
 1

System'Development'for'
Health'Monitoring'of'Structures:'

Program'Manual'
Seth Karstaedt, Tahar El-Korchi, Yeesock Kim, Hugh Lauer

Department of Civil and Environmental Engineering, Worcester Polytechnic Institute

(WPI) Worcester, MA 01609-2280, USA

karst@wpi.edu, tek@wpi.edu, yeesock@wpi.edu, lauer@wpi.edu

 2

Instructions'for'Operating'the'Program:'

This program was designed for use with National Instruments (NI) DAQ modules. NI
LabView, DaqMX, and NI Measurement and Automation Explorer (MAX) are required
for using this program.
Sensors and Output are set up through the NI-MAX interface, for additional info on using
this info please refer to:
DAQ Getting Started Guide: http://www.ni.com/pdf/manuals/373737f.pdf
DAQmx Support Overview: http://sine.ni.com/psp/app/doc/p/id/psp-268
Complete Listing of DAQmx for Windows Documentation:
http://digital.ni.com/public.nsf/allkb/CCDFC93878BD8781862570FC00559980

This program can be used for collecting data through NI-DAQmx sensors and

controlling output to NI output modules in real time.

 2

Using This Program: ... 2!
The Testing Workflow: ... 2!
Starting: ... 3!
The Task and File Configuration Screen: ... 3!
The Data Acquisition Screen: ... 7!

The Control Model: ... 8!
Creating a New Control Model: .. 12!
Creating a new Control Model in LabVIEW (Case Study): ... 12!

Triggers in Detail .. 24!
Possible Issues and Troubleshooting: ... 25!
Program In-Depth Analysis: ... 26!

Block Diagrams: .. 26!
Data Collection Main ... 26!
Task and File Config ... 32!
DAQ and Display Loop ... 35!
DAQ and Display Loop (Input Only) .. 44!

Using This Program:

The Testing Workflow:

Every test follows this basic workflow.

1. Select or create the tasks that contain the channel information for your sensors
and output. (Tasks are NI-MAX tasks; for help creating tasks see the NI-MAX
help file and resources)

2. Enter the location and names for the input and output log files to be saved to.
3. Click “Done Configuring”
4. You can then set the trigger information.
5. Click “Next” to begin waiting for the trigger and then collecting data. (The graph

will not be updated in real time.)
6. Click “Stop” to stop collecting data and preview the data that has been collected.
7. The data collected will be output to the files specified in step 2.
8. Click “Next” to begin from step 5 or end the program.

 3

Starting:

To begin, double click on the file called “Data Collection Main.vi”. This will

open a LabView screen; click on the run arrow at the top left to begin running the
program.

The Task and File Configuration Screen:

The first screen that comes up will look like this:

The selector on the left (1) is for the task that contains information on what
devices and channels your sensor data will be coming from. The selector on the right (2)
is for the task that will have the devices and channels for any output devices you may
have. Click on either selector to see a list of the available tasks. You can select a
previously made task, or click “browse” , then “create new”, and then“MAX Task” to
create a new task. To run tests without sending a control signal leave the Generate Signal
Task selector (2) blank.

1

4 3

2

5

 4

When a new task is being created you will first see a screen like this:

 5

This is to select what type of measurement to use for the task, i.e. if you are
reading from an accelerometer use Analog Input Accelerometer. If you are creating a task
to read data from sensors you must use an Acquire Signals task, if you are creating a task
to send data to an output device you use a generate signals task.

You will then be prompted to choose the device and channel to read from. The
devices and channels available are imported from the NI-MAX application. Name your
new task and click “Finish” to continue.

When creating a new task, the data acquisition task must have the Acquisition
Mode set to “Continuous Samples” in the NI-DAQmx screen (see below), the rate you
provide will set the number of samples retrieved per second per channel.

When creating a new task, the signal generation task must have the generation

mode set to “1 Sample (On Demand)”.

 6

Any new tasks you make will automatically be saved in NI-MAX and can be
accessed later or edited by using the NI-MAX tool.

Below (3) and (4), enter the file names for the log files to be written to. If the
name is taken the program will add automatically incremented numbers to the end of it.
The left selector (3) is the file to store the data recorded from the sensors, and the right
selector (4) records the control signal being sent out.

When you have configured and selected the tasks you want and finished entering
the file paths click the blue “Done” button (5) beneath “Done Configuring Tasks”. The
Data Acquisition Screen will then come up automatically.

 7

The Data Acquisition Screen:

When the screen comes up the program will take a few moments to initialize. You
can spend this time setting the trigger information, when you are ready click "Next" the
program will then begin waiting for the trigger condition to occur before acquiring data.

