Embedded Instruction Kit

A Major Qualifying Project Report
submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfilment of the requirements for the
Degree of Bachelor of Science by:

Steven Murdy
Alexander Dymek

Date: June 30, 2016

Report Submitted to:

Professor Stephen Bitar
Worcester Polytechnic Institute

This report represents the work of two WPI undergraduate students submitted to the faculty as
evidence of completion of a degree requirement. WPI routinely publishes these reports on its
website without editorial or peer review.

Abstract

The purpose of this project was to create an electronics kit for teaching entry level
programming of embedded systems. The kit includes a development board, external hardware
modules, software, and teaching materials. The hardware modules consist of a LCD display,
Keypad and various user I/0. These modules were then incorporated into lessons for creating
several working projects including a Calculator, Clock, Morse Code Interpreter, a Maze Game

and Simon Says.

Table of Contents

Abstract

Table of Contents

Acronym Reference Table

1 Introduction

2 Background

2.1 CPU and Microprocessors

2.2 Microcontrollers

2.3 Existing Kits

3 Methodology

3.1 Initial Planning
3.2 Designing the Lessons

3.3 Development Board

3.4 The Modules

3.5 Writing and Testing the Lessons

4 Results
5 Conclusions
Works Cited

Appendix A - Introductory Lesson

Appendix B Calculator Lesson

Appendix C Clock Lesson

Appendix D Morse Code Interpreter Lesson

Appendix E Maze Game Lesson

Appendix F Simon Says Lesson

Appendix G Keypad Module Circuit Diagram

Appendix H User I/O Module Circuit Diagram

Acronym Reference Table

ACRONYM MEANING

Cs Computer Science

ECE Electrical and Computer Engineering
RISC Reduced Instruction Set Computing
ARM Acorn RISC Machine

WPI Worcester Polytechnic Institute

I/0 Input/output

PC Personal Computer

IC Integrated Circuit

PROM Programmable Read Only Memory
EPROM Erasable PROM

EEPROM Electrically EPROM

ADC Analog to Digital Converter

DAC Digital to Analog Converter

IDE Integrated Development Environment

DIY Do It Yourself

1 Introduction

Embedded systems are integral part of modern life. They help get where we need to go
by running many of the systems in cars and planes.They operate our watches, our phones, and
our tablets. They control the robots that can manufacture a car, clean a house, or perform
surgery. They even improve our everyday activities with e-readers for books, DVRs for TV,
watches that record our exercise, and so many other devices. New uses for embedded systems
are created every day, as manufacturers take complex tasks, and reduce them to the push of a
button.

The purpose of this project was to create a kit meant to teach entry level embedded
systems to buyers. There are three parts to the kit hardware, software, and teaching materials.
The hardware component consists of a development board and a series of modules contain the
various components needed during the course. The software component consists of the libraries
needed to drive the development board and the modules. The teaching tools consist of the
documentation of all parts of the project and a series of detailed lessons with designed to teach
the basics of embedded systems. These lessons will have two phases the teaching phase where
the students will learn new concepts, through a series of hands on assignments and the
implementation phase where the students will use the learned concepts to complete an project.
The projects are fully functioning applications - either serving some basic utility, or a working
game - so that students will enjoy using their own work and take pride in developing on their

own.

2 Background

2.1 CPU and Microprocessors

The core of computer circuitry is the central processing unit, or CPU, which carries out
the logical, arithmetic, and control operations necessary to carry out the instructions of a
computer program (Zandbergen). The CPU was first introduced with the implementation of
“stored-program computers”, computers that stored program instructions within electronic
memory. The first electronic general purpose computer was the ENIAC (Electronic Numerical
Integrator and Computer), built in February, 1946 (Copeland). The ENIAC and other computers
like it had to be physically rewired to perform individual tasks, earning the moniker
“fixed-program computers.” Later computer models, such as the EDVAC (Electronic Discrete
Variable Automatic Computer) were designed to perform instructions of various types without
needing to modify the computer circuitry. Programs written for the computer were stored in
computer memory, and modifying the memory would change what operation was performed.
These early CPUs used relay switches and vacuum tubes as switching devices, and computers
often needed thousand of these switching devices to run. As a result, early CPUs were fairly

bulky in size.

Figure 2.1 ENIAC,1946 Figure 2.2 EDVAC, 1951

With advancements in technology, CPUs could be made smaller, and could house more
complex circuitry, allowing for multipurpose capabilities. Starting in the 1960s, transistors,
semiconductor devices that could amplify or switch electronic signals, were used to replace the
bulkier and fragile vacuum tubes. Circuits of interconnected transistors could be manufactured
in a compact space, and then printed on a single semiconductor-based chip (tomshardware.com).
These “integrated circuits” started as basic, non-specialized circuits, and CPUs would need a
numerous quantity of integrated circuits to run. Additional transistors could be added to the

integrated circuits, improving their capabilities even further.

Figure 2.3 Size Comparison between Vacuum Tube(left) and Transistor(right)

Intel introduced their first microprocessors, the 4-bit Intel 4004 and 8-bit Intel 8008, in
1971 and 1972 respectively (meetingtomorrow.com).. In comparison to other CPUs which
required multiple integrated circuits, microprocessors could run on a single integrated circuit,
which greatly reduced the cost of processing power (Singer). Microprocessors were faster, more
efficient, lighter, and a fraction of the size of previous CPUs. Their manageable size and
efficiency has rendered all previous CPU models obsolete. Modern processors are even more
efficient, operating on the nano level rather than the micro level, although, they are still referred

to as microprocessors.

Figure 2.4 Comparison of Computer Designs, (from Left to Right, 1944 EDVAC, 1968 office computer, 1972

Microcomputer powered by Intel 8008, 1984 Apple Macintosh, 2013 Dell Insperion)

2.2 Microcontrollers

Microcontrollers are a self-contained system containing a processor, memory and
peripherals. They are meant to be a cheaper, more cost effective solution for systems that need
the abilities of a processor, but are not hardware intensive (robotplatform.com). For reference, a
modern commercial processor could cost between $300 and $1000, while a microcontroller can
be as little as a few cents.

The history of microcontrollers is tied to the history of the microprocessor. While the
Intel 4004 was revolutionary in redesigning CPUs, the microprocessor required external
memory, a motherboard and many other components, making any system that used them very
expensive. The price of manufacturing made it cost-ineffective to use microprocessors when

building appliances and other devices that weren't meant for major computation.

Figure 2.4 Intel 4004 Microprocessor

In 1974, Texas Instruments (TI) released the TMS 1000, which had read-only memory,
read/write memory, processor and clock on one chip (circuitstoday.com). The cost required to
produce this was greatly reduced in comparison to other microprocessors. Other companies,
including Intel, followed suit by crafting their own microcontrollers, which were optimized for

singular applications.

&@TMS] OOONL

MP0OOO5B
P 7636

Figure 2.5 TMS1000 Microcontroller

The modern microcontrollers are a very diverse in both their specifications and their uses.
They range from very fast, capable of running complex systems and devices such as
smartphones, to one's meant to run lights. The diversity is a great as their applications in modern
life: high power, low power, 8 bit, 64 bit, slow, fast, large memory, small. They now run most

appliances, devices, toys, gadgets, and almost any other electrical system (circuitstoday.com).

2.3 Existing Kits

The idea of an educational tool designed to teach embedded computing is not a
completely new idea. There are a number of kits that have been produced in the past that have
been built for this exact purpose. The number of kits produced for this purpose is admittedly
small, especially when viewed in comparison to educational kits devoted to other disciplines.
Also, many of these kits are out of date, or have been discontinued, meaning that the market of
embedded computing kits is virtually untouched.

There are a few theorized reasons why this market is so small. Embedded computing is a

subject that is very in-depth and complex, more than electrical circuits or basic programming.

Starter kits are very expensive, and the software needs to be kept up-to-date to stay relevant.
Most kits are not actually educational in nature, and assume the user is experienced with
microcontrollers and has purchased the kit with the express purpose of building their own
application, rather than learning how to program.

The first item for review is the Thames & Kosmos Microcontroller Computer Systems
Engineering Kit. The kit includes a portable carrying case that has a main board and additional
circuit components, a cable to connect the board to a computer, a CD containing the
programming software, and an instruction booklet with directions for projects. The user needs to
set up and wire the board by hand for each individual project, and the instructions for how to do
so are contained within the manual.The product was discontinued in 2006 or 2007, and the

software is not compatible with modern operating systems (www.parentschoice.org).

Figure 2.1: Thomas and Kosmos Microcontroller Computer Systems Engineering Kit

The PICDEM Lab Development Kit shares similarities with the Thames & Kosmos Kkit.
The kit consists of a customizable board, an array of sensors and other circuit components, a CD
containing software, a cable to connect to the board, and a virtual instruction manual with
hands-on projects.The PICDEM kit has multiple PIC microcontrollers rather than a single

microcontroller board. The kit is still available for purchase (www.microchip.com).

Figure 2.2 PICDEM Lab Development Kit

The Nerdkits Microcontroller Kit was developed by a team of MIT graduates to teach
Electrical engineering and Software Development. The boards are composed of basic
components that can be replaced easily. The kit includes an instruction guide that gives
step-by-step instructions on how to perform the electrical wiring and how to write and compile
programs. Sample projects are located on the website with videos on how to perform them. The

kits are no longer being distributed (www.nerdkits.com).

Figure 2.3 Nerdkits Microcontroller Electronics Kit

10

The last kit researched was the Getting Started with the BeagleBone Black Kit, which
features a the BeagleBone, a Linux-based microcontroller board with the programming
capabilities of an Arduino-level microprocessor. The kit contains the BeagleBone board, an
instruction manual with project applications, and an array of capacitors, resistors, LEDs and

other circuit components(www.makershed.com).

! Getting
Started with
BeagleBone

Linux-Powered Electronk: Projects
il Pyt amd aneaSeript
Rty Richardhusn

Figure 2.4 Make: Getting Started with BeagleBone Kit

There were noticeable similarities between the different kits. Each kit was packaged as a
disassembled unit, with a microcontroller, a solderless breadboard, and additional wires,
resistors, LEDs, buttons, and sensors. The user had to connect the microcontroller to the
breadboard, and wire the breadboard with the necessary electrical components needed to
construct whatever application was presented.

Any of the other embedded kits that were found while researching were specialized kits
used to design custom applications. These kits were meant to be used by experienced
programmers, lacking instructional materials of any sort. Despite this, there was one kit that had
a unique feature that caught our notice. The Netduino Go Starter Kit consisted of a main board
with Netduino microprocessor, and 4 additional module boards that worked in conjunction with
the main board. Each module had a few built in components, and could be easily connected to
the board. This made the board more easy to use for a wide variety of applications

(www.adafruit.com).

11

Figure 2.5 Netduino Go Starter Kit

Boards on | Circuitry | Board Side Project | Manual | User [Software | Materials

market Type Boards Level | Location

Thames& | DIY (n/a) Single | 100 Print Begin | CD with | Sensors

Kosmos Kit

Nerdkits DIY Atmel Single | 26+ Online Inter | Online LCD, mosfets,
Firmware | sensors

PICDEM DIY PIC Single ? CD Inter CD with | Mosfets, Motor,
Kit sensors

Beagle- DIY ARM Single | ? Print Inter | Online Sensors

Bone Cortex Firmware

Netduino Prebuilt Arduino Five N/A N/A Adv. | Online 5 modules

Go Firmware

Ideal Prebuilt ARM 4-5 12+ CD Inter | Online/ LCD, 4 Modules

Cortex CD

Figure 2.6 Comparison of Existing Educational Kits

12

3 Methodology

The methodology section will cover what we did during the course of the project. It will
start with the initial meeting and planning of our project. It will then cover the selection and
programming of our development board. Then it will discuss the design process of the extensions
which became modules and the lessons we planned to teach. We will also discuss the
construction and implementation of those modules and the choices we made. We will conclude

with our creation and testing of the lessons.

