.70612141 0.585786438 0 3.7083596

 
Table 2. Measures of dependence for Clayton & Gumbel copula with uniform 

marginals and correlation 0.9 
 

 17



3. Simulation 
One way to study the properties of copula functions is through simulation. Due to 

the implicit forms of certain copulas, like Gaussian and t, sampling appears to be a much 

simpler and straight forward solution. Monte Carlo simulation is performed for the five 

kinds of copula functions mentioned before, and the algorithms are as followed. 

3.1 Gaussian Copula 

• Generate  ),0(~ 2 PNZ

• Obtain  with , where '
21 ))(),(( ZZU ΦΦ= Ga

PC Φ  is the standard normal 

distribution function.  

3.2 t Copula 

• Generate ),0,(~ 2 PtX ν  

• Get  with , where  is the distribution function 

of a standard univariate t distribution. 

'
21 ))(),(( XtXtU νν= t

PC ,υ νt

3.3 Archimedean Copulas 

• Generate  s.t. , where  is the Laplace-Stieltjes transform 

of G, which is also the inverse of the generator 

GV ~ 1ˆ −Φ=G Ĝ

φ  of the copula. 

o For Clayton copula, 0),1,1(~ >θθGaV  

o For Gumbel copula, 1,)))2((cos(),0,,1,1(~ >= θθπγγθ
θStV  

o For Frank copula, the probability mass function of V  is  

0,,2,1,)())exp(1()()( >=−−=== θθθ KkkkVPkp k . 

• Generate  )1,0(~, 21 UXX
iid
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• Return '21 )))ln((ˆ),)ln((ˆ( V
XGV

XGU −−=  

3.4 Convex Sums 
 To obtain U  with copula 21 )1( CC λλ −+  

• Generate  which have copulas  SW , 21 ,CC

• Generate  )1,0(~ UV

• Get  
λ
λ

>
≤

=
ii

ii
i vs

vw
u

,
,

{

3.5 Meta Distributions 
Apply the inverse functions of the desired marginals to the uniform marginals 

obtained from previous steps. 

• Return  )(),(( 2
1

21
1

1 UFUFX −−=
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Figure 9. 1000 simulated points for 0.3*Gaussian + 0.7*t copula with correlation 0.9, t 
copula has df 3 
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4. Pricing 
4.1 Products 

There are two kinds of credit derivatives in the market, based on the number of 

securities it is protecting, single-name credit derivatives and multi-name credit derivative 

baskets. Default swap is a typical representative of single-name credit derivatives. It is “a 

bilateral contract that enables an investor to buy protection against the risk of default of 

an asset issued by a specified reference entity. Following a defined credit event, the buyer 

of protection receives a payment intended to compensate against the loss on the 

investment.”(O’Kane 25) However, in the current study, the studies would be mainly on 

the multi-name products. A basket default swap is a good example of this type of 

products. It is “similar to a default swap in which the credit event is the default of some 

combination of the credits in a specified basket of reference credits whose default triggers 

a payment to the protection buyer.” (O’Kane 25) A lot of analysis that would appear later 

in the paper is on first-to-default basket, it is “the first credit in a basket of reference 

credits whose default triggers a payment to the protection buyer.” (O’Kane 25) 
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4.2 Formula 
The problem calls for a basic version of a first-to-default basket. The contract 

covers the loss of the first bond to default in a portfolio of two bonds. The contract starts 

at time 0, the maturity of the contract is T , force of interest spread is δ , the weight of 

Bond 1 is λ , and the default times of the bonds are 21 ,ττ . The premium for the basket is 

. Π

∑∑ ∑
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= =

− =>−+>==>>Π
T

t

t
T

t

t

s

s ttPttPessPe
0
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A two-dimensional random vector of a certain copula with certain marginals 

would be generated first, representing the default time random variables of the two bonds. 

Then the probability estimated in the formula would be obtained using the random 

sample that was generated. 
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5. Results 
Simulations are performed for certain first-to-default basket contracts of two zero-

coupon bonds. For each contract, 1000 pairs of default times would be simulated for the 

two bonds, and the premium would be calculated using the formula developed in the 

previous section. The force of interest spread is set at 2%, and the weight of Bond 1 is set 

at 0.3, and the value of the portfolio at time zero is 1. The first three cases have maturity 

of 5, and the t copula in all three cases have 3 degrees of freedom. 

Case 1: The marginals are exponential distributions with mean 5 and 2.5, and the 

linear correlation between the two marginals is 0.9. 

Case 2: The marginals are exponential distributions with mean 2.5, and the linear 

correlation between the two marginals is 0.9. 

Case 3: The marginals are exponential distributions with mean 5 and 2.5, and the 

linear correlation between the two marginals is 0.7. 

Copula Case 1 Case 2 Case 3 
Clayton 0.12567 0.09977 0.11313 
Gumbel 0.13012 0.11206 0.11206 

Gaussian 0.12026 0.10955 0.14861 
t 0.07151 0.06401 0.07108 

 
Table 3. Premiums for the three cases 

 
From the tables above it could be read that for copulas that have lower tail 

dependence, like Clayton copula and t copula, the premiums tend to be lower. In all three 

cases, t copula produces the lowest premiums, and in Case 2 & 3, Clayton copula brings 

the second lowest price. On the other hand, copula with only upper tail dependence, e.g., 

Gumbel copula, requires the highest or second highest premiums in all three cases. The 

reason for this is at the beginning of the contract, although lower tail dependence would 

cause a higher default rate, the probability of neither bond defaulting is relatively high for 

 22



all copulas, which causes the coverage to payments ratio to stay low for all copulas 

including those with a higher defaulting rate. Upper tail dependence comes into play 

towards the end of the contract. At this moment a relatively high defaulting rate would 

easily cause a significant change in the probability of both bonds surviving, which leads 

to a high coverage to payments ration that brings up the premiums. 
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Figure 10. Premiums & Measures of Dependence for Gumbel copula with exponential 
marginals with mean 5 and 2.5, weight of Bond 1 is 0.3 
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Figure 11. Premiums & Measures of Dependence for Clayton copula with exponential 
marginals with mean 5 and 2.5, weight of Bond 1 is 0.3 

 

Now take a look at the premiums and measures of dependence for Gumbel and 

Clayton copulas with the same marginals, weight and maturity as Case 1. From the 

graphs it is clear that there is no strong connection regarding the relationship between the 

premiums and the measures of dependence. 