Triggering is a way to have your program not store any data until it detects a
certain kind of reading from one of the sensors. The Trigger Channel (8) is the channel
being monitored for the trigger conditions. The name corresponds to the name given in
the NI-Max task. The Trigger Type selector (5) is used to choose a kind of trigger: “No
Trigger”, “Upper Boundary”, “Lower Boundary”, or “Increase in Standard Deviation”.
“No Trigger” simply starts data acquisition immediately. “Upper Boundary” waits until it
sees a value above the “Trigger Level” (6) to start data acquisition. “Lower Boundary”
waits until it sees a value below the “Trigger Level”. “Increase in Standard Deviation”
waits until the difference in the current samples standard deviation and the previous
samples standard deviation is greater than the “Trigger Level”. The “Current Level”
shows the value being compared to the “Trigger Level”, it can be used to adjust the
“Trigger Level” for better performance. The trigger parameters can be changed at any

 8

time. For more on triggers see the “Triggers” section farther down. When the program is
waiting to detect a trigger the “Ready light” (4) turns bright green.

While data is being collected the �Samples Collected� indicator (3) will show how
many samples have been collected so far for the current test.

When you are done collecting data press the �Stop Collection� button (2) or the
�Page Up� key to stop data acquisition. The program will then graph the data for the most
recent test and output the collected data to the files you specified earlier. The graph can
be manipulated by zooming in or out using the zoom tools (11), scrolling using the
horizontal scroll bar (12), or editing the axes using the axes control tools (10). The legend
(9) can be scrolled through to see which line corresponds to each sensor channel.

When you are done reviewing the data press the "Next� button (1) or the �Page
Down� key to either end the program (if not in More Tests mode) or begin the next test (if
in More Tests mode).

Click the EDIT button (9) to edit the control model being used in a pop up
window. For more information of Control Models see �The Control Model� section.

The top right corner of the screen will always contain a switch labeled �More
Tests�, while this switch is off More Tests Mode is disabled and when you are done
reviewing data for the test the program will stop running. While the switch is on, More
Tests Mode is enabled and when you are done reviewing data for the most recent test the
program will clear the input array and begin collecting data for the next test automatically
using the same tasks and files test (covered below). The switch can be clicked at any time
to enable or disable More Tests Mode.

The Control Model:

To change the control model in use click on the edit button in the Data
Acquisition screen while the program is running or open the Control Tool VI. This
currently has five options, Constant, Random, When Above, PID, and Matlab. Change
the name in the “Active Model” box to change which model will be used. If you are
editing by opening the VI when you are done, go to >>Edit>>“Make Current Values

 9

Default” and then save changes, the next time you run the Main program it will use the
control model you specified in the “Active Model” field. If you are editing by clicking
the edit button with Data Collection Main running then you only need to exit the Control
Tool window, your changes will be kept until you stop running the program.

Constant allows you to create an array with one index for each output channel.
The number on the left is the index and the number on the right is the value at that index.
The value at each index in the array is constantly sent to the output channel regardless of
what the input is. This will only begin after the control loop has been triggered and one
batch of samples has been collected. Always on constant outputs are best set using the
NI-DAQmx output task.

 10

Random generates a random number between Random Min and Random Max.

When Above generates a specific signal when all values in the most recent batch
of samples is above a specified level.

 11

PID uses the boxes to generate a signal based on the PID formula, calculating the
error, its integral, and derivative and then the sum of those times their respective gains.

Matlab allows you to design your own control model using the Matlab program.
In order to use this option you need to have code, which makes use of two variables
“numChannels” and “data”. “numChannels” is an array containing the output data from
the previous run of the Control Tool and is passed to the “Control Tool” when the

 12

program is running. The other variable “data” is a two dimensional array of the data read
from the most recent batch of samples, each row of the array is one of the sensor channels
and each column is the value read from that channel at a specific instant in time. Your
code must create a one dimensional array of length equal to the length of “numChannels”
and each value being the value you want the output signal to be for the corresponding
output channel.

Using Matlab can severely curtail program performance. This function uses
Matlab and the Microsoft ActiveX architecture so both need to be installed on the
computer you are running the program on.

To make use of this option when in the Control Model click Window from the
toolbar at the top of the screen and then “View Block Diagram”. When the block
Diagram comes up there should be a box with the name for one of the control model
choices in it. Click on that box and change the name to Matlab. Then copy and paste the
script you want to use into the box labeled “Matlab Script”. Or enter the file path of a
Matlab script in the Matlab tab. Using a file path to specify a script will take additional
time loading the script.