3.1 Initial Planning

This project began when we separately came to Professor Bitar and proposed a kit
dedicated to teaching students the basics of ECE. Alex proposed a kit that would teach student
how to assemble basic hardware circuits, while Steven proposed a kit that would teach students
the basics of embedded systems. Professor Bitar asked us meet together with him to see if we
could combine our efforts and work together. After spending some time working together and
brainstorming ideas, we decided to unify our project ideas. The final proposal was to create a kit
that taught the basics of embedded programming and leave open the possibility of teaching
students how to make and program components for an embedded circuit.

Now that we had decided what type of kit, we had to determine the scope of the project,
we could not make a kit that would be useful to everyone. First we had to decide who our target
demographic was. We debated what age group, and knowledge level the kit should be tailored to.
The options for age group were divided by educational divisions: Middle School, High School,
and College. We wanted the kit to teach the students skills that could be used outside the scope
of the kit itself, and we wanted them to know and understand what they were doing, not just
doing as they were told. As such we decided to aim the kit at High Schoolers, and early college
students, as this group would understand the knowledge presented, while not be advanced

enough that it would be too simple. The second part of this stage was to determine the level of

13

knowledge that the students should have coming into the project. Should we make a kit for
someone who has no knowledge of programming, or an advanced knowledge? We decided to
develop a kit for someone who has basic knowledge of programming C, but little to no
experience with embedded systems. We did this because we wanted a kit to teach embedded
programming, the creation of an application using both hardware and software. We did not want
to have teach the students how to program from scratch. We use common programming
terminology, which we did not want to teach. To summarize, we decided to build a kit for High
School/College level students, who know how to program but wish to learn embedded systems,
the basics of those systems.

Now that we knew who would be using the kit, and their background, we had to decide
where the kit would be used. Was this a classroom tool, to be used by teachers to teach their
student, or was it a DIY (Do it Yourself) Kit? We decided that this would be a DIY Kit, that
would teach its user the topics. It could still be used by a teacher as a classroom tool, but we
wanted it to be a commercial product for individual use, first and foremost.

The final step of of this stage was to determine what our kit should contain, and what we
needed to deliver for our project. We split the kit into three types of deliverables: hardware,
software, and lessons. For the hardware we would need a development board, that would serve as
the center of our kit and an expansion(s) board that would add any hardware we wanted but was
not included on the development board. For the software we would need to deliver a software
library for the kit, complete with examples that would allow the student to use the hardware
from the start. The lessons are the documents that would teach the students how to use the kit,

and give them projects to do as they learn.

3.2 Designing the Lessons

We had the basic idea for the kit: who would use it, where, and what was should be in it.
Now we had to determine how it would teach. As the the kit was meant to be DIY, we wanted to
keep it interesting, as such we decided that we wanted to teach by application. We wanted to
create a series of applications that would cover cover the material we wanted to teach, well

giving to students a sense of accomplishment (and a new toy to play with). We then

14

brainstormed a series of applications that could be done by in an introductory course, and either

had utility (a clock) or was a game (Simon Says). The results of this can be seen in Figure 3.1.

2 Variants:
) _ Buttons
1. Multiplayer: 1 person enters the word, another solves : .
Graphical Display
the puzzle
Memory

2. Single Player: Randomly chooses a word and the

player tries to guess the word Random Numbers

Accelerometer
Move a ball through a maze by tilting sensor, possible random |Graphical Display
maze generation, randomly chosen maze from prebuilt mazes, |ADC, Memory,
level system (like pac-man) Random Numbers,
Buttons

Using the specs of a thermistor, determine the temperature of | Thermistor, Display,
the room. ADC

Thermistor, Display,
ADC, DAC, Clocks,
Timers, Interrupts,
Buttons, Speaker

Use the microcontroller's clock to simulate a 12hr clock,
complete with alarm, thermometer, timers, and stopwatch
features.

Graphical Display,
Make a guitar hero game, play a song and light the LEDs |DAC, Clocks, LEDs,
corresponding to the current notes, the notes can descend the |Timers, Interrupts,

graphical display, choose songs Buttons, Memory,
Speaker
DAC, Clocks, Timers,
Play the patterns on the LEDs and the speaker have the user Interrupts, LEDs.

repeat. Speaker, Buttons

Buttons, Clocks,
Interrupts, Timers
Graphical Display

Have the user enter a morse code message that is translated
onto the Display in real time.

Optical Sensor,
Have a robotic arm that bats and incoming ball away Cervos, DAC, ADC,
Interrupts

Graphical Display,
Read in a wave form and display it in real time, Capture Mode, [ADC, Clocks,

Storage Timers, Interrupts,
Buttons, Memory,

Sampling, ADC, DAC,
Microphone, Speaker,
Memory, Buttons

Read in sound through a microphone, store it, and play it back
at the push of a button

Buttons, Graphical

Make a basic calculator Display, Math

Figure 3.1 Brainstormed Projects

15

At this point we realised that we would have to teach the students the individual
components one at a time, but we wanted to keep them learning by doing not by reading blocks
of text. So we decided that to change the format from one large application, to a Lesson. A
Lesson would be a series of Assignments, with some text explanations, that would culminate in a
Project to build the application. This would allow the students a very hands on learning

experience, while giving them the sense of building towards a goal: the application.

3.3 Development Board

We had a plan, we knew our target demographic, we knew what we wanted to teach, and
how, now we had to begin building the kit. The first step was to choose a development board to
use, as it is the central component of the kit and it is needed to develop any other components.
We began by making a list of criteria for the board. The first criteria was that the board had to be
very expandible, this would allow us to add any hardware our projects needed. The second
criteria was usability, we did not want an over complicated microcontroller as that would make
the kit harder to use. We also wanted the board to have minimal built in hardware, allowing it to
change its functions based on the hardware it was connected to. The third criteria was versatility,
we wanted the lessons that the students learned using the kit, and the board itself, to be usable in
future projects. We wanted to get our students started on the path, and we wanted them to
continue down it after.

The first step in choosing a board was to choose an architecture to use. We examined
three architectures that we had used previously and had at least some experience with: ARM,
Arduino, and MSP430. To decide which architecture was best suited to the purpose of our
project we examined the prevalence of the architecture, its uses, the availability of software, and

other criteria, see Figure 3.2 for more details.

16

Architecture Advantages Disadvantages

Large Range of Microcontrollers
Large Range of Boards Difficult to Set Up
Commonly Used Variety Limits Sample Usability

Usable in Wide Range of Applications

Limited Applications
Easy to Set Up Not C, but Arduino Language
Easy to Program Not Commonly Used

ARDU I NO Large Amount of Sample Code Limited Range of Microcontrollers

Limited Range of Boards

Some Limitations on Applications
Usable in Range of Applications Not Commonly Used
Some Sample Code Limited Range of Microcontrollers

Limited Range of Boards

Figure 3.2 Architecture Advantages and Disadvantages

MSP430 was the first architecture we ruled out, it had limitations in some applications, a
small number of available boards, and few advantages to speak for. This left it a competition
between Arduino and ARM. Arduino was easy to set and use, but had very little real world
applications. Additionally Arduino had a large following among hobbyist leading to large
samples and libraries, but did not use conventional C, limiting the use of the skills learned. ARM
is a very prevalent architecture, with a wide range of boards, but the libraries tend to be restricted
by microcontroller. ARM is generally more complex, harder program and set up. In the end we
decided that we could overcome the disadvantages of ARM with some hard work on our end, by
creating libraries to reduce the program difficulty and having pre-setup projects.

Now that we had an architecture, we had to choose a the board itself. On the
recommendation of several professors, we decided to select a board from Olimex, a
manufacturer that specializes in making development boards for education purposes. Olimex

provided several useful advantages, the first of which was that they sell various hardware

17

modules that connect to their proprietary UEXT port. Secondly they provide sample code for
most of their boards. These two features could save us a large amount of time and effort. We
began to examine Olimex’s expansive selection of ARM development boards. There were

several boards that fit our criteria , but one stood out: the STM32H152, see Figure 3,3.

Figure 3.3 Olimex STM32H152

It has two 2x20 extension ports, a UEXT port, and was only $18. It also had extensive
libraries provided, as well as example projects in both eclipse and IAR Embedded Workbench
ARM (EWARM). For the full detail, visit:

https://www.olimex.com/Products/ARM/ST/STM32-H152/

This seemed to fit all our criteria, it was simple, expandable, and code libraries that
would give a place to start. The STM32H152 uses the STMicroelectronics STM32L152VBT6
microcontroller which is part of the STM32 series of ARM microcontrollers. For the full details
For the full product specifications of the STM32L152VBT6 visit:

http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/s

tm3211-series/stm321151-152/stm321152vb.html?sc=internet/mcu/product/248824.isp

Unfortunately, this was when we ran into our first, and largest, difficulty. Once the board
arrived, we found the libraries provided by Olimex to be either incomplete or flawed. We were

forced to find and alternative library, we turned to the manufacturers of the microcontroller,

18

https://www.olimex.com/Products/ARM/ST/STM32-H152/
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32l1-series/stm32l151-152/stm32l152vb.html?sc=internet/mcu/product/248824.jsp
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32l1-series/stm32l151-152/stm32l152vb.html?sc=internet/mcu/product/248824.jsp

STMicroelectronics, who had set of libraries for their STM32L1xx line, called the
STM32CubeL1. This cube only contained projects and code configured for the development
boards built by STMicroelectronics, and their corresponding microcontrollers. Fortunately one of
the development board uses a very close microcontroller, the STM32L152C. This allowed us to
get our microcontroller booted. Unfortunately the documentation for the libraries was broken, we
were forced to puzzle out their construction through trial and error. As we adapted them to
match our microcontroller and board. As we explored their construction we made the necessary
adaptations to make the libraries functional for our board. After large amount of time, we gained

a sufficient understanding the libraries, called the HAL drivers to find and properly adjust them.

3.4 The Modules

In parallel to the choosing and programing of the development board we began to plan
how we would expand whichever board we would choose. There were two methods that we
discussed, the first was a traditional daughterboard that would contain as much hardware as we
could fit. The second was a series of interchangeable modules, based partly on the modules
provided by Olimex, and partly on the shields used by Arduino. The daughterboard would be
allow us to create a single multipurpose board, it would be complex and would have limited use
outside of the kit. The module design would create many single purpose boards, each would have
a simple design, but the amount of boards would complicate the projects. We decided to use the
Modules because it would allow the kit to be expanded by creating more modules, additionally it
would make the kit more versatile, and ,we believe, more interesting to use.

Once we had our our development board chosen, we needed to map out the hardware
needed by each project, so that we could determine what was needed on our modules. The full

details of this can be seen in Figures 3.4 and 3.5.

19

Project Buttons Microphone |Thermistor [Potentiometer

Simon Says +

Guitar Hero

Universal Clock

Morse Code

Hangman

Voice Recorder

Oscilloscope

Thermometer

Calculator

Maze Game

Tilt Maze

Robotic Arm

Figure 3.4 Project Hardware Part 1

Project Memory |Voltage Divider |Numberpad |Servo [Motion Detector |Accelerometer

Simon Says +

Guitar Hero -

Universal Clock

Morse Code

Hangman

Voice Recorder

Oscilloscope

Thermometer

Calculator

Maze Game

Tilt Maze

Robotic Arm

Figure 3.5 Project Hardware Part 2

We also had to plan how the modules would connect to the development board. Both of
the 2x20 ports on the STM32H152 have their own power lines, and connections to 34 Pins on the
microcontroller, additionally we had the UEXT port and the Olimex modules. We designed six

single purpose modules, to contain the hardware that we would need, see Figures 3.6 and 3.7.

20

Speaker |Microphone |Thermistor |Potentiometer

Figure 3.6 ModuleHardware Part 1

Voltage Divider [Numberpad [Servo [Motion Detector |Accelerometer

Figure 3.7 Module Hardware Part 2

As we now knew what hardware each project required and what hardware each module

contained, we combined the information to see which modules each project would require, see

Figure 3.8 for the full details.