Take exponential marginals with mean 5 and 2.5, and apply different linear 

correlation each time, the following table of premiums can be obtained. 

Corr Clayton Gumbel Gaussian t 
0.5 0.157959 0.128466 0.13774749 0.070888 
0.6 0.129699 0.182917 0.13948831 0.06838 
0.7 0.105142 0.140107 0.11964756 0.08716 
0.8 0.115772 0.12582 0.14580253 0.060166 
0.9 0.131051 0.158769 0.10523178 0.071512 

 
Table 4. Premiums for copulas with different linear correlation coefficients 

The table can be looked at in two directions. First, it is obvious that even with the 

same linear correlation coefficients, if the copulas differ, one would get premiums with 
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considerable differences. Second, even for the same copula function, changes in linear 

correlation do not lead to a consistent pattern in the values of the premiums. 

Next the marginals remain the same, and the correlation would be set to 0.9. The 

variable here would be the maturity. 

Maturity Clayton Gumbel Gaussian t 
5 0.131051 0.158769 0.105232 0.071512 
4 0.108946 0.128355 0.126638 0.066733 
3 0.105618 0.113207 0.122147 0.081431 
2 0.095063 0.09555 0.084521 0.102989 
1 0.069967 0.074427 0.079501 0.065859 

 
Table 5. Premiums for contracts with different maturities 

There is a general upward trend in the amounts of the premiums as the maturity 

increases. The explanation is straight forward: as the maturity goes up, the portfolio is 

exposed to higher risk of defaulting, which would certain cause the raise of the premiums. 

Another aspect of such analysis is to evaluate the premiums of different entering 

dates for the contract. The following two charts are for a Gaussian copula and a t copula 

with exponential marginals whose means are 5 and 2.5, the linear correlation is 0.9, and 

the maturity is 5. The first chart is the default time distributions, and the second chart is 

the premiums when entering the contract any time before maturity. Notice the jump 

around time 2 for the premiums of t copula resulted in the cluster around time 2 on the y 

axis in the default time graph. At this point Bond 2 has a really high default rate, and 

investors who enter the contract after this point are exposed to a lower level of default 

risk. The last chart is a comparison of all four copulas under the same condition. The 

overall downward trend in the premiums are the result of the fact that once the bond 

survives after a certain amount of time, it is less likely for it to default. 
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Figure 12. Default times for Case 1 with Gaussian and t copula 
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Figure 13. Premiums for different entering dates for Case 1 with Gaussian and t 
copulas 
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Figure 14. Premiums for different entering dates for Case 1 
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6. Conclusion 
The credit risk market has been constantly growing. The evaluation of credit risk, 

especially the relations between different credit products has proven to be very 

complicated as well as important. The traditional way of linear correlation failed to 

separate the dependence structure and the marginal distributions. Copula functions 

provide a more precise approach that could set apart the influence of different marginal 

distribution functions. Several copula functions were studied. Monte Carlo simulations 

were performed for general understanding of the functions and for the later pricing part of 

the project. A real life example of a basic first-to-default basket of two zero-coupon 

bonds was introduced. The effects of different dependence structures on the premiums of 

the contract and the influence of entering time, etc. are also discussed. Using copula 

functions proved to be a good way to measure dependence between default times of 

credit risk products.
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8. Appendix 
A GUI interface was developed in Excel VBA to simulate random vectors with 

different copula functions and to price a basic form of first-to-default basket of two zero-

coupon bonds. 

 

 

This image is how the interface would look like when the workbook is opened. 

Make sure to select “Simulation” for “Graph Type”. There are three options under 

“Simulation”, which are “Pricing”, “Comparison”, and “Convex Sum”. To simulate a 

single copula function and get graph, none of the three options needs to be checked. The 

default number of simulated points is 1000. The type and parameters of marginals can be 

selected, and there is also an option for identical marginals. To compare two copula 

functions, the option “Comparison” should be selected, and the types of copulas and 
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parameters can be inputed. When “Convex Sum” is selected, there is one more item to 

input, “lambda”, which is the weight of the first copula entered. The following is an 

example where Gaussian and t copulas with same correlation are compared, with normal 

and exponential marginals. 

 

 

After “Graph” button is clicked, a series of random number generation and 

calculations would be carried out, and the “Chart” tab would be shown at the end of the 

process. A graph of the simulated points and key parameters would appear on the 

worksheet. 

 31



 

 

For the “Pricing” function, three more inputs are added. Force of interest spread, 

maturity, and the weight of the first bond. The default inputs are as in the next image. 

After the clicking of the “Graph” button under the “Pricing” option, the workbook would 

end on the “Rt” tab. A graph of premium amounts when entering at different points in 

time would be provided together with some basic information, as shown in the example 

to follow. 

To perform another simulation/calculation, delete all the graphs currently on the 

workbook, and click the “Run” button on the “Chart” sheet. At this point inputs from the 

last run would still be stored on the GUI. To reset all the values to default, simply close 

the interface and click “Run” again. 
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