Creating a New Control Model:

To create a new control model that can be used with this program you will need to

be able to do some programming using the LabVIEW language or Matlab. Because
LabVIEW needs to open Matlab to run Matlab code and cannot do anything else while
running the code, Matlab should only be used when the script is very simple and can be
run quickly, in order to maintain high performance.

Using Matlab script can also result in an error when you attempt to change the
“Control Tool” virtual instrument. You must save before running the control tool. If you
run the “Control Tool.vi” you must exit and restart LabVIEW before making further
changes because attempting to save will cause LabVIEW to quit without saving.

Creating a new Control Model in LabVIEW (Case Study):

 To show how you can create a new control model consider the following
example. This requires some working knowledge of programming in LabVIEW. To learn
about programming in LabVIEW, try the going to the following webpage:
http://www.ni.com/white-paper/7466/en

“When Above” Control Model: This model checks to make sure that every data
point for a batch of samples from a specific sensor is greater than some threshold

 13

value. If it is above the threshold value then all sensors are set to some constant.
Otherwise the threshold then all sensors are set to some other constant.

For example the following would be one instance of this model:
When channel 1 is above 5 units set all outputs to 1 unit otherwise set all outputs to 0
units.
This means that if the following is sent to the control model:
[2 , 6, 7, 8] then the output will be 0.
[2, 3, 4, 1] then the output will be 0.
[6 , 7, 8, 6] then the output will be 1.
[6, 7, 5, 6] then the output will be 0.

The Control Tool VI is given two variables from the main Data Acquisition
program and is expected to output a single array where each index is an output channel.
The input variables are called “Samples” and “Output Channels” and the output variable
is called “Output Signal”.

“Samples” is a 2-dimensional array containing the data for all channels for the
most recent batch of samples gathered. It is arranged so that each row corresponds to a
channel and each column is the instant of time the sample was gathered at. This means
for two sensors where the first sensor reads a signal y=x and the second reads y = -x the
subarray can be [[0 , 1, 2, 3][0, -1, -2, -3]] or [[7, 8, 9, 10] [-7, -8, -9, -10]] etc.
“Output Channels” is an initialized array of the correct size to store the output signal. So
if there are two output channels it is an array of length 2, if there are 3 output channels it
is an array of length 4. The first time in a test it is sent to the Control Tool all of its values
are 0, afterwards its values are the same as the previous “Output Signal” array.

1. Open the Control Tool.vi
2. Find “Show Block Diagram”

3. In block Diagram right click on “Active Model”

 14

4. Click properties.

5. Go to the “Edit Items” tab.

 15

6. Double click on the blank space at the bottom of the list.
7. Type new control model name.

8. Hit enter and then click “OK”

9. Right Click on the case structure.

10. Select “Add Case for Every Value”.

 16

11. Select the new case.

 17

12. Add the blocks for the new case.

a) Add index array and wire it to the data array.

b) Add constant and wire it to the Index Array

c) Add “Array Max & Min” Block and wire it to the Index Array Block

d) Add Less than and wire it to the min terminal. Add threshold constant.

 18

e) Add “Switch” Block and wire the ? terminal to less than.

f) Add the switch constants.

g) Add a “For Loop” structure. Wire the Num Channels array to the for loop.

h) Wire the “Switch” block to the for loop.

 19

i) Wire the “Switch” block terminal to the “Output Signal” block. The for loop will
automatically index the “Switch” block outputs to all indexs of the array.

j) Right click on a constant, go to “Create “and click “Control”

 20

k) Hook control up in place of constant and then delete the constant

l) Click twice on the label to rename the control.

m) Repeat steps k-m for all constants that you want to be variable.

 21

13. Go to Window>>Show Front Panel

14. Locate the new controls.

 22

15. Right click on the tabbed pane and click add page after.

 23

16. Rename the new tab. You can edit the name by double clicking on it.

17. Drag and drop the new controls into the new tab. And arrange them how you want

them.

18. Click File>>Save

The new control model is ready to be used. Select its name in the “Active Control” menu
to use it when running the main VI.

 24

Triggers in Detail

 Triggers are used to control when the program begins collecting data and sending
control signals. All trigger modes save some data (20 samples minimum) that occurred
before the actual trigger event, this is to ensure that the beginning of the data isn’t
accidentally cut off. The channel specified by the “Trigger Channel Index” box is the
only one that can meet the trigger conditions and the program cannot have multiple
triggers active at the same time or examine multiple channels at the same time.