Simon Says +

Guitar Hero

Universal Clock

Morse Code Translator

Hangman

Voice Recorder

Oscilloscope

Thermometer

Calculator

Maze Game
Tilt Maze
Robotic Arm

21

Figure 3.8 Project Modules

We realized the most commonly needed module for projects was the LCD, so we would
use the UEXT port for that purpose, leaving the 2 2x20 ports open for other modules, allowing
for the most versatile use of the modules. At this point we chose our LCD Module from Olimex,
we choose the MOD-LCD3310, it came with libraries for a microcontroller similar to ours and
$8 was inexpensive. For more details visit:

https://www.olimex.com/Products/Modules/LCD/MOD-L.CD3310/open-source-hardware

We began to design the modules, we began with the UserlO module as it is the second
most commonly use module. It consisted of five multicolored buttons and four multicolored
LEDs and their specifically designed to be used with the Simon and Guitar Hero projects, but
with the ability to work with the other projects. The second board, dubbed the “sound board”,
housed a speaker, with the ability to be adjusted by a potentiometer to control the speaker’s
volume and a microphone and would also be placed on the sound board, since the one project
they were needed for also required the speaker. An additional button on the sound board would
be used to activate the speaker. The keypad used for the calculator project was placed on it’s own
separate board. The servo for the motorized arm would also exist on a separate board. The final
board was called the sensor board, as it would connect to the thermistor, accelerometer, motion
detector, and voltage divider. These were all placed on the same board, since they were each
only used for one project and fit a central theme. See Figure 3.9 for some examples of our

designing phase

22

https://www.olimex.com/Products/Modules/LCD/MOD-LCD3310/open-source-hardware

/
sewsors (lrrd /aurm DRVICE (Drpcdy)

tVee £ Lt
_E]tL‘—‘ e &
-ﬁ_l Cheeke ve IeTREAuPT {
= i |V o r
Lee] 2
2) | Fsimy IR i — WS Praeass
T e LEN e \ 1 \
FE O = g A
= T e | t 3 1 71 .y
D Tustaaray Crewe) ’ T‘\‘ "‘1
£ - z 5 4 \
P e ; QuTPUT si2g, t =1t
e -
= h,f'
q> ¢ps cgee b 2
"g Y Drsedy
Elir)
e |
B2 Ne (i
- k 3
/ LRps
9 peas o (ms0) (‘P/} @z
Ve \ T f

Figure 3.9: Example Design Sketches

When it came to physical construction of the modules we had three options: breadboard,
perfboard, and custom PCB. The breadboard was the most easily constructed but was best used
only to prototype the boards. Perfboard was an acceptable finished project, and was only a little
slower than breadboarding. Custom PCBs were the most professional, but were very time
consuming to design and even more time consuming to order. As PCB was the most desireable
finish project, we decided to to see what it would take to to design one. We quickly realized that

this would take too long, and settled on Perfboard. Figure 3.10 show the various stages of

physical development of the UserlO board, as an example.

23

2y Gnd
A

I rea
{ IR T

HORZKED

Eiii%%z

@ose

Figure 3.10 Stages of Development

Design, Circuit, Prototype, Product

In addition to the physical construction of the modules, additional software functions
needed to be developed to initialize the modules and allow the microprocessor to properly
connect and interface with the daughterboards. The LCD screen was distributed by Olimex. The
files containing the code needed to initialize the LCD, as well as basic functions used for writing
and drawing on the LCD, could be found on the Olimex website. The files, once downloaded,
required a few alterations. First, the main file needed to include a link to the.h file for the LCD.
Second, the GPIO pins required to initialize the LCD needed to be changed to correspond with
the pins that connect to the microcontroller via the UEXT.

For the modules that we constructed, such as the keypad module, we created drivers that
would initialize and interact with them. To continue with the keypad as an example, the driver

contained to functions: keypadlInit() and getKey(). The function keypadInit() would initialize the

24

four GPIO pins connected to the columns as Push-Pull output pins, and the four pins connected
to the rows are initialized as input. The function “getKey”, individually set the GPIO pin for one
of the columns as high, and then polls each of the pins in the row to determine if they were
pressed, before resetting the GPIO pin of that column and then setting the next column, and then
polling each of the pins in that row. If one of the buttons has been pressed, then the function
returns an integer value associated with the button that was pressed.

It was at this time we ran into our second major difficulty, one that resulted in some
drastic changes in both our project and pace. We tried to design all of these modules, while
setting up the board, ignoring the lessons. We were trying to do too much with too little time, so
we narrowed what we working on. With just the keypad module functioning as a buttons and the
LCD, we could build several of the projects. We began to focus on these, and the UserlO module
which was almost complete at the time and those projects. This would allow us to created the

lessons for those projects, and have complete sections, hardware, software, and Lessons.

3.5 Writing and Testing the Lessons

The final part of our project was writing and testing the lessons. As we completed the
modules needed by each lesson we began writing and testing the lesson. By the time we got
around to writing up a lesson plan, we still weren’t sure how the lessons would be implemented
to properly educate the student to build the application. So, we worked backwards: we designed
the final project, and then built an application that could successfully meet the parameters that
we set for the project. There were multiple advantages to this method. First, it proved that the kit
contained all of the necessary components needed to fully implement the application. Secondly,
it gave us a better understanding of those components, as we found limitations, bugs and other

such problems. Thirdly it allowed us to break down the steps that we took to build the project,

25

and as well as any challenges or difficulties we had. This information was immensely useful
when writing the lessons as it allowed us to decide of the order of the lessons and the what
assignments each lesson needed to teach student how to build the applications. We decided at
this point to add an introductory lesson, one that would teach the students how to connect the
development board to their computer, how to use the IDE EWARM, and how to use the basics of

the libraries provided. The results of these are discussed in the results section.

26

4 Results

This section will cover the outcomes of the project both the deliverables and the
difficulties of the project. There were three parts to the deliverables hardware, software and
lesson plans. When the project first started we had twelve lessons and seven daughter modules
planned, but we quickly learned that this was very over ambitious and our timeline was based on
an underestimation of the difficulties before us. In the end we delivered six lessons and only
three of the modules. The modules we delivered were the LCD, the Keypad, and the User 1/O.
The LCD module was bought from Olimex, the manufacturer of our development board. An

image of it can be seen in Figure 4.1.

Figure 4.1: Olimex MOD-LCD3310

The keypad module, seen below, was designed and constructed by us, it is a prototype of
what would be in the final kit where we would like it to be on PCB. The prototype is constructed
on a perfboard due to time constraints, it is a simple design of pull down resistors for the column

pins. The circuit diagram for this module can be seen in Appendix G.

27

Figure 4.2: Keypad Module

The User I/0 module, seen below, was designed and constructed by us, it is a prototype
of what would be in the final kit where we would like it to be on PCB. The prototype is
constructed on a perfboard due to time constraints. The module consists of five additional user
push buttons and four additional LEDs and their accompanying circuitry. The circuit diagram for

this module can be seen in Appendix H.

28

- - Doniacte ®

OIOOL a/\ﬁ’\ OOAH SAOANAANAANAAAAANAB @A — a - 1
VOO0 O0B !) ®) ALY ®
0600 00090089350300@9556350308ee Sw@%
) ?’55% zaég C% 37 3 39;6%4:4_3.4.54““549%;% 2 535455 56 57 53 55 68
‘ o0 cpsaas cpgs oo le] s0ssss00eevenss;
/ %@\y ceaees Wh % O

@gﬂ'OOQOQ ®

22 23 24 25 26. 7 28 29 30 31 32 33 KR 35 34,37 38 {1 48 11 42 43 44 45 4

f) a00®®
£ \ 0009000600000 Ene0000sIOE
Bieict : 0ee0opoe®

(seoesesssssssee
THH 3354 .-ooooooooec@oe@@

J Jeoeo [OL L ICICIC L) [
(: ,@\:ug;g (@j@)@@@@@@@@@ 0000eveeeeecOOEH®

+

Figure 4.3: User /O Module

The lessons are the Introduction, the Calculator, the Clock, the Morse Code Interpreter,
the Maze Game, and Simon Says. Each lesson is broken into assignments, each a part of the
lesson that ends with the student making an application that will teach them one topic or element
to make the final assignment, the goal of each lesson work. The full lessons can be seen in
Appendices A-F, what follows is a brief description of each lesson. The introduction is shows the
students how to set up their kit, and start using the software. It teaches how to make a very basic
application on the development board and how to initialize pins. In the calculator lesson students
will learn how to use the Keypad and LCD daughterboards, in order to create a functioning
calculator. They will do this by learning step by step how to write to the initialize and write to
the LCD using the drivers provided in the kit. Then they will likewise learn to initialize and read
input from the keypad. Once they have learned these assignments they will combine them to

create a calculator.

29

The clock lesson will teach students how to use their kits to build a clock. It is meant to
teach them how the HAL Library keeps time and how to access and interpret that information.
This project will explore how to read through the HAL Library, and make minor adjustments as
well a introduce the concepts of timers. It will culminate with them creating an accurate clock
that can be set. The morse code lesson is meant to introduce student to the concept of interrupts,
and why they are a useful. It will also teach Morse Code, but that might be less useful. The Maze
Game lesson, teaches students how to use the drawing functions built into the LCD to design a
working maze game. This project will also help reinforce the concept of programming dynamic
states within a code. In the final lesson we completed, Simon Says, the student will learn to
create their own basic driver for the module and then use their own drivers to make the game of

simon says.

30

5 Conclusions

This section will discuss what we learned over the course of this project and what what
we think could be done to take the kit we have started further.

The first and most important lesson we learned from this project was to not try to do to
much, especially at one time. We were trying to develop multiple modules and lessons while still
setting up the board. Trying to do all that resulted in getting almost none of it done. After a
while, and with some advice from our advisor, Professor Bitar, we narrowed our project, taking
it step by step, trying to get one lesson and its components working. We then optimized what we
were working on focusing on the lessons that used, or could be adapted to use, the same
components from the first lesson. We learned the difficulty and time it can take to develop your
own ideas into reality, and that we needed to plan better for obstacles. We also learned new
engineering concepts as well, we learned to how to construct PCBs, though we decided that it
was to time consuming to use. We set up drivers for our students, and enhanced our knowledge
of the subject by creating lesson to teach students.

We did not get everything we wanted to have in the kit complete, as such we have ideas
on how this our kit could be developed further. First we have the four modules we did not have
time to build: Sound, Memory, Sensor, and Servo. Appendices I-K contain charts showing our
original plans. The sound module was meant to contain speaker and a microphone, which would
serve to teach how to use ADC’s and DAC’s as well as sampling. The memory module was to
contain small EEPROM storage device, which could be used teach about memory management.
The sensor module which was to contain three sensor: a thermistor, a accelerometer, and a
motion detector, which was meant teach how to interpret sensor data. The final module that was
proposed was the Servo, which was meant to introduce the the idea using an embedded to system
to control a physical response. The unfinished project were meant to use these modules to teach
the lessons.

In conclusion, while there is much that could be done to further our kit, we have gotten

the initial lessons and modules completed. In doing so we learned how to better plan projects,

31

work around obstacles, and to prioritize our work. We also learned to work as a group, and to
divide tasks, to get them done as quickly and efficiently as possible. This project has made us

into better engineers, readier to face the challenges of life and work that we will now go on to

have.

32

Works Cited

10.

. Nerdkits, LLC, “Nerdkits: Electronics Education For a Digital Generataion”, 2013.

http://www.nerdkits.com/. 6/27/2016.

Olimex, “Olimex: Development Boards”, 2016. http://www.olimex.com. 5/1/2016.
Adafruit, “Netduino Go! Starter Pack (Modular .NET microcontroller)”.
https://www.adafruit.com/product/800. 6/27/2016.

Maker Shed, “Make: Getting Started with the BeagleBone Black Kit - Version 27, 2016.

http://www.makershed.com/products/make-getting-started-with-the-beaglebone-black-kit

. 6/27/2016.

Microchip, “PICDEM Lab Development Kit”, 2016.
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM 163045.
. 6/27/2016.

Homce, Elliec and Homce, Don. “Microcontroller”, 2007.

http://www.parents-choice.org/product.cfm?product id=22036&. 6/27/2016.
Meeting Tomorrow. “History of the Microprocessor” .

https://meetingtomorrow.com/content-library/history-of-the-microprocessor. 6/28/2016.

Singer, Graham. “The History of the Microprocessor and the Personal Computer”
9/17/2014. http://www.techspot.com/article/874-history-of-the-personal-computer/
6/28/2016.

Robot Platform. “History of Microcontroller”, 2016.
http://www.robotplatform.com/electronics/microcontroller/microcontroller.html.

6/28/2016.

John. “Microcontroller — Invention History and Story Behind the Scenes”, 8/23/2013.

http://www.circuitstoday.com/microcontroller-invention-history. 6/28/2016.

33

http://www.nerdkits.com/
http://www.olimex.com/
https://www.adafruit.com/product/800
http://www.makershed.com/products/make-getting-started-with-the-beaglebone-black-kit
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM163045
http://www.parents-choice.org/product.cfm?product_id=22036&
https://meetingtomorrow.com/content-library/history-of-the-microprocessor
http://www.techspot.com/article/874-history-of-the-personal-computer/
http://www.robotplatform.com/electronics/microcontroller/microcontroller.html
http://www.circuitstoday.com/microcontroller-invention-history

11. Copeland, B. Jack, "The Modern History of Computing", The Stanford Encyclopedia of
Philosophy (Fall 2008 Edition), Edward N. Zalta (ed.),
<http://plato.stanford.edu/archives/fall2008/entries/computing-history/>.

12. Bestofmedia Team. “Computer History 101: The Development Of The PC”, 8/ 24/2011

http://www.tomshardware.com/reviews/upgrade-repair-pc.3000.html. 6/28/2016.

13. Zandbergen, Paul. “Central Processing Unit (CPU): Parts, Definition & Function - Video
& Lesson Transcript ”

http://study.com/academy/lesson/central-processing-unit-cpu-parts-definition-function.ht

ml. 6/28/2016.

34

http://plato.stanford.edu/archives/fall2008/entries/computing-history/
http://www.tomshardware.com/reviews/upgrade-repair-pc,3000.html
http://study.com/academy/lesson/central-processing-unit-cpu-parts-definition-function.html
http://study.com/academy/lesson/central-processing-unit-cpu-parts-definition-function.html
https://www.adafruit.com/product/800

Appendix A - Introductory Lesson

35

Lesson 1 How to use your Kit

This Lesson will teach you how use the kit you have purchased. It will discuss what is
included in the kit and how to set it up. You will then write a some very basic applications that
will help you take your first step in embedded programing. To use this kit, you will require a
USB compatible computer with Windows 7 or newer. You should also have at least a basic
understanding of the C programming language. We are sad to say that this lesson is a bit tedious,
it was to write as well, but the lessons that follow will be much more focused on doing is

learning.

Need to Know 1 What’s in Your Kit

Welcome to your Introduction to Embedded Systems Kit, inside your kit you will find six

items. Seen below in Figure 1.

ENT BOARDS

DEVELOPM

ARM - AVR® MSP430 - PIC

[t
{

-
opmenT BOARS

J—

Figure 1: Embedded Systems Kit

36

The first item, which you have already figured out if you are reading this, is a flash
drive. This drive contains two folders and README.txt, which directs you to this Lesson. The
first folder is Lessons, which contains the Lessons you will be completing while using this kit.
The second folder is STM32H152 Kit, this folder contains all of the code, libraries, and projects
you will need to use this kit. I would recommend that begin using this kit by transferring the
contents of the drive to your computer for ease of use.

The second item in the kit is the a small rectangular box labeled Olimex Development

Boards, which contains the Olimex STM32H152, pictured in Figure 2.

DEVEL.OPMENT BOARDS
ARM - AVR - MSP430 - B\C

R T TR R B Y

bl st ST bl

Figure 2: Olimex STM32H152

This is the board that contain the your new microcontroller, and will run the applications

(hardware and software) you create throughout your lessons.

37

The third item in your kit is a box labeled STMicroelectronics ST-Link/v2 which
contains three items: a MiniUSB to USB cable, a 2x10 Ribbon Cable, and the STLink/v2, seen

in Figure 3.

e s
- 28 13365

09871
element 18

ICD/PROGRAMMER FOR STMg, sTM32

ummmunmmfluP e
HI‘ |lllllllll||||l|\ e D8BOBE0G

l0: 005
iiilnllu i Ill\}t

llllllIlllllllllllllIlll!lllllllllllllll ;
Hrintnmnm

hufac
S Mll R‘OELEC:

’ Despatch Note No: GB100553002
N iy Ilolﬂliloglgb
h #
A0 k/ \

~ progromming
12 microcontrollers

i)

Figure 3:STMicroelectronics STLink/v2

This item connects the development board to your PC, allowing you to program and
debug your applications.

The next three items in the kit are the modules that connect to the development board.
These modules are the LCD, the Keypad, and the UserlO. Each one adds functionality to board.
The LCD Module is the Olimex MOD-LCD3310, it and the 2x5 Ribbon Cable are in a small

square Olimex box both can be seen in Figure 4.

38

. DEVELOPMENT BOARDS

ARM - AUR : MSP430 * PIC

Figure .4: STMicroelectronics STLink/v2

The second module, and fifth part of your kit is the Keypad Module which is contained
in red square box in your kit, along with the2x20 ribbon cable needed to connect it, seen in

Figure 5.

Figure 5: Keypad Module

39

The final part of your kit is the UserlO Module, this module contains a series of button
and LEDs and is contained in the brown box, along with the2x20 ribbon cable and second

MiniUSB to USB cable, seen in Figure 1.6.

Figure.6: User IO Module

Need to Know 2 Kit Structure

Now that you know what is in your kit, you need to know what how this kit works. The
Kit has three components: hardware, software, and Lessons. All the hardware you’ll need is
included with the kit. There are three main components of the hardware, the first of which is the
development board, which will often be referred to as the Board, see Figure 2. This kit uses the
Olimex STM32HI152 as its Board, for the full technical specifications (specs) you can visit
https://www.olimex.com/Products/ ARM/ST/STM32-H152/ . This board is the center of the kit, it

contains the Mmicroprocessor, a STM32L152VB, for its specs visit

http://www.st.com/content/st com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/s

tm3211-series/stm321151-152/stm321152vb.html?sc=internet/mcu/product/248824.isp .It will be

what is running your applications. The second part of the hardware are the Modules, these are

40

https://www.olimex.com/Products/ARM/ST/STM32-H152/
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32l1-series/stm32l151-152/stm32l152vb.html?sc=internet/mcu/product/248824.jsp
http://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32l1-series/stm32l151-152/stm32l152vb.html?sc=internet/mcu/product/248824.jsp

boards that connect to the Board and expand it functionality. There are three modules, seen
above in Figures 4-6, are named after the functionality they add: LCD adds a graphical display,
Keypad adds a 4x4 Keypad, and UserlO adds buttons and LEDs. The final part of the hardware
are the connectors the wires and cables used to connect the Board, the Modules, and your PC.
The most important of these is the STLink/v2, which allows your PC to directly interface with
the microcontroller.

The second component of the kit is the software. Included in the kit are the drivers for the
Board, two out of three of the modules (Lesson 6 is creating the third), and the Microcontroller

itself. All of the software is included in the Folder STM32H152 Kit, seen in Figure 7.

- g
@@Q_ . » STM32H152 Kit » w |+ Wil Secrch STM32H152 Kit ¥l
Organize = Include in library + Share with + Burn MNew folder B~ O @
o Favorites MName B Date modified Type Size
B Desktop Button Interrupt 6/28/201612:44 PM File folder
4 Downloads Calculater 6/10/20161:53 PM File folder
| Recent Places b Clock 6/10/20161:42PM File folder
1 MQP Work Debug 6/10/201612:41 PM File folder
. Drivers 6/10/20161:06 PM File folder
4 Libraries | Example 6/10/20161:28 PM File folder
Iﬁ Documents o Introduction 6/28/201612:45 PM File folder
& Music |/ Maze Game 6/10/2016 1245 PM File folder
| Pictures MorseCode 6/10/201612:45 PM File folder
B videos settings 6/10/2016 1241 PM File folder
I Simon Says 6/23/2016 4:54 PM File folder
+d) Homegroup STM32H152 6/10/201612:41 PM File folder
|| stm32Mec_hal_confh 10/2/201511:55 AM HFile 11 KB
18 Computer | stm32lec it.c 6/21/201610:44 AM CFile TKB
&, BOOTCAMP (C) || stm32lLxecith 6/21/201610:45 AM H File 4 KB
w Macintosh HD (E:) | stm3210b_eval.h 6/23/2016 3:54 PM H File 4KB

% applications (\\rivet.
% applications (\\rivet,
3% home (\\filer.wpi.ed

&-j Network

16 items

Figure 7: STM32H152 Kit
The drivers folder contains all of the files used to run the microcontroller, which will

discussed in more depth as you complete your Lessons. Most of the other folders contain the

Workspaces for use in IAR embedded workbench, the IDE that this kit will teach in. They are

41

pre-setup to help you jump right into creating applications. I will use the one named Example as,

well, an example it can which be seen in Figure 8.

@—CJE » STM32H152 Kit » Introduction »

Organize = & Open ~ Share with = Bum New folder =~ 0 @

I Organize this folder's contents. Date modified Type Size

7 Favorites. 212
| B Deskiop Debug 6/28/2016 1249 PM File folder I'

4 Downloads . settings 6/28/2016 1249 PM File folder
%l Recent Places | 4] Example 6/10/20161:28 PM IARIDE Workspace. 1kB|
MQP Work || Exmaple.clep DEP File 62KB

i | Bxmaple.ewd EWD File 82KB
| = Libraries || Exmaple.cwp EWP File 68 KB
| [Documents | Exmaple.ewt 6/10/2016 128 PM EWT File 130 KB

o) Music [l main.c 6/7/2016923PM CFile 15 KB
| =] Pictures || mainh 5/26/2016 254 PM HFile 3KB
| EE Videos
|
|) Homegroup
| =

18 Computer

| &, sooTCAMP ()

= Macintosh HD (E)

% applications (\rivet.

% applications (hrivet.
| = home (\ifilerwpi.ed
I €8 Network

\ Example Date modified: 6/10/2016 1:28 PM Date created: 6/28/201612:49 PM

28| 1ARIDE Workspace Size: 161 bytes

Figure 8: Example Folder

The important file here is the Example.eww (show as just Example) which is the file that
will contains the workspace for your Lesson. The only piece of software not included in the kit is
the IDE you will using, IAR Systems Embedded Workbench: ARM Edition (called EWARM for
short). An explanation of how to acquire a copy is in Need to Know 4 of this Lesson.

The final component of your kit is the Lessons, a series of worksheets that will teach you
the basic elements of embedded programming. Each lesson is split into parts each with a
different purpose. The Need to Knows are purely informative sections, they have no tasks or
activities to complete. We tried to avoid these as much as possible as we find learning is easier
and more fun with hands on work. The Assignments are the section you will find the most.
Assignments are meant to teach you by making you build and run applications. Each Lesson,
save this one, will culminate in a final Project. The Projects are applications that will require

everything you have learned in that Lesson, and its predecessors. The applications are a

42

calculator, a multi-function clock, a morse code interpreter, a maze game, and Simon Says. Note

as you progress through the Lessons, we will be providing less and less help.

Need to Know 3 Hardware Set-Up

Now you know what your kit contains and how it is organized, but how do you set-up
your kit? This section will teach you how to connect all those wires. To begin with let's hook
your Board to your PC. First get your STLink/v2 and its cables, seen in Figure 3, and connect

them as seen in Figure 9.

Figure 9: STLink/v2 Set-Up

From there connect the 2x10 pin ribbon cable’s other end to the matching plug on the

Board, see Figure 10 for more details.

43

Figure 10: STLink/v2 Connected to STM32H152

Finally plug the USB cable into your computer. The finished product can be seen in
Figure 11. You will need to have this set up for every Lesson, as this is the minimum you will

need to run an application.