There are four trigger modes:

1. No Trigger: In this mode the program immediately begins collecting data.

2. Upper Boundary: In this mode the program waits until it sees a value greater than
the trigger level before collecting data.

3. Lower Boundary: In this mode the program waits until it sees a value less than the

trigger level before collecting data.

4. Increase in Standard Deviation: In this mode the program waits until the standard
deviation of the batch of samples has increased by the trigger level from the
previous batch of samples. This will not go off on the first batch sampled unless
the Standard Deviation is very high. The fundamental formula is
Δ = σcurrent – σprevious
If (Δ > Trigger Level)
Then, Begin Collection.

Consider the following examples of triggering by Increase in Standard Deviation:
 The trigger level is set to 0.3.

The program collects the following batches of 20 samples each and calculates the
standard deviation of each batch separately:
Batch A has a standard deviation of 1.2.
Batch B has a standard deviation of 0.9.
Batch C has a standard deviation of 1.21.
The trigger will begin data acquisition after reading C, the beginning of the output
data will include all of B and C but none of A. The fact that the standard deviation
of C is only 0.01 above A’s isn’t taken into account. The trigger only keeps track
of the standard deviation for the single previous batch. If this is happening it
means that the trigger level may not be large enough to ignore the variability in
the noise data.

Assume for the next test the data read by the trigger looks like this:
A has a standard deviation of 0.9.
B has a standard deviation of 1.2.
C has a standard deviation of 1.21.
D has a standard deviation of 1.6.

 25

Data acquisition will begin after reading D and the output will include C and D.
Because the standard deviation of B is exactly 0.3 higher than the standard
deviation of A the trigger will not begin data acquisition.

Now assume that the trigger level is set to -0.1 and the data looks like this:
A has a standard deviation of 0.9.
B has a standard deviation of 0.7.
C has a standard deviation of 0.68.

Data acquisition will begin after C and include B and C in the output.
 0.7 - 0.9 = -0.2. -.02 is less than -0.1;
 0.68 – (-0.7) = -0.02 which is greater than -0.1 and therefore the trigger begins.

Triggering by Increase in Standard Deviation is recommended because the trigger

level is unlikely to change when testing parameters change so long as the same sensor is
being used to check for the trigger. Also, standard deviation will always tend to increase
during impact regardless of the direction of the change in the input read. This means that
even if the orientation of the sensors is changed the trigger level will be likely to remain
the same.

The trigger will never activate for a value equal to the trigger level.

Possible Issues and Troubleshooting:

If the data collected is inconsistent from test to test there may be aliasing. In order

to fix this, try increasing the sampling rate.

If the program appears to freeze during tests it may be that the UI can’t keep up

with the data acquisition. It may be best to close any unnecessary programs. Or use the
key commands to run the test stopping data acquisition some time after the impact, if the
graph than updates after a few moments you can check the validity of data and keep
running tests without using the UI while data is being collected.

 If an error message says something about one of the input/output device being
inaccessible or that the device was unable to do something try turning the device off and
then on again and check to make sure that all of the modules are connected properly.

If attempting to edit or save the Control Tool VI results in an invalid operation
error that closes the program without saving.

 26

Program In-Depth Analysis:

Block Diagrams:

 This section contains the block diagrams used in the program. Beneath each
picture or set of pictures is a description of what the program is doing at that point in the
process. Each circled letter represents a reference point to the blocks of code around it.
Each numbered square is a reference to a wire that is broken by the way the block
diagram is partitioned in this section. Each number refers to the same value within a
virtual instrument (VI) and a complete list of the numbers and their values can be found
at the end of each VI’s section.

Data$Collection$Main$

VI Process Outline:

1. Create a reference to “Task and File Config”
2. Run “Task and File Config” in a sub-pane on the Front Panel.
3. Collect the user inputs from “Task and File Config”.
4. Create a reference to “DAQ and Display Loop” or “DAQ and

Display Loop (input only)”.
5. Load the input form “Task and File Config” into “DAQ and

Display Loop”
6. Run “DAQ and Display Loop” while “More Tests” is on.
7. Close references and reinitialize everything to default.

 27

 This code displays the “Task and File Config” screen to the user and then collects
the data entered into that screen to be used later in the program.

At A the program creates a reference to the “Task and File Config.vi” file. This
reference is used to insert the “Task and File Config” VI into the subpanel on the front
panel.

At B “Task and File Config” is run as a sub-VI from the reference. The Run VI

block is given the parameters “Wait Until Done = True” and “Auto Dispose Ref = False”.
This is to make sure that the program does not attempt to continue until the user has
finished entering the information into “Task and File Config” and to make sure the
reference is usable for retrieving the information the user input into that VI.

 Starting at C the program uses VI Property nodes to retrieve data from the
controls in “Task and File Config”. These controls are for the I/O tasks to be used and the
paths for storing the two log files. The data is returned as a LabVIEW value data type.

 At D the program converts the value for output signal generation to an equivalent
NI_DAQmx task and then determines whether the task is empty.

 28

This section of code creates a reference to a VI based on whether the generate

output task given is blank. If it is blank then A uses the true case (A2) and returns a
reference to “DAQ and Display Loop (Input Only).vi”. Otherwise it uses the false case
(A1) and returns a reference to “DAQ and Display Loop.vi” and sets the generate signal

 29

task control and output log file path control based on the user input from “Task and File
Config”.

 30

This section of code sets the acquire input control and the input log file control of
the VI given by reference 7 using the user input from “Task and File Config”. It also sets
the first run control of the VI at reference 7 to true. This indicates that it is the first test
being run since the program was started. This is necessary to make sure that “DAQ and
Display Loop” waits for the user to hit the next button before beginning to wait for a
trigger.

 31

Loop A runs the “DAQ and Display Loop” multiple times each run counting as a

single test. At B the program inserts “DAQ and Display Loop” into the sub-pane on the
Front Panel and then runs it using the Run VI block. At C it checks if the “More Tests”
switch is enabled if so loop A continues to run otherwise loop A stops.

After loop A stops the program uses the VI Reinitialize All to Default Values

invoke property node with no parameters. This resets this VI and all sub-VI’s to their
default values. At E it closes the references to “Task and File Config” and “DAQ and
Display Loop” before ending the program.

Connection Index:

1. Value from the “Acquire Input Log File” control in “Task and File Config”.

Represents a files path for the record of input to be written to.
2. Reference to the “Task and File Config.vi” file.
3. Value from the “Generate Signal Log File” control in “Task and File Config”.

Represents a files path for the record of output to be written to.
4. Value from the “generate task out” indicator in “Task and File Config”.

Represents a task to be used for output signals.
5. Value from the “acquire task out” indicator in “Task and File Config”. Represents

a task to be used for acquiring data.
6. Boolean value indicating whether the task from 4 is null.
7. Reference to be used for the data acquisition and control. References the “DAQ

and Display Loop.vi” file or the “DAQ and Display Loop (Input Only).vi” file.

 32

TaskandFile$Config$

VI Process Outline:

1. Wait until the user presses “Done”
2. Evaluate the inputs for different error and warning conditions.
3. If there are errors show the error dialogue to the user and return

to 1.
4. If there are warnings display the warning dialogue and ask the

user if they want to continue.
5. If the user doesn’t want to continue go back to 1.
6. Otherwise end program.

 33

“Task and File Config” contains UI elements and verification for the user to input

the tasks for acquiring and generating signals as well as the file paths for the log files. It
begins with a loop to prevent the program from ending until the user has entered valid
input. At Loop A the program maintains controls for specifying DAQmx tasks and file
paths, one of each kind for input and one of each kind for output. The String indicator is
used to provide general information on the VI to the user.

 34

At B the program determines if the task entered in the “DAQmx Acquire Signal
Task” control is an Analog Input Task and sends the Boolean value indicating this to the
case diagram E. If given a true value (the task is an Analog Input task) E does nothing
(E2), otherwise it creates and displays an error message (E1).

 At C the program determines if the File Paths are not equal to each other or blank

and sends the Boolean value to the case diagram H and F respectively. If H is given a true
value (the File Paths are equal to each other) it displays a warning asking if the user
wants to continue anyway (H1), otherwise it does nothing (H2). If F is given a true value
(one or both of the file paths are blank) the program displays a warning asking if the user
wants to continue anyway (F1), otherwise it does nothing (F2).

At D the program determines if the task in “DAQmx Generate Signal Task” is

blank and sends the value to I. If the value given to I is false (the task is not null) it
determines if it is an Analog Output task and sends the value to G (I1). Otherwise it sends
true to G to prevent G from triggering an unnecessary error (I2). G throws an error if the
task is not an Analog Output task (G1), otherwise it does nothing (G2).

At J the program uses the Boolean values from B, F, H, and I to determine if the

loop can end or if it should continue looping. If B or I return false indicating that one of
the tasks is an invalid type the program always loops. If F or H return false indicating that
the user chose not to continue after receiving a warning about the file paths the program
loops. If B, F, H, and I all send true values to J then the loop ends. At K indicators are set
with the values of the tasks from the “DAQmx Acquire Signal Task” and “DAQmx
Generate Signal Task” controls to be used by the “Data Collection Main” VI when
running “Task and File Config” as a sub-VI.