Figure 11: Board is Ready to Go

44

I will also explain how to connect the modules to board. These are not necessary for
every Lesson, connect them now to test it out, but only connect them when needed after. The
LCD Module is unique and will use a separate port that the other two modules. The LCD
Modules box contains the 2x5 ribbon cable used to connect the Module to the Board, see Figure
4. Connect the cable to the back of the LCD, be certain the tab lines up to the hole. Connect the

other end to other open, matching port on the Board, see Figure 12.

Figure 12: LCD Hooked Up

The Keypad and the UserlO are not used simultaneously in any lesson, and use the same
port, Conl on the back of the Board. These boards are connected with one of the 2x20 pin ribbon
cables included with them. It is important to note that Conl does NOT have a tabbed connector,

place the tab the Tab so that it faces INTO the Board, see Figure 13, [mean it.

45

DESCRIFTION
NCU Bouer is not supplied
MCU- pouer 1s” suppliea

e e e

1 - ;;> 2 ..«_' ’
Figure 13:Conl Hook-Ups

Figure 14 contains the full hook-up of the Keypad Module..

Figure 14:Keypad Module Connected

46

At his time I need to note that the STM32H152 was originally designed to work with the
original STLink not the STLink\v2. There will be no problems with programing or debugging,
the major change was that Vcc (Power) went from 5V to 3.3V, as such the power converter built
into the Board, regulate the power to ~2.2V, not 3.3V. This can be easily corrected by using the
extra MiniUSB to USB cable provided, connect the USB end to a power source (your PC, your
phone charger, etc.) and connect the MiniUSB end to MiniUSB port on your Board. For the full

connection of the UserlO Module, see Figure 15

°
ol
®

°

®

°

°

°

q ‘6000

Figure 15:UserlO Module Connected

47

Need to Know 4 Software Set-Up

This section will teach you how to set up the software needed for the kit. Luckily
for you, the setup and configuration of the workspaces has been done for you. This means that
the only thing you need to set up is the IDE. Go to

https://www.iar.com/iar-embedded-workbench/#! ?architecture=ARM& currentTab=overview

Pictured below in Figure 16.

IAR B 6/28/2016 11:29:55 AM 149.00 SEK 1.71 % 4 Aboutus Buy MyPages < ENG -

SYSTEMS IAR EMBEDDED WORKBENCH ~ SUPPORT INVESTORS Q
—

IAR Embedded Workbench IAR Systems

BE FREE

Build what you want in the platform
of your choice!

11,195 62,000 33 30

DEVICES USERS YEARS OF DAYS FREE TRIAL

EXPERIENCE

Rebable and proaiees Time to start the
1983.

“The broadest support on Working all over the
the market today. world.

Figure 16:IAR EWARM website

Scroll down until you see Figure 17.

48

https://www.iar.com/iar-embedded-workbench/#!?architecture=ARM¤tTab=overview

« Il & https;//www.iar.com/iar-embedded-workbench/#!7architecture=AR

?Slﬁ\lé IAR EMBEDDED WORKBENCH ~ SUPPORT INVESTORS Q

Tech Notes
Technical Support

o Customer Care

) IAR Academy
Download a free trial
Complete, powerful compiler and debugger tools in a user- Starter kits
friendly IDE—try for yourself!

Analysis tools for ARM

Latest releases for ARM Debugoing anditrace piohes

Eclipse integration

=+ 7.70 What's the main updates?

=+ 7.60 What's the main updates?

ARM core Device Compiler version CoreMark score CoreMark/MHz
Cortex-A9 Renesas RZ/ATH EWARM 6.60 1660.00 415
Cortex-Mé Freescale Kinetis K70 90nm EWARM 6.50 510.02 3.40

Figure 17:1AR EWARM Download Location

Expand the download a free trial and click the yellow download button. This will
download the file EWARM-CD-7701-11486.exe. Execute the file. Follow the setup and
registration guide provided. When registering choose the kickstarter version, otherwise you only

get 30 days.

Go to the example folder from Figure 8. You’ll note that inside this folder, contains two
additional folders, labeled “Debug” and “settings”, an IAR Project Workspace with the name
“Example”, four additional files associated with “Exmaple”, and both a .c file and .h file for
“main”. Every folder that is associated with one of the assignments contains an IAR Workspace
with the same name as the lesson. The workspace is where you’ll be writing and debugging your
code for each lesson. Double click on “Example” to open up the project within IAR Embedded

Workbench, see Figure 18.

49

YT PP EHBURS|D D

Figure 18: Opened Workspace in EWARM

Assignment 1 The First- Blink an LED

Now it is time for you to start doing things go to the Introduction Folder, and
open the example workspace contained. Once you’ve opened Workbench, draw your attention to
the left side of the window. There should be a section labeled “Workspace”. All of the files that
are used in the lesson are listed here. Open the file “main.c”. This is where you’ll be writing your

code for your first assignment, see Figure 19.

50

AL Tnit():

-

Read) Ln30, Col15 System

Figure 19:Ready to Start

This first assignment is very simple, as the main focus is getting you used to the
structure of the lessons for future assignments. You will learn how to initialize a red LED and
have it blink continuously. Note you will only need the Board for this Assignment.

Within your main function, you’ll notice that there are already several lines of code. This
code is used to initialize and set the IO pin that you will be using for this lesson. In a standard
main function for an embedded system, the code is divided into two sections. The first section
contains code that only needs to be run at the start of the application, including variable

declarations, and initialization and configuration of hardware, see Figure 20.

51

STETTT4502
(Bl

Figure 20: Main Function

HAL _Init();
> This function is used to initialize the HAL library.

GPIO_InitTypeDef LED_InitStruct ={0}
> This creates a struct containing the information required to initialize a pin as a GPIO
(stands for General Purpose Input Output. GPIO is a standard digital logic pin).Each pin

on a microcontroller has multiple purposes, depending on how they are initialized.

__HAL RCC GPIOE CLK ENABLE();
> This function enables the GPIO Clock, at port E.

LED_InitStruct. Mode = GPIO_MODE OUTPUT OD;
> This sets the mode that the GPIO pin fulfills; in the case of an LED, this is an output.
There are two types of Outputs: Open Drain(OD) or Push-Pull(PP). In this case we’ll be
using OD.

LED InitStruct.Speed = GPIO SPEED FREQ VERY HIGH;

52

> This sets how often the pin’s current state is refreshed,

LED InitStruct.Pin = GPIO _PIN 10;
> This sets what pin is being called. The red LED is connected to pin E10.

HAL GPIO_Init(GPIOE, &LED _InitStruct);

> This fully initializes the pin according to the parameters set forth.

The second section of the code is the actual function of the application. It is often
placed within a while(1) loop to ensure that it runs continuously. The while(1) loop that appears

in the application is at the moment completely empty, see Figure 20.

The function HAL GPIO TogglePin will toggle the specific pin that is called,
and alternate between setting the pin high or low. You can also use HAL Delay to set a small

delay between two commands. The code below will flash the red LED on, and then off:

HAL GPIO_TogglePin(GPIOE, GPIO PIN 10);
HAL Delay(100);
HAL GPIO_TogglePin(GPIOE, GPIO PIN 10);
HAL Delay(100);

Add this code to while(1) loop as seen in Figure 21.

53

DESEDS) D@ AV iED P |E Y

Workspace A man v x

Debug - Z —
Files i 2

S FExmaple - ... v

5]

[Drivers
in.c

ows hov to use GPIO HAL APT to toggle 1ED3 and IED¢ 105

HAL Init();

GPIO_InitTypeDes LED InitStruct =(0}

__HAL RC(CLK_ENABLE() :

LED_Initstruct.Mode
LED_Initstruct. Sp
LED_Initstruct. Po _PIN_J
HAL_GPTO_Init (GPIOE, sLED_InitStruct):

ODE_0UTRUT_OD:
)_FREQ_VERY_HIGH:

while(1)
{

Pin (GPIOE, GPIO_PTN_10):

PI0E, GPIO_PIN_10):

Read, = Ln64, Col 3 System

m=

Figure 21: Completed Main Function

Once you have finished with your code, you will need to download it to the board
and debug the code. Find “Download and debug”, which can be found under the project tab,(or
alternatively, by using the shortcut Ctrl+D). If you have successfully written the code without
any errors, the screen will change to debugging mode. To start the debugging process, press the

green arrow, and the red LED should start blinking.

Assignment 2 Building a Switch

For your second assignment, you will learn how to initialize the button on the
microcontroller, and then use the button to toggle the LED on and off.

Initializing the button is very similar to initializing the LED, with a few exceptions. First,

the button on the microcontroller is located at pin A0, and the port should be registered as an

input pin rather than an output. Insert the code below into your application below the

initialization of the LED, see Figure 22:

GPIO_InitTypeDef Buttoninitstruct = {0};

54

__HAL RCC GPIOA CLK ENABLE();
Buttoninitstruct. Mode = GPIO. MODE INPUT;
Buttoninitstruct.Speed= GPIO_SPEED FREQ HIGH;
Buttoninitstruct.Pin = GPIO_PIN 0;

HAL GPIO_Init(GPIOA, & Buttoninitstruct);

Figure 22: Button Initilized

Within your while(1) loop, you’ll need to design a method to toggle the LED
every time the button is pressed. The function HAL GPIO ReadPin can be used to read in the
value of a specific pin. The following code is an if statement that will wait for the button to be
pressed, and will toggle the LED on and off. Replace the code you added above and enter the

following in its place, see Figure 23:
if (HAL GPIO ReadPin(GPIOA, GPIO PIN 0)== GPIO PIN SET){

HAL GPIO_TogglePin(GPIOE, GPIO PIN 10);
HAL Delay(100);

55

& Example - 1AR Embedd
File Edit View Project Te

GPIO_PIN_0) == GPIO_PIN_SET)
Pin(GPIOE, GPIO_PIN 10);

-

Ln74,Col5 System

Figure 22: Butten Toggled LED

The delay is necessary for this code to work, as the processor moves at incredibly fast
speeds. Without the delay, the LED will rapidly toggle on and off several times while the button
is pressed down, which will lead to inconsistent results when pressing the button.

These assignments hopefully helped you understand the principle behind initializing pins

on the microprocessor board.

56

Appendix B Calculator Lesson

57

Lesson 2- Make a Calculator

In this lesson, you will learn how to use the Keypad and LCD daughterboards, in order
to create a functioning calculator. You will learn step by step how to initialize and write to the
LCD using the drivers provided in the kit. You will likewise learn to initialize and read input
from the keypad. Once you understand these two concepts you can combine them to make
yourself a calculator.

Before you begin, you’ll want to attach the LCD Screen and Keypad to your
Microcontroller, as you’ll be using both of these modules for your assignments. The LCD screen
comes packaged with a UEXT connector cord to link to the main board. On the top of the
microcontroller board is a 2x5 row of pins within a black enclosure. Connect one end of the
UEXT cord to this point, and connect the other end to the back of the LCD Screen. Keep in mind
that the LCD should be oriented so the side of the screen with the black bar is on the top.

Next, the Keypad board. On the bottom side of the Microcontroller board is two 2x20
rows of pins. They are labelled on the board as “CONI1” and “CON2”. These pin rows will
directly connect to the daughter boards, which contain a 2x20 row of receiving pin holes..
Connect alongside CON1, with the indent tab facing downward (into the board). Refer to Lesson

1 incase you forgot.

58

Assignment 1 - “Hello World”

This very simple phrase, Hello World, is commonly known amongst programmers as the

first message that people learn how to send. In this first Lesson, you will be sending your own
“Hello World” Message.

Open the folder in STM32H152 Kit labeled “Calculator”. Inside your main file is
the pre-written code, see Figure 1:

LCDInit();
LCDContrast(0x70);

int Inverse =0;

[Bxample - IAR Embe:
File Edit View Proj
DeEd & =) vl reopdh BWUHRS|LL
Viorkspace x

Debug

mainQ v X
AL_GPI0_Init (GBIOE, tColumnaimitstzuct):
Files &
S Exmaple - .. v
& Drivers
f-@ Bimainc
— Bmainh
— B stm3zion_
— B stm32iixc.
stm32lheci
— B stm3ziioci
Laryoutput

1 (3,5,6,D)
sinitstruct.Pin = GPIO_PIN_67

GFIO_InitStruct. P
HAL_GPIO_Init (GPIGE,

)_PIN_10;
6PTO_InitStruct) ;

LCDInit() ;
LCDContrast (0x70) ;
keypadInit();

Exmaple

Messages

File Line

2 | Bl

Errors 0, Wamings0___ Ln223, Col 1 System

I

Figure 1:LCD Initialization

LCDInit will properly initialize the pins used to interface with the LCD screen,
and then reset and clear the contents of the screen. LCDContrast will set the standard for the

color contrast between the blank screen and the text that appearsO. This will become important
later.