 35

DAQandDisplay$Loop$

VI Process Outline:

1. Controllers with the task information are set.
2. Wait until next is pressed.
3. Start the tasks. Perform initializations.
4. Read data and test for triggers until a trigger condition is met.
5. Add the data collected prior to the trigger to the final array for

storing data.
6. Send the data to the main reading loop.
7. Read all available samples.
8. Send the read samples and the previous output to the Control

Tool VI.
9. Write the output of the Control Tool to the output task.
10. Store the output task and click count.
11. Store the read data.
12. Repeat until stopped by the UI.
13. Convert the read data to waveforms.
14. Write the waveforms to a file and graph the waveforms.
15. Write the output data to a file.

 36

Loop A is the start of the “DAQ and Display Loop” VI. It only loops if First Run
(C) is set to true which should only be the case if “Data Collection Main” is running
“DAQ and Display Loop” for the first time since it was started. A contains the controls
for the Input, Output tasks, and the Output log file path. These are hidden from the UI
and are set by “Data Collection Main”.

At B the program finds the names of the input task channels and sets them as the

values of the Trigger Channel circle selector.

 37

Loop D runs constantly during the program, waiting for UI events. It uses the

“Next” button to dynamically register the event diagram at E.
The event diagram G has two cases, if a value change is signaled for the “Control

Model” button it opens the “Control Tool” VI in a new window so that the control model
in use can be changed and resets the “Control Model” button’s value. If the “Next” button
signals a value change, G resets the “Next” button’s value. If “First Run” is true then the
program changes first run to false using a signaling value invoke node and sends a false
to the “stop if” in loop D. This ends loop A if it is running but does not end loop D. If
“First Run” was already false, the program ends loop D by sending a true to the “stop if”
in loop D.

At H the program turns off the “Ready” light each time “DAQ and Display Loop”

is run.

 38

At A the program creates a sample clock for the input task with a buffer with
length 4 times the sample click rate. After creating the clock it determines the number of
channels to be used for instantiating arrays and calculations and then starts the input task.

At B the program initializes some constants that are needed for the trigger loop C.

These constants are: a blank 2-dimensional array of doubles to be used to hold samples
from the previous iteration of C, 200 the number to use for comparisons to prevent the
“increase in standard deviation” trigger from always activating on the first iteration, and
40 which is the minimum number of samples per channel. 200 is a number chosen from
the data used during testing of the program as it seemed unlikely that the noise in a sensor
would be variable enough to have a standard deviation that high. 40 was also chosen

 39

based on testing as it guarantees a minimum of 40 data points prior to the first non-noise
data point which was large enough for most sampling rates (tested up to 20kHz).

The trigger loop C loops until the sample data meets a trigger condition specified

by the UI. At Loop D the program waits until a minimum number of samples (40) has
been attained before reading and testing them against the trigger. At E the program reads
all available samples from the input task. It passes the array of read samples into Case
Diagram F.

Case Diagram F is responsible for analyzing data to determine if a trigger

condition has been met. It has input for the previous value, the sub-array of samples for
the channel specified in the UI, and the “Trigger Level” control value. It outputs the
value for the “Current Level” indicator to show to the user, the value to compare the next
iteration against, and whether the trigger condition has been met (true if it has been met).
If F returns true, loop C stops. The three possible “Trigger Types” are F1, F2, and F3. To
create new triggers a new case needs to be added to F and the “Trigger Type”
enumeration control.

 40

At A the array to store the data acquired is initialized. It is a 2 dimensional array
(1,000,000 by the number of input channels) of doubles with the default value being 0.

At B the array created at A is loaded with the data collected while waiting for the

trigger condition to be met. An in place sub-array replace structure is used which takes
the empty array and the lengths of the two arrays generated by the trigger loop as inputs.
This splits Array A into 3 sub-arrays. The first array starts at index 0 and has length equal
to the length of the previous data array from the trigger loop. The second array starts after
that array with length equal to the most recent data array from the trigger loop. These two
arrays are replaced by the corresponding arrays from the trigger loop to preserve data
prior to the trigger condition being met.

At C the generate signal task is started. And the Click Count block is used to

initialize the first Click Count that is necessary to keep track of output timing. Each Click
Count gets a number that is the amount of time that has past since some arbitrary time in
milliseconds. The behavior of the reference time chosen isn’t guaranteed but each click
count in a program will use the same reference time. This means that for two Click
Counts the greater number minus the lesser number will be the time in milliseconds
between when each Click Count was called.

At D the number of channels in the generate signal task is used to initialize two

new arrays. One array is a 1 dimensional array that stores the data output by the “Control
Tool” sub-VI. The other array is a 2 dimensional array (10,000 by the number of output
channels) and stores the history of the signal sent to the output task.

 41

Loop E contains the main loop for data acquisition and control. Its basic process
flow is: acquire all available samples, send them to “Control Tool”, send the signal from
“Control Tool” to the generate signal task, write the acquired and control data to their
respective history arrays, repeat until user stops or the pre-allocated array is full
(1,000,000/ number of input channels).

At F the program gets a Click Count for this iteration of the loop and adds it to the

correct index of the control history array.

At G the program gets an array of all available samples. It sends it to Case

Diagram H. When the number of available samples is greater than zero H adds the
sample array to the acquired data history array and increments the number of samples
collected counter by the correct amount. If the number of available samples is zero, H
does passes the samples collected and array to the next iteration unchanged. The reason
for this Case Diagram is that it prevents indexing errors and other miscellaneous errors
caused by attempting to add empty arrays to the history array.

At I the “Control Tool” is called as a sub-VI. It is given the array it last returned

and the array of the most recent samples collected. It outputs an array that contains the
control data to send to the generate signal task.

At J the array for this iteration of the control is added to the control history array.

This is a potential bottleneck as it uses a for loop to add the control data one at a time
when an in place sub-array replace structure might be more time efficient. However,
attempts to utilize such a structure while combining the data from the Click Count proved
difficult.

At K the control array is sent to the generate signal task.

 42

At A the program resets the output device to 0 by sending an array of length equal
to the number of output channels with 0 at each index. The task is then stopped, cleared,
and any errors reported in a pop-up box.

At for loop B the program converts the time values in the generated signal history

array to millisecond values with the first time being zero.

The for loop C creates and populates an array containing all of the channel names

for the input history array to be used for labeling the file output.

At D the input task is cleared and any errors are reported in a pop-up dialog.

Loop E creates an array of waveforms of the input data history. Each waveform

corresponds to all of the data gathered for one channel. It labels the channels based on the
array of channel names produced at C. The Case Diagram F is placed here to turn off the
“Ready” light element only after data collection has been stopped. The array of
waveforms is sent to the Waveform Chart on the front panel and is used for the log file.

G uses property nodes to determine what the trigger parameters were for this test

and sends them to the Input Log File as a comment.

 43

The “Set Dynamic Data Attributes” boxes at I are used to make sure that the data
written to the Output Log File is correctly labeled.

J and K write the data collected to the Output and Input Log Files respectively.

Once writing is finished the program waits for the user to press the Next button to

end the “DAQ and Display” VI.

Connection Index:
1. The file path for the Output Log File.
2. The task for sending the output signal.
3. The task for acquiring data.
4. The number of channels in the input task.
5. Errors caused by operations on the input task.
6. A 2-dimensional array of the samples collected in the previous iteration of the

trigger loop. An empty array if the trigger activated on the first iteration.
7. The 2-dimensional array of samples read in the most recent iteration of the

trigger loop.
8. Errors reported by sending a signal to the generate signal task.
9. Number of iterations of the Data acquisition loop.
10. The array storing the generated signal history.
11. Error reported by the “Control Tool” sub-VI.
12. Total samples read per channel from the input task.
13. The array storing all of the samples collected from the input task.

 44

DAQandDisplay$Loop$(Input$Only)$

VI Process Outline:

1. Controllers with the task information are set.
2. Wait until next is pressed.
3. Start the tasks. Perform initializations.
4. Read data and test for triggers until a trigger condition is met.
5. Add the data collected prior to the trigger to the final array for

storing data.
6. Send the data to the main reading loop.
7. Read all available samples.
8. Store the read data.
9. Add the read data to the waveform graph on the UI.
10. Repeat 7 - 9 until stopped by the UI.
11. Concatenate the read waveforms into one waveform per

channel.
12. Write the waveforms to a file.

 45

Loop A continues to run until “First Run” is false.

At B the names of the channels of the Input Task are used to set the Circle

Selector used by the Trigger Loop.

At C the program clears the waveform chart so that it doesn’t become cluttered

with data from previous tests.

Loop D contains Event Structure E to handle changes when the user clicks the

“Next” button.