59

You’ll be using the function LCDStr to write to the screen. LCDStr can take a character
string, and display the string on the LCD screen across a certain row, starting from the left and
displaying all the way to the right. LCDStr takes in three parameters: the first is an integer that
sets the row that the message appears on, the second is the string of chars that makes up the
message, and the third parameter sets whether the message appears as black text on a clear
background, or as white text on a black background. Place this line of code in your while loop,

see Figure 2:

LCDStr(0, (unsigned char *) " Hello World ", Inverse);

/& Example - IAR Embedd

File Line

I | Biild

i

o Erors), Wamings0___ Ln 206, Col 18 System

Figure 2:Hello World

Build and Download your code onto the microprocessor board. You should see the text

“Hello World” displayed on the top of the LCD screen, in what is roughly the center.

Assignment 2- Errors with LCDStr

60

Now, replace your current code with the following, see Figure 3

LCDStr(0, (unsigned char *) "We are going to the moon!", Inverse);

LCDStr(1, (unsigned char *) "Yay!", Inverse);

& Erample - AR Emb
Fie Edt View Project

~/YSuEPe®Ebh

I

Lnsb, Col3

Figure 3:LCD Going to the Moon

If these two snippets of code ran as intended, the LCD screen would display two
messages on two lines: “We are going to the moon!” on one line, and “Yay!” on the second line

Now when you run your application, you should see Figure 4.

61

Figure 4:Yay'!e moon!

Your assignment is to figure out why this error occurred, and then to repair it.

(Hint: The LCDs only so big)

Assignment 3- Function intToString

LCDStr can only write a string of chars onto the board, and so far this has not
resulted in a problem. However, in the coming lessons it might be necessary to also display
individual numbers on the screen as well. Included within the example functions is a handy piece
of code called “intToString”, which takes in a char array and an integer, and then fills the array

with the integer in string form, see Figure 5.

62

5 Erample - 1A% Embeddes Workoench 10¢ I 1 T R W W W | |

File Edit View Project Tools Window Help

‘'YwuEo o BEWHES DD

0 vx
=

Messages File Line

n

Resdy Errors0, Warnings0___Ln933, Col1 System _

Figure 5: intToString()

We’ll provide a basic explanation how it works:
First, the length of the integer is determined by setting a while loop
that continuously divides the integer by 10, and incrementing a
variable “len” by 1 for every tens place. Once the number of tens
places is determined, the function creates a For loop that takes each
integer place and transforms the last place number into a char. The
char is then placed within the string, and the integer shifts to the
right. When all of the decimal places within the integer have been
entered into the string, the character “\0’ is placed in the array. This
character is very important as it marks where the array ends, and
any empty values in the array that appear after the \0 are not
addressed. This prevents a potential error of a function trying to

read an empty string.

To test how it works, create a variable “result” and define it as an int. Within the main

function, create a mathematical equation (for instance, 16*2, or 4*3-5/2) and set the variable to

63

be equivalent to the given result. Then, using the function intToString, turn the result into a

string of chars, and display the result on the LCD screen.

Need to Know 1 - Keypad

The next board you’ll be acquainted with is the Keypad board. Included in the modules folder in

driver is the driver file Keypad.c, see Figure 6.

/& Brample - IAR
File Edit View
D@ &

> [main.c* | keypachn_keypacic

Workspace
Debug

Files
6 Exmaple - Debug
Qo

m32o_ite
F— B stmi2i o ith
L@ (3 Output

izl hal_conth

each GPT0 Clock (to be able to progrem the configuration
OF_CLK_ENABLE () ;

Errors 0, Warnings 0

i

Users\Steven Murdy\Desktop\ STM32H152 Kit\D:

Figure 6: Keypad.c

This driver consists of two functions, keypadlnit(), which will initialize the Keypad

Module and getKey() which will return a number based on which key is pushed when called, see

Figure 7 for details.

64

15 Eaampl AR Enied

File Edit View Project Tools Wi Help

DEP &
Workspace 0 v x
Debug =
Files
& (JExmaple - Debug
CIDrivers
s =
] int getkey () {
1
HAL GPIO_WritePin(GEIOE, GPIO_PIN 1, GEIO_PIN_SET);
1”1
| if (HAL GPTO_ReadPin(GPIOE, GEIO PIN 0) == GPIO_PIN SET){
key = 1
y
/2
] if (HAL_GPIO_ReadPin(GBIOE, GEIO_PIN_2) = GPIO_PIN_SET){
key = 2
)
Eimaple ; o
Messages File L
Read Erors0, Wamings0___ Ln15, Col 42 System =]

Figure 7: getKey()

Assignment 4 Wait for a Keypress

You’ll need to have a method of calling the function getKey, and also record the result.

Create an int variable, and then assign the variable the equation getKey, like in the code shown

below:

int key=16;
key=getKey();

This will assign the variable “key” the value of whatever button was pressed when getKey was
called. Create a function that will continuously wait for a key press, and then display the message

“Hello” if it reads a successful key press.

65

Assignment 5: Messager

In the previous assignment, any key press would cause a message to be displayed. Using
that code as a base, create a new function that will display “Hello” if the 1 key is pressed, and
displays “Goodbye” if the 2 key is pressed. (Eventually, you will need a code that will perform
different tasks for every type of key pressed, but for now, you should limit yourself to just 2
buttons.)

Project 1 Calculator

Assignment: This is your first fully-realized project, and you'll have to finish it without direct
assistance. We can't step you through how to do this! You'll have to use the skills you recently
learned to build a calculator. Your calculator, once completed, should meet the following
criteria,

A Number keys, when pressed, must display the correct number.

A Screen should display the first number, the second number, and the result

A There should be a button for Adding, Subtracting, Multiplying and Dividing

A Negative Numbers

(A The operation keys must work properly

L

Screen must display a string of numbers at least 4 characters long

A You must have a method of clearing the screen with a button press

There are also a selection of bonus challenges that you can use to personalize your application.
These are mostly things you can add for fun and they may require more thought and planning to
finish.

A Display all three numbers (the two operands and the result) on the screen at the same time

(A Create a visual representation of what number has been pressed

66

A Configure your clear function so it erases the number being entered first, then the entire
screen if pressed again.

Display results of 8 characters

Clear screen after every equation

For the division equation, display the result as an integer with remainder

oo d o

Have Equations transition into each other (2+2=4+2=6-3=3). (This will be the hardest

bonus requirement to accomplish.)

(Hint: If you're not sure exactly where to start on this lesson, we have provided one piece of
example code that initiates the 0, 1, 2, and * key, and can write basic addition equations that are

one character long. You may use this code as a reference.)
Additional Help: It's a good idea to constantly comment your code as you write. This will help

you keep your thoughts organized and allow you to easily parse through your code should you

come across an error that you can't find

67

Appendix C Clock Lesson

68

Lesson 3 Telling Time

This lesson will teach you how to use your microcontroller to build a clock. To do this
you must understand how the HAL Library keeps time and how to access and interpret that
information. This lesson will explore how to read through the HAL Library, and make minor
adjustments as well a introduce the concepts of timers. This project will require the LCD and

Keypad Modules.

Assignment 1 Seconds Run Timer

The first step to build a clock on a microcontroller is to know the speed of the internal
clock. Now the question is how to learn this begin by opening the example workspace in the
Clock folder. . Go to function HAL Init(); in the code and right click. Select Go To Definition
“HAL_Init()”, see Figure 1, this should bring you to the file stm3211xx_hal.c, at the location of
the definition of HAL Init().

69

& Bxample - AR Em b
File Edit View Project Tools Window Help

DEEd S| ma|c VY RuED e @6 B
Workspace x inc * | keypad.h | keypad.c main) v X
Debug X * gbrief Main program A:J
Files &
6 Exmaple - Debug v
o CDrivers
BsP
CIcMSIS
-2 LI Modules
| Fatne
| Lemsc
| keypad.c
| Icd3310_GPIO.c
(3 5TM32L1:e_HAL Driver
main.c
— Rmainh
F— 1 stm3210b_evalh
F— B stm32Txoc_hal_conth
Sm32ITxCite
F— Bl stm3atec ith
L@ 3 0utput 1rid Pasts
Lepr|
Leoc| CompleteWord
Complete Code
s7in) Parameter Hint
reyp| Match Brackets
Toggle All Folds
Insert Template
Exmaple o — =
. Open Header/Source File
Messages Go to Definition of 'HAL Init File Line
Go to Declar: “HAL Init'
Find Al Calls
Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Enable/disable Breakpoint
Set Data Breakpoint for 'HAL Init'
Set Data Log Breakpoint for 'HAL Init'
= Character Encoding
Go to the definition of the selected symbol Optiores Errors 0, Warnings 0 Ln50, Col 7 System =

Figure 1: Go to Definition

In the definition there a call the function HAL InitTick(), this function initializes the

clock for the microcontroller. Repeat the Go to Definition except on HAL InitTick(). This

should take you to the definition of the function. The comments tell you the base time that the

system keeps track of a useful number if you want to build a clock. No figure for you, I want you

to find this yourself.

Go to the private variables section of stm3211xx_hal.c, here you will see the declaration, see

Figure 2.

70

5 Eaample AR EBeda
File Edit View Project T

DEEH@ S =0~ e AL X
Viorkspace

AV

main.c * | keypad.h | keypad.c |stm3ziio it.c stm32tioc_halc* |
Debug

Files 2z o 4
 Exmaple - Debug

| ©

| keypad.c

| Ied3310_GPIO.c .

Lar1sTM3zL1 e HAL Driver I 15
{~aCans S8y
Larse 3

5

adec

haladc_e i
st el comp ¢ T ———
stm3211o_hal_cortex.c = =
stm3zlx_hal_crec
stm32ITohal_cryp.c

stm32110_hal_flash_

2 ###44 Initialization and de-imitializati
[Exmapte

Messages

File Line

= | il

Errors0, Warnings0___ Ln101, Col1 System

n

Figure 2: Private Variables

uwTick is the variable that the HAL libraries stores its clock. If you look at where it is used in

the code you will see the functions:

_weak void HAL IncTick(void)
_weak uint32 t HAL GetTick(void)

These two functions are how the system clock works. HAL IncTick is called as an interrupt by

the system as it gets input from the hardware clock built into the microcontroller. HAL GetTick
is how you get the time.

Now that you have the knowledge it is time for you to to build the first part of your clock the
seconds. Add the code:

int seconds = 0;

71

Underneath the declaration for uwTck in the private variables section, see Figure 2. Next go to
the function HAL IncTick and add a line of code that increments the variable seconds every

second. (HINT: Use the base time of uwTick you learned earlier and the % function.)

Now you need to add a function based on HAL GetTick to give you access to seconds in
your main function, call it getSeconds. To access your new function you will need to prototype it
in your header file, stm3211xx_hal.h, see Figure 3 for is location in the Workspace map on the

left side of the screen.

Workspace x
[Debug -

Files Enomy o+
B F Exmaple - Debug v
—= [Drivers

C1BSP

CICMSIS

[kodules

L3 (3 STM32LTsee_HAL_Driver
= Jlnc

m

— [k stm321xx_hal_adc_exh
— [stm32I10c_hal_camph

— [stm321e_hal_comp_exh
— [stm32I1xc_hal_conf_temp...
— [strn32Nxe_hal_corexh
— [strn3210_hal_crc.h

— [stm321oc_hal_crypoh

— [stm32110¢_hal_cryp_exh
— [k strn32Nxx_hal_dach

— [k strn32Nxe_hal_dac_exh
— [k strn32xc_hal_defh

— 1] strn32Mx_hal_dmah

— [strn32Mx_hal_dma_exh
— [k strm321x_hal_flash.h

— [k stm321xx_hal_flash_exh
— [k strn32Nxx_hal_flash_ramf. .
— [k stm3211o_hal_gpioh

— [stm321Tx_hal_gpio_exh
— [strn321o_hal_izch

— [k stm321xx_hal_iZs.h =

Exmaple

Figure 2: Private Variables

Add the prototype under HAL GetTick. Now return to your main.c, add the following

code to the initialization part of the main function:

72

char secondString[14];

Now add the following code to the while(1) loop, see Figure 4:

toString(secondString, getSeconds());

LCDStr(0, (unsigned char *) secondString, Inverse);

[Example - TAR Emb J
File Edit View Project Tools Window Help

DFHE & =B c YR epAH BEURS LD
Workspace x m‘ main() v X
Debug z l * gretval Nonme [
oot o %
ez ~ int main(void)
& [Exmaple - Debug v 7
}&1 (1 Drivers 7 GPIO HAL API to toggle LED3 and LEDE I0s
[185P i
CICMSIS
CIModules L
L2 (35 TM32L 150 HAL Driver
L& Caine = ault as source of time base, but user
L8 CiLegaoy e base source (a gener:

— Bl stm32ihoc halh

) stm320To_hal_adch

[l stm32loc_hal_adc_exh
[F1 stm321o_hal_comph

2] stm32/1x¢_hal_comp_exh
) stm320Toc_hal_cani_temp
[l stm32Hoc_hal_cortexh

[stm32iochal_crch

[l stm32io_hsl_cryph LepTniT

I stm2lTc_hal_cip_sch LeDContrast (0x70) 3
) stm32lo_hal_dach int Inverse =0;
[l stm32iohal_dac_exh

) stm32ltoc_hal_deth char secondstring(14] = *;
) stm320ta_hal_dmah

[stm32/ec_hal_dma_exh
[l stm3211ohal_flashh while (1)
) stm32ltoc_hal_flash_exh t

) stm320sc_hal_flash_ram
5] stm32Txe_hal_gpia.h toString(secondString, getSeconds()):

Bl stm32lechal_gpio_exh LCDStr (0, (unsigned char ¥) secondString, Inverse);

) stm32lto_hal_i2ch o
Bl stm32l o hal_i2s h 5

=

Messages File Line B
Updating build tree
mainc

A\ Waming[Pe177: function "Error_Handler" was dedlared but never referenced CiUsersiSteven Murch\Desktopts. \mainc ke
Linking

Exmaple.out
Canverting

i

Total number of enors: 0
Total number of warmings: 1

I

Ready Errors0, Warnings 1 Ln60, Col4 System

Figure 3: Seconds Timer Code

This code should display the seconds your program has been running (to 14 digits), see Figure 4
for what the result should resemble. NOTE: The function intToString has been included in the

starting code for this example to assist you.

73

Figure 4: Seconds Timer

Assignment 2 HMS Run Timer

This assignment will take you a step further, you will now make a timer that does Hours:
Minutes:Seconds. Start from where you left Assignment 1, go to stm3211xx_hal.c and add the

following private variables under seconds.

int minutes = 0;

int hours = 0;

Now add the get functions getMinutes and getHours, don’t forget to add the prototypes in
the header file. Next you will need to edit HAL IncTick to roll seconds into minutes and minute
to hours. (HINT: Reset the lower value when you increment the next one, i.e when you reach 60
seconds minutes goes up and seconds goes to zero.)

Now go back to your main function and add the hours and minutes to the display, see Figure 5.

74

Figure 5: HMS Timer

Assignment 3 Stopwatch

In Assignment 2 you built a run timer that tracks hours minutes and seconds, now you

will use that to build a stopwatch. Start by adding a new variable to stm3211xx_hal.c

uint32_t startTick = 0;

This variable is used so that you can start the timer at any point, while the function is
running. Again you will need a function to get the startTick, call it getStartTick(), but this time
you will also need to set the startTick from your main function. The stopwatch can start 1 sec
into the application or 12 hours, as such you will need to add the function setStartTick, which
should set startTick to the current uwTick.

As you will need to reset seconds, minutes, and hours every time you reset the stopwatch
you will also need functions to set each of them (HINT: make one to set each value not just reset

it, as this will be useful later). Now adjust the HAL IncTick so that seconds are calculated using

75

startTick. (Hint: The difference of uwTick and startTick is the time). Now use the button on the
STM32H152 to start and stop the timer, see Lesson 1 Assignment 2 if you have forgotten. (as
you only have one button you will have reset the stopwatch on start). I would put a Figure, but it

would look identical to Figure 5.

Assignment 4 12 Hour Cycle

In assignment 3 you build a stopwatch that tracks hours minutes and seconds, now you
will use that to build a clock. And the AM/PM shift to your stm32l1xx hal.c, (get, and set
functions as well as , and HAL incTick functions) Now display the time so it starts at midnight

(12:00:00AM) and have it keep track of the time from there, see Figure 6.

4

Figure 6: Hour Cycling Clock

76

Project 2 Clock

You now have a functional time keeper, but unless you start it at midnight it will not
display the current time. Remember those setter function you created in assignment 2, now this
is where they are useful. You know how to use the keypad from the calculator lesson, use the
keypad and the setter function so that you can set the current time, be sure to only allow
legitimate times (i.e. 36:92:00PM is not). You do not need to set the seconds have them reset
when a new time is entered.

A Set Hours Minutes and AM/PM
A Seconds Reset when the clock is Set
A Legitimate Times

A Keeps Time

Bonus Project Multi-Function Clock

-Alarms
-Stopwatch
-Timer

-ect.

71

Appendix D Morse Code Interpreter Lesson

78

Lesson 4 Morse Code - Antique Texting

This lesson will teach you how to make a morse code interpreter, through which you will
learn how to use interrupts. You will also learn Morse Code, which will help if you’re ever stuck

on a deserted island.

Need to Know 1 Morse Code

Morse code was invented a way to sent text information over a distance, be it by sound,
light, or telegraph. It uses a series of flashes, click, or pulses of varying length to create a

message. In Figure 1 you can see the explanation of codes for the alphabet and numbers.

79

LN e Ll B

International Morse Code

. The length of a dot is one unit.

. A dash is three units.

. The space between parts of the same letter is one unit.
. The space between letters is three units.

. The space between words is seven units.

Figure 1: Morse Code Alphanumeric Chart

Need to Know 2 Morse Code Tree

A o mm Ue o mm
Emmeeooe Veeoommn
Comoeommoe We mm mmm
Dommee X mmm e o H
Ee Y mmm o mEE mm
Feomme N e e
Gom mm e

Heeoeoe

| @ ®

] o mmm mEE N

K mum o mmm leo m um som mm
Loemmee P NN BN B
M o - EA NN N |
N e 49000 mm

O m m m 5090000
Ponmm mmoe OEmmeoeoee

Q mm mmm ¢ Jomm e e
Remme Somm mmm Em e ¢
Seeoe O E = =
T m Onem o m =m

Now the question of how to interpret morse code programmatically, the simple answer is

a binary tree. You start at a blank node then make right child a dot and left child a dash, and you

get a binary tree.

80

/ o\
ET
/N /N
I A N M
/NN /NN
S UR WD KG O
INC/NC/NC/N /N /N /NN
HVF*L*PJBXCYZQ**

ININININININININININININ/NIN/N/N

54*3***2*******16*******7***8*90

Figure 2: Morse Code Tree

To use this in your code you can cheat and use a string and the principle that given int n
where n is a number 1 or greater and string[n] is a character, the right child (dot) can be found at
2n and the left child (dash) can be found at 2n+1. This allows you to use the string:

ETIANMSURWDKGOHVF*L*PIBXCY ZQ54# 344D dsk ki | Gotesktswcdex74%8%90

To navigate morse code, using n =1 as the first node. (Do not start at n = 0). * indicate an empty
node, or a node that contains something not important to your project.

81

Assignment 1 Keypad Interpreter (Letter)

Now that you have an understanding of how morse code works you can, make an
interpreter. Open the example project in the Morse Code folder in STM32H152 Kit. Use the
string provided above to make a program that allows you to interpret a code that is entered. Use
the keypad to simulate dots, dash, character end. (ex 1 = dot, 2 = dash, etc). I recommend that
you display the code one screen as you enter it. It will help remember that the max size for any
character is five dashes/dots. When you hit the character end key have the letter appear on the
screen. I would also recommend that have a clear function. See Figure 3 for what a finished

product should resemble

Figure 3: Interpreter

82

Assignment 2 Keypad Interpreter (Message)

You now have a function interpreter, you just need to add two things and you will be able
to enter message, first you must implement a space key, Then you must add a string to hold your
message. (Remember to make n+1 where n is your current place in the string ‘\0’ to display it on
the LCD correctly). I would for the sake of testing adjust the clear function to clear the code on
the first push and the message on the second. Figure 4 contains an image of what a finished

interpreter should resemble.

Figure 4: Message

Assignment 3 Button Interrupts

This assignment will teach you about interrupts and how to use them with buttons in the
HAL code. Before this you have used the method of polling with your buttons, this is when you

at a certain place in the code check to see if the button is pushed. The method you are now

83

learning is called the interrupt. It name is what it does, an interrupt interjects into code when it is
triggered. I will use the morse code interpreter you will be building later as an example, you
make the code passively display the current message, and code like in your keypad interpreter.
However on the push of a button, the microcontroller pauses the display code and runs the

interrupt.

Back in the Lesson 1 there was an assignment that explained how to initialize the button on the
Board. The following code (minus the line numbers of course) are how program a button push to

trigger an interrupt. Following the code is a line by line description of what is occuring.

1. _ HAL RCC GPIOA CLK ENABLE();

2 GPIO_InitTypeDef Buttoninitstruct = {0};

3 Buttoninitstruct.Pin = GPIO _PIN 0;

4 Buttoninitstruct.Pull = GPIO NOPULL;

5 Buttoninitstruct.Speed = GPIO_SPEED FREQ HIGH;
6. Buttoninitstruct. Mode = GPIO_MODE IT RISING;
7 HAL GPIO_Init(GPIOA, &Buttoninitstruct);

8 HAL NVIC_ SetPriority(EXTIO IRQn, 0xOF, 0);

9 HAL NVIC EnableIRQ(EXTIO IRQn);

1. Enables the clock on the Port A, which is where the Button connect to the
microcontroller.

2. Creates a GPIO InitTypeDef, which is a construct made by the HAL libraries to contain
the information needed to initialize pins.

3. Specifies the Pin in Port that the button connects to can be verified in the circuit diagram.

4. Specifies on whether the button requires a pull up/down resistance to function

5. Sspecifies the refresh rate of the pin

84

6. This line is the most important, the mode up you used in Lesson 1 and the keypad driver
both use GPIO_MODE INPUT, which enable passive listening (it tracks the value and
you can access it when needed). GPIO MODE IT RISING which is the mode used in
this example means an interrupt will be triggered on the rising edge, meaning when you
push the button down. There are two other interrupt modes GPIO_ MODE IT FALLING
(button release) and GPIO MODE IT RISING FALLING (Push and release both
trigger separate interrupts: this one will be important later)

7. The initialization of the pin using the struct

8. Set the priority of the interrupt. priority is the importance of interrupts, interrupts with a
higher priority will run before interrupts with a lower

9. This line turns the interrupt on.

Now go open the example workspace in the Button Interrupt folder.

You will see the above code and the initialization of the LED in the main function followed by

an empty while (1). At the bottom you will see the function:

void HAL GPIO EXTI Callback(uintl6 t GPIO Pin)

{
BSP _LED Toggle(LED4);

}

This function is the interrupt, it is the code that will run when the button is pushed. In this
case it will toggle on of the LEDs on the board. Run it and try. The LED will only toggle on the
push of the button.