Event Structure E has only one case, when the “Next” button is pressed it resets

the “Next” button. After that it executes the Case Diagram F. If “First Run” is true then it
sets “First Run” to false and outputs false causing Loop A to stop and Loop D to
continue. If “First Run” is false then F outputs true which causes Loop D to stop. Loop A
will never be running or will only run once more when “First Run” is false so the
program doesn’t need to try to stop Loop A if “First Run” is already false. The event

 46

structure E is used to make the “Next” button context sensitive, stop waiting to begin
looking for a trigger if the VI is being run for the first time and end the VI otherwise.

G ensures that the “Ready” light is turned off at the beginning of the test.

 47

At A the program sets the clock for the input task and starts the task. The clock is

initialized with a buffer with length equal to 4 times the click rate.

At B the program initializes variables needed by Trigger Loop C. A constant array

of empty waveforms is made to store the waveform data from the previous iteration of
the loop. A 0 integer constant is created to store the number of samples per channel of
that waveform data. The integer constant 40 determines the minimum number of samples
per channel that the program waits for in each iteration of loop C. The integer constant
200 is an arbitrarily large value to prevent the “Increase in Standard Deviation” trigger
condition from being met on the first iteration of loop C.

Loop C is the trigger loop. Like in “DAQ and Display” it collects samples and

tests them against some trigger condition to determine when to start saving the acquired
data. It outputs the task used for data acquisition, an array of waveforms for the most
recent data set and an array of waveforms for the previous data set, as well as the number
of samples per channel for both of those data sets. The number of samples is needed to

 48

get an accurate count of how many samples have been collected for the user and data
processing.

While Loop D waits until the number of samples available for the input task is

equal to or greater than the specified integer constant, 40 samples in this case.

At E the program reads in all available samples and sends them to be tested for

the trigger condition as well as to an output register and a shift register. The shift register
is used to output the value of the input shift register. The input shift register is equal to
the array of waveform data acquired in the previous iteration of C.

Case Diagram F contains the data for the different trigger conditions. To add

another trigger a new case needs to be added to F and the corresponding name needs to
be added to the “Trigger Type” enumeration control. F takes 4 inputs: “Trigger Type”
determines which case to use, a waveform of the data from the channel determined by
“Trigger Channel”, “Trigger Level”, and a double of the previous output of F. F has 3
outputs: a double to be given to the F in the next iteration, a double to be displayed to the
user through the “Current Level” control, and a Boolean which is true if the trigger
condition has been met. If the F outputs true then loop C stops other wise C continues.

F1 is an “Increase in Standard Deviation” trigger, it uses a Variance Statistics

block to calculate the standard deviation of the waveform from the trigger channel and
then subtracts the previous standard deviation and compares that to the “Trigger Level”.
If it is greater than the “Trigger Level” it stops returns true.

F2 and F3 are the “Upper Boundary” and “Lower Boundary” triggers

respectively. They both use the array max/min block to get the highest/lowest value in the
waveform. If that is greater/less than “Trigger Level” then F returns true.

 49

At A this code initializes the array to store all of the acquired data and preloads it with the

data acquired from the trigger loop at B.

Loop C loops until the array is filled or the user presses the “Stop” button on the Front

Panel. Unlike “DAQ and Display Loop” this displays the acquired data in real time using
waveforms. This is to make display during collection easier and because, with no control
function, the speed the program loops at is not a concern.

At D the waveform data collected is appended to the history array.

At E the data is displayed as it is collected, rather than after all collection is finished like

in “DAQ and Display Loop”.

A

B
C

D

E

1

3

6

2

4

5

2

1

8

7

 50

At A the program gets the filled portion of the input history array.

At B an empty waveform is initialized for storing the correctly formatted history data.

For Loop C iterates over the history array and converts the data into an array of

individual waveforms containing the data gathered where each waveform is one input channel.

At D the data about which trigger was used is converted to a string to be added to the

output file.

At E the data collection task is closed and any errors are reported.

At F the history waveforms are written to the input log file chosen in “Task and File

Config”. The trigger data is added as a comment at the first line of input recorded.

Connection Index:
1. The task for acquiring data as selected in “Task and File Config” and set by “Data

Collection Main”.
2. Errors returned by attempts to manipulate the input task.
3. The number of samples per channel collected most recently by the trigger loop.
4. The array of waveforms collected by the previous iteration of the trigger loop.
5. The array of waveforms collected by the most recent iteration of the trigger loop.
6. The number of samples per channel collected by the previous iteration of the

trigger loop.
7. The total number of samples collected per channel.
8. The array of waveforms for the data acquisition history.

A

B

C

D

E

F

2

1

7

8