Now change the mode to GPIO_ MODE IT FALLING the toggle should occur when

you release the button

85

Now change the mode to GPIO_ MODE IT RISING FALLING this should make the
LED stay on as long as you hold the button down

Finally, change the mode to GPIO MODE INPUT and add the following code to the
while(1) loop

if (BSP_PB_GetState() == GPIO_PIN_SET){

BSP_LED Toggle(LED4);
HAL Delay(200);

Now push the button, it toggles. Now hold the button, your LED should be blinking this is

because it keeps polling the button every 0.2 secs.

Assignment 4 Rise/Fall Interrupts

This assignment will have you use rise/fall interrupts to do separate things. Make it so
that on push (rise) LED3 toggled and on release (fall) LED4 is toggled (HINT: Assume that the

starting state is not pushed and use a flag)

Project 3 Morse Code Interpreter

Now on to the main part of the lesson, a working morse code translater. See Figure 5 for

a picture of the finished project.

Q Pick a speed (remember each tick is 1 ms) referred to as beats below

86

a

[SO W N

Reads in morse code

O Dot (hold button down 1 beats)

 Dash (hold button down 3 beats)

Q Code Space (released 1 beats)

O Letter Space (released 3 beats)

O Word Space (released 7 beats)
-Make certain the Letters appear at apprx. 3 beats
-Leave room for error ex dot ~0-2.5, dash ~2.5+
-Display message and code like in the keypad interpreter

-Use Keypad to add a clear function

Figure 5:Morse Code Interpreter

87

88

Appendix E Maze Game Lesson

&9

Lesson 5 Simply a-MAZE-ing

Figure 0:Maise Maze

In this lesson, you will be learning how to use the drawing functions built into the LCD to
design a working maze game. This project will also help reinforce the concept of programming
dynamic states within a code. In addition, this will be the first ever project where you will be

constructing a game.

Assignment 1: Drawing a line

The most basic shape is a line or line segment. The function “LCDLine” will draw an
almost straight line between two points. The two points are set as the parameters for the
equation, with the first two parameters being one X-Y coordinate, and the last two parameters
being the other X-Y coordinate.

Open up the folder labeled maze game and access the project within. Inside the main

function, input the following code:

int main(void){
HAL Init();
LCDiInit();

90

LCDContrast(0x70);
LCDLine (1, 1, 83, 47);

return 0;

This code should in theory draw a line segment from the upper-left-hand corner of the board to
the lower right-hand-corner. Once you have formatted the code, download the program to the
board, and debug it.

Despite your best efforts, the board is completely blank. You see, the functions that you
will be using to draw different objects do not actually write on the board; at least not by

themselves. What happens is slightly more complicated.

How it works: Built into the lcd3310 GPIO is an array that acts as a memory bank,
simply called “memory”. This array has a size that is equivalent to the total number of pixels on
the board (48x84, or 4032). And as you might have guessed, each spot corresponds with a
particular pixel. The function “LCDPixelXY” takes a particular pixel at some coordinates, and
then initializes the spot in the array that matches that pixel. However, this still doesn’t explain
how the pixel is actually written on the board. For that, we turn our attention to the function
“LCDUpdate”. When this function is called, the program takes the entire memory array, and
sends all the values contained within the array, one at a time, to the LCD scree, which interprets
the value of the array as the pixel point potentially being initialized. At every point that is
initialized, the pixel on the screen is set to appear as a black dot. Nothing is ‘drawn’ onto the

board until “LCDUpdate” is called.

Now, try writing the code again, and before the return statement, write:

LCDUpdate();

91

You should see the line take shape, See Figure 1.

Figure 1: It’s a Line!

Assignment 2: A rectangular Box

The function used to draw a rectangular box is “LCDRectangle”. This function takes in
four unsigned chars, which set the first X and Y coordinates, and the second X and Y coordinates
of the box, respectively. The function uses “LCDLine” to create 4 line segments (2 vertical and

2 horizontal), that together form the sides of a rectangular box See Figure 2 for a sample box.

92

Figure 2: Hopefully no Snakes in this Box

Assignment 3: The Box Moves

Drawing an object is easy enough, but now we need to make our object change position.
Let’s try moving one pixel down and one pixel right. Simply rewrite the function to draw a
rectangle, and add 1 to each of the values. However, if you ran the code now, you’d end up with
two rectangles. To simulate movement, you’ll need to erase the first rectangle before drawing the
second. Thus, it’s time to introduce the function “LCDClear”. This function will reset all the
values in the memory array back to 0, effectively resetting the board. This change will not be
reflected on the board until “LCDUpdate” is called. Try moving the box around the screen.

(Note: The movement will work best if you place a delay after each update)

Assignment 4: Circles

Another function used to draw is “LCDCircle”. This function takes in 3 parameters: the

first two are unsigned chars X and Y that mark the center of the circle, and the third parameter is

93

the radius of the circle. For now, create a circle with a radius of 2, and set the coordinates to x=5

and y=5., see Figure 3

Figure 3:Tiny Circle

Assignment 5: Freeform movement

At this point, you’ve been setting the coordinates for the object individually, which can
prove to be tedious and is impractical when dealing with more complex movement. For your
future assignments, you’ll need to develop a system that will keep track of the current location of
your object.

Example for Circle: create three variables (for the x-position, y-position, and radius) and
set them as unsigned chars of a determinant value. For each movement, the X or Y variable will

be changed, and then the circle can be redrawn using the variables.

94

Assignment 6: Blocked Movement, and States

Because the memory of the LCD screen is an array of a set size, it physically can not
draw anything outside of the limits of the board. To avoid such errors, “LCDPixelXY” includes
2 lines of code that check to ensure that the X and Y coordinates being called are not out of the
screen’s range. These boundaries prevent the code from trying to initialize a point outside the
Memory Array, which could cause a fatal error. In a less extreme circumstance, additional

boundaries can be set to keep an object from escaping a confined space.

For this next experiment, create an object and set it at coordinates x=10,y=10. Create a
function that will constantly increase the x position and update the board to match. Once this is
done, your challenge is to create an additional function that will prevent the x-position from
increasing beyond 24. (Hint: If you’re stuck on how to accomplish this task, we would
recommend creating two individual states for the object: One state for when the object is

moving, and one state

Project 4 Make a Maze

In this project you will create a navigable maze, and have player solve your maze by
moving a representation of themselves through it (using the Keypad as a D-Pad) , see Figure 4
for an example of a simple maze.

A Create a circular object to represent the player

A Use buttons/keys to allow player movement

(4 Use lines to draw a maze on the LCD, with set boundaries

A Update the Movement of the marble every time the key is pressed

A Stop the marble from moving past set boundaries

95

Figure 4: Simple Maze

There are also a selection of bonus challenges that you can use to personalize your application.
These are mostly things you can add for fun and they may require more thought and planning to
finish.

Q Try displaying the object as something other than a sphere

[Have the player object face the direction of movement

[Create an even more complex maze

4 Develop a simplified method for creating lines and boundaries

A For an extra cool challenge, try adding a game state for collecting a key to open the door

to the exit (You’ll need to build two separate mazes: one with the blocked exit and key

96

97

Appendix F Simon Says Lesson

98

Lesson 6: Simon Says....Let’s Make a Simon Says

This lesson will teach you to write the basic driver for a module, in this case the User I/O module
contained in your kit. You will then use your own driver to create a simple game of simon says

using the buttons and LEDs on the module.

Assignment 1 LEDs

Open the Simon Says example workspace in the STM32H152 Kit files. This should open
you to the file “IO.h”. This header file contains the information you need to build the driver for
the I/O module as well as containing some helpful Type Defs and macros that you should use in
the construction of the driver. It also contains the prototypes for the functions you will need to

create in the driver.

Next you need to open a new blank document, O Save it in the folder STM32H152
Kit/Drivers/Modules/Src as “IO.c”. Next go to the file explorer on the left side of the IDE,
Expand the Drivers, then the Modules, then the Src groups. Right click on the Src group select
add file and add I-O.c, see Figure 1.

99

Window Help
D@ & - | e | A Y EE PP AH(BEVUNS LD
Workspace > | main.c [1:0h 1:0.c | 0 - x
Debug - =
Files & B =
B (JExmaple-... «
[[Drivers
amesp
| FERST™
| L=wmsm™
aCacMsis
= CaModules
| F@Cane
| LooEre——
| =k Options.
| Lamk
LameT Make
main.g Compile
[—Blmainh gepuitd Al
F— [stn32 &
— R stm321 ot
stm32l C-STAT Static Analysis »
— B stm32!
CIOulput Stop Build
Add » Add Files.
Add "0
Remove
g Add Group...
Version Control System »
Open Containing Folder...
File Properties...
Set as Active
Exmaple o = el
*| Path Line String

ChUsers\Steven MurdyADesktop\STMIZH1 52 Kitistm3210_it.c 182 wvoid EXTIO_IRQHandler(woic)
Cil n bl 132H1 52 Kitystm 321 hoc_ith B1 void EXTI0_IRQHandlerfoid)

larations

& Buld Decarations |

It <

Add the specified file to the project

Figure 1:Add your new File to the Workspace
Now add the line:

#include "I-O.h"

Now I recommend using keypad.c as example of good commenting and how to set up
some of the functions. The next step is to use what you know from the previous lessons, to create

the functions for LEDs which are prototyped in the header file:

void 10 _LED Init(IOLed TypeDef Led){
//(NOTE: The LEDs need to be set to open drain, and remember your clocks!!)
//(HINT: Init structs are nice)

}

void 10 _LED On(IOLed TypeDef Led){
//(HINT: PIN_SET Off is on and On is Off)

}

100

void 10 LED Off(IOLed TypeDef Led){
//(HINT: PIN_SET Off is on and On is Off)

}

void IO _LED Toggle(IOLed TypeDef Led){
//(HINT: Isn’t there a HAL for this?)

}

Now got to main.c we took care of the HAL Init, now you need to test your functions,

blink some LEDs.

Assignment 2 Buttons

Your next assignment is to create the functions for the buttons, so go back to I-O.c and

add the functions:

void 10 _PB_Init(IOButton TypeDef Button, [OButtonMode TypeDef Mode){
(HINT: There are 4 modes that you will need Input and Interrupt: Rising, Falling,
Rise/Fall.)

}

uint32 t 10 PB GetState(IOButton TypeDef Button){
(HINT: isn’t there a HAL function for this)

}

Now repeat your examples from assignment 2.1 from the Morse code lesson to test your

driver. Set up all four at once one per button that has a corresponding LED.

101

Project 5 Simon Says

Now use your driver to make a simon says game. Here is a checklist for you

A Randomly chooses pattern
A Set Time to press button
A Win State

A Lose State

A Idle State (between games)

(HINT: Flags are nice)

(NOTE: we ran into some problems with IAR’s implementation of rand() so here is some code to

help)

srand((unsigned) HAL GetTick());
HAL Delay(1);
if (HAL_GetTick()%2 == 0){
HAL Delay(5);
srand((unsigned) HAL GetTick());
telse{
for(int 1 = 0; 1 < rand()%10000; i++){

102

h
srand((unsigned) HAL GetTick());

}
/*Your Variable here*/ = (rand()/7)*HAL_GetTick() % 4;

Congratulations, you have reached the end of your kit, but there is much more to learn. We
have started you on your path, and hope you continue, we could use the help-
Steve and Alex

P.S. Have some cake

ts

2.5

Figure 2: Cake

103

Appendix G Keypad Module Circuit Diagram

n e

S mrmw—
g;m ??im gﬁm lﬂun RERREER

HDR1XB

] [Sl Pl] N | e e [|
3
[+] @
|||||||||||[l|

104

Appendix H User I/O Module Circuit Diagram

WVee Le
5] k?,'.ﬂ 3] “Ee al
SaTIG 31nu b3 3mu | PR
1] PED .
PEZ .
LEDE LEDD | o | LED PE4 .
Y:' " ¥ ' PES .
PEA PES PE& PET
1 e
. 51 52 | -] 54
, ¥ : ¥ ;
Koy B iy Spacy’ - Huy = Spacy’ Hay = Spacy’ Koy = fpacy’
1 i 1 %
o 1] =6 i ag HORTRES
¥1um %:m %mﬁ %mn %Wlﬂ
“PED [PE2 PE.3 i

. Gnd

- PE1
-PE2

- PET

105